WO2020042123A1 - 发送上行信号的方法和设备 - Google Patents

发送上行信号的方法和设备 Download PDF

Info

Publication number
WO2020042123A1
WO2020042123A1 PCT/CN2018/103366 CN2018103366W WO2020042123A1 WO 2020042123 A1 WO2020042123 A1 WO 2020042123A1 CN 2018103366 W CN2018103366 W CN 2018103366W WO 2020042123 A1 WO2020042123 A1 WO 2020042123A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink signal
terminal device
signal
tci state
downlink
Prior art date
Application number
PCT/CN2018/103366
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/103366 priority Critical patent/WO2020042123A1/zh
Priority to EP18931854.6A priority patent/EP3817474B1/en
Priority to CN201880094948.4A priority patent/CN112385281A/zh
Priority to KR1020217003980A priority patent/KR20210048490A/ko
Priority to CN202110265876.9A priority patent/CN113068260B/zh
Priority to JP2021506315A priority patent/JP2022501859A/ja
Priority to AU2018439558A priority patent/AU2018439558A1/en
Priority to TW108131018A priority patent/TW202013921A/zh
Publication of WO2020042123A1 publication Critical patent/WO2020042123A1/zh
Priority to US17/149,645 priority patent/US20210136739A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and device for sending an uplink signal.
  • network equipment can use one or more transmission points (TRP) or antenna panels to independently send downlink signals to terminal equipment, and terminal equipment is sending downlink to network equipment.
  • TRP transmission points
  • terminal equipment is sending downlink to network equipment.
  • the uplink signal corresponding to the signal is transmitted, it needs to be sent to the TRP or antenna panel that sends the downlink signal. How to send the uplink signal to ensure the communication quality is an urgent problem to be solved.
  • the embodiments of the present application provide a method and device for sending an uplink signal, which can ensure communication quality when a terminal device sends an uplink signal corresponding to a downlink signal to a network device.
  • a method for sending an uplink signal includes: a terminal device receives a downlink signal sent by a network device; and the terminal device determines a corresponding one of the downlink signal according to at least one TCI state of the downlink signal. Spatial related information of the uplink signal; the terminal device sends an uplink signal corresponding to the downlink signal to the network device according to the spatial related information.
  • a method for sending an uplink signal includes: a network device sends a downlink signal to a terminal device; and the network device determines an uplink corresponding to the downlink signal according to at least one TCI state of the downlink signal. Spatially related information of the signal; the network device receives an uplink signal corresponding to a downlink signal sent by the terminal device according to the spatially related information.
  • a terminal device is provided to execute the method in the first aspect or the implementations thereof.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device for executing the method in the second aspect or the implementation manners thereof.
  • the network device includes a function module for executing the method in the second aspect or the implementations thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned first aspect or its implementations.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or the implementations thereof.
  • a chip is provided for implementing any one of the first to second aspects or a method in each implementation thereof.
  • the chip includes a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes any one of the first aspect to the second aspect described above or implementations thereof. method.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the first to second aspects described above or in its implementations.
  • a computer program product including computer program instructions that cause a computer to execute the method in any one of the first to second aspects described above or in various implementations thereof.
  • a computer program that, when run on a computer, causes the computer to execute the method in any one of the first to second aspects described above or in its implementations.
  • the spatial related information of the uplink signal corresponding to the downlink signal is determined according to the TCI state of the downlink signal. Since the TCI state of the downlink signal is associated with the TRP or antenna panel that sends the downlink signal, different TRP or antenna panels have their own independent TCI states. In this way, the spatially related information of the uplink signal corresponding to the downlink signal determined by the TCI state of the downlink signal is also associated with the TRP or the antenna panel.
  • the terminal device when the terminal device sends the uplink signal corresponding to the downlink signal based on the spatial correlation information, it can The TRP or antenna panel that quasily sends downlink signals ensures the quality of the signal received by the terminal device through the TRP or antenna panel, thereby ensuring communication quality.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a method for sending an uplink signal according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another method for sending an uplink signal according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long-Term Evolution
  • NR New Radio
  • NR Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interconnected Microwave Access
  • D2D Device to Device
  • M2M machine-to-machine
  • MTC machine-type communication
  • V2V vehicle-to-vehicle
  • the communication system in the embodiment of the present application may be applied to a Carrier Aggregation (CA) scenario, a dual connectivity (DC) scenario, or a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the wireless communication system 100 may include a network device 110.
  • the network device 110 may be a device that communicates with a terminal device.
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • Evolutional NodeB, eNB or eNodeB or a network-side device in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a relay station, an access point Point of entry, vehicle-mounted equipment, wearable equipment, network-side equipment in the next generation network, or network equipment in a public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • the wireless communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Device, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal devices 120 may also perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the network device 110 may provide services for a cell, and the terminal device 120 communicates with the network device 110 through a transmission resource (for example, a frequency domain resource or a spectrum resource) used by the cell, and the cell may be the network device 110 (
  • a cell corresponding to a base station may belong to a macro base station or a small cell (small cell).
  • the small cell may include: a city cell (micro cell), a micro cell (micro cell), a pico cell ( Pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include multiple network devices and the coverage range of each network device may include other numbers of terminal devices.
  • the application example does not limit this.
  • the wireless communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • a network device can configure a corresponding transmission configuration indicator (transmission configuration indicator (TCI)) state for each downlink signal, and a terminal device can receive downlink signals based on this configuration.
  • TCI transmission configuration indicator
  • a TCI state may include at least one of: a channel state information reference signal (CSI-RS) resource index, a synchronization signal block (SSB) index, and a PTRS port .
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the index of the CSI-RS resource may be an identity (ID) of the CSI-RS resource.
  • Different CSI-RSs can be sent by different resources, and different SRSs can also be sent by different resources.
  • the terminal device may determine a spatial receiving parameter of the downlink signal based on the CSI-RS resource index and / or SSB index in the TCI state, and the spatial receiving parameter may be used to indicate a beam or an antenna used to receive the downlink signal. Panel.
  • a network device can send multiple CSI-RSs to a terminal device using different beams, and the terminal device can report and select a CSI-RS to the network device according to the reception condition of the CSI-RS.
  • the terminal device may report the index of the CSI-RS resource of the CSI-RS with the best reception quality to the network device.
  • the terminal device may report the reception quality on the at least one CSI-RS resource to the network device, and the report information includes the index value of the at least one CSI-RS resource and the signal reception quality on the resource.
  • the network device may configure a TCI state for each downlink signal when sending the downlink signal, and the TCI state includes an index of the CSI-RS resource.
  • the terminal device may assume that the downlink signal uses the same beam as the CSI-RS on the CSI-RS resource, and thus uses the same reception beam as the CSI-RS resource to receive the downlink signal.
  • a terminal device may use multiple beams to send multiple SRSs to a network device.
  • the network device may send SRS resource indication information to the terminal device according to the reception quality of the SRS, indicating the SRS resource with the best reception quality, so that The terminal device uses a beam that sends the SRS resource to send other subsequent signals.
  • a beam is used as an example, and the terminal device determines a beam used to receive a downlink signal according to at least one TCI state of the downlink signal.
  • the terminal device determines a beam used to receive a downlink signal according to at least one TCI state of the downlink signal.
  • antenna panels The same applies to antenna panels.
  • a network device may use different antenna panels to send multiple CSI-RSs, and a terminal device may use different antenna panels to receive CSI-RSs. After that, the network device may indicate an index of a CSI-RS resource in at least one TCI state of the transmitted downlink signal, and the terminal device may determine, according to the index of the CSI-RS resource, which CSI-RS resource is used for receiving the CSI-RS resource. Antenna panel, and uses the antenna panel to receive downlink signals.
  • a terminal device can use multiple antenna panels to send multiple SRSs, and a network device can send SRS resource indication information to the terminal device according to the reception quality of the SRS, indicating the SRS resource with the best reception quality, so that the terminal The device uses the antenna panel that sends the SRS resource to send other subsequent signals.
  • the beam in the embodiment of the present application may be formed by an antenna panel, and the beam in one direction may be formed by multiple antenna panels, or may be formed by one antenna panel.
  • An antenna panel can form beams in one direction or beams in different directions.
  • the beam in the embodiment of the present application may also be referred to as a spatial domain transmission filter.
  • a network device indicates a CSI-RS resource in at least one TCI state of a certain downlink signal
  • the terminal device can assume that the downlink signal uses the same beam or antenna panel as the CSI-RS resource, so that the terminal device can use receiving
  • the CSI-RS resource uses a beam or an antenna panel to receive the downlink signal.
  • the terminal device can assume that the downlink signal uses the same beam or antenna panel as the SSB indicated by the SSB index, so that the terminal device can use the Beam to receive the downlink signal.
  • a network device may use multiple TRPs, antenna panels, or beams to independently send multiple downlink signals to the terminal device.
  • the terminal device may need to send uplinks corresponding to the downlink signals to the multiple TRPs, antenna panels, or beams, respectively. signal.
  • the terminal device may use different antenna panels or beams to receive different downlink signals.
  • the beam or antenna panel used by the terminal device to send the uplink signal corresponding to the downlink signal is different from the beam or antenna panel used by the downlink device to receive the downlink signal, the beam used by the terminal device to send the uplink signal corresponding to the downlink signal may be misaligned
  • the corresponding TRP or antenna panel results in poor transmission performance of the uplink signal sent to the corresponding TRP or antenna panel.
  • the embodiments of the present application provide a method and device for transmitting an uplink signal, which can ensure reliability of uplink transmission of a terminal device.
  • FIG. 2 is a schematic diagram of a method for transmitting an uplink signal according to an embodiment of the present application.
  • the method of FIG. 2 includes steps 210-230.
  • step 210 the terminal device receives a downlink signal sent by the network device.
  • the downlink signal may be at least one of the following: a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH), or a CSI-RS.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • CSI-RS CSI-RS
  • the PDSCH can be used to carry data information or high-level signaling.
  • PDSCH can be used to transmit data
  • PDSCH can be used to carry radio resource control (RRC) signaling
  • PDSCH can be used to carry medium access control (MAC) signaling.
  • RRC radio resource control
  • MAC medium access control
  • the PDCCH can be used to carry scheduling information or control information.
  • the PDCCH can carry downlink control signaling (DCI), and DCI can be used to schedule uplink transmissions.
  • DCI downlink control signaling
  • a terminal device When a terminal device receives a downlink signal sent by a network device, it can receive it according to the TCI state corresponding to the downlink signal.
  • the terminal device may receive the downlink signal according to the CSI-RS resource index SSB index in at least one TCI state of the downlink signal.
  • the terminal device may receive the downlink signal by using an antenna panel used to receive the CSI-RS resource indicated by the index and / or SSB, or the terminal device may use the CSI-RS resource and / or SSB received by the index.
  • the beam used to receive the downlink signal may be used to receive the downlink signal.
  • step 220 the terminal device determines spatial related information of the uplink signal corresponding to the downlink signal according to at least one TCI state of the downlink signal.
  • the spatial related information may be used to indicate a beam or an antenna panel used to send an uplink signal corresponding to a downlink signal.
  • the terminal device receives the CSI-RS resource indicated by the CSI-RS resource index contained in the space-related information or the antenna panel panel or beam adopted by the SSB indicated by the SSB index to send the corresponding downlink signal.
  • Upstream signal the CSI-RS resource indicated by the CSI-RS resource index contained in the space-related information or the antenna panel panel or beam adopted by the SSB indicated by the SSB index.
  • the uplink signal corresponding to the downlink signal may include at least one of the following: a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a sounding reference signal (SRS) .
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • step 230 the terminal device uses the spatial related information to send an uplink signal corresponding to the downlink signal to the network device.
  • the spatial related information of the uplink signal corresponding to the downlink signal is determined according to the TCI state of the downlink signal. Since the TCI state of the downlink signal is associated with the TRP or antenna panel that sends the downlink signal, different TRP or antenna panels have their own independent TCI states. In this way, the spatially related information of the uplink signal corresponding to the downlink signal determined by the TCI state of the downlink signal is also associated with the TRP or the antenna panel.
  • the terminal device when the terminal device sends the uplink signal corresponding to the downlink signal based on the spatial correlation information, it can The TRP or antenna panel that quasily sends downlink signals ensures the quality of the signal received by the terminal device through the TRP or antenna panel, thereby ensuring communication quality.
  • FIG. 3 is a schematic diagram of another uplink signal transmission method according to an embodiment of the present application.
  • the method in FIG. 3 includes steps 310-330.
  • step 310 the network device sends a downlink signal to the terminal device.
  • the downlink signal may be PDSCH, PDCCH, and / or CSI-RS.
  • the PDSCH can be used to carry data information or high-level signaling.
  • the PDSCH can be used to transmit data, or the PDSCH can be used to carry RRC signaling, or the PDSCH can be used to carry MAC signaling.
  • the PDCCH can be used to carry scheduling information or control information.
  • the PDCCH can carry DCI, and DCI can be used to schedule uplink transmissions.
  • step 320 the network device determines the spatial related information of the uplink signal corresponding to the downlink signal according to the TCI state of the downlink signal.
  • the uplink signal corresponding to the downlink signal may include at least one of the following: PUSCH, PUCCH, and SRS.
  • the spatial related information may be used to indicate a beam and / or an antenna panel used to receive an uplink signal corresponding to a downlink signal.
  • the network device may configure a TCI status for each downlink signal.
  • the network device may determine spatial related information of the uplink signal corresponding to the downlink signal according to the TCI status of the downlink signal.
  • the network device uses the spatial related information to receive an uplink signal corresponding to a downlink signal sent by the terminal device.
  • the spatial related information of the uplink signal corresponding to the downlink signal is determined according to the TCI state of the downlink signal. Since the TCI state of the downlink signal is associated with the TRP or antenna panel that sends the downlink signal, different TRP or antenna panels have their own independent TCI states. In this way, the spatially related information of the uplink signal corresponding to the downlink signal determined by the TCI state of the downlink signal is also associated with the TRP or the antenna panel.
  • the terminal device when the terminal device sends the uplink signal corresponding to the downlink signal based on the spatial correlation information, it can The TRP or antenna panel that quasily sends downlink signals ensures the quality of the signal received by the terminal device through the TRP or antenna panel, thereby ensuring communication quality.
  • uplink signals There are multiple correspondences between uplink signals and downlink signals.
  • the following describes the various forms of uplink signals corresponding to downlink signals in detail.
  • the uplink signal corresponding to the downlink signal may be PUCCH or SRS.
  • the downlink signal PDSCH may carry user data information, and the terminal device may need to respond to data (acknowledgment (ACK) / negative-acknowledgment (NACK)) corresponding to the data to the network device regarding the PDSCH reception situation.
  • the uplink signal corresponding to the downlink signal may be a PUCCH, which is used to carry ACK / NACK feedback information of the PDSCH.
  • the network device may send multiple PDSCHs to the terminal device using different beams. At this time, the terminal device may need to perform ACK / NACK feedback to the network device according to the reception situation of each PDSCH in the multiple PDSCHs.
  • the network device may use different beams to send the first PDSCH and the second PDSCH to the terminal device.
  • the first PUCCH may be used to carry the ACK / NACK feedback information of the first PDSCH.
  • the terminal device may determine the space related information of the first PUCCH according to the TCI state of the first PDSCH, and then may use the space related information of the first PUCCH to send the first PUCCH.
  • the second PUCCH may be used to carry the ACK / NACK feedback information of the second PDSCH.
  • the terminal device may determine the space related information of the second PUCCH according to the TCI state of the second PDSCH, and then may use the space related information of the second PUCCH to send the second PUCCH.
  • the terminal device after the terminal device receives multiple PDSCHs sent by the network device, it can adopt the above-mentioned method for feedback on each PDSCH, adopting an independent PUCCH for ACK / NACK feedback, or multiple The ACK / NACK feedback information of each PDSCH is carried on one PUCCH for feedback.
  • the terminal device may use different beams to receive multiple PDSCHs.
  • the terminal device may bear the ACK / NACK feedback information of at least two PDSCHs in the multiple PDSCHs on a PUCCH, and then send them to the network device.
  • the PUCCH may be used to send the ACK / NACK feedback information of at least two PDSCHs in the multiple PDSCHs on a PUCCH, and then send them to the network device.
  • Step 220 may further include: the terminal device may determine the spatial related information of the uplink signal corresponding to the downlink signal according to the TCI state of at least one downlink signal among the plurality of downlink signals. That is to say, the terminal device may determine the space related information of the PUCCH according to the TCI state of at least one PDSCH among the plurality of PDCSHs.
  • the spatial related information used by the PUCCH may be determined according to the TCI state of the last PDSCH received from the plurality of PDSCHs.
  • the network device may use different beams to send the first PDSCH and the second PDSCH to the terminal device.
  • the terminal device performs ACK / NACK feedback on the first PDSCH and the second PDSCH
  • the two ACK / NACK feedback information may be carried in one.
  • the spatial related information used by the PUCCH may be determined according to the TCI state of the first PDSCH, or may be determined according to the TCI state of the second PDSCH.
  • the terminal device may preferentially send the PUCCH by using the space-related information determined by the TCI state of the second PDSCH.
  • the terminal device may bear the ACK / NACK feedback information of the multiple PDSCHs on one PUCCH, and send the PUCCH to the network device.
  • the space related information used by the terminal device to send the PUCCH may be determined according to the same TCI state.
  • the PDSCH may carry RRC signaling, and the RRC signaling may be used to configure CSI reporting.
  • the terminal device may send a PUCCH to the network device, where the PUCCH is used to carry the information reported by the configured CSI.
  • the downlink signal is a PDSCH carrying RRC signaling
  • the uplink signal corresponding to the downlink signal is a PUCCH carrying a corresponding CSI report.
  • RRC signaling can also configure the period and / or reporting mode of CSI reporting.
  • the terminal device may periodically report the CSI to the network device according to the period of the CSI configured by the RRC signaling, and / or the terminal device may report the CSI to the network device according to the reporting method configured by the RRC signaling.
  • the RRC signaling carried in the PDSCH can also be used to configure the SRS.
  • the terminal device may send a periodic SRS to the network device.
  • the downlink signal is a PDSCH carrying RRC signaling
  • the uplink signal corresponding to the downlink signal is an SRS configured by RRC signaling.
  • the RRC signaling can also configure the period of the SRS, and / or the transmission mode.
  • the terminal device may periodically send the SRS to the network device according to the period of the SRS configured by the RRC signaling, and / or the terminal device may send the SRS to the network device according to the sending mode configured by the RRC signaling.
  • the PDSCH may also carry MAC signaling, which may be used to activate CSI reporting.
  • the terminal device may send a PUCCH to the network device, and the PUCCH is used to carry the information reported by the activated CSI.
  • the downlink signal is a PDSCH carrying MAC signaling
  • the uplink signal corresponding to the downlink signal is a PUCCH carrying a CSI report.
  • the MAC signaling carried in the PDSCH may also be used to activate the SRS.
  • the terminal device can send SRS to the network device.
  • the downlink signal is a PDSCH carrying MAC signaling
  • the uplink signal corresponding to the downlink signal is an SRS activated by MAC signaling.
  • the uplink signal corresponding to the downlink signal may be PUSCH, PUCCH, and / or SRS.
  • the PDCCH may be used to carry DCI.
  • the DCI can be used for scheduling data transmission, and the data transmission can be carried on the PUSCH.
  • the uplink signal corresponding to the downlink signal PDCCH is a PUSCH carrying data transmission.
  • the DCI can be used to trigger CSI reporting.
  • the CSI measured by the terminal device can be carried on the PUSCH or the PUCCH.
  • the uplink signal corresponding to the downlink signal PDCCH is a PUSCH or a PUCCH carrying a CSI report.
  • the DCI can be used to trigger SRS, and the terminal device can send the SRS to the network device based on the DCI.
  • the uplink signal corresponding to the downlink signal PDCCH is an SRS triggered by DCI.
  • the uplink signal corresponding to the downlink signal is PUSCH, PUCCH, or SRS.
  • the terminal device can measure the CSI based on the CSI-RS, and bear the measured CSI on the PUSCH or PUCCH.
  • the uplink signal corresponding to the downlink signal CSI-RS is a PUSCH or a PUCCH that carries CSI.
  • the uplink signal corresponding to the downlink signal may be an SRS.
  • the precoding vector of the SRS is determined according to the channel information obtained from the CSI-RS measurement.
  • the terminal device may select an SRS to be sent to the network device according to a preset correspondence relationship between at least one CSI-RS and at least one SRS.
  • the correspondence between the at least one CSI-RS and the at least one SRS may refer to a correspondence between a CSI-RS resource that sends a CSI-RS and an SRS resource that sends an SRS.
  • a network device may configure different CSI-RS resources for different SRS resources through higher-layer signaling, so as to obtain a precoding vector of the SRS resources.
  • the network device may configure a corresponding TCI state for each downlink signal, and the TCI state of the downlink signal may include at least one of a CSI-RS resource index, an SSB index, and a phase tracking reference signal (phase tracking reference signal (PTRS) port).
  • the terminal device determines the spatial related information of the uplink signal corresponding to the downlink signal according to at least one TCI state of the downlink signal, which may refer to the CSI-RS resource index, SSB index, and downlink number corresponding to the terminal device according to at least one TCI state of the downlink signal At least one of the PTRS ports to determine spatial related information of the uplink signal corresponding to the downlink signal.
  • the terminal device may use a CSI-RS resource index, an SSB index, and / or a PTRS port included in at least one TCI state of the downlink signal as the space-related information of the uplink signal corresponding to the downlink signal.
  • each TCI state in at least one TCI state of the downlink signal may include at least one of a CSI-RS resource index, an SSB index, and a PTRS port.
  • the spatially related information of the uplink signal corresponding to the downlink signal may be used to indicate a beam or an antenna panel used to send the uplink signal corresponding to the downlink signal.
  • the beam used by the terminal device to send the uplink signal corresponding to the downlink signal may be the beam used by the terminal device to receive the downlink signal included in the spatial related information.
  • the downlink signal included in the spatial correlation information may be CSI-RS or SSB.
  • the beam used by the terminal device for sending the uplink signal corresponding to the downlink signal may be the same as the beam used for receiving the CSI-RS resource indicated by the CSI-RS resource index in the TCI state.
  • the terminal device determines a beam used for receiving a CSI-RS resource corresponding to a CSI-RS resource index as a beam used for an uplink signal corresponding to a downlink signal.
  • the beam used by the terminal device to send the uplink signal corresponding to the downlink signal may be the same as the beam used by the SSB indicated by the SSB index in the TCI state.
  • the terminal device determines the beam used for receiving the SSB corresponding to the SSB index as the beam used for the uplink signal corresponding to the downlink signal.
  • the beam used by the terminal device to send the uplink signal corresponding to the downlink signal may be the same as the beam corresponding to the PTRS port included in the TCI state.
  • the TCI state of the downlink signal may include a PTRS port corresponding to the downlink signal.
  • the spatial related information may be a beam used for transmitting an uplink signal corresponding to a downlink signal.
  • the terminal device may first determine at least one beam, and the terminal device may select the beam corresponding to the PTRS port from the at least one beam according to the PTRS port corresponding to the downlink signal, and use the beam as a signal for sending the uplink signal corresponding to the downlink signal. Beam.
  • the terminal device may determine the beam corresponding to the PTRS port according to the PTRS port and the correspondence between the at least one beam and the at least one PTRS port.
  • the correspondence between the at least one beam and the at least one PTRS port may be configured by a network device through high-level signaling, or determined by the terminal side.
  • each PTRS port can correspond to a beam group, and different PTRS ports correspond to different beam groups.
  • the terminal device can select a beam from the corresponding beam group for transmission according to the PTRS port.
  • the antenna panel used by the terminal device to send the uplink signal corresponding to the downlink signal may be an antenna panel used by the terminal device to receive the downlink signal included in the space-related information.
  • the antenna panel used by the terminal device to send the uplink signal corresponding to the downlink signal may be the same as the antenna panel used to receive the CSI-RS resource indicated by the CSI-RS resource index in the TCI state.
  • the terminal device determines the antenna panel used for receiving the CSI-RS resource corresponding to the CSI-RS resource index, as the antenna panel used for the uplink signal corresponding to the downlink signal.
  • the antenna panel used by the terminal device to send the uplink signal corresponding to the downlink signal may be the same as the antenna panel used by the SSB indicated by the SSB index in the TCI state.
  • the terminal device determines the antenna panel used for receiving the SSB corresponding to the SSB index as the antenna panel used for the uplink signal corresponding to the downlink signal.
  • the antenna panel used by the terminal device to send the uplink signal corresponding to the downlink signal may be the same as the antenna panel corresponding to the PTRS port included in the TCI state.
  • the terminal device may include at least one antenna panel.
  • the terminal device may select an antenna panel corresponding to the PTRS port from at least one antenna panel according to the PTRS port corresponding to the downlink signal, and use the antenna panel as an antenna panel for sending the uplink signal corresponding to the downlink signal.
  • the terminal device may determine the antenna panel corresponding to the PTRS port according to the PTRS port and the correspondence between the at least one antenna panel and the at least one PTRS port.
  • the correspondence between the at least one antenna panel and the at least one PTRS port may be configured by the network device through high-level signaling, or may be determined by the terminal device.
  • each PTRS port may correspond to one antenna panel, and different PTRS ports correspond to different antenna panels.
  • the terminal sends the downlink signal corresponding to the downlink signal from the corresponding antenna panel according to the PTRS port. Upstream signal.
  • the antenna panel in the correspondence between the at least one antenna panel and the at least one PTRS port refers to the antenna panel of the terminal device.
  • the beam and / or antenna panel used by the terminal device to receive the downlink signal and send the uplink signal are determined according to the TCI state of the downlink signal.
  • the beam and / or antenna panel used by the antenna panel and the uplink signal corresponding to the downlink signal are the same, so that the beam or antenna panel in the same direction can be used for uplink and downlink transmission, and the reliability of uplink and downlink transmission of the terminal device is guaranteed.
  • a network device determines a beam or an antenna panel used by an uplink signal corresponding to a downlink signal
  • each TCI state in at least one TCI state of the downlink signal may include at least one of the following: a CSI-RS resource index, an SSB index, and a PTRS port corresponding to the downlink signal, and the space-related information is received when the The beam or antenna panel used for the uplink signal corresponding to the downlink signal, and the network device determines the spatial related information of the uplink signal corresponding to the downlink signal according to at least one TCI state of the downlink signal, including:
  • the network device may determine a beam used for receiving the CSI-RS resource corresponding to the CSI-RS resource index as a beam used for receiving an uplink signal corresponding to a downlink signal; and / or,
  • the network device may determine an antenna panel used for receiving an uplink signal corresponding to a downlink signal by transmitting an antenna panel used for the CSI-RS resource corresponding to the CSI-RS resource index; and / or,
  • the network device may determine the beam used for sending the SSB corresponding to the SSB index as the beam used for sending the uplink signal corresponding to the downlink signal; and / or,
  • the network device may determine the antenna panel used by the SSB corresponding to the square SSB index as the antenna panel used to send the uplink signal corresponding to the downlink signal.
  • the network device may select a beam corresponding to the PTRS port from at least one beam according to the PTRS port corresponding to the downlink signal, as a beam used for receiving an uplink signal corresponding to the downlink signal; and / or,
  • the network device may select an antenna panel corresponding to the PTRS port from at least one antenna panel according to the PTRS port corresponding to the downlink signal, as the antenna panel used for receiving the uplink signal corresponding to the downlink signal.
  • the network device may determine a beam corresponding to the PTRS port according to a PTRS port corresponding to the downlink signal and a correspondence between at least one beam and at least one PTRS port; and / or,
  • the network device may determine the antenna panel corresponding to the PTRS port according to the PTRS port corresponding to the downlink signal and the correspondence between the at least one antenna panel and the at least one PTRS port.
  • the antenna panel in the correspondence between the at least one antenna panel and the at least one PTRS port refers to the antenna panel on the network device.
  • the terminal device determining the space-related information of the uplink signal corresponding to the downlink signal according to at least one TCI state of the downlink signal may include: the terminal device determining the corresponding of the downlink signal according to a first TCI state of the at least one TCI state of the downlink signal. Spatially related information of the uplink signal.
  • the first TCI state may be any one of the following: a first TCI state in at least one TCI state, a second TCI state in at least one TCI state, and a TCI state including an SSB index in at least one TCI state ,
  • the TCI state corresponding to the first demodulation reference signal (DMRS) port group in at least one TCI state the TCI state corresponding to the second DMRS port group in at least one TCI state, and at least one TCI state
  • the TCI state of the first PTRS port is included, and the TCI state of the second PTRS port is included in at least one TCI state.
  • DMRS demodulation reference signal
  • the first TCI state may be agreed between the terminal device and the network device, or may be specified in an agreement.
  • the terminal device may select the first TCI state from the at least one TCI state, and determine the spatial related information of the uplink signal corresponding to the downlink signal according to the selected first TCI state.
  • one downlink signal may be sent by multiple TRPs or multiple antenna panels.
  • the downlink signal is PDSCH
  • the data carried by the PDSCH may be sent by multiple TRPs or multiple antenna panels, and the downlink signal PDSCH includes multiple TCI states.
  • a terminal device When a terminal device sends an uplink signal corresponding to the PDSCH, it may only need to send to one of the TRPs or an antenna panel. At this time, the terminal device may determine the spatial related information of the uplink signal corresponding to the downlink signal according to the first TCI state of the multiple TCI states of the downlink signal.
  • the TCI state first indicated by the network device may be the first TCI state
  • the second TCI state indicated by the network device may be the second TCI state
  • a network device indicates two TCI states in one downlink signaling.
  • the TCI state with the highest bit among the two TCI states can be understood as the first TCI state, and the TCI state with the lower bit can be understood as The second TCI state.
  • the first TCI state may be a TCI state including an SSB index in at least one TCI state, or a TCI state including a CSI-RS resource index in at least one TCI state, or may be in at least one TCI state.
  • the TCI status of the PTRS port of the included downstream signal may be a TCI state including an SSB index in at least one TCI state, or a TCI state including a CSI-RS resource index in at least one TCI state, or may be in at least one TCI state.
  • the terminal device may determine the spatial related information of the uplink signal corresponding to the downlink signal according to the TCI state corresponding to any one of the DMRS port groups in the at least one TCI state.
  • the terminal device may determine the space related information of the uplink signal corresponding to the downlink signal according to the TCI state corresponding to the first DMRS port group in the at least one TCI state.
  • the terminal device may determine the space related information of the uplink signal corresponding to the downlink signal according to the TCI state corresponding to the second DMRS port group in the at least one TCI state.
  • each TCI state in at least one TCI state corresponds to a DMRS port group
  • the network device may configure a TCI state corresponding to each DMRS port group in a signaling (for example, RRC signaling) for configuring each port group.
  • the network device may indicate N TCI states in the DCI, where the N DMRS port groups correspond to the N TCI states one to one. Among them, N is a positive integer.
  • the order of the DMRS port groups can be understood as the sequence number of the DMRS port groups.
  • the first TCI state may be a TCI state of any one of the PTRS ports included in the at least one TCI state.
  • the first TCI state may be the TCI state of the first PTRS port in at least one TCI state, or the first TCI state may be the TCI state of the second PTRS port in at least one TCI state.
  • the sequence of the PTRS ports can be understood as the sequence number of the PTRS ports.
  • the TRP or antenna panel corresponding to the first TCI may also be understood as a TRP or antenna panel used by a network device to send DCI carrying a TCI state carrying a downlink signal.
  • the network device may further configure spatial related information for an uplink signal corresponding to a downlink signal.
  • the terminal device may use the spatial related information configured by the network device to send the uplink signal corresponding to the downlink signal, or may use the spatial correlation determined by the method described above. Information to send the uplink signal corresponding to the downlink signal.
  • the terminal device uses the spatial related information configured by the network device to send the uplink signal corresponding to the downlink signal.
  • the terminal device may use the spatial related information determined by the method described above to send the uplink signal corresponding to the downlink signal.
  • the terminal device may use the spatial related information determined by the method described above to send the uplink signal corresponding to the downlink signal.
  • the terminal device Before the terminal device sends an uplink signal corresponding to the downlink signal to the network device, the terminal device can determine whether the beam correspondence is established.
  • Beam correspondence may refer to that when a terminal device receives a downlink signal using a beam in a certain direction, if it can also use the beam in that direction to send an uplink signal, it indicates that the beam correspondence is established, otherwise, the beam correspondence is not established.
  • the terminal device may use the spatial related information determined by the method described above to send the uplink signal corresponding to the downlink signal.
  • the terminal device preferentially uses the spatial related information configured by the network device to send the uplink signal corresponding to the downlink signal.
  • the beam correspondence may be a capability information of the terminal device, and the terminal device may report whether the beam correspondence is established to the network device. After the network device receives the message that the beam correspondence is established by the terminal device, it is no longer necessary to configure the terminal device with spatially related information of the uplink signal. At this time, the spatial related information used by the terminal device to send the uplink signal corresponding to the downlink signal may be determined according to the method described above.
  • the network device After the network device receives the message that the beam correspondence is not established by the terminal device, the network device can configure the terminal device with a space-related message for the uplink signal. At this time, the terminal device may use the spatial related information configured by the network device to send the uplink signal corresponding to the downlink signal.
  • the terminal device may not report to the network device whether the beam correspondence is established, and the network device may configure spatial related information for each uplink signal. At this time, the terminal device may select the spatial related information used for sending the uplink signal corresponding to the downlink signal according to whether the beam correspondence is established.
  • the terminal device may use the spatial related information determined by the method described above to send the uplink signal corresponding to the downlink signal.
  • the terminal device may use the spatial related information configured by the network device to send the uplink signal corresponding to the downlink signal.
  • the method in FIG. 2 further includes:
  • the terminal device determines the TCI status of the downlink signal by activating the MAC signaling of the downlink signal or triggering the DCI of the downlink signal according to the RRC signaling of the downlink signal.
  • FIG. 4 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application. As shown in FIG. 4, the terminal device 400 includes a communication unit 410 and a processing unit 420.
  • the communication unit 410 is configured to receive a downlink signal sent by a network device.
  • the processing unit 420 is configured to determine spatial related information of an uplink signal corresponding to the downlink signal according to at least one TCI state of the downlink signal.
  • the communication unit 410 is further configured to use the spatial related information to send an uplink signal corresponding to the downlink signal to the network device.
  • the downlink signal includes at least one of a physical downlink shared channel PDSCH, a physical downlink control channel PDCCH, and a channel state information reference signal CSI-RS
  • an uplink signal corresponding to the downlink signal includes at least one of the following: physical The uplink shared channel PUSCH, the physical uplink control channel PUCCH, and the sounding reference signal SRS.
  • the downlink signal is PDSCH
  • the uplink signal corresponding to the downlink signal is a physical uplink control channel PUCCH or a sounding reference signal SRS.
  • the downlink signal is a PDSCH
  • the uplink signal corresponding to the downlink signal is a PUCCH
  • the PUCCH is used to carry response ACK / negative response NACK information of the PDSCH.
  • the PUCCH is used to carry ACK / NACK information of multiple PDSCHs,
  • the processing unit 420 is specifically configured to determine the spatially related information of the PUCCH according to a TCI state of at least one PDSCH among the multiple PDSCHs.
  • the processing unit 420 is specifically configured to determine the spatially related information of the PUCCH according to a TCI state of a PDSCH received last of the plurality of PDSCHs.
  • the PUCCH is used to carry ACK / NACK information of multiple PDSCHs, the TCI states of the multiple PDSCHs are the same, and the processing unit 420 is specifically configured to determine the PUCCH according to the same TCI state Space related information.
  • the downlink signal is a PDSCH carrying radio resource control RRC signaling
  • the RRC signaling is used to configure channel state information CSI reporting
  • the uplink signal corresponding to the downlink signal is a PUCCH carrying the CSI report.
  • the downlink signal is a PDSCH carrying radio resource control RRC signaling
  • the RRC signaling is used to configure a sounding reference signal SRS
  • the uplink signal corresponding to the downlink signal is the configured SRS.
  • the downlink signal is a PDSCH carrying media access control MAC signaling
  • the MAC signaling is used to activate CSI reporting
  • the uplink signal corresponding to the downlink signal is a PUCCH carrying CSI reporting.
  • the downlink signal is a PDSCH carrying MAC signaling
  • the MAC signaling is used to activate an SRS signal
  • the uplink signal corresponding to the downlink signal is the activated SRS signal.
  • the downlink signal is a PDCCH
  • the uplink signal corresponding to the downlink signal is a physical uplink shared channel PUSCH, PUCCH, or SRS.
  • the downlink signal is a PDCCH carrying downlink control signaling DCI
  • an uplink signal corresponding to the downlink signal is a PUSCH
  • the PUSCH is used to carry the data scheduled by the DCI or the CSI report triggered by the DCI.
  • the downlink signal is a PDCCH carrying DCI
  • an uplink signal corresponding to the downlink signal is a PUCCH
  • the PUCCH is used to carry DCI triggered CSI reporting.
  • the downlink signal is a PDCCH carrying DCI
  • the uplink signal corresponding to the downlink signal is an SRS triggered by the DCI.
  • the downlink signal is a CSI-RS
  • the uplink signal corresponding to the downlink signal is PUSCH, PUCCH, or SRS.
  • the downlink signal is a CSI-RS
  • the uplink signal corresponding to the downlink signal is a PUSCH
  • the PUSCH is used to carry CSI obtained based on the CSI-RS measurement.
  • the downlink signal is CSI-RS
  • the uplink signal corresponding to the downlink signal is PUCCH or PUCCH
  • the PUCCH or PUCCH is used to carry CSI obtained based on the CSI-RS measurement.
  • the downlink signal is a CSI-RS
  • the uplink signal corresponding to the downlink signal is an SRS
  • a precoding vector of the SRS is determined based on the CSI-RS.
  • At least one TCI state of the downlink signal includes a resource index of a CSI-RS
  • the spatial related information is a beam or an antenna panel used to send an uplink signal corresponding to the downlink signal
  • the processing unit 420 specifically Configured to: determine a beam used to receive an SSB corresponding to the CSI-RS resource corresponding to the CSI-RS resource index as a beam used to send an uplink signal corresponding to the downlink signal; and / or, receive the CSI
  • the antenna panel used by the CSI-RS resource corresponding to the -RS resource index is determined as the antenna panel used to send the uplink signal corresponding to the downlink signal.
  • At least one TCI state of the downlink signal includes a synchronization signal block SSB index
  • the spatial correlation information is a beam or an antenna panel used to send an uplink signal corresponding to the downlink signal
  • the processing unit 420 specifically uses : Determining the beam used for receiving the SSB corresponding to the SSB index as the beam used for transmitting the uplink signal corresponding to the downlink signal; and / or, receiving the antenna panel used for the SSB corresponding to the SSB index, Determining an antenna panel for transmitting an uplink signal corresponding to the downlink signal.
  • At least one TCI state of the downlink signal includes a PTRS port corresponding to the downlink signal
  • the spatial related information is a beam or an antenna panel used to send an uplink signal corresponding to the downlink signal
  • the processing unit 420 is specifically used for:
  • an antenna panel corresponding to the PTRS port is selected from at least one antenna panel as an antenna panel for transmitting an uplink signal corresponding to the downlink signal.
  • processing unit 420 is specifically configured to:
  • processing unit 420 is specifically configured to:
  • the processing unit 420 is specifically configured to determine spatially related information of an uplink signal corresponding to the downlink signal according to a first TCI state of the at least one TCI state.
  • the first TCI state is any one of the following: a first TCI state of the at least one TCI state; a second TCI state of the at least one TCI state;
  • the at least one TCI state includes a TCI state of an SSB index; the at least one TCI state corresponds to a TCI state of a first demodulation reference signal demodulation reference signal DMRS port group; and the at least one TCI state corresponds to The TCI state of the second DMRS port group; the at least one TCI state includes the TCI state of the first PTRS port; the at least one TCI state includes the TCI state of the second PTRS port.
  • the processing unit 420 is further configured to determine that a spatial correspondence of the terminal device is established.
  • the processing unit 420 is further configured to determine at least one of the downlink signals according to RRC signaling configuring the downlink signals, activate MAC signaling of the downlink signals, or trigger DCI of the downlink signals. TCI status.
  • terminal device 400 may perform corresponding operations performed by the terminal device in the foregoing method 200, and for brevity, details are not described herein again.
  • FIG. 5 is a schematic block diagram of a network device 500 according to an embodiment of the present application. As shown in FIG. 5, the network device 500 includes a communication unit 510 and a processing unit 520.
  • the communication unit 510 is configured to send a downlink signal to a terminal device.
  • the processing unit 520 is configured to determine spatial related information of an uplink signal corresponding to the downlink signal according to at least one TCI state of the downlink signal.
  • the communication unit 510 is further configured to use the spatial related information to receive an uplink signal corresponding to a downlink signal sent by the terminal device.
  • the downlink signal includes at least one of a physical downlink shared channel PDSCH, a physical downlink control channel PDCCH, and a channel state information reference signal CSI-RS
  • an uplink signal corresponding to the downlink signal includes at least one of the following: physical The uplink shared channel PUSCH, the physical uplink control channel PUCCH, and the sounding reference signal SRS.
  • the downlink signal is PDSCH
  • the uplink signal corresponding to the downlink signal is a physical uplink control channel PUCCH or a sounding reference signal SRS.
  • the downlink signal is a PDSCH
  • the uplink signal corresponding to the downlink signal is a PUCCH
  • the PUCCH is used to carry response ACK / negative response NACK information of the PDSCH.
  • the PUCCH is used to carry ACK / NACK information of multiple PDSCHs
  • the processing unit 520 is specifically configured to determine a spatial correlation of the PUCCH according to a TCI state of at least one PDSCH among the multiple PDSCHs information.
  • the processing unit 520 is specifically configured to determine the spatially related information of the PUCCH according to a TCI state of a PDSCH that is last sent among the multiple PDSCHs.
  • the downlink signal is a PDSCH carrying radio resource control RRC signaling
  • the RRC signaling is used to configure channel state information CSI reporting
  • the uplink signal corresponding to the downlink signal is a PUCCH carrying the CSI report.
  • the downlink signal is a PDSCH carrying unlimited resource control RRC signaling
  • the RRC signaling is used to configure a sounding reference signal SRS
  • the uplink signal corresponding to the downlink signal is the configured SRS.
  • the downlink signal is a PDSCH carrying radio resource control RRC signaling
  • the RRC signaling is used to configure a sounding reference signal SRS
  • the uplink signal corresponding to the downlink signal is SRS.
  • the downlink signal is a PDSCH carrying media access control MAC signaling
  • the MAC signaling is used to activate CSI reporting
  • the uplink signal corresponding to the downlink signal is a PUCCH carrying CSI reporting.
  • the downlink signal is a PDSCH carrying MAC signaling
  • the MAC signaling is used to activate an SRS signal
  • the uplink signal corresponding to the downlink signal is the activated SRS signal.
  • the downlink signal is a PDCCH
  • the uplink signal corresponding to the downlink signal is a physical uplink shared channel PUSCH, PUCCH, or SRS.
  • the downlink signal is a PDCCH carrying downlink control signaling DCI
  • an uplink signal corresponding to the downlink signal is a PUSCH
  • the PUSCH is used to carry the data scheduled by the DCI or the CSI report triggered by the DCI.
  • the downlink signal is a PDCCH carrying DCI
  • an uplink signal corresponding to the downlink signal is a PUCCH
  • the PUCCH is used to carry DCI triggered CSI reporting.
  • the downlink signal is a PDCCH carrying DCI
  • the uplink signal corresponding to the downlink signal is an SRS triggered by the DCI.
  • the downlink signal is a CSI-RS
  • the uplink signal corresponding to the downlink signal is PUSCH, PUCCH, or SRS.
  • the downlink signal is a CSI-RS
  • the uplink signal corresponding to the downlink signal is a PUSCH or a PUCCH
  • the PUSCH or the PUCCH is used to carry CSI measured based on the CSI-RS.
  • the downlink signal is a CSI-RS
  • the uplink signal corresponding to the downlink signal is a PUCCH
  • the PUCCH is used to carry CSI measured based on the CSI-RS.
  • the downlink signal is a CSI-RS
  • the uplink signal corresponding to the downlink signal is an SRS
  • a precoding vector of the SRS is determined based on the CSI-RS.
  • At least one TCI state of the downlink signal includes a resource index of a CSI-RS
  • the spatial related information is a beam or an antenna panel used to receive an uplink signal corresponding to the downlink signal
  • the processing unit 520 specifically And configured to: determine a beam used for transmitting an SSB corresponding to the CSI-RS resource corresponding to the CSI-RS resource index as a beam for receiving an uplink signal corresponding to the downlink signal; and / or, send the CSI
  • the antenna panel used for the CSI-RS resource corresponding to the -RS resource index is determined as the antenna panel used to receive the uplink signal corresponding to the downlink signal.
  • At least one TCI state of the downlink signal includes a synchronization signal block SSB index
  • the spatial correlation information is a beam or an antenna panel used to receive an uplink signal corresponding to the downlink signal
  • the processing unit 520 is specifically used : Determining the beam used to send the SSB corresponding to the SSB index as the beam used to receive the uplink signal corresponding to the downlink signal; and / or the antenna panel used to send the SSB corresponding to the SSB index, Determining an antenna panel for receiving an uplink signal corresponding to the downlink signal.
  • At least one TCI state of the downlink signal includes a PTRS port corresponding to the downlink signal, and the spatial related information is a beam or an antenna panel used to send the uplink signal corresponding to the downlink signal, and the processing unit 520 specifically Used for:
  • an antenna panel corresponding to the PTRS port is selected from at least one antenna panel as an antenna panel for receiving an uplink signal corresponding to the downlink signal.
  • processing unit 520 is specifically configured to:
  • An antenna panel corresponding to the PTRS port is determined according to a PTRS port corresponding to the downlink signal and a correspondence between at least one antenna panel and at least one PTRS port.
  • the processing unit 520 is specifically configured to determine spatially related information of an uplink signal corresponding to the downlink signal according to a first TCI state of the at least one TCI state.
  • the first TCI state is any one of the following: a first TCI state of the at least one TCI state; a second TCI state of the at least one TCI state;
  • the at least one TCI state includes a TCI state of an SSB index; the at least one TCI state corresponds to a TCI state of a first demodulation reference signal demodulation reference signal DMRS port group; and the at least one TCI state corresponds to The TCI state of the second DMRS port group; the at least one TCI state includes the TCI state of the first PTRS port; the at least one TCI state includes the TCI state of the second PTRS port.
  • the communication unit 510 is further configured to receive a message that the spatial correspondence is established, which is sent by the terminal device.
  • the network device 500 may perform corresponding operations performed by the network device in the foregoing method 300, and for brevity, details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the terminal device in each method in the embodiments of the present application. For brevity, details are not described herein again. .
  • the communication device 600 may specifically be a network device according to the embodiment of the present application, and the communication device 600 may implement a corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not described herein again. .
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip may be applied to the terminal device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system, or a system-on-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • FIG. 8 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 is configured to report to the network device an identifier of at least one capability group to which the capabilities supported by the terminal device belong.
  • the network device 820 is configured to receive an identifier of at least one capability group to which a capability supported by the terminal device reported by the terminal device belongs.
  • the terminal device 810 may be used to implement the corresponding functions implemented by the terminal device in the method in FIG. 2, and the composition of the terminal device 810 may be shown in the terminal device 400 in FIG. 4. More details.
  • the network device 820 may be used to implement the corresponding functions implemented by the network device in the method shown in FIG. 3, and the composition of the network device 820 may be shown as the network device 500 in FIG. 5. More details.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application. For simplicity, here No longer.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the terminal device in each method in the embodiment of the present application. More details.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to the terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the terminal device in each method in the embodiment of the present application. , Will not repeat them here.
  • B corresponding to (corresponding to) A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean determining B based on A alone, but also determining B based on A and / or other information.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or may be combined. Integration into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or compact discs, and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送上行信号的方法及设备,在终端设备向网络设备发送下行信号对应的上行信号时,能够保证通信质量。该方法包括:终端设备接收网络设备发送的下行信号;所述终端设备根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息;所述终端设备根据所述空间相关信息向所述网络设备发送所述下行信号对应的上行信号。

Description

发送上行信号的方法和设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种发送上行信号的方法和设备。
背景技术
在新无线(new radio,NR)系统中,网络设备可以使用一个或多个传输点(transmission/reception point,TRP)或天线面板独立地给终端设备发送下行信号,终端设备在向网络设备发送下行信号对应的上行信号时,需要向发送该下行信号的TRP或天线面板来发送。如何发送上行信号从而保证通信质量是个亟需解决的问题。
发明内容
本申请实施例提供一种发送上行信号的方法及设备,可以在终端设备向网络设备发送下行信号对应的上行信号时,保证通信质量。
第一方面,提供了一种发送上行信号的方法,所述方法包括:终端设备接收网络设备发送的下行信号;所述终端设备根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息;所述终端设备根据所述空间相关信息向所述网络设备发送所述下行信号对应的上行信号。
第二方面,提供了一种发送上行信号的方法,所述方法包括:网络设备向终端设备发送下行信号;所述网络设备根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息;所述网络设备根据所述空间相关信息接收所述终端设备发送的下行信号对应的上行信号。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
本申请实施例提供的技术方案中,下行信号对应的上行信号的空间相关信息是根据下行信号的TCI状态来确定。由于下行信号的TCI状态与发送下行信号的TRP或天线面板相关联,不同的TRP或天线面板具有各自独立的TCI状态。这样,通过下行信号的TCI状态确定的下行信号对应的上行信号的空间相关信息也是与TRP或天线面板相关联的,因此,终端设备基于该空间相关信息发送下行信号对应的上行信号时,能够对准发送下行信号的TRP或天线面板,保证了终端设备通过TRP或天线面板接收信号的质量,从而能够保证通信质量。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种发送上行信号的方法的示意图。
图3是本申请实施例提供的另一种发送上行信号的方法的示意图。
图4是本申请实施例提供的终端设备的示意性框图。
图5是本申请实施例提供的网络设备的示意性框图。
图6是本申请实施例提供的通信设备的示意性框图。
图7是本申请实施例提供的芯片的示意性框图。
图8是本申请实施例提供的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
示例性的,本申请实施例应用的通信系统100如图1所示。该无线通信系统100可以包括网络设备110。网络设备110可以是与终端设备通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是NR系统中的网络侧设备,或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、下一代网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。
终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。其中,可选地,终端设备120之间也可以进行终端直连(Device to Device,D2D)通信。
具体地,网络设备110可以为小区提供服务,终端设备120通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备110进行通信,该小区可以是网络设备110(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限 定。可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
以NR系统为例,网络设备可以为每个下行信号配置相应的传输配置指示(transmission configuration indicator,TCI)状态,终端设备可以基于此配置进行下行信号的接收。
可选地,一个TCI状态中可以包含以下中的至少一个:信道状态信息参考信号(channel state information reference signal,CSI-RS)资源的索引、同步信号块(synchronization signal block,SSB)索引和PTRS端口。
其中,CSI-RS资源的索引可以为CSI-RS资源的身份(identity,ID)。
不同的CSI-RS可以由不同的资源来发送,不同的SRS也可以由不同的资源来发送。
可选地,终端设备可以基于TCI状态中的CSI-RS资源索引和/或SSB索引来确定下行信号的空间接收参数,该空间接收参数可以用于指示接收所述下行信号所使用的波束或者天线面板(panel)。
以CSI-RS为例,网络设备可以使用不同的波束向终端设备发送多个CSI-RS,终端设备可以根据CSI-RS的接收情况,向网络设备上报选择CSI-RS。
可选地,终端设备可以向网络设备上报接收质量最好的CSI-RS的CSI-RS资源的索引。或者终端设备可以向网络设备上报至少一个CSI-RS资源上的接收质量,该上报信息中包括至少一个CSI-RS资源的索引值以及该资源上的信号接收质量等。
之后,网络设备在发送下行信号时,可以为每个下行信号配置TCI状态,TCI状态中包括CSI-RS资源的索引。终端设备可以假设下行信号与该CSI-RS资源上的CSI-RS采用相同的波束,从而采用与所述CSI-RS资源相同的接收波束来接收该下行信号。
以SRS为例,终端设备可以采用不同的波束向网络设备发送多个SRS,网络设备可以根据SRS的接收质量,向终端设备发送SRS资源指示信息,指示其中接收质量最好的SRS资源,从而令终端设备使用发送该SRS资源的波束来发送后续的其他信号。
上文是以波束为例,对终端设备根据下行信号的至少一个TCI状态来确定接收下行信号所采用的波束进行描述。对于天线面板来说,也同样适用于此方法。
以CSI-RS为例,网络设备可以使用不同的天线面板来发送多个CSI-RS,终端设备可以采用不同的天线面板来接收CSI-RS。之后,网络设备可以在发送的下行信号的至少一个TCI状态中指示一个CSI-RS资源的索引,终端设备可以根据该CSI-RS资源的索引确定接收该CSI-RS资源上的CSI-RS所使用的天线面板,并采用该天线面板来接收下行信号。
以SRS为例,终端设备可以使用不同的天线面板来发送多个SRS,网络设备可以根据SRS的接收质量,向终端设备发送SRS资源指示信息,指示其中接收质量最好的SRS资源,从而令终端设备使用发送该SRS资源的天线面板来发送后续的其他信号。
需要说明的是,本申请实施例中的波束可以是由天线面板来形成的,一个方向上的波束也可以是由多个天线面板来形成,也可以是由一个天线面板来形成。一个天线面板可以形成一个方向的波束,也可以形成不同方向的波束。
可选地,本申请实施例中的波束也可以称为空间域传输滤波器(spatial domain transmission filter)。
如果网络设备在某个下行信号的至少一个TCI状态中指示了一个CSI-RS资源,则终端设备可以假设该下行信号与该CSI-RS资源采用相同的波束或天线面板,从而终端设备可以采用接收该CSI-RS资源所采用的波束或天线面板来接收该下行信号。
如果网络设备在某个下行信号中指示了一个SSB索引,则终端设备可以假设该下行信号与该SSB索引所指示的SSB采用相同的波束或天线面板,从而终端设备可以采用发送该SSB所采用的波束来接收该下行信号。
以NR系统为例,网络设备可以采用多个TRP、天线面板或波束独立地向终端设备发送多个下行信号,终端设备可能需要向该多个TRP、天线面板或波束分别发送下行信号对应的上行信号。在接收下行信号时,终端设备可以采用不同的天线面板或波束来接收不同的下行信号。如果终端设备发送下行信号对应的上行信号所采用的波束或天线面板与接收下行信号所采用的波束或天线面板不同时,则终端设备发送下行信号对应的上行信号所使用的波束可能会没有对准对应的TRP或天线面板,导致发送给对应的TRP或天线面板的上行信号的传输性能较差。
本申请实施例提供了一种传输上行信号的方法和设备,能够保证终端设备上行传输的可靠性。
图2是本申请实施例提供的一种传输上行信号的方法的示意图。图2的方法包括步骤210-230。
在步骤210中,终端设备接收网络设备发送的下行信号。
可选地,该下行信号可以为以下中的至少一个:物理下行共享信道(physical downlink shared channel,PDSCH),物理下行控制信道(physical downlink control channel,PDCCH),或CSI-RS等。
其中,PDSCH可以用于承载数据信息或高层信令等。例如,PDSCH可以用于传输数据,或者PDSCH可以用于承载无线资源控制(radio resource control,RRC)信令,或者PDSCH可以用于承载介质访问控制(medium access control,MAC)信令。
PDCCH可以用于承载调度信息或控制信息,例如,PDCCH可以承载下行控制信令(downlink control information,DCI),DCI可用于对上行传输进行调度。
终端设备接收网络设备发送的下行信号时,可以根据该下行信号对应的TCI状态来接收。
可选地,终端设备可以根据下行信号的至少一个TCI状态中的CSI-RS资源索引SSB索引来接收下行信号。终端设备可以采用接收所述索引指示的CSI-RS资源和/或SSB所使用的天线面板来接收所述下行信号,或者,终端设备可以采用接收所述索引指示的CSI-RS资源和/或SSB所使用的波束来接收下行信号。
在步骤220中,终端设备根据下行信号的至少一个TCI状态来确定下行信号对应的上行信号的空间相关信息。
该空间相关信息可以用于指示发送下行信号对应的上行信号所采用的波束或天线面板。
具体的,终端设备采用接收所述空间相关信息中包含的CSI-RS资源索引指示的CSI-RS资源,或者SSB索引指示的SSB所采用的天线面板panel或者波束,来发送所述下行信号对应的上行信号。
下行信号对应的上行信号可以包括以下中的至少一个:物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)和探测参考信号(sounding reference signal,SRS)。
在步骤230中,终端设备采用该空间相关信息向网络设备发送该下行信号对应的上行信号。
本申请实施例提供的技术方案中,下行信号对应的上行信号的空间相关信息是根据下行信号的TCI状态来确定。由于下行信号的TCI状态与发送下行信号的TRP或天线面板相关联,不同的TRP或天线面板具有各自独立的TCI状态。这样,通过下行信号的TCI状态确定的下行信号对应的上行信号的空间相关信息也是与TRP或天线面板相关联的,因此,终端设备基于该空间相关信息发送下行信号对应的上行信号时,能够对准发送下行信号的TRP或天线面板,保证了终端设备通过TRP或天线面板接收信号的质量,从而能够保证通信质量。
图3是本申请实施例提供的另一种上行信号的传输方法的示意图,图3的方法包括步骤310-330。
在步骤310中,网络设备向终端设备发送下行信号。
可选地,该下行信号可以为PDSCH,PDCCH,和/或CSI-RS等。
其中,PDSCH可以用于承载数据信息或高层信令等。例如,PDSCH可以用于传输数据,或者PDSCH可以用于承载RRC信令,或者PDSCH可以用于承载MAC信令。
PDCCH可以用于承载调度信息或控制信息,例如,PDCCH可以承载DCI,DCI可用于对上行传输进行调度。
在步骤320中,网络设备根据下行信号的TCI状态确定下行信号对应的上行信号的空间相关信息。
下行信号对应的上行信号可以包括以下中的至少一个:PUSCH、PUCCH和SRS。
该空间相关信息可以用于指示接收下行信号对应的上行信号所采用的波束和/或天线面板。
网络设备可以为每个下行信号配置TCI状态,网络设备在接收终端设备发送的下行信号对应的上行信号时,可以根据该下行信号的TCI状态来确定下行信号对应的上行信号的空间相关信息。
在步骤330中,网络设备采用该空间相关信息接收终端设备发送的下行信号对应的上行信号。
本申请实施例提供的技术方案中,下行信号对应的上行信号的空间相关信息是根据下行信号的TCI状态来确定。由于下行信号的TCI状态与发送下行信号的TRP或天线面板相关联,不同的TRP或天线面板具有各自独立的TCI状态。这样,通过下行信号的TCI状态确定的下行信号对应的上行信号的空间相关信息也是与TRP或天线面板相关联的,因此,终端设备基于该空间相关信息发送下行信号对应的上行信号时,能够对准发送下行信号的TRP或天线面板,保证了终端设备通过TRP或天线面板接收信号的质量,从而能够保证通信质量。
上行信号与下行信号有多种对应关系,下面对下行信号对应的上行信号的多种形式进行详细描述。
应理解,下文的描述可以适用于图2所示的方法,也可以适用于图3所示的方法。
在下行信号为PDSCH的情况下,下行信号对应的上行信号可以为PUCCH或者SRS。
作为一个示例,下行信号PDSCH可以承载用户数据信息,终端设备可能需要对PDSCH的接收情况向网络设备进行数据对应的应答(acknowledgment,ACK)/否定应答(negative-acknowledgment,NACK)反馈。此时,下行信号对应的上行信号可以为PUCCH,该PUCCH用于承载PDSCH的ACK/NACK反馈信息。
网络设备可以采用不同的波束向终端设备发送多个PDSCH,此时终端设备可能需要根据该多个PDSCH中每个PDSCH的接收情况,向网络设备进行ACK/NACK反馈。
例如,网络设备可以采用不同的波束向终端设备发送第一PDSCH和第二PDSCH,终端设备对第一PDSCH进行ACK/NACK反馈时,可以采用第一PUCCH承载第一PDSCH的ACK/NACK反馈信息。在发送第一PUCCH时,终端设备可以根据第一PDSCH的TCI状态来确定第一PUCCH的空间相关信息,然后可以采用该第一PUCCH的空间相关信息来发送第一PUCCH。
同样地,终端设备在对第二PDSCH进行ACK/NACK反馈时,可以采用第二PUCCH承载第二PDSCH的ACK/NACK反馈信息。在发送第二PUCCH时,终端设备可以根据第二PDSCH的TCI状态来确定第二PUCCH的空间相关信息,然后可以采用该第二PUCCH的空间相关信息来发送第二PUCCH。
可选地,当终端设备接收到网络设备发送的多个PDSCH后,可以采用上文描述的对每一个PDSCH进行反馈时,都采用一个独立的PUCCH进行ACK/NACK反馈的方式,也可以将多个PDSCH的ACK/NACK反馈信息承载在一个PUCCH上进行反馈。
终端设备可以采用不同的波束来接收多个PDSCH,针对该多个PDSCH,终端设备可以将该多个PDSCH中的至少两个PDSCH的ACK/NACK反馈信息承载在一个PUCCH上,然后向网络设备发送该PUCCH。
步骤220可以进一步包括:终端设备可以根据多个下行信号中的至少一个下行信号的TCI状态来确定下行信号对应的上行信号的空间相关信息。也就说,终端设备可以根据多个PDCSH中的至少一个PDSCH的TCI状态来确定PUCCH的空间相关信息。
优选地,PUCCH所采用的空间相关信息可以根据该多个PDSCH中最后一个接收的PDSCH的TCI状态来确定。
网络设备可以采用不同的波束向终端设备发送第一PDSCH和第二PDSCH,终端设备针对该第一PDSCH和第二PDSCH进行ACK/NACK反馈时,可以将该两个ACK/NACK反馈信息承载在一个PUCCH上向网络设备发送。该PUCCH所采用的空间相关信息可以是根据第一PDSCH的TCI状态来确定的,也可以是根据第二PDSCH的TCI状态来确定的。
如果终端设备接收第二PDSCH的时间晚于第一PDSCH,则终端设备可以优先采用第二PDSCH的TCI状态确定的空间相关信息来发送该PUCCH。
可选地,当多个PDSCH的TCI状态相同时,终端设备可以将该多个PDSCH的ACK/NACK反馈信息承载在一个PUCCH上,并将该PUCCH发送给网络设备。终端设备发送该PUCCH所使用的空间相关信息可以是根据该相同的TCI状态来确定的。
作为另一个示例,PDSCH可以承载RRC信令,该RRC信令可以用于配置CSI上报。终端设备收到该PDSCH后,可以向网络设备发送PUCCH,该PUCCH用于承载所配置的CSI上报的信息。此时,下行信号为承载RRC信令的PDSCH,下行信号对应的上行信号为承载对应CSI上报的PUCCH。
RRC信令还可以配置CSI上报的周期和/或上报方式等。
终端设备可以按照RRC信令所配置的CSI的周期,周期性地向网络设备进行CSI上报,和/或终端设备可以按照RRC信令所配置的上报方式向网络设备进行CSI上报。
可选地,PDSCH中承载的RRC信令也可以用于配置SRS。终端设备收到该PDSCH后,可以向网络设备发送周期性SRS。此时,下行信号为承载RRC信令的PDSCH,下行信号对应的上行信号为RRC信令配置的SRS。
RRC信令还可以配置SRS的周期,和/或发送方式等。
终端设备可以按照RRC信令配置的SRS的周期,周期性地向网络设备发送SRS,和/或终端设备可以按照RRC信令配置的发送方式向网络设备发送SRS。
作为又一示例,PDSCH也可以承载MAC信令,该MAC信令可以用于激活CSI上报。终端设备收到该PDSCH后,可以向网络设备发送PUCCH,该PUCCH用于承载所激活的CSI上报的信息。此时,下行信号为承载MAC信令的PDSCH,下行信号对应的上行信号为承载CSI上报的PUCCH。
可选地,PDSCH中承载的MAC信令还可以用于激活SRS。终端设备收到该PDSCH后,可以向网络设备发送SRS。此时,下行信号为承载MAC信令的PDSCH,下行信号对应的上行信号为MAC信令激活的SRS。
在下行信号为PDCCH的情况下,该下行信号对应的上行信号可以为PUSCH、PUCCH和/或SRS。
可选地,该PDCCH可以用于承载DCI。
该DCI可以用于调度数据传输,该数据传输可以承载在PUSCH上。此时,下行信号PDCCH对应的上行信号为承载数据传输的PUSCH。
该DCI可以用于触发CSI上报,终端设备测量得到的CSI可以承载在PUSCH上,也可以承载在PUCCH上。此时,下行信号PDCCH对应的上行信号为承载CSI上报的PUSCH或PUCCH。
该DCI可以用于触发SRS,终端设备可以基于该DCI向网络设备发送SRS。此时,下行信号PDCCH对应的上行信号为DCI触发的SRS。
在下行信号为CSI-RS的情况下,下行信号对应的上行信号为PUSCH、PUCCH或SRS。
终端设备可以基于CSI-RS对CSI进行测量,并将测量得到的CSI承载在PUSCH或PUCCH上。此时,下行信号CSI-RS对应的上行信号为承载CSI的PUSCH或PUCCH。
在下行信号为CSI-RS的情况下,下行信号对应的上行信号可以为SRS,其中,SRS的预编码向量是根据从CSI-RS测量得到的信道信息确定的。
可选地,终端设备在发送SRS之前,可以根据预设的至少一个CSI-RS与至少一个SRS的对应关系,选择要向网络设备发送的SRS。
至少一个CSI-RS与至少一个SRS的对应关系可以指,发送CSI-RS的CSI-RS资源与发送SRS的SRS资源的对应。例如,网络设备可以通过高层信令为不同的SRS资源配置不同的CSI-RS资源,用于得到该SRS资源的预编码向量。
网络设备可以为每个下行信号配置对应的TCI状态,下行信号的TCI状态中可以包括CSI-RS资源索引、SSB索引、相位跟踪参考信号(phase tracking reference signals,PTRS)端口中的至少一个。终端设备根据下行信号的至少一个TCI状态确定下行信号对应的上行信号的空间相关信息,可以指终端设备根据下行信号的至少一个TCI状态中包括的CSI-RS资源索引、SSB索引、下行号对应的PTRS端口中的至少一个,来确定下行信号对应的上行信号的空间相关信息。
具体地,终端设备可以将下行信号的至少一个TCI状态中包括的CSI-RS资源索引、SSB索引和/或PTRS端口,作为所述下行信号对应的上行信号的空间相关信息。
需要说明的是,下行信号的至少一个TCI状态中的每个TCI状态中都可以包括CSI-RS资源索引,SSB索引,PTRS端口中的至少一个。
可选地,该下行信号对应的上行信号的空间相关信息可以用于指示发送下行信号对应的上行信号所采用的波束或天线面板。
具体地,终端设备发送下行信号对应的上行信号所采用的波束可以为终端设备接收所述空间相关信息中包含的下行信号所采用的波束。
需要说明的是,该空间相关信息中包含的下行信号可以为CSI-RS或SSB。
例如,终端设备发送下行信号对应的上行信号所采用的波束,可以与接收TCI状态中的CSI-RS资源索引所指示的CSI-RS资源所采用的波束相同。终端设备将接收CSI-RS资源索引对应的CSI-RS资源所采用的波束,确定为下行信号对应的上行信号所用的波束。
又例如,终端设备发送下行信号对应的上行信号所采用的波束可以与TCI状态中的SSB索引所指示的SSB所采用的波束相同。终端设备将接收SSB索引对应的SSB所采用的波束,确定为下行信号对应的上行信号所用的波束。
又例如,终端设备发送下行信号对应的上行信号所采用的波束可以与TCI状态中包括的PTRS端口对应的波束相同。
可选地,该下行信号的TCI状态中可以包括所述下行信号对应的PTRS端口。空间相关信息可以为发送下行信号对应的上行信号所使用的波束。
终端设备可以先确定至少一个波束,终端设备可以根据下行信号对应的PTRS端口,从所述至少一个波束中选择该PTRS端口对应的波束,并将该波束作为发送下行信号对应的上行信号所使用的波束。
具体地,终端设备可以根据PTRS端口,以及至少一个波束与至少一个PTRS端口的对应关系,确定PTRS端口对应的波束。其中,该至少一个波束与至少一个PTRS端口的对应关系可以是网络设备通过高层信令配置的,或者由终端侧自行确定的。
例如,如果终端设备支持两个下行PTRS端口,每个PTRS端口可以对应一个波束组,不同PTRS端口对应不同的波束组,终端设备可以根据所述PTRS端口,从对应的波束组中选择波束来发送所述下行信号对应的上行信号。
终端设备发送下行信号对应的上行信号所采用的天线面板可以为终端设备接收所述空间相关信息中包含的下行信号所采用的天线面板。
例如,终端设备发送下行信号对应的上行信号所采用的天线面板可以与接收TCI状态中的CSI-RS资源索引所指示的CSI-RS资源所采用的天线面板相同。终端设备将接收CSI-RS资源索引对应的CSI-RS资源所采用的天线面板,确定为下行信号对应的上行信号所用的天线面板。
又例如,终端设备发送下行信号对应的上行信号所采用的天线面板可以与TCI状态中的SSB索引所指示的SSB所采用的天线面板相同。终端设备将接收SSB索引对应的SSB所采用的天线面板,确定为下行信号对应的上行信号所用的天线面板。
又例如,终端设备发送下行信号对应的上行信号所采用的天线面板可以与TCI状态中包括的PTRS端口对应的天线面板相同。
终端设备可以包括至少一个天线面板,终端设备可以根据下行信号对应的PTRS端口,从至少一个天线面板中选择该PTRS端口对应的天线面板,作为发送下行信号对应的上行信号所用的天线面板。
具体地,终端设备可以根据PTRS端口,以及至少一个天线面板与至少一个PTRS端口的对应关系,确定PTRS端口对应的天线面板。其中,该至少一个天线面板与至少一个PTRS端口的对应关系可以是网络设备通过高层信令配置的,或者也可以是终端设备自行确定的。
例如,如果终端支持两个下行PTRS端口,每个PTRS端口可以对应一个天线面板,不同PTRS端口对应不同的天线面板,终端根据所述PTRS端口,从对应的天线面板上发送所述下行信号对应的上行信号。
应理解,该至少一个天线面板与至少一个PTRS端口的对应关系中的天线面板指的是终端设备的天线面板。
本申请实施例提供的技术方案中,终端设备接收下行信号和发送上行信号所使用的波束和/或天线面板都是根据下行信号的TCI状态来确定的,终端设备接收下行信号所使用的波束和/或天线面板与发送下行信号对应的上行信号所使用的波束和/或天线面板相同,从而能够保证上下行传输使用相同方向的波束或天线面板,保证终端设备上下行传输的可靠性。
同样地,网络设备确定下行信号对应的上行信号所采用的波束或天线面板的方式,可以参照上文描述的终端设备确定下行信号对应的上行信号所采用的波束或天线面板的方式。
可选地,下行信号的至少一个TCI状态中的每个TCI状态中可以包括以下中的至少一种:CSI-RS资源索引、SSB索引和下行信号对应的PTRS端口,空间相关信息为接收所述下行信号对应的上行信号所用的波束或者天线面板,网络设备根据下行信号的至少一个TCI状态确定下行信号对应的上行信号的空间相关信息,包括:
网络设备可以将发送CSI-RS资源索引对应的CSI-RS资源所采用的波束,确定为接收下行信号对应的上行信号所用的波束;和/或,
网络设备可以将发送CSI-RS资源索引对应的CSI-RS资源所采用的天线面板,确定为接收下行信号对应的上行信号所用的天线面板;和/或,
网络设备可以将发送SSB索引对应的SSB所采用的波束,确定为发送下行信号对应的上行信号所用的波束;和/或,
网络设备可以将方SSB索引对应的SSB所采用的天线面板,确定为发送下行信号对应的上行信号所用的天线面板。
网络设备可以根据下行信号对应的PTRS端口,从至少一个波束中选择PTRS端口对应的波束,作为接收所述下行信号对应的上行信号所用的波束;和/或,
网络设备可以根据下行信号对应的PTRS端口,从至少一个天线面板中选择与PTRS端口对应的天线面板,作为接收下行信号对应的上行信号所用的天线面板。
具体地,网络设备可以根据所述下行信号对应的PTRS端口,以及至少一个波束与至少一个PTRS端口的对应关系,确定所述PTRS端口对应的波束;和/或,
网络设备可以根据下行信号对应的PTRS端口,以及至少一个天线面板与至少一个PTRS端口的对应关系,确定所述PTRS端口对应的天线面板。
应理解,至少一个天线面板与至少一个PTRS端口的对应关系中的天线面板指的是网络设备上的天线面板。
可选地,终端设备根据下行信号的至少一个TCI状态确定下行信号对应的上行信号的空间相关信息,可以包括:终端设备根据下行信号的至少一个TCI状态中的第一TCI状态来确定下行信号对应的上行信号的空间相关信息。
其中,该第一TCI状态可以为以下中的任意一个:至少一个TCI状态中的第一个TCI状态,至少一个TCI状态中的第二个TCI状态,至少一个TCI状态中包含SSB索引的TCI状态,至少一个TCI状态中对应于第一个解调参考信号(demodulation reference signal,DMRS)端口组的TCI状态,至少一个TCI状态中的对应于第二个DMRS端口组的TCI状态,至少一个TCI状态中包含第一个PTRS端口的TCI状态,和至少一个TCI状态中包含第二个PTRS端口的TCI状态。
可选地,该第一TCI状态可以是终端设备与网络设备约定好的,或者是协议中规定的。
可选地,终端设备可以从该至少一个TCI状态中选择第一TCI状态,并根据选择的第一TCI状态来确定下行信号对应的上行信号的空间相关信息。
可选地,在一些实施例中,一个下行信号可以由多个TRP或多个天线面板来发送。例如,在下行信号为PDSCH时,PDSCH所承载的数据可以由多个TRP或多个天线面板来发送,该下行信号PDSCH包含多个TCI状态。
终端设备发送该PDSCH对应的上行信号时,可以只需要向其中一个TRP或天线面板来发送。此时,终端设备可以根据下行信号的多个TCI状态中的第一TCI状态来确定下行信号对应的上行信号的空间相关信息。
可选地,至少一个TCI状态中网络设备首先指示的TCI状态可以为第一个TCI状态,网络设备第二个指示的TCI状态可以为第二个TCI状态。
例如,网络设备在一个下行信令中指示了两个TCI状态,可以将该两个TCI状态中比特位靠前的TCI状态理解为第一个TCI状态,将比特位靠后的TCI状态理解为第二个TCI状态。
可选地,第一TCI状态可以为至少一个TCI状态中包含SSB索引的TCI状态,或者也可以为至少一个TCI状态中包含CSI-RS资源索引的TCI状态,或者也可以为至少一个TCI状态中包含的下行信号的PTRS端口的TCI状态。
可选地,终端设备可以根据至少一个TCI状态中与任意一个DMRS端口组对应的TCI状态,来确定下行信号对应的上行信号的空间相关信息。
例如,终端设备可以根据至少一个TCI状态中与第一个DMRS端口组对应的TCI状态,确定下行信号对应的上行信号的空间相关信息。或者,终端设备可以根据至少一个TCI状态中与第二个DMRS端口组对应的TCI状态,确定下行信号对应的上行信号的空间相关信息。
可选地,至少一个TCI状态中每个TCI状态对应一个DMRS端口组,网络设备可以在配置每个端口组的信令(例如RRC信令)中,配置每个DMRS端口组对应的TCI状态。
或者,如果终端设备配置了N个DMRS端口组,网络设备可以在DCI中指示N个TCI状态,其中,N个DMRS端口组与N个TCI状态一一对应。其中,N为正整数。
其中,DMRS端口组的顺序可以理解为DMRS端口组的序号。
可选地,第一TCI状态可以为至少一个TCI状态中包含的任意一个PTRS端口的TCI状态。例如,第一TCI状态可以为至少一个TCI状态中包含第一个PTRS端口的TCI状态,或者第一TCI状态可以为至少一个TCI状态中包含第二个PTRS端口的TCI状态。
其中,PTRS端口的顺序可以理解为PTRS端口的序号。
可选地,该第一TCI对应的TRP或天线面板也可以理解为网络设备发送承载下行信号的TCI状态的DCI所使用的TRP或天线面板。
可选地,网络设备还可以为下行信号对应的上行信号配置空间相关信息。
在网络设备为下行信号对应的上行信号配置空间相关信息的情况下,终端设备可以采用网络设备配置的空间相关信息来发送下行信号对应的上行信号,也可以采用上文描述的方法确定的空间相关信息来发送下行信号对应的上行信号。
作为一个实施例,在网络设备配置了空间相关信息的情况下,终端设备采用网络设备配置的空间相关信息来发送下行信号对应的上行信号。在网络设备没有配置空间相关信息的情况下,终端设备可以采用上文描述的方法确定的空间相关信息来发送下行信号对应的上行信号。
作为另一个实施例,不论网络设备是否配置了上行信号的空间相关信息,终端设备都可以采用上文描述的方法确定的空间相关信息来发送下行信号对应的上行信号。
在终端设备向网络设备发送下行信号对应的上行信号之前,终端设备可以确定波束对应性是否成立。
波束对应性可以指当终端设备采用某个方向的波束接收到下行信号后,如果也能够采用该方向的波束来发送上行信号时,表示波束对应性成立,否则,波束对应性不成立。
在该波束对应性成立的情况下,即使网络设备配置了上行信号的空间相关信息,终端设备也可以采用上文描述的方法确定的空间相关信息来发送下行信号对应的上行信号。
在波束对应性不成立的情况下,终端设备优先采用网络设备配置的空间相关信息来发送下行信号对应的上行信号。
可选的,波束对应性可以是终端设备的一种能力信息,终端设备可以将波束对应性是否成立上报给网络设备。当网络设备收到终端设备发送的波束对应性成立的消息后,可以不再给终端设备配置上行信号的空间相关信息。此时终端设备发送下行信号对应的上行信号所使用的空间相关信息,可以是根据上文描述的方法进行确定。
当网络设备收到终端设备发送的波束对应性不成立的消息后,网络设备可以为终端设备配置上行信号的空间相关消息。此时,终端设备可以采用网络设备配置的空间相关信息来发送下行信号对应的上行信号。
可选地,终端设备也可以不向网络设备上报波束对应性是否成立,网络设备可以为每个上行信号配置空间相关信息。此时,终端设备可以根据波束对应性是否成立来选择发送下行信号对应的上行信号所使用的空间相关信息。
例如,在波束对应性成立的情况下,终端设备可以使用上文描述的方法确定的空间相关信息来发送下行信号对应的上行信号。在波束对应性不成立的情况下,终端设备可以使用网络设备配置的空间相关信息来发送下行信号对应的上行信号。
可选地,在终端设备根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息之前,图2的方法还包括:
终端设备根据配置下行信号的RRC信令,激活该下行信号的MAC信令或者触发该下行信号的DCI,确定该下行信号的TCI状态。
图4是根据本申请实施例的终端设备400的示意性框图。如图4所示,该终端设备400包括通信单元410和处理单元420。
通信单元410,用于接收网络设备发送的下行信号。
处理单元420,用于根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息。
通信单元410,还用于采用所述空间相关信息向所述网络设备发送所述下行信号对应的上行信号。
可选地,所述下行信号包括以下中的至少一个:物理下行共享信道PDSCH、物理下行控制信道PDCCH和信道状态信息参考信号CSI-RS,下行信号对应的上行信号包括以下中的至少一个:物理上行共享信道PUSCH、物理上行控制信道PUCCH和探测参考信号SRS。
可选地,所述下行信号为PDSCH,所述下行信号对应的上行信号为物理上行控制信道PUCCH或探测参考信号SRS。
可选地,所述下行信号为PDSCH,所述下行信号对应的上行信号为PUCCH,所述PUCCH用于承载所述PDSCH的应答ACK/否定应答NACK信息。
可选地,所述PUCCH用于承载多个PDSCH的ACK/NACK信息,
可选地,处理单元420具体用于:根据所述多个PDSCH中的至少一个PDSCH的TCI状态,确定所述PUCCH的空间相关信息。
可选地,处理单元420具体用于:根据所述多个PDSCH中最后一个接收的PDSCH的TCI状态,确定所述PUCCH的空间相关信息。
可选地,所述PUCCH用于承载多个PDSCH的ACK/NACK信息,所述多个PDSCH的TCI状态相同,所述处理单元420具体用于:根据相同的所述TCI状态,确定所述PUCCH的空间相关信息。
可选地,所述下行信号为承载无线资源控制RRC信令的PDSCH,所述RRC信令用于配置信道状态信息CSI上报,所述下行信号对应的上行信号为承载所述CSI上报的PUCCH。
可选地,所述下行信号为承载无线资源控制RRC信令的PDSCH,所述RRC信令用于配置探测参考信号SRS,所述下行信号对应的上行信号为配置的所述SRS。
可选地,所述下行信号为承载介质访问控制MAC信令的PDSCH,所述MAC信令用于激活CSI上报,所述下行信号对应的上行信号为承载CSI上报的PUCCH。
可选地,所述下行信号为承载MAC信令的PDSCH,所述MAC信令用于激活SRS信号,所述下行信号对应的上行信号为激活的所述SRS信号。
可选地,所述下行信号为PDCCH,所述下行信号对应的上行信号为物理上行共享信道PUSCH、PUCCH或SRS。
可选地,所述下行信号为承载下行控制信令DCI的PDCCH,所述下行信号对应的上行信号为PUSCH,所述PUSCH用于承载所述DCI调度的数据或所述DCI触发的CSI上报。
可选地,所述下行信号为承载DCI的PDCCH,所述下行信号对应的上行信号为PUCCH,所述PUCCH用于承载DCI触发的CSI上报。
可选地,所述下行信号为承载DCI的PDCCH,所述下行信号对应的上行信号为所述DCI触发的SRS。
可选地,所述下行信号为CSI-RS,所述下行信号对应的上行信号为PUSCH、PUCCH或SRS。
可选地,所述下行信号为CSI-RS,所述下行信号对应的上行信号为PUSCH,所述PUSCH用于承载基于所述CSI-RS测量得到的CSI。
可选地,所述下行信号为CSI-RS,所述下行信号对应的上行信号为PUCCH或PUCCH,所述PUCCH或PUCCH用于承载基于所述CSI-RS测量得到的CSI。
可选地,所述下行信号为CSI-RS,所述下行信号对应的上行信号为SRS,所述SRS的预编码向量是基于所述CSI-RS确定的。
可选地,所述下行信号的至少一个TCI状态中包括CSI-RS的资源索引,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,所述处理单元420具体用于:将接收所述CSI-RS资源索引对应的CSI-RS资源对应的SSB所采用的波束,确定为发送所述下行信号对应的上行信号所用的波束;和/或,将接收所述CSI-RS资源索引对应的CSI-RS资源所采用的天线面板,确定为发送所述下行信号对应的上行信号所用的天线面板。
可选地,所述下行信号的至少一个TCI状态中包括同步信号块SSB索引,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,所述处理单元420具体用于:将接收所述SSB索引对应的SSB所采用的波束,确定为发送所述下行信号对应的上行信号所用的波束;和/或,将接收所述SSB索引对应的SSB所采用的天线面板,确定为发送所述下行信号对应的上行信号所用的天线面板。
可选地,所述下行信号的至少一个TCI状态中包括所述下行信号对应的PTRS端口,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,所述处理单元420具体用于:
根据所述下行信号对应的PTRS端口,从至少一个波束中选择所述PTRS端口对应的波束,作为发送所述下行信号对应的上行信号所用的波束;和/或,和/或
根据所述下行信号对应的PTRS端口,从至少一个天线面板中选择与所述PTRS端口对应的天线面板,作为发送所述下行信号对应的上行信号所用的天线面板。
可选地,所述处理单元420具体用于:
根据所述下行信号对应的PTRS端口,以及至少一个波束与至少一个PTRS端口的对应关系,确定所述PTRS端口对应的波束,其中,所述至少一个波束与至少一个PTRS端口的对应关系是所述网络设备通过高层信令配置的;
或者,所述处理单元420具体用于:
根据所述下行信号对应的PTRS端口,以及至少一个天线面板与至少一个PTRS端口的对应关系,确定所述PTRS端口对应的天线面板,其中,所述至少一个天线面板与至少一个PTRS端口的对应关系是所述网络设备通过高层信令配置的。
可选地,所述处理单元420具体用于:根据所述至少一个TCI状态中的第一TCI状态,确定所述下行信号对应的上行信号的空间相关信息。
可选地,所述第一TCI状态为以下中的任意一个:所述至少一个TCI状态中的第一个TCI状态;所述至少一个TCI状态中的第二个TCI状态;
所述至少一个TCI状态中包含SSB索引的TCI状态;所述至少一个TCI状态中对应于第一个解调参考信号解调参考信号DMRS端口组的TCI状态;所述至少一个TCI状态中对应于第二个DMRS端口组的TCI状态;所述至少一个TCI状态中包含第一个PTRS端口的TCI状态;所述至少一个TCI状态中包含第二个PTRS端口的TCI状态。
可选地,所述处理单元420还用于:确定所述终端设备的空间对应性成立。
可选地,所述处理单元420还用于:根据配置所述下行信号的RRC信令,激活所述下行信号的MAC信令或者触发所述下行信号的DCI,确定所述下行信号的至少一个TCI状态。
应理解,该终端设备400可以执行上述方法200中由终端设备执行的相应操作,为了简洁,在此不再赘述。
图5是根据本申请实施例的网络设备500的示意性框图。如图5所示,该网络设备500包括通信单元510和处理单元520。
通信单元510,用于向终端设备发送下行信号。
处理单元520,用于根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息。
通信单元510,还用于采用所述空间相关信息接收所述终端设备发送的下行信号对应的上行信号。
可选地,所述下行信号包括以下中的至少一个:物理下行共享信道PDSCH、物理下行控制信道PDCCH和信道状态信息参考信号CSI-RS,下行信号对应的上行信号包括以下中的至少一个:物理上行共享信道PUSCH、物理上行控制信道PUCCH和探测参考信号SRS。
可选地,所述下行信号为PDSCH,所述下行信号对应的上行信号为物理上行控制信道PUCCH或探测参考信号SRS。
可选地,所述下行信号为PDSCH,所述下行信号对应的上行信号为PUCCH,所述PUCCH用于承载所述PDSCH的应答ACK/否定应答NACK信息。
可选地,所述PUCCH用于承载多个PDSCH的ACK/NACK信息,所述处理单元520具体用于:根据所述多个PDSCH中的至少一个PDSCH的TCI状态,确定所述PUCCH的空间相关信息。
可选地,所述处理单元520具体用于:根据所述多个PDSCH中最后一个发送的PDSCH的TCI状态,确定所述PUCCH的空间相关信息。
可选地,所述下行信号为承载无线资源控制RRC信令的PDSCH,所述RRC信令用于配置信道状态信息CSI上报,所述下行信号对应的上行信号为承载所述CSI上报的PUCCH。
可选地,所述下行信号为承载无限资源控制RRC信令的PDSCH,所述RRC信令用于配置探测参考信号SRS,所述下行信号对应的上行信号为配置的所述SRS。
可选地,所述下行信号为承载无线资源控制RRC信令的PDSCH,所述RRC信令用于配置探测参考信号SRS,所述下行信号对应的上行信号为SRS。
可选地,所述下行信号为承载介质访问控制MAC信令的PDSCH,所述MAC信令用于激活CSI上报,所述下行信号对应的上行信号为承载CSI上报的PUCCH。
可选地,所述下行信号为承载MAC信令的PDSCH,所述MAC信令用于激活SRS信号,所述下行信号对应的上行信号为激活的所述SRS信号。
可选地,所述下行信号为PDCCH,所述下行信号对应的上行信号为物理上行共享信道PUSCH、PUCCH或SRS。
可选地,所述下行信号为承载下行控制信令DCI的PDCCH,所述下行信号对应的上行信号为PUSCH,所述PUSCH用于承载所述DCI调度的数据或所述DCI触发的CSI上报。
可选地,所述下行信号为承载DCI的PDCCH,所述下行信号对应的上行信号为PUCCH,所述PUCCH用于承载DCI触发的CSI上报。
可选地,所述下行信号为承载DCI的PDCCH,所述下行信号对应的上行信号为所述DCI触发的SRS。
可选地,所述下行信号为CSI-RS,所述下行信号对应的上行信号为PUSCH、PUCCH或SRS。
可选地,所述下行信号为CSI-RS,所述下行信号对应的上行信号为PUSCH或PUCCH,所述PUSCH或PUCCH用于承载基于所述CSI-RS测量得到的CSI。
可选地,所述下行信号为CSI-RS,所述下行信号对应的上行信号为PUCCH,所述PUCCH用于承载基于所述CSI-RS测量得到的CSI。
可选地,所述下行信号为CSI-RS,所述下行信号对应的上行信号为SRS,所述SRS的预编码向量是基于所述CSI-RS确定的。
可选地,所述下行信号的至少一个TCI状态中包括CSI-RS的资源索引,所述空间相关信息为接收所述下行信号对应的上行信号所用的波束或者天线面板,所述处理单元520具体用于:将发送所述CSI-RS资源索引对应的CSI-RS资源对应的SSB所采用的波束,确定为接收所述下行信号对应的上行信号所用的波束;和/或,将发送所述CSI-RS资源索引对应的CSI-RS资源所采用的天线面板,确定为接收所述下行信号对应的上行信号所用的天线面板。
可选地,所述下行信号的至少一个TCI状态中包括同步信号块SSB索引,所述空间相关信息为接收所述下行信号对应的上行信号所用的波束或者天线面板,所述处理单元520具体用于:将发送所述SSB索引对应的SSB所采用的波束,确定为接收所述下行信号对应的上行信号所用的波束;和/或,将发送所述SSB索引对应的SSB所采用的天线面板,确定为接收所述下行信号对应的上行信号所用的天线面板。
可选地,所述下行信号的至少一个TCI状态中包括所述下行信号对应的PTRS端口,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,处理单元520具体用于:
根据所述下行信号对应的PTRS端口,从至少一个波束中选择所述PTRS端口对应的波束,作为接收所述下行信号对应的上行信号所用的波束;和/或,
根据所述下行信号对应的PTRS端口,从至少一个天线面板中选择与所述PTRS端口对应的天线面板,作为接收所述下行信号对应的上行信号所用的天线面板。
可选地,处理单元520具体用于:
根据所述下行信号对应的PTRS端口,以及至少一个波束与至少一个PTRS端口的对应关系,确定所述PTRS端口对应的波束;
根据所述下行信号对应的PTRS端口,以及至少一个天线面板与至少一个PTRS端口的对应关系,确定所述PTRS端口对应的天线面板。
可选地,所述处理单元520具体用于:根据所述至少一个TCI状态中的第一TCI状态,确定所述下行信号对应的上行信号的空间相关信息。
可选地,所述第一TCI状态为以下中的任意一个:所述至少一个TCI状态中的第一个TCI状态;所述至少一个TCI状态中的第二个TCI状态;
所述至少一个TCI状态中包含SSB索引的TCI状态;所述至少一个TCI状态中对应于第一个解调参考信号解调参考信号DMRS端口组的TCI状态;所述至少一个TCI状态中对应于第二个DMRS端口组的TCI状态;所述至少一个TCI状态中包含第一个PTRS端口的TCI状态;所述至少一个TCI状态中包含第二个PTRS端口的TCI状态。
可选地,所述通信单元510还用于:接收所述终端设备发送的空间对应性成立的消息。
应理解,该网络设备500可以执行上述方法300中由网络设备执行的相应操作,为了简洁,在此不再赘述。
图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM, EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图8是根据本申请实施例的通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810用于:向网络设备上报所述终端设备所支持的能力所属的至少一个能力组的标识。
其中,该网络设备820用于:接收终端设备上报的所述终端设备所支持的能力所属的至少一个能力组的标识。
其中,该终端设备810可以用于实现上述图2的方法中由终端设备实现的相应的功能,以及该终端设备810的组成可以如图4中的终端设备400所示,为了简洁,在此不再赘述。
其中,该网络设备820可以用于实现上述图3的方法中由网络设备实现的相应的功能,以及该网络设备820的组成可以如图5中的网络设备500所示,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本发明实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的 具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (64)

  1. 一种发送上行信号的方法,其特征在于,包括:
    终端设备接收网络设备发送的下行信号;
    所述终端设备根据所述下行信号的至少一个TCI状态,确定所述下行信号对应的上行信号的空间相关信息;
    所述终端设备根据所述空间相关信息,向所述网络设备发送所述上行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述下行信号包括以下中的至少一个:物理下行共享信道PDSCH、物理下行控制信道PDCCH和信道状态信息参考信号CSI-RS,所述下行信号对应的上行信号包括以下中的至少一个:物理上行共享信道PUSCH、物理上行控制信道PUCCH和探测参考信号SRS。
  3. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为PDSCH,所述下行信号对应的上行信号为PUCCH,所述PUCCH用于承载所述PDSCH的应答ACK/否定应答NACK信息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为承载无线资源控制RRC信令的PDSCH,所述RRC信令用于配置信道状态信息CSI上报,所述下行信号对应的上行信号为承载所述CSI上报的PUCCH。
  5. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为承载无线资源控制RRC信令的PDSCH,所述RRC信令用于配置探测参考信号SRS,所述下行信号对应的上行信号为所述RRC信令配置的SRS。
  6. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为承载介质访问控制MAC信令的PDSCH,所述MAC信令用于激活CSI上报,所述下行信号对应的上行信号为承载所述CSI上报的PUCCH。
  7. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为承载MAC信令的PDSCH,所述MAC信令用于激活SRS信号,所述下行信号对应的上行信号为所述MAC信令激活的SRS信号。
  8. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为承载下行控制信令DCI的PDCCH,所述下行信号对应的上行信号为PUSCH,所述PUSCH用于承载所述DCI调度的数据或所述DCI触发的CSI上报。
  9. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为承载DCI的PDCCH,所述下行信号对应的上行信号为PUCCH,所述PUCCH用于承载所述DCI触发的CSI上报。
  10. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为承载DCI的PDCCH,所述下行信号对应的上行信号为所述DCI触发的SRS。
  11. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为CSI-RS,所述下行信号对应的上行信号为PUSCH或PUCCH,所述PUSCH或PUCCH用于承载基于所述CSI-RS测量得到的CSI。
  12. 根据权利要求1或2所述的方法,其特征在于,所述下行信号为CSI-RS,所述下行信号对应的上行信号为SRS,所述SRS的预编码向量是基于所述CSI-RS确定的。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述空间相关信息包括发送所述下行信号对应的上行信号所使用的波束和/或天线面板。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述下行信号的至少一个TCI状态中包括CSI-RS资源索引,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,所述终端设备根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息,包括:
    所述终端设备将接收所述CSI-RS资源索引对应的CSI-RS资源对应的SSB所采用的波束,确定为发送所述下行信号对应的上行信号所用的波束;和/或,
    所述终端设备将接收所述CSI-RS资源索引对应的CSI-RS资源所采用的天线面板,确定为发送所述下行信号对应的上行信号所用的天线面板。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述下行信号的至少一个TCI状态中包括同步信号块SSB索引,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,所述终端设备根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息,包括:
    所述终端设备将接收所述SSB索引对应的SSB所采用的波束,确定为发送所述下行信号对应的上行信号所用的波束;和/或,
    所述终端设备将接收所述SSB索引对应的SSB所采用的天线面板,确定为发送所述下行信号对 应的上行信号所用的天线面板。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述下行信号的至少一个TCI状态中包括所述下行信号对应的相位跟踪参考信号PTRS端口,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,所述终端设备根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息,包括:
    所述终端设备根据所述下行信号对应的PTRS端口,从至少一个波束中选择所述PTRS端口对应的波束,作为发送所述下行信号对应的上行信号所用的波束;和/或,
    所述终端设备根据所述下行信号对应的PTRS端口,从至少一个天线面板中选择与所述PTRS端口对应的天线面板,作为发送所述下行信号对应的上行信号所用的天线面板。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备根据所述下行信号对应的PTRS端口,从至少一个波束中选择所述PTRS端口对应的波束,包括:
    所述终端设备根据所述下行信号对应的PTRS端口,以及至少一个波束与至少一个PTRS端口的对应关系,确定所述PTRS端口对应的波束,其中,所述至少一个波束与至少一个PTRS端口的对应关系是所述网络设备通过高层信令配置的;
    和/或,所述终端设备根据所述下行信号对应的PTRS端口,从至少一个天线面板中选择与所述PTRS端口对应的天线面板,包括:
    所述终端设备根据所述下行信号对应的PTRS端口,以及至少一个天线面板与至少一个PTRS端口的对应关系,确定所述PTRS端口对应的天线面板,其中,所述至少一个天线面板与至少一个PTRS端口的对应关系是所述网络设备通过高层信令配置的。
  18. 根据权利要求1-17中任一项所述的方法,其特征在于,所述终端设备根据所述下行信号的至少一个TCI状态,确定所述下行信号对应的上行信号的空间相关信息,包括:
    所述终端设备根据所述至少一个TCI状态中的第一TCI状态,确定所述下行信号对应的上行信号的空间相关信息。
  19. 根据权利要求17所述的方法,其特征在于,所述第一TCI状态为以下中的任意一个:
    所述至少一个TCI状态中的第一个TCI状态;
    所述至少一个TCI状态中的第二个TCI状态;
    所述至少一个TCI状态中包含SSB索引的TCI状态;
    所述至少一个TCI状态中对应于第一个解调参考信号DMRS端口组的TCI状态;
    所述至少一个TCI状态中对应于第二个DMRS端口组的TCI状态;
    所述至少一个TCI状态中包含第一个PTRS端口的TCI状态;
    所述至少一个TCI状态中包含第二个PTRS端口的TCI状态。
  20. 根据权利要求1-19中任一项所述的方法,其特征在于,在所述终端设备采用所述确定的空间相关信息向所述网络设备发送所述下行信号对应的上行信号之前,所述方法还包括:
    所述终端设备确定所述终端设备的波束对应性成立。
  21. 根据权利要求1-20中任一项所述的方法,其特征在于,在所述终端设备根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息之前,所述方法还包括:
    所述终端设备根据配置所述下行信号的RRC信令,激活所述下行信号的MAC信令或者触发所述下行信号的DCI,确定所述下行信号的至少一个TCI状态。
  22. 一种发送上行信号的方法,其特征在于,包括:
    网络设备向终端设备发送下行信号;
    所述网络设备根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息;
    所述网络设备根据所述空间相关信息接收所述终端设备发送的所述上行信号。
  23. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备发送的下行信号;
    处理单元,用于根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息;
    所述通信单元,还用于根据所述空间相关信息向所述网络设备发送所述上行信号。
  24. 根据权利要求23所述的终端设备,其特征在于,所述下行信号包括以下中的至少一个:物理下行共享信道PDSCH、物理下行控制信道PDCCH和信道状态信息参考信号CSI-RS,所述下行信号对应的上行信号包括以下中的至少一个:物理上行共享信道PUSCH、物理上行控制信道PUCCH和探测参考信号SRS。
  25. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为PDSCH,所述下行信号对应的上行信号为PUCCH,所述PUCCH用于承载所述PDSCH的应答ACK/否定应答NACK信息。
  26. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为承载无线资源控制RRC信令的PDSCH,所述RRC信令用于配置信道状态信息CSI上报,所述下行信号对应的上行信号为承载所述CSI上报的PUCCH。
  27. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为承载无线资源控制RRC信令的PDSCH,所述RRC信令用于配置探测参考信号SRS,所述下行信号对应的上行信号为所述RRC信令配置的所述SRS。
  28. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为承载介质访问控制MAC信令的PDSCH,所述MAC信令用于激活CSI上报,所述下行信号对应的上行信号为承载所述CSI上报的PUCCH。
  29. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为承载MAC信令的PDSCH,所述MAC信令用于激活SRS信号,所述下行信号对应的上行信号为所述MAC信令激活的所述SRS信号。
  30. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为承载下行控制信令DCI的PDCCH,所述下行信号对应的上行信号为PUSCH,所述PUSCH用于承载所述DCI调度的数据或所述DCI触发的CSI上报。
  31. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为承载DCI的PDCCH,所述下行信号对应的上行信号为PUCCH,所述PUCCH用于承载所述DCI触发的CSI上报。
  32. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为承载DCI的PDCCH,所述下行信号对应的上行信号为所述DCI触发的SRS。
  33. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为CSI-RS,所述下行信号对应的上行信号为PUSCH或PUCCH,所述PUSCH或PUCCH用于承载基于所述CSI-RS测量得到的CSI。
  34. 根据权利要求23或24所述的终端设备,其特征在于,所述下行信号为CSI-RS,所述下行信号对应的上行信号为SRS,所述SRS的预编码向量是基于所述CSI-RS确定的。
  35. 根据权利要求23-34中任一项所述的方法,其特征在于,所述空间相关信息包括发送所述下行信号对应的上行信号所使用的波束和/或天线面板。
  36. 根据权利要求23-35中任一项所述的终端设备,其特征在于,所述下行信号的至少一个TCI状态中包括CSI-RS资源索引,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,所述处理单元具体用于:
    将接收所述CSI-RS资源索引对应的CSI-RS资源所采用的波束,确定为发送所述下行信号对应的上行信号所用的波束;和/或,
    将接收所述CSI-RS资源索引对应的CSI-RS资源所采用的天线面板,确定为发送所述下行信号对应的上行信号所用的天线面板。
  37. 根据权利要求23-36中任一项所述的终端设备,其特征在于,所述下行信号的至少一个TCI状态中包括同步信号块SSB索引,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,所述处理单元具体用于:
    将接收所述SSB索引对应的SSB所采用的波束,确定为发送所述下行信号对应的上行信号所用的波束;和/或,
    将接收所述SSB索引对应的SSB所采用的天线面板,确定为发送所述下行信号对应的上行信号所用的天线面板。
  38. 根据权利要求23-37中任一项所述的终端设备,其特征在于,所述下行信号的至少一个TCI状态中包括所述下行信号对应的相位跟踪参考信号PTRS端口,所述空间相关信息为发送所述下行信号对应的上行信号所用的波束或者天线面板,所述处理单元具体用于:
    根据所述下行信号对应的PTRS端口,从至少一个波束中选择所述PTRS端口对应的波束,作为发送所述下行信号对应的上行信号所用的波束;和/或,和/或
    根据所述下行信号对应的PTRS端口,从至少一个天线面板中选择与所述PTRS端口对应的天线面板,作为发送所述下行信号对应的上行信号所用的天线面板。
  39. 根据权利要求38所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述下行信号对应的PTRS端口,以及至少一个波束与至少一个PTRS端口的对应关系,确 定所述PTRS端口对应的波束,其中,所述至少一个波束与至少一个PTRS端口的对应关系是所述网络设备通过高层信令配置的;和/或
    根据所述下行信号对应的PTRS端口,以及至少一个天线面板与至少一个PTRS端口的对应关系,确定所述PTRS端口对应的天线面板,其中,所述至少一个天线面板与至少一个PTRS端口的对应关系是所述网络设备通过高层信令配置的。
  40. 根据权利要求23-38中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述至少一个TCI状态中的第一TCI状态,确定所述下行信号对应的上行信号的空间相关信息。
  41. 根据权利要求40所述的终端设备,其特征在于,所述第一TCI状态为以下中的任意一个:
    所述至少一个TCI状态中的第一个TCI状态;
    所述至少一个TCI状态中的第二个TCI状态;
    所述至少一个TCI状态中包含SSB索引的TCI状态;
    所述至少一个TCI状态中对应于第一个解调参考信号DMRS端口组的TCI状态;
    所述至少一个TCI状态中对应于第二个DMRS端口组的TCI状态;
    所述至少一个TCI状态中包含第一个PTRS端口的TCI状态;
    所述至少一个TCI状态中包含第二个PTRS端口的TCI状态。
  42. 根据权利要求23-41中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    确定所述终端设备的波束对应性成立。
  43. 根据权利要求23-42中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据配置所述下行信号的RRC信令,激活所述下行信号的MAC信令或者触发所述下行信号的DCI,确定所述下行信号的至少一个TCI状态。
  44. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送下行信号;
    处理单元,用于根据所述下行信号的至少一个TCI状态确定所述下行信号对应的上行信号的空间相关信息;
    所述通信单元,还用于根据所述空间相关信息接收所述终端设备发送的下行信号对应的上行信号。
  45. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至21中任一项所述的方法。
  46. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求22所述的方法。
  47. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法。
  48. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求22所述的方法。
  49. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  50. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求22所述的方法。
  51. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法。
  52. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求22所述的方法。
  53. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  54. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求22所述的方法。
  55. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至21中任一项所述的方法。
  56. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求22所述的方法。
  57. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法。
  58. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求22所述的方法。
  59. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求22所述的方法。
  61. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法。
  62. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求22所述的方法。
  63. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  64. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求22所述的方法。
PCT/CN2018/103366 2018-08-30 2018-08-30 发送上行信号的方法和设备 WO2020042123A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/CN2018/103366 WO2020042123A1 (zh) 2018-08-30 2018-08-30 发送上行信号的方法和设备
EP18931854.6A EP3817474B1 (en) 2018-08-30 2018-08-30 Method and device for transmitting uplink signal
CN201880094948.4A CN112385281A (zh) 2018-08-30 2018-08-30 发送上行信号的方法和设备
KR1020217003980A KR20210048490A (ko) 2018-08-30 2018-08-30 상향 신호의 송신 방법 및 디바이스
CN202110265876.9A CN113068260B (zh) 2018-08-30 2018-08-30 发送上行信号的方法和设备
JP2021506315A JP2022501859A (ja) 2018-08-30 2018-08-30 上り信号の送信方法及びデバイス
AU2018439558A AU2018439558A1 (en) 2018-08-30 2018-08-30 Method and device for transmitting uplink signal
TW108131018A TW202013921A (zh) 2018-08-30 2019-08-29 發送上行信號的方法和設備
US17/149,645 US20210136739A1 (en) 2018-08-30 2021-01-14 Method and device for transmitting uplink signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103366 WO2020042123A1 (zh) 2018-08-30 2018-08-30 发送上行信号的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/149,645 Continuation US20210136739A1 (en) 2018-08-30 2021-01-14 Method and device for transmitting uplink signal

Publications (1)

Publication Number Publication Date
WO2020042123A1 true WO2020042123A1 (zh) 2020-03-05

Family

ID=69642620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103366 WO2020042123A1 (zh) 2018-08-30 2018-08-30 发送上行信号的方法和设备

Country Status (8)

Country Link
US (1) US20210136739A1 (zh)
EP (1) EP3817474B1 (zh)
JP (1) JP2022501859A (zh)
KR (1) KR20210048490A (zh)
CN (2) CN112385281A (zh)
AU (1) AU2018439558A1 (zh)
TW (1) TW202013921A (zh)
WO (1) WO2020042123A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115191097A (zh) * 2020-03-06 2022-10-14 高通股份有限公司 上行链路传输配置指示状态激活之前的默认上行链路多输入多输出传输
WO2023130349A1 (en) * 2022-01-07 2023-07-13 Qualcomm Incorporated Acknowledgment for panel information reporting
WO2023206560A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 物理上行控制信道pucch传输方法及装置、通信设备及存储介质
EP4131796A4 (en) * 2020-03-24 2024-05-01 Lg Electronics Inc METHOD AND APPARATUS FOR UPLINK TRANSMISSION OR RECEPTION BASED ON SPATIAL PARAMETERS IN A WIRELESS COMMUNICATIONS SYSTEM

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11224034B2 (en) * 2019-01-08 2022-01-11 Qualcomm Incorporated Configuring uplink control channel resources for communications in a shared radio frequency spectrum
US20220239440A1 (en) * 2019-06-05 2022-07-28 Lg Electronics Inc. Method for transmitting and receiving uplink signal in wireless communication system, and device therefor
US11924015B2 (en) * 2019-10-04 2024-03-05 Qualcomm Incorporated Phase tracking reference signal for multi-transmit/receive points
CN116113037A (zh) * 2021-11-10 2023-05-12 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN117479320A (zh) * 2022-07-18 2024-01-30 北京紫光展锐通信技术有限公司 一种数据传输方法及相关装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
CN108366423A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种配置资源指示方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067290A (en) * 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US8830883B2 (en) * 2010-11-16 2014-09-09 Qualcomm Incorporated Method and apparatus for improving acknowledgement/negative acknowledgement feedback
US9407337B2 (en) * 2013-04-15 2016-08-02 Broadcom Corporation Antenna systems and methods for massive MIMO communication
CN110417532B (zh) * 2016-09-30 2022-03-11 中兴通讯股份有限公司 表征准共位置参数配置的方法和装置、发射及接收设备
US11115962B2 (en) * 2017-01-05 2021-09-07 Lg Electronics Inc. Method for transmitting/receiving uplink channel in wireless communication system, and device therefor
WO2018129300A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. Beam failure recovery
CN110492913B (zh) * 2017-01-06 2020-09-29 华为技术有限公司 一种信号传输方法和装置
WO2018128520A1 (ko) * 2017-01-09 2018-07-12 엘지전자 주식회사 무선 통신 시스템에서 빔 관리를 위한 csi-rs 설정 방법 및 장치
CN113922938B (zh) * 2017-11-17 2024-02-02 中兴通讯股份有限公司 一种参考信号信道特征配置方法和装置、及通信设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366423A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种配置资源指示方法及装置
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining Details on Beam Management", 3GPP TSG RAN WGI MEETING AHL801, R1-1800699, 26 January 2018 (2018-01-26), XP051385017 *
See also references of EP3817474A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115191097A (zh) * 2020-03-06 2022-10-14 高通股份有限公司 上行链路传输配置指示状态激活之前的默认上行链路多输入多输出传输
EP4131796A4 (en) * 2020-03-24 2024-05-01 Lg Electronics Inc METHOD AND APPARATUS FOR UPLINK TRANSMISSION OR RECEPTION BASED ON SPATIAL PARAMETERS IN A WIRELESS COMMUNICATIONS SYSTEM
WO2023130349A1 (en) * 2022-01-07 2023-07-13 Qualcomm Incorporated Acknowledgment for panel information reporting
WO2023206560A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 物理上行控制信道pucch传输方法及装置、通信设备及存储介质

Also Published As

Publication number Publication date
JP2022501859A (ja) 2022-01-06
EP3817474A4 (en) 2021-07-21
CN113068260B (zh) 2022-11-29
KR20210048490A (ko) 2021-05-03
EP3817474A1 (en) 2021-05-05
AU2018439558A1 (en) 2021-03-04
CN112385281A (zh) 2021-02-19
US20210136739A1 (en) 2021-05-06
CN113068260A (zh) 2021-07-02
TW202013921A (zh) 2020-04-01
EP3817474B1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
WO2020042123A1 (zh) 发送上行信号的方法和设备
US11489630B2 (en) Method for transmitting uplink signal and terminal device
TWI829760B (zh) 用於側行鏈路的通信方法和設備
CN113424621B (zh) 上报csi的方法和终端设备
TWI829756B (zh) 一種通訊方法、終端設備和網路設備
US20220078772A1 (en) Downlink signal transmission method and device
CN116017751A (zh) 随机接入方法和通信装置
KR102566227B1 (ko) 정보 전송 방법, 단말 장치 및 네트워크 장치
US20210314923A1 (en) Methods and Devices for Data Transmission
US11785471B2 (en) Method for transmitting information and receiving information and communication device
US20210258961A1 (en) Data transmission method and device
WO2019178843A1 (zh) 确定多天线发送模式的方法和设备
US20230099072A1 (en) Information processing method, terminal device and network device
WO2022151427A1 (zh) 一种传输方法、终端设备和网络设备
WO2019242681A1 (zh) 无线链路监测的方法和终端设备
WO2020107147A1 (zh) 一种信息生成及指示方法、装置、终端
WO2019028754A1 (zh) 无线通信方法和网络节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506315

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018931854

Country of ref document: EP

Effective date: 20210127

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018439558

Country of ref document: AU

Date of ref document: 20180830

Kind code of ref document: A