WO2021036773A1 - 一种信号测量方法及装置 - Google Patents

一种信号测量方法及装置 Download PDF

Info

Publication number
WO2021036773A1
WO2021036773A1 PCT/CN2020/108181 CN2020108181W WO2021036773A1 WO 2021036773 A1 WO2021036773 A1 WO 2021036773A1 CN 2020108181 W CN2020108181 W CN 2020108181W WO 2021036773 A1 WO2021036773 A1 WO 2021036773A1
Authority
WO
WIPO (PCT)
Prior art keywords
combination
signal measurement
measurement information
main lobe
information
Prior art date
Application number
PCT/CN2020/108181
Other languages
English (en)
French (fr)
Inventor
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021036773A1 publication Critical patent/WO2021036773A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a signal measurement method and device.
  • network equipment and terminal equipment can use array technology to form high-gain directional beams for communication, which can increase antenna gain and compensate for path loss.
  • beam training is required between network equipment and terminal equipment to achieve beam alignment.
  • the current beam training method generally includes the following steps: Step 1.
  • the network device configures a channel status information reference signal (Channel status information reference signal, CSI-RS) resource set, and each CSI-RS in the CSI-RS resource set
  • the CSI-RS is transmitted using beams in different directions in the resource.
  • Step 2. The terminal device receives the CSI-RS in each CSI-RS resource, and measures the signal quality of the CSI-RS received on each CSI-RS resource.
  • Step 3. The terminal device selects the optimal beam according to the measurement result and feeds it back to the network device. Subsequent network devices and terminal devices can use the beams selected in the beam training process to communicate.
  • the embodiments of the present application provide a signal measurement method and device to solve the problem of how to reduce resource overhead.
  • an embodiment of the present application provides a signal measurement method, including: a first device receives N reference signals from a second device, where N is an integer greater than 0; Perform measurement to obtain N signal measurement information; the first device determines the first combination according to the N signal measurement information; the first device sends the first information to the second device; the first information is used To indicate the first combination.
  • the first combination is a combination of H combinations composed of the N signal measurement information, and any combination of the H combinations includes at least one signal measurement in the N signal measurement information Information; H is an integer less than or equal to 2N.
  • the first combination is one combination of H combinations composed of the N reference signals, and any combination of the H combinations includes at least one reference signal among the N reference signals.
  • each of the N reference signals may be mapped to one time-frequency resource for transmission
  • the first combination is H combinations of N time-frequency resources that are mapped to the N reference signals.
  • a combination, and any one of the H combinations includes at least one time-frequency resource among the N time-frequency resources.
  • each of the N reference signals is sent through a multi-peak beam.
  • the first combination is H that is composed of N multi-peak beams that transmit the N reference signals.
  • One of the three combinations, and any one of the H combinations includes at least one multimodal beam among the N multimodal beams.
  • the first device after receiving the N reference signals, the first device only needs to feed back the first combination determined according to the N reference signals through the first information, and does not need to perform feedback for each reference signal separately, which can reduce the feedback Resource overhead, improve resource utilization.
  • the first device to determine the first combination according to the N signal measurement information includes: the first device composes the N signal measurement information into the H combinations, and the signal characteristic The largest combination is determined as the first combination.
  • the first combination when the first combination is a combination with the largest signal feature, the first combination is a combination among the H combinations that meets one or more of the following conditions:
  • the second combination in the H combinations includes the signal measurement information corresponding to all the reference signals in the first combination
  • the sum of all signal measurement information in the first combination is less than that of all signal measurement information in the second combination.
  • the total sum, and the sum of all signal measurement information in the second combination, and the sum of all signal measurement information in the first combination, is less than the first threshold;
  • the second combination is the H combination divided by the first Any combination other than one combination;
  • the sum of all signal measurement information in the first combination is the same as all signal measurement information in the second combination
  • the difference of the total sum of H is greater than the second threshold; when the second combination in the H combinations includes the signal measurement information corresponding to part of the reference signal in the first combination, the sum of all signal measurement information in the first combination, The difference from the sum of all signal measurement information in the second combination is greater than the third threshold.
  • each of the N reference signals is sent by a multi-peak beam; the one multi-peak beam is a beam including at least two main lobe directions, and the N reference signals
  • the corresponding N multi-peak beams include M main lobe directions; M is an integer greater than N.
  • each reference signal is sent through a multi-peak beam, and the reference signal is sent in multiple main lobe directions through one time-frequency resource, thereby reducing the consumption of time-frequency resources for sending reference signals and improving resource utilization. rate.
  • the N multi-peak beams include the first main lobe direction.
  • the first information is an identifier of the third main lobe direction; when the first combination corresponds to only one multimodal beam, the third main lobe direction is only included in the The main lobe directions in all multi-peak beams corresponding to the first combination, and are not included in all multi-peak beams corresponding to the signal measurement information included in any combination other than the first combination in the H combinations
  • the third main lobe direction is the main lobe direction that is included in the at least two multimodal beams corresponding to the first combination.
  • the method further includes: the first device receives data from the second device through a beam in the third main lobe direction.
  • each of the N reference signals is mapped to a time-frequency resource; the first combination includes X signal measurement information, and X is an integer greater than 0; the first information Is the identifier of the X time-frequency resources, and the X signal measurement information corresponding to the X reference signals carried by the X time-frequency resources.
  • the first combination includes X pieces of signal measurement information, and X is an integer greater than 0; the first information is identifiers of X reference signals corresponding to the X pieces of signal measurement information.
  • the present application also provides a communication device that has any method provided in the first aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes a processor configured to support the communication device to perform the corresponding function of the first device in the method shown above.
  • the communication device may also include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, and the communication interface is used to support communication between the communication device and a device such as a second device.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the foregoing method examples.
  • these units can perform corresponding functions in the foregoing method examples.
  • an embodiment of the present application provides a signal measurement method, including: a second device sends N reference signals to a first device, where N is an integer greater than 0; the second device receives the signal from the first device The first information; the first information is used to indicate a first combination, the first combination is a combination of H combinations composed of N signal measurement information, any combination of the H combinations includes all At least one piece of signal measurement information in the N pieces of signal measurement information; H is an integer less than or equal to 2N ; the N pieces of signal measurement information are obtained by measurement based on the N reference signals; the second device is based on The first information determines the first combination.
  • the first device after receiving the N reference signals, the first device only needs to feed back the first combination determined according to the N reference signals through the first information, and does not need to perform feedback for each reference signal separately, which can reduce the feedback Resource overhead, improve resource utilization.
  • the first combination is a combination with the largest signal feature among the H combinations.
  • the first combination when the first combination is a combination with the largest signal feature, the first combination is a combination among the H combinations that meets one or more of the following conditions:
  • the second combination in the H combinations includes the signal measurement information corresponding to all the reference signals in the first combination
  • the sum of all signal measurement information in the first combination is less than that of all signal measurement information in the second combination.
  • the total sum, and the sum of all signal measurement information in the second combination, and the sum of all signal measurement information in the first combination, is less than the first threshold;
  • the second combination is the H combination divided by the first Any combination other than one combination;
  • the sum of all signal measurement information in the first combination is the same as all signal measurement information in the second combination
  • the difference of the sum of is greater than the second threshold
  • the sum of all signal measurement information in the first combination is the sum of all signal measurement information in the second combination
  • the difference of the sum is greater than the third threshold.
  • each of the N reference signals is sent through a multi-peak beam; the one multi-peak beam is a beam including at least two main lobe directions, and the N reference signals
  • the N multi-peak beams corresponding to the signal include M main lobe directions; M is an integer greater than N.
  • the N multi-peak beams include the There is at least one different multimodal beam between the P multimodal beams in the first main lobe direction and the Q multimodal beams including the second main lobe direction, and P and Q are integers greater than zero.
  • the first information is an identifier of the third main lobe direction; when the first combination corresponds to only one multi-peak beam, the third main lobe direction is only included in the The main lobe directions in all multi-peak beams corresponding to the first combination, and do not include all multi-peak beams corresponding to the signal measurement information included in any combination other than the first combination in the H combinations
  • the third main lobe direction is the main lobe direction included in the at least two multimodal beams corresponding to the first combination.
  • each of the N reference signals is mapped to a time-frequency resource; the first combination includes X pieces of signal measurement information, and X is an integer greater than 0; the first The information is the identifier of the X time-frequency resources, and the X signal measurement information corresponding to the X reference signals carried by the X time-frequency resources.
  • the first combination includes X pieces of signal measurement information, and X is an integer greater than 0; the first information is identifiers of X reference signals corresponding to the X pieces of signal measurement information.
  • the present application also provides a communication device having any method provided in the second aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes: a processor configured to support the communication device to perform the corresponding function of the second device in the method shown above.
  • the communication device may also include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, and the communication interface is used to support communication between the communication device and a device such as the first device.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the foregoing method examples.
  • these units can perform corresponding functions in the foregoing method examples.
  • the description of the method provided in the second aspect which is not repeated here.
  • an embodiment of the present application provides a communication device including a processor coupled with at least one memory: the processor is configured to execute a computer program or instruction stored in the at least one memory, when When the computer program or instruction is executed, any one of the possible design methods in any of the above aspects is executed.
  • an embodiment of the present application provides a readable storage medium, including a program or instruction, and when the program or instruction is executed, any one of the possible design methods in any of the foregoing aspects is executed.
  • an embodiment of the present application provides a chip, which is connected to a memory, and is used to read and execute a computer program or instruction stored in the memory.
  • a computer program or instruction stored in the memory.
  • an embodiment of the present application provides a computer program product.
  • a computer reads and executes the computer program product, any one of the possible design methods in any of the above aspects is executed.
  • an embodiment of the present application provides a communication device, including a processor, a transceiver, and a memory;
  • the processor is configured to execute a computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the possible designs in any of the foregoing aspects. method.
  • an embodiment of the present application provides a system that includes the first device provided in the foregoing second aspect and the second device provided in the foregoing fourth aspect.
  • FIG. 1 is a schematic diagram of a possible communication system architecture applicable to the method provided by the embodiment of the present application;
  • FIG. 2 is a schematic flowchart of a signal measurement method provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a multi-peak beam provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a relationship between a multi-peak beam and a time-frequency resource according to an embodiment of the application
  • FIG. 5 is a schematic flowchart of a signal measurement method provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • NR new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • UMTS universal mobile telecommunication systems
  • eLTE evolved long term evolution
  • FIG. 1 shows the architecture of a possible communication system suitable for the method provided in the embodiments of the present application.
  • the architecture of the communication system includes a network device and at least one terminal device, wherein: the network device can pass through different directions
  • the beam establishes a communication link with at least one terminal device (for example, the terminal device 1 and the terminal device 2 shown in the figure).
  • the network device may provide services related to wireless access for the at least one terminal device, and implement one or more of the following functions: wireless physical layer function, resource scheduling and wireless resource management, quality of service , Qos) management, wireless access control and mobility management functions.
  • the at least one terminal device may also form a beam to perform data transmission with the network device. In this embodiment, the network device and at least one terminal device can communicate with each other through a beam.
  • FIG. 1 is not limited to only include the devices shown in the figure, and may also include other devices not shown in the figure, which are not specifically listed here in this application.
  • a beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can include one or more antenna ports for transmitting data channels, control channels, and sounding signals.
  • a transmit beam can refer to the distribution of signal strength formed in different directions in space after a signal is emitted by an antenna.
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space. It is understandable that one or more antenna ports forming a beam can also be regarded as an antenna port set. The embodiment of the beam in the agreement can still be a spatial filter.
  • Quasi-co-location A quasi-co-location relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics. For multiple resources with a quasi-co-location relationship, the same or similar can be used Communication configuration. For example, if two antenna ports have a co-location relationship, then the large-scale characteristics of the channel transmitting one symbol on one port can be inferred from the large-scale characteristics of the channel transmitting one symbol on the other port.
  • Large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal device receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver antenna Spatial correlation, main angle of arrival (Angel-of-Arrival, AoA), average angle of arrival, expansion of AoA, etc.
  • Spatial QCL can be considered as a type of QCL. There are two angles to understand spatial: from the sending end or from the receiving end. From the perspective of the transmitting end, if the two antenna ports are quasi-co-located in the spatial domain, it means that the corresponding beam directions of the two antenna ports are spatially consistent, that is, the spatial filters are the same. From the perspective of the receiving end, if the two antenna ports are spatially quasi-co-located, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction, that is, the reception parameter QCL.
  • references described in this specification to "one embodiment” or “some embodiments”, etc. mean that one or more embodiments of the present application include a specific feature, structure, or characteristic described in conjunction with the embodiment. Therefore, the sentences “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless it is specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th Generation
  • 5NR New Radio
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Functional handheld devices computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., which are not limited in the embodiment of the present application.
  • PLMN Public Land Mobile Network
  • the terminal device may include: a radio resource control (radio resource control, RRC) signaling interaction module, a media access control (media access control, MAC) signaling interaction module, and physical (PHY) signaling Interactive module.
  • RRC radio resource control
  • MAC media access control
  • PHY physical
  • the RRC signaling interaction module may be: a module used by network equipment and terminal equipment to send and receive RRC signaling.
  • the MAC signaling interaction module may be a module used by network equipment and terminal equipment to send and receive media access control control element (MAC-CE) signaling.
  • the PHY signaling and data may be a module used by network equipment and terminal equipment to send and receive uplink control signaling or downlink control signaling, uplink and downlink data or downlink data.
  • the access network device in the embodiment of the application may be a device used to communicate with terminal devices, and the access network device may be a global system of mobile communication (GSM) system or a code division multiple access (Code Division Multiple) system.
  • the base station (Base Transceiver Station, BTS) in Access, CDMA can also be the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) system, or the evolution of the LTE system
  • a type of base station (Evolutional NodeB, eNB or eNodeB) can also be a wireless controller in the cloud radio access network (Cloud Radio Access Network, CRAN) scenario, or the network device can be a relay station, an access point, a vehicle Wearable devices and access network equipment in the future 5G network (for example, gNB) or access network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • the network equipment may also include: an RRC signaling interaction module, a MAC signaling interaction module, and a PHY signaling interaction module.
  • the network device may include a centralized unit (CU) and a distributed unit (DU).
  • the network device may also include an active antenna unit (AAU).
  • CU implements some functions of network equipment, and DU implements some functions of network equipment.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol, PDCP) layer function.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • FIG. 2 is a schematic flowchart of a signal measurement method provided by an embodiment of this application.
  • the first device may be a terminal device
  • the second device may be a network device
  • the first device may also be a network device
  • the second device may also be a terminal device.
  • the first device and the second device may both be terminal devices, or the first device and the second device may both be network devices.
  • the first device may also be a chip set in a terminal device
  • the second device may also be a chip set in a network device
  • the first device may also be a chip set in a network device
  • the second device may also be a chip set in a network device.
  • the chips set in the terminal equipment will not be illustrated one by one here.
  • the method includes:
  • Step 201 The second device sends N reference signals to the first device, where N is an integer greater than zero.
  • the reference signal may be any of the following signals: synchronization signal, broadcast channel, broadcast signal demodulation signal, channel state information downlink signal (channel state information reference signal, CSI- RS), cell-specific reference signal (CS-RS), terminal-specific reference signal (user equipment specific reference signal, US-RS), downlink control channel demodulation reference signal, downlink data channel demodulation reference signal, Downlink phase noise tracking signal.
  • channel state information downlink signal channel state information reference signal, CSI- RS
  • CS-RS cell-specific reference signal
  • US-RS terminal-specific reference signal
  • downlink control channel demodulation reference signal downlink data channel demodulation reference signal
  • Downlink phase noise tracking signal Downlink phase noise tracking signal.
  • reference signal may also be other types of signals, which will not be illustrated one by one here.
  • Step 202 The first device receives N reference signals from the second device.
  • Step 203 The first device measures the N reference signals to obtain N signal measurement information.
  • Step 204 The first device determines a first combination according to the N pieces of signal measurement information, and sends the first information to the second device.
  • the first information is used to indicate the first combination.
  • the first combination is a combination of H combinations composed of the N signal measurement information, and any combination of the H combinations includes the N signal measurement information At least one signal measurement information of; H is an integer less than or equal to 2N.
  • the first combination is a combination of H combinations composed of the N reference signals, and any combination of the H combinations includes at least one of the N reference signals.
  • a reference signal is a reference signal.
  • each of the N reference signals sent by the second device may be mapped to a time-frequency resource for transmission. How does the second device map the reference signal to the corresponding time-frequency resource? In terms of resources, the embodiment of the present application does not limit this, and the description in the prior art can be referred to, which is not repeated here.
  • the first combination is one of H combinations formed by mapping the N time-frequency resources of the N reference signals, and any of the H combinations A combination includes at least one time-frequency resource among the N time-frequency resources.
  • each of the N reference signals sent by the second device may be sent through one multi-peak beam; the one multi-peak beam is a beam including at least two main lobe directions .
  • the N multi-peak beams corresponding to the N reference signals may include a total of M main lobe directions; M is an integer greater than N.
  • FIG. 3 a schematic diagram of a multi-peak beam provided by an embodiment of this application.
  • the existing single-peak beam has only one main lobe direction, that is, when communicating, it only has a high antenna gain in one direction.
  • the signal-to-noise ratio and signal quality in other directions are low, and the receiver cannot Accurately demodulate the received signal.
  • the multi-peak beam is a beam with multiple main lobe directions.
  • the multi-peak beam shown in Figure 3 has three main lobe directions. Each main lobe direction has a higher antenna gain.
  • the receiver is in each main lobe direction. Both can accurately demodulate the received signal.
  • each of the N reference signals is sent through a multi-peak beam.
  • the first combination is to send the N reference signals
  • Step 205 The second device receives the first information from the first device, and determines the first combination according to the first information.
  • the second device may also determine the third main lobe direction according to the first combination, and use the third main lobe direction as the beam direction used when sending signals to the first device.
  • the second device specifically determines the direction of the third main lobe, reference may be made to the following description, which is not repeated here.
  • the first device after receiving the N reference signals, the first device only needs to feed back the first combination determined according to the N reference signals through the first information, and does not need to perform feedback for each reference signal separately, which can reduce the feedback Resource overhead, improve resource utilization.
  • the second device before sending the reference signal, the second device may send configuration information to the first device, and the configuration information includes at least one of the following information:
  • the total number of main lobe directions M included in the N multimodal beams where M is an integer greater than N;
  • Types of signal measurement information including but not limited to layer 1 reference signal received power (L1-RSRP), layer 1 reference signal received quality (L1-RSRQ), received signal Strength indication (received signal strength indication, RSSI), signal to noise ratio (signal noise ratio, SNR), and signal to interference plus noise ratio (signal to interference plus noise ratio, SINR);
  • L1-RSRP layer 1 reference signal received power
  • L1-RSRQ layer 1 reference signal received quality
  • RSSI received signal Strength indication
  • RSSI signal strength indication
  • SNR signal to noise ratio
  • SINR signal to interference plus noise ratio
  • the beam training indication information is used to instruct the terminal device to determine the first combination according to the N signal measurement information, and feed back the first information indicating the first combination;
  • the feedback indication information is used to indicate the implementation manner of the first information.
  • the feedback indication information is used to indicate the implementation manner of the first information.
  • the implementation manner of the first information reference may be made to the following description, which will not be repeated here.
  • configuration information may also include other content, which will not be listed here.
  • the first device when it receives the configuration information, it can determine the number of reference signals, the number of main lobe directions included in each multi-peak beam, and other information according to the configuration information.
  • the configuration information includes part of the content described above, other content may be pre-appointed.
  • the type of signal measurement information is pre-appointed as RSRP
  • the configuration information may not include the type of measurement information.
  • the second device may not send configuration information.
  • the number of time-frequency resources carrying the reference signal N, the number of main lobe directions included in each multi-peak beam, the total number of main lobe directions M, and the signal may all be pre-appointed.
  • the second device sends N reference signals, which need to be mapped to N time-frequency resources, and need to be sent through N multi-peak beams.
  • N reference signals there is a correspondence relationship between N reference signals, N time-frequency resources, and N multi-peak beams.
  • the foregoing correspondence relationship may have multiple implementation manners, for example, as shown in Table 1.
  • the reference signal 1 is mapped to the time-frequency resource 1, and is transmitted through the multi-peak beam 1. Other situations can be deduced by analogy and will not be repeated here.
  • the N multi-peak beams also need to meet the following conditions:
  • the main lobe directions included in the any two multi-peak beams cannot be completely the same.
  • multimodal beam 1 includes main lobe direction 1 and main lobe direction 2
  • multimodal beam 2 cannot and only includes main lobe direction 1 and main lobe direction 2.
  • multimodal beam 2 can include main lobe direction 1 And the main lobe direction 3.
  • the first main lobe direction and the second main lobe direction among the N multi-peak beams, those in the first main lobe direction are included.
  • P and Q are integers greater than zero.
  • the P multimodal beams including the first main lobe direction are multimodal beam 1 and multimodal beam 2
  • the Q multimodal beams including the second main lobe direction at least one multimodal beam is multimodal.
  • the other multi-peak beams other than the peak beam 1 and the multi-peak beam 2 for example, the Q multi-peak beams shown are the multi-peak beam 2 and the multi-peak beam 3.
  • the Gray code encoding method can be used to establish the correspondence between N time-frequency resources and the M main lobe directions included in the N multimodal beams, so that the N multimodal beams meet the above requirements. conditions of.
  • N is equal to 3 and M is equal to 7. That is, three reference signals need to be sent, corresponding to time-frequency resource 1, time-frequency resource 2, and time-frequency resource 3; there are 7 main lobe directions, which are main lobe direction 1 to main lobe direction 7 respectively. Then the corresponding relationship between the 3 time-frequency resources and the 7 main lobe directions established according to the Gray code encoding method can be shown in Fig. 4 and Table 2.
  • Main lobe direction Time frequency resource 1 Time frequency resource 2
  • Time frequency resource 3 Main lobe direction 1 0 0 1 Main lobe direction 2 0 1 0 Main lobe direction 3 0 1 1 Main lobe direction 4 1 0 0 Main lobe direction 5 1 0 1 Main lobe direction 6 1 1 0 Main lobe direction 7 1 1 1
  • 0 indicates that there is no corresponding relationship between the main lobe direction and the time-frequency resource
  • 1 indicates that there is a corresponding relationship between the main lobe direction and the time-frequency resource.
  • the main lobe direction 1 and time-frequency resource 3 have a corresponding relationship, and there is no corresponding relationship with other time-frequency resources; the main lobe direction 7 and time-frequency resource 1, time-frequency resource 2, and time-frequency resource 3 all exist
  • other situations can be deduced by analogy, so I won't repeat it.
  • the multi-peak beam used for transmitting the reference signal mapped to the time-frequency resource includes the main lobe direction corresponding to the time-frequency resource.
  • reference signal 1 is mapped to time-frequency resource 1 and sent, and the main lobe direction corresponding to time-frequency resource 1 is from main lobe direction 4 to main lobe direction 7.
  • the peak beam 1 includes the main lobe direction from the main lobe direction 4 to the main lobe direction 7.
  • the multi-peak beam 2 used to send the reference signal 2 when the reference signal 2 is mapped to the time-frequency resource 2 for transmission, the multi-peak beam 2 used to send the reference signal 2 includes the main lobe direction 2, the main lobe direction 3, the main lobe direction 6 and the main lobe direction.
  • the multi-peak beam 1 to the multi-peak beam 3 determined by Table 2 can meet the requirements of the N multi-peak beams described above.
  • step 202 when the first device receives each of the N reference signals, the directions of the receive beams adopted by the first device are all the same, that is, the directions of the receive beams of the first device are fixed.
  • the first device may separately measure each received reference signal to obtain signal measurement information corresponding to each reference signal.
  • signal measurement information please refer to the previous description.
  • the first device measures the three reference signals mapped in the time-frequency resource 1 to the time-frequency resource 3, respectively, to obtain 3 signal measurement information, which can be shown in Table 3.
  • Reference signal Time-frequency resources
  • Reference signal Time frequency resource 1
  • Reference signal 2 Time frequency resource 2
  • Reference signal 3 Time frequency resource 3
  • the antenna gain is the largest when receiving signals in the direction of the main lobe of the beam. Therefore, if the direction of the receiving beam matches the direction of the main lobe in the multi-peak beam, the first device measures The signal measurement information is the largest.
  • the N pieces of signal measurement information may be divided into multiple combinations, and each combination includes at least one piece of signal measurement information.
  • N signal measurement information can be divided into 2 N combinations, but one of the combinations is the signal measurement information of which the reference signal cannot be detected on N resources. Due to the inherent interference and noise in the communication system, It is generally impossible for the combination of signal measurement information to be completely undetectable. Therefore, in actual situations, N signal measurement information can be divided into 2 N -1 combinations at most. For example, in conjunction with Table 3, the 3 signal measurement information in Table 3 can be divided into 7 combinations. For details, please refer to Table 4.
  • Step 204 The first device determines the combination with the largest signal characteristic among the H combinations composed of the N signal measurement information as the first combination.
  • the first combination is one of the H combinations composed of the N signal measurement information, and when the first combination is the combination with the largest signal feature, the first combination is the H A combination that meets at least one of the following conditions:
  • the second combination of the H combinations includes the signal measurement information corresponding to all the reference signals in the first combination
  • the sum of all signal measurement information in the first combination is less than all the signal measurements in the second combination
  • the sum of the information, and the sum of all the signal measurement information in the second combination, and the sum of all the signal measurement information in the first combination, the difference is less than the first threshold
  • the second combination is the H combinations Any combination except the first combination
  • the difference between A and B refers to the difference between A minus B.
  • the sum of all signal measurement information in the first combination is the same as all signals in the second combination
  • the difference of the sum of the measurement information is greater than the second threshold
  • the second combination of the H combinations includes the signal measurement information corresponding to the part of the reference signal in the first combination
  • the sum of all signal measurement information in the first combination is the same as that of all signal measurements in the second combination
  • the difference of the sum of information is greater than the third threshold
  • the above conditions for determining the combination with the largest signal feature are only examples, and other conditions may exist.
  • the sum of all signal measurement information in the combination is combined with all the combinations in any of the H combinations.
  • the absolute value of the difference of the sum of the signal measurement information is less than or equal to the third threshold value, etc., which will not be illustrated one by one here.
  • the first threshold, the second threshold, and the third threshold are all values greater than zero.
  • the first threshold can be a value close to 0, the second threshold can be greater than the first threshold and less than or equal to the maximum value of the signal measurement information that the first device can measure, and the third threshold can be less than or equal to the second The value of the threshold.
  • the specific values of the first threshold, the second threshold, and the third threshold can be determined according to actual conditions, and will not be repeated here.
  • the first combination is one combination of H combinations composed of N reference signals.
  • a third combination that satisfies the conditions can be determined from H combinations composed of N signal measurement information.
  • the combination of all reference signals corresponding to the signal measurement information included in the third combination is the combination with the largest signal feature, that is, the first combination.
  • the determined third combination is combination 5.
  • the signal measurement information included in combination 5 is R1 and R3, which are based on reference signal 1 and reference signal, respectively. 3 sure.
  • the first combination is a combination of reference signal 1 and reference signal 3.
  • the first combination is a combination of H combinations formed by N time-frequency resources mapping the N reference signals.
  • a third combination that satisfies the conditions can be determined from H combinations composed of N signal measurement information.
  • the combination of time-frequency resources mapped to all reference signals corresponding to the signal measurement information included in the third combination is the combination with the largest signal feature, that is, the first combination.
  • the determined third combination is combination 5.
  • the signal measurement information included in combination 5 is R1 and R3, which are based on reference signal 1 and reference signal, respectively. 3 sure.
  • Reference signal 1 is mapped to time-frequency resource 1
  • reference signal 3 is mapped to time-frequency resource 3.
  • the first combination is a combination of time-frequency resource 1 and time-frequency resource 3.
  • the first combination is one combination of H combinations composed of N multi-peak beams for transmitting the N reference signals.
  • a third combination that satisfies the conditions can be determined from H combinations composed of N signal measurement information.
  • the combination of multi-peak beams corresponding to all reference signals corresponding to the signal measurement information included in the third combination is the combination with the largest signal feature, that is, the first combination.
  • the determined third combination is combination 5.
  • the signal measurement information included in combination 5 is R1 and R3, which are based on reference signal 1 and reference signal, respectively. 3 sure.
  • the reference signal 1 is sent through the multi-peak beam 1, and the reference signal 3 is sent through the multi-peak beam 3.
  • the first combination is a combination of the multi-peak beam 1 and the multi-peak beam 3.
  • the difference between combination 7 and combination 3, that is, the difference between R1+R2+R3 and R3 is less than the first threshold.
  • the difference between the combination 7 and the combination 6, that is, the difference between R1+R2+R3 and R2+R3 is less than the first threshold.
  • the first information sent by the first device may directly indicate the first combination or indirectly indicate the first combination, which will be described separately below.
  • the first information may indirectly indicate the first combination.
  • the first information may be an identification of the direction of the third main lobe.
  • the third main lobe direction is the main lobe direction that is included only in all multimodal beams corresponding to the first combination, and is not included in the H combinations.
  • the third main lobe direction is a main lobe direction included in both of the at least two multimodal beams.
  • all multi-peak beams corresponding to the first combination refer to the reference signal corresponding to all signal measurement information included in the first combination All multi-peak beams; when the first combination is one of H combinations composed of N reference signals, all multi-peak beams corresponding to the first combination refer to all multi-peak beams corresponding to all reference signals included in the first combination Beam; when the first combination is one of H combinations composed of N time-frequency resources mapped to N reference signals, all multi-peak beams corresponding to the first combination refer to all time-frequency resources included in the first combination All corresponding multi-peak beams.
  • How the first device specifically determines the direction of the third main lobe corresponding to the first combination is not limited in the embodiment of the present application.
  • the first device may determine the third main lobe direction according to the first combination.
  • the second device may use the Gray code encoding method to establish the correspondence between N time-frequency resources and the M main lobe directions included in the N multi-peak beams, and indicate the established N time-frequency resources to the first device.
  • the correspondence between resources and M main lobe directions may be as shown in Table 2, for example.
  • Combining the example in Table 2 if the first device determines that combination 1 is the first combination, then combining Table 2 shows that the channel measurement information in combination 1 is measured on reference signal 1 mapped in time-frequency resource 1, and The multi-peak beam for transmitting the reference signal 1 includes the main lobe direction 4 to the main lobe direction 7.
  • the main lobe direction 5 also exists in the multi-peak beam transmitting the reference signal 3
  • the main lobe direction 6 also exists in the multi-peak beam transmitting the reference signal 2
  • the main lobe direction 7 also In the multi-peak beams for transmitting reference signal 2 and reference signal 3, only the main lobe direction 4 exists only in the multi-peak beam for transmitting reference signal 1, so it can be determined that the main lobe direction 4 is the third main lobe direction.
  • the third main lobe direction is the main lobe direction 4; when the first combination is combination 6, the third main lobe direction is the main lobe direction 3, and other situations will not be repeated. .
  • Table 5 also shows a possible implementation of the main lobe identification, for example, the main lobe identification of the main lobe direction 1 is 001 and so on.
  • the second device may not indicate the established correspondence between the N time-frequency resources and the M main lobe directions to the first device, but may indicate the third main lobe direction and the first device to the first device.
  • a combined correspondence relationship for example, the second device may indicate the correspondence relationship shown in Table 5 to the first device.
  • the second device can determine the third main lobe direction corresponding to the first combination according to the first information, so that the third main lobe direction can be used as the beam direction used to send a signal to the first device.
  • the first information is the main lobe identification of the main lobe direction 6, that is, 110.
  • the third main lobe can be determined according to the first information, so that it can be determined that the main lobe direction with the best signal quality when the first device receives the reference signal is the main lobe direction 6.
  • the first combination includes X reference signals, or the X signal measurement information included in the first combination corresponds to X reference signals, or the X multi-peak beam information included in the first combination Correspond to X reference signals, or the X time-frequency resources included in the first combination correspond to X reference signals.
  • the first information is the identities of the X reference signals, and X is an integer greater than zero.
  • N is equal to 3, that is, three reference signals need to be sent, namely, reference signal 1, reference signal 2, and reference signal 3; the identifiers of reference signal 1 to reference signal 3 can be as shown in Table 6.
  • Reference signal Reference signal identification Reference signal 1 01 Reference signal 2 10 Reference signal 3 11 Keep logo 00
  • the reserved identifier is 00.
  • the number of bits included in the first information that the first device feeds back to the second device each time is a fixed value.
  • the first information includes In addition to the bits representing the identifiers of the X reference signals, some redundant bits are also included, and the values of these redundant bits may be reserved identifiers.
  • N 3
  • the identification of each reference signal is represented by 2 bits
  • the number of bits included in the first information is 2N, that is, 6 bits.
  • the first One information can be as shown in Table 7.
  • the first information is 010000.
  • the second device receives the first information as 010000, it can determine that the first combination is combination 1 according to the first information, so that the third main lobe direction corresponding to combination 1 can be determined to be the main lobe direction 4, thereby determining that the first device receives
  • the main lobe direction with the best signal quality is the main lobe direction4. Other situations will not be repeated.
  • the first information may not include redundant bits, and only include identifiers representing X reference signals. For example, in conjunction with Table 7, when the first combination is combination 1, the first information is 01.
  • the first combination includes X time-frequency resources, or X reference signals corresponding to the X signal measurement information included in the first combination are mapped to X time-frequency resources, or the first combination
  • the X reference signals corresponding to the included X multi-peak beam information are mapped to X time-frequency resources, or the X reference signals included in the first combination are mapped to X time-frequency resources.
  • the first information is the identities of the X time-frequency resources.
  • N is equal to 3, that is, 3 reference signals need to be sent, which are respectively mapped to time-frequency resource 1, time-frequency resource 2 and time-frequency resource 3.
  • the identifiers of time-frequency resource 1 to time-frequency resource 3 can be as shown in Table 8. Show.
  • Time-frequency resources Time-frequency resource identification Time frequency resource 1 01 Time frequency resource 2 10 Time frequency resource 3 11 Keep logo 00
  • the reserved identifier is 00.
  • the number of bits included in the first information that the first device feeds back to the second device each time is a fixed value. Therefore, the first information includes In addition to the bits representing the identifiers of the X reference signals, some redundant bits are also included, and the values of these redundant bits may be reserved identifiers.
  • N 3
  • the identification of each reference signal is represented by 2 bits
  • the number of bits included in the first information is 2N, that is, 6 bits.
  • the first One information can be as shown in Table 9.
  • the second device may determine X time-frequency resources according to the first information, may determine the first combination according to the X time-frequency resources, and may further determine the third main lobe direction according to the first combination , And use the third main lobe direction as the beam direction used to send signals to the first device.
  • the first information is 010000.
  • the time-frequency resource 1 may be determined according to the first information.
  • the second device can determine the corresponding combination as combination 1 according to the time-frequency resource 1, and the second device can determine the third main lobe direction corresponding to combination 1 and the main lobe direction 4, thereby determining the signal quality when the first device receives the reference signal
  • the optimal main lobe direction is the main lobe direction4. Other situations will not be repeated.
  • the first information is the identification of the first combination.
  • the first information directly indicates the first combination.
  • the second device may indicate the identification of each combination to the first device in advance, and when the first device determines the first combination, it may directly feed back the identification of the first combination.
  • the identifier of the first combination indicated by the second device may be as shown in Table 10.
  • the first combination Logo Combination 1 100 Combination 2 010 Combination 3 001 Combination 4 110 Combination 5 101 Combination 6 011 Combination 7 111
  • the first information fed back may be 101, and other situations will not be repeated.
  • the first device may determine the X multi-peak beams corresponding to the X signal measurement information included in the first combination.
  • the first information is the For the identification of the X multi-peak beams, please refer to the description in the second or third possible implementation manners, which will not be repeated here.
  • the first device may not send the first information to the second device, but send N pieces of signal measurement information to the second device.
  • the second device can determine the third main lobe direction according to the N signal measurement information, so as to use the third main lobe direction as the beam direction used when sending signals to the first device.
  • the second device specifically determines the direction of the third main lobe, reference may be made to the previous description, which will not be repeated here.
  • the first device may not send the first information, but directly sends the measured N signal measurement information to the second device.
  • the first device may not send the first information, but directly sends the measured N signal measurement information to the second device.
  • FIG. 5 refers to FIG. 5.
  • Step 501 The second device sends N reference signals to the first device, where N is an integer greater than zero.
  • Step 502 The first device receives N reference signals from the second device.
  • Step 503 The first device measures the N reference signals to obtain N signal measurement information.
  • step 501 to step 503 For the specific content of step 501 to step 503, reference may be made to the description in step 201 to step 203, which will not be repeated here.
  • Step 504 The first device sends the N pieces of signal measurement information to the second device.
  • Step 505 The second device receives N signal measurement information from the first device.
  • the second device When the second device receives N pieces of signal measurement information, it can determine the first combination or determine the third main lobe direction according to the N pieces of signal measurement information. For details on how to determine the direction, refer to the foregoing description, and will not be repeated here.
  • the third main lobe direction can be used as the beam direction used to send a signal to the first device.
  • the methods and operations implemented by the first device can also be implemented by components (such as chips or circuits) that can be used in the first device, and the methods and operations implemented by the second device can also be implemented by the second device. It can also be implemented by a component (for example, a chip or a circuit) that can be used in the second device.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of interaction between various devices.
  • the first device and the second device may include a hardware structure and/or a software module, and the above may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • each functional module in each embodiment of the present application may be integrated in a processor, or may exist alone physically, or two or more modules may be integrated in one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • an embodiment of the present application further provides an apparatus 600 for implementing the function of the first device or the second device in the above-mentioned method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 600 may include: a processing unit 601 and a communication unit 602.
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively configured to perform the sending and receiving steps of the first device or the second device in the above method embodiment.
  • the apparatus 600 can implement the steps or processes executed by the first device or the second device in the above method embodiments, which are described separately below.
  • the communication unit 602 is configured to receive N reference signals from the second device, where N is an integer greater than 0;
  • the processing unit 601 is configured to measure the N reference signals to obtain N signal measurement information; determine a first combination according to the N signal measurement information; the first combination is the N signal measurement information One of the H combinations formed, any one of the H combinations includes at least one piece of signal measurement information in the N pieces of signal measurement information; H is an integer less than or equal to 2N;
  • the communication unit 602 is configured to send first information to the second device; the first information is used to indicate the first combination.
  • the processing unit 601 is specifically configured to: determine the combination with the largest signal characteristic among the H combinations formed by the N signal measurement information as the first combination.
  • the first combination when the first combination is a combination with the largest signal feature, the first combination is a combination among the H combinations that meets one or more of the following conditions:
  • the second combination in the H combinations includes the signal measurement information corresponding to all the reference signals in the first combination
  • the sum of all signal measurement information in the first combination is less than that of all signal measurement information in the second combination.
  • the total sum, and the sum of all signal measurement information in the second combination, and the sum of all signal measurement information in the first combination, is less than the first threshold;
  • the second combination is the H combination divided by the first Any combination other than one combination;
  • the sum of all signal measurement information in the first combination is the same as all signal measurement information in the second combination
  • the difference of the total sum of H is greater than the second threshold; when the second combination in the H combinations includes the signal measurement information corresponding to part of the reference signal in the first combination, the sum of all signal measurement information in the first combination, The difference from the sum of all signal measurement information in the second combination is greater than the third threshold.
  • each of the N reference signals is sent by a multi-peak beam; the one multi-peak beam is a beam including at least two main lobe directions, and the N reference signals
  • the corresponding N multi-peak beams include M main lobe directions; M is an integer greater than N.
  • the N multi-peak beams include the first main lobe direction.
  • the first information is an identifier of the third main lobe direction; when the first combination corresponds to only one multimodal beam, the third main lobe direction is only included in the The main lobe directions in all multi-peak beams corresponding to the first combination, and are not included in all multi-peak beams corresponding to the signal measurement information included in any combination other than the first combination in the H combinations
  • the third main lobe direction is the main lobe direction that is included in the at least two multimodal beams corresponding to the first combination.
  • the communication unit 602 is further configured to:
  • each of the N reference signals is mapped to a time-frequency resource; the first combination includes X signal measurement information, and X is an integer greater than 0; the first information Is the identifier of the X time-frequency resources, and the X signal measurement information corresponding to the X reference signals carried by the X time-frequency resources.
  • the first combination includes X pieces of signal measurement information, and X is an integer greater than 0; the first information is identifiers of X reference signals corresponding to the X pieces of signal measurement information.
  • the communication unit 602 is configured to send N reference signals to the first device, where N is greater than An integer of 0; receiving first information from the first device; the first information is used to indicate a first combination, and the first combination is a combination of H combinations composed of N signal measurement information, Any one of the H combinations includes at least one piece of signal measurement information in the N pieces of signal measurement information; H is an integer less than or equal to 2N ; the N pieces of signal measurement information are based on the N pieces of reference The signal is obtained by measurement; the processing unit 601 is configured to determine the first combination according to the first information.
  • the first combination is a combination with the largest signal feature among the H combinations.
  • the first combination when the first combination is a combination with the largest signal feature, the first combination is a combination among the H combinations that meets one or more of the following conditions:
  • the second combination in the H combinations includes the signal measurement information corresponding to all the reference signals in the first combination
  • the sum of all signal measurement information in the first combination is less than that of all signal measurement information in the second combination.
  • the total sum, and the sum of all signal measurement information in the second combination, and the sum of all signal measurement information in the first combination, is less than the first threshold;
  • the second combination is the H combination divided by the first Any combination other than one combination;
  • the sum of all signal measurement information in the first combination is the same as all signal measurement information in the second combination
  • the difference of the sum of is greater than the second threshold
  • the sum of all signal measurement information in the first combination is the sum of all signal measurement information in the second combination
  • the difference of the sum is greater than the third threshold.
  • each of the N reference signals is sent through a multi-peak beam; the one multi-peak beam is a beam including at least two main lobe directions, and the N reference signals
  • the N multi-peak beams corresponding to the signal include M main lobe directions; M is an integer greater than N.
  • the N multi-peak beams include the There is at least one different multimodal beam between the P multimodal beams in the first main lobe direction and the Q multimodal beams including the second main lobe direction, and P and Q are integers greater than zero.
  • the first information is an identifier of the third main lobe direction; when the first combination corresponds to only one multi-peak beam, the third main lobe direction is only included in the The main lobe directions in all multi-peak beams corresponding to the first combination, and do not include all multi-peak beams corresponding to the signal measurement information included in any combination other than the first combination in the H combinations
  • the third main lobe direction is the main lobe direction included in the at least two multimodal beams corresponding to the first combination.
  • each of the N reference signals is mapped to a time-frequency resource; the first combination includes X pieces of signal measurement information, and X is an integer greater than 0; the first The information is the identifier of the X time-frequency resources, and the X signal measurement information corresponding to the X reference signals carried by the X time-frequency resources.
  • the first combination includes X pieces of signal measurement information, and X is an integer greater than 0; the first information is identifiers of X reference signals corresponding to the X pieces of signal measurement information.
  • FIG. 7 shows a device 700 provided by an embodiment of the application, and the device shown in FIG. 7 may be a hardware circuit implementation of the device shown in FIG. 6.
  • the communication device can be applied to the flowcharts shown in FIGS. 2 to 5 to perform the functions of the first device or the second device in the foregoing method embodiment.
  • FIG. 7 only shows the main components of the communication device.
  • the apparatus 700 shown in FIG. 7 includes at least one processor 720, configured to implement any of the methods in FIGS. 2 to 5 provided in the embodiments of the present application.
  • the apparatus 700 may further include at least one memory 730 for storing program instructions and/or data.
  • the memory 730 and the processor 720 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 720 may operate in cooperation with the memory 730.
  • the processor 720 may execute program instructions stored in the memory 730. At least one of the at least one memory may be included in the processor.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, detailed description is omitted here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processing circuit (digital signal processor, DSP), a dedicated integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the apparatus 700 may further include a communication interface 710 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 700 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication interface 710 is configured to receive N reference signals from the second device, where N is an integer greater than 0;
  • the processor 720 is configured to measure the N reference signals to obtain N signal measurement information; determine a first combination according to the N signal measurement information; the first combination is obtained from the N signal measurement information
  • One of the H combinations, any one of the H combinations includes at least one piece of signal measurement information in the N pieces of signal measurement information; H is an integer less than or equal to 2N;
  • the communication interface 710 is used to send first information to the second device; the first information is used to indicate the first combination.
  • the processor 720 is specifically configured to: determine the combination with the largest signal characteristic among the H combinations formed by the N signal measurement information as the first combination.
  • the first combination when the first combination is a combination with the largest signal feature, the first combination is a combination among the H combinations that meets one or more of the following conditions:
  • the second combination in the H combinations includes the signal measurement information corresponding to all the reference signals in the first combination
  • the sum of all signal measurement information in the first combination is less than that of all signal measurement information in the second combination.
  • the total sum, and the sum of all signal measurement information in the second combination, and the sum of all signal measurement information in the first combination, is less than the first threshold;
  • the second combination is the H combination divided by the first Any combination other than one combination;
  • the sum of all signal measurement information in the first combination is the same as all signal measurement information in the second combination
  • the difference of the total sum of H is greater than the second threshold; when the second combination in the H combinations includes the signal measurement information corresponding to part of the reference signal in the first combination, the sum of all signal measurement information in the first combination, The difference from the sum of all signal measurement information in the second combination is greater than the third threshold.
  • each of the N reference signals is sent by a multi-peak beam; the one multi-peak beam is a beam including at least two main lobe directions, and the N reference signals
  • the corresponding N multi-peak beams include M main lobe directions; M is an integer greater than N.
  • the N multi-peak beams include the first main lobe direction.
  • the first information is an identifier of the third main lobe direction; when the first combination corresponds to only one multimodal beam, the third main lobe direction is only included in the The main lobe directions in all multi-peak beams corresponding to the first combination, and are not included in all multi-peak beams corresponding to the signal measurement information included in any combination other than the first combination in the H combinations
  • the third main lobe direction is the main lobe direction that is included in the at least two multimodal beams corresponding to the first combination.
  • the communication interface 710 is also used to:
  • each of the N reference signals is mapped to a time-frequency resource; the first combination includes X signal measurement information, and X is an integer greater than 0; the first information Is the identifier of the X time-frequency resources, and the X signal measurement information corresponding to the X reference signals carried by the X time-frequency resources.
  • the first combination includes X pieces of signal measurement information, and X is an integer greater than 0; the first information is identifiers of X reference signals corresponding to the X pieces of signal measurement information.
  • the communication interface 710 is configured to send N reference signals to a first device, where N is an integer greater than 0; receive first information from the first device; the first information is used to indicate a first combination, and the first information
  • a combination is a combination of H combinations composed of N signal measurement information, and any combination of the H combinations includes at least one signal measurement information in the N signal measurement information; H is less than or equal to An integer of 2N; the N signal measurement information is obtained by measuring according to the N reference signals;
  • the processor 720 is configured to determine the first combination according to the first information.
  • the first combination is a combination with the largest signal feature among the H combinations.
  • the first combination when the first combination is a combination with the largest signal feature, the first combination is a combination among the H combinations that meets one or more of the following conditions:
  • the second combination in the H combinations includes the signal measurement information corresponding to all the reference signals in the first combination
  • the sum of all signal measurement information in the first combination is less than that of all signal measurement information in the second combination.
  • the total sum, and the sum of all signal measurement information in the second combination, and the sum of all signal measurement information in the first combination, is less than the first threshold;
  • the second combination is the H combination divided by the first Any combination other than one combination;
  • the sum of all signal measurement information in the first combination is the same as all signal measurement information in the second combination
  • the difference of the sum of is greater than the second threshold
  • the sum of all signal measurement information in the first combination is the sum of all signal measurement information in the second combination
  • the difference of the sum is greater than the third threshold.
  • each of the N reference signals is sent through a multi-peak beam; the one multi-peak beam is a beam including at least two main lobe directions, and the N reference signals
  • the N multi-peak beams corresponding to the signal include M main lobe directions; M is an integer greater than N.
  • the N multi-peak beams include the There is at least one different multimodal beam between the P multimodal beams in the first main lobe direction and the Q multimodal beams including the second main lobe direction, and P and Q are integers greater than zero.
  • the first information is an identifier of the third main lobe direction; when the first combination corresponds to only one multi-peak beam, the third main lobe direction is only included in the The main lobe directions in all multi-peak beams corresponding to the first combination, and do not include all multi-peak beams corresponding to the signal measurement information included in any combination other than the first combination in the H combinations
  • the third main lobe direction is the main lobe direction included in the at least two multimodal beams corresponding to the first combination.
  • each of the N reference signals is mapped to a time-frequency resource; the first combination includes X pieces of signal measurement information, and X is an integer greater than 0; the first The information is the identifier of the X time-frequency resources, and the X signal measurement information corresponding to the X reference signals carried by the X time-frequency resources.
  • the first combination includes X pieces of signal measurement information, and X is an integer greater than 0; the first information is identifiers of X reference signals corresponding to the X pieces of signal measurement information.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer executes the steps shown in FIGS. 2 to 5 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 2 to 5 The method of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned first device and second device.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

本申请实施例提供一种信号测量方法及装置,其中方法包括:第一设备接收来自第二设备的N个参考信号,N为大于0的整数;所述第一设备对所述N个参考信号进行测量,获得N个信号测量信息;所述第一设备根据所述N个信号测量信息确定第一组合;所述第一组合为由所述N个信号测量信息构成的H个组合中的一个组合;所述第一设备向所述第二设备发送第一信息;所述第一信息用于指示所述第一组合。通过上面的方法,第一设备在接收到N个参考信号后,只需要通过第一信息反馈根据N个参考信号确定的第一组合,不需要针对每个参考信号分别进行反馈,可以降低反馈的资源开销,提高资源利用率。

Description

一种信号测量方法及装置
相关申请的交叉引用
本申请要求在2019年08月30日提交中国专利局、申请号为201910818127.7、申请名称为“一种信号测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信号测量方法及装置。
背景技术
为了克服高频毫米波路径损耗大的问题,网络设备和终端设备之间可以使用阵列技术形成高增益的定向波束来进行通信,可以提高天线增益,补偿路损。采用定向波束进行通信之前,网络设备和终端设备之间需要进行波束训练,以实现波束对齐。
目前的波束训练方法一般包括以下步骤:步骤1、网络设备配置一个信道状态信息参考信号(Channel status information reference signal,CSI-RS)资源集合,并在CSI-RS资源集合中的每个CSI-RS资源中使用不同方向的波束发送CSI-RS。步骤2、终端设备在每个CSI-RS资源中接收CSI-RS,并测量每个CSI-RS资源上接收到的CSI-RS的信号质量。步骤3、终端设备根据测量结果,选择出最优的波束并反馈给网络设备。后续网络设备和终端设备可以使用波束训练过程中选择出来的波束进行通信。
通过上面的过程可知,由于需要在每个CSI-RS资源中使用一个方向的波束发送CSI-RS,需要消耗较多的资源。
发明内容
本申请实施例提供一种信号测量方法及装置,用以解决如何降低资源开销的问题。
第一方面,本申请实施例提供一种信号测量方法,包括:第一设备接收来自第二设备的N个参考信号,N为大于0的整数;所述第一设备对所述N个参考信号进行测量,获得N个信号测量信息;所述第一设备根据所述N个信号测量信息确定第一组合;所述第一设备向所述第二设备发送第一信息;所述第一信息用于指示所述第一组合。
示例性的,第一组合为由所述N个信号测量信息构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个信号测量信息中的至少一个信号测量信息;H为小于或等于2 N的整数。
示例性的,第一组合为由所述N个参考信号构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个参考信号中的至少一个参考信号。
示例性的,N个参考信号中的每个参考信号,可以映射到一个时频资源中发送,第一组合为由映射所述N个参考信号的N个时频资源构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个时频资源中的至少一个时频资源。
示例性的,所述N个参考信号中的每个参考信号通过一个多峰波束发送,在该实现方 式下,第一组合为由发送所述N个参考信号的N个多峰波束构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个多峰波束中的至少一个多峰波束。
通过上面的方法,第一设备在接收到N个参考信号后,只需要通过第一信息反馈根据N个参考信号确定的第一组合,不需要针对每个参考信号分别进行反馈,可以降低反馈的资源开销,提高资源利用率。
在一种可能的设计中,所述第一设备根据所述N个信号测量信息确定第一组合,包括:所述第一设备将所述N个信号测量信息构成的H个组合中,信号特征最大的组合确定为所述第一组合。
在一种可能的设计中,当所述第一组合为信号特征最大的组合时,所述第一组合为所述H个组合中满足以下一项或多项条件的组合:
当所述H个组合中的第二组合包括第一组合中的所有参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,小于第二组合中的所有信号测量信息的总和,且第二组合中的所有信号测量信息的总和,与第一组合中的所有信号测量信息的总和的差值,小于第一阈值;所述第二组合为所述H个组合中除第一组合外的任一组合;
当所述H个组合中的第二组合与第一组合不存在相同的参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第二阈值;当所述H个组合中的第二组合包括第一组合中的部分参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第三阈值。
在一种可能的设计中,所述N个参考信号中的每个参考信号通过一个多峰波束发送;所述一个多峰波束为包括至少两个主瓣方向的波束,所述N个参考信号对应的N个多峰波束包括M个主瓣方向;M为大于N的整数。
通过上面的方法,每个参考信号通过一个多峰波束发送,实现通过一个时频资源,在多个主瓣方向上发送参考信号,从而可以降低发送参考信号的时频资源的消耗,提高资源利用率。
在一种可能的设计中,针对所述M个主瓣方向中的任意两个主瓣方向:第一主瓣方向和第二主瓣方向,所述N个多峰波束中,包括所述第一主瓣方向的P个多峰波束和包括所述第二主瓣方向的Q个多峰波束之间,存在至少一个不同的多峰波束,P、Q为大于0的整数。
在一种可能的设计中,所述第一信息为所述第三主瓣方向的标识;所述第一组合只对应一个多峰波束时,所述第三主瓣方向为只包括在所述第一组合对应的所有多峰波束中的主瓣方向,且不包括在所述H个组合中除所述第一组合之外的任一组合所包括的信号测量信息对应的所有多峰波束中的主瓣方向;所述第一组合对应至少两个多峰波束时,所述第三主瓣方向为所述第一组合对应发至少两个多峰波束均包括的主瓣方向。
在一种可能的设计中,所述方法还包括:所述第一设备通过所述第三主瓣方向的波束接收来自所述第二设备的数据。
在一种可能的设计中,所述N个参考信号中的每个参考信号映射一个时频资源;所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为X个时频资源的标识,所述X个时频资源承载的X个参考信号对应的所述X个信号测量信息。
在一种可能的设计中,所述第一组合包括X个信号测量信息,X为大于0的整数;所 述第一信息为所述X个信号测量信息对应的X个参考信号的标识。
第二方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中第一设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与第二设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第三方面,本申请实施例提供一种信号测量方法,包括:第二设备向第一设备发送N个参考信号,N为大于0的整数;所述第二设备接收来自所述第一设备的第一信息;所述第一信息用于指示第一组合,所述第一组合为由N个信号测量信息构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个信号测量信息中的至少一个信号测量信息;H为小于或等于2 N的整数;所述N个信号测量信息为根据所述N个参考信号进行测量获得的;所述第二设备根据所述第一信息确定所述第一组合。
通过上面的方法,第一设备在接收到N个参考信号后,只需要通过第一信息反馈根据N个参考信号确定的第一组合,不需要针对每个参考信号分别进行反馈,可以降低反馈的资源开销,提高资源利用率。
在一种可能的实现方式中,所述第一组合为所述H个组合中信号特征最大的组合。
在一种可能的实现方式中,当所述第一组合为信号特征最大的组合时,所述第一组合为所述H个组合中满足以下一项或多项条件的组合:
当所述H个组合中的第二组合包括第一组合中的所有参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,小于第二组合中的所有信号测量信息的总和,且第二组合中的所有信号测量信息的总和,与第一组合中的所有信号测量信息的总和的差值,小于第一阈值;所述第二组合为所述H个组合中除第一组合外的任一组合;
当所述H个组合中的第二组合与第一组合不存在相同的参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第二阈值;
当所述H个组合中的第二组合包括第一组合中的部分参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第三阈值。
在一种可能的实现方式中,所述N个参考信号中的每个参考信号通过一个多峰波束发送;所述一个多峰波束为包括至少两个主瓣方向的波束,所述N个参考信号对应的N个多峰波束包括M个主瓣方向;M为大于N的整数。
在一种可能的实现方式中,针对所述M个主瓣方向中的任意两个主瓣方向:第一主瓣方向和第二主瓣方向,所述N个多峰波束中,包括所述第一主瓣方向的P个多峰波束和包 括所述第二主瓣方向的Q个多峰波束之间,存在至少一个不同的多峰波束,P、Q为大于0的整数。
在一种可能的实现方式中,所述第一信息为所述第三主瓣方向的标识;所述第一组合只对应一个多峰波束时,所述第三主瓣方向为只包括在所述第一组合对应的所有多峰波束中的主瓣方向,且不包括在所述H个组合中除所述第一组合之外的任一组合所包括的信号测量信息对应的所有多峰波束中的主瓣方向;所述第一组合对应至少两个多峰波束时,所述第三主瓣方向为所述第一组合对应发至少两个多峰波束均包括的主瓣方向。
在一种可能的实现方式中,所述N个参考信号中的每个参考信号映射一个时频资源;所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为X个时频资源的标识,所述X个时频资源承载的X个参考信号对应的所述X个信号测量信息。
在一种可能的实现方式中,所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为所述X个信号测量信息对应的X个参考信号的标识。
第四方面,本申请还提供一种通信装置,该通信装置具有实现上述第二方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中第二设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与第一设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第二方面提供的方法中的描述,此处不做赘述。
第五方面,本申请实施例提供一种通信装置,包括处理器,所述处理器与至少一个存储器耦合:所述处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,上述任一方面中的任一种可能的设计中的方法被执行。
第六方面,本申请实施例提供一种可读存储介质,包括程序或指令,当所述程序或指令被执行时,上述任一方面中的任一种可能的设计中的方法被执行。
第七方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,上述任一方面中的任一种可能的设计中的方法被执行。
第八方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,上述任一方面中的任一种可能的设计中的方法被执行。
第九方面,本申请实施例提供一种通信装置,包括处理器,收发器,和存储器;
所述处理器,用于执行所述存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述任一方面中的任一种可能的设计中的方法。
第十方面,本申请实施例提供一种系统,包括上述第二方面提供的第一设备以及上述第四方面提供的第二设备。
附图说明
图1为适用于本申请实施例提供的方法的一种可能的通信系统架构示意图;
图2为本申请实施例提供的一种信号测量方法流程示意图;
图3为本申请实施例提供的一种多峰波束示意图;
图4为本申请实施例提供的一种多峰波束与时频资源的关系示意图;
图5为本申请实施例提供的一种信号测量方法流程示意图;
图6为本申请实施例提供的一种通信装置结构示意图;
图7为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例可以应用于各种移动通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,具体的,在此不做限制。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例提供的方法的一种可能的通信系统的架构,所述通信系统的架构中包括网络设备和至少一个终端设备,其中:所述网络设备可以通过不同方向的波束建立与至少一个终端设备(例如图中示出的终端设备1和终端设备2)之间的通信链路。所述网络设备可以为所述至少一个终端设备提供无线接入有关的服务,实现下述功能中的一个或多个功能:无线物理层功能、资源调度和无线资源管理、服务质量(quality of service,Qos)管理、无线接入控制以及移动性管理功能。所述至少一个终端设备也可以形成波束进行与所述网络设备之间的数据传输。在本实施例中,所述网络设备与至少一个终端设备之间可以通过波束进行通信。
需要说明的是,图1所示的通信系统的架构不限于仅包含图中所示的设备,还可以包含其它未在图中表示的设备,具体本申请在此处不再一一列举。
下面先给出本申请实施例可能出现的技术术语的定义。
波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现还是可以空域滤波器(spatial filter)。
准同位(quasi-co-location,QCL):同位关系用于表示多个资源之间具有一个或多个相 同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(Angel-of-Arrival,AoA),平均到达角,AoA的扩展等。
空域准同位(spatial QCL):spatial QCL可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的,即spatial filter相同。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号,即关于接收参数QCL。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
示例性地,终端设备中可以包括:无线资源控制(radio resource control,RRC)信令交互模块、媒体接入控制(media access control,MAC)信令交互模块、以及物理(physical,PHY)信令交互模块。其中,RRC信令交互模块可以为:网络设备和终端设备用于发送及接收RRC信令的模块。MAC信令交互模块可以为:网络设备和终端设备用于发送及接收媒体接入控制控制元素(media access control control element,MAC-CE)信令的模块。PHY信令及数据可以为:网络设备和终端设备用于发送及接收上行控制信令或下行控制信令、上下行数据或下行数据的模块。
本申请实施例中的接入网设备可以是用于与终端设备通信的设备,该接入网设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的接入网设备(例如gNB)或者未来演进的PLMN网络中的接入网设备等,本申请实施例并不限定。
示例性地,网络设备中也可以包括:RRC信令交互模块、MAC信令交互模块、以及PHY信令交互模块。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和(distributed unit,DU)。网络设备还可以包括有源天线单元(active antenna unit,AAU)。CU实现网络设备的部分功能,DU实现网络设备的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
参见图2,为本申请实施例提供的一种信号测量方法流程示意图。图1所示的流程中,第一设备与第二设备具体可以是哪些设备,本申请实施例对此并不限定,例如,第一设备可以是终端设备,第二设备可以是网络设备。或者,第一设备也可以是网络设备,第二设备也可以是终端设备。
当然,第一设备与第二设备可以均为终端设备,或者第一设备与第二设备可以均为网络设备。第一设备还可以为设置在终端设备中的芯片,第二设备还可以为设置在网络设备中的芯片,或者,第一设备还可以为设置在网络设备中的芯片,第二设备还可以为设置在 终端设备中的芯片,在此不再逐一举例说明。如图2所示,该方法包括:
步骤201:第二设备向第一设备发送N个参考信号,N为大于0的整数。
需要说明的是,本申请实施例中,参考信号可以为以下信号中的任一种信号:同步信号、广播信道、广播信号解调信号、信道状态信息下行信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、终端专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号、下行数据信道解调参考信号、下行相位噪声跟踪信号。
当然,以上只是示例,参考信号还可能为其他类型的信号,在此不在逐一举例说明。
步骤202:第一设备接收来自第二设备的N个参考信号。
步骤203:第一设备对所述N个参考信号进行测量,获得N个信号测量信息。
步骤204:第一设备根据所述N个信号测量信息确定第一组合,并向所述第二设备发送第一信息。
其中,第一信息用于指示所述第一组合。
第一种可能的实现方式中,第一组合为由所述N个信号测量信息构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个信号测量信息中的至少一个信号测量信息;H为小于或等于2 N的整数。
第二种可能的实现方式中,第一组合为由所述N个参考信号构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个参考信号中的至少一个参考信号。
示例性的,本申请实施例中,第二设备发送的N个参考信号中的每个参考信号,可以映射到一个时频资源中发送,第二设备具体如何将参考信号映射到对应的时频资源中,本申请实施例对此并不限定,可以参考现有技术中的描述,在此不再赘述。
结合上面的描述,第三种可能的实现方式中,第一组合为由映射所述N个参考信号的N个时频资源构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个时频资源中的至少一个时频资源。
示例性的,本申请实施例中,第二设备发送的N个参考信号中的每个参考信号,可以通过一个多峰波束发送;所述一个多峰波束为包括至少两个主瓣方向的波束。
进一步的,所述N个参考信号对应的N个多峰波束一共可以包括M个主瓣方向;M为大于N的整数。
举例来说,如图3所示,为本申请实施例提供的一种多峰波束示意图。现有的单峰波束只存在一个主瓣方向,即在进行通信时,只在一个方向上具有较高的天线增益,其他方向上的信号信噪比较低、信号质量较差,接收方无法准确解调接收到信号。而多峰波束是具有多个主瓣方向的波束,图3所示的多峰波束具有3个主瓣方向,每个主瓣方向都具有较高的天线增益,接收方在每个主瓣方向上都能准确解调接收到的信号。
结合上面的描述,第四种可能的实现方式中,所述N个参考信号中的每个参考信号通过一个多峰波束发送,在该实现方式下,第一组合为由发送所述N个参考信号的N个多峰波束构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个多峰波束中的至少一个多峰波束。
步骤205:第二设备接收来自第一设备的第一信息,根据所述第一信息确定所述第一组合。
示例性的,第二设备还可以根据第一组合确定第三主瓣方向,并将第三主瓣方向作为 向第一设备发送信号时使用的波束方向。第二设备具体如何确定第三主瓣方向,可以参考后面的描述,在此不再赘述。
通过上面的方法,第一设备在接收到N个参考信号后,只需要通过第一信息反馈根据N个参考信号确定的第一组合,不需要针对每个参考信号分别进行反馈,可以降低反馈的资源开销,提高资源利用率。
结合上面的描述,本申请实施例中,第二设备在发送参考信号之前,可以向第一设备发送配置信息,所述配置信息包括以下至少一项信息:
承载参考信号的时频资源的数量N;
每个多峰波束包括的主瓣方向的数量;
N个多峰波束包括的总的主瓣方向的数量M,M为大于N的整数;
信号测量信息的类型,包括但不限于层一接收参考信号功率(layer 1 reference signal received power,L1-RSRP),层一接收参考信号质量(layer 1 reference signal received quality,L1-RSRQ)、接收信号强度指示(received signal strength indication,RSSI)、信噪比(signal noise ratio,SNR)以及信号与干扰加噪声比(signal to interference plus noise ratio,SINR);
波束训练指示信息,用于指示终端设备根据N个信号测量信息确定第一组合,并反馈指示所述第一组合的第一信息;
反馈指示信息,用于指示第一信息的实现方式,第一信息的实现方式可以参考后面的描述,在此不再赘述。
以上只是示例,配置信息还可以包括其他内容,在此不再一一列举。
相应的,第一设备接收到配置信息时,可以根据配置信息确定参考信号的数量、每个多峰波束包括的主瓣方向的数量等信息。
需要说明的是,配置信息中包括上面描述的部分内容时,其它内容可以为预先约定的,例如,预先约定信号测量信息的类型为RSRP,那么配置信息中可以不包括测量信息的类型。进一步的,第二设备也可以不发送配置信息,此时,承载参考信号的时频资源的数量N、每个多峰波束包括的主瓣方向的数量、总的主瓣方向的数量M、信号测量信息的类型、波束训练指示信息以及反馈指示信息均可以为预先约定的。
结合前面的描述可知,步骤201中,第二设备发送N个参考信号,需要映射到N个时频资源中,以及需要通过N个多峰波束发送。
示例性的,N个参考信号、N个时频资源以及N个多峰波束之间存在对应关系,上述对应关系可能存在多种实现方式,例如可以如表1所示。
表1
参考信号 时频资源 多峰波束
参考信号1 时频资源1 多峰波束1
参考信号2 时频资源2 多峰波束2
··· ··· ···
参考信号N 时频资源N 多峰波束N
表1中,参考信号1映射到时频资源1中,并通过多峰波束1发送。其它情况可以以此类推,不再赘述。
示例性的,本申请实施例中,所述N个多峰波束还需要满足以下条件:
第一、所述N个多峰波束包括的总的主瓣方向的数量M;
第二、针对所述N个多峰波束中任意两个多峰波束,所述任意两个多峰波束包括的主瓣方向不能完全相同。
举例来说,如果多峰波束1包括主瓣方向1和主瓣方向2,那么多峰波束2不能也只包括主瓣方向1和主瓣方向2,例如多峰波束2可以包括主瓣方向1和主瓣方向3。
第三、针对所述M个主瓣方向中的任意两个主瓣方向:第一主瓣方向和第二主瓣方向,所述N个多峰波束中,包括所述第一主瓣方向的P个多峰波束和包括所述第二主瓣方向的Q个多峰波束之间,存在至少一个不同的多峰波束,P、Q为大于0的整数。
举例来说,包括第一主瓣方向的P个多峰波束为多峰波束1和多峰波束2,那么包括第二主瓣方向的Q个多峰波束中,至少有一个多峰波束为多峰波束1和多峰波束2之外的其它多峰波束,例如所示Q个多峰波束为多峰波束2和多峰波束3。
结合上面的描述,本申请实施例中,可以采用格雷码的编码方式,建立N个时频资源与N个多峰波束包括的M个主瓣方向的对应关系,使得N个多峰波束满足上面的条件。
举例来说,N等于3,M等于7。即需要发送3个参考信号,分别对应时频资源1、时频资源2以及时频资源3;共有7个主瓣方向,分别为主瓣方向1至主瓣方向7。那么按照格雷码的编码方式建立的3个时频资源与7个主瓣方向的对应关系可以如图4以及表2所示。
表2
主瓣方向 时频资源1 时频资源2 时频资源3
主瓣方向1 0 0 1
主瓣方向2 0 1 0
主瓣方向3 0 1 1
主瓣方向4 1 0 0
主瓣方向5 1 0 1
主瓣方向6 1 1 0
主瓣方向7 1 1 1
表2中,0表示主瓣方向和时频资源之间没有对应关系,1表示主瓣方向和时频资源之间存在对应关系。例如,表2中,主瓣方向1和时频资源3存在对应关系,和其它时频资源不存在对应关系;主瓣方向7和时频资源1、时频资源2以及时频资源3均存在对应关系,其它情况可以以此类推,不在赘述。
其中,如果一个主瓣方向和一个时频资源存在对应关系,那么发送映射到该时频资源上的参考信号所使用的多峰波束,就包括该时频资源对应的主瓣方向。举例来说,结合表2,参考信号1映射到时频资源1上发送,与时频资源1对应的主瓣方向为主瓣方向4至主瓣方向7,那么发送参考信号1所使用的多峰波束1包括的主瓣方向为主瓣方向4至主瓣方向7。同样的道理,参考信号2映射到时频资源2上发送时,发送参考信号2所使用的多峰波束2包括的主瓣方向为主瓣方向2、主瓣方向3、主瓣方向6以及主瓣方向7;参考信号3映射到时频资源3上发送时,发送参考信号3所使用的多峰波束3包括的主瓣方向为主瓣方向1、主瓣方向3、主瓣方向5以及主瓣方向7。
从上面的描述可知,通过表2确定的多峰波束1至多峰波束3,能够满足前面所描述的N个多峰波束需要满足条件。
在步骤202中,第一设备在接收N个参考信号中的每个参考信号时,采用的接收波束 的方向均相同,即第一设备的接收波束的方向固定不变。
在步骤203中,第一设备可以分别对每个接收到的参考信号进行测量,获得每个参考信号对应的信号测量信息。信号测量信息的类型,可以参考前面的描述。
举例来说,N=3时,第一设备对时频资源1至时频资源3中映射的3个参考信号分别进行测量,得到3个信号测量信息,可以如表3所示。
表3
参考信号 时频资源 信号测量信息
参考信号1 时频资源1 R1
参考信号2 时频资源2 R2
参考信号3 时频资源3 R3
需要说明的是,由波束通信的原理可知,在波束主瓣方向上接收信号时的天线增益最大,因此如果接收波束的方向与多峰波束中的主瓣方向相匹配,则第一设备测量得到的信号测量信息最大。
本申请实施例中,N个信号测量信息可以划分为多个组合,每个组合中包括至少一个信号测量信息。按照排列组合的方法,N个信号测量信息可以划分为2 N个组合,但是其中有一个组合是N个资源上都测不到参考信号的信号测量信息,由于通信系统中固有的干扰和噪声,完全测不到信号测量信息这种组合一般不可能存在,所以在实际情况中N个信号测量信息最多可以划分为2 N-1个组合。举例来说,结合表3,可以将表3中的3个信号测量信息划分为7个组合,具体可以参考表4所示。
表4
组合 组合内包括的信号测量信息
组合1 R1
组合2 R2
组合3 R3
组合4 R1和R2
组合5 R1和R3
组合6 R2和R3
组合7 R1、R2和R3
步骤204:第一设备将由所述N个信号测量信息构成的H个组合中,信号特征最大的组合确定为第一组合。
第一种可能的实现方式中,第一组合为由所述N个信号测量信息构成的H个组合中的一个组合,当第一组合为信号特征最大的组合时,第一组合为所述H个组合中满足以下至少一个条件的组合:
一、当所述H个组合中的第二组合包括第一组合中的所有参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,小于第二组合中的所有信号测量信息的总和,且第二组合中的所有信号测量信息的总和,与第一组合中的所有信号测量信息的总和的差值,小于第一阈值;所述第二组合为所述H个组合中除第一组合外的任一组合;
需要说明的是,本申请实施例中,A与B的差值,指的是A减去B的差值。
二、当所述H个组合中的第二组合与第一组合不存在相同的参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总 和的差值,大于第二阈值;
三、当所述H个组合中的第二组合包括第一组合中的部分参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第三阈值;
需要说明的是,上面确定信号特征最大的组合的条件,只是示例,还可能存在其他条件,例如,该组合中的所有信号测量信息的总和,与所述H个组合中任一组合中的所有信号测量信息的总和的差值的绝对值,小于或等于第三阈值等,在此不再逐一举例说明。
其中,第一阈值、第二阈值以及第三阈值均为大于0的值。第一阈值可以为接近0的值,第二阈值可以为大于第一阈值,且小于或等于第一设备能够测量到的信号测量信息的最大值的值,第三阈值可以为小于或等于第二阈值的值。第一阈值、第二阈值以及第三阈值的具体取值,可以根据实际情况确定,在此不再赘述。
第二种可能的实现方式中,第一组合为由N个参考信号构成的H个组合中的一个组合。
在该实现方式中,可以根据第一种可能的实现方式中的条件,从由N个信号测量信息构成的H个组合中确定出满足所述条件的第三组合。第三组合包括的信号测量信息对应的所有参考信号构成的组合为信号特征最大的组合,即第一组合。
举例来说,结合表4,根据第一种可能的实现方式中的条件,确定的第三组合为组合5,组合5包括的信号测量信息为R1和R3,分别是根据参考信号1和参考信号3确定的。为此,第一组合为参考信号1和参考信号3构成的组合。
第三种可能的实现方式中,第一组合为由映射所述N个参考信号的N个时频资源构成的H个组合中的一个组合。
在该实现方式中,可以根据第一种可能的实现方式中的条件,从由N个信号测量信息构成的H个组合中确定出满足所述条件的第三组合。第三组合包括的信号测量信息对应的所有参考信号所映射的时频资源构成的组合为信号特征最大的组合,即第一组合。
举例来说,结合表4,根据第一种可能的实现方式中的条件,确定的第三组合为组合5,组合5包括的信号测量信息为R1和R3,分别是根据参考信号1和参考信号3确定的。参考信号1映射在时频资源1中,参考信号3映射在时频资源3中,为此,第一组合为时频资源1和时频资源3构成的组合。
第四种可能的实现方式中,第一组合为由发送所述N个参考信号的N个多峰波束构成的H个组合中的一个组合。
在该实现方式中,可以根据第一种可能的实现方式中的条件,从由N个信号测量信息构成的H个组合中确定出满足所述条件的第三组合。第三组合包括的信号测量信息对应的所有参考信号对应的多峰波束构成的组合为信号特征最大的组合,即第一组合。
举例来说,结合表4,根据第一种可能的实现方式中的条件,确定的第三组合为组合5,组合5包括的信号测量信息为R1和R3,分别是根据参考信号1和参考信号3确定的。参考信号1通过多峰波束1发送,参考信号3通过多峰波束3发送,为此,第一组合为多峰波束1和多峰波束3构成的组合。
下面以第一组合为由N个信号测量信息构成的H个组合中的一个组合为例,通过举例描述如何确定信号特征最大的组合。
结合前面的表2至表4,假设第一设备测量后得到的R1、R2以及R3中,R3最大。 进一步的,如果包括R3的组合3满足以下条件,则可以确定组合3为信号特征最大的组合:
组合3与组合1的差值,即R3与R1的差值大于第二阈值;
组合3与组合2的差值,即R3与R2的差值大于第二阈值;
组合3与组合4的差值,即R3与R1+R2的差值大于第二阈值;
组合6与组合3的差值,即R1+R3与R3的差值小于第一阈值;
组合5与组合3的差值,即R2+R3与R3的差值小于第一阈值;
组合7与组合3的差值,即R1+R2+R3与R3的差值小于第一阈值。
结合上面的例子,假设组合3不满足上面的条件,则可以继续按照上面的方式进行判断,例如判断组合6是否为信号特征最大的组合。假设组合6中信号测量信息的总和,与其他组合中信号测量信息的总和的关系为以下,则可以确定组合6为信号特征最大的组合:
组合6与组合1的差值,即R2+R3与R1的差值大于第二阈值;
组合6与组合2的差值,即R2+R3与R2的差值大于第二阈值;
组合6与组合3的差值,即R2+R3与R3的差值大于第二阈值;
组合6与组合4的差值,即R2+R3与R1+R2的差值大于第三阈值;
组合6与组合5的差值,即R2+R3与R1+R3的差值大于第三阈值;
组合7与组合6的差值,即R1+R2+R3与R2+R3的差值小于第一阈值。
其他情况可以以此类推,在此不再赘述。
以上只是示例,还可以采用其他方式确定信号特征最大的组合,在此不再逐一说明。
在步骤204中,第一设备发送的第一信息可以直接指示第一组合,也可以间接指示第一组合,下面将分别进行描述。
第一种可能的实现方式,第一信息可以间接指示第一组合。在该实现方式中,第一信息可以为第三主瓣方向的标识。
其中,第一组合只对应一个多峰波束时,所述第三主瓣方向为只包括在第一组合对应的所有多峰波束中的主瓣方向,且不包括在所述H个组合中除所述第一组合之外的任一组合所包括的信号测量信息对应的所有多峰波束中的主瓣方向。第一组合对应至少两个多峰波束时,所述第三主瓣方向为所述至少两个多峰波束均包括的主瓣方向。
其中,第一组合为由N个信号测量信息构成的H个组合中的一个组合时,第一组合对应的所有多峰波束,是指第一组合包括的所有信号测量信息对应的参考信号对应的所有多峰波束;第一组合为由N个参考信号构成的H个组合中的一个组合时,第一组合对应的所有多峰波束,是指第一组合包括的所有参考信号对应的所有多峰波束;第一组合为由映射N个参考信号的N个时频资源构成的H个组合中的一个组合时,第一组合对应的所有多峰波束,是指第一组合包括的所有时频资源对应的所有多峰波束。
第一设备具体如何确定第一组合对应的第三主瓣方向,本申请实施例对此并不限定。
一种可能的实现方式中,结合前面关于第三主瓣方向的定义,第一设备可以根据第一组合确定第三主瓣方向。
举例来说,第二设备可以采用格雷码的编码方式,建立N个时频资源与N个多峰波束包括的M个主瓣方向的对应关系,并向第一设备指示建立的N个时频资源与M个主瓣方向的对应关系,例如可以如表2所示。结合表2中的例子,如果第一设备确定组合1为第一组合,那么结合表2可知,组合1中的信道测量信息是对映射在时频资源1中的参考信 号1测量得到的,而发送参考信号1的多峰波束包括主瓣方向4至主瓣方向7。主瓣方向4至主瓣方向7中,主瓣方向5还存在于发送参考信号3的多峰波束中,主瓣方向6还存在于发送参考信号2的多峰波束中,主瓣方向7还存在于发送参考信号2和参考信号3的多峰波束中,只有主瓣方向4只存在于发送参考信号1的多峰波束中,因此可以确定主瓣方向4为第三主瓣方向。
基于同样的理由,可以获得不同组合下,对应的第三主瓣方向,具体可以如表5所示。
表5
第一组合 第三主瓣方向 主瓣标识
组合1 主瓣方向4 100
组合2 主瓣方向2 010
组合3 主瓣方向1 001
组合4 主瓣方向6 110
组合5 主瓣方向5 101
组合6 主瓣方向3 011
组合7 主瓣方向7 111
结合表5可知,当第一组合为组合1时,第三主瓣方向为主瓣方向4;当第一组合为组合6时,第三主瓣方向为主瓣方向3,其他情况不再赘述。
表5还给出了主瓣标识的一种可能的实现方式,例如主瓣方向1的主瓣标识为001等。
另一种可能的实现方式中,第二设备可以不向第一设备指示建立的N个时频资源与M个主瓣方向的对应关系,而是向第一设备指示第三主瓣方向与第一组合的对应关系,例如第二设备可以将表5中所示的对应关系指示给第一设备。当第一设备确定第一组合时,可以根据第三主瓣方向与第一组合的对应关系,直接确定第三主瓣方向,并反馈与第一组合对应的第三主瓣方向的标识。
在该实现方式下,第二设备可以根据第一信息确定第一组合对应的第三主瓣方向,从而可以将第三主瓣方向作为向第一设备发送信号所使用的波束方向。
例如,当第一设备确定第一组合对应的第三主瓣方向为主瓣方向6时,第一信息为主瓣方向6的主瓣标识,即110。当第二设备接收到第一信息时,可以根据第一信息确定第三主瓣,从而可以确定第一设备接收参考信号时,信号质量最优的主瓣方向为主瓣方向6。
第二种可能的实现方式,第一组合中包括X个参考信号,或者,第一组合中包括的X个信号测量信息对应X个参考信号,或者第一组合中包括的X个多峰波束信息对应X个参考信号,或者第一组合中包括的X个时频资源对应X个参考信号。
在该实现方式下,所述第一信息为所述X个参考信号的标识,X为大于0的整数。
举例来说,N等于3,即需要发送3个参考信号,分别为参考信号1、参考信号2以及参考信号3;参考信号1至参考信号3的标识可以如表6所示。
表6
参考信号 参考信号的标识
参考信号1 01
参考信号2 10
参考信号3 11
保留标识 00
表6中,保留标识为00,在一种可能的实现方式中,第一设备每次向第二设备反馈的第一信息所包括的比特数量为一个固定值,为此第一信息中除了包括表示X个参考信号的标识的比特之外,还包括一些冗余比特,这些冗余比特的取值可以为保留标识。
举例来说,N为3,每个参考信号的标识采用2个比特表示,第一信息所包括的比特数量为2N,即6个比特,结合表6,当第一组合为不同组合时,第一信息可以如表7所示。
表7
Figure PCTCN2020108181-appb-000001
结合表7可知,当第一组合为组合1时,第一信息为010000。当第二设备接收到第一信息为010000时,可以根据第一信息确定第一组合为组合1,从而可以确定组合1对应的第三主瓣方向为主瓣方向4,从而确定第一设备接收参考信号时,信号质量最优的主瓣方向为主瓣方向4。其它情况不再赘述。
需要说明的是,如果第一设备每次向第二设备反馈的第一信息所包括的比特数量不是固定值,那么第一信息中可以不包括冗余比特,只包括表示X个参考信号的标识的比特,例如,结合表7,第一组合为组合1时,第一信息为01。
第三种可能的实现方式,第一组合中包括X个时频资源,或者,第一组合中包括的X个信号测量信息对应的X个参考信号映射X个时频资源,或者第一组合中包括的X个多峰波束信息对应的X个参考信号映射X个时频资源,或者第一组合中包括的X个参考信号映射X个时频资源。
在该实现方式下,所述第一信息为所述X个时频资源的标识。
举例来说,N等于3,即需要发送3个参考信号,分别映射到时频资源1、时频资源2以及时频资源3,时频资源1至时频资源3的标识可以如表8所示。
表8
时频资源 时频资源的标识
时频资源1 01
时频资源2 10
时频资源3 11
保留标识 00
表8中,保留标识为00,在一种可能的实现方式中,第一设备每次向第二设备反馈的第一信息所包括的比特数量为一个固定值,为此第一信息中除了包括表示X个参考信号的 标识的比特之外,还包括一些冗余比特,这些冗余比特的取值可以为保留标识。
举例来说,N为3,每个参考信号的标识采用2个比特表示,第一信息所包括的比特数量为2N,即6个比特,结合表8,当第一组合为不同组合时,第一信息可以如表9所示。
表9
Figure PCTCN2020108181-appb-000002
在该实现方式下,第二设备可以根据第一信息确定X个时频资源,可以根据所述X个时频资源确定第一组合,进一步可以根据所述第一组合确定的第三主瓣方向,并将第三主瓣方向作为向第一设备发送信号所使用的波束方向。
举例来说,结合表9,当第一组合为组合1时,第一信息为010000。当第二设备接收到第一信息为010000时,可以根据第一信息确定时频资源1。第二设备可以根据时频资源1确定对应的组合为组合1,第二设备从而可以确定组合1对应的第三主瓣方向为主瓣方向4,从而确定第一设备接收参考信号时,信号质量最优的主瓣方向为主瓣方向4。其它情况不再赘述。
第四种可能的实现方式,第一信息为第一组合的标识。
在该实现方式下,所述第一信息直接指示出第一组合。为此第二设备可以预先向第一设备指示每个组合的标识,第一设备确定第一组合时,可以直接反馈第一组合的标识。
举例来说,第二设备指示的第一组合的标识可以如表10所示。
表10
第一组合 标识
组合1 100
组合2 010
组合3 001
组合4 110
组合5 101
组合6 011
组合7 111
当第一设备确定组合5位第一组合时,反馈的第一信息可以为101,其它情况不再赘述。
需要说明的是,第一信息还可能存在其他实现方式,例如第一设备可以确定第一组合中包括的X个信号测量信息对应的X个多峰波束,此时所述第一信息为所述X个多峰波束的标识,具体可以参考第二或三种可能的实现方式中的描述,在此不再赘述。
示例性的,在另一种可能的实现方式中,在步骤204中,第一设备也可以不向第二设备发送第一信息,而是向第二设备发送N个信号测量信息。在该实现方式下,第二设备可以根据N个信号测量信息确定第三主瓣方向,从而将第三主瓣方向作为向第一设备发送信号时使用的波束方向。第二设备具体如何确定第三主瓣方向,可以参考前面的描述,在此不再赘述。
图2所示的流程中,描述了第一设备如何反馈第一信息。本申请实施例中,第一设备也可以不发送第一信息,而是直接向第二设备发送测量的N个信号测量信息,具体可以参考图5所示。
步骤501:第二设备向第一设备发送N个参考信号,N为大于0的整数。
步骤502:第一设备接收来自第二设备的N个参考信号。
步骤503:第一设备对所述N个参考信号进行测量,获得N个信号测量信息。
步骤501至步骤503的具体内容可以参考步骤201至步骤203中的描述,在此不再赘述。
步骤504:第一设备向所述第二设备发送所述N个信号测量信息。
步骤505:第二设备接收来自第一设备的N个信号测量信息。
第二设备接收到N个信号测量信息时,可以根据所述N个信号测量信息确定第一组合或者确定第三主瓣方向,具体如何确定,可以参考前面的描述,在此不再赘述。
在该实现方式下,第二设备确定第三主瓣方向之后,可以将第三主瓣方向作为向第一设备发送信号所使用的波束方向。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由第一设备实现的方法和操作,也可以由可用于第一设备的部件(例如芯片或者电路)实现,由第二设备实现的方法和操作,也可以由可用于第二设备的部件(例如芯片或者电路)实现。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一设备与第二设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图6所示,本申请实施例还提供一种装置600用于实现上述方法中第一设备或第二设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置600可以包括:处理单元601和通信单元602。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中第一设备或第二设备发送和接收的步骤。
以下,结合图6至图7详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
在一种可能的设计中,该装置600可实现对应于上文方法实施例中的第一设备或者第二设备执行的步骤或者流程,下面分别进行描述。
示例性地,当该装置600实现图2所示的流程中第一设备的功能时:
通信单元602,用于接收来自第二设备的N个参考信号,N为大于0的整数;
处理单元601,用于对所述N个参考信号进行测量,获得N个信号测量信息;根据所述N个信号测量信息确定第一组合;所述第一组合为由所述N个信号测量信息构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个信号测量信息中的至少一个信号测量信息;H为小于或等于2 N的整数;
所述通信单元602,用于向所述第二设备发送第一信息;所述第一信息用于指示所述第一组合。
在一种可能的设计中,所述处理单元601具体用于:将所述N个信号测量信息构成的H个组合中,信号特征最大的组合确定为所述第一组合。
在一种可能的设计中,当所述第一组合为信号特征最大的组合时,所述第一组合为所述H个组合中满足以下一项或多项条件的组合:
当所述H个组合中的第二组合包括第一组合中的所有参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,小于第二组合中的所有信号测量信息的总和,且第二组合中的所有信号测量信息的总和,与第一组合中的所有信号测量信息的总和的差值,小于第一阈值;所述第二组合为所述H个组合中除第一组合外的任一组合;
当所述H个组合中的第二组合与第一组合不存在相同的参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第二阈值;当所述H个组合中的第二组合包括第一组合中的部分参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第三阈值。
在一种可能的设计中,所述N个参考信号中的每个参考信号通过一个多峰波束发送;所述一个多峰波束为包括至少两个主瓣方向的波束,所述N个参考信号对应的N个多峰波束包括M个主瓣方向;M为大于N的整数。
在一种可能的设计中,针对所述M个主瓣方向中的任意两个主瓣方向:第一主瓣方向和第二主瓣方向,所述N个多峰波束中,包括所述第一主瓣方向的P个多峰波束和包括所述第二主瓣方向的Q个多峰波束之间,存在至少一个不同的多峰波束,P、Q为大于0的整数。
在一种可能的设计中,所述第一信息为所述第三主瓣方向的标识;所述第一组合只对应一个多峰波束时,所述第三主瓣方向为只包括在所述第一组合对应的所有多峰波束中的主瓣方向,且不包括在所述H个组合中除所述第一组合之外的任一组合所包括的信号测量信息对应的所有多峰波束中的主瓣方向;所述第一组合对应至少两个多峰波束时,所述第三主瓣方向为所述第一组合对应发至少两个多峰波束均包括的主瓣方向。
在一种可能的设计中,所述通信单元602还用于:
通过所述第三主瓣方向的波束接收来自所述第二设备的数据。
在一种可能的设计中,所述N个参考信号中的每个参考信号映射一个时频资源;所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为X个时频资源的标识,所述X个时频资源承载的X个参考信号对应的所述X个信号测量信息。
在一种可能的设计中,所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为所述X个信号测量信息对应的X个参考信号的标识。
应理解,上面只是示例,装置600实现图2所示的流程中第一设备的功能时,处理单元601以及通信单元602执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述各步骤的具体过程。
示例性地,一种可能的实现方式中,当该装置600实现图2所示的流程中第二设备的功能时:通信单元602,用于向第一设备发送N个参考信号,N为大于0的整数;接收来自所述第一设备的第一信息;所述第一信息用于指示第一组合,所述第一组合为由N个信号测量信息构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个信号测量信息中的至少一个信号测量信息;H为小于或等于2 N的整数;所述N个信号测量信息为根据所述N个参考信号进行测量获得的;处理单元601,用于根据所述第一信息确定所述第一组合。
在一种可能的实现方式中,所述第一组合为所述H个组合中信号特征最大的组合。
在一种可能的实现方式中,当所述第一组合为信号特征最大的组合时,所述第一组合为所述H个组合中满足以下一项或多项条件的组合:
当所述H个组合中的第二组合包括第一组合中的所有参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,小于第二组合中的所有信号测量信息的总和,且第二组合中的所有信号测量信息的总和,与第一组合中的所有信号测量信息的总和的差值,小于第一阈值;所述第二组合为所述H个组合中除第一组合外的任一组合;
当所述H个组合中的第二组合与第一组合不存在相同的参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第二阈值;
当所述H个组合中的第二组合包括第一组合中的部分参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第三阈值。
在一种可能的实现方式中,所述N个参考信号中的每个参考信号通过一个多峰波束发送;所述一个多峰波束为包括至少两个主瓣方向的波束,所述N个参考信号对应的N个多峰波束包括M个主瓣方向;M为大于N的整数。
在一种可能的实现方式中,针对所述M个主瓣方向中的任意两个主瓣方向:第一主瓣方向和第二主瓣方向,所述N个多峰波束中,包括所述第一主瓣方向的P个多峰波束和包括所述第二主瓣方向的Q个多峰波束之间,存在至少一个不同的多峰波束,P、Q为大于0的整数。
在一种可能的实现方式中,所述第一信息为所述第三主瓣方向的标识;所述第一组合只对应一个多峰波束时,所述第三主瓣方向为只包括在所述第一组合对应的所有多峰波束中的主瓣方向,且不包括在所述H个组合中除所述第一组合之外的任一组合所包括的信号 测量信息对应的所有多峰波束中的主瓣方向;所述第一组合对应至少两个多峰波束时,所述第三主瓣方向为所述第一组合对应发至少两个多峰波束均包括的主瓣方向。
在一种可能的实现方式中,所述N个参考信号中的每个参考信号映射一个时频资源;所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为X个时频资源的标识,所述X个时频资源承载的X个参考信号对应的所述X个信号测量信息。
在一种可能的实现方式中,所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为所述X个信号测量信息对应的X个参考信号的标识。
应理解,上面只是示例,装置600实现图2所示的流程中第二设备的功能时,处理单元601以及通信单元602执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述各步骤的具体过程。
如图7所示为本申请实施例提供的装置700,图7所示的装置可以为图6所示的装置的一种硬件电路的实现方式。该通信装置可适用于图2~图5所示出的流程图中,执行上述方法实施例中第一设备或者第二设备的功能。为了便于说明,图7仅示出了该通信装置的主要部件。
图7所示的装置700包括至少一个处理器720,用于实现本申请实施例提供的图2~图5中任一方法。
装置700还可以包括至少一个存储器730,用于存储程序指令和/或数据。存储器730和处理器720耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器720可能和存储器730协同操作。处理器720可能执行存储器730中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理电路(digital signal processor,DSP)、专用集成芯片(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包 括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
装置700还可以包括通信接口710,用于通过传输介质和其它设备进行通信,从而用于装置700中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
示例性地,当该装置700实现图2所示的流程中第一设备的功能时:
通信接口710,用于接收来自第二设备的N个参考信号,N为大于0的整数;
处理器720,用于对所述N个参考信号进行测量,获得N个信号测量信息;根据所述N个信号测量信息确定第一组合;所述第一组合为由所述N个信号测量信息构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个信号测量信息中的至少一个信号测量信息;H为小于或等于2N的整数;
所述通信接口710,用于向所述第二设备发送第一信息;所述第一信息用于指示所述第一组合。
在一种可能的设计中,所述处理器720具体用于:将所述N个信号测量信息构成的H个组合中,信号特征最大的组合确定为所述第一组合。
在一种可能的设计中,当所述第一组合为信号特征最大的组合时,所述第一组合为所述H个组合中满足以下一项或多项条件的组合:
当所述H个组合中的第二组合包括第一组合中的所有参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,小于第二组合中的所有信号测量信息的总和,且第二组合中的所有信号测量信息的总和,与第一组合中的所有信号测量信息的总和的差值,小于第一阈值;所述第二组合为所述H个组合中除第一组合外的任一组合;
当所述H个组合中的第二组合与第一组合不存在相同的参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第二阈值;当所述H个组合中的第二组合包括第一组合中的部分参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第三阈值。
在一种可能的设计中,所述N个参考信号中的每个参考信号通过一个多峰波束发送;所述一个多峰波束为包括至少两个主瓣方向的波束,所述N个参考信号对应的N个多峰波束包括M个主瓣方向;M为大于N的整数。
在一种可能的设计中,针对所述M个主瓣方向中的任意两个主瓣方向:第一主瓣方向和第二主瓣方向,所述N个多峰波束中,包括所述第一主瓣方向的P个多峰波束和包括所述第二主瓣方向的Q个多峰波束之间,存在至少一个不同的多峰波束,P、Q为大于0的整数。
在一种可能的设计中,所述第一信息为所述第三主瓣方向的标识;所述第一组合只对应一个多峰波束时,所述第三主瓣方向为只包括在所述第一组合对应的所有多峰波束中的主瓣方向,且不包括在所述H个组合中除所述第一组合之外的任一组合所包括的信号测量信息对应的所有多峰波束中的主瓣方向;所述第一组合对应至少两个多峰波束时,所述第三主瓣方向为所述第一组合对应发至少两个多峰波束均包括的主瓣方向。
在一种可能的设计中,所述通信接口710还用于:
通过所述第三主瓣方向的波束接收来自所述第二设备的数据。
在一种可能的设计中,所述N个参考信号中的每个参考信号映射一个时频资源;所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为X个时频资源的标识,所述X个时频资源承载的X个参考信号对应的所述X个信号测量信息。
在一种可能的设计中,所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为所述X个信号测量信息对应的X个参考信号的标识。
示例性地,当该装置700实现图2所示的流程中第二设备的功能时:
通信接口710,用于向第一设备发送N个参考信号,N为大于0的整数;接收来自所述第一设备的第一信息;所述第一信息用于指示第一组合,所述第一组合为由N个信号测量信息构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个信号测量信息中的至少一个信号测量信息;H为小于或等于2N的整数;所述N个信号测量信息为根据所述N个参考信号进行测量获得的;
处理器720,用于根据所述第一信息确定所述第一组合。
在一种可能的实现方式中,所述第一组合为所述H个组合中信号特征最大的组合。
在一种可能的实现方式中,当所述第一组合为信号特征最大的组合时,所述第一组合为所述H个组合中满足以下一项或多项条件的组合:
当所述H个组合中的第二组合包括第一组合中的所有参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,小于第二组合中的所有信号测量信息的总和,且第二组合中的所有信号测量信息的总和,与第一组合中的所有信号测量信息的总和的差值,小于第一阈值;所述第二组合为所述H个组合中除第一组合外的任一组合;
当所述H个组合中的第二组合与第一组合不存在相同的参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第二阈值;
当所述H个组合中的第二组合包括第一组合中的部分参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第三阈值。
在一种可能的实现方式中,所述N个参考信号中的每个参考信号通过一个多峰波束发送;所述一个多峰波束为包括至少两个主瓣方向的波束,所述N个参考信号对应的N个多峰波束包括M个主瓣方向;M为大于N的整数。
在一种可能的实现方式中,针对所述M个主瓣方向中的任意两个主瓣方向:第一主瓣 方向和第二主瓣方向,所述N个多峰波束中,包括所述第一主瓣方向的P个多峰波束和包括所述第二主瓣方向的Q个多峰波束之间,存在至少一个不同的多峰波束,P、Q为大于0的整数。
在一种可能的实现方式中,所述第一信息为所述第三主瓣方向的标识;所述第一组合只对应一个多峰波束时,所述第三主瓣方向为只包括在所述第一组合对应的所有多峰波束中的主瓣方向,且不包括在所述H个组合中除所述第一组合之外的任一组合所包括的信号测量信息对应的所有多峰波束中的主瓣方向;所述第一组合对应至少两个多峰波束时,所述第三主瓣方向为所述第一组合对应发至少两个多峰波束均包括的主瓣方向。
在一种可能的实现方式中,所述N个参考信号中的每个参考信号映射一个时频资源;所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为X个时频资源的标识,所述X个时频资源承载的X个参考信号对应的所述X个信号测量信息。
在一种可能的实现方式中,所述第一组合包括X个信号测量信息,X为大于0的整数;所述第一信息为所述X个信号测量信息对应的X个参考信号的标识。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2至图5所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2至图5所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的第一设备以及第二设备。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种信号测量方法,其特征在于,包括:
    第一设备接收来自第二设备的N个参考信号,N为大于0的整数;
    所述第一设备对所述N个参考信号进行测量,获得N个信号测量信息;
    所述第一设备根据所述N个信号测量信息确定第一组合;所述第一组合为由所述N个信号测量信息构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个信号测量信息中的至少一个信号测量信息;H为小于或等于2 N的整数;
    所述第一设备向所述第二设备发送第一信息;所述第一信息用于指示所述第一组合。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备根据所述N个信号测量信息确定第一组合,包括:
    所述第一设备将所述N个信号测量信息构成的H个组合中,信号特征最大的组合确定为所述第一组合。
  3. 根据权利要求2所述的方法,其特征在于,当所述第一组合为信号特征最大的组合时,所述第一组合为所述H个组合中满足以下一项或多项条件的组合:
    当所述H个组合中的第二组合包括第一组合中的所有参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,小于第二组合中的所有信号测量信息的总和,且第二组合中的所有信号测量信息的总和,与第一组合中的所有信号测量信息的总和的差值,小于第一阈值;所述第二组合为所述H个组合中除第一组合外的任一组合;
    当所述H个组合中的第二组合与第一组合不存在相同的参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第二阈值;
    当所述H个组合中的第二组合包括第一组合中的部分参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第三阈值。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述N个参考信号中的每个参考信号通过一个多峰波束发送;所述一个多峰波束为包括至少两个主瓣方向的波束,所述N个参考信号对应的N个多峰波束包括M个主瓣方向;M为大于N的整数。
  5. 根据权利要求4所述的方法,其特征在于,针对所述M个主瓣方向中的任意两个主瓣方向:第一主瓣方向和第二主瓣方向,所述N个多峰波束中,包括所述第一主瓣方向的P个多峰波束和包括所述第二主瓣方向的Q个多峰波束之间,存在至少一个不同的多峰波束,P、Q为大于0的整数。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一信息为所述第三主瓣方向的标识;所述第一组合只对应一个多峰波束时,所述第三主瓣方向为只包括在所述第一组合对应的所有多峰波束中的主瓣方向,且不包括在所述H个组合中除所述第一组合之外的任一组合所包括的信号测量信息对应的所有多峰波束中的主瓣方向;所述第一组合对应至少两个多峰波束时,所述第三主瓣方向为所述第一组合对应发至少两个多峰波束均包括的主瓣方向。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一设备通过所述第三主瓣方向的波束接收来自所述第二设备的数据。
  8. 根据权利要求1至4任一所述的方法,其特征在于,所述N个参考信号中的每个参考信号映射一个时频资源;所述第一组合包括X个信号测量信息,X为大于0的整数;
    所述第一信息为X个时频资源的标识,所述X个时频资源承载的X个参考信号对应的所述X个信号测量信息。
  9. 根据权利要求1至4任一所述的方法,其特征在于,所述第一组合包括X个信号测量信息,X为大于0的整数;
    所述第一信息为所述X个信号测量信息对应的X个参考信号的标识。
  10. 一种信号测量方法,其特征在于,包括:
    第二设备向第一设备发送N个参考信号,N为大于0的整数;
    所述第二设备接收来自所述第一设备的第一信息;所述第一信息用于指示第一组合,所述第一组合为由N个信号测量信息构成的H个组合中的一个组合,所述H个组合中的任一组合包括所述N个信号测量信息中的至少一个信号测量信息;H为小于或等于2 N的整数;所述N个信号测量信息为根据所述N个参考信号进行测量获得的;
    所述第二设备根据所述第一信息确定所述第一组合。
  11. 根据权利要求10所述的方法,其特征在于,所述第一组合为所述H个组合中信号特征最大的组合。
  12. 根据权利要求11所述的方法,其特征在于,当所述第一组合为信号特征最大的组合时,所述第一组合为所述H个组合中满足以下一项或多项条件的组合:
    当所述H个组合中的第二组合包括第一组合中的所有参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,小于第二组合中的所有信号测量信息的总和,且第二组合中的所有信号测量信息的总和,与第一组合中的所有信号测量信息的总和的差值,小于第一阈值;所述第二组合为所述H个组合中除第一组合外的任一组合;
    当所述H个组合中的第二组合与第一组合不存在相同的参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第二阈值;
    当所述H个组合中的第二组合包括第一组合中的部分参考信号对应的信号测量信息时,第一组合中的所有信号测量信息的总和,与第二组合中的所有信号测量信息的总和的差值,大于第三阈值。
  13. 根据权利要求10至12任一所述的方法,其特征在于,所述N个参考信号中的每个参考信号通过一个多峰波束发送;所述一个多峰波束为包括至少两个主瓣方向的波束,所述N个参考信号对应的N个多峰波束包括M个主瓣方向;M为大于N的整数。
  14. 根据权利要求13所述的方法,其特征在于,针对所述M个主瓣方向中的任意两个主瓣方向:第一主瓣方向和第二主瓣方向,所述N个多峰波束中,包括所述第一主瓣方向的P个多峰波束和包括所述第二主瓣方向的Q个多峰波束之间,存在至少一个不同的多峰波束,P、Q为大于0的整数。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一信息为所述第三主瓣方向的标识;所述第一组合只对应一个多峰波束时,所述第三主瓣方向为只包括在所述第一组合对应的所有多峰波束中的主瓣方向,且不包括在所述H个组合中除所述第一组合之外的任一组合所包括的信号测量信息对应的所有多峰波束中的主瓣方向;所述第一组合对应至少两个多峰波束时,所述第三主瓣方向为所述第一组合对应发至少两个多峰波束均包 括的主瓣方向。
  16. 根据权利要求10至15任一所述的方法,其特征在于,所述N个参考信号中的每个参考信号映射一个时频资源;所述第一组合包括X个信号测量信息,X为大于0的整数;
    所述第一信息为X个时频资源的标识,所述X个时频资源承载的X个参考信号对应的所述X个信号测量信息。
  17. 根据权利要求10至15任一所述的方法,其特征在于,所述第一组合包括X个信号测量信息,X为大于0的整数;
    所述第一信息为所述X个信号测量信息对应的X个参考信号的标识。
  18. 一种通信装置,其特征在于,包括处理器,收发器,和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现权利要求1至9或10至17中任意一项所述的方法。
  19. 一种通信装置,其特征在于,包括处理器,所述处理器与至少一个存储器耦合:
    所述处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,如权利要求1至9或10至17中任意一项所述的方法被执行。
  20. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1至9或10至17中任意一项所述的方法被执行。
  21. 一种芯片,其特征在于,所述芯片与存储器相连,用于读取并执行所述存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,如权利要求1至9或10至17中任意一项所述的方法被执行。
PCT/CN2020/108181 2019-08-30 2020-08-10 一种信号测量方法及装置 WO2021036773A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910818127.7A CN112448744B (zh) 2019-08-30 2019-08-30 一种信号测量方法及装置
CN201910818127.7 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021036773A1 true WO2021036773A1 (zh) 2021-03-04

Family

ID=74685043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108181 WO2021036773A1 (zh) 2019-08-30 2020-08-10 一种信号测量方法及装置

Country Status (2)

Country Link
CN (1) CN112448744B (zh)
WO (1) WO2021036773A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220132459A1 (en) * 2020-10-27 2022-04-28 Qualcomm Incorporated Frequency dependent beam patterns for positioning

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023004753A1 (en) * 2021-07-30 2023-02-02 Zte Corporation Systems and methods for reference signaling design and configuration
CN115712001A (zh) * 2021-08-23 2023-02-24 华为技术有限公司 测速方法和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322613A1 (en) * 2008-06-30 2009-12-31 Interdigital Patent Holdings, Inc. Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups
US20130163544A1 (en) * 2011-12-27 2013-06-27 Industry-Academic Cooperation Foundation, Korea National University of Transportation Method and apparatus for transmitting/receiving csi-rs in massive mimo system operating in fdd mode
CN107888260A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 一种波束选择方法及相关设备
CN108631841A (zh) * 2017-03-17 2018-10-09 电信科学技术研究院 一种发送波束确定方法、发送端和接收端
CN108631830A (zh) * 2017-03-24 2018-10-09 电信科学技术研究院 一种发送波束确定方法、发送端和接收端
CN108736944A (zh) * 2017-04-19 2018-11-02 上海朗帛通信技术有限公司 一种基站、用户设备中的用于多天线传输的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092698B (zh) * 2016-11-22 2021-01-15 华为技术有限公司 一种波束训练方法及装置
CN109495149B (zh) * 2017-09-11 2021-10-15 华为技术有限公司 通信方法、网络设备、终端设备和系统
CN110061768B (zh) * 2018-01-19 2021-01-29 成都华为技术有限公司 一种波束配置方法和装置
CN110167035B (zh) * 2018-02-13 2021-02-26 华为技术有限公司 波束管理方法、终端、网络设备以及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322613A1 (en) * 2008-06-30 2009-12-31 Interdigital Patent Holdings, Inc. Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups
US20130163544A1 (en) * 2011-12-27 2013-06-27 Industry-Academic Cooperation Foundation, Korea National University of Transportation Method and apparatus for transmitting/receiving csi-rs in massive mimo system operating in fdd mode
CN107888260A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 一种波束选择方法及相关设备
CN108631841A (zh) * 2017-03-17 2018-10-09 电信科学技术研究院 一种发送波束确定方法、发送端和接收端
CN108631830A (zh) * 2017-03-24 2018-10-09 电信科学技术研究院 一种发送波束确定方法、发送端和接收端
CN108736944A (zh) * 2017-04-19 2018-11-02 上海朗帛通信技术有限公司 一种基站、用户设备中的用于多天线传输的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220132459A1 (en) * 2020-10-27 2022-04-28 Qualcomm Incorporated Frequency dependent beam patterns for positioning
US11924802B2 (en) * 2020-10-27 2024-03-05 Qualcomm Incorporated Frequency dependent beam patterns for positioning

Also Published As

Publication number Publication date
CN112448744A (zh) 2021-03-05
CN112448744B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN108282198B (zh) 一种信号传输方法和装置
WO2019153347A1 (zh) 配置信息的接收和发送方法、装置及通信系统
WO2021036773A1 (zh) 一种信号测量方法及装置
US11102783B2 (en) System and method for supporting beamformed sounding reference signals
TWI784951B (zh) 傳輸參考訊號的方法、網路設備和終端設備
WO2021052473A1 (zh) 通信方法和通信装置
CN109391445A (zh) 一种pdsch接收信息的指示方法、数据接收方法及装置
WO2022001241A1 (zh) 一种波束管理方法及装置
WO2021000680A1 (zh) 一种协作传输方法及通信装置
US20220394504A1 (en) Beam pair training method and communication apparatus
WO2021003620A1 (zh) 下行信号传输的方法和设备
WO2018059470A1 (zh) 传输信息的方法和设备
US20230026501A1 (en) Communication method and apparatus
WO2021081770A1 (zh) 一种测量方法及装置
US20220302969A1 (en) Channel information determining method and apparatus
WO2021098048A1 (zh) 一种信息上报方法及装置
WO2021128022A1 (zh) 无线通信方法、终端设备和网络设备
JP2023513291A (ja) データ伝送方法及び装置
WO2023273869A1 (zh) 信道状态信息报告的优先级确定方法与装置、相关设备
WO2018177067A1 (zh) 一种干扰协调方法及装置
WO2021208742A1 (zh) 一种波束对准方法及装置
WO2019223665A1 (zh) 下行数据的传输方法、网络设备及终端
WO2021088038A1 (zh) 一种参考信号测量方法、资源指示方法及装置
WO2021142724A1 (zh) 一种数据传输方法、电子设备及存储介质
WO2022141205A1 (zh) 一种波束训练方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857599

Country of ref document: EP

Kind code of ref document: A1