WO2021128022A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021128022A1
WO2021128022A1 PCT/CN2019/128040 CN2019128040W WO2021128022A1 WO 2021128022 A1 WO2021128022 A1 WO 2021128022A1 CN 2019128040 W CN2019128040 W CN 2019128040W WO 2021128022 A1 WO2021128022 A1 WO 2021128022A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal device
transmission
transmission mode
type
Prior art date
Application number
PCT/CN2019/128040
Other languages
English (en)
French (fr)
Inventor
田文强
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980102892.7A priority Critical patent/CN114788383A/zh
Priority to PCT/CN2019/128040 priority patent/WO2021128022A1/zh
Priority to EP19957360.1A priority patent/EP4075905A4/en
Publication of WO2021128022A1 publication Critical patent/WO2021128022A1/zh
Priority to US17/843,094 priority patent/US20220329293A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method, terminal device, and network device.
  • the embodiments of the present application provide a wireless communication method, terminal equipment, and network equipment, which can implement OAM-based wireless communication.
  • a wireless communication method including:
  • the terminal device determines to use a first transmission mode to transmit data, and the first transmission mode is a MIMO-based transmission mode or an OAM-based transmission mode.
  • a wireless communication method in a second aspect, includes:
  • the network device determines that the terminal device uses a first transmission mode to transmit data, and the first transmission mode is a MIMO-based transmission mode or an OAM-based transmission mode.
  • a terminal device which is used to execute the method in the first aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a network device is provided, which is used to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or its implementation manners.
  • a device for implementing any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the data transmission method can be determined when the MIMO-based transmission method and the OAM-based transmission method coexist.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • 3 to 10 are schematic diagrams for determining a data transmission mode and corresponding transmission parameters provided according to an embodiment of the present application.
  • Fig. 11 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Air Interface The (New Radio, NR) system the evolution system of the NR system, the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed spectrum, the NR (NR-based access to unlicensed spectrum, on the unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Air Interface
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiment of the present application.
  • terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in the NR network or Terminal equipment in the public land mobile network (PLMN) network that will evolve in the future.
  • STAION, ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with mobile devices.
  • the network device can be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or a device in WCDMA.
  • a base station (NodeB, NB) can also be an Evolutional Node B (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device or base station in the NR network (gNB) or network equipment in the future evolved PLMN network.
  • the network equipment provides services for the cell
  • the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network equipment (for example, The cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico Cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the wireless communication system is a data transmission method based on Multiple-Input Multiple-Output (MIMO).
  • MIMO Multiple-Input Multiple-Output
  • demodulation reference signal (Demodulation Reference Signal, DMRS), channel state information reference signal (Channel State Information Reference Signal, CSI-RS), phase tracking reference signal (Phase Tracking Reference Signal, PT- RS), reference signal design represented by sounding reference signal (Sounding Reference Signal, SRS), channel state information feedback design represented by codebook and non-codebook feedback, and beam management design are the focus of MIMO research.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • phase tracking reference signal Phase Tracking Reference Signal
  • PT- RS phase tracking reference signal
  • reference signal design represented by sounding reference signal Sounding Reference Signal
  • channel state information feedback design represented by codebook and non-codebook feedback
  • beam management design are the focus of MIMO research.
  • the above-mentioned design also affects the configuration of system parameters and the execution of system processes.
  • the wireless communication system design based on orbital angular momentum is a new type of wireless communication technology research that is different from the traditional MIMO.
  • the research of orbital angular momentum began in the field of optical communication. Later, researchers proposed to apply the orbital angular momentum of the quantum state to low frequencies and generate vortex electromagnetic waves through large-scale antennas, thereby realizing the application of orbital angular momentum to the field of wireless communication.
  • the wireless communication method based on orbital angular momentum is compared with the wireless communication method based on traditional MIMO. (1) For the same high-rate transmission, the communication method based on orbital angular momentum is simpler to implement. (2) Through the design of specific antenna and radio frequency system, the communication method based on orbital angular momentum can meet the demand for higher rate transmission.
  • the MIMO-based communication method is the foundation of the existing communication system, and the emerging OAM-based communication method is a relatively cutting-edge research content. Its high speed and low complexity can become the future wireless communication system to further improve the performance. Supporting technology.
  • the base station needs to be on-demand or based on The respective implementation algorithms determine the required communication mode.
  • the network side and the terminal side need to have a consistent understanding of the used communication mode. Only in this way can the effective and efficient data transmission between the network side and the terminal side in the future communication system be guaranteed, and avoid Communication failure caused by differences in understanding of communication modes.
  • OAM technology as one of the future communication modes also faces a problem: not all devices support OAM capabilities.
  • some terminal equipment may not support the ability to take into account OAM at the same time considering the cost. It is foreseeable that in a considerable period of time, there will be support for OAM in the entire communication system. A situation where a large number of capable devices and devices that do not support OAM capabilities coexist. In this case, from the perspective of the communication system, how to provide corresponding service types for different types of devices to improve user experience and overall network performance will be a problem that needs to be studied and resolved.
  • FIG. 2 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 2, the method 200 may include the following content:
  • the terminal device determines to use a first transmission mode to transmit data, where the first transmission mode is a MIMO-based transmission mode or an OAM-based transmission mode.
  • the terminal device determines to use the first transmission method to transmit data.
  • the terminal device may determine to use the first transmission mode to transmit data based on the instruction or configuration of the network device. In other embodiments, the terminal device may determine to use the first transmission mode to transmit data based on its own implementation, and report the first transmission mode to the network device.
  • the terminal device may determine to use the first transmission mode to transmit data based on an instruction of the network device.
  • the terminal device receives first information sent by the network device, where the first information is used to indicate the first transmission mode, or the first information is used to indicate that the first transmission mode corresponds to The type of transmission parameter. Further, the foregoing step S210 may specifically be: the terminal device determines to use the first transmission mode to transmit data according to the first information.
  • the terminal device may determine the transmission parameter corresponding to the first transmission mode based on the instruction of the network device.
  • the terminal device receives the second information sent by the network device, where the second information is used to indicate the transmission parameter corresponding to the first transmission mode. Further, the terminal device determines the transmission parameter corresponding to the first transmission mode according to the second information.
  • the first transmission mode is a MIMO-based transmission mode
  • the transmission parameter corresponding to the first transmission mode may be modulation and coding scheme (Modulation and Coding Scheme, MCS) information, etc.
  • MCS Modulation and Coding Scheme
  • the first transmission mode is an OAM-based transmission mode
  • the transmission parameters corresponding to the first transmission mode may be modulation order, phase information, and the like.
  • the terminal device parses the second information according to the first information.
  • the first information and the second information are carried in the same signaling or broadcast message.
  • the first information and the second information are carried in different signaling or broadcast messages, respectively.
  • the first information is carried in a broadcast message, or the first information is carried in a Media Access Control Control Element (MAC CE), Downlink Control Information (DCI), Within at least one of radio resource control (Radio Resource Control, RRC) signaling.
  • MAC CE Media Access Control Control Element
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the second information is carried in a broadcast message, or the second information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • broadcast message may be a master information block (Master Information Block, MIB), a system information block (System Information Block, SIB) 1 or other SIB messages.
  • MIB Master Information Block
  • SIB System Information Block
  • the network device for the network side, the network device carries the first information through DCI 1. Specifically, the network device may indicate the first transmission mode through at least 1 bit of information in the DCI, or indicate the first transmission The type of transmission parameter corresponding to the mode. Then, the network device carries the second information through the DCI. Specifically, the network device may indicate the transmission parameter corresponding to the first transmission mode through the N-bit information in the DCI 2, where N is an integer greater than 1.
  • the terminal device may first determine the first transmission mode through the first information, that is, the above-mentioned at least 1-bit information, or the transmission parameter type corresponding to the first transmission mode, for example "0" indicates the OAM-based transmission method, or "0" indicates the transmission parameter type corresponding to the OAM-based transmission method, "1" indicates the MIMO-based transmission method, or "1” indicates the transmission corresponding to the MIMO-based transmission method Parameter Type. Then, the terminal device analyzes and determines the transmission parameter corresponding to the first transmission mode according to the determined first transmission mode or the transmission parameter type corresponding to the first transmission mode.
  • DCI 1 and DCI 2 may also be one DCI message.
  • the terminal device determines, according to the first information, that the first type of transmission parameter and the second type of transmission parameter configured at the terminal device are valid or activated for the transmission corresponding to the first transmission mode.
  • Parameter type where the first type of transmission parameters are for OAM-based transmission methods, and the second type of transmission parameters are for MIMO-based transmission methods.
  • the first type of transmission parameter and the second type of transmission parameter may be pre-configured at the terminal device.
  • the terminal device receives third information sent by the network device, where the third information is used to configure the first type of transmission parameter and the second type of transmission parameter. That is, the network device may pre-configure the first type transmission parameter and the second type transmission parameter at the terminal device.
  • the transmission parameters of the first type and the transmission parameters of the second type may be configured through one message or through different messages.
  • the transmission parameter configured at the terminal device is a part of the first type transmission parameter, and/or the transmission parameter configured at the terminal device is a part of the second type transmission parameter.
  • a part of the transmission parameter of the first type and/or a part of the transmission parameter of the second type may be pre-configured at the terminal device.
  • the terminal device receives third information sent by the network device, where the third information is used to configure a part of the first type of transmission parameter, and/or a part of the second type of transmission parameter. That is, the network device may pre-configure a part of the first type of transmission parameter at the terminal device, and/or a part of the second type of transmission parameter.
  • the network device may also send second information to the terminal device, where the second information is used to indicate the transmission parameter type corresponding to the first transmission mode The other part of the transmission parameters.
  • the third information is carried in a broadcast message, or the third information is carried in at least one of MAC CE signaling, DCI, and RRC signaling.
  • the terminal device can report to the network device whether it supports OAM-based transmission, or whether it has the ability to transmit data based on the first type of transmission parameters, so that the network device It is determined that the terminal device uses the first transmission mode to transmit data or the transmission parameter corresponding to the first transmission mode is determined.
  • the terminal device sends fourth information to the network device, where the fourth information is used to indicate whether the terminal device supports OAM-based transmission, or the fourth information is used to indicate whether the terminal device has a first-based The ability to transmit data with a type of transmission parameter.
  • the first type of transmission parameter is for an OAM-based transmission mode.
  • the fourth information is carried in at least one of the following:
  • Capability report information the first piece of information in two-step random access, the first piece of information or the third piece of information in four-step random access, RRC dedicated signaling, and uplink control information (Uplink Control Information, UCI).
  • the terminal device may report the first transmission mode to the network device, so that the network device configures the first transmission Transmission parameters corresponding to the mode.
  • the terminal device sends fifth information to the network device, where the fifth information is used to instruct the terminal device to determine to use the first transmission mode to transmit data, or the fifth information is used to instruct the terminal device based on the first transmission method.
  • a transmission parameter type corresponding to the transmission mode transmits data.
  • the terminal device receives sixth information sent by the network device, where the sixth information is used to indicate a transmission parameter corresponding to the first transmission mode.
  • the network device in response to the fifth information, sends the sixth information to the terminal device.
  • the fifth information is carried in at least one of the following:
  • Capability report information the first piece of information in two-step random access, the first piece of information or the third piece of information in four-step random access, RRC dedicated signaling, UCI.
  • the sixth information is carried in a broadcast message, or the sixth information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the terminal device in the case where the OAM-based transmission method and the MIMO-based transmission method coexist, can determine the data transmission method.
  • the network side and the terminal side in the future communication system have the same understanding of the data transmission mode and parameter configuration information, and avoid the communication failure problem caused by the difference in the understanding of the communication mode.
  • the ability to support OAM can be reported to provide corresponding service types for different types of devices to improve User experience and overall network performance.
  • the wireless communication method 200 in the embodiment of the present application is described in detail below with a specific embodiment.
  • the base station sends information 1 to the UE.
  • the information 1 can be used to indicate the first transmission mode (or the transmission parameter type corresponding to the first transmission mode), and the UE determines to use the first transmission transmission according to the information 1. Way to transfer data.
  • the base station sends information 2 to the UE, and the information 2 is used to indicate a transmission parameter corresponding to the first transmission mode (or used to indicate a parameter related to a parameter type corresponding to the first transmission mode).
  • the first transmission mode is a transmission mode based on MIMO or a transmission mode based on OAM.
  • the information 1 may be indicated in a broadcast manner, for example, MIB, SIB1, or other SIB messages.
  • the information 1 may also be indicated to the UE through RRC dedicated signaling, for example, through an RRC reconfiguration message.
  • this information 1 can also be indicated to the UE by means of DCI or MAC CE.
  • the information 2 may be indicated in a broadcast manner, for example, MIB, SIB1 or other SIB messages.
  • the information 2 may also be indicated to the UE through RRC dedicated signaling, for example, through an RRC reconfiguration message.
  • This information 2 can be indicated to the UE in the form of DCI.
  • This information 2 can also be indicated to the UE by means of MAC CE.
  • the information 1 and the information 2 may be carried in different signaling or broadcast messages, respectively.
  • the information 1 and the information 2 may also be carried in the same signaling or broadcast message.
  • the base station for the network side, the base station carries the information 1 through DCI 1. Specifically, the base station may indicate the first transmission mode through at least 1 bit of information in the DCI, or indicate that the first transmission mode corresponds to The type of transmission parameter. Then, the base station carries the information 2 through the DCI. Specifically, the base station may indicate the transmission parameter corresponding to the first transmission mode through the N-bit information in the DCI 1, where N is an integer greater than or equal to 1.
  • the UE can first determine the first transmission mode through the information 1, that is, the above-mentioned at least 1-bit information, or the transmission parameter type corresponding to the first transmission mode, such as "0" Represents the OAM-based transmission method, or "0" represents the transmission parameter type corresponding to the OAM-based transmission method, "1" represents the MIMO-based transmission method, or "1" represents the transmission parameter type corresponding to the MIMO-based transmission method. Then, the UE analyzes and determines the transmission parameter corresponding to the first transmission mode according to the determined first transmission mode or the transmission parameter type corresponding to the first transmission mode.
  • the transmission parameter corresponding to the first transmission mode may be MIMO-based parameter information, such as MCS information, or the transmission parameter corresponding to the first transmission mode may be OAM-based parameter information, such as modulation order, phase information, etc.
  • the base station sends information 3 to the UE, and the information 3 is used to indicate or configure the first type of transmission parameters and/or the second type of transmission parameters, where the first type of transmission parameters are for OAM-based
  • the second type of transmission parameters are for MIMO-based transmission methods, and the first type of transmission parameters and/or the second type of transmission parameters include reference signal related configuration parameters involved in channel estimation, beam management related configuration parameters, Channel estimation related configuration parameters, etc.
  • the base station sends information 4 to the UE, and the information 4 is used to indicate the first transmission mode (or used to indicate the parameter type corresponding to the first transmission mode).
  • the information 4 indicates an OAM-based transmission mode or the information 4 indicates the first type of transmission parameter, the first type of transmission parameter is valid or activated.
  • the information 4 indicates a MIMO-based transmission mode or the information 4 indicates the second type of transmission parameter, the second type of transmission parameter is valid or activated.
  • the information 3 may be indicated in a broadcast manner, for example, MIB, SIB1 or other SIB messages.
  • the information 3 may also be indicated to the UE through RRC dedicated signaling, for example, through an RRC reconfiguration message.
  • this information 3 can also be indicated to the UE by means of DCI or MAC CE.
  • the information 4 may be indicated in a broadcast manner, for example, MIB, SIB1 or other SIB messages.
  • the information 4 may also be indicated to the UE through RRC dedicated signaling, for example, through an RRC reconfiguration message.
  • This information 4 can be indicated to the UE in the form of DCI.
  • This information 4 can also be indicated to the UE by means of MAC CE.
  • the base station configures the first type of transmission parameters and the second type of transmission parameters to the UE by means of RRC signaling (or broadcasting, such as SIB messages).
  • the base station carries information 4 through DCI (or MAC CE) to indicate the currently adopted data transmission method (or parameter type).
  • the base station can indicate the currently adopted data transmission method (or parameter type) through at least 1 bit of information in the DCI ).
  • the UE can obtain respective corresponding configuration parameters by receiving the first type transmission parameters and the second type transmission parameters, such as MIMO-related configuration parameters and OAM-related configuration parameters.
  • the UE can first determine the current data transmission mode (or parameter type) through the information 3, that is, the above-mentioned at least 1 bit of information, for example, "0" means transmission based on OMA Mode (the first type of transmission parameter), "1" indicates that it is a data transmission method based on MIMO (the second type of transmission parameter). Then, the UE determines whether the currently valid configuration parameter is the first type transmission parameter or the second type transmission parameter according to the determined data transmission mode (or parameter type).
  • the most important scenario described in embodiment 1 is that when DCI schedules data transmission, the current transmission mode (parameter type) is indicated in the DCI, and the corresponding mode is used. Analyze DCI to obtain corresponding parameters. This can avoid occupying too many bits in the DCI to indicate different transmission parameters corresponding to different transmission modes.
  • the scenario of Embodiment 2 mainly considers that in addition to DCI control information, there are many scheduling-related parameters that need to be configured in advance through RRC signaling.
  • one method is to configure on demand during RRC configuration, and the other method is When configuring RRC, configure both MIMO-related configuration information and OAM-related configuration information to the UE (that is, the role of the above information 3), and then indicate the current data transmission mode (or parameter type) as needed through MAC CE or DCI. ), and determine the currently available configuration information (that is, the role of information 4).
  • the UE sends information 5 to the base station.
  • the information 5 is used to indicate whether the UE supports the first capability, or whether the UE supports OAM-based transmission mode or parameter configuration, where the first capability refers to whether the UE has support OAM-based data transmission mode or parameter configuration.
  • a specific example described above is that the UE sends information 5 to the base station, and the information 5 indicates that the UE supports the first capability.
  • the first capability refers to that the UE supports OAM-based data transmission or the UE supports OAM-related parameter configuration.
  • the UE can use the OAM method for data modulation and transmission, and accordingly also perform OAM-related reference signal configuration, channel estimation, channel measurement, and beam management.
  • the method for the UE to send information 5 includes: (1) the UE uses the capability to report information to transmit information 5, (2) the UE uses a random access procedure to transmit information 5, such as a two-step random access procedure The message sent by the UE in the four-step random access process (message A), or the random access request sent by the UE in the four-step random access process (message 1) or the first uplink scheduling (message 3), (3) the UE uses RRC proprietary Signaling transmits information 5, (4) UE uses UCI to transmit information 5.
  • the base station receives information 5 sent by the UE, and the base station determines the data transmission mode (or parameter type).
  • the base station may use the OAM-based data transmission mode, instruct to use the OAM-based data transmission mode, and configure corresponding parameters to the UE.
  • the base station may not use the OAM-based data transmission mode, instruct to use the MIMO-based data transmission mode, and configure the corresponding parameters to the UE.
  • the main consideration is given to the base station.
  • the flexibility of data transmission configuration For the specific indication transmission mode and the method of configuring corresponding parameters corresponding to this embodiment, reference may be made to the related descriptions in the foregoing Embodiment 1 and Embodiment 2, and the details are shown in FIG. 6 to FIG. 8.
  • the UE sends information 6 to the base station, and the information 6 can be used to indicate the data transmission mode (or the parameter type related to the transmission mode), and the UE can determine the data transmission mode based on the information 6, or the UE The parameter types related to the data transmission mode can be determined based on this information 6.
  • the base station sends information 7 to the UE, and the information 7 indicates a parameter corresponding to the data transmission mode indicated by the information 6 (or the parameter type indicated by the information 6).
  • the data transmission mode indicated by the information 6 is a transmission mode based on MIMO or a transmission mode based on OAM.
  • the UE when the UE needs to send data, the UE indicates the data transmission mode through UCI (information 6), and the UE may indicate the currently adopted data transmission mode through at least 1 bit of information in the UCI, for example, "0 "Indicates that it is an OAM-based transmission method, and "1" indicates that it is a MIMO-based transmission method.
  • the base station indicates the transmission parameter corresponding to the data transmission mode through the N-bit information in the DCI, where N is an integer greater than or equal to 1, and the content of the parameter may be MIMO-based parameter information, such as MCS information, or the content of the parameter It can be OAM-based parameter information, such as modulation order, phase information, and so on.
  • the method for sending information 6 of the UE described above includes: (1) the UE uses the capability to report information to transmit information 6, (2) the UE uses a random access procedure to transmit information 6, such as two-step random access The message sent by the UE in the process (message A), or the random access request sent by the UE in the four-step random access process (message 1) or the first uplink scheduling (message 3), (3) the UE uses RRC dedicated There is signaling to transmit information 6. (4) The UE uses UCI to transmit information 6.
  • Embodiment 5 the contents of Embodiment 1 and Embodiment 2 can be used in combination.
  • the above information 3 can be configured with a part of OAM configuration information and MIMO configuration information through RRC.
  • the base station passes information 1
  • the instruction informs the UE that the OAM-based transmission mode is adopted, and then the UE confirms that the OAM-related configuration information in the previous configuration information is valid.
  • the base station further indicates another part of the OAM-related configuration parameters of the UE through the DCI bearer information 2, and the UE determines through the information 1 that the information in the DCI is parsed into OAM-related configuration parameters, and determines the above-mentioned configuration parameters.
  • Embodiment 1 and Embodiment 2 can also be combined with Embodiment 3 and Embodiment, that is to say, UE capability or UE indication can be added, and the specific combination method will not be repeated.
  • the data transmission method can be determined.
  • the network side and the terminal side in the future communication system have the same understanding of the data transmission mode and parameter configuration information, so as to avoid the communication failure problem caused by the difference in the understanding of the communication mode.
  • the capability reporting method is used to provide corresponding service types for different types of devices to improve user experience And overall network performance.
  • the wireless communication method according to the embodiment of the present application is described in detail from the perspective of the terminal device, and the wireless communication method according to another embodiment of the present application is described in detail from the perspective of the network device in conjunction with FIG. 11 above. . It should be understood that the description on the terminal device side and the description on the network device side correspond to each other, and similar descriptions can be referred to above. To avoid repetition, details are not repeated here.
  • FIG. 11 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 11, the method 300 may include the following content:
  • the network device determines that the terminal device uses a first transmission mode to transmit data, where the first transmission mode is a MIMO-based transmission mode or an OAM-based transmission mode.
  • the method 300 further includes:
  • the network device sends first information to the terminal device, where the first information is used to indicate the first transmission mode, or the first information is used to indicate the transmission parameter type corresponding to the first transmission mode.
  • the method 300 further includes:
  • the network device sends second information to the terminal device, where the second information is used to indicate transmission parameters corresponding to the first transmission mode.
  • the first information is also used for the terminal device to parse the second information.
  • the first information and the second information are carried in the same signaling or broadcast message.
  • the first information and the second information are carried in different signaling or broadcast messages, respectively.
  • the first information is also used by the terminal device to determine that the first type of transmission parameter and the second type of transmission parameter configured at the terminal device are valid or activated corresponding to the first transmission mode.
  • the transmission parameter types of the first type are for OAM-based transmission methods, and the second type of transmission parameters are for MIMO-based transmission methods.
  • the transmission parameter configured at the terminal device is a part of the first type transmission parameter, and/or the transmission parameter configured at the terminal device is a part of the second type transmission parameter.
  • the method 300 further includes:
  • the network device sends second information to the terminal device, where the second information is used to indicate another part of the transmission parameter of the transmission parameter type corresponding to the first transmission mode.
  • the method 300 further includes:
  • the network device sends third information to the terminal device, where the third information is used to configure the first type of transmission parameter and the second type of transmission parameter.
  • the third information is carried in a broadcast message, or the third information is carried in at least one of MAC CE signaling, DCI, and RRC signaling.
  • the second information is carried in a broadcast message, or the second information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the first information is carried in a broadcast message, or the first information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the method 300 further includes:
  • the network device receives fourth information sent by the terminal device, the fourth information is used to indicate whether the terminal device supports OAM-based transmission, or the fourth information is used to indicate whether the terminal device has a transmission based on the first type
  • the ability to transmit data with parameters, the first type of transmission parameters are for OAM-based transmission methods
  • the network device determines that the terminal device uses the first transmission mode to transmit data, including:
  • the network device determines that the terminal device uses the first transmission mode to transmit data.
  • the fourth information is carried in at least one of the following:
  • Capability report information the first piece of information in two-step random access, the first piece of information or the third piece of information in four-step random access, RRC dedicated signaling, UCI.
  • the method 300 further includes:
  • the network device receives fifth information sent by the terminal device, where the fifth information is used to instruct the terminal device to determine to use the first transmission mode to transmit data, or the fifth information is used to instruct the terminal device to transmit data based on the first transmission
  • the transmission parameter type corresponding to the mode to transmit data
  • the network device determines that the terminal device uses the first transmission mode to transmit data, including:
  • the network device determines that the terminal device uses the first transmission mode to transmit data.
  • the method 300 further includes:
  • the network device sends sixth information to the terminal device, where the sixth information is used to indicate the transmission parameter corresponding to the first transmission mode.
  • the fifth information is carried in at least one of the following:
  • Capability report information the first piece of information in two-step random access, the first piece of information or the third piece of information in four-step random access, RRC dedicated signaling, UCI.
  • the sixth information is carried in a broadcast message, or the sixth information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the data transmission method can be determined.
  • the network side and the terminal side in the future communication system have the same understanding of the data transmission mode and parameter configuration information, so as to avoid the communication failure problem caused by the difference in the understanding of the communication mode.
  • the capability reporting method is used to provide corresponding service types for different types of devices to improve user experience And overall network performance.
  • FIG. 12 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application. As shown in FIG. 12, the terminal device 400 includes:
  • the processing unit 410 is configured to determine to use a first transmission mode to transmit data, and the first transmission mode is a transmission mode based on multiple-input multiple-output MIMO or a transmission mode based on orbital angular momentum OAM.
  • the terminal device 400 further includes: a communication unit 420,
  • the communication unit 420 is configured to receive first information, where the first information is used to indicate the first transmission mode, or the first information is used to indicate the transmission parameter type corresponding to the first transmission mode;
  • the processing unit 410 is specifically used for:
  • the first information it is determined to use the first transmission mode to transmit data.
  • the communication unit 420 is further configured to receive second information, where the second information is used to indicate transmission parameters corresponding to the first transmission mode.
  • the processing unit 410 is further configured to parse the second information according to the first information.
  • the first information and the second information are carried in the same signaling or broadcast message.
  • the first information and the second information are carried in different signaling or broadcast messages, respectively.
  • the processing unit 410 is further configured to determine, according to the first information, that the valid or active transmission parameter of the first type of transmission parameter and the second type of transmission parameter configured at the terminal device is the transmission parameter corresponding to the first transmission mode Type, where the first type of transmission parameters are for OAM-based transmission methods, and the second type of transmission parameters are for MIMO-based transmission methods.
  • the transmission parameter configured at the terminal device is a part of the first type transmission parameter, and/or the transmission parameter configured at the terminal device is a part of the second type transmission parameter.
  • the terminal device 400 further includes: a communication unit 420,
  • the communication unit 420 is configured to receive second information, where the second information is used to indicate another part of the transmission parameter of the transmission parameter type corresponding to the first transmission mode.
  • the communication unit 420 is further configured to receive third information, and the third information is used to configure the first type of transmission parameter and the second type of transmission parameter.
  • the third information is carried in a broadcast message, or the third information is carried in at least one of media access control control element MAC CE signaling, downlink control information DCI, and radio resource control RRC signaling .
  • the second information is carried in a broadcast message, or the second information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the first information is carried in a broadcast message, or the first information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the terminal device 400 further includes: a communication unit 420,
  • the communication unit 420 is used to send fourth information, the fourth information is used to indicate whether the terminal device supports OAM-based transmission, or the fourth information is used to indicate whether the terminal device has transmission based on the first type of transmission parameters.
  • Data capabilities, the first type of transmission parameters are for OAM-based transmission methods.
  • the fourth information is carried in at least one of the following:
  • Capability report information the first piece of information in two-step random access, the first or third piece of information in four-step random access, RRC dedicated signaling, and uplink control information UCI.
  • the terminal device 400 further includes: a communication unit 420,
  • the communication unit 420 is configured to send fifth information, the fifth information is used to instruct the terminal device to determine to use the first transmission mode to transmit data, or the fifth information is used to indicate that the terminal device corresponds to the first transmission mode
  • the transmission parameter type transmits data.
  • the communication unit 420 is further configured to receive sixth information, where the sixth information is used to indicate transmission parameters corresponding to the first transmission mode.
  • the fifth information is carried in at least one of the following:
  • Capability report information the first piece of information in two-step random access, the first or third piece of information in four-step random access, RRC dedicated signaling, and uplink control information UCI.
  • the sixth information is carried in a broadcast message, or the sixth information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to implement the method shown in FIG. 2 respectively.
  • the corresponding process of the terminal equipment in 200 will not be repeated here.
  • FIG. 13 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • the processing unit 510 is configured to determine that the terminal device uses a first transmission mode to transmit data, and the first transmission mode is a transmission mode based on multiple-input multiple-output MIMO or a transmission mode based on orbital angular momentum OAM.
  • the network device 500 further includes: a communication unit 520,
  • the communication unit 520 is configured to send first information to the terminal device, where the first information is used to indicate the first transmission mode, or the first information is used to indicate the transmission parameter type corresponding to the first transmission mode.
  • the communication unit 520 is further configured to send second information to the terminal device, where the second information is used to indicate transmission parameters corresponding to the first transmission mode.
  • the first information is also used for the terminal device to parse the second information.
  • the first information and the second information are carried in the same signaling or broadcast message.
  • the first information and the second information are carried in different signaling or broadcast messages, respectively.
  • the first information is also used by the terminal device to determine that the valid or active transmission parameter type of the first type of transmission parameter and the second type of transmission parameter configured at the terminal device is the transmission parameter type corresponding to the first transmission mode, where
  • the first type of transmission parameters are for OAM-based transmission methods, and the second type of transmission parameters are for MIMO-based transmission methods.
  • the transmission parameter configured at the terminal device is a part of the first type transmission parameter, and/or the transmission parameter configured at the terminal device is a part of the second type transmission parameter.
  • the communication unit 520 is further configured to send second information to the terminal device, where the second information is used to indicate another part of the transmission parameter of the transmission parameter type corresponding to the first transmission mode.
  • the communication unit 520 is further configured to send third information to the terminal device, where the third information is used to configure the first type transmission parameter and the second type transmission parameter.
  • the third information is carried in a broadcast message, or the third information is carried in at least one of media access control control element MAC CE signaling, downlink control information DCI, and radio resource control RRC signaling .
  • the second information is carried in a broadcast message, or the second information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the first information is carried in a broadcast message, or the first information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the network device 500 further includes: a communication unit 520,
  • the communication unit 520 is configured to receive fourth information sent by the terminal device.
  • the fourth information is used to indicate whether the terminal device supports an OAM-based transmission mode, or the fourth information is used to indicate whether the terminal device has a first-based transmission mode.
  • the ability of a type of transmission parameter to transmit data, and the first type of transmission parameter is for an OAM-based transmission method;
  • the processing unit 510 is specifically used for:
  • the terminal device uses the first transmission mode to transmit data.
  • the fourth information is carried in at least one of the following:
  • Capability report information the first piece of information in two-step random access, the first piece of information or the third piece of information in four-step random access, RRC dedicated signaling, and uplink control information UCI.
  • the network device 500 further includes: a communication unit 520,
  • the communication unit 520 is configured to receive fifth information sent by the terminal device, where the fifth information is used to instruct the terminal device to determine to use the first transmission mode to transmit data, or the fifth information is used to indicate that the terminal device is based on the The transmission parameter type corresponding to the first transmission mode transmits data;
  • the processing unit 510 is specifically used for:
  • the network device determines that the terminal device uses the first transmission mode to transmit data.
  • the communication unit 520 is further configured to send sixth information to the terminal device, where the sixth information is used to indicate transmission parameters corresponding to the first transmission mode.
  • the fifth information is carried in at least one of the following:
  • Capability report information the first piece of information in two-step random access, the first or third piece of information in four-step random access, RRC dedicated signaling, and uplink control information UCI.
  • the sixth information is carried in a broadcast message, or the sixth information is carried in at least one of MAC CE, DCI, and RRC signaling.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 500 are to implement the method shown in FIG. 11, respectively.
  • the corresponding process of the network equipment in 300 will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 14 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the application. For the sake of brevity , I won’t repeat it here.
  • Fig. 15 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 15 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the device 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 16 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 16, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请实施例提供了一种无线通信方法、终端设备和网络设备,可以实现基于OAM的无线通信。该无线通信方法包括:终端设备确定使用第一传输方式传输数据,该第一传输方式为基于MIMO的传输方式或者基于OAM的传输方式。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法、终端设备和网络设备。
背景技术
随着通信技术的发展,在一些特殊场景下,可以基于轨道角动量(Orbital Angular Momentum,OAM)进行无线通信,然而,具体如何实现还没有明确的方法。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,可以实现基于OAM的无线通信。
第一方面,提供了一种无线通信方法,该方法包括:
终端设备确定使用第一传输方式传输数据,所述第一传输方式为基于MIMO的传输方式或者基于OAM的传输方式。
第二方面,提供了一种无线通信方法,该方法包括:
网络设备确定终端设备使用第一传输方式传输数据,所述第一传输方式为基于MIMO的传输方式或者基于OAM的传输方式。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,在基于MIMO的传输方式与基于OAM的传输方式并存的情况下,可以确定数据传输方式。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是根据本申请实施例提供的一种无线通信方法的示意性流程图。
图3至图10是根据本申请实施例提供的确定数据传输方式及对应的传输参数的示意性图。
图11是根据本申请实施例提供的另一种无线通信方法的示意性流程图。
图12是根据本申请实施例提供的一种终端设备的示意性框图。
图13是根据本申请实施例提供的一种网络设备的示意性框图。
图14是根据本申请实施例提供的一种通信设备的示意性框图。
图15是根据本申请实施例提供的一种装置的示意性框图。
图16是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
现阶段,无线通信系统中是以多入多出(Multiple-Input Multiple-Output,MIMO)为基础的数据传输方式。作为4G和5G通信系统物理层最重要的支撑技术,在版本8(Rel-8)引入了空间复用、发射分集、波束赋形以及多用户MIMO之后,在后续的每个版本中,对MIMO技术的演进和增强都是通信系统的重要工作。
在具体的MIMO相关设计中,以解调参考信号(Demodulation Reference Signal,DMRS),信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS),探测参考信号(Sounding Reference Signal,SRS)为代表的参考信号设计,以码本、非码本反馈为代表的信道状态信息反馈设计,波束管理设计等都是MIMO研究的重点,在实际系统中,上述设计也分别影响系统参数的配置以及系统流程的执行。
以轨道角动量为理论基础的无线通信系统设计是有别于传统MIMO的一种新型无线通信技术研究。轨道角动量的研究开始于光通信领域,后期有研究人员提出将量子态的轨道角动量应用于低频并通过大规模天线产生涡旋电磁波,从而实现将轨道角动量应用于无线通信领域当中。目前来看,基于轨道角动量的无线通信方式和基于传统MIMO的无线通信方式相比,(1)对于同样的高速率传输,基于轨道角动量的通信方式实现较简单。(2)通过特定的天线及射频系统设计,基于轨道角动量的通信方式可以满足更高的速率传输需求。
基于MIMO的通信方式是现有通信系统工作的基础,而新兴的基于OAM的通信方式是一项较为前沿的研究内容,其高速率及低复杂等潜在有点可以成为未来无线通信系统进一步提升性能的支撑技术。
考虑到未来通信系统性能的进一步提升以及复杂度尽可能降低等因素,当以OAM为基础的通信方式有必要引入到未来通信系统当中,此时存在的一个问题是基站需要按需地、或者根据各自实现算法确定所需选用的通信模式,相应地,网络侧和终端侧之间需要对采用的通信方式理解一致,只有这样才能保证未来通信系统中网络侧与终端侧的有效高效数据传输,避免对通信模式理解差异所造成的通信失败问题。
此外,利用OAM技术作为未来通信方式的模式之一还面临着一个问题是:并不是所有的设备都支持OAM能力。例如基于MIMO的通信方式是基础通信方式时,有的终端设备可能考虑到成本的原因会不支持同时兼顾OAM的能力,可以预见的是在相当一段时间内,整个通信系统内将会存在支持OAM能力的设备与不支持OAM能力的设备大量并存的情况。在这种情况下,从通信系统的角度来看,怎样针对不同类型的设备提供对应的服务类型,以提升用户体验和网络整体性能将是一个需要研究和解决的问题。
图2是根据本申请实施例的无线通信方法200的示意性流程图,如图2所示,该方法200可以包括如下内容:
S210,终端设备确定使用第一传输方式传输数据,该第一传输方式为基于MIMO的传输方式或者基于OAM的传输方式。
换句话说,在本申请实施例中,在基于MIMO的传输方式与基于OAM的传输方式并存的情况下,该终端设备确定使用该第一传输方式传输数据。
在一些实施例中,终端设备可以基于网络设备的指示或者配置确定使用第一传输方式传输数据。在另一些实施例中,终端设备可以基于自身实现确定使用第一传输方式传输数据,并将第一传输方式上报给网络设备。
可选地,在一些实施例中,该终端设备可以基于网络设备的指示确定使用第一传输方式传输数据。
具体地,作为示例1,该终端设备接收该网络设备发送的第一信息,其中,该第一信息用于指示该第一传输方式,或者,该第一信息用于指示该第一传输方式对应的传输参数类型。进一步地,上述步骤S210具体可以是:该终端设备根据该第一信息,确定使用该第一传输方式传输数据。
可选地,在示例1中,该终端设备可以基于网络设备的指示确定该第一传输方式对应的传输参数。
具体地,该终端设备接收该网络设备发送的第二信息,其中,该第二信息用于指示该第一传输方式对应的传输参数。进一步地,该终端设备根据该第二信息,确定该第一传输方式对应的传输参数。
例如,该第一传输方式为基于MIMO的传输方式,该第一传输方式对应的传输参数可以是调制编码方案(Modulation and Coding Scheme,MCS)信息等。
又例如,该第一传输方式为基于OAM的传输方式,该第一传输方式对应的传输参数可以是调制阶数、相位信息等。
可选地,在示例1中,该终端设备根据该第一信息解析该第二信息。
可选地,该第一信息和该第二信息承载于相同的信令或者广播消息中。
可选地,该第一信息和该第二信息分别承载于不同的信令或者广播消息中。
可选地,该第一信息承载于广播消息中,或者,该第一信息承载于媒体接入控制控制元素(Media Access Control Control Element,MAC CE)、下行控制信息(Downlink Control Information,DCI)、无线资源控制(Radio Resource Control,RRC)信令中的至少一种内。
可选地,该第二信息承载于广播消息中,或者,该第二信息承载于MAC CE、DCI、RRC信令中的至少一种内。
需要说明的是,上述广播消息可以是主信息块(Master Information Block,MIB),系统信息块(System Information Block,SIB)1或者其他SIB消息。
例如,在示例1中,对于网络侧,网络设备通过DCI 1承载该第一信息,具体地,网络设备可以通过DCI中的至少1比特信息指示该第一传输方式,或者,指示该第一传输方式对应的传输参数类型。继而,网络设备通过DCI承载该第二信息,具体地,网络设备可以通过DCI 2中的N比特信息指示该第一传输方式对应的传输参数,N为大于1的整数。对于终端侧,当终端设备接收到DCI 1时,终端设备可以先通过该第一信息,既上述至少1比特信息确定该第一传输方式,或者,该第一传输方式对应的传输参数类型,例如“0”表示基于OAM的传输方式,或者“0”表示基于OAM的传输方式对应的传输参数类型,“1”表示基于MIMO的传输方式,或者,“1”表示基于MIMO的传输方式对应的传输参数类型。继而,终端设备根据所确定的第一传输方式,或者该第一传输方式对应的传输参数类型,解析并确定该第一传输方式对应的传输参数。另外,需要说明的是,DCI 1和DCI 2也可以是一条DCI消息。
可选地,在示例1中,该终端设备根据该第一信息,确定该终端设备处配置的第一类传输参数和第二类传输参数中有效或者激活的为该第一传输方式对应的传输参数类型,其中,该第一类传输参数针对基于OAM的传输方式,该第二类传输参数针对基于MIMO的传输方式。
也即,该终端设备处可以预先配置该第一类传输参数和该第二类传输参数。例如,该终端设备接收该网络设备发送的第三信息,该第三信息用于配置该第一类传输参数和该第二类传输参数。也就是说,该网络设备可以在该终端设备处预先配置该第一类传输参数和该第二类传输参数。另外,需要说明的是,该第一类传输参数和该第二类传输参数可以通过一条消息配置,也可以通过不同消息配置。
可选地,在一些实施例中,该终端设备处配置的传输参数为该第一类传输参数的一部分,和/或,该终端设备处配置的传输参数为该第二类传输参数的一部分。
也即,该终端设备处可以预先配置该第一类传输参数的一部分,和/或,该第二类传输参数的一部分。例如,该终端设备接收该网络设备发送的第三信息,该第三信息用于配置该第一类传输参数的一部分,和/或,该第二类传输参数的一部分。也就是说,该网络设备可以在该终端设备处预先配置该第一类传输参数的一部分,和/或,该第二类传输参数的一部分。
可选地,在该网络设备向该终端设备发送该第一信息之后,该网络设备还可以向该终端设备发送第二信息,该第二信息用于指示该第一传输方式对应的传输参数类型的另一部分传输参数。
可选地,该第三信息承载于广播消息中,或者,该第三信息承载于MAC CE信令,DCI,RRC信令中的至少一种内。
可选地,在一些实施例中,该终端设备可以将其是否支持基于OAM的传输方式,或者,将其是否具有基于第一类传输参数传输数据的能力上报给网络设备,以使该网络设备确定该终端设备使用该第一传输方式传输数据或者确定该第一传输方式对应的传输参数。
具体地,该终端设备向该网络设备发送第四信息,该第四信息用于指示该终端设备是否支持基于OAM的传输方式,或者,该第四信息用于指示该终端设备是否具有基于第一类传输参数传输数据的能力,该第一类传输参数针对基于OAM的传输方式。
可选地,该第四信息承载于以下中的至少一种中:
能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息(Uplink Control Information,UCI)。
可选地,在一些实施例中,在该终端设备确定使用该第一传输方式传输数据之后,该终端设备可以将该第一传输方式上报给网络设备,以使该网络设备配置该第一传输方式对应的传输参数。
具体地,该终端设备向该网络设备发送第五信息,该第五信息用于指示该终端设备确定使用该第一传输方式传输数据,或者,该第五信息用于指示该终端设备基于该第一传输方式对应的传输参数类 型传输数据。
可选地,该终端设备接收该网络设备发送的第六信息,该第六信息用于指示该第一传输方式对应的传输参数。
可选地,对于网络侧,响应于该第五信息,该网络设备向该终端设备发送该第六信息。
可选地,该第五信息承载于以下中的至少一种中:
能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、UCI。
可选地,该第六信息承载于广播消息中,或者,该第六信息承载于MAC CE、DCI、RRC信令中的至少一种内。
因此,在本申请实施例中,在基于OAM的传输方式与基于MIMO的传输方式并存的情况下,终端设备可以确定数据传输方式。一方面,保证未来通信系统中网络侧与终端侧对数据传输方式、参数配置信息的理解一致,避免对通信模式理解差异所造成的通信失败问题。另一方面,考虑到通信系统内将会存在支持OAM能力的设备与不支持OAM能力的设备大量并存的情况,通过支持OAM的能力上报方式实现针对不同类型的设备提供对应的服务类型,以提升用户体验和网络整体性能。
以下以具体实施例详述本申请实施例中的无线通信方法200。
实施例1,基站向UE发送信息1,该信息1可以用于指示第一传输方式(或者用于指示第一传输方式对应的传输参数类型),UE根据该信息1,确定使用第一传输传输方式传输数据。基站向UE发送信息2,该信息2用于指示与第一传输方式对应的传输参数(或者用于指示第一传输方式对应的参数类型相关的参数)。其中,该第一传输方式为基于MIMO的传输方式或基于OAM的传输方式。
可选地,在实施例1中,该信息1可以通过广播的方式,例如通过MIB,SIB1或者其他SIB消息中指示。该信息1也可以通过RRC专有信令,例如通过RRC重配置消息的方式指示给UE。此外,该信息1还可以通过DCI或者MAC CE等方式指示给UE。
可选地,在实施例1中,该信息2可以通过广播的方式,例如通过MIB,SIB1或者其他SIB消息中指示。该信息2也可以通过RRC专有信令,例如通过RRC重配置消息的方式指示给UE。该信息2可以通过DCI的方式指示给UE。该信息2还可以通过MAC CE的方式指示给UE。
可选地,在实施例1中,如图3所示,该信息1和该信息2可以分别承载于不同的信令或者广播消息中。如图4所示,该信息1和该信息2也可以承载于相同的信令或者广播消息中。
例如,在实施例1中,对于网络侧,基站通过DCI 1承载该信息1,具体地,基站可以通过DCI中的至少1比特信息指示该第一传输方式,或者,指示该第一传输方式对应的传输参数类型。继而,基站通过DCI承载该信息2,具体地,基站可以通过DCI 1中的N比特信息指示该第一传输方式对应的传输参数,N为大于或者等于1的整数。对于UE侧,当UE接收到DCI 1时,UE可以先通过该信息1,即上述至少1比特信息确定该第一传输方式,或者,该第一传输方式对应的传输参数类型,例如“0”表示基于OAM的传输方式,或者“0”表示基于OAM的传输方式对应的传输参数类型,“1”表示基于MIMO的传输方式,或者,“1”表示基于MIMO的传输方式对应的传输参数类型。继而,UE根据所确定的第一传输方式,或者该第一传输方式对应的传输参数类型,解析并确定该第一传输方式对应的传输参数。该第一传输方式对应的传输参数可以是基于MIMO的参数信息,例如MCS信息等,或者,该第一传输方式对应的传输参数可以是基于OAM的参数信息,例如调制阶数、相位信息等。
实施例2,如图5所示,基站向UE发送信息3,该信息3用于指示或者配置第一类传输参数和/或第二类传输参数,其中,该第一类传输参数针对基于OAM的传输方式,该第二类传输参数针对基于MIMO的传输方式,该第一类传输参数和/或该第二类传输参数包括信道估计所涉及的参考信号相关配置参数、波束管理相关配置参数、信道估计相关配置参数等。基站向UE发送信息4,该信息4用于指示第一传输方式(或者用于指示第一传输方式对应的参数类型)。当该信息4指示基于OAM的传输方式或者该信息4指示该第一类传输参数时,该第一类传输参数有效或者激活。当该信息4指示基于MIMO的传输方式或者该信息4指示该第二类传输参数时,该第二类传输参数有效或者激活。
可选地,在实施例2中,该信息3可以通过广播的方式,例如通过MIB,SIB1或者其他SIB消息中指示。该信息3也可以通过RRC专有信令,例如通过RRC重配置消息的方式指示给UE。此外,该信息3还可以通过DCI或者MAC CE等方式指示给UE。
可选地,在实施例2中,该信息4可以通过广播的方式,例如通过MIB,SIB1或者其他SIB消息中指示。该信息4也可以通过RRC专有信令,例如通过RRC重配置消息的方式指示给UE。该信息4可以通过DCI的方式指示给UE。该信息4还可以通过MAC CE的方式指示给UE。
例如,在实施例2中,基站通过RRC信令(或广播,例如SIB消息)的方式配置第一类传输参 数和第二类传输参数给UE。基站通过DCI(或者MAC CE)承载信息4用于指示当前采用的数据传输方式(或参数类型),具体地,基站可以通过DCI中的至少1比特信息指示当前采用的数据传输方式(或参数类型)。在UE侧,UE通过接收第一类传输参数和第二类传输参数可以获得各自相应的配置参数,例如MIMO相关的配置参数和OAM相关的配置参数。当UE接收到DCI(例如数据调度的DCI)时,UE可以先通过该信息3,即上述至少1比特信息确定当前的数据传输方式(或参数类型),例如“0”表示是基于OMA的传输方式(第一类传输参数),“1”表示是基于MIMO的数据传输方式(第二类传输参数)。继而,UE根据所确定的数据传输方式(或参数类型),确定当前有效的配置参数是第一类传输参数还是第二类传输参数。需要说明的是,实施例2与实施例1的主要不同是:实施例1描述的最重要场景是DCI调度数据传输时,在DCI中指示当前传输的传输方式(参数类型),并用对应的方式解析DCI获得对应参数。这样可以避免在DCI中占用过多的比特去指示不同的传输方式所对应的不同传输参数。实施例2的场景主要是考虑到除了DCI控制信息外,还有很多调度相关的参数需要通过RRC信令提前配置,这时候一种方法是在RRC配置的时候按需配置,另一种方法是在RRC配置的时候将MIMO相关的配置信息和OAM相关的配置信息都配置给UE(即上述信息3的作用),然后通过MAC CE或者DCI等方式按需指示当前的数据传输方式(或参数类型),并确定当前可用的配置信息(即信息4的作用)。
实施例3,UE向基站发送信息5,该信息5用于指示UE是否支持第一能力,或者指示UE是否支持基于OAM的传输方式或参数配置,其中,第一能力指的是UE是否具有支持基于OAM的数据传输方式或参数配置。
上述描述的一个具体例子是:UE向基站发送信息5,该信息5中指示该UE支持第一能力,第一能力指的是UE支持基于OAM的数据传输方式或UE支持OAM相关的参数配置。当UE指示支持基于OAM的数据方式时,UE可以利用OAM的方法做数据调制及传输,相应地也做OAM相关的参考信号配置、信道估计、信道测量、波束管理。
可选地,在实施例3中,UE发送信息5的方法包括:(1)UE利用能力上报信息传输信息5,(2)UE利用随机接入过程传输信息5,比如两步随机接入过程中的UE发送的消息(消息A),或者四步随机接入过程中的UE发送的随机接入请求(消息1)或者第一次上行调度(消息3),(3)UE利用RRC专有信令传输信息5,(4)UE利用UCI传输信息5。
可选地,在实施例3中,基站接收UE发送的信息5,基站确定数据传输方式(或参数类型)。一个具体例子是:当UE支持基于OAM的数据传输方式时,基站可采用基于OAM的数据传输方式,指示采用基于OAM的数据传输方式,并配置相应参数至UE。另一个具体例子是:当UE支持基于OAM的数据传输方式时,基站也可不采用基于OAM的数据传输方式,指示采用基于MIMO的数据传输方式,并配置相应参数至UE,这里主要考虑给予基站对数据传输配置的灵活性。本实施例对应的具体指示传输方式和配置相应参数的方法可参考上述实施例1和实施例2中的相关描述,具体如图6至图8所示。
实施例4,如图9所示,UE向基站发送信息6,该信息6可以用于指示数据传输方式(或者传输方式相关的参数类型),UE可以基于该信息6确定数据传输方式,或者UE可以基于该信息6确定数据传输方式相关的参数类型。基站向UE发送信息7,该信息7指示与该信息6所指示的数据传输方式(或与该信息6所指示的参数类型)对应的参数。这里信息6指示的数据传输方式为基于MIMO的传输方式或基于OAM的传输方式。
可选地,在实施例4中,当UE需要发送数据时,UE通过UCI指示数据传输方式(信息6),UE可以通过UCI中的至少1比特信息指示当前采用的数据传输方式,例如“0”表示是基于OAM的传输方式,“1”表示是基于MIMO的传输方式。继而,基站通过DCI中的N比特信息指示与该数据传输方式对应的传输参数,N为大于或者等于1的整数,参数的内容可以是基于MIMO的参数信息,例如MCS信息等,或者参数的内容可以是基于OAM的参数信息,例如调制阶数、相位信息等。
可选地,在实施例4中,上述UE发送信息6的方法包括,(1)UE利用能力上报信息传输信息6,(2)UE利用随机接入过程传输信息6,比如两步随机接入过程中的UE发送的消息(消息A),或者四步随机接入过程中的UE发送的随机接入请求(消息1)或者第一次上行调度(消息3),(3)UE利用RRC专有信令传输信息6,(4)UE利用UCI传输信息6。
实施例5,实施例1和实施例2的内容是可以组合使用的,例如如图10所示,上述信息3可以通过RRC先配置了一部分OAM的配置信息和MIMO的配置信息,基站通过信息1指示通知UE采用的是基于OAM的传输方式,继而,UE确认之前配置信息中的OAM相关的配置信息有效。另外,基站进一步通过DCI承载信息2指示UE另一部分OAM相关的配置参数,UE通过信息1确定DCI中的信息解析为OAM相关的配置参数,并确定上述配置参数。这里只是一种组合的例子,其他形式 的组合并不排斥。另外,实施例1和实施例2也可与实施例3和实施例组合,也就是说可以加入UE能力或者UE指示的情况,具体的组合方式不再赘述了。
因此,在本申请实施例中,在基于MIMO的传输方式与基于OAM的传输方式并存的情况下,可以确定数据传输方式。
进一步地,一方面保证未来通信系统中网络侧与终端侧对数据传输方式、参数配置信息的理解一致,避免对通信模式理解差异所造成的通信失败问题。另一方面,考虑到通信系统内将会存在支持OAM能力的设备与不支持OAM能力的设备大量并存的情况,通过能力上报的方式实现针对不同类型的设备提供对应的服务类型,以提升用户体验和网络整体性能。
上文结合图2至图10,从终端设备的角度详细描述了根据本申请实施例的无线通信方法,下文结合图11,从网络设备的角度详细描述根据本申请另一实施例的无线通信方法。应理解,终端设备侧的描述与网络设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图11是根据本申请实施例的无线通信方法300的示意性流程图,如图11所示,该方法300可以包括如下内容:
S310,网络设备确定终端设备使用第一传输方式传输数据,该第一传输方式为基于MIMO的传输方式或者基于OAM的传输方式。
可选地,在一些实施例中,该方法300还包括:
该网络设备向该终端设备发送第一信息,其中,该第一信息用于指示该第一传输方式,或者,该第一信息用于指示该第一传输方式对应的传输参数类型。
可选地,在一些实施例中,该方法300还包括:
该网络设备向该终端设备发送第二信息,其中,该第二信息用于指示该第一传输方式对应的传输参数。
可选地,在一些实施例中,该第一信息还用于该终端设备解析该第二信息。
可选地,在一些实施例中,该第一信息和该第二信息承载于相同的信令或者广播消息中。
可选地,在一些实施例中,该第一信息和该第二信息分别承载于不同的信令或者广播消息中。
可选地,在一些实施例中,该第一信息还用于该终端设备确定该终端设备处配置的第一类传输参数和第二类传输参数中有效或者激活的为该第一传输方式对应的传输参数类型,其中,该第一类传输参数针对基于OAM的传输方式,该第二类传输参数针对基于MIMO的传输方式。
可选地,在一些实施例中,该终端设备处配置的传输参数为该第一类传输参数的一部分,和/或,该终端设备处配置的传输参数为该第二类传输参数的一部分。
可选地,在一些实施例中,该方法300还包括:
该网络设备向该终端设备发送第二信息,其中,该第二信息用于指示该第一传输方式对应的传输参数类型的另一部分传输参数。
可选地,在一些实施例中,该方法300还包括:
该网络设备向该终端设备发送第三信息,该第三信息用于配置该第一类传输参数和该第二类传输参数。
可选地,在一些实施例中,该第三信息承载于广播消息中,或者,该第三信息承载于MAC CE信令,DCI,RRC信令中的至少一种内。
可选地,在一些实施例中,该第二信息承载于广播消息中,或者,该第二信息承载于MAC CE、DCI、RRC信令中的至少一种内。
可选地,在一些实施例中,该第一信息承载于广播消息中,或者,该第一信息承载于MAC CE、DCI、RRC信令中的至少一种内。
可选地,在一些实施例中,该方法300还包括:
该网络设备接收该终端设备发送的第四信息,该第四信息用于指示该终端设备是否支持基于OAM的传输方式,或者,该第四信息用于指示该终端设备是否具有基于第一类传输参数传输数据的能力,该第一类传输参数针对基于OAM的传输方式;
该网络设备确定终端设备使用第一传输方式传输数据,包括:
该网络设备根据该第四信息,确定该终端设备使用该第一传输方式传输数据。
可选地,在一些实施例中,该第四信息承载于以下中的至少一种中:
能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、UCI。
可选地,在一些实施例中,该方法300还包括:
该网络设备接收该终端设备发送的第五信息,该第五信息用于指示该终端设备确定使用该第一传 输方式传输数据,或者,该第五信息用于指示该终端设备基于该第一传输方式对应的传输参数类型传输数据;
该网络设备确定终端设备使用第一传输方式传输数据,包括:
该网络设备根据该第五信息,确定该终端设备使用该第一传输方式传输数据。
可选地,在一些实施例中,该方法300还包括:
该网络设备向该终端设备发送第六信息,该第六信息用于指示该第一传输方式对应的传输参数。
可选地,在一些实施例中,该第五信息承载于以下中的至少一种中:
能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、UCI。
可选地,在一些实施例中,该第六信息承载于广播消息中,或者,该第六信息承载于MAC CE、DCI、RRC信令中的至少一种内。
因此,在本申请实施例中,在基于MIMO的传输方式与基于OAM的传输方式并存的情况下,可以确定数据传输方式。
进一步地,一方面保证未来通信系统中网络侧与终端侧对数据传输方式、参数配置信息的理解一致,避免对通信模式理解差异所造成的通信失败问题。另一方面,考虑到通信系统内将会存在支持OAM能力的设备与不支持OAM能力的设备大量并存的情况,通过能力上报的方式实现针对不同类型的设备提供对应的服务类型,以提升用户体验和网络整体性能。
上文结合图2至图11,详细描述了本申请的方法实施例,下文结合图12至图16,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图12示出了根据本申请实施例的终端设备400的示意性框图。如图12所示,该终端设备400包括:
处理单元410,用于确定使用第一传输方式传输数据,该第一传输方式为基于多入多出MIMO的传输方式或者基于轨道角动量OAM的传输方式。
可选地,该终端设备400还包括:通信单元420,
该通信单元420用于接收第一信息,其中,该第一信息用于指示该第一传输方式,或者,该第一信息用于指示该第一传输方式对应的传输参数类型;
该处理单元410具体用于:
根据该第一信息,确定使用该第一传输方式传输数据。
可选地,该通信单元420还用于接收第二信息,其中,该第二信息用于指示该第一传输方式对应的传输参数。
可选地,该处理单元410还用于根据该第一信息解析该第二信息。
可选地,该第一信息和该第二信息承载于相同的信令或者广播消息中。
可选地,该第一信息和该第二信息分别承载于不同的信令或者广播消息中。
可选地,该处理单元410还用于根据该第一信息,确定该终端设备处配置的第一类传输参数和第二类传输参数中有效或者激活的为该第一传输方式对应的传输参数类型,其中,该第一类传输参数针对基于OAM的传输方式,该第二类传输参数针对基于MIMO的传输方式。
可选地,该终端设备处配置的传输参数为该第一类传输参数的一部分,和/或,该终端设备处配置的传输参数为该第二类传输参数的一部分。
可选地,该终端设备400还包括:通信单元420,
该通信单元420用于接收第二信息,其中,该第二信息用于指示该第一传输方式对应的传输参数类型的另一部分传输参数。
可选地,该通信单元420还用于接收第三信息,该第三信息用于配置该第一类传输参数和该第二类传输参数。
可选地,该第三信息承载于广播消息中,或者,该第三信息承载于媒体接入控制控制元素MAC CE信令,下行控制信息DCI,无线资源控制RRC信令中的至少一种内。
可选地,该第二信息承载于广播消息中,或者,该第二信息承载于MAC CE、DCI、RRC信令中的至少一种内。
可选地,该第一信息承载于广播消息中,或者,该第一信息承载于MAC CE、DCI、RRC信令中的至少一种内。
可选地,该终端设备400还包括:通信单元420,
该通信单元420用于发送第四信息,该第四信息用于指示该终端设备是否支持基于OAM的传输方式,或者,该第四信息用于指示该终端设备是否具有基于第一类传输参数传输数据的能力,该第一 类传输参数针对基于OAM的传输方式。
可选地,该第四信息承载于以下中的至少一种中:
能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
可选地,该终端设备400还包括:通信单元420,
该通信单元420用于发送第五信息,该第五信息用于指示该终端设备确定使用该第一传输方式传输数据,或者,该第五信息用于指示该终端设备基于该第一传输方式对应的传输参数类型传输数据。
可选地,该通信单元420还用于接收第六信息,该第六信息用于指示该第一传输方式对应的传输参数。
可选地,该第五信息承载于以下中的至少一种中:
能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
可选地,该第六信息承载于广播消息中,或者,该第六信息承载于MAC CE、DCI、RRC信令中的至少一种内。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图13示出了根据本申请实施例的网络设备500的示意性框图。如图13所示,该网络设备500包括:
处理单元510,用于确定终端设备使用第一传输方式传输数据,该第一传输方式为基于多入多出MIMO的传输方式或者基于轨道角动量OAM的传输方式。
可选地,该网络设备500还包括:通信单元520,
该通信单元520用于向该终端设备发送第一信息,其中,该第一信息用于指示该第一传输方式,或者,该第一信息用于指示该第一传输方式对应的传输参数类型。
可选地,该通信单元520还用于向该终端设备发送第二信息,其中,该第二信息用于指示该第一传输方式对应的传输参数。
可选地,该第一信息还用于该终端设备解析该第二信息。
可选地,该第一信息和该第二信息承载于相同的信令或者广播消息中。
可选地,该第一信息和该第二信息分别承载于不同的信令或者广播消息中。
可选地,该第一信息还用于该终端设备确定该终端设备处配置的第一类传输参数和第二类传输参数中有效或者激活的为该第一传输方式对应的传输参数类型,其中,该第一类传输参数针对基于OAM的传输方式,该第二类传输参数针对基于MIMO的传输方式。
可选地,该终端设备处配置的传输参数为该第一类传输参数的一部分,和/或,该终端设备处配置的传输参数为该第二类传输参数的一部分。
可选地,该通信单元520还用于向该终端设备发送第二信息,其中,该第二信息用于指示该第一传输方式对应的传输参数类型的另一部分传输参数。
可选地,该通信单元520还用于向该终端设备发送第三信息,该第三信息用于配置该第一类传输参数和该第二类传输参数。
可选地,该第三信息承载于广播消息中,或者,该第三信息承载于媒体接入控制控制元素MAC CE信令,下行控制信息DCI,无线资源控制RRC信令中的至少一种内。
可选地,该第二信息承载于广播消息中,或者,该第二信息承载于MAC CE、DCI、RRC信令中的至少一种内。
可选地,该第一信息承载于广播消息中,或者,该第一信息承载于MAC CE、DCI、RRC信令中的至少一种内。
可选地,该网络设备500还包括:通信单元520,
该通信单元520用于接收该终端设备发送的第四信息,该第四信息用于指示该终端设备是否支持基于OAM的传输方式,或者,该第四信息用于指示该终端设备是否具有基于第一类传输参数传输数据的能力,该第一类传输参数针对基于OAM的传输方式;
该处理单元510具体用于:
根据该第四信息,确定该终端设备使用该第一传输方式传输数据。
可选地,该第四信息承载于以下中的至少一种中:
能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
可选地,该网络设备500还包括:通信单元520,
该通信单元520用于接收该终端设备发送的第五信息,该第五信息用于指示该终端设备确定使用该第一传输方式传输数据,或者,该第五信息用于指示该终端设备基于该第一传输方式对应的传输参数类型传输数据;
该处理单元510具体用于:
该网络设备根据该第五信息,确定该终端设备使用该第一传输方式传输数据。
可选地,该通信单元520还用于向该终端设备发送第六信息,该第六信息用于指示该第一传输方式对应的传输参数。
可选地,该第五信息承载于以下中的至少一种中:
能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
可选地,该第六信息承载于广播消息中,或者,该第六信息承载于MAC CE、DCI、RRC信令中的至少一种内。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图11所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例提供的一种通信设备600示意性结构图。图14所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图14所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例的装置的示意性结构图。图15所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图16是本申请实施例提供的一种通信系统800的示意性框图。如图16所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备 820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的 具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (86)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备确定使用第一传输方式传输数据,所述第一传输方式为基于多入多出MIMO的传输方式或者基于轨道角动量OAM的传输方式。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一信息,其中,所述第一信息用于指示所述第一传输方式,或者,所述第一信息用于指示所述第一传输方式对应的传输参数类型;
    所述终端设备确定使用第一传输方式传输数据,包括:
    所述终端设备根据所述第一信息,确定使用所述第一传输方式传输数据。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二信息,其中,所述第二信息用于指示所述第一传输方式对应的传输参数。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一信息解析所述第二信息。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一信息和所述第二信息承载于相同的信令或者广播消息中。
  6. 根据权利要求3或4所述的方法,其特征在于,所述第一信息和所述第二信息分别承载于不同的信令或者广播消息中。
  7. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一信息,确定所述终端设备处配置的第一类传输参数和第二类传输参数中有效或者激活的为所述第一传输方式对应的传输参数类型,其中,所述第一类传输参数针对基于OAM的传输方式,所述第二类传输参数针对基于MIMO的传输方式。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备处配置的传输参数为所述第一类传输参数的一部分,和/或,所述终端设备处配置的传输参数为所述第二类传输参数的一部分。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二信息,其中,所述第二信息用于指示所述第一传输方式对应的传输参数类型的另一部分传输参数。
  10. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第三信息,所述第三信息用于配置所述第一类传输参数和所述第二类传输参数。
  11. 根据权利要求10所述的方法,其特征在于,所述第三信息承载于广播消息中,或者,所述第三信息承载于媒体接入控制控制元素MAC CE信令,下行控制信息DCI,无线资源控制RRC信令中的至少一种内。
  12. 根据权利要求3、4、5、6或9所述的方法,其特征在于,所述第二信息承载于广播消息中,或者,所述第二信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  13. 根据权利要求2至12中任一项所述的方法,其特征在于,所述第一信息承载于广播消息中,或者,所述第一信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送第四信息,所述第四信息用于指示所述终端设备是否支持基于OAM的传输方式,或者,所述第四信息用于指示所述终端设备是否具有基于第一类传输参数传输数据的能力,所述第一类传输参数针对基于OAM的传输方式。
  15. 根据权利要求14所述的方法,其特征在于,所述第四信息承载于以下中的至少一种中:
    能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
  16. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送第五信息,所述第五信息用于指示所述终端设备确定使用所述第一传输方式传输数据,或者,所述第五信息用于指示所述终端设备基于所述第一传输方式对应的传输参数类型传输数据。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第六信息,所述第六信息用于指示所述第一传输方式对应的传输参数。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第五信息承载于以下中的至少一种中:
    能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
  19. 根据权利要求17所述的方法,其特征在于,所述第六信息承载于广播消息中,或者,所述第六信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  20. 一种无线通信方法,其特征在于,包括:
    网络设备确定终端设备使用第一传输方式传输数据,所述第一传输方式为基于多入多出MIMO的传输方式或者基于轨道角动量OAM的传输方式。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一信息,其中,所述第一信息用于指示所述第一传输方式,或者,所述第一信息用于指示所述第一传输方式对应的传输参数类型。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,其中,所述第二信息用于指示所述第一传输方式对应的传输参数。
  23. 根据权利要求22所述的方法,其特征在于,所述第一信息还用于所述终端设备解析所述第二信息。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一信息和所述第二信息承载于相同的信令或者广播消息中。
  25. 根据权利要求22或23所述的方法,其特征在于,所述第一信息和所述第二信息分别承载于不同的信令或者广播消息中。
  26. 根据权利要求21所述的方法,其特征在于,
    所述第一信息还用于所述终端设备确定所述终端设备处配置的第一类传输参数和第二类传输参数中有效或者激活的为所述第一传输方式对应的传输参数类型,其中,所述第一类传输参数针对基于OAM的传输方式,所述第二类传输参数针对基于MIMO的传输方式。
  27. 根据权利要求26所述的方法,其特征在于,所述终端设备处配置的传输参数为所述第一类传输参数的一部分,和/或,所述终端设备处配置的传输参数为所述第二类传输参数的一部分。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,其中,所述第二信息用于指示所述第一传输方式对应的传输参数类型的另一部分传输参数。
  29. 根据权利要求26或27所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三信息,所述第三信息用于配置所述第一类传输参数和所述第二类传输参数。
  30. 根据权利要求29所述的方法,其特征在于,所述第三信息承载于广播消息中,或者,所述第三信息承载于媒体接入控制控制元素MAC CE信令,下行控制信息DCI,无线资源控制RRC信令中的至少一种内。
  31. 根据权利要求22、23、24、25或28所述的方法,其特征在于,所述第二信息承载于广播消息中,或者,所述第二信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  32. 根据权利要求21至31中任一项所述的方法,其特征在于,所述第一信息承载于广播消息中,或者,所述第一信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  33. 根据权利要求20至32中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第四信息,所述第四信息用于指示所述终端设备是否支持基于OAM的传输方式,或者,所述第四信息用于指示所述终端设备是否具有基于第一类传输参数传输数据的能力,所述第一类传输参数针对基于OAM的传输方式;
    所述网络设备确定终端设备使用第一传输方式传输数据,包括:
    所述网络设备根据所述第四信息,确定所述终端设备使用所述第一传输方式传输数据。
  34. 根据权利要求33所述的方法,其特征在于,所述第四信息承载于以下中的至少一种中:
    能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
  35. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第五信息,所述第五信息用于指示所述终端设备确定使用所述第一传输方式传输数据,或者,所述第五信息用于指示所述终端设备基于所述第一传输方式对应的传输参数类型传输数据;
    所述网络设备确定终端设备使用第一传输方式传输数据,包括:
    所述网络设备根据所述第五信息,确定所述终端设备使用所述第一传输方式传输数据。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第六信息,所述第六信息用于指示所述第一传输方式对应的传输参数。
  37. 根据权利要求35或36所述的方法,其特征在于,所述第五信息承载于以下中的至少一种中:
    能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
  38. 根据权利要求36所述的方法,其特征在于,所述第六信息承载于广播消息中,或者,所述第六信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  39. 一种终端设备,其特征在于,包括:
    处理单元,用于确定使用第一传输方式传输数据,所述第一传输方式为基于多入多出MIMO的传输方式或者基于轨道角动量OAM的传输方式。
  40. 根据权利要求39所述的终端设备,其特征在于,所述终端设备还包括:通信单元,
    所述通信单元用于接收第一信息,其中,所述第一信息用于指示所述第一传输方式,或者,所述第一信息用于指示所述第一传输方式对应的传输参数类型;
    所述处理单元具体用于:
    根据所述第一信息,确定使用所述第一传输方式传输数据。
  41. 根据权利要求40所述的终端设备,其特征在于,所述通信单元还用于接收第二信息,其中,所述第二信息用于指示所述第一传输方式对应的传输参数。
  42. 根据权利要求41所述的终端设备,其特征在于,所述处理单元还用于根据所述第一信息解析所述第二信息。
  43. 根据权利要求41或42所述的终端设备,其特征在于,所述第一信息和所述第二信息承载于相同的信令或者广播消息中。
  44. 根据权利要求41或42所述的终端设备,其特征在于,所述第一信息和所述第二信息分别承载于不同的信令或者广播消息中。
  45. 根据权利要求40所述的终端设备,其特征在于,所述处理单元还用于根据所述第一信息,确定所述终端设备处配置的第一类传输参数和第二类传输参数中有效或者激活的为所述第一传输方式对应的传输参数类型,其中,所述第一类传输参数针对基于OAM的传输方式,所述第二类传输参数针对基于MIMO的传输方式。
  46. 根据权利要求45所述的终端设备,其特征在于,所述终端设备处配置的传输参数为所述第一类传输参数的一部分,和/或,所述终端设备处配置的传输参数为所述第二类传输参数的一部分。
  47. 根据权利要求46所述的终端设备,其特征在于,所述终端设备还包括:通信单元,
    所述通信单元用于接收第二信息,其中,所述第二信息用于指示所述第一传输方式对应的传输参数类型的另一部分传输参数。
  48. 根据权利要求45或46所述的终端设备,其特征在于,所述通信单元还用于接收第三信息,所述第三信息用于配置所述第一类传输参数和所述第二类传输参数。
  49. 根据权利要求48所述的终端设备,其特征在于,所述第三信息承载于广播消息中,或者,所述第三信息承载于媒体接入控制控制元素MAC CE信令,下行控制信息DCI,无线资源控制RRC信令中的至少一种内。
  50. 根据权利要求41、42、43、44或47所述的终端设备,其特征在于,所述第二信息承载于广播消息中,或者,所述第二信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  51. 根据权利要求40至50中任一项所述的终端设备,其特征在于,所述第一信息承载于广播消息中,或者,所述第一信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  52. 根据权利要求39至51中任一项所述的终端设备,其特征在于,所述终端设备还包括:通信单元,
    所述通信单元用于发送第四信息,所述第四信息用于指示所述终端设备是否支持基于OAM的传输方式,或者,所述第四信息用于指示所述终端设备是否具有基于第一类传输参数传输数据的能力,所述第一类传输参数针对基于OAM的传输方式。
  53. 根据权利要求52所述的终端设备,其特征在于,所述第四信息承载于以下中的至少一种中:
    能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
  54. 根据权利要求39所述的终端设备,其特征在于,所述终端设备还包括:通信单元,
    所述通信单元用于发送第五信息,所述第五信息用于指示所述终端设备确定使用所述第一传输方式传输数据,或者,所述第五信息用于指示所述终端设备基于所述第一传输方式对应的传输参数类型 传输数据。
  55. 根据权利要求54所述的终端设备,其特征在于,所述通信单元还用于接收第六信息,所述第六信息用于指示所述第一传输方式对应的传输参数。
  56. 根据权利要求54或55所述的终端设备,其特征在于,所述第五信息承载于以下中的至少一种中:
    能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
  57. 根据权利要求55所述的终端设备,其特征在于,所述第六信息承载于广播消息中,或者,所述第六信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  58. 一种网络设备,其特征在于,包括:
    处理单元,用于确定终端设备使用第一传输方式传输数据,所述第一传输方式为基于多入多出MIMO的传输方式或者基于轨道角动量OAM的传输方式。
  59. 根据权利要求58所述的网络设备,其特征在于,所述网络设备还包括:通信单元,
    所述通信单元用于向所述终端设备发送第一信息,其中,所述第一信息用于指示所述第一传输方式,或者,所述第一信息用于指示所述第一传输方式对应的传输参数类型。
  60. 根据权利要求59所述的网络设备,其特征在于,所述通信单元还用于向所述终端设备发送第二信息,其中,所述第二信息用于指示所述第一传输方式对应的传输参数。
  61. 根据权利要求60所述的网络设备,其特征在于,所述第一信息还用于所述终端设备解析所述第二信息。
  62. 根据权利要求60或61所述的网络设备,其特征在于,所述第一信息和所述第二信息承载于相同的信令或者广播消息中。
  63. 根据权利要求60或61所述的网络设备,其特征在于,所述第一信息和所述第二信息分别承载于不同的信令或者广播消息中。
  64. 根据权利要求59所述的网络设备,其特征在于,
    所述第一信息还用于所述终端设备确定所述终端设备处配置的第一类传输参数和第二类传输参数中有效或者激活的为所述第一传输方式对应的传输参数类型,其中,所述第一类传输参数针对基于OAM的传输方式,所述第二类传输参数针对基于MIMO的传输方式。
  65. 根据权利要求64所述的网络设备,其特征在于,所述终端设备处配置的传输参数为所述第一类传输参数的一部分,和/或,所述终端设备处配置的传输参数为所述第二类传输参数的一部分。
  66. 根据权利要求65所述的网络设备,其特征在于,所述通信单元还用于向所述终端设备发送第二信息,其中,所述第二信息用于指示所述第一传输方式对应的传输参数类型的另一部分传输参数。
  67. 根据权利要求64或65所述的网络设备,其特征在于,所述通信单元还用于向所述终端设备发送第三信息,所述第三信息用于配置所述第一类传输参数和所述第二类传输参数。
  68. 根据权利要求67所述的网络设备,其特征在于,所述第三信息承载于广播消息中,或者,所述第三信息承载于媒体接入控制控制元素MAC CE信令,下行控制信息DCI,无线资源控制RRC信令中的至少一种内。
  69. 根据权利要求60、61、62、63或66所述的网络设备,其特征在于,所述第二信息承载于广播消息中,或者,所述第二信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  70. 根据权利要求59至69中任一项所述的网络设备,其特征在于,所述第一信息承载于广播消息中,或者,所述第一信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  71. 根据权利要求58至70中任一项所述的网络设备,其特征在于,所述网络设备还包括:通信单元,
    所述通信单元用于接收所述终端设备发送的第四信息,所述第四信息用于指示所述终端设备是否支持基于OAM的传输方式,或者,所述第四信息用于指示所述终端设备是否具有基于第一类传输参数传输数据的能力,所述第一类传输参数针对基于OAM的传输方式;
    所述处理单元具体用于:
    根据所述第四信息,确定所述终端设备使用所述第一传输方式传输数据。
  72. 根据权利要求71所述的网络设备,其特征在于,所述第四信息承载于以下中的至少一种中:
    能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
  73. 根据权利要求58所述的网络设备,其特征在于,所述网络设备还包括:通信单元,
    所述通信单元用于接收所述终端设备发送的第五信息,所述第五信息用于指示所述终端设备确定 使用所述第一传输方式传输数据,或者,所述第五信息用于指示所述终端设备基于所述第一传输方式对应的传输参数类型传输数据;
    所述处理单元具体用于:
    所述网络设备根据所述第五信息,确定所述终端设备使用所述第一传输方式传输数据。
  74. 根据权利要求73所述的网络设备,其特征在于,所述通信单元还用于向所述终端设备发送第六信息,所述第六信息用于指示所述第一传输方式对应的传输参数。
  75. 根据权利要求73或74所述的网络设备,其特征在于,所述第五信息承载于以下中的至少一种中:
    能力上报信息、两步随机接入中的第一条信息、四步随机接入中的第一条信息或者第三条信息、RRC专用信令、上行控制信息UCI。
  76. 根据权利要求74所述的网络设备,其特征在于,所述第六信息承载于广播消息中,或者,所述第六信息承载于MAC CE、DCI、RRC信令中的至少一种内。
  77. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至19中任一项所述的方法。
  78. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求20至38中任一项所述的方法。
  79. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至19中任一项所述的方法。
  80. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求20至38中任一项所述的方法。
  81. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法。
  82. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求20至38中任一项所述的方法。
  83. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至19中任一项所述的方法。
  84. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求20至38中任一项所述的方法。
  85. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法。
  86. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求20至38中任一项所述的方法。
PCT/CN2019/128040 2019-12-24 2019-12-24 无线通信方法、终端设备和网络设备 WO2021128022A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980102892.7A CN114788383A (zh) 2019-12-24 2019-12-24 无线通信方法、终端设备和网络设备
PCT/CN2019/128040 WO2021128022A1 (zh) 2019-12-24 2019-12-24 无线通信方法、终端设备和网络设备
EP19957360.1A EP4075905A4 (en) 2019-12-24 2019-12-24 WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US17/843,094 US20220329293A1 (en) 2019-12-24 2022-06-17 Wireless communication method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128040 WO2021128022A1 (zh) 2019-12-24 2019-12-24 无线通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/843,094 Continuation US20220329293A1 (en) 2019-12-24 2022-06-17 Wireless communication method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2021128022A1 true WO2021128022A1 (zh) 2021-07-01

Family

ID=76575719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128040 WO2021128022A1 (zh) 2019-12-24 2019-12-24 无线通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20220329293A1 (zh)
EP (1) EP4075905A4 (zh)
CN (1) CN114788383A (zh)
WO (1) WO2021128022A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283798A1 (en) * 2021-07-13 2023-01-19 Qualcomm Incorporated Transmit diversity across orbital angular momentum modes
WO2023132476A1 (ko) * 2022-01-05 2023-07-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112887989B (zh) * 2019-11-30 2023-03-03 华为技术有限公司 基于oam的通信方法和相关设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291271A (zh) * 2007-04-19 2008-10-22 索尼株式会社 无线通信系统、无线通信设备和无线通信方法
CN102271412A (zh) * 2010-06-04 2011-12-07 鼎桥通信技术有限公司 一种支持多用户多输入多输出系统的数据传输方法
CN105790814A (zh) * 2014-12-18 2016-07-20 中国电信股份有限公司 Mimo下行解调参考信号和信令传输方法与装置
CN106899970A (zh) * 2017-01-21 2017-06-27 西北工业大学 基于角动量的无线通信加密方法
WO2018058563A1 (zh) * 2016-09-30 2018-04-05 广东欧珀移动通信有限公司 传输下行控制信息的方法、网络侧设备和终端设备
WO2019189706A1 (ja) * 2018-03-30 2019-10-03 日本電信電話株式会社 Oam多重通信システムおよびモード間干渉補償方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2464075B1 (en) * 2009-09-18 2019-01-16 LG Electronics Inc. Method and apparatus for transceiving scheduling signals in a multi-carrier wireless communication system
CN103312451B (zh) * 2012-03-14 2017-04-12 华为技术有限公司 用于传输数据的方法和用户设备
KR101975810B1 (ko) * 2013-01-09 2019-05-08 삼성전자주식회사 전자장치에서 다중안테나 전송모드를 선택하기 위한 방법 및 장치
CN104601281A (zh) * 2014-12-31 2015-05-06 北京智谷睿拓技术服务有限公司 传输控制方法及传输控制装置
EP3307002B1 (en) * 2015-06-25 2019-12-04 Huawei Technologies Co., Ltd. Uplink data transmission method and apparatus
US10511092B2 (en) * 2015-10-27 2019-12-17 Intel Corporation Orbital angular momentum in millimeter-wave wireless communication
US10205591B2 (en) * 2017-02-16 2019-02-12 Nec Corporation Multidimensional coded modulation for wireless communications
KR102112009B1 (ko) * 2017-03-21 2020-05-18 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말의 상향링크 신호 전송 방법 및 이를 지원하는 장치
EP3513511B1 (en) * 2017-11-15 2023-03-29 Telefonaktiebolaget LM Ericsson (PUBL) Method and apparatus for uplink transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291271A (zh) * 2007-04-19 2008-10-22 索尼株式会社 无线通信系统、无线通信设备和无线通信方法
CN102271412A (zh) * 2010-06-04 2011-12-07 鼎桥通信技术有限公司 一种支持多用户多输入多输出系统的数据传输方法
CN105790814A (zh) * 2014-12-18 2016-07-20 中国电信股份有限公司 Mimo下行解调参考信号和信令传输方法与装置
WO2018058563A1 (zh) * 2016-09-30 2018-04-05 广东欧珀移动通信有限公司 传输下行控制信息的方法、网络侧设备和终端设备
CN106899970A (zh) * 2017-01-21 2017-06-27 西北工业大学 基于角动量的无线通信加密方法
WO2019189706A1 (ja) * 2018-03-30 2019-10-03 日本電信電話株式会社 Oam多重通信システムおよびモード間干渉補償方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283798A1 (en) * 2021-07-13 2023-01-19 Qualcomm Incorporated Transmit diversity across orbital angular momentum modes
WO2023132476A1 (ko) * 2022-01-05 2023-07-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Also Published As

Publication number Publication date
US20220329293A1 (en) 2022-10-13
CN114788383A (zh) 2022-07-22
EP4075905A4 (en) 2022-12-28
EP4075905A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
US11516777B2 (en) Data transmission method and apparatus and communications device
EP3843450B1 (en) Method and device for reporting measurement result of interference measurement
US20220329293A1 (en) Wireless communication method, terminal device and network device
WO2020042123A1 (zh) 发送上行信号的方法和设备
WO2019072170A1 (zh) 通信方法和通信装置
WO2020186532A1 (zh) 无线通信方法、终端设备和网络设备
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
WO2022067802A1 (zh) 探测参考信号配置方法与装置、终端和网络设备
WO2018137569A1 (zh) 数据发送方法和装置及数据接收方法和装置
EP3952369A1 (en) Communication method and communication device
US20220394503A1 (en) Wireless communication method and device
WO2022012256A1 (zh) 通信的方法及通信装置
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022056870A1 (zh) 无线通信方法、终端设备和网络设备
WO2022141103A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022016342A1 (zh) 信道加扰方法和终端设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023150998A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022236697A1 (zh) 无线通信的方法、终端设备和网络设备
US20230099072A1 (en) Information processing method, terminal device and network device
WO2021217513A1 (zh) 工作带宽部分的切换方法、终端设备和网络设备
WO2022021293A1 (zh) 信道侦听的方法及设备
WO2022188081A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050320A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019957360

Country of ref document: EP

Effective date: 20220713