WO2019178843A1 - 确定多天线发送模式的方法和设备 - Google Patents

确定多天线发送模式的方法和设备 Download PDF

Info

Publication number
WO2019178843A1
WO2019178843A1 PCT/CN2018/080234 CN2018080234W WO2019178843A1 WO 2019178843 A1 WO2019178843 A1 WO 2019178843A1 CN 2018080234 W CN2018080234 W CN 2018080234W WO 2019178843 A1 WO2019178843 A1 WO 2019178843A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
transmission mode
information
cbr
network device
Prior art date
Application number
PCT/CN2018/080234
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880037527.8A priority Critical patent/CN110741712B/zh
Priority to PCT/CN2018/080234 priority patent/WO2019178843A1/zh
Publication of WO2019178843A1 publication Critical patent/WO2019178843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • Embodiments of the present application relate to the field of communications, and more particularly, to a method and apparatus for determining a multi-antenna transmission mode.
  • the vehicle networking or vehicle to Everything (V2X) communication system is a sidelink (SL) transmission technology based on D2D communication, which is adopted in the traditional Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the way in which the base station receives or transmits data is different.
  • the vehicle networking system adopts a terminal-to-terminal direct communication method, and thus has higher spectrum efficiency and lower transmission delay.
  • a terminal device can use the transmission mode of transmit diversity and other terminal devices. Communicate between them to improve the reliability of data transmission.
  • 3GPP 3rd Generation Partnership Project
  • R15 Rel-15
  • a terminal device can use the transmission mode of transmit diversity and other terminal devices. Communicate between them to improve the reliability of data transmission.
  • different terminals may select the same transmission resource, that is, there is a transmission resource conflict.
  • Rel-14 terminal device with version Release-14
  • R14 terminal device with version Release-14
  • IRC Interference Rejection Combining
  • the embodiments of the present application provide a method and a device for determining a multi-antenna transmission mode, which can improve performance of data transmission of a terminal device.
  • a method for determining a multi-antenna transmission mode including: a terminal device measuring a channel occupancy rate CBR; and determining, by the terminal device, a size for transmitting data according to a size relationship between the CBR and a CBR threshold Antenna transmission mode.
  • the terminal device selects the transmission mode, the CBR is measured, and the measured CBR is compared with the CBR threshold, thereby determining a multi-antenna transmission mode for transmitting data according to the comparison result.
  • the terminal device can use the transmission mode of the transmit diversity to send data to other terminal devices, thereby improving the reliability of data transmission; when the system resource occupancy is high, the terminal device prohibits the use of the transmission.
  • the transmit mode of the diversity thereby reducing the impact on the data transmission of the R14 terminal device.
  • the terminal device determines, according to the size relationship between the CBR and the CBR threshold, a multi-antenna transmission mode for transmitting data, including: The CBR is less than or equal to the CBR threshold, and the terminal device determines that the multi-antenna transmission mode includes a specific multi-antenna transmission mode; if the CBR is greater than the CBR threshold, the terminal device determines the multi-antenna transmission mode.
  • the specific multi-antenna transmission mode is not included.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmit diversity.
  • the multiple resource pools respectively correspond to multiple CBR thresholds
  • the multiple CBR thresholds are the same or at least partially different
  • the CBR measured by the terminal device is multiple
  • the CBR threshold used in the CBR of the first resource pool in the resource pool is the CBR threshold corresponding to the first resource pool.
  • the method further includes: receiving, by the terminal device, indication information that is sent by the network device by using a broadcast message, radio resource control RRC signaling, or downlink control signaling, where the indication is The information is used to indicate the CBR threshold; or the terminal device acquires the CBR threshold pre-existing in the terminal device.
  • the second aspect provides a method for determining a multi-antenna transmission mode, including: the network device sends indication information to the terminal device, where the indication information is used to indicate a CBR threshold, where the CBR threshold is used by the terminal device to determine Multi-antenna transmission mode for transmitting data.
  • the network device indicates the CBR threshold to the terminal device for the terminal device to compare the measured CBR with the CBR threshold, and determines a multi-antenna transmission mode for transmitting data according to the comparison result.
  • the terminal device can use the transmission mode of the transmit diversity to send data to other terminal devices, thereby improving the reliability of data transmission; when the system resource occupancy is high, the terminal device prohibits the use of the transmission.
  • the transmit mode of the diversity thereby reducing the impact on the data transmission of the R14 terminal device.
  • the multi-antenna transmission mode includes a specific multi-antenna transmission mode;
  • the CBR is greater than the CBR threshold, and the multi-antenna transmission mode does not include the specific multi-antenna transmission mode.
  • the indication information includes multiple CBR thresholds respectively corresponding to multiple resource pools, where the multiple The CBR thresholds are the same or at least partially different, and the CBR threshold used by the terminal device is the corresponding one of the first resource pools when the CBR is the CBR of the first resource pool of the multiple resource pools. CBR threshold.
  • the network device sends the indication information to the terminal device, including: the network device by using a broadcast message, and The resource control RRC signaling or the downlink control signaling sends the indication information to the terminal device.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmit diversity.
  • a third aspect provides a method for determining a multi-antenna transmission mode, including: detecting, by a terminal device, whether a first type of terminal device exists in a system, where the terminal device is a second type terminal device; As a result, a multi-antenna transmission mode for transmitting data is determined.
  • the multi-antenna transmission mode for transmitting data is determined by detecting whether or not the terminal device of R14 exists in the system.
  • the terminal device can send data to other terminal devices by using the transmission mode of the transmit diversity, thereby improving the reliability of data transmission;
  • the terminal device of the R14 exists in the system, the terminal The device does not use the transmit mode of transmit diversity for data transmission, thereby reducing the impact on the data transmission of the R14 terminal device.
  • the terminal device determines, according to the detection result, a multi-antenna transmission mode for transmitting data, including: if the terminal device detects within the duration T1 A first type of terminal device is provided in the system, where the terminal device sends the first information to the network device, where the first information is used to indicate that the first type of terminal device exists in the system; and the terminal device receives the network device to send The second information is used to indicate that the terminal device prohibits data transmission by using a specific multi-antenna transmission mode.
  • the terminal device sends the first information to the network device, including: the terminal device by using a scheduling request message The SR, the buffer status report BSR, the uplink control channel, or the uplink radio resource control RRC signaling sends the first information to the network device.
  • the receiving, by the terminal device, the second information that is sent by the network device includes: receiving, by the terminal device The second information that is sent by the network device by using a broadcast message, a radio resource, or RRC signaling or downlink control signaling.
  • the T1 is configured by the network device for the terminal device, or is pre-existing in the terminal device .
  • the terminal device determines, according to the detection result, a multi-antenna transmission mode for transmitting data, including: The terminal device detects that the first type of terminal device does not exist in the system, and the terminal device sends third information to the network device, where the third information is used to indicate that the first device does not exist in the system. The terminal device receives the fourth information sent by the network device, and the fourth information is used to indicate that the terminal device can use the specific multi-antenna transmission mode for data transmission.
  • the terminal device sends the third information to the network device, including: the terminal device by using the scheduling request message The SR, the buffer status report BSR, the uplink control channel, or the uplink radio resource control RRC signaling sends the third information to the network device.
  • the receiving, by the terminal device, the fourth information that is sent by the network device includes: receiving, by the terminal device And the fourth information that is sent by the network device by using a broadcast message, a radio resource, or RRC signaling or downlink control signaling.
  • the T2 is configured by the network device for the terminal device, or is pre-existing in the terminal device , T2 is equal or unequal to T1.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmit diversity.
  • the method further includes: receiving, by the terminal device, configuration information sent by the network device, The configuration information is used to instruct the terminal device to report the detection result.
  • the first type of terminal device supports a communication protocol version Release 14
  • the second type of terminal device supports Communication protocol version Release 15.
  • a fourth aspect provides a method for determining a multi-antenna transmission mode, including: the network device indicating, according to whether a first type of terminal device exists in the system, a multi-antenna transmission mode for performing data transmission by the terminal device to the terminal device,
  • the terminal device is a second type terminal device.
  • the network device indicates to the terminal device the multi-antenna transmission mode for transmitting data according to whether or not the terminal device of the R14 exists in the system.
  • the network device can instruct the terminal device to send data to other terminal devices by using the transmission mode of the transmit diversity, thereby improving the reliability of data transmission; when the terminal device of the R14 exists in the system.
  • the network device may instruct the terminal device to prohibit the use of the transmit mode of the transmit diversity, thereby reducing the impact on the data transmission of the R14 terminal device.
  • the network device indicates, to the terminal device, the multi-antenna transmission for the terminal device to perform data transmission
  • the mode includes: if the network device receives the first information sent by the terminal device, the network device sends second information to the terminal device, where the first indication information is used to indicate that the first In a terminal device, the second information is used to indicate that the terminal device prohibits data transmission by using the specific multi-antenna transmission mode.
  • the network device sends the second information to the terminal device, including: the network device broadcasts The message, the radio resource control RRC signaling or the downlink control signaling sends the second information to the terminal device.
  • the network device indicates to the terminal device The multi-antenna transmission mode in which the terminal device performs data transmission, including: if the network device receives the third information sent by the terminal device, the network device sends fourth information, the third information, to the terminal device
  • the fourth information is used to indicate that the terminal device does not exist in the system, and the fourth information is used to indicate that the terminal device can perform data transmission by using the specific multi-antenna transmission mode.
  • the network device sends the fourth information to the terminal device, including: the network device broadcasts The message, the radio resource control RRC signaling, or the downlink control signaling sends the fourth information to the terminal device.
  • the network device determines whether a first type of terminal device exists in the system. If a first type of terminal device exists in the system, indicates to the terminal device The multi-antenna transmission mode in which the terminal device performs data transmission, if the network device does not receive the first information sent by the terminal device within the duration T2, the network device sends the fourth information to the terminal device,
  • the first indication information is used to indicate that the first type of terminal device exists in the system
  • the fourth information is used to indicate that the terminal device can use the specific multi-antenna transmission mode for data transmission.
  • the network device sends the fourth information to the terminal device, including: the network device broadcasts The fourth information sent by the message, the radio resource control RRC signaling or the downlink control signaling to the terminal device.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmit diversity.
  • the method further includes: the network device sending configuration information to the terminal device, where the configuration The information is used to indicate whether the terminal device reports that a first type of terminal device exists in the system.
  • the first type of terminal device supports a communication protocol version Release 14
  • the second type of terminal device supports Communication protocol version Release 15.
  • a terminal device in a fifth aspect, can perform the operations of the terminal device in the foregoing first aspect or any optional implementation manner of the first aspect.
  • the terminal device may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the first aspect or the first aspect described above.
  • a network device which can perform the operations of the sending node in any of the optional implementations of the second aspect or the second aspect.
  • the network device may comprise a modular unit for performing the operations of the network device in any of the possible implementations of the second aspect or the second aspect described above.
  • a terminal device which can perform the operations of the terminal device in any of the foregoing optional implementations of the third aspect or the third aspect.
  • the terminal device may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the third aspect or the third aspect described above.
  • a network device which can perform the operations of the network device in any of the foregoing optional implementations of the fourth aspect or the fourth aspect.
  • the network device may comprise a modular unit for performing the operations of the network device in any of the possible implementations of the fourth aspect or the fourth aspect described above.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method of the first aspect or any possible implementation of the first aspect, or the execution causes the terminal device to implement the terminal provided by the fifth aspect device.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the network device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the execution causes the network device to implement the network provided by the sixth aspect device.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method in any of the possible implementations of the third aspect or the third aspect, or the execution causes the terminal device to implement the terminal provided by the sixth aspect device.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the network device to perform the method in any of the possible implementations of the fourth aspect or the fourth aspect, or the execution causes the network device to implement the network provided by the eighth aspect device.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement The method of any of the preceding first aspect or any possible implementation of the first aspect.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement The method of any of the preceding second aspect or any of the possible implementations of the second aspect.
  • a system chip includes an input interface, an output interface, a processor, and a memory, where the processor is configured to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement The method of any of the preceding third aspect or any possible implementation of the third aspect.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement The method of any of the preceding fourth aspect or any possible implementation of the fourth aspect.
  • a computer program product comprising instructions which, when executed on a computer, cause the computer to perform the method of any of the first aspect or the first aspect of the first aspect.
  • a computer program product comprising instructions for causing the computer program product to perform the method of any of the second or second aspect of the second aspect of the invention when the computer program product is run on a computer.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the above-described third or third aspect of the possible implementation.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the above-described fourth or fourth aspects.
  • FIG. 1 is a schematic structural diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another application scenario of the embodiment of the present application.
  • FIG. 3 is a flow diagram of a process for determining a multi-antenna transmission mode in accordance with an embodiment of the present application.
  • FIG. 4 is a flow interaction diagram of a method for determining a multi-antenna transmission mode according to another embodiment of the present application.
  • FIG. 5 is a flow interaction diagram of a method for determining a multi-antenna transmission mode according to still another embodiment of the present application.
  • FIG. 6 is a flow interaction diagram of a method for determining a multi-antenna transmission mode according to still another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network device according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the present application describes various embodiments in connection with a terminal device.
  • the terminal device may also refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user agent.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • PLMN public land mobile network
  • the present application describes various embodiments in connection with a network device.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or may be a base station (NodeB, NB) in the WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network or a future evolved PLMN network. Network side devices, etc.
  • FIG. 1 and FIG. 2 are schematic diagrams of an application scenario of an embodiment of the present application.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device, the present invention The embodiment does not limit this.
  • the wireless communication system may further include other network entities such as a Mobile Management Entity (MME), a Serving Gateway (S-GW), and a Packet Data Network Gateway (P-GW).
  • MME Mobile Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • embodiments of the invention are not limited thereto.
  • the terminal device 20 and the terminal device 30 can communicate in a D2D communication mode.
  • the terminal device 20 and the terminal device 30 directly communicate through a D2D link, ie, a side link (Sidelink, SL).
  • a side link Sidelink, SL
  • the terminal device 20 and the terminal device 30 directly communicate via a side line.
  • the terminal device 20 and the terminal device 30 communicate by a side line, and the transmission resources thereof are allocated by the network device; in FIG. 2, the terminal device 20 and the terminal device 30 pass the side link. Communication, whose transmission resources are independently selected by the terminal device, does not require the network device to allocate transmission resources.
  • the D2D communication method can be used for vehicle to vehicle (V2V) communication or vehicle to Everything (V2X) communication.
  • V2X communication X can refer to any device with wireless receiving and transmitting capabilities, such as but not limited to slow moving wireless devices, fast moving in-vehicle devices, or network control nodes with wireless transmit and receive capabilities. It should be understood that the embodiment of the present invention is mainly applied to the scenario of V2X communication, but can also be applied to any other D2D communication scenario, which is not limited in this embodiment of the present invention.
  • a terminal device having a listening capability such as a Vehicle User Equipment (VUE) or a Pedestrian User Equipment (PUE), and no listening.
  • VUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • Capable terminal equipment such as PUE.
  • VUE has higher processing power and is usually powered by the battery in the car, while PUE has lower processing power, and reducing power consumption is also a major factor that PUE needs to consider. Therefore, in the existing car network system, VUE is considered to have Full reception and listening capabilities; while PUE is considered to have partial or no reception and listening capabilities.
  • the resource may be selected by using a similar listening method as the VUE, and the available resources may be selected on the part of the resources that can be intercepted; if the PUE does not have the listening capability, the PUE is in the resource pool. Randomly select transmission resources.
  • the terminal device can measure the congestion degree of the system, for example, the Channel Busy Ratio (CBR), and the base station can instruct the terminal device to report the measurement result to the base station, so that the base station configures the transmission parameter according to the CBR configured by the terminal device, for example, the terminal device allows.
  • CBR Channel Busy Ratio
  • MCS Modulation Coding Mode
  • PBR physical resource blocks
  • retransmissions and other transmission parameters.
  • the CBR reflects the channel occupancy in the past 100 ms.
  • the lower the CBR the lower the system resource occupancy rate and the more resources available.
  • the higher the CBR the higher the system resource occupancy rate is, the more congested it is, and the more likely it is to cause transmission conflicts and interference.
  • the embodiment of the present application proposes that when the terminal device selects the transmission mode, the CBR is measured, and the measured CBR is compared with the CBR threshold to determine a multi-antenna transmission mode for transmitting data.
  • the network device can instruct the terminal device to send data to other terminal devices by using a specific multi-antenna transmission mode, thereby improving the reliability of data transmission; when the system resource occupation is high, the network device The terminal device can be instructed to prohibit the use of a specific multi-antenna transmission mode, thereby reducing the impact on the data transmission of the terminal device of R14.
  • the terminal device shown in FIG. 3 may be, for example, the terminal device 20 or the terminal device 30 shown in FIG. 1 or FIG. 2, and the network device shown in FIG. 3 may be, for example, the network device 10 shown in FIG. 1 or FIG.
  • the method includes:
  • the network device sends the indication information to the terminal device.
  • the network device may send the indication information to the terminal device by using a broadcast message, a radio resource control (RRC) signaling, or a downlink control signaling.
  • RRC radio resource control
  • the terminal device receives the indication information sent by the network device.
  • the indication information is used to indicate a CBR threshold, where the CBR threshold is used by the terminal device to determine a multi-antenna transmission mode for transmitting data.
  • the terminal device measures CBR.
  • the terminal device determines a multi-antenna transmission mode for transmitting data according to the measured size relationship between the CBR and the CBR threshold.
  • the network device sends the indication information to the terminal device to indicate the CBR threshold.
  • the terminal device After measuring the CBR, the terminal device compares the measured CBR and CBR thresholds, and determines a multi-antenna transmission mode for transmitting data according to the comparison result. And use the multi-antenna transmission mode to perform data transmission with other terminal devices.
  • the multi-antenna transmission mode may include, for example, a transmission mode of transparent transmit diversity, a transmission mode of non-transparent transmission diversity, and a single port transmission mode.
  • the non-transparent transmit diversity means that the receiving end needs to know the transmission mode in advance, and therefore can receive by using a corresponding receiving algorithm, such as a space frequency block code (SFBC) or a space time block code (Space-Time Block). Coding, STBC) and other transmission diversity modes based on Alamouti coding; transparent transmit diversity means that the receiving end does not need to know the transmission mode in advance, and can receive using the same receiving algorithm as the single antenna port, such as cyclic delay diversity.
  • SFBC space frequency block code
  • STBC space time block code
  • transparent transmit diversity means that the receiving end does not need to know the transmission mode in advance, and can receive using the same receiving algorithm as the single antenna port, such as cyclic delay diversity.
  • the terminal device determines, according to the size relationship between the CBR and the CBR threshold, a multi-antenna transmission mode for transmitting data, including: if the CBR is less than or equal to the CBR threshold, the terminal device determines The multi-antenna transmission mode includes a specific multi-antenna transmission mode; if the CBR is greater than the CBR threshold, the terminal device determines that the multi-antenna transmission mode does not include the specific multi-antenna transmission mode.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmission diversity.
  • the CBR response is the system resource occupancy rate
  • the higher the CBR the higher the system resource occupancy rate is, the more congested it is, and the more likely the transmission collision and interference occur.
  • the currently measured CBR is greater than the CBR threshold, then Try to avoid using the transmission mode of non-transparent transmit diversity for data transmission to avoid interference with data transmission of other terminal devices, especially R14 terminal devices.
  • the lower the CBR the lower the system resource occupancy rate and the more resources available. In this case, because there are more available resources, the terminal device can use the transmission mode of non-transparent transmit diversity to improve the reliability of data transmission.
  • the multiple resource pools respectively correspond to multiple CBR thresholds, and the multiple CBR thresholds are the same or at least partially different.
  • the CBR measured by the terminal device is the CBR of the first resource pool of the multiple resource pools
  • the used The CBR threshold is a CBR threshold corresponding to the first resource pool.
  • the resource pool when the CBR measurement is performed, the resource pool is performed, and multiple resource pools on one carrier may be in one-to-one correspondence with multiple CBR thresholds, and the multiple CBR thresholds may be the same or at least different.
  • the multiple CBR thresholds are the same, the CBR values measured by the terminal device on any resource pool are compared with the CBR threshold to determine a multi-antenna transmission mode.
  • the CBR value measured by the terminal device on each resource pool should be compared with the CBR threshold corresponding to each resource pool to determine the multi-antenna transmission mode.
  • the terminal device After the terminal device measures the CBR on the resource pool 1, the measured CBR value is compared with the CBR threshold corresponding to the resource pool 1, so that the multi-antenna transmission mode used for transmitting data on the resource pool 1 can be determined; the terminal device After measuring the CBR on the resource pool 2, the measured CBR value is compared with the CBR threshold corresponding to the resource pool 2, so that the multi-antenna transmission mode used for transmitting data on the resource pool 2 can be determined.
  • the CBR thresholds of the resource pools on different carriers may be the same or different.
  • different carriers correspond to the same or different CBR thresholds, and different resource pools have the same or different CBR thresholds. limited.
  • the resource pool 1 and the resource pool 2 in the carrier 1 respectively correspond to different CBR thresholds
  • the resource pool 3 and the resource pool 4 in the carrier 2 also correspond to different CBR thresholds respectively
  • the resource pool 1, the resource pool 2, and the resource The corresponding CBR thresholds of pool 3 and resource pool 4 are different.
  • the same CBR threshold for the resource pool 1 and the resource pool 2 in the carrier 1 is, for example, the CBR threshold 1
  • the resource pool 3 and the resource pool 4 in the carrier 2 have the same CBR value, for example, the CBR threshold 2, but CBR Threshold 1 and CBR Threshold 2 are not the same.
  • a resource pool used by the terminal device on each carrier is a resource pool corresponding to an area (ie, a geographic area) where the terminal device is located, where the multiple resource pools and multiple resources pools There is a correspondence between the areas.
  • the resource pool used in each carrier may also be different.
  • resource pool 1 in carrier 1 and resource pool 3 in carrier 2 correspond to region 1
  • resource pool 2 in carrier 1 and resource pool 4 in carrier 2 correspond to region 2
  • resource pool 1 in carrier 1 The corresponding CBR threshold is CBR threshold 1
  • the CBR threshold corresponding to resource pool 2 in carrier 1 is CBR threshold 2
  • the CBR threshold corresponding to resource pool 3 in carrier 2 is CBR threshold 3
  • the resource pool 4 in carrier 2 corresponds to The CBR threshold is the CBR threshold 4.
  • the CBR measured on the resource pool 1 can be compared with the CBR corresponding to the resource pool 1 to determine the multi-antenna transmission mode for transmitting data in the resource pool 1, or
  • the CBR measured on the resource pool 3 is compared with the CBR threshold 3 corresponding to the resource pool 3 to determine a multi-antenna transmission mode for transmitting data in the resource pool 3; when the terminal device is in the area 2, it can be in the resource pool.
  • the CBR measured on 2 is compared with the CBR threshold 2 corresponding to resource pool 2 to determine a multi-antenna transmission mode for transmitting data in resource pool 2, or the CBR measured on resource pool 4 corresponds to resource pool 4.
  • the CBR Threshold 4 is compared to determine the multi-antenna transmission mode in resource pool 4 for transmitting data.
  • the CBR threshold 1, the CBR threshold 2, the CBR threshold 3, and the CBR threshold 4 may be the same, partially different, or completely different.
  • the indication information sent by the network device to the terminal device may be used to indicate a CBR threshold corresponding to the first resource pool, or may also indicate the multiple CBR thresholds corresponding to the multiple resource pools. Therefore, the terminal device determines the CBR threshold corresponding to the first resource pool according to the first resource pool and the mapping relationship between the multiple resource pools indicated by the indication information and the multiple CBR thresholds. This embodiment of the present application does not limit this.
  • the terminal device may obtain the mapping relationship between the CBR threshold or the CBR threshold and the resource pool corresponding to the first resource pool by receiving the broadcast message sent by the network device, the radio resource control RRC signaling, or the indication information carried in the downlink control signaling.
  • the CBR threshold corresponding to the first resource pool or the mapping relationship is pre-existing in the terminal device, for example, by a protocol.
  • the terminal device may also report the measurement result of the CBR to the network device, and the network device compares the measured value of the CBR reported by the terminal device with the corresponding CBR threshold value, thereby determining the to-be-used
  • the multi-antenna transmission mode indicates the multi-antenna transmission mode to the terminal device.
  • This embodiment of the present application does not limit this. Any method for determining the multi-antenna transmission mode by comparing the CBR measurement value with the CBR threshold should fall within the protection scope of the present application.
  • the terminal device shown in FIG. 4 may be, for example, the terminal device 20 or the terminal device 40 shown in FIG. 1 or FIG. 2, and the network device shown in FIG. 4 may be, for example, the network device 10 shown in FIG. 1 or FIG.
  • the terminal device shown in FIG. 4 may be a second type of terminal device.
  • the first type of terminal device supports a communication protocol version Release 14, and the second type of terminal device supports a communication protocol version Release 15.
  • a terminal device that supports a communication protocol of Release-14 and does not support Release-15 will support a communication protocol of Release-15.
  • the terminal device is simply referred to as the terminal device of Release-15.
  • the terminal device of Release-15 may include a terminal device supporting Release-15 or a terminal device supporting other versions of Release-15, for example, a terminal device supporting Release-16 of Release-15.
  • the method for determining a multi-antenna transmission mode includes:
  • the terminal device detects whether there is a first type of terminal device in the system.
  • the network device indicates to the terminal device a multi-antenna transmission mode for data transmission of the terminal device according to whether there is a first type of terminal device in the system.
  • the terminal device acquires the multi-antenna transmission mode for performing data transmission according to the detection result.
  • the terminal device acquires the multi-antenna transmission mode for transmitting data by detecting whether the terminal device of the R14 exists in the system.
  • the terminal device may hide The network device indicates whether the system currently has the terminal device of the R14, so that the network device can indicate to the terminal device the multi-antenna transmission mode for transmitting data according to whether the terminal device of the R14 exists in the system.
  • the terminal device of the R14 when the terminal device of the R14 does not exist in the system, the terminal device can send data to other terminal devices by using a specific transmission mode, thereby improving the reliability of data transmission; when the terminal device of the R14 exists in the system, the terminal device The specific transmission mode is not used, thereby reducing the impact on the data transmission of the R14 terminal device.
  • the embodiments of the present application provide two methods for determining a multi-antenna transmission mode, which are separately described below.
  • FIG. 5 shows a process interaction diagram of a possible implementation of an embodiment of the present application. If the terminal device detects that the first type of terminal device exists in the system, the terminal device performs 510 530. If the terminal device detects that the first type terminal device does not exist in the system, the terminal device performs 540. To 560. As shown in FIG. 5, the method includes:
  • the terminal device if the terminal device detects that the first type of terminal device exists in the system within the duration T1, the terminal device sends the first information to the network device.
  • the first indication information is used to indicate that the first type of terminal device exists in the system.
  • the network device sends the second information to the terminal device.
  • the second information is used to indicate that the terminal device prohibits data transmission by using the specific multi-antenna transmission mode.
  • the terminal device receives the second information sent by the network device.
  • the terminal device if the terminal device detects that the first type of terminal device does not exist in the system within the duration T2, the terminal device sends the third information to the network device.
  • the third information is used to indicate that the first type of terminal device does not exist in the system.
  • the network device sends the fourth information to the terminal device.
  • the fourth information is used to indicate that the terminal device can use the specific multi-antenna transmission mode for data transmission.
  • the terminal device receives fourth information sent by the network device, where the fourth information is used to indicate that the terminal device can use the specific multi-antenna transmission mode for data transmission.
  • the first information and the third information may be that the terminal device uses a Scheduling Request (SR), a Buffer Status Report (BSR), an uplink control channel, or an uplink radio resource control (Radio).
  • SR Scheduling Request
  • BSR Buffer Status Report
  • Radio uplink radio resource control
  • the resource control, RRC) signaling is sent to the network device, and correspondingly, the network device may receive the first information or the third information that is sent by the terminal device by using an SR, a BSR, an uplink control channel, an uplink RRC signaling, or the like.
  • the second information and the fourth information may be sent by the network device to the terminal device by using a broadcast message, downlink RRC signaling, or downlink control signaling, and correspondingly, the terminal device may receive the network device by using the network device.
  • the second information sent by the broadcast message, the downlink RRC signaling, or the downlink control signaling is the fourth information.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmission diversity. If there is a terminal device of the first type of terminal device, such as R14, in the system, the terminal device avoids using the transmission mode of the non-transparent transmission diversity as much as possible to reduce the impact on the terminal device of R14, but other transparent transmission diversity, for example, may be used. Send mode or single port transfer mode, etc.
  • FIG. 6 shows a process interaction diagram of a possible implementation manner of an embodiment of the present application. If the terminal device detects that the first type of terminal device exists in the system, the terminal device performs 610 to 630. If the terminal device detects that the terminal device of the first type does not exist in the system, the terminal device performs 640. To 660. As shown in FIG. 6, the method includes:
  • the terminal device if the terminal device detects that the first type of terminal device exists in the system within the duration T1, the terminal device sends the first information to the network device.
  • the first indication information is used to indicate that the first type of terminal device exists in the system.
  • the network device sends the second information to the terminal device.
  • the second information is used to indicate that the terminal device prohibits data transmission by using the specific multi-antenna transmission mode.
  • the terminal device receives the second information sent by the network device.
  • the terminal device if the terminal device detects that the first type of terminal device does not exist in the system within the duration T2, the terminal device prohibits sending the first information to the network device.
  • the network device sends the fourth information to the terminal device.
  • the fourth information is used to indicate that the terminal device can use the specific multi-antenna transmission mode for data transmission.
  • the terminal device receives the fourth information sent by the network device.
  • the fourth information is used to indicate that the terminal device can use the specific multi-antenna transmission mode for data transmission.
  • the first information may be that the terminal device sends a Scheduling Request (SR), a Buffer Status Report (BSR), an uplink control channel, or an uplink radio resource control (RRC) message.
  • the network device may receive the first information that is sent by the terminal device by using an SR, a BSR, an uplink control channel, an uplink RRC signaling, or the like.
  • the second information and the fourth information may be sent by the network device to the terminal device by using a broadcast message, downlink RRC signaling, or downlink control signaling, and correspondingly, the terminal device may receive the network device by using the network device.
  • the second information sent by the broadcast message, the downlink RRC signaling, or the downlink control signaling is the fourth information.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmission diversity.
  • the terminal device avoids using the transmission mode of the non-transparent transmission diversity to reduce the impact on the terminal device of R14, but may use other transmissions such as transparent transmission diversity. Mode or single port transfer mode, etc.
  • the terminal device when the terminal device detects that the first type of terminal device exists in the system, the terminal device reports the first information to the network device to indicate that the first type of terminal device exists in the system, and after receiving the first information, the network device receives the first information.
  • the information is used to indicate that the first type of terminal device does not exist in the system.
  • the network device After receiving the third information, the network device sends fourth information to the terminal device to indicate that the terminal device can use the transmission mode of the non-transparent transmission diversity.
  • the terminal device when the terminal device detects that the first type of terminal device exists in the system, the terminal device reports the first information to the network device to indicate that the first type of terminal device exists in the system, and after receiving the first information, the network device receives the first information. Sending the second information to the terminal device to indicate that the terminal device cannot use the transmission mode of the non-transparent transmission diversity; if the terminal device detects that the first type terminal device does not exist in the system within the duration T2, the terminal device also The first information may not be sent to the network device, that is, the first type of terminal device is not reported in the system, and accordingly, if the network device does not receive the first information sent by the terminal device in the T2, the default is in the system. There is no first type of terminal device, and the fourth information is sent to the terminal device to indicate that the terminal device can use the transmission mode of the non-transparent transmission diversity.
  • the duration T1 may be, for example, configured by the network device for the terminal device, or pre-existing in the terminal device, for example, a protocol agreed in advance.
  • the duration T1 (for example, 500 ms or 1000 ms) may be the length of one detection period, and the terminal device may periodically report the detection result of detecting the presence of the first type of terminal device in the system according to T1.
  • the duration T2 can be configured, for example, by the network device for the terminal device, or pre-existing in the terminal device, for example, a protocol agreed in advance.
  • T2 may be equal to T1 or may not be equal.
  • the duration T2 (for example, 500 ms or 1000 ms) may be the length of one detection period, and the terminal device may periodically report that the detection result of the first type terminal device does not exist in the system according to T2.
  • the duration T1 and the duration T2 may be the reporting period, respectively, rather than the detection period.
  • the duration T1 is a period in which the terminal device reports the presence of the first terminal device to the network device
  • the duration T2 is a period during which the terminal device reports the absence of the terminal device to the network device.
  • the embodiment of the present application does not limit the detection period of the terminal device.
  • the terminal device may detect whether there is a first type of terminal device in the system in each subframe, and if a first type of terminal device is detected in the system in any one or more subframes within the T1 duration, then in a detection cycle If the first type of terminal device is not detected in all the subframes in the T2 time period, the device can report to the network device at the end of one detection period T2.
  • T1 T2.
  • the network device sends the fourth information to the terminal device.
  • the T3 may be T2 is equal or unequal.
  • the duration T3 can be configured, for example, by the network device for the terminal device, or pre-existing in the terminal device, for example, a protocol agreed in advance.
  • the duration T3 (for example, 500 ms or 1000 ms) may be the length of one detection period.
  • the network device may periodically detect whether the terminal device reports the first information according to T3. If the first information is not received in T3, the system may be considered as a system.
  • the first type of terminal device is not present, and the fourth information is sent to the terminal device; if the network device receives the first information in the T3, the first type of terminal device exists in the system and is sent to the terminal device. Second message.
  • the terminal device when the terminal device detects that the first type of terminal device does not exist in the system, the terminal device reports the third information to the network device to indicate that the first type of terminal device does not exist in the system, and after receiving the third information, the network device receives the third information.
  • the embodiment of the present application does not impose any limitation on how to detect whether the first type of terminal device exists in the system.
  • the physical sidelink control channel (PSCCH) of the other terminal device may be detected to determine whether the first type of terminal exists. device. For example, if a certain bit in the PSCCH is used to indicate the type of the terminal device, if the value of the specific bit of the PSCCH of a terminal device is 0, it indicates that the terminal device is the first type of terminal device, if one A value of 1 on a specific bit of the PSCCH of the terminal device indicates that the terminal device is a terminal device of the second type. When the terminal device detects the PSCCH with the bit 0, it indicates that the first type of terminal device exists in the system.
  • the terminal device may also determine whether the specific multi-antenna transmission mode can be used. For example, when the terminal device detects that the terminal device does not have the R14 in the system, the terminal device can transmit data to the other terminal device by using the transmission mode of the non-transparent transmission diversity; when the terminal device detects the terminal device with the R14 in the system, the terminal device does not use the non-use device.
  • the transmission mode of transparent transmit diversity transmits data to other terminal devices. The embodiment of the present application does not limit this. Any method for determining the multi-antenna transmission mode by determining whether the R14 terminal device exists in the system should fall within the protection scope of the present application.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • FIG. 7 is a schematic block diagram of a terminal device 700 according to an embodiment of the present application. As shown in FIG. 7, the terminal device 700 includes a measurement unit 710 and a determination unit 720. among them:
  • the measuring unit 710 is configured to measure channel occupancy rate CBR;
  • the processing unit 720 is configured to determine, according to the size relationship between the CBR and the CBR threshold measured by the measuring unit 710, a multi-antenna transmission mode for transmitting data.
  • the terminal device selects the transmission mode, the CBR is measured, and the measured CBR is compared with the CBR threshold, thereby determining a multi-antenna transmission mode for transmitting data according to the comparison result.
  • the terminal device can use the transmission mode of the transmit diversity to send data to other terminal devices, thereby improving the reliability of data transmission; when the system resource occupancy is high, the terminal device prohibits the use of the transmission.
  • the transmit mode of the diversity thereby reducing the impact on the data transmission of the R14 terminal device.
  • the processing unit 720 is specifically configured to: if the CBR is less than or equal to the CBR threshold, determine that the multi-antenna transmission mode includes a specific multi-antenna transmission mode; if the CBR is greater than the CBR threshold And determining that the multi-antenna transmission mode does not include the specific multi-antenna transmission mode.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmission diversity.
  • the multiple resource pools respectively correspond to multiple CBR thresholds, and the multiple CBR thresholds are the same or at least partially different, and the CBR measured by the terminal device is the CBR of the first resource pool of the multiple resource pools.
  • the CBR threshold used is a CBR threshold corresponding to the first resource pool.
  • the terminal device further includes an obtaining unit and a sending unit, where the acquiring unit is configured to: receive, by using the sending unit, the network device, by using a broadcast message, a radio resource control RRC signaling, or a downlink control signaling, Instructing information, the indication information is used to indicate the CBR threshold; or, acquiring the CBR threshold pre-existing in the terminal device.
  • the acquiring unit is configured to: receive, by using the sending unit, the network device, by using a broadcast message, a radio resource control RRC signaling, or a downlink control signaling, Instructing information, the indication information is used to indicate the CBR threshold; or, acquiring the CBR threshold pre-existing in the terminal device.
  • terminal device 700 can perform the corresponding operations performed by the terminal device in the foregoing method 300, and details are not described herein for brevity.
  • FIG. 8 is a schematic block diagram of a network device 800 in accordance with an embodiment of the present application. As shown in FIG. 8, the network device 800 includes a processing unit 810 and a transmitting unit 820, where:
  • the processing unit 810 is configured to determine a CBR threshold, where the CBR threshold is used by the terminal device to determine a multi-antenna transmission mode for transmitting data.
  • the sending unit 820 is configured to send indication information to the terminal device, where the indication information is used to indicate the CBR threshold.
  • the network device indicates the CBR threshold to the terminal device for the terminal device to compare the measured CBR with the CBR threshold, and determines a multi-antenna transmission mode for transmitting data according to the comparison result.
  • the terminal device can use the transmission mode of the transmit diversity to send data to other terminal devices, thereby improving the reliability of data transmission; when the system resource occupancy is high, the terminal device prohibits the use of the transmission.
  • the transmit mode of the diversity thereby reducing the impact on the data transmission of the R14 terminal device.
  • the multi-antenna transmission mode includes a specific multi-antenna transmission mode; and if the CBR measured by the terminal device is greater than the CBR threshold, the multi-antenna The transmission mode does not include the specific multi-antenna transmission mode.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmission diversity.
  • the indication information includes multiple CBR thresholds corresponding to the multiple resource pools, where the multiple CBR thresholds are the same or at least partially different, and the CBR measured by the terminal device is the multiple The CBR threshold used in the CBR of the first resource pool in the resource pool is the CBR threshold corresponding to the first resource pool.
  • the transceiver unit 810 is specifically configured to: send the indication information to the terminal device by using a broadcast message, a radio resource control RRC signaling, or a downlink control signaling.
  • the network device 800 can perform the corresponding operations performed by the network device in the foregoing method 300. For brevity, details are not described herein again.
  • FIG. 9 is a schematic block diagram of a terminal device 900 according to an embodiment of the present application. As shown in FIG. 9, the terminal device 900 includes a detecting unit 910 and an obtaining unit 920, where:
  • the detecting unit 910 is configured to detect whether there is a first type of terminal device in the system, where the terminal device is a second type terminal device;
  • the transceiver unit 920 is configured to determine, according to the detection result of the detecting unit 910, a multi-antenna transmission mode for transmitting data.
  • the terminal device selects the transmission mode, the multi-antenna transmission mode for transmitting data is acquired by detecting whether the terminal device of the R14 exists in the system.
  • the terminal device can send data to other terminal devices by using the transmission mode of the transmit diversity, thereby improving the reliability of data transmission;
  • the terminal device of the R14 exists in the system, the terminal The device does not use the transmit mode of transmit diversity for data transmission, thereby reducing the impact on the data transmission of the R14 terminal device.
  • the terminal device further includes a transceiver unit 930: if the detecting unit 910 detects that the first type of terminal device exists in the system, the first information is sent to the network device, where the first information is used by the detecting unit 910. The first type of terminal device is located in the indication system; the second information sent by the network device is received, and the second information is used to indicate that the terminal device prohibits data transmission by using a specific multi-antenna transmission mode.
  • the transceiver unit 930 is configured to send the first information to the network device by using a scheduling request message SR, a buffer status report BSR, an uplink control channel, or an uplink radio resource control RRC signaling.
  • the transceiver unit 930 is configured to: receive the second information that is sent by the network device by using a broadcast message, radio resource control RRC signaling, or downlink control signaling.
  • T1 is configured by the network device for the terminal device, or is pre-existing in the terminal device.
  • the transceiver unit 920 is specifically configured to: if the detecting unit 910 detects that the first type of terminal device does not exist in the system in the duration T2, send the third information to the network device, where the third The information is used to indicate that the first type of terminal device does not exist in the system; the fourth information sent by the network device is received, and the fourth information is used to indicate that the terminal device can use the specific multi-antenna transmission mode to perform data transmission. .
  • the transceiver unit 930 is configured to send the third information to the network device by using a scheduling request message SR, a buffer status report BSR, an uplink control channel, or an uplink radio resource control RRC signaling.
  • the transceiver unit 930 is configured to: receive the fourth information that is sent by the network device by using a broadcast message, a radio resource control RRC signaling, or a downlink control signaling.
  • T2 is configured by the network device for the terminal device, or is pre-existing in the terminal device, and T2 is equal to or different from T1.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmission diversity.
  • the transceiver unit 930 is further configured to: receive configuration information sent by the network device, where the configuration information is used to instruct the terminal device to report the detection result.
  • the first type of terminal device supports a communication protocol version Release 14, and the second type of terminal device supports a communication protocol version Release 15.
  • terminal device 900 can perform the corresponding operations performed by the terminal device in the foregoing method 400 to method 600. For brevity, details are not described herein again.
  • FIG. 10 is a schematic block diagram of a network device 1000 in accordance with an embodiment of the present application.
  • the network device 1000 includes a processing unit 1010 and a transmitting unit 1020, where:
  • the processing unit 1010 is configured to determine whether a first type of terminal device exists in the system.
  • the sending unit 1020 is configured to indicate, according to whether the first type terminal device exists in the system determined by the processing unit 1010, to indicate, by the terminal device, a multi-antenna transmission mode for performing data transmission by the terminal device, where the terminal device is The second type of terminal equipment.
  • the network device indicates to the terminal device the multi-antenna transmission mode for transmitting data according to whether or not the terminal device of the R14 exists in the system.
  • the network device can instruct the terminal device to send data to other terminal devices by using the transmission mode of the transmit diversity, thereby improving the reliability of data transmission; when the terminal device of the R14 exists in the system.
  • the network device may instruct the terminal device to prohibit the use of the transmit mode of the transmit diversity, thereby reducing the impact on the data transmission of the R14 terminal device.
  • processing unit 1010 is specifically configured to:
  • the sending unit 1020 receives the first information sent by the terminal device, determining that the first type of terminal device exists in the system;
  • the sending unit 1020 is further configured to: send, to the terminal device, second information, where the second information is used to instruct the terminal device to prohibit data transmission by using the specific multi-antenna transmission mode.
  • the sending unit 1020 is specifically configured to: send the second information to the terminal device by using a broadcast message, a radio resource control RRC signaling, or downlink control signaling.
  • the processing unit 1010 is specifically configured to: if the network device receives the third information sent by the terminal device, determine that the first type terminal device does not exist in the system;
  • the sending unit 1020 is further configured to: send fourth information to the terminal device, where the fourth information is used to indicate that the terminal device can perform data transmission by using the specific multi-antenna transmission mode.
  • the sending unit 1020 is specifically configured to: send the fourth information to the terminal device by using a broadcast message, a radio resource control RRC signaling, or downlink control signaling.
  • the processing unit 1010 is specifically configured to: if the sending unit 1020 does not receive the first information sent by the terminal device in the duration T2, determine that the first type terminal device does not exist in the system;
  • the sending unit 1020 is further configured to: send fourth information to the terminal device, where the fourth information is used to indicate that the terminal device is capable of performing data transmission by using the specific multi-antenna transmission mode.
  • the sending unit 1020 is specifically configured to: send the fourth information that is sent to the terminal device by using a broadcast message, a radio resource control RRC signaling, or a downlink control signaling.
  • the specific multi-antenna transmission mode includes a transmission mode of non-transparent transmission diversity.
  • the sending unit is further configured to: send configuration information to the terminal device, where the configuration information is used to indicate whether the terminal device reports that a first type of terminal device exists in the system.
  • the first type of terminal device supports a communication protocol version Release 14, and the second type of terminal device supports a communication protocol version Release 15.
  • the network device 1000 can perform the corresponding operations performed by the network device in the foregoing method 400 to method 600. For brevity, details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 according to an embodiment of the present application.
  • the communication device includes a processor 1110, a transceiver 1120, and a memory 1130, wherein the processor 1110, the transceiver 1120, and the memory 1130 communicate with each other through an internal connection path.
  • the memory 1130 is configured to store instructions
  • the processor 1110 is configured to execute instructions stored by the memory 1130 to control the transceiver 1120 to receive signals or send signals.
  • the processor 1110 can call the program code stored in the memory 1130 to perform the corresponding operations performed by the terminal device in the method 300.
  • the processor 1110 can call the program code stored in the memory 1130 to perform the corresponding operations performed by the terminal device in the method 300.
  • the processor 1110 can call the program code stored in the memory 1130 to perform the corresponding operations performed by the network device in the method 300.
  • the processor 1110 can call the program code stored in the memory 1130 to perform the corresponding operations performed by the network device in the method 300.
  • the processor 1110 may invoke the program code stored in the memory 1130 to perform the corresponding operations performed by the terminal device in the method 400 to the method 600.
  • the processor 1110 may invoke the program code stored in the memory 1130 to perform the corresponding operations performed by the terminal device in the method 400 to the method 600.
  • the processor 1110 may invoke the program code stored in the memory 1130 to perform the corresponding operations performed by the network device in the method 400 to the method 600.
  • the processor 1110 may invoke the program code stored in the memory 1130 to perform the corresponding operations performed by the network device in the method 400 to the method 600.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • FIG. 12 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • the system chip 1200 of FIG. 12 includes an input interface 1201, an output interface 1202, at least one processor 1203, and a memory 1204.
  • the input interface 1201, the output interface 1202, the processor 1203, and the memory 1204 are interconnected by an internal connection path.
  • the processor 1203 is configured to execute code in the memory 1204.
  • the processor 1203 may implement a corresponding operation performed by the terminal device in the method 300. For the sake of brevity, it will not be repeated here.
  • the processor 1203 can implement corresponding operations performed by the network device in the method 300. For the sake of brevity, it will not be repeated here.
  • the processor 1203 can implement the respective operations performed by the terminal device in the method 400 through the method 600. For the sake of brevity, it will not be repeated here.
  • the processor 1203 can implement the respective operations performed by the network device in the method 400 through method 600. For the sake of brevity, it will not be repeated here.
  • B corresponding to (corresponding to) A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种确定多天线发送模式的方法和设备,包括:终端设备测量信道占用率CBR;所述终端设备根据所述CBR与CBR门限之间的大小关系,确定用于传输数据的多天线发送模式。因此,终端设备在选择发送模式时,通过测量CBR,并将测量得到的CBR与CBR门限进行比较,从而根据比较结果确定用于传输数据的多天线发送模式。这样,在系统资源占用率较低时,该终端设备可以使用发送分集的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;在系统资源占用较高时,该终端设备禁止使用发送分集的发送模式,从而降低对R14的终端设备的数据传输的影响。

Description

确定多天线发送模式的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及确定多天线发送模式的方法和设备。
背景技术
车联网或称车到设备(Vehicle to Everything,V2X)通信系统是基于D2D通信的一种侧行链路(Sidelink,SL)传输技术,与传统的长期演进(Long Term Evolution,LTE)系统中通过基站接收或者发送数据的方式不同,车联网系统采用终端到终端直接通信的方式,因此具有更高的频谱效率和更低的传输时延。
在第三代合作伙伴项目(the 3rd Generation Partnership Project,3GPP)协议的版本新版本Release-15(简写为Rel-15或R15)中,一个终端设备可以使用发送分集的发送模式与其他终端设备之间进行通信,从而提高数据传输的可靠性。但是在系统拥塞的情况下,不同终端可能选取相同的传输资源,即存在传输资源冲突。如果系统中存在版本Release-14(简写为Rel-14或R14)的终端设备,并且R14终端采用其他发送模式例如最小均方误差(Minimum Mean Square Error,MMSE)-干扰消除合并(Interference Rejection Combining,IRC),那么当R15的终端设备采用发送分集的传输方式进行传输时,会降低R14的终端设备的数据传输性能。
发明内容
本申请实施例提供了一种确定多天线发送模式的方法和设备,能够提高终端设备的数据传输的性能。
第一方面,提供了一种确定多天线发送模式的方法,包括:终端设备测量信道占用率CBR;所述终端设备根据所述CBR与CBR门限之间的大小关系,确定用于传输数据的多天线发送模式。
因此,终端设备在选择发送模式时,通过测量CBR,并将测量得到的CBR与CBR门限进行比较,从而根据比较结果确定用于传输数据的多天线发送模式。这样,在系统资源占用率较低时,该终端设备可以使用发送分集的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;在系统资源占用较高时,该终端设备禁止使用发送分集的发送模式,从而降低对R14的终端设备的数据传输的影响。
结合第一方面,在第一方面的一种可能的实现方式中,所述终端设备根据所述CBR与CBR门限之间的大小关系,确定用于传输数据的多天线发送模式,包括:若所述CBR小于或等于所述CBR门限,所述终端设备确定所述多天线发送模式包括特定的多天线发送模式;若所述CBR大于所述CBR门限,所述终端设备确定所述多天线发送模式不包括所述特定的多天线发送模式。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述特定的多天线发送模式包括非透明发送分集的发送模式。
结合第一方面或上述任一种可能的实现方式,多个资源池分别对应于多个CBR门限,所述多个CBR门限相同或者至少部分不同,所述终端设备测量的所述CBR为多个资源池中第一资源池的CBR时,使用的所述CBR门限为所述第一资源池对应的CBR门限。
结合第一方面或上述任一种可能的实现方式,所述方法还包括:所述终端设备接收网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的指示信息,所述指示信息用于指示所述CBR门限;或者,所述终端设备获取预存在所述终端设备中的所述CBR门限。
第二方面,提供了一种确定多天线发送模式的方法,包括:网络设备向终端设备发送指示信息,所述指示信息用于指示CBR门限,所述CBR门限用于所述终端设备确定用于传输数据的多天线发送模式。
因此,网络设备通过向终端设备指示CBR门限,以用于该终端设备将测量得到的CBR与该CBR门限进行比较,并根据比较结果确定用于传输数据的多天线发送模式。这样,在系统资源占用率较低时,该终端设备可以使用发送分集的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;在系统资源占用较高时,该终端设备禁止使用发送分集的发送模式,从而降低对R14的终端设备的数据传输的影响。
结合第二方面,在第二方面的一种可能的实现方式中,若终端设备测量的CBR小于或等于所述CBR 门限,所述多天线发送模式包括特定的多天线发送模式;若终端设备测量的所述CBR大于所述CBR门限,所述多天线发送模式不包括所述特定的多天线发送模式。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述指示信息包括与多个资源池分别对应的多个CBR门限,所述多个CBR门限相同或者至少部分不同,其中,所述终端设备测量的所述CBR为所述多个资源池中第一资源池的CBR时,使用的所述CBR门限为所述第一资源池对应的CBR门限。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述网络设备向终端设备发送指示信息,包括:所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述指示信息。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述特定的多天线发送模式包括非透明发送分集的发送模式。
第三方面,提供了一种确定多天线发送模式的方法,包括:终端设备检测系统中是否存在第一类终端设备,其中,所述终端设备为第二类终端设备;所述终端设备根据检测结果,确定用于传输数据的多天线发送模式。
因此,终端设备在选择发送模式时,通过检测系统中是否存在R14的终端设备,来确定用于传输数据的多天线发送模式。这样,当系统中不存在R14的终端设备时,该终端设备可以使用发送分集的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;当系统中存在R14的终端设备时,该终端设备不会使用发送分集的发送模式进行数据传输,从而降低对R14的终端设备的数据传输的影响。
结合第三方面,在第三方面的一种可能的实现方式中,所述终端设备根据检测结果,确定用于传输数据的多天线发送模式,包括:若所述终端设备在时长T1内检测到系统中存在第一类终端设备,所述终端设备向网络设备发送第一信息,所述第一信息用于指示系统中存在所述第一类终端设备;所述终端设备接收所述网络设备发送的第二信息,所述第二信息用于指示所述终端设备禁止使用特定的多天线发送模式进行数据传输。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,所述终端设备向网络设备发送第一信息,包括:所述终端设备通过调度请求消息SR、缓存状态报告BSR、上行控制信道或上行无线资源控制RRC信令向所述网络设备发送所述第一信息。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,所述终端设备接收所述网络设备发送的第二信息,包括:所述终端设备接收所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的所述第二信息。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,T1为网络设备为所述终端设备配置的,或者为预存在所述终端设备中的。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,所述终端设备根据检测结果,确定用于传输数据的多天线发送模式,包括:若所述终端设备在时长T2内检测到系统中不存在所述第一类终端设备,所述终端设备向网络设备发送第三信息,所述第三信息用于指示系统中不存在所述第一类终端设备;所述终端设备接收网络设备发送的第四信息,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,所述终端设备向网络设备发送第三信息,包括:所述终端设备通过调度请求消息SR、缓存状态报告BSR、上行控制信道或上行无线资源控制RRC信令向所述网络设备发送所述第三信息。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,所述终端设备接收所述网络设备发送的第四信息,包括:所述终端设备接收所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的所述第四信息。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,T2为网络设备为所述终端设备配置的,或者为预存在所述终端设备中的,T2与T1相等或者不相等。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,所述特定的多天线发送模式包括非透明发送分集的发送模式。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示所述终端设备上报所述检测结果。
结合第三方面或上述任一种可能的实现方式,在第三方面的另一种可能的实现方式中,所述第一类终端设备支持通信协议版本Release 14,所述第二类终端设备支持通信协议版本Release 15。
第四方面,提供了一种确定多天线发送模式的方法,包括:网络设备根据系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,其中,所述终端设备为第二类终端设备。
因此,网络设备根据系统中是否存在R14的终端设备,向终端设备指示用于其传输数据的多天线发送模式。这样,当系统中不存在R14的终端设备时,网络设备可以指示该终端设备使用发送分集的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;当系统中存在R14的终端设备时,网络设备可以指示该终端设备禁止使用发送分集的发送模式,从而降低对R14的终端设备的数据传输的影响。
结合第四方面,在第四方面的一种可能的实现方式中,所述网络设备根据系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,包括:若所述网络设备接收到所述终端设备发送的第一信息,所述网络设备向所述终端设备发送第二信息,所述第一指示信息用于指示系统中存在所述第一类终端设备,所述第二信息用于指示所述终端设备禁止使用所述特定的多天线发送模式进行数据传输。
结合第四方面或上述任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述网络设备向所述终端设备发送第二信息,包括:所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述第二信息。
结合第四方面或上述任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述网络设备根据系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,包括:若所述网络设备接收到所述终端设备发送的第三信息,所述网络设备向所述终端设备发送第四信息,所述第三信息用于指示系统中不存在所述第一类终端设备,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
结合第四方面或上述任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述网络设备向所述终端设备发送第四信息,包括:所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述第四信息。
结合第四方面或上述任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述网络设备根据系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,包括:若所述网络设备在时长T2内未接收到所述终端设备发送的第一信息,所述网络设备向所述终端设备发送第四信息,所述第一指示信息用于指示系统中存在所述第一类终端设备,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
结合第四方面或上述任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述网络设备向所述终端设备发送第四信息,包括:所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送的所述第四信息。
结合第四方面或上述任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述特定的多天线发送模式包括非透明发送分集的发送模式。
结合第四方面或上述任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示所述终端设备上报是否检测到系统中存在第一类终端设备。
结合第四方面或上述任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述第一类终端设备支持通信协议版本Release 14,所述第二类终端设备支持通信协议版本Release 15。
第五方面,提供了一种终端设备,该终端设备可以执行上述第一方面或第一方面的任意可选的实现方式中的终端设备的操作。具体地,该终端设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的操作的模块单元。
第六方面,提供了一种网络设备,该网络设备可以执行上述第二方面或第二方面的任意可选的实现方式中的发送节点的操作。具体地,该网络设备可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的网络设备的操作的模块单元。
第七方面,提供了一种终端设备,该终端设备可以执行上述第三方面或第三方面的任意可选的实现方式中的终端设备的操作。具体地,该终端设备可以包括用于执行上述第三方面或第三方面的任意可能的实现方式中的终端设备的操作的模块单元。
第八方面,提供了一种网络设备,该网络设备可以执行上述第四方面或第四方面的任意可选的实现方式中的网络设备的操作。具体地,该网络设备可以包括用于执行上述第四方面或第四方面的任意可能的实现方式中的网络设备的操作的模块单元。
第九方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、 收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第五方面提供的终端设备。
第十方面,提供了一种网络设备,该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该网络设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该网络设备实现第六方面提供的网络设备。
第十一方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第三方面或第三方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第六方面提供的终端设备。
第十二方面,提供了一种网络设备,该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该网络设备执行第四方面或第四方面的任意可能的实现方式中的方法,或者该执行使得该网络设备实现第八方面提供的网络设备。
第十三方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第一方面或第一方面的任意可能的实现方式中的方法。
第十四方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第二方面或第二方面的任意可能的实现方式中的方法。
第十五方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第三方面或第三方面的任意可能的实现方式中的方法。
第十六方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第四方面或第四方面的任意可能的实现方式中的方法。
第十七方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十八方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十九方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第三方面或第三方面的任意可能的实现方式中的方法。
第二十方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第四方面或第四方面的任意可能的实现方式中的方法。
附图说明
图1是本申请实施例的一种应用场景的示意性架构图。
图2是本申请实施例的另一种应用场景的示意性架构图。
图3是本申请一个实施例的确定多天线发送模式的方法的流程交互图。
图4是本申请另一实施例的确定多天线发送模式的方法的流程交互图。
图5是本申请再一实施例的确定多天线发送模式的方法的流程交互图。
图6是本申请再一实施例的确定多天线发送模式的方法的流程交互图。
图7是本申请一个实施例的终端设备的示意性框图。
图8是本申请一个实施例的网络设备的示意性框图。
图9是本申请另一实施例的终端设备的示意性框图。
图10是本申请另一实施例的网络设备的示意性框图。
图11是本申请实施例的通信设备的示意性结构图。
图12是本申请实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及未来的5G通信系统等。
本申请结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的陆上公用移动通信网(Public Land Mobile Network,PLMN)网络中的终端设备等。
本申请结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络侧设备等。
图1和图2是本申请实施例的一个应用场景的示意图。图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本发明实施例对此不做限定。此外,该无线通信系统还可以包括移动管理实体(Mobile Management Entity,MME)、服务网关(Serving Gateway,S-GW)、分组数据网络网关(Packet Data Network Gateway,P-GW)等其他网络实体,但本发明实施例不限于此。
具体地,终端设备20和终端设备30可以D2D通信模式进行通信,在进行D2D通信时,终端设备20和终端设备30通过D2D链路即侧行链路(Sidelink,SL)直接进行通信。例如图1或者图2所示,终端设备20和终端设备30通过侧行链路直接进行通信。在图1中,终端设备20和终端设备30之间通过侧行链路通信,其传输资源是由网络设备分配的;在图2中,终端设备20和终端设备30之间通过侧行链路通信,其传输资源是由终端设备自主选取的,不需要网络设备分配传输资源。
D2D通信方式可以用于车对车(Vehicle to Vehicle,简称“V2V”)通信或车辆到其他设备(Vehicle to Everything,V2X)通信。在V2X通信中,X可以泛指任何具有无线接收和发送能力的设备,例如但不限于慢速移动的无线装置,快速移动的车载设备,或是具有无线发射接收能力的网络控制节点等。应理解,本发明实施例主要应用于V2X通信的场景,但也可以应用于任意其它D2D通信场景,本发明实施例对此不做任何限定。
在车联网系统中,可以存在两种类型的终端设备,即具有侦听能力的终端设备例如车载终端(Vehicle User Equipment,VUE)或行人手持终端(Pedestrian User Equipment,PUE),以及不具有侦听能力的终端设备例如PUE。VUE具有更高的处理能力,并且通常通过车内的蓄电池供电,而PUE处理能力较低,降低功耗也是PUE需要考虑的一个主要因素,因此在现有的车联网系统中,VUE被认为具有完全的接收能力和侦听能力;而PUE被认为具有部分或者不具有接收和侦听能力。如果PUE具有部分侦听能力,其资源的选取可以采用和VUE类似的侦听方法,在可侦听的那部分资源上进行可用资源的选取;如果PUE不具有侦听能力,则PUE在资源池中随机选取传输资源。
终端设备可以测量系统的拥塞程度,例如测量信道占用比率(Channel Busy Ratio,CBR),基站可以指示终端设备将测量结果上报给基站,从而基站根据终端设备上报的CBR配置传输参数例如终端设备允许的调制编码方式(Modulation Coding Mode,MCS)、可使用物理资源块(Physical resource block,PBR)的数目范围、重传次数等传输参数。
其中,该CBR反映的是过去100ms内的信道占用情况。CBR越低,表示系统资源占用率越低,可用的资源就越多;CBR越高,表示系统资源占用率越高,就越拥塞,越容易发生传输冲突和干扰。
因此,本申请实施例提出,终端设备在选择发送模式时,通过测量CBR,并将测量得到的CBR与CBR门限进行比较,从而确定用于传输数据的多天线发送模式。这样,在系统资源占用率较低时,网络设备可以指示该终端设备使用特定的多天线发送模式向其他终端设备发送数据,从而提高数据传输的 可靠性;在系统资源占用较高时,网络设备可以指示该终端设备禁止使用特定的多天线发送模式,从而降低对R14的终端设备的数据传输的影响。
图3是本申请实施例的确定多天线发送模式的方法300的流程交互图。图3所示终端设备例如可以为图1或图2中所示的终端设备20或终端设备30,图3所示网络设备例如可以为图1或图2中所示的网络设备10。如图3所示,该方法包括:
在310中,网络设备向终端设备发送指示信息。
可选地,该网络设备可以通过广播消息、无线资源控制(Radio Resource Control,RRC)信令或下行控制信令等向该终端设备发送该指示信息。
在320中,终端设备接收网络设备发送的指示信息。
其中,该指示信息用于指示CBR门限,该CBR门限用于该终端设备确定用于传输数据的多天线发送模式。
在330中,终端设备测量CBR。
在340中,该终端设备根据测量得到的该CBR与该CBR门限之间的大小关系,确定用于传输数据的多天线发送模式。
具体地,网络设备向终端设备发送指示信息,以指示CBR门限,终端设备对CBR进行测量后,对测量得到的CBR与CBR门限进行比较,根据比较结果确定用于传输数据的多天线发送模式,并使用该多天线发送模式与其他终端设备进行数据传输。
该多天线发送模式例如可以包括透明发送分集的发送模式、非透明发送分集的发送模式和单端口传输模式。
其中,非透明发送分集是指接收端需要预先获知该传输模式,因此可以采用相应的接收算法进行接收,例如空频块码(Space Frequency Block Code,SFBC)或空时分组编码(Space-Time Block Coding,STBC)等基于Alamouti编码方式的发送分集模式;透明发送分集是指接收端不需要预先获知传输模式,可以采用与单天线端口相同的接收算法进行接收,例如循环延迟分集。
可选地,在340中,该终端设备根据该CBR与CBR门限之间的大小关系,确定用于传输数据的多天线发送模式,包括:若该CBR小于或等于该CBR门限,该终端设备确定该多天线发送模式包括特定的多天线发送模式;若该CBR大于该CBR门限,该终端设备确定该多天线发送模式不包括该特定的多天线发送模式。
其中,可选地,该特定的多天线发送模式包括非透明发送分集的发送模式。
由于CBR反应的是系统资源占用率,因此,CBR越高,表示系统资源占用率越高,就越拥塞,越容易发生传输冲突和干扰,若当前测量的CBR大于该CBR阈值,则此时应尽量避免使用非透明发送分集的发送模式进行数据传输,以避免对其他终端设备特别是R14的终端设备的数据传输带来干扰。而CBR越低,表示系统资源占用率越低,可用的资源就越多,这时,由于可用资源较多,因此终端设备可以使用非透明发送分集的发送模式,以提高数据传输的可靠性。
可选地,多个资源池分别对应于多个CBR门限,该多个CBR门限相同或者至少部分不同,该终端设备测量的该CBR为多个资源池中第一资源池的CBR时,使用的该CBR门限为该第一资源池对应的CBR门限。
具体地,在进行CBR测量时,是针对资源池进行的,一个载波上的多个资源池可以与多个CBR门限一一对应,这多个CBR门限可以相同或者至少不同。当这多个CBR门限相同时,终端设备在任一资源池上测量得到的CBR值,均与该CBR门限比较,以确定多天线发送模式。当这多个CBR门限不同时,终端设备在每个资源池上测量得到的CBR值,应与每个资源池对应的CBR门限进行比较,以确定多天线发送模式。例如,终端设备测量资源池1上的CBR后,将测量得到的CBR值与资源池1对应的CBR门限进行比较,从而可以确定在资源池1上传输数据所使用的多天线发送模式;终端设备测量资源池2上的CBR后,将测量得到的CBR值与资源池2对应的CBR门限进行比较,从而可以确定在资源池2上传输数据所使用的多天线发送模式。
应理解,不同载波上的资源池对应的CBR门限可以相同也可以不同,实际使用中,不同载波对应相同或不同的CBR门限,以及不同资源池对应相同或不同CBR门限,本申请对此均不作限定。
例如,载波1中的资源池1和资源池2分别对应不同的CBR门限,载波2中的资源池3和资源池4也分别对应不同的CBR门限,并且,资源池1、资源池2、资源池3和资源池4各自对应的CBR门限值均不同。
又例如,载波1中的资源池1和资源池2对应相同的CBR门限值比如为CBR门限1,载波2中的资源池3和资源池4对应相同的CBR值比如为CBR门限2,但是CBR门限1和CBR门限2不相同。
又例如,假设终端设备在每个载波上使用的资源池,为多个资源池中与该终端设备所处的区域(即 地理区域)对应的资源池,其中,这多个资源池与多个区域之间存在对应关系,终端设备处于不同地理区域时,在每个载波中使用的资源池也可能不同。假设载波1中的资源池1和载波2中的资源池3对应于区域1,载波1中的资源池2和载波2中的资源池4对应于区域2,那么,载波1中的资源池1对应的CBR门限为CBR门限1,载波1中的资源池2对应的CBR门限为CBR门限2,载波2中的资源池3对应的CBR门限为CBR门限3,载波2中的资源池4对应的CBR门限为CBR门限4。于是,当终端设备在区域1时,可以将其在资源池1上测量的CBR与资源池1对应的CBR进行比较,以确定资源池1中用于发送数据的多天线发送模式,或者将其在资源池3上测量的CBR与资源池3对应的CBR门限3进行比较,以确定资源池3中用于发送数据的多天线发送模式;当终端设备在区域2时,可以将其在资源池2上测量的CBR与资源池2对应的CBR门限2进行比较,以确定资源池2中用于发送数据的多天线发送模式,或者将其在资源池4上测量的CBR与资源池4对应的CBR门限4进行比较,以确定资源池4中用于发送数据的多天线发送模式。其中,可选的,CBR门限1、CBR门限2、CBR门限3、CBR门限4可以相同、部分不同、或者完全不同。
其中,可选地,在310中,网络设备向终端设备发送的指示信息,可以指示该第一资源池对应的CBR门限;或者,也可以指示与多个资源池分别对应的该多个CBR门限,从而终端设备根据第一资源池,以及该指示信息指示的多个资源池与多个CBR门限之间的映射关系,确定该第一资源池对应的CBR门限。本申请实施例对此不作限定。
终端设备可以通过接收网络设备发送的广播消息、无线资源控制RRC信令或下行控制信令中携带的该指示信息,获取该第一资源池对应的CBR门限或者CBR门限与资源池之间的映射关系;或者,该第一资源池对应的CBR门限或者该映射关系为预存在该终端设备中的例如协议约定的。
应理解,本申请实施例中,终端设备也可以将CBR的测量结果上报给网络设备,网络设备将该终端设备上报的CBR的测量值与对应的CBR门限值进行比较,从而确定待使用的多天线发送模式,并将该多天线发送模式指示给终端设备。本申请实施例对此不作限定,凡是通过CBR测量值与CBR门限之间的比较结果确定多天线发送模式的方法,均应落入本申请的保护范围。
图4是本申请实施例的确定多天线发送模式的方法400的流程交互图。图4所示终端设备例如可以为图1或图2中所示的终端设备20或终端设备40,图4所示网络设备例如可以为图1或图2中所示的网络设备10。图4中所示的终端设备可以为第二类终端设备。其中,可选地,该第一类终端设备支持通信协议版本Release 14,该第二类终端设备支持通信协议版本Release 15。
应理解,本申请实施例中,将支持版本Release-14的通信协议且不支持Release-15的通信协议的终端设备,简称为Release-14的终端设备,将支持版本Release-15的通信协议的终端设备简称为Release-15的终端设备。其中,Release-15的终端设备可以包括支持Release-15的终端设备或者支持Release-15的其他版本的终端设备,例如支持Release-15的Release-16的终端设备。
如图4所示,该确定多天线发送模式的方法包括:
在410中,终端设备检测系统中是否存在第一类终端设备。
在420中,网络设备根据系统中是否存在第一类终端设备,向该终端设备指示用于该终端设备进行数据传输的多天线发送模式。
在430中,该终端设备根据检测结果,获取用于进行数据传输的该多天线发送模式。
因此,终端设备在选择发送模式时,通过检测系统中是否存在R14的终端设备,来获取用于传输数据的多天线发送模式,当终端设备检测到系统中是否存在R14的终端设备时,可以隐式或显示地向网络设备指示系统当前是否存在R14的终端设备,从而网络设备可以根据系统中是否存在R14的终端设备,向终端设备指示用于其传输数据的多天线发送模式。这样,当系统中不存在R14的终端设备时,该终端设备可以使用特定的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;当系统中存在R14的终端设备时,该终端设备不会使用特定的发送模式,从而降低对R14的终端设备的数据传输的影响。
本申请实施例提供了两种用于确定多天线发送模式的方式,下面分别描述。
方式1
图5示出了本申请实施例的一种可能的实现方式的流程交互图。其中,若该终端设备在时长T1内检测到系统中存在第一类终端设备,则执行510只530;该终端设备在时长T2内检测到系统中不存在该第一类终端设备,则执行540至560。如图5所示,该方法包括:
在510中,若该终端设备在时长T1内检测到系统中存在第一类终端设备,该终端设备向网络设备发送第一信息。
其中,该第一指示信息用于指示系统中存在该第一类终端设备。
在520中,若该网络设备接收到该终端设备发送的第一信息,该网络设备向该终端设备发送第二信 息。
其中,该第二信息用于指示该终端设备禁止使用该特定的多天线发送模式进行数据传输。
在530中,该终端设备接收该网络设备发送的第二信息。
在540中,若该终端设备在时长T2内检测到系统中不存在该第一类终端设备,该终端设备向网络设备发送第三信息。
其中,该第三信息用于指示系统中不存在该第一类终端设备。
在550中,若该网络设备接收到该终端设备发送的第三信息,该网络设备向该终端设备发送第四信息。
其中,该第四信息用于指示该终端设备能够使用该特定的多天线发送模式进行数据传输。
在560中,该终端设备接收网络设备发送的第四信息,该第四信息用于指示该终端设备能够使用该特定的多天线发送模式进行数据传输。
可选地,该第一信息和该第三信息,可以是终端设备通过调度请求消息(Scheduling Request,SR)、缓存状态报告(Buffer Status Report,BSR)、上行控制信道或上行无线资源控制(Radio Resource Control,RRC)信令向该网络设备发送的,相应地,网络设备可以接收该终端设备通过SR、BSR、上行控制信道、上行RRC信令等发送的该第一信息或第三信息。
可选地,该第二信息和该第四信息,可以是网络设备通过广播消息、下行RRC信令或下行控制信令向该终端设备发送的,相应地,该终端设备可以接收该网络设备通过广播消息、下行RRC信令或下行控制信令发送的该第二信息活该第四信息。
可选地,该特定的多天线发送模式包括非透明发送分集的发送模式。如果系统中存在第一类终端设备例如R14的终端设备,则该终端设备尽量避免使用非透明发送分集的发送模式以减小对R14的终端设备的影响,但是可以使用其他的例如透明发送分集的发送模式或单端口传输模式等。
方式2
图6示出了本申请实施例的一种可能的实现方式的流程交互图。其中,若该终端设备在时长T1内检测到系统中存在第一类终端设备,则执行610至630;该终端设备在时长T2内检测到系统中不存在该第一类终端设备,则执行640至660。如图6所示,该方法包括:
在610中,若该终端设备在时长T1内检测到系统中存在第一类终端设备,该终端设备向网络设备发送第一信息。
其中,该第一指示信息用于指示系统中存在该第一类终端设备。
在620中,若该网络设备接收到该终端设备发送的第一信息,该网络设备向该终端设备发送第二信息。
其中,该第二信息用于指示该终端设备禁止使用该特定的多天线发送模式进行数据传输。
在630中,该终端设备接收该网络设备发送的第二信息。
在640中,若该终端设备在时长T2内检测到系统中不存在该第一类终端设备,该终端设备禁止向网络设备发送第一信息。
在650中,若该网络设备在时长T2内未接收到该终端设备发送的该第一信息,该网络设备向该终端设备发送第四信息。
其中,该第四信息用于指示该终端设备能够使用该特定的多天线发送模式进行数据传输。
在660中,该终端设备接收网络设备发送的该第四信息。
其中,该第四信息用于指示该终端设备能够使用该特定的多天线发送模式进行数据传输。
可选地,该第一信息可以是终端设备通过调度请求消息(Scheduling Request,SR)、缓存状态报告(Buffer Status Report,BSR)、上行控制信道或上行无线资源控制(Radio Resource Control,RRC)信令向该网络设备发送的,相应地,网络设备可以接收该终端设备通过SR、BSR、上行控制信道、上行RRC信令等发送的该第一信息。
可选地,该第二信息和该第四信息,可以是网络设备通过广播消息、下行RRC信令或下行控制信令向该终端设备发送的,相应地,该终端设备可以接收该网络设备通过广播消息、下行RRC信令或下行控制信令发送的该第二信息活该第四信息。
可选地,该特定的多天线发送模式包括非透明发送分集的发送模式。当系统中存在第一类终端设备例如R14的终端设备,则该终端设备尽量避免使用非透明发送分集的发送模式以降低对R14的终端设备的影响,但是可以使用其他的例如透明发送分集的发送模式或单端口传输模式等。
在方式1中,终端设备在T1内检测到系统中存在第一类终端设备时,向网络设备上报第一信息以指示系统中存在第一类终端设备,该网络设备接收到该第一信息后,向该终端设备发送第二信息,以指示该终端设备不能使用非透明发送分集的发送模式;该终端设备在T2内检测到系统中不存在第一类终 端设备时,向网络设备发送第三信息以指示系统中不存在第一类终端设备,该网络设备接收到该第三信息后,向该终端设备发送第四信息,以指示该终端设备能够使用非透明发送分集的发送模式。
在方式2中,终端设备在T1内检测到系统中存在第一类终端设备时,向网络设备上报第一信息以指示系统中存在第一类终端设备,该网络设备接收到该第一信息后,向该终端设备发送第二信息,以指示该终端设备不能使用非透明发送分集的发送模式;若该终端设备在时长T2内检测到系统中不存在该第一类终端设备,该终端设备也可以不向网络设备发送第一信息,即不上报系统中是否存在第一类终端设备,相应地,如果网络设备在T2内未接收到终端设备发送的该第一信息,则会默认为系统中不存在第一类终端设备,并向终端设备发送第四信息,以指示该终端设备能够使用非透明发送分集的发送模式。
本申请实施例中,该时长T1例如可以为网络设备为该终端设备配置的,或者为预存在该终端设备中的,例如协议事先约定的。时长T1(例如500ms或1000ms)可以为一个检测周期的长度,终端设备可以按照T1,周期性地上报检测到系统中存在第一类终端设备的检测结果。
另外,该时长T2例如可以为网络设备为该终端设备配置的,或者为预存在该终端设备中的,例如协议事先约定的。T2可以与T1相等,或者也可以不相等。时长T2(例如500ms或1000ms)可以为一个检测周期的长度,终端设备可以按照T2,周期性地上报检测到系统中不存在第一类终端设备的检测结果。
时长T1和时长T2可以分别为上报周期,而并非检测周期。时长T1是终端设备向网络设备上报存在第一终端设备的周期,时长T2是终端设备向网络设备上报不存在终端设备的周期。而对于终端设备的检测周期,本申请实施例并不做任何限定。例如,终端设备可以在每个子帧内检测系统中是否存在第一类终端设备,如果在T1时长内的任意一个或多个子帧内检测到系统中存在第一类终端设备,则在一个检测周期T1结束时向网络设备上报,如果在T2时长内的所有个子帧内都检测不到第一类终端设备,则可以在一个检测周期T2结束时向网络设备上报。优选地,T1=T2。
在650中,可选地,也可以是,若该网络设备在时长T3内未接收到该终端设备发送的该第一信息,该网络设备向该终端设备发送第四信息.这里的T3可以与T2相等,也可以不相等。并且,类似地,该时长T3例如可以为网络设备为该终端设备配置的,或者为预存在该终端设备中的,例如协议事先约定的。时长T3(例如500ms或1000ms)可以为一个检测周期的长度,网络设备可以按照T3,周期性地检测终端设备是否上报该第一信息,若T3内没有接收到该第一信息,则可以认为系统中不存在第一类终端设备,并向该终端设备发送第四信息;若网络设备在T3内接收到该第一信息,则可以认为系统中存在第一类终端设备,并向该终端设备发送第二信息。
另外,除了上面描述的方式1和方式2,基于本申请实施例描述的方案,还可以推断出另外的等效的实现方式,这些实现方式也应落入本申请实施例的保护范围。
例如,终端设备在T1内检测到系统中不存在第一类终端设备时,向网络设备上报第三信息以指示系统中不存在第一类终端设备,该网络设备接收到该第三信息后,向该终端设备发送第四信息,以指示该终端设备能够使用特定的多天线发送模式;若该终端设备在时长T2内检测到系统中存在该第一类终端设备,该终端设备可以不向网络设备发送该第三信息,即不上报系统中是否存在第一类终端设备,相应地,如果网络设备在T2内未接收到终端设备发送的该第三信息,则会默认为系统中存在第一类终端设备,并向终端设备发送第二信息,以指示该终端设备不能使用非透明发送分集的发送模式。
应理解,本申请实施例对如何检测系统中是否存在第一类终端设备,也不做任何限定。可选地,终端设备在检测系统中是否存在第一类终端设备时,可以通过检测其他终端设备的物理侧行链路控制信道(Physical Sidelink Control Channel,PSCCH),以确定是否存在第一类终端设备。例如,假设PSCCH中的某个特定的比特位用来表示终端设备的类型,如果一个终端设备的PSCCH的特定比特位上的值为0,则表示该终端设备为第一类终端设备,如果一个终端设备的PSCCH的特定比特位上的值为1,则表示该终端设备为第二类终端设备。终端设备检测到该比特位为0的PSCCH时,表示系统中存在第一类终端设备。
还应理解,本申请实施例中,终端设备在检测到系统中是否存在第一类终端设备后,也可以自行决定是否能够使用该特定的多天线发送模式。例如,该终端设备检测到系统中不存在R14的终端设备时,可以使用非透明发送分集的发送模式向其他终端设备传输数据;该终端设备检测到系统中存在R14的终端设备时,不使用非透明发送分集的发送模式向其他终端设备传输数据。本申请实施例对此不作限定,凡是通过判断系统中是否存在R14的终端设备来确定多天线发送模式的方法,均应落入本申请的保护范围。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的通信方法,下面将结合图5至图10,描述根据本申请实施 例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图7是根据本申请实施例的终端设备700的示意性框图。如图7所示,该终端设备700包括测量单元710和确定单元720。其中:
测量单元710,用于测量信道占用率CBR;
处理单元720,用于根据所述测量单元710测量的所述CBR与CBR门限之间的大小关系,确定用于传输数据的多天线发送模式。
因此,终端设备在选择发送模式时,通过测量CBR,并将测量得到的CBR与CBR门限进行比较,从而根据比较结果确定用于传输数据的多天线发送模式。这样,在系统资源占用率较低时,该终端设备可以使用发送分集的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;在系统资源占用较高时,该终端设备禁止使用发送分集的发送模式,从而降低对R14的终端设备的数据传输的影响。
可选地,所述处理单元720具体用于:若所述CBR小于或等于所述CBR门限,则确定所述多天线发送模式包括特定的多天线发送模式;若所述CBR大于所述CBR门限,则确定所述多天线发送模式不包括所述特定的多天线发送模式。
可选地,所述特定的多天线发送模式包括非透明发送分集的发送模式。
可选地,多个资源池分别对应于多个CBR门限,所述多个CBR门限相同或者至少部分不同,所述终端设备测量的所述CBR为多个资源池中第一资源池的CBR时,使用的所述CBR门限为所述第一资源池对应的CBR门限。
可选地,所述终端设备还包括获取单元和发送单元,其中,所述获取单元用于:通过所述发送单元接收网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的指示信息,所述指示信息用于指示所述CBR门限;或者,获取预存在所述终端设备中的所述CBR门限。
应理解,该终端设备700可以执行上述方法300中由终端设备执行的相应操作,为了简洁,在此不再赘述。
图8是根据本申请实施例的网络设备800的示意性框图。如图8所示,该网络设备800包括处理单元810和发送单元820,其中:
处理单元810,用于确定CBR门限,所述CBR门限用于所述终端设备确定用于传输数据的多天线发送模式;
发送单元820,用于向终端设备发送指示信息,所述指示信息用于指示所述CBR门限。
因此,网络设备通过向终端设备指示CBR门限,以用于该终端设备将测量得到的CBR与该CBR门限进行比较,并根据比较结果确定用于传输数据的多天线发送模式。这样,在系统资源占用率较低时,该终端设备可以使用发送分集的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;在系统资源占用较高时,该终端设备禁止使用发送分集的发送模式,从而降低对R14的终端设备的数据传输的影响。
可选地,若终端设备测量的CBR小于或等于所述CBR门限,所述多天线发送模式包括特定的多天线发送模式;若终端设备测量的所述CBR大于所述CBR门限,所述多天线发送模式不包括所述特定的多天线发送模式。
可选地,所述特定的多天线发送模式包括非透明发送分集的发送模式。
可选地,所述指示信息包括与多个资源池分别对应的多个CBR门限,所述多个CBR门限相同或者至少部分不同,其中,所述终端设备测量的所述CBR为所述多个资源池中第一资源池的CBR时,使用的所述CBR门限为所述第一资源池对应的CBR门限。
可选地,所述收发单元810具体用于:通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述指示信息。
应理解,该网络设备800可以执行上述方法300中由网络设备执行的相应操作,为了简洁,在此不再赘述。
图9是根据本申请实施例的终端设备900的示意性框图。如图9所示,该终端设备900包括检测单元910和获取单元920,其中:
检测单元910,用于检测系统中是否存在第一类终端设备,其中,所述终端设备为第二类终端设备;
收发单元920,用于根据所述检测单元910的检测结果,确定用于传输数据的多天线发送模式。
因此,终端设备在选择发送模式时,通过检测系统中是否存在R14的终端设备,来获取用于传输数据的多天线发送模式。这样,当系统中不存在R14的终端设备时,该终端设备可以使用发送分集的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;当系统中存在R14的终端设备时,该终端设备不会使用发送分集的发送模式进行数据传输,从而降低对R14的终端设备的数据传输的影响。
可选地,所述终端设备还包括收发单元930:若所述检测单元910在时长T1内检测到系统中存在第一类终端设备,则向网络设备发送第一信息,所述第一信息用于指示系统中存在所述第一类终端设备;接收所述网络设备发送的第二信息,所述第二信息用于指示所述终端设备禁止使用特定的多天线发送模式进行数据传输。
可选地,所述收发单元930具体用于:通过调度请求消息SR、缓存状态报告BSR、上行控制信道或上行无线资源控制RRC信令向所述网络设备发送所述第一信息。
可选地,所述收发单元930具体用于:接收所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的所述第二信息。
可选地,T1为网络设备为所述终端设备配置的,或者为预存在所述终端设备中的。
可选地,所述收发单元920具体用于:若所述检测单元910在时长T2内检测到系统中不存在所述第一类终端设备,则向网络设备发送第三信息,所述第三信息用于指示系统中不存在所述第一类终端设备;接收网络设备发送的第四信息,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
可选地,所述收发单元930具体用于:通过调度请求消息SR、缓存状态报告BSR、上行控制信道或上行无线资源控制RRC信令向所述网络设备发送所述第三信息。
可选地,所述收发单元930具体用于:接收所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的所述第四信息。
可选地,T2为网络设备为所述终端设备配置的,或者为预存在所述终端设备中的,T2与T1相等或者不相等。
可选地,所述特定的多天线发送模式包括非透明发送分集的发送模式。
可选地,所述收发单元930还用于:接收所述网络设备发送的配置信息,所述配置信息用于指示所述终端设备上报所述检测结果。
可选地,所述第一类终端设备支持通信协议版本Release 14,所述第二类终端设备支持通信协议版本Release 15。
应理解,该终端设备900可以执行上述方法400至方法600中由终端设备执行的相应操作,为了简洁,在此不再赘述。
图10是根据本申请实施例的网络设备1000的示意性框图。如图10所示,该网络设备1000包括处理单元1010和发送单元1020,其中:
处理单元1010,用于确定系统中是否存在第一类终端设备;
发送单元1020,用于根据所述处理单元1010确定的系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,其中,所述终端设备为第二类终端设备。
因此,网络设备根据系统中是否存在R14的终端设备,向终端设备指示用于其传输数据的多天线发送模式。这样,当系统中不存在R14的终端设备时,网络设备可以指示该终端设备使用发送分集的发送模式向其他终端设备发送数据,从而提高数据传输的可靠性;当系统中存在R14的终端设备时,网络设备可以指示该终端设备禁止使用发送分集的发送模式,从而降低对R14的终端设备的数据传输的影响。
可选地,所述处理单元1010具体用于:
若所述发送单元1020接收到所述终端设备发送的第一信息,则确定系统中存在所述第一类终端设备;
其中,所述发送单元1020还用于:向所述终端设备发送第二信息,所述第二信息用于指示所述终端设备禁止使用所述特定的多天线发送模式进行数据传输。
可选地,所述发送单元1020具体用于:通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述第二信息。
可选地,所述处理单元1010具体用于:若所述网络设备接收到所述终端设备发送的第三信息,则确定系统中不存在所述第一类终端设备;
其中,所述发送单元1020还用于:向所述终端设备发送第四信息,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
可选地,所述发送单元1020具体用于:通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述第四信息。
可选地,所述处理单元1010具体用于:若所述发送单元1020在时长T2内未接收到所述终端设备发送的第一信息,则确定系统中不存在所述第一类终端设备;
其中,所述发送单元1020还用于:向所述终端设备发送第四信息,所述第四信息用于指示所述终 端设备能够使用所述特定的多天线发送模式进行数据传输。
可选地,所述发送单元1020具体用于:通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送的所述第四信息。
可选地,所述特定的多天线发送模式包括非透明发送分集的发送模式。
可选地,所述发送单元还用于:向所述终端设备发送配置信息,所述配置信息用于指示所述终端设备上报是否检测到系统中存在第一类终端设备。
可选地,所述第一类终端设备支持通信协议版本Release 14,所述第二类终端设备支持通信协议版本Release 15。
应理解,该网络设备1000可以执行上述方法400至方法600中由网络设备执行的相应操作,为了简洁,在此不再赘述。
图11是根据本申请实施例的通信设备1100的示意性结构图。如图11所示,该通信设备包括处理器1110、收发器1120和存储器1130,其中,该处理器1110、收发器1120和存储器1130之间通过内部连接通路互相通信。该存储器1130用于存储指令,该处理器1110用于执行该存储器1130存储的指令,以控制该收发器1120接收信号或发送信号。
可选地,该处理器1110可以调用存储器1130中存储的程序代码,执行方法300中由终端设备执行的相应操作,为了简洁,在此不再赘述。
可选地,该处理器1110可以调用存储器1130中存储的程序代码,执行方法300中由网络设备执行的相应操作,为了简洁,在此不再赘述。
可选地,该处理器1110可以调用存储器1130中存储的程序代码,执行方法400至方法600中由终端设备执行的相应操作,为了简洁,在此不再赘述。
可选地,该处理器1110可以调用存储器1130中存储的程序代码,执行方法400至方法600中由网络设备执行的相应操作,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图12是本申请实施例的系统芯片的一个示意性结构图。图12的系统芯片1200包括输入接口1201、输出接口1202、至少一个处理器1203、存储器1204,所述输入接口1201、输出接口1202、所述处理器1203以及存储器1204之间通过内部连接通路互相连接。所述处理器1203用于执行所述存储器1204中的代码。
可选地,当所述代码被执行时,所述处理器1203可以实现方法300中由终端设备执行的相应操作。为了简洁,这里不再赘述。
可选地,当所述代码被执行时,所述处理器1203可以实现方法300中由网络设备执行的相应操作。为了简洁,这里不再赘述。
可选地,当所述代码被执行时,所述处理器1203可以实现方法400至方法600中由终端设备执行 的相应操作。为了简洁,这里不再赘述。
可选地,当所述代码被执行时,所述处理器1203可以实现方法400至方法600中由网络设备执行的相应操作。为了简洁,这里不再赘述。
应理解,在本发明实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (64)

  1. 一种确定多天线发送模式的方法,其特征在于,所述方法包括:
    终端设备测量信道占用率CBR;
    所述终端设备根据所述CBR与CBR门限之间的大小关系,确定用于传输数据的多天线发送模式。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述CBR与CBR门限之间的大小关系,确定用于传输数据的多天线发送模式,包括:
    若所述CBR小于或等于所述CBR门限,所述终端设备确定所述多天线发送模式包括特定的多天线发送模式;
    若所述CBR大于所述CBR门限,所述终端设备确定所述多天线发送模式不包括所述特定的多天线发送模式。
  3. 根据权利要求2所述的方法,其特征在于,所述特定的多天线发送模式包括非透明发送分集的发送模式。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,多个资源池分别对应于多个CBR门限,所述多个CBR门限相同或者至少部分不同,其中,所述终端设备测量的所述CBR为多个资源池中第一资源池的CBR时,使用的所述CBR门限为所述第一资源池对应的CBR门限。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的指示信息,所述指示信息用于指示所述CBR门限;或者,
    所述终端设备获取预存在所述终端设备中的所述CBR门限。
  6. 一种确定多天线发送模式的方法,其特征在于,所述方法包括:
    网络设备向终端设备发送指示信息,所述指示信息用于指示CBR门限,所述CBR门限用于所述终端设备确定用于传输数据的多天线发送模式。
  7. 根据权利要求6所述的方法,其特征在于,
    若终端设备测量的CBR小于或等于所述CBR门限,所述多天线发送模式包括特定的多天线发送模式;
    若终端设备测量的所述CBR大于所述CBR门限,所述多天线发送模式不包括所述特定的多天线发送模式。
  8. 根据权利要求6或7所述的方法,其特征在于,所述特定的多天线发送模式包括非透明发送分集的发送模式。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述指示信息包括与多个资源池分别对应的多个CBR门限,所述多个CBR门限相同或者至少部分不同,其中,所述终端设备测量的所述CBR为所述多个资源池中第一资源池的CBR时,使用的所述CBR门限为所述第一资源池对应的CBR门限。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述网络设备向终端设备发送指示信息,包括:
    所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述指示信息。
  11. 一种确定多天线发送模式的方法,其特征在于,所述方法包括:
    终端设备检测系统中是否存在第一类终端设备,其中,所述终端设备为第二类终端设备;
    所述终端设备根据检测结果,确定用于传输数据的多天线发送模式。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备根据检测结果,确定用于传输数据的多天线发送模式,包括:
    若所述终端设备在时长T1内检测到系统中存在第一类终端设备,所述终端设备向网络设备发送第一信息,所述第一信息用于指示系统中存在所述第一类终端设备;
    所述终端设备接收所述网络设备发送的第二信息,所述第二信息用于指示所述终端设备禁止使用特定的多天线发送模式进行数据传输。
  13. 根据权利要求12所述的方法,其特征在于,所述终端设备向网络设备发送第一信息,包括:
    所述终端设备通过调度请求消息SR、缓存状态报告BSR、上行控制信道或上行无线资源控制RRC信令向所述网络设备发送所述第一信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述终端设备接收所述网络设备发送的第二信息,包括:
    所述终端设备接收所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的所述第二信息。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,T1为网络设备为所述终端设备配置的,或者为预存在所述终端设备中的。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述终端设备根据检测结果,确定用于传输数据的多天线发送模式,还包括:
    若所述终端设备在时长T2内检测到系统中不存在所述第一类终端设备,所述终端设备向网络设备发送第三信息,所述第三信息用于指示系统中不存在所述第一类终端设备;
    所述终端设备接收网络设备发送的第四信息,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备向网络设备发送第三信息,包括:
    所述终端设备通过调度请求消息SR、缓存状态报告BSR、上行控制信道或上行无线资源控制RRC信令向所述网络设备发送所述第三信息。
  18. 根据权利要求16或17所述的方法,其特征在于,所述终端设备接收所述网络设备发送的第四信息,包括:
    所述终端设备接收所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的所述第四信息。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,T2为网络设备为所述终端设备配置的,或者为预存在所述终端设备中的,T2与T1相等或者不相等。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,所述特定的多天线发送模式包括非透明发送分集的发送模式。
  21. 根据权利要求11至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示所述终端设备上报所述检测结果。
  22. 根据权利要求11至21中任一项所述的方法,其特征在于,所述第一类终端设备支持通信协议版本Release 14,所述第二类终端设备支持通信协议版本Release 15。
  23. 一种确定多天线发送模式的方法,其特征在于,所述方法包括:
    网络设备根据系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,其中,所述终端设备为第二类终端设备。
  24. 根据权利要求23所述的方法,其特征在于,所述网络设备根据系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,包括:
    若所述网络设备接收到所述终端设备发送的第一信息,所述网络设备向所述终端设备发送第二信息,所述第一指示信息用于指示系统中存在所述第一类终端设备,所述第二信息用于指示所述终端设备禁止使用所述特定的多天线发送模式进行数据传输。
  25. 根据权利要求24所述的方法,其特征在于,所述网络设备向所述终端设备发送第二信息,包括:
    所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述第二信息。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,所述网络设备根据系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,包括:
    若所述网络设备接收到所述终端设备发送的第三信息,所述网络设备向所述终端设备发送第四信息,所述第三信息用于指示系统中不存在所述第一类终端设备,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
  27. 根据权利要求26所述的方法,其特征在于,所述网络设备向所述终端设备发送第四信息,包括:
    所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述第四信息。
  28. 根据权利要求23至25中任一项所述的方法,其特征在于,所述网络设备根据系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,包括:
    若所述网络设备在时长T2内未接收到所述终端设备发送的第一信息,所述网络设备向所述终端设备发送第四信息,所述第一指示信息用于指示系统中存在所述第一类终端设备,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
  29. 根据权利要求28所述的方法,其特征在于,所述网络设备向所述终端设备发送第四信息,包括:
    所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送的所述第四信息。
  30. 根据权利要求24至29中任一项所述的方法,其特征在于,所述特定的多天线发送模式包括非透明发送分集的发送模式。
  31. 根据权利要求23至30中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示所述终端设备上报是否检测到系统中存在第一类终端设备。
  32. 根据权利要求23至31中任一项所述的方法,其特征在于,所述第一类终端设备支持通信协议版本Release 14,所述第二类终端设备支持通信协议版本Release 15。
  33. 一种终端设备,其特征在于,所述终端设备包括:
    测量单元,用于测量信道占用率CBR;
    处理单元,用于根据所述测量单元测量的所述CBR与CBR门限之间的大小关系,确定用于传输数据的多天线发送模式。
  34. 根据权利要求33所述的终端设备,其特征在于,所述处理单元具体用于:
    若所述CBR小于或等于所述CBR门限,则确定所述多天线发送模式包括特定的多天线发送模式;
    若所述CBR大于所述CBR门限,则确定所述多天线发送模式不包括所述特定的多天线发送模式。
  35. 根据权利要求34所述的终端设备,其特征在于,所述特定的多天线发送模式包括非透明发送分集的发送模式。
  36. 根据权利要求33至35中任一项所述的终端设备,其特征在于,多个资源池分别对应于多个CBR门限,所述多个CBR门限相同或者至少部分不同,所述终端设备测量的所述CBR为多个资源池中第一资源池的CBR时,使用的所述CBR门限为所述第一资源池对应的CBR门限。
  37. 根据权利要求33至36中任一项所述的终端设备,其特征在于,所述终端设备还包括获取单元和接收单元,其中,所述获取单元用于:
    通过所述接收单元接收网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的指示信息,所述指示信息用于指示所述CBR门限;或者,
    获取预存在所述终端设备中的所述CBR门限。
  38. 一种网络设备,其特征在于,所述网络设备包括:
    处理单元,用于确定CBR门限,所述CBR门限用于所述终端设备确定用于传输数据的多天线发送模式;
    发送单元,用于向终端设备发送指示信息,所述指示信息用于指示所述处理单元确定的所述CBR门限。
  39. 根据权利要求38所述的网络设备,其特征在于,
    若终端设备测量的CBR小于或等于所述CBR门限,所述多天线发送模式包括特定的多天线发送模式;
    若终端设备测量的所述CBR大于所述CBR门限,所述多天线发送模式不包括所述特定的多天线发送模式。
  40. 根据权利要求38或39所述的网络设备,其特征在于,所述特定的多天线发送模式包括非透明发送分集的发送模式。
  41. 根据权利要求38至40中任一项所述的网络设备,其特征在于,所述指示信息包括与多个资源池分别对应的多个CBR门限,所述多个CBR门限相同或者至少部分不同,
    其中,所述终端设备测量的所述CBR为所述多个资源池中第一资源池的CBR时,使用的所述CBR门限为所述第一资源池对应的CBR门限。
  42. 根据权利要求38至41中任一项所述的网络设备,其特征在于,所述收发单元具体用于:
    通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述指示信息。
  43. 一种终端设备,其特征在于,所述终端设备包括:
    检测单元,用于检测系统中是否存在第一类终端设备,其中,所述终端设备为第二类终端设备;
    获取单元,用于根据所述检测单元的检测结果,确定用于传输数据的多天线发送模式。
  44. 根据权利要求43所述的终端设备,其特征在于,所述终端设备还包括收发单元:
    若所述检测单元在时长T1内检测到系统中存在第一类终端设备,则向网络设备发送第一信息,所述第一信息用于指示系统中存在所述第一类终端设备;
    接收所述网络设备发送的第二信息,所述第二信息用于指示所述终端设备禁止使用特定的多天线发送模式进行数据传输。
  45. 根据权利要求44所述的终端设备,其特征在于,所述收发单元具体用于:
    通过调度请求消息SR、缓存状态报告BSR、上行控制信道或上行无线资源控制RRC信令向所述网络设备发送所述第一信息。
  46. 根据权利要求44或45所述的终端设备,其特征在于,所述收发单元具体用于:
    接收所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的所述第二信息。
  47. 根据权利要求44至46中任一项所述的终端设备,其特征在于,T1为网络设备为所述终端设备配置的,或者为预存在所述终端设备中的。
  48. 根据权利要求43至47中任一项所述的终端设备,其特征在于,所述收发单元具体用于:
    若所述检测单元在时长T2内检测到系统中不存在所述第一类终端设备,则向网络设备发送第三信息,所述第三信息用于指示系统中不存在所述第一类终端设备;
    接收网络设备发送的第四信息,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
  49. 根据权利要求48所述的终端设备,其特征在于,所述收发单元具体用于:
    通过调度请求消息SR、缓存状态报告BSR、上行控制信道或上行无线资源控制RRC信令向所述网络设备发送所述第三信息。
  50. 根据权利要求48或49所述的终端设备,其特征在于,所述收发单元具体用于:
    接收所述网络设备通过广播消息、无线资源控制RRC信令或下行控制信令发送的所述第四信息。
  51. 根据权利要求48至50中任一项所述的终端设备,其特征在于,T2为网络设备为所述终端设备配置的,或者为预存在所述终端设备中的,T2与T1相等或者不相等。
  52. 根据权利要求44至51中任一项所述的终端设备,其特征在于,所述特定的多天线发送模式包括非透明发送分集的发送模式。
  53. 根据权利要求43至52中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的配置信息,所述配置信息用于指示所述终端设备上报所述检测结果。
  54. 根据权利要求43至53中任一项所述的终端设备,其特征在于,所述第一类终端设备支持通信协议版本Release 14,所述第二类终端设备支持通信协议版本Release 15。
  55. 一种网络设备,其特征在于,所述网络设备包括:
    处理单元,用于确定系统中是否存在第一类终端设备;
    发送单元,用于根据所述处理单元确定的系统中是否存在第一类终端设备,向终端设备指示用于所述终端设备进行数据传输的多天线发送模式,其中,所述终端设备为第二类终端设备。
  56. 根据权利要求55所述的网络设备,其特征在于,所述处理单元具体用于:
    若所述发送单元接收到所述终端设备发送的第一信息,则确定系统中存在所述第一类终端设备;
    其中,所述发送单元还用于:
    向所述终端设备发送第二信息,所述第二信息用于指示所述终端设备禁止使用所述特定的多天线发送模式进行数据传输。
  57. 根据权利要求56所述的网络设备,其特征在于,所述收发单元具体用于:
    通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述第二信息。
  58. 根据权利要求55至57中任一项所述的网络设备,其特征在于,所述处理单元具体用于:
    若所述网络设备接收到所述终端设备发送的第三信息,则确定系统中不存在所述第一类终端设备;
    其中,所述发送单元还用于:
    向所述终端设备发送第四信息,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
  59. 根据权利要求58所述的网络设备,其特征在于,所述收发单元具体用于:
    通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送所述第四信息。
  60. 根据权利要求55至57中任一项所述的网络设备,其特征在于,所述处理单元具体用于:
    若所述发送单元在时长T2内未接收到所述终端设备发送的第一信息,则确定系统中不存在所述第一类终端设备;
    其中,所述发送单元还用于:
    向所述终端设备发送第四信息,所述第四信息用于指示所述终端设备能够使用所述特定的多天线发送模式进行数据传输。
  61. 根据权利要求60所述的网络设备,其特征在于,所述发送单元具体用于:
    通过广播消息、无线资源控制RRC信令或下行控制信令向所述终端设备发送的所述第四信息。
  62. 根据权利要求56至61中任一项所述的网络设备,其特征在于,所述特定的多天线发送模式包括非透明发送分集的发送模式。
  63. 根据权利要求55至62中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送配置信息,所述配置信息用于指示所述终端设备上报是否检测到系统中存在第一类终端设备。
  64. 根据权利要求55至63中任一项所述的网络设备,其特征在于,所述第一类终端设备支持通信协议版本Release 14,所述第二类终端设备支持通信协议版本Release 15。
PCT/CN2018/080234 2018-03-23 2018-03-23 确定多天线发送模式的方法和设备 WO2019178843A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880037527.8A CN110741712B (zh) 2018-03-23 2018-03-23 确定多天线发送模式的方法和设备
PCT/CN2018/080234 WO2019178843A1 (zh) 2018-03-23 2018-03-23 确定多天线发送模式的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080234 WO2019178843A1 (zh) 2018-03-23 2018-03-23 确定多天线发送模式的方法和设备

Publications (1)

Publication Number Publication Date
WO2019178843A1 true WO2019178843A1 (zh) 2019-09-26

Family

ID=67988133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080234 WO2019178843A1 (zh) 2018-03-23 2018-03-23 确定多天线发送模式的方法和设备

Country Status (2)

Country Link
CN (1) CN110741712B (zh)
WO (1) WO2019178843A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220061055A1 (en) * 2018-12-21 2022-02-24 Idac Holdings, Inc. Procedures for enabling simultaneous transmission of different types

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686736A (zh) * 2016-12-30 2017-05-17 宇龙计算机通信科技(深圳)有限公司 一种通信资源选择方法,手持智能终端及接入设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488793B (zh) * 2009-03-03 2014-12-10 中兴通讯股份有限公司 一种发射分集方法
WO2010105404A1 (zh) * 2009-03-17 2010-09-23 华为技术有限公司 确定传输模式的方法、装置及终端
CN106376016A (zh) * 2015-07-20 2017-02-01 北京三星通信技术研究有限公司 一种终端的传输模式间切换方法、装置及系统
CN106470064B (zh) * 2015-08-21 2021-07-30 北京三星通信技术研究有限公司 发送分集方法及设备
CN106488560A (zh) * 2015-09-01 2017-03-08 中兴通讯股份有限公司 一种资源选择方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686736A (zh) * 2016-12-30 2017-05-17 宇龙计算机通信科技(深圳)有限公司 一种通信资源选择方法,手持智能终端及接入设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Discussion on transmit diversity for PC5", 3GPP TSG RAN WG1 MEETING #92, RL-1801472, 17 February 2018 (2018-02-17), XP051397571 *
"Performance evaluation of transmit diversity for eV2X", 3GPP TSG RAN WG1 MEETING #92, RL-1801425, 2 March 2018 (2018-03-02), XP051396921 *
HUAWEI: "Summary on Tx Diversity", 3GPP TSG RAN WG1 MEETING #92, RL-1803100, 17 February 2018 (2018-02-17), XP051398579 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220061055A1 (en) * 2018-12-21 2022-02-24 Idac Holdings, Inc. Procedures for enabling simultaneous transmission of different types

Also Published As

Publication number Publication date
CN110741712A (zh) 2020-01-31
CN110741712B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
US11665520B2 (en) Resource configuration method in D2D communication and terminal device
JP7040617B2 (ja) シグナリング指示及び受信方法、装置及び通信システム
WO2019091143A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
JP2021502742A5 (zh)
EP3817474B1 (en) Method and device for transmitting uplink signal
TW201919430A (zh) D2d通訊中資源選取的方法和終端設備
WO2019214135A1 (zh) 通信方法和设备
WO2019157754A1 (zh) 上行数据的调度方法和设备
CN110870284A (zh) 载波选取的方法和通信设备
CN114830715A (zh) 无线通信的方法和终端设备
US20210314923A1 (en) Methods and Devices for Data Transmission
WO2019178843A1 (zh) 确定多天线发送模式的方法和设备
CN110741708B (zh) D2d通信中载波选取的方法和终端设备
CN110663278B (zh) 设备对设备通信的方法和终端设备
US20210258961A1 (en) Data transmission method and device
WO2019213806A1 (zh) 通信方法和终端
WO2023115296A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2023004635A1 (zh) 资源选择方法和终端设备
WO2022021293A1 (zh) 信道侦听的方法及设备
WO2019242681A1 (zh) 无线链路监测的方法和终端设备
CN117242824A (zh) 无线通信方法、终端设备和网络设备
CN113056945A (zh) 一种信息生成及指示方法、装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910456

Country of ref document: EP

Kind code of ref document: A1