WO2019157754A1 - 上行数据的调度方法和设备 - Google Patents

上行数据的调度方法和设备 Download PDF

Info

Publication number
WO2019157754A1
WO2019157754A1 PCT/CN2018/076900 CN2018076900W WO2019157754A1 WO 2019157754 A1 WO2019157754 A1 WO 2019157754A1 CN 2018076900 W CN2018076900 W CN 2018076900W WO 2019157754 A1 WO2019157754 A1 WO 2019157754A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
beams
network device
listening
channel
Prior art date
Application number
PCT/CN2018/076900
Other languages
English (en)
French (fr)
Inventor
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880089013.7A priority Critical patent/CN111699736A/zh
Priority to KR1020207026333A priority patent/KR20200120709A/ko
Priority to JP2020543321A priority patent/JP2021517387A/ja
Priority to EP23203935.4A priority patent/EP4283914A2/en
Priority to EP18906404.1A priority patent/EP3930392B1/en
Priority to PCT/CN2018/076900 priority patent/WO2019157754A1/zh
Priority to AU2018409037A priority patent/AU2018409037A1/en
Publication of WO2019157754A1 publication Critical patent/WO2019157754A1/zh
Priority to US16/994,041 priority patent/US11570810B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and a device for scheduling uplink data.
  • the data transmission on the unlicensed frequency band is supported in the 5G system.
  • the terminal device can perform carrier sensing based on the scheduling authorization information. If the idle channel is detected in a certain beam direction, Then, the terminal device uses the beam to send an uplink channel, and if there is no idle channel in the beam direction, the terminal device delays transmitting the uplink channel. Therefore, how to reduce the transmission delay of the uplink channel becomes an urgent problem to be solved.
  • the embodiment of the present application provides a method and a device for scheduling uplink data, which can reduce the transmission delay of an uplink channel.
  • the first aspect provides a method for scheduling uplink data, including: receiving, by a terminal device, first signaling sent by a network device, where the first signaling includes beam information of M beams, where M is a positive integer; The device performs carrier sensing on the M beams according to the first signaling. The terminal device selects one of the M beams to send an uplink channel to the network device according to the interception result.
  • the network device configures a plurality of candidate beams for the transmission of the uplink channel for the terminal device, and the terminal device performs carrier sensing on the plurality of candidate beams in sequence, and selects an appropriate beam to perform uplink channel transmission based on the interception result.
  • the transmission delay of the uplink channel on the unlicensed band can be greatly reduced.
  • the beam information is an SRS resource index.
  • the uplink channel is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the terminal device performs carrier sensing on the M beams according to the first signaling, including: the terminal device sequentially, according to the first signaling, the M beams are subjected to carrier sensing until the channel is detected to be idle on the Nth beam, and N is a positive integer less than or equal to M;
  • the terminal device selects one of the M beams to send an uplink channel to the network device, where the terminal device sends the Nth beam to the network device by using the Nth beam. Upstream channel.
  • the terminal device performs carrier sensing on the M beams in sequence according to the first signaling, including: the terminal device according to the priority of the M beams, according to The priority is from high to low, and the M beams are sequentially subjected to carrier sensing.
  • the N beams that perform carrier sensing, including the Nth beam are in one-to-one correspondence with N listening windows, and the terminal device is in the N beams.
  • the listening window used for carrier sensing on each beam is the listening window corresponding to each beam.
  • the N listening windows are consecutive N listening windows.
  • the method before the terminal device performs carrier sensing on the M beams, the method further includes: receiving, by the terminal device, first indication information sent by the network device, where The first indication information is used to indicate information of each listening window; or the terminal device acquires information pre-existing in each of the listening windows in the terminal device.
  • the information of each of the listening windows includes a length of time of each of the listening windows and/or a starting time position of each of the listening windows.
  • the uplink channel is a PUSCH
  • the first signaling further includes information of a first duration, where the first duration is: the network device sends the information to the terminal device.
  • the uplink channel is a PUSCH
  • the first signaling further includes information of a second duration, where the second duration is: the terminal device sends the information to the network device.
  • the time slot in which the PUSCH is located or the end time domain symbol is separated from the time slot in which the downlink feedback channel is located or the start time domain symbol, and the downlink feedback channel is used by the terminal device to send the PUSCH to the network device. Feedback response information.
  • the terminal device performs carrier sensing on all or part of the M beams according to the first signaling, including: the terminal device simultaneously accesses the M The beam performs carrier sensing;
  • the terminal device selects one of the all or part of the beam to send an uplink channel to the network device according to the interception result, and the method includes: the terminal device uses the interception channel as an idle beam, to the The network device sends an upstream channel.
  • the method before the receiving, by the terminal device, the scheduling authorization information sent by the network device, the method further includes: receiving, by the terminal device, second indication information that is sent by the network device, where the second The indication information is used to indicate the value of M; or the terminal device acquires a value pre-existing in the terminal device.
  • the second aspect provides a method for scheduling uplink data, including: the network device sends first signaling to the terminal device, where the first signaling includes beam information of M beams, where M is a positive integer; the network device Receiving, by the terminal device, an uplink channel that is sent by using one of the M beams.
  • the network device configures a plurality of candidate beams for the transmission of the uplink channel for the terminal device, and the terminal device performs carrier sensing on the plurality of candidate beams in sequence, and selects an appropriate beam to perform uplink channel transmission based on the interception result.
  • the transmission delay of the uplink channel on the unlicensed band can be greatly reduced.
  • the beam information is a sounding reference signal SRS resource index.
  • the uplink channel is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the network device receives an uplink channel that is sent by the terminal device by using one of the M beams, where: the network device receives, by the terminal device, the M beams.
  • the uplink channel sent by the Nth beam in the Nth beam, the Nth beam is the terminal device sequentially performing carrier sensing on the M beams until the corresponding beam is detected when the channel is idle, and N is less than or A positive integer equal to M.
  • the N beams that perform carrier sensing, including the Nth beam are in one-to-one correspondence with N listening windows, and the terminal device is in the N beams.
  • the listening window used for carrier sensing on each beam is the listening window corresponding to each beam.
  • the N listening windows are consecutive N listening windows.
  • the method further includes: the network device sending first indication information to the terminal device, where the first indication information is used to indicate information of each listening window.
  • the information of each of the listening windows includes a length of time of each of the listening windows and/or a starting time position of each of the listening windows.
  • the uplink channel is a PUSCH
  • the first signaling further includes information of a first duration, where the first duration is: the network device sends the information to the terminal device.
  • the uplink channel is a PUSCH
  • the first signaling further includes information of a second duration, where the second duration is: the terminal device sends the information to the network device.
  • the time slot in which the PUSCH is located or the end time domain symbol is separated from the time slot in which the downlink feedback channel is located or the start time domain symbol, and the downlink feedback channel is used by the terminal device to send the PUSCH to the network device. Feedback response information.
  • the network device receives an uplink channel that is sent by the terminal device by using one of the M beams, where: the network device receives, by the terminal device, the M beams.
  • the intermediate channel is heard to hear an uplink channel sent by the idle beam, wherein the terminal device performs carrier sensing on the M beams at the same time.
  • the method before the sending, by the network device, the scheduling authorization information, the method further includes: sending, by the network device, second indication information, the second indication information, to the terminal device Used to indicate the value of M.
  • a terminal device which can perform the operations of the terminal device in the above first aspect or any optional implementation manner of the first aspect.
  • the terminal device may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the first aspect or the first aspect described above.
  • a network device which can perform the operations of the network device in any of the foregoing aspects or any optional implementation of the first aspect.
  • the network device may comprise a modular unit for performing the operations of the network device in any of the possible implementations of the second aspect or the second aspect described above.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is configured to store instructions that are configured to execute instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method of the first aspect or any possible implementation of the first aspect, or the execution causes the terminal device to implement the terminal provided by the second aspect device.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is configured to store instructions that are configured to execute instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the network device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the execution causes the network device to implement the network provided by the fourth aspect device.
  • a system chip comprising an input interface, an output interface, a processor, and a memory, the processor configured to execute an instruction stored by the memory, when the instruction is executed, the processor can implement The method of any of the preceding first aspect or any possible implementation of the first aspect.
  • a system chip in an eighth aspect, includes an input interface, an output interface, a processor, and a memory, the processor configured to execute an instruction stored by the memory, when the instruction is executed, the processor can implement The method of any of the preceding second aspect or any of the possible implementations of the second aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the first aspect or the first aspect of the first aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the above-described second or second aspect of the second aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a flow interaction diagram of a method for scheduling uplink data according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a first duration and a second duration of an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first duration and a second duration of an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a first duration and a second duration of an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Network device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, A network side device in a future 5G network or a network device in a publicly available Public Land Mobile Network (PLMN) in the future.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device, such as terminal device 121 and terminal device 122, located within the coverage of network device 110.
  • Terminal device 121 and terminal device 122 may be mobile or fixed.
  • the terminal device 121 and the terminal device 122 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • a device to device (D2D) communication may be performed between the terminal device 121 and the terminal device 122.
  • D2D device to device
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • the frequency band used for data transmission is higher than the frequency band used in LTE, so the path loss of the wireless signal transmission becomes large, and the coverage of the wireless signal becomes small.
  • beamforming technology is proposed in 5G systems to increase the gain of wireless signals to compensate for path loss.
  • the beam used by the base station to send signals to the terminal device has directivity, and different beams actually correspond to different transmission directions, and each narrow beam can only cover a partial area of the cell, and cannot cover all areas in the cell.
  • FIG. 1 shows four beams in different directions, namely, beam B1, beam B2, beam B3, and beam B4, and the base station can transmit signals to the terminal device through four different directions of beams.
  • the base station can transmit signals to the terminal device 121 through the beam B1 and the beam B2, and transmit signals to the terminal device 122 through the beam B3 and the beam B4.
  • LBT Listen Before Talk
  • the base station after the base station detects that the channel is idle in the downlink time slot, the base station sends an uplink grant authorization (UL Grant) to the terminal device, and the terminal device also needs to perform the uplink scheduling authorization. Listening, if the channel is detected to be idle, the terminal device uses the idle channel to send uplink data.
  • UL Grant uplink grant authorization
  • CSI-RS channel state indication reference signal
  • SRS sounding reference signal reference signal
  • Synchrozing Signal synchronization signal block
  • the terminal device performs carrier sensing (or beam sensing, channel sensing, interception, etc.) on a certain beam. If the channel on the beam is detected to be busy before transmitting the data, the uplink data cannot be sent, then The terminal device may lose a scheduling opportunity, and the transmission of the uplink data will be delayed.
  • carrier sensing or beam sensing, channel sensing, interception, etc.
  • the embodiment of the present application provides that the network device may configure multiple candidate beams for the terminal device to transmit the uplink channel, and the terminal device performs carrier on multiple candidate beams in sequence. Listening, so that the appropriate beam is selected for the uplink channel transmission based on the interception result, which greatly reduces the transmission delay of the uplink channel on the unlicensed band.
  • the network device shown in FIG. 2 may be, for example, the network device 110 shown in FIG. 1.
  • the terminal device shown in FIG. 2 may be, for example, the terminal device 121 and the terminal device 122 shown in FIG. 1.
  • the method shown in FIG. 2 can be applied to an unlicensed frequency band.
  • the scheduling method of the uplink data may include the following parts or all contents:
  • the network device sends the first signaling to the terminal device.
  • the terminal device receives the first signaling sent by the network device.
  • the first signaling includes beam information of M beams, where M is a positive integer.
  • the first signaling may be, for example, a downlink control channel PDCCH or a Radio Resource Control (RRC) signaling.
  • PDCCH downlink control channel
  • RRC Radio Resource Control
  • the beam information of each beam included in the first signaling is a Sounding Reference Signal (SRS) resource index.
  • SRS Sounding Reference Signal
  • the terminal device needs to acquire the value of the M.
  • the terminal device may receive the second indication information sent by the network device, where the second indication information is used to indicate the value of M; or the terminal device acquires a value pre-existing in the terminal device.
  • the value of M may be configured by the network device for the terminal device, or the value of M is a value agreed by the terminal device and the network device in advance and pre-existing in the terminal device, such as a protocol agreement.
  • the terminal device performs carrier sensing on all or part of the M beams according to the first signaling.
  • the terminal device may perform carrier sensing on the M beams in sequence according to the first signaling; or the terminal device may perform carrier sensing on the M beams at the same time. Specific description will be given later.
  • performing carrier sensing on all or part of the M beams in the manner of 230 may be performing directional carrier sensing on all or part of the M beams.
  • carrier sensing may be performed on the first listening direction of the beam, and/or carrier sensing in the second listening direction of the beam.
  • the first listening direction is, for example, a direction in which data is transmitted to the network device by using the beam
  • the second listening direction is, for example, a back direction of the first listening direction.
  • the terminal device selects one of the all or part of the beams to send an uplink channel to the network device according to the interception result.
  • the network device receives an uplink channel that the terminal device transmits using one of the M beams.
  • the terminal device selects one beam from the M beams according to channel states (busy or idle) detected on different beams, and uses the beam to send an uplink channel to the network device, and the network device uses the beam to receive the terminal device.
  • the upstream channel sent is
  • a beam used to receive a signal can be understood as a spatial domain reception filter used to receive a signal; a beam used to transmit a signal can be understood as , a spatial domain transmission filter used to transmit a signal.
  • the two signals can be said to be Quasi-Co-Located (QCL) with respect to the spatial receive parameters.
  • the uplink channel is a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) or a physical uplink control channel (PUCCH).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH physical uplink control channel
  • the terminal device performs carrier sensing on all or part of the M beams, which may be separately described in the following two manners.
  • the terminal device performs carrier sensing on all or part of the M beams according to the first signaling, where the terminal device sequentially performs, according to the first signaling,
  • the M beams are subjected to carrier sensing until the channel is detected to be idle on the Nth beam.
  • N is a positive integer less than or equal to M.
  • the M beams may be sequentially subjected to carrier sensing according to the priority of the M beams in descending order of priority.
  • the priority of the M beams may be determined by the network device according to the signal measurement result on each beam, for example, the signal quality of the reference signal or the reference signal received power, which is not limited herein.
  • the terminal device selects one of the M beams to send an uplink channel to the network device according to the interception result, and the terminal device sends the uplink to the network device by using the Nth beam. channel.
  • the network device receives an uplink channel that is sent by the terminal device by using one of the M beams, and the network device receives, by the network device, the Nth beam sent by the terminal device using the M beams.
  • the Nth beam is the terminal device that performs carrier sensing on the M beams in turn until the corresponding beam is detected when the channel is idle, and N is a positive integer less than or equal to M.
  • the terminal device performs carrier sensing from the beginning of the first beam, and in the listening of the first beam to the N-1th beam, no idle channel is detected, that is, the channel is occupied, and The channel is detected to be idle on the Nth beam, and the terminal device can stop listening to the remaining beam and use the Nth beam to transmit the uplink channel.
  • the terminal device detects that the channel on the Nth beam is idle. For example, the power of the reference signal sent on the beam is less than a preset threshold, and the channel on the beam is considered to be idle.
  • the terminal device first performs carrier sensing on the beam B1, and if there is no idle channel on the beam B1, the carrier sensing continues on the beam B2. If the channel is detected to be idle on the beam B2, the interception is stopped and the uplink channel is sent to the network device using the beam B2. If the idle channel is not detected on the beam B2, carrier sensing on the beam B3 is continued. If the channel is detected to be idle on the beam B3, the interception is stopped and the uplink channel is transmitted to the network device using the beam B3.
  • the idle channel is not detected on the beam B3, carrier sensing on the beam B4 is continued. If the channel is detected to be idle on the beam B4, the uplink channel is sent to the network device by using the beam B4. If the idle channel is still not heard on the beam B4, the transmission of the uplink channel may be delayed.
  • the N beams that have been intercepted, including the Nth beam are in one-to-one correspondence with N listening windows, and the terminal device performs carrier sensing on each of the N beams.
  • the listening window used is the listening window corresponding to each beam.
  • the N devices When the N devices are listening to the N beams, they are respectively listening in different listening windows. When each beam is intercepted, it is performed in the listening window corresponding to the beam.
  • the N listening windows corresponding to the N beams may be equal length or unequal length.
  • the N listening windows corresponding to the N beams are continuously distributed in time.
  • the terminal device detects that the channel is idle when the third beam, ie, beam B3, is detected, and the three beams that are intercepted are beam B1, beam B2, and beam B3, respectively.
  • the order is: beam B1>beam B2>beam B3.
  • the listening window corresponding to beam B1 is W1
  • the listening window corresponding to beam B2 is W2
  • the listening window corresponding to beam B3 is W3.
  • the three listening windows are W1, W2, and W3 in chronological order.
  • the terminal device sequentially listens on the beam B1, the beam B2 and the beam B3 in W1, W2 and W3.
  • the method further includes: receiving, by the terminal device, first indication information sent by the network device, where the first The indication information is used to indicate information of each of the listening windows; or the terminal device acquires information pre-existing in each of the listening windows in the terminal device.
  • the information of each of the listening windows includes a length of time of each listening window and/or a starting time position of each listening window.
  • the length and/or the start time position of each listening window may be configured by the network device for the terminal device, or pre-arranged and pre-existed in the terminal device by the terminal device and the network device, for example, the protocol stipulates the Detective Listen to the length and/or start time of the window.
  • the first signaling further includes information of a first duration and/or a second duration.
  • the first time duration is: a time slot in which the physical downlink control channel (PDCCH) of the physical device sends the physical downlink control channel (PDCCH), an initial time domain symbol or an end time domain symbol, and the first interception
  • the duration between the start moments of the window, the first listening window is a listening window corresponding to the first of the N beams that are being listened to.
  • the second duration is: a time slot between the time slot or the end time domain symbol of the PUSCH that the terminal device sends to the network device, and the time slot or the start time domain symbol where the downlink feedback channel is located, the downlink The feedback channel is used by the terminal device to send feedback response information for the PUSCH to the network device.
  • the first time length and the second time length will be described below by taking FIG. 3 and FIG. 4 as an example.
  • the terminal device detects that the channel is idle while listening to the second beam.
  • the two beams that have been intercepted are beam B1 and beam B2, respectively.
  • the listening window corresponding to beam B1 is W1
  • the listening window corresponding to beam B2 is W2.
  • the time interval between the PDCCH transmitted by the network device to the terminal device and the listening window W1 is equal to the first duration T1.
  • the terminal device After receiving the T1 duration of the PDCCH, the terminal device starts carrier sensing. First, the interception is performed on the beam B1 in W1, the idle channel is not detected, and then the interception is performed on the beam B2 in W2, and the idle channel is detected.
  • the terminal device thus transmits the PUSCH to the network device using beam B2.
  • the network device sends a feedback response message, such as an acknowledgment (ACK) or a negative acknowledgment (NACK) message, to the terminal device after the T2 duration.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • the terminal device detects that the channel is idle while listening to the third beam.
  • the three beams that have been intercepted are beam B1, beam B2, and beam B3, respectively.
  • the listening window corresponding to the beam B1 is W1
  • the listening window corresponding to the beam B2 is W2
  • the listening window corresponding to the beam B3 is W3.
  • the time interval between the PDCCH transmitted by the network device to the terminal device and the listening window W1 is equal to the first duration T1. After receiving the T1 duration of the PDCCH, the terminal device starts carrier sensing.
  • the interception is performed on the beam B1 in W1, the idle channel is not detected, and then the interception is performed on the beam B2 in W2, the idle channel is not detected, and then the interception is performed on the beam B3 in W3, and the interception is performed. Idle channel.
  • the terminal device thus transmits the PUSCH to the network device using beam B3.
  • the network device After receiving the PUSCH sent by the terminal device using the beam B3, the network device sends a feedback response message, such as an ACK message or a NACK message, to the terminal device after the T2 duration.
  • the uplink channel may be immediately sent, that is, the uplink channel may be sent in the remaining time of the listening window.
  • the terminal device listens to the beam B1 in the listening window W1, and finds that the channel is occupied. Then, the terminal device listens to the beam B2 in the listening window W2, and is in the W2. At some point, when the channel on beam B2 is detected to be idle, the remaining time in W2 can be used to transmit PUSCH.
  • the network device can ensure that the carrier sensing and data transmission of the terminal device are completed in one listening window, so that for one listening window, the network device only needs to use one receiving beam. Receiving uplink data that the terminal device may send.
  • the terminal device needs to send the uplink channel outside the listening window after the channel is detected to be idle, and the network may not be able to determine which beam the terminal device is on. It is heard that the channel is idle, so it is necessary to simultaneously receive uplink data that the terminal device may transmit in multiple possible beam directions. At this time, the network device has the ability to simultaneously receive uplink signals of multiple beam directions.
  • the terminal device performs carrier sensing on all or part of the M beams according to the first signaling, where: the terminal device simultaneously uses the M beams. Perform carrier sensing.
  • the terminal device simultaneously turns on multiple or all of the receiving panels for carrier sensing.
  • the terminal device selects one of the all or part of the beam to send an uplink channel to the network device according to the interception result, where the terminal device uses the interception channel to be idle.
  • the network device receives an uplink channel that is sent by the terminal device by using one of the M beams, where the network device receives, by the network device, the intercepted channel in the M beams is idle.
  • the uplink channel sent by the beam wherein the terminal device performs carrier sensing on the M beams at the same time.
  • the network device configures multiple candidate beams for the uplink channel for the terminal device, and the terminal device performs carrier sensing on multiple candidate beams in sequence, and selects an appropriate beam based on the interception result.
  • the transmission of the uplink channel is performed, so that the transmission delay of the uplink channel on the unlicensed band can be greatly reduced.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 6 is a schematic block diagram of a terminal device 600 according to an embodiment of the present application. As shown in FIG. 6, the terminal device 600 includes a transceiver unit 610 and a listening unit 620. among them:
  • the transceiver unit 610 is configured to receive the first signaling sent by the network device, where the first signaling includes beam information of M beams, where M is a positive integer;
  • the intercepting unit 620 is configured to perform carrier sensing on the M beams in sequence according to the first signaling.
  • the transceiver unit 610 is further configured to select one of the M beams to send an uplink channel to the network device according to the interception result.
  • the network device configures a plurality of candidate beams for the transmission of the uplink channel for the terminal device, and the terminal device performs carrier sensing on the plurality of candidate beams in sequence, and selects an appropriate beam to perform uplink channel transmission based on the interception result.
  • the transmission delay of the uplink channel on the unlicensed band can be greatly reduced.
  • the beam information is a sounding reference signal SRS resource index.
  • the uplink channel is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the listening unit 620 is configured to: perform carrier sensing on the M beams in sequence according to the first signaling, until the channel is idle on the Nth beam, and N is smaller than Or a positive integer equal to M;
  • the transceiver unit 610 is specifically configured to: send an uplink channel to the network device by using the Nth beam.
  • the listening unit 620 is specifically configured to: perform carrier sensing on the M beams in order according to priority of the M beams according to a priority from high to low.
  • N beams that perform carrier sensing are in one-to-one correspondence with N listening windows, and the terminal device is on each of the N beams.
  • a listening window used for carrier sensing is a listening window corresponding to each of the beams.
  • the N listening windows are consecutive N listening windows.
  • the listening unit 620 is further configured to: receive, by the transceiver unit 610, first indication information that is sent by the network device, where the first indication information is used to indicate information of each listening window; or Obtaining information pre-existing in each of the listening windows in the terminal device.
  • the information of each of the listening windows includes a length of time of each of the listening windows and/or a starting time position of each of the listening windows.
  • the uplink channel is a PUSCH
  • the first signaling further includes information of a first duration, where the first duration is: a physical downlink control channel PDCCH that the network device sends to the terminal device. a time slot between the time slot in which the time slot, the start time domain symbol or the end time domain symbol is located, and the start time of the first listening window, wherein the first listening window is the first one of the N beams The listening window corresponding to the beam being listened to.
  • the uplink channel is a PUSCH
  • the first signaling further includes information of a second duration, where the second duration is: a time slot in which the terminal device sends the PUSCH to the network device. Or ending the time domain symbol, the time interval between the time slot in which the downlink feedback channel is located or the start time domain symbol, where the downlink feedback channel is used by the terminal device to send feedback response information for the PUSCH to the network device.
  • the listening unit 620 is specifically configured to: perform carrier sensing on the M beams at the same time;
  • the transceiver unit 610 is specifically configured to: the terminal device uses an interception channel as an idle beam, and sends an uplink channel to the network device.
  • the listening unit 620 is further configured to: receive, by the transceiver unit 610, second indication information that is sent by the network device, where the second indication information is used to indicate a value of M; or The value of M in the terminal device.
  • terminal device 600 can perform the corresponding operations performed by the terminal device in the foregoing method 200, and details are not described herein for brevity.
  • FIG. 7 is a schematic block diagram of a network device 700 in accordance with an embodiment of the present application.
  • the network device 700 includes a transceiver unit 710 configured to:
  • the terminal device And transmitting, to the terminal device, the first signaling, where the first signaling includes beam information of M beams, where M is a positive integer; and receiving, by the terminal device, an uplink channel that is sent by using one of the M beams.
  • the network device configures a plurality of candidate beams for the transmission of the uplink channel for the terminal device, and the terminal device performs carrier sensing on the plurality of candidate beams in sequence, and selects an appropriate beam to perform uplink channel transmission based on the interception result.
  • the transmission delay of the uplink channel on the unlicensed band can be greatly reduced.
  • the beam information is a sounding reference signal SRS resource index.
  • the uplink channel is a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the transceiver unit 710 is configured to: receive, by the terminal device, an uplink channel that is sent by using an Nth beam of the M beams, where the Nth beam is the terminal device sequentially The M beams perform carrier sensing until the corresponding beam is detected when the channel is idle, and N is a positive integer less than or equal to M.
  • N beams that perform carrier sensing are in one-to-one correspondence with N listening windows, and the terminal device is on each of the N beams.
  • a listening window used for carrier sensing is a listening window corresponding to each of the beams.
  • the N listening windows are consecutive N listening windows.
  • the transceiver unit 710 is further configured to: send, to the terminal device, first indication information, where the first indication information is used to indicate information of each listening window.
  • the information of each of the listening windows includes a length of time of each of the listening windows and/or a starting time position of each of the listening windows.
  • the uplink channel is a PUSCH
  • the first signaling further includes information of a first duration, where the first duration is: a physical downlink control channel PDCCH that the network device sends to the terminal device. a time slot between the time slot in which the time slot, the start time domain symbol or the end time domain symbol is located, and the start time of the first listening window, wherein the first listening window is the first one of the N beams The listening window corresponding to the beam being listened to.
  • the uplink channel is a PUSCH
  • the first signaling further includes information of a second duration, where the second duration is: a time slot in which the terminal device sends the PUSCH to the network device. Or ending the time domain symbol, the time interval between the time slot in which the downlink feedback channel is located or the start time domain symbol, where the downlink feedback channel is used by the terminal device to send feedback response information for the PUSCH to the network device.
  • the transceiver unit 710 is configured to: receive, by the terminal device, an uplink channel that is sent by using a beam in which the listening channel is idle in the M beams, where the terminal device simultaneously uses the M beams. Perform carrier sensing.
  • the transceiver unit 710 is further configured to: send, to the terminal device, second indication information, where the second indication information is used to indicate a value of M.
  • the network device 700 can perform the corresponding operations performed by the network device in the foregoing method 200, and details are not described herein for brevity.
  • FIG. 8 is a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device includes a processor 810, a transceiver 820, and a memory 830, wherein the processor 810, the transceiver 820, and the memory 830 communicate with each other through an internal connection path.
  • the memory 830 is configured to store instructions
  • the processor 810 is configured to execute instructions stored by the memory 830 to control the transceiver 820 to receive signals or transmit signals.
  • the processor 810 can call the program code stored in the memory 830 to perform the corresponding operations performed by the terminal device in the method 200.
  • the processor 810 can call the program code stored in the memory 830 to perform the corresponding operations performed by the terminal device in the method 200.
  • the processor 810 can call the program code stored in the memory 830 to perform the corresponding operations performed by the network device in the method 300.
  • the processor 810 can call the program code stored in the memory 830 to perform the corresponding operations performed by the network device in the method 300.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • the system chip 900 of FIG. 9 includes an input interface 901, an output interface 902, at least one processor 903, and a memory 904.
  • the input interface 901, the output interface 902, the processor 903, and the memory 904 are interconnected by an internal connection path.
  • the processor 903 is configured to execute code in the memory 904.
  • the processor 903 can implement a corresponding operation performed by the terminal device in the method 200. For the sake of brevity, it will not be repeated here.
  • the processor 903 can implement corresponding operations performed by the network device in the method 200 when the code is executed. For the sake of brevity, it will not be repeated here.
  • B corresponding to (corresponding to) A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one monitoring unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行数据的调度方法和设备,包括:终端设备接收网络设备发送的第一信令,所述第一信令包括M个波束的波束信息,M为正整数;所述终端设备根据所述第一信令,依次对所述M个波束进行载波侦听;所述终端设备根据侦听结果,选择所述M个波束中的一个波束向所述网络设备发送上行信道。因此,网络设备通过为终端设备配置多个候选波束用于上行信道的发送,使得终端设备基于一定规则依次在多个候选波束上进行载波侦听,并基于侦听结果选择合适的波束进行上行信道的发送,从而能够大大降低非授权频段上的上行信道的传输时延。

Description

上行数据的调度方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及上行数据的调度方法和设备。
背景技术
5G系统中支持非授权频段上的数据传输,网络设备向终端设备发送调度授权信息后,终端设备可以基于该调度授权信息,进行载波侦听,如果在某个波束方向上侦听到空闲信道,则该终端设备使用该波束发送上行信道,如果该波束方向上没有空闲信道,则该终端设备延迟发送该上行信道。因此,如何降低上行信道的传输时延成为急需解决的问题。
发明内容
本申请实施例提供了一种上行数据的调度方法和设备,能够降低上行信道的传输时延。
第一方面,提供了一种上行数据的调度方法,包括:终端设备接收网络设备发送的第一信令,所述第一信令包括M个波束的波束信息,M为正整数;所述终端设备根据所述第一信令,对所述M个波束进行载波侦听;所述终端设备根据侦听结果,选择所述M个波束中的一个波束向所述网络设备发送上行信道。
因此,网络设备通过为终端设备配置多个候选波束用于上行信道的发送,终端设备通过依次在多个候选波束上进行载波侦听,并基于侦听结果选择合适的波束进行上行信道的发送,从而能够大大降低非授权频段上的上行信道的传输时延。
在一种可能的实现方式中,所述波束信息为SRS资源索引。
在一种可能的实现方式中,所述上行信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
在一种可能的实现方式中,所述终端设备根据所述第一信令,对所述M个波束进行载波侦听,包括:所述终端设备根据所述第一信令,依次对所述M个波束进行载波侦听,直到在第N波束上侦听到信道为空闲,N为小于或等于M的正整数;
其中,所述终端设备根据侦听结果,选择所述M个波束中的一个波束向所述网络设备发送上行信道,包括:所述终端设备使用所述第N个波束,向所述网络设备发送上行信道。
在一种可能的实现方式中,所述终端设备根据所述第一信令,依次对所述M个波束进行载波侦听,包括:所述终端设备根据所述M个波束的优先级,按照优先级由高至低的顺序,依次对所述M个波束进行载波侦听。
在一种可能的实现方式中,包括所述第N个波束在内的进行了载波侦听 的N个波束,与N个侦听窗口一一对应,所述终端设备在所述N个波束中的每个波束上进行载波侦听所使用的侦听窗口,为所述每个波束对应的侦听窗口。
在一种可能的实现方式中,所述N个侦听窗口为连续的N个侦听窗口。
在一种可能的实现方式中,在所述终端设备依次对所述M个波束进行载波侦听之前,所述方法还包括:所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示每个侦听窗口的信息;或者,所述终端设备获取预存在所述终端设备中的所述每个侦听窗口的信息。
在一种可能的实现方式中,所述每个侦听窗口的信息包括所述每个侦听窗口的时间长度和/或所述每个侦听窗口的起始时间位置。
在一种可能的实现方式中,所述上行信道为PUSCH,所述第一信令还包括第一时长的信息,其中,所述第一时长为:所述网络设备向所述终端设备发送的物理下行控制信道PDCCH所在的时隙、起始时域符号或结束时域符号,与第一侦听窗口的起始时刻之间相隔的时长,所述第一侦听窗口为所述N个波束中第一个被侦听的波束对应的侦听窗口。
在一种可能的实现方式中,所述上行信道为PUSCH,所述第一信令还包括第二时长的信息,其中,所述第二时长为:所述终端设备向所述网络设备发送的PUSCH所在的时隙或结束时域符号,与下行反馈信道所在的时隙或起始时域符号之间相隔的时长,所述下行反馈信道用于所述终端设备向网络设备发送针对所述PUSCH的反馈应答信息。
在一种可能的实现方式中,所述终端设备根据所述第一信令,对所述M个波束中的全部或部分波束进行载波侦听,包括:所述终端设备同时对所述M个波束进行载波侦听;
其中,所述终端设备根据侦听结果,选择所述全部或部分波束中的一个波束向所述网络设备发送上行信道,包括:所述终端设备使用侦听到信道为空闲的波束,向所述网络设备发送上行信道。
在一种可能的实现方式中,在所述终端设备接收网络设备发送的调度授权信息之前,所述方法还包括:所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示M的值;或者,所述终端设备获取预存在所述终端设备中的M的值。
第二方面,提供了一种上行数据的调度方法,包括:网络设备向终端设备发送第一信令,所述第一信令包括M个波束的波束信息,M为正整数;所述网络设备接收所述终端设备使用所述M个波束中的一个波束发送的上行信道。
因此,网络设备通过为终端设备配置多个候选波束用于上行信道的发送,终端设备通过依次在多个候选波束上进行载波侦听,并基于侦听结果选择合适的波束进行上行信道的发送,从而能够大大降低非授权频段上的上行信道的传输时延。
在一种可能的实现方式中,所述波束信息为探测参考信号SRS资源索 引。
在一种可能的实现方式中,所述上行信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
在一种可能的实现方式中,所述网络设备接收所述终端设备使用所述M个波束中的一个波束发送的上行信道,包括:所述网络设备接收所述终端设备使用所述M个波束中的第N个波束发送的上行信道,所述第N个波束为所述终端设备依次对所述M个波束进行载波侦听,直到侦听到信道为空闲时对应的波束,N为小于或等于M的正整数。
在一种可能的实现方式中,包括所述第N个波束在内的进行了载波侦听的N个波束,与N个侦听窗口一一对应,所述终端设备在所述N个波束中的每个波束上进行载波侦听所使用的侦听窗口,为所述每个波束对应的侦听窗口。
在一种可能的实现方式中,所述N个侦听窗口为连续的N个侦听窗口。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示每个侦听窗口的信息。
在一种可能的实现方式中,所述每个侦听窗口的信息包括所述每个侦听窗口的时间长度和/或所述每个侦听窗口的起始时间位置。
在一种可能的实现方式中,所述上行信道为PUSCH,所述第一信令还包括第一时长的信息,其中,所述第一时长为:所述网络设备向所述终端设备发送的物理下行控制信道PDCCH所在的时隙、起始时域符号或结束时域符号,与第一侦听窗口的起始时刻之间相隔的时长,所述第一侦听窗口为所述N个波束中第一个被侦听的波束对应的侦听窗口。
在一种可能的实现方式中,所述上行信道为PUSCH,所述第一信令还包括第二时长的信息,其中,所述第二时长为:所述终端设备向所述网络设备发送的PUSCH所在的时隙或结束时域符号,与下行反馈信道所在的时隙或起始时域符号之间相隔的时长,所述下行反馈信道用于所述终端设备向网络设备发送针对所述PUSCH的反馈应答信息。
在一种可能的实现方式中,所述网络设备接收所述终端设备使用所述M个波束中的一个波束发送的上行信道,包括:所述网络设备接收所述终端设备使用所述M个波束中侦听到信道为空闲的波束发送的上行信道,其中所述终端设备同时对所述M个波束进行载波侦听。
在一种可能的实现方式中,在所述网络设备向终端设备发送调度授权信息之前,所述方法还包括:所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示M的值。
第三方面,提供了一种终端设备,该终端设备可以执行上述第一方面或第一方面的任意可选的实现方式中的终端设备的操作。具体地,该终端设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的操作的模块单元。
第四方面,提供了一种网络设备,该网络设备可以执行上述第一方面或 第一方面的任意可选的实现方式中的网络设备的操作。具体地,该网络设备可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的网络设备的操作的模块单元。
第五方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器配置为存储指令,该处理器配置为执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第二方面提供的终端设备。
第六方面,提供了一种网络设备,该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器配置为存储指令,该处理器配置为执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该网络设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该网络设备实现第四方面提供的网络设备。
第七方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器配置为执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器配置为执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1是本申请实施例应用的无线通信系统的示意图。
图2是本申请实施例的上行数据的调度方法的流程交互图。
图3是本申请实施例的第一时长和第二时长的示意图。
图4是本申请实施例的第一时长和第二时长的示意图。
图5是本申请实施例的第一时长和第二时长的示意图。
图6是本申请实施例的终端设备的示意性框图。
图7是本申请实施例的网络设备的示意性框图。
图8是本申请实施例的通信设备的示意性结构图。
图9是本申请实施例的系统芯片的示意性结构图。
具体实施方式
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备例如终端设备121和终端设备122。终端设备121和终端设备122可以是移动的或固定的。可选地,终端设备121和终端设备122可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。其中,可选地,终端设备121与终端设备122之间也可以进行终端直连(Device to Device,D2D)通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
在5G系统中,数据传输所采用的频段比LTE中使用的频段更高,因此无线信号传输的路径损耗变大,无线信号的覆盖变小。为此,5G系统中提出波束成形(beamforming)技术,以提高无线信号的增益,从而弥补路径损耗。具体地,基站向终端设备发送信号所使用的波束具有方向性,不同波束实际对应着不同的发射方向,每个窄波束只能覆盖小区的部分区域,而无法覆盖小区中的所有区域。例如图1所示,图1示出了4个不同方向的波束,即波束B1、波束B2、波束B3和波束B4,基站可以通过着4个不同方向的波束向终端设备发送信号。对于波束B1和波束B2,只能覆盖终端设备121而无法覆盖终端设备122;而波束B3和波束B4只能覆盖终端设备122而无法覆盖终端设备121。基站可以通过波束B1和波束B2向终端设备121发送信号,通过波束B3和波束B4向终端设备122发送信号。
另外,在5G系统中,还支持非授权频段(unlicensed frequency bands)上的数据传输。在使用非授权频段进行数据传输时,是基于先听后说(Listen Before Talk,LBT)机制。对于工作在非授权频段的通信系统,发送节点在发送信号之前,需要采用LBT的方式确定信道是否空闲,只有确定信道为空闲后才可以发送信号。
对于LTE系统中,基站在下行时隙中侦听到信道为空闲后,使用该空闲信道向终端设备发送上行调度授权(Uplink Grant,UL Grant),终端设备接到该上行调度授权后也要进行侦听,如果侦听到信道为空闲,则终端设备使用该空闲信道发送上行数据。
在5G系统中,终端设备与基站之间可以通过信道状态指示参考信号(Channel State Indication Reference Signals,CSI-RS)、信道探测参考信号(Sounding Reference Signal Reference Signals,SRS)和同步信号块(Synchronizing Signal Block,SSB)等参考信号的发送与测量过程,获取一个测量结果最优的链路进行数据传输。
终端设备在一个确定的波束上进行载波侦听(或称波束侦听、信道侦听、侦听等),如果在发送数据之前检测到该波束上的信道忙碌,则该上行数据无法发送,那么终端设备可能失去一次调度机会,该上行数据的传输将被延迟。
为了降低非授权频段上的上行信道的传输时延,本申请实施例提出,网络设备可以为终端设备配置多个候选波束用于上行信道的发送,终端设备通过依次在多个候选波束上进行载波侦听,从而基于侦听结果选择合适的波束进行上行信道的发送,大大降低了非授权频段上的上行信道的传输时延。
图2是本申请实施例的上行数据的调度方法的流程交互图。图2中所示的网络设备例如可以为图1中所示的网络设备110。图2中所示的终端设备例如可以为图1中所示的终端设备121和终端设备122。图2所示的方法可以应用在非授权频段,如图2所示,该上行数据的调度方法可以包括以下部 分或全部内容:
在210中,网络设备向终端设备发送第一信令。
在220中,终端设备接收网络设备发送的该第一信令。
其中,该第一信令包括M个波束的波束信息,M为正整数。
该第一信令例如可以为下行控制信道PDCCH,或者为无线资源控制(Radio Resource Control,RRC)信令。
可选地,该第一信令中包括的每个波束的波束信息为探测参考信号(Sounding Reference Signal,SRS)资源索引。
可选地,在220之前,该终端设备需要获取该M的值。例如,终端设备可以接收该网络设备发送的第二指示信息,该第二指示信息用于指示M的值;或者,该终端设备获取预存在该终端设备中的M的值。
也就是说,M的值可以是网络设备为终端设备配置的,或者M的值为终端设备与网络设备预先约定并预存在终端设备中的,例如协议约定的值。
在230中,该终端设备根据该第一信令,对该M个波束中的全部或部分波束进行载波侦听。
可选地,该终端设备可以根据该第一信令,依次对该M个波束进行载波侦听;或者,该终端设备可以同时对所述M个波束进行载波侦听。后面具体说明。
可选地,230中所述的对该M个波束中的全部或部分波束进行载波侦听,可以是,对该M个波束中的全部或部分波束进行方向性的载波侦听。例如,对某个波束而言,可以对该波束的第一侦听方向进行载波侦听,和/或对该波束的第二侦听方向进行载波侦听。该第一侦听方向例如为使用该波束向网络设备发送数据的方向,该第二侦听方向例如为该第一侦听方向的背向。
在240中,终端设备根据侦听结果,选择该全部或部分波束中的一个波束向该网络设备发送上行信道。
在250中,该网络设备接收该终端设备使用该M个波束中的一个波束发送的上行信道。
例如,终端设备根据在不同波束上侦听到的信道状态(忙碌或者空闲),从该M个波束中选择一个波束,并使用该波束向网络设备发送上行信道,网络设备使用该波束接收终端设备发送的该上行信道。
应理解,本申请实施例中,接收一个信号所使用的波束,可以理解为,接收一个信号所使用的空间域接收滤波器(Spatial domain reception filter);发送一个信号所使用的波束,可以理解为,发送一个信号所使用的空间域传输滤波器(Spatial domain transmission filter)。对于采用相同的空间域发送滤波器发送的两个信号,可以称这两个信号相对于空间接收参数是准同址(Quasi-Co-Located,QCL)的。
可选地,该上行信道为物理上行共享信道物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)或者物理上行控制信道(Physical Uplink Control Channel,PUCCH)。
在230中,终端设备对M个波束中的全部或部分波束进行载波侦听,具体可以通过以下两种方式,下面分别描述。
方式1
可选地,在230中,所述终端设备根据所述第一信令,对所述M个波束中的全部或部分进行载波侦听,包括:该终端设备根据该第一信令,依次对该M个波束进行载波侦听,直到在第N波束上侦听到信道为空闲。
其中,N为小于或等于M的正整数。
终端设备依次对该M个波束进行载波侦听时,例如可以根据该M个波束的优先级,按照优先级由高至低的顺序,依次对该M个波束进行载波侦听。
M个波束的优先级例如可以是网络设备根据每个波束上的信号测量结果例如参考信号的信号质量或者参考信号接收功率确定的,这里不做限定。
相应地,在240中,该终端设备根据侦听结果,选择该M个波束中的一个波束向该网络设备发送上行信道,包括:该终端设备使用该第N个波束,向该网络设备发送上行信道。
相应地,在250中,该网络设备接收该终端设备使用该M个波束中的一个波束发送的上行信道,包括:该网络设备接收该终端设备使用该M个波束中的第N个波束发送的上行信道。其中,该第N个波束为该终端设备依次对该M个波束进行载波侦听,直到侦听到信道为空闲时对应的波束,N为小于或等于M的正整数。
例如,终端设备从第1个波束开始始进行载波侦听,在对第1个波束至第N-1个波束的侦听中,均未侦听到空闲信道,即信道均被占用,而在第N个波束上才侦听到信道为空闲,那么终端设备可以停止对剩余波束的侦听,并使用该第N个波束发送上行信道。
终端设备侦听到第N个波束上的信道为空闲,例如可以是该波束上发送的参考信号的功率小于一个预设阈值,这时认为该波束上的信道为空闲。
举例来说,假设M=4,4个候选的波束分别为波束B1、波束B2、波束B3和波束B4,且优先级顺序为:波束B1>波束B2>波束B3>波束B4。那么,终端设备首先在波束B1上进行载波侦听,若波束B1上没有空闲信道,则继续在波束B2上进行载波侦听。若在波束B2上侦听到信道为空闲,则停止侦听并使用波束B2向网络设备发送上行信道,若在波束B2上未侦听到空闲信道,则继续在波束B3上进行载波侦听。若在波束B3上侦听到信道为空闲,则停止侦听并使用波束B3向网络设备发送上行信道,若在波束B3上未侦听到空闲信道,则继续在波束B4上进行载波侦听。若在波束B4上侦听到信道为空闲,则使用波束B4向网络设备发送上行信道,若在波束B4上仍未侦听到空闲信道,则可以延迟该上行信道的发送。
可选地,包括该第N个波束在内的已被侦听的N个波束,与N个侦听窗口一一对应,该终端设备在该N个波束中的每个波束上进行载波侦听所使用的侦听窗口,为该每个波束对应的侦听窗口。
该终端设备在对N个波束进行侦听时,是分别在不同的侦听窗口中进行侦听的。在对每个波束进行侦听时,是在该波束对应的侦听窗口中进行的。
可选地,该N个波束对应的N个侦听窗口可以是等长或者不等长的。
可选地,该N个波束对应的N个侦听窗口在时间上连续分布。
例如,假设N=3,终端设备在侦听到第3个波束即波束B3时侦听到信道为空闲,被侦听过的这三个波束分别为波束B1、波束B2和波束B3,优先级顺序为:波束B1>波束B2>波束B3。波束B1对应的侦听窗口为W1,波束B2对应的侦听窗口为W2,波束B3对应的侦听窗口为W3,这三个侦听窗口按照时间先后顺序依次为W1、W2和W3。相应地,终端设备依次在W1、W2和W3内,分别在波束B1、波束B2和波束B3上进行侦听。
可选地,在220之前,即该终端设备依次在该M个波束上进行方向性的载波侦听之前,该方法还包括:该终端设备接收该网络设备发送的第一指示信息,该第一指示信息用于指示每个侦听窗口的信息;或者,该终端设备获取预存在该终端设备中的该每个侦听窗口的信息。
其中,可选地,该每个侦听窗口的信息包括每个侦听窗口的时间长度和/或每个侦听窗口的起始时间位置。
也就是说,每个侦听窗口的长度和/或起始时间位置可以是网络设备为终端设备配置的,或者为终端设备与网络设备预先约定并预存在终端设备中的,例如协议约定该侦听窗口的长度和/或起始时间位置。
可选地,该第一信令还包括第一时长和/或第二时长的信息。
其中,该第一时长为:该网络设备向该终端设备发送的物理下行控制信道(Physical Downlink Control Channel,PDCCH)所在的时隙、起始时域符号或结束时域符号,与第一侦听窗口的起始时刻之间相隔的时长,该第一侦听窗口为该N个波束中第一个被侦听的波束对应的侦听窗口。
其中,该第二时长为:该终端设备向该网络设备发送的PUSCH所在的时隙或结束时域符号,与下行反馈信道所在的时隙或起始时域符号之间相隔的时长,该下行反馈信道用于该终端设备向网络设备发送针对该PUSCH的反馈应答信息。
下面以图3和图4为例,对第一时长和第二时长进行描述。
如图3所示,假设N=2,终端设备在侦听到第2个波束时侦听到信道为空闲。被侦听过的这两个波束分别为波束B1和波束B2。波束B1对应的侦听窗口为W1,波束B2对应的侦听窗口为W2。网络设备向终端设备发送的PDCCH与侦听窗口W1之间的时间间隔等于第一时长T1。终端设备在接收到该PDCCH后的T1时长后,开始进行载波侦听。首先在W1内在波束B1上进行侦听,未侦听到空闲信道,其次在W2内在波束B2上进行侦听,侦听到空闲信道。从而该终端设备使用波束B2向网络设备发送PUSCH。该网络设备接收到终端设备使用波束B2发送的该PUSCH后,在T2时长后向该终端设备发送针对该PUSCH的反馈应答消息例如确认(ACKnowledgement,ACK)或否定确认(Negative ACK,NACK)消息。
又如图4所示,假设N=3,终端设备在侦听到第3个波束时侦听到信道为空闲。被侦听过的这三个波束分别为波束B1、波束B2和波束B3。波束B1对应的侦听窗口为W1、波束B2对应的侦听窗口为W2、波束B3对应的侦听窗口为W3。网络设备向终端设备发送的PDCCH与侦听窗口W1之间的时间间隔等于第一时长T1。终端设备在接收到该PDCCH后的T1时长后,开始进行载波侦听。首先在W1内在波束B1上进行侦听,未侦听到空闲信道,其次在W2内在波束B2上进行侦听,未侦听到空闲信道,其次在W3内在波束B3上进行侦听,侦听到空闲信道。从而该终端设备使用波束B3向网络设备发送PUSCH。该网络设备接收到该终端设备使用波束B3发送的该PUSCH后,在T2时长后向该终端设备发送针对该PUSCH的反馈应答消息例如ACK消息或NACK消息。
可选地,终端设备在某个波束对应的侦听窗口内侦听到信道为空闲后,可以立即进行上行信道的发送,即,上行信道的发送可以在侦听窗口的剩余时间内发送。
例如图5所示,该终端设备在侦听窗口W1内对波束B1进行侦听,发现信道被占用,接下来该终端设备在侦听窗口W2内对波束B2进行侦听,并在W2内的某个时刻侦听到波束B2上信道为空闲,那么可以在W2内的剩余时间都可以用来传输PUSCH。
这样,通过配置较大的侦听窗口,网络设备可以确保终端设备的载波侦听与数据发送均在一个侦听窗口内完成,从而,针对一个侦听窗口,网络设备仅需要使用一个接收波束来接收该终端设备可能发送的上行数据。
反之,如果侦听窗口时长设置的较短,终端设备在侦听到信道为空闲后,需要在该侦听窗口之外发送所述上行信道,则网络可能无法确定终端设备在哪一个波束上侦听到信道为空闲,因此需要同时在多个可能的波束方向上同时接收终端设备可能发送的上行数据。这时,网络设备具有同时接收多个波束方向的上行信号的能力。
方式2
可选地,在230中,所述终端设备根据所述第一信令,对所述M个波束中的全部或部分波束进行载波侦听,包括:所述终端设备同时对所述M个波束进行载波侦听。
例如,终端设备同时打开多个或所有接收面板(pannel)以进行载波侦听。
相应地,在240中,所述终端设备根据侦听结果,选择所述全部或部分波束中的一个波束向所述网络设备发送上行信道,包括:所述终端设备使用侦听到信道为空闲的波束,向所述网络设备发送上行信道。
相应地,在250中,该网络设备接收该终端设备使用该M个波束中的一个波束发送的上行信道,包括:网络设备接收所述终端设备使用所述M个波束中侦听到信道为空闲的波束发送的上行信道,其中所述终端设备同时对所述M个波束进行载波侦听。
因此,本申请实施例中,网络设备通过为终端设备配置多个候选波束用于上行信道的发送,终端设备通过依次在多个候选波束上进行载波侦听,并基于侦听结果选择合适的波束进行上行信道的发送,从而能够大大降低非授权频段上的上行信道的传输时延。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的传输上行控制信息的方法,下面将结合图6至图9,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图6是根据本申请实施例的终端设备600的示意性框图。如图6所示,该终端设备600包括收发单元610和侦听单元620。其中:
收发单元610,配置为接收网络设备发送的第一信令,所述第一信令包括M个波束的波束信息,M为正整数;
侦听单元620,配置为根据所述第一信令,依次对所述M个波束进行载波侦听;
所述收发单元610还配置为,根据侦听结果,选择所述M个波束中的一个波束向所述网络设备发送上行信道。
因此,网络设备通过为终端设备配置多个候选波束用于上行信道的发送,终端设备通过依次在多个候选波束上进行载波侦听,并基于侦听结果选择合适的波束进行上行信道的发送,从而能够大大降低非授权频段上的上行信道的传输时延。
可选地,所述波束信息为探测参考信号SRS资源索引。
可选地,所述上行信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
可选地,所述侦听单元620具体配置为:根据所述第一信令,依次对所述M个波束进行载波侦听,直到在第N波束上侦听到信道为空闲,N为小于或等于M的正整数;
其中,所述收发单元610具体配置为:使用所述第N个波束,向所述网络设备发送上行信道。
可选地,所述侦听单元620具体配置为:根据所述M个波束的优先级,按照优先级由高至低的顺序,依次对所述M个波束进行载波侦听。
可选地,包括所述第N个波束在内的进行了载波侦听的N个波束,与N个侦听窗口一一对应,所述终端设备在所述N个波束中的每个波束上进行载波侦听所使用的侦听窗口,为所述每个波束对应的侦听窗口。
可选地,所述N个侦听窗口为连续的N个侦听窗口。
可选地,所述侦听单元620还配置为:通过所述收发单元610接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示每个侦听窗口的信息;或者,获取预存在所述终端设备中的所述每个侦听窗口的信息。
可选地,所述每个侦听窗口的信息包括所述每个侦听窗口的时间长度和/或所述每个侦听窗口的起始时间位置。
可选地,所述上行信道为PUSCH,所述第一信令还包括第一时长的信息,其中,所述第一时长为:所述网络设备向所述终端设备发送的物理下行控制信道PDCCH所在的时隙、起始时域符号或结束时域符号,与第一侦听窗口的起始时刻之间相隔的时长,所述第一侦听窗口为所述N个波束中第一个被侦听的波束对应的侦听窗口。
可选地,所述上行信道为PUSCH,所述第一信令还包括第二时长的信息,其中,所述第二时长为:所述终端设备向所述网络设备发送的PUSCH所在的时隙或结束时域符号,与下行反馈信道所在的时隙或起始时域符号之间相隔的时长,所述下行反馈信道用于所述终端设备向网络设备发送针对所述PUSCH的反馈应答信息。
所述侦听单元620具体配置为:同时对所述M个波束进行载波侦听;
其中,所述收发单元610具体配置为:所述终端设备使用侦听到信道为空闲的波束,向所述网络设备发送上行信道。
可选地,所述侦听单元620还配置为:通过所述收发单元610接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示M的值;或者,获取预存在所述终端设备中的M的值。
应理解,该终端设备600可以执行上述方法200中由终端设备执行的相应操作,为了简洁,在此不再赘述。
图7是根据本申请实施例的网络设备700的示意性框图。如图7所示,该网络设备700包括收发单元710,配置为:
向终端设备发送第一信令,所述第一信令包括M个波束的波束信息,M为正整数;接收所述终端设备使用所述M个波束中的一个波束发送的上行信道。
因此,网络设备通过为终端设备配置多个候选波束用于上行信道的发送,终端设备通过依次在多个候选波束上进行载波侦听,并基于侦听结果选择合适的波束进行上行信道的发送,从而能够大大降低非授权频段上的上行信道的传输时延。
可选地,所述波束信息为探测参考信号SRS资源索引。
可选地,所述上行信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
可选地,所述收发单元710具体配置为:接收所述终端设备使用所述M个波束中的第N个波束发送的上行信道,所述第N个波束为所述终端设备依次对所述M个波束进行载波侦听,直到侦听到信道为空闲时对应的波束,N为小于或等于M的正整数。
可选地,包括所述第N个波束在内的进行了载波侦听的N个波束,与N个侦听窗口一一对应,所述终端设备在所述N个波束中的每个波束上进行载波侦听所使用的侦听窗口,为所述每个波束对应的侦听窗口。
可选地,所述N个侦听窗口为连续的N个侦听窗口。
可选地,所述收发单元710还配置为:向所述终端设备发送第一指示信息,所述第一指示信息用于指示每个侦听窗口的信息。
可选地,所述每个侦听窗口的信息包括所述每个侦听窗口的时间长度和/或所述每个侦听窗口的起始时间位置。
可选地,所述上行信道为PUSCH,所述第一信令还包括第一时长的信息,其中,所述第一时长为:所述网络设备向所述终端设备发送的物理下行控制信道PDCCH所在的时隙、起始时域符号或结束时域符号,与第一侦听窗口的起始时刻之间相隔的时长,所述第一侦听窗口为所述N个波束中第一个被侦听的波束对应的侦听窗口。
可选地,所述上行信道为PUSCH,所述第一信令还包括第二时长的信息,其中,所述第二时长为:所述终端设备向所述网络设备发送的PUSCH所在的时隙或结束时域符号,与下行反馈信道所在的时隙或起始时域符号之间相隔的时长,所述下行反馈信道用于所述终端设备向网络设备发送针对所述PUSCH的反馈应答信息。
可选地,所述收发单元710具体配置为:接收所述终端设备使用所述M个波束中侦听到信道为空闲的波束发送的上行信道,其中所述终端设备同时对所述M个波束进行载波侦听。
可选地,所述收发单元710还配置为:向所述终端设备发送第二指示信息,所述第二指示信息用于指示M的值。
应理解,该网络设备700可以执行上述方法200中由网络设备执行的相应操作,为了简洁,在此不再赘述。
图8是根据本申请实施例的通信设备800的示意性结构图。如图8所示,该通信设备包括处理器810、收发器820和存储器830,其中,该处理器810、收发器820和存储器830之间通过内部连接通路互相通信。该存储器830配置为存储指令,该处理器810配置为执行该存储器830存储的指令,以控制该收发器820接收信号或发送信号。
可选地,该处理器810可以调用存储器830中存储的程序代码,执行方法200中由终端设备执行的相应操作,为了简洁,在此不再赘述。
可选地,该处理器810可以调用存储器830中存储的程序代码,执行方法300中由网络设备执行的相应操作,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以 是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图9是本申请实施例的系统芯片的一个示意性结构图。图9的系统芯片900包括输入接口901、输出接口902、至少一个处理器903、存储器904,所述输入接口901、输出接口902、所述处理器903以及存储器904之间通过内部连接通路互相连接。所述处理器903配置为执行所述存储器904中的代码。
可选地,当所述代码被执行时,所述处理器903可以实现方法200中由终端设备执行的相应操作。为了简洁,这里不再赘述。
可选地,当所述代码被执行时,所述处理器903可以实现方法200中由网络设备执行的相应操作。为了简洁,这里不再赘述。
应理解,在本发明实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描 述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个监测单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (50)

  1. 一种上行数据的调度方法,所述方法包括:
    终端设备接收网络设备发送的第一信令,所述第一信令包括M个波束的波束信息,M为正整数;
    所述终端设备根据所述第一信令,对所述M个波束中的全部或部分波束进行载波侦听;
    所述终端设备根据侦听结果,选择所述全部或部分波束中的一个波束向所述网络设备发送上行信道。
  2. 根据权利要求1所述的方法,其中,所述波束信息为探测参考信号SRS资源索引。
  3. 根据权利要求1或2所述的方法,其中,所述上行信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述终端设备根据所述第一信令,对所述M个波束中的一个或多个波束进行载波侦听,包括:
    所述终端设备根据所述第一信令,依次对所述M个波束进行载波侦听,直到在第N波束上侦听到信道为空闲,N为小于或等于M的正整数;
    其中,所述终端设备根据侦听结果,选择所述M个波束中的一个波束向所述网络设备发送上行信道,包括:
    所述终端设备使用所述第N个波束,向所述网络设备发送上行信道。
  5. 根据权利要求4所述的方法,其中,所述终端设备根据所述第一信令,依次对所述M个波束进行载波侦听,包括:
    所述终端设备根据所述M个波束的优先级,按照优先级由高至低的顺序,依次对所述M个波束进行载波侦听。
  6. 根据权利要求5所述的方法,其中,包括所述第N个波束在内的进行了载波侦听的N个波束,与N个侦听窗口一一对应,所述终端设备在所述N个波束中的每个波束上进行载波侦听所使用的侦听窗口,为所述每个波束对应的侦听窗口。
  7. 根据权利要求6所述的方法,其中,所述N个侦听窗口为连续的N个侦听窗口。
  8. 根据权利要求6或7所述的方法,其中,在所述终端设备依次对所述M个波束进行载波侦听之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示每个侦听窗口的信息;或者,
    所述终端设备获取预存在所述终端设备中的所述每个侦听窗口的信息。
  9. 根据权利要求8所述的方法,其中,所述每个侦听窗口的信息包括所述每个侦听窗口的时间长度和/或所述每个侦听窗口的起始时间位置。
  10. 根据权利要求6至9中任一项所述的方法,其中,所述上行信道为PUSCH,所述第一信令还包括第一时长的信息,
    其中,所述第一时长为:所述网络设备向所述终端设备发送的物理下行控制信道PDCCH所在的时隙、起始时域符号或结束时域符号,与第一侦听窗口的起始时刻之间相隔的时长,所述第一侦听窗口为所述N个波束中第一个被侦听的波束对应的侦听窗口。
  11. 根据权利要求6至10中任一项所述的方法,其中,所述上行信道为PUSCH,所述第一信令还包括第二时长的信息,
    其中,所述第二时长为:所述终端设备向所述网络设备发送的PUSCH所在的时隙或结束时域符号,与下行反馈信道所在的时隙或起始时域符号之间相隔的时长,所述下行反馈信道用于所述终端设备向网络设备发送针对所述PUSCH的反馈应答信息。
  12. 根据权利要求1至3中任一项所述的方法,其中,所述终端设备根据所述第一信令,对所述M个波束中的全部或部分波束进行载波侦听,包括:
    所述终端设备同时对所述M个波束进行载波侦听;
    其中,所述终端设备根据侦听结果,选择所述全部或部分波束中的一个波束向所述网络设备发送上行信道,包括:
    所述终端设备使用侦听到信道为空闲的波束,向所述网络设备发送上行信道。
  13. 根据权利要求1至12中任一项所述的方法,其中于,在所述终端设备接收网络设备发送的所述第一信令之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示M的值;或者,
    所述终端设备获取预存在所述终端设备中的M的值。
  14. 一种上行数据的调度方法,所述方法包括:
    网络设备向终端设备发送第一信令,所述第一信令包括M个波束的波束信息,M为正整数;
    所述网络设备接收所述终端设备使用所述M个波束中的一个波束发送的上行信道。
  15. 根据权利要求14所述的方法,其中,所述波束信息为探测参考信号SRS资源索引。
  16. 根据权利要求14或15所述的方法,其中,所述上行信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
  17. 根据权利要求14至16中任一项所述的方法,其中,所述网络设备接收所述终端设备使用所述M个波束中的一个波束发送的上行信道,包括:
    所述网络设备接收所述终端设备使用所述M个波束中的第N个波束发送的上行信道,所述第N个波束为所述终端设备依次对所述M个波束进行载波侦听,直到侦听到信道为空闲时对应的波束,N为小于或等于M的正整数。
  18. 根据权利要求17所述的方法,其中,包括所述第N个波束在内的 进行了载波侦听的N个波束,与N个侦听窗口一一对应,所述终端设备在所述N个波束中的每个波束上进行载波侦听所使用的侦听窗口,为所述每个波束对应的侦听窗口。
  19. 根据权利要求18所述的方法,其中,所述N个侦听窗口为连续的N个侦听窗口。
  20. 根据权利要求18或19所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示每个侦听窗口的信息。
  21. 根据权利要求20所述的方法,其中,所述每个侦听窗口的信息包括所述每个侦听窗口的时间长度和/或所述每个侦听窗口的起始时间位置。
  22. 根据权利要求18至21中任一项所述的方法,其中,所述上行信道为PUSCH,所述第一信令还包括第一时长的信息,
    其中,所述第一时长为:所述网络设备向所述终端设备发送的物理下行控制信道PDCCH所在的时隙、起始时域符号或结束时域符号,与第一侦听窗口的起始时刻之间相隔的时长,所述第一侦听窗口为所述N个波束中第一个被侦听的波束对应的侦听窗口。
  23. 根据权利要求18至22中任一项所述的方法,其中,所述上行信道为PUSCH,所述第一信令还包括第二时长的信息,
    其中,所述第二时长为:所述终端设备向所述网络设备发送的PUSCH所在的时隙或结束时域符号,与下行反馈信道所在的时隙或起始时域符号之间相隔的时长,所述下行反馈信道用于所述终端设备向网络设备发送针对所述PUSCH的反馈应答信息。
  24. 根据权利要求14至16中任一项所述的方法,其中,所述网络设备接收所述终端设备使用所述M个波束中的一个波束发送的上行信道,包括:
    所述网络设备接收所述终端设备使用所述M个波束中侦听到信道为空闲的波束发送的上行信道,其中所述终端设备同时对所述M个波束进行载波侦听。
  25. 根据权利要求14至24中任一项所述的方法,其中,在所述网络设备向终端设备发送调度授权信息之前,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示M的值。
  26. 一种终端设备,所述终端设备包括:
    收发单元,配置为接收网络设备发送的第一信令,所述第一信令包括M个波束的波束信息,M为正整数;
    侦听单元,配置为根据所述第一信令,依次对所述M个波束进行载波侦听;
    所述收发单元还配置为,根据侦听结果,选择所述M个波束中的一个波束向所述网络设备发送上行信道。
  27. 根据权利要求26所述的终端设备,其中,所述波束信息为探测参 考信号SRS资源索引。
  28. 根据权利要求26或27所述的终端设备,其中,所述上行信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
  29. 根据权利要求26至28中任一项所述的终端设备,其中,所述侦听单元具体配置为:
    根据所述第一信令,依次对所述M个波束进行载波侦听,直到在第N波束上侦听到信道为空闲,N为小于或等于M的正整数;
    其中,所述收发单元具体配置为:使用所述第N个波束,向所述网络设备发送上行信道。
  30. 根据权利要求29所述的终端设备,其中,所述侦听单元具体配置为:
    根据所述M个波束的优先级,按照优先级由高至低的顺序,依次对所述M个波束进行载波侦听。
  31. 根据权利要求30所述的终端设备,其中,包括所述第N个波束在内的进行了载波侦听的N个波束,与N个侦听窗口一一对应,所述终端设备在所述N个波束中的每个波束上进行载波侦听所使用的侦听窗口,为所述每个波束对应的侦听窗口。
  32. 根据权利要求31所述的终端设备,其中,所述N个侦听窗口为连续的N个侦听窗口。
  33. 根据权利要求31或32所述的终端设备,其中,所述侦听单元还配置为:
    通过所述收发单元接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示每个侦听窗口的信息;或者,
    获取预存在所述终端设备中的所述每个侦听窗口的信息。
  34. 根据权利要求33所述的终端设备,其中,所述每个侦听窗口的信息包括所述每个侦听窗口的时间长度和/或所述每个侦听窗口的起始时间位置。
  35. 根据权利要求31至34中任一项所述的终端设备,其中,所述上行信道为PUSCH,所述第一信令还包括第一时长的信息,
    其中,所述第一时长为:所述网络设备向所述终端设备发送的物理下行控制信道PDCCH所在的时隙、起始时域符号或结束时域符号,与第一侦听窗口的起始时刻之间相隔的时长,所述第一侦听窗口为所述N个波束中第一个被侦听的波束对应的侦听窗口。
  36. 根据权利要求31至35中任一项所述的终端设备,其中,所述上行信道为PUSCH,所述第一信令还包括第二时长的信息,
    其中,所述第二时长为:所述终端设备向所述网络设备发送的PUSCH所在的时隙或结束时域符号,与下行反馈信道所在的时隙或起始时域符号之间相隔的时长,所述下行反馈信道用于所述终端设备向网络设备发送针对所述PUSCH的反馈应答信息。
  37. 根据权利要求26至28中任一项所述的方法,其中,所述侦听单元具体配置为:
    同时对所述M个波束进行载波侦听;
    其中,所述收发单元具体配置为:
    使用侦听到信道为空闲的波束,向所述网络设备发送上行信道。
  38. 根据权利要求26至37中任一项所述的终端设备,其中,所述侦听单元还配置为:
    通过所述收发单元接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示M的值;或者,
    获取预存在所述终端设备中的M的值。
  39. 一种网络设备,所述网络设备包括:
    收发单元,配置为向终端设备发送第一信令,所述第一信令包括M个波束的波束信息,M为正整数;
    所述收发单元还配置为,接收所述终端设备使用所述M个波束中的一个波束发送的上行信道。
  40. 根据权利要求39所述的网络设备,其中,所述波束信息为探测参考信号SRS资源索引。
  41. 根据权利要求39或40所述的网络设备,其中,所述上行信道为物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
  42. 根据权利要求39至41中任一项所述的网络设备,其中,所述收发单元具体配置为:
    接收所述终端设备使用所述M个波束中的第N个波束发送的上行信道,所述第N个波束为所述终端设备依次对所述M个波束进行载波侦听,直到侦听到信道为空闲时对应的波束,N为小于或等于M的正整数。
  43. 根据权利要求42所述的网络设备,其中,包括所述第N个波束在内的进行了载波侦听的N个波束,与N个侦听窗口一一对应,所述终端设备在所述N个波束中的每个波束上进行载波侦听所使用的侦听窗口,为所述每个波束对应的侦听窗口。
  44. 根据权利要求43所述的网络设备,其中,所述N个侦听窗口为连续的N个侦听窗口。
  45. 根据权利要求43或44所述的网络设备,其中,所述收发单元还配置为:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示每个侦听窗口的信息。
  46. 根据权利要求45所述的网络设备,其中,所述每个侦听窗口的信息包括所述每个侦听窗口的时间长度和/或所述每个侦听窗口的起始时间位置。
  47. 根据权利要求43至46中任一项所述的网络设备,其中,所述上行信道为PUSCH,所述第一信令还包括第一时长的信息,
    其中,所述第一时长为:所述网络设备向所述终端设备发送的物理下行控制信道PDCCH所在的时隙、起始时域符号或结束时域符号,与第一侦听窗口的起始时刻之间相隔的时长,所述第一侦听窗口为所述N个波束中第一个被侦听的波束对应的侦听窗口。
  48. 根据权利要求43至47中任一项所述的网络设备,其中,所述上行信道为PUSCH,所述第一信令还包括第二时长的信息,
    其中,所述第二时长为:所述终端设备向所述网络设备发送的PUSCH所在的时隙或结束时域符号,与下行反馈信道所在的时隙或起始时域符号之间相隔的时长,所述下行反馈信道用于所述终端设备向网络设备发送针对所述PUSCH的反馈应答信息。
  49. 根据权利要求39至41中任一项所述的方法,其中,所述收发单元具体配置为:
    接收所述终端设备使用所述M个波束中侦听到信道为空闲的波束发送的上行信道,其中所述终端设备同时对所述M个波束进行载波侦听。
  50. 根据权利要求39至49中任一项所述的网络设备,其中,所述收发单元还配置为:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示M的值。
PCT/CN2018/076900 2018-02-14 2018-02-14 上行数据的调度方法和设备 WO2019157754A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201880089013.7A CN111699736A (zh) 2018-02-14 2018-02-14 上行数据的调度方法和设备
KR1020207026333A KR20200120709A (ko) 2018-02-14 2018-02-14 업 링크 데이터의 스케줄링 방법 및 기기
JP2020543321A JP2021517387A (ja) 2018-02-14 2018-02-14 上りデータのスケジューリング方法及び装置
EP23203935.4A EP4283914A2 (en) 2018-02-14 2018-02-14 Uplink data scheduling method and device
EP18906404.1A EP3930392B1 (en) 2018-02-14 2018-02-14 Uplink data scheduling method and device
PCT/CN2018/076900 WO2019157754A1 (zh) 2018-02-14 2018-02-14 上行数据的调度方法和设备
AU2018409037A AU2018409037A1 (en) 2018-02-14 2018-02-14 Uplink data scheduling method and device
US16/994,041 US11570810B2 (en) 2018-02-14 2020-08-14 Method and device for scheduling uplink data based on carrier sensing of at least one beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076900 WO2019157754A1 (zh) 2018-02-14 2018-02-14 上行数据的调度方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/994,041 Continuation US11570810B2 (en) 2018-02-14 2020-08-14 Method and device for scheduling uplink data based on carrier sensing of at least one beam

Publications (1)

Publication Number Publication Date
WO2019157754A1 true WO2019157754A1 (zh) 2019-08-22

Family

ID=67619091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076900 WO2019157754A1 (zh) 2018-02-14 2018-02-14 上行数据的调度方法和设备

Country Status (7)

Country Link
US (1) US11570810B2 (zh)
EP (2) EP4283914A2 (zh)
JP (1) JP2021517387A (zh)
KR (1) KR20200120709A (zh)
CN (1) CN111699736A (zh)
AU (1) AU2018409037A1 (zh)
WO (1) WO2019157754A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163150A1 (en) * 2020-02-11 2021-08-19 Qualcomm Incorporated Frame based channel access in wireless communication
WO2023065085A1 (zh) * 2021-10-18 2023-04-27 北京小米移动软件有限公司 一种确定非授权上行信道的检测波束的方法、装置及介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780859A4 (en) 2018-04-25 2021-04-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. SIGNAL TRANSMISSION METHOD AND COMMUNICATION DEVICE
CN110636542B (zh) * 2018-06-22 2021-01-08 维沃移动通信有限公司 非授权频段上波束管理的方法、设备和介质
US11395154B2 (en) * 2019-04-18 2022-07-19 Qualcomm Incorporated Methods and apparatuses for determining sensing beam for an LBT procure
US11510243B2 (en) * 2019-07-24 2022-11-22 Qualcomm Incorporated Transmission countdown and improvements for a beam based channel access procedure
KR102544447B1 (ko) * 2022-02-11 2023-06-20 엘지전자 주식회사 비면허 대역에서 신호를 송수신하는 방법 및 이를 위한 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355387B2 (en) * 2008-07-24 2013-01-15 Samsung Electronics Co., Ltd. System and method for bandwidth reservation protocol for spatial reuse in a wireless communication network
WO2017020293A1 (en) * 2015-08-06 2017-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for listening based transmission
CN106658751A (zh) * 2016-12-14 2017-05-10 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172442B1 (ko) * 2014-02-19 2020-10-30 삼성전자주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치
US9705581B2 (en) * 2014-09-24 2017-07-11 Mediatek Inc. Synchronization in a beamforming system
US20160119958A1 (en) * 2014-10-27 2016-04-28 Nokia Solutions And Networks Oy Random access channel with a grid of beams for communication systems
US10826661B2 (en) * 2015-08-10 2020-11-03 Apple Inc. Enhanced sounding reference signaling for uplink beam tracking
US10757699B2 (en) * 2015-11-09 2020-08-25 Telefonaktiebolaget Lm Ericsson (Publ) Downlink prioritization in TDD based LBT systems
US10027393B2 (en) * 2015-12-23 2018-07-17 Intel IP Corporation Beamform training and operation for multiple single-input single-output links
US10123358B2 (en) * 2016-12-22 2018-11-06 Qualcomm Incorporated Priority management for new radio-spectrum sharing (NR-SS)
JP2019062505A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 通信装置および通信方法
US10764024B2 (en) * 2018-01-11 2020-09-01 At&T Intellectual Property I, L.P. Multi-beam listen before talk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355387B2 (en) * 2008-07-24 2013-01-15 Samsung Electronics Co., Ltd. System and method for bandwidth reservation protocol for spatial reuse in a wireless communication network
WO2017020293A1 (en) * 2015-08-06 2017-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for listening based transmission
CN106658751A (zh) * 2016-12-14 2017-05-10 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163150A1 (en) * 2020-02-11 2021-08-19 Qualcomm Incorporated Frame based channel access in wireless communication
US11863997B2 (en) 2020-02-11 2024-01-02 Qualcomm Incorporated Frame based channel access in wireless communication
WO2023065085A1 (zh) * 2021-10-18 2023-04-27 北京小米移动软件有限公司 一种确定非授权上行信道的检测波束的方法、装置及介质

Also Published As

Publication number Publication date
KR20200120709A (ko) 2020-10-21
US11570810B2 (en) 2023-01-31
EP3930392A4 (en) 2022-05-04
CN111699736A (zh) 2020-09-22
EP4283914A2 (en) 2023-11-29
EP3930392A1 (en) 2021-12-29
EP3930392B1 (en) 2023-11-15
JP2021517387A (ja) 2021-07-15
US20200374932A1 (en) 2020-11-26
AU2018409037A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2019157754A1 (zh) 上行数据的调度方法和设备
WO2019140666A1 (zh) 探测参考信号传输方法、网络设备和终端设备
WO2020042123A1 (zh) 发送上行信号的方法和设备
WO2019153311A1 (zh) 传输上行控制信息的方法和设备
WO2020029199A1 (zh) 传输信息的方法、终端设备和网络设备
US20220052796A1 (en) Harq information feedback method and device
WO2019157675A1 (zh) 无线通信方法和设备
TW202025839A (zh) 用於隨機存取的方法、網路設備和終端設備
WO2019157756A1 (zh) 信号传输的方法和设备
US20210160857A1 (en) Information transmission method, terminal device and network device
WO2019127462A1 (zh) 无线通信方法、终端设备和网络设备
WO2019047188A1 (zh) 无线通信方法、网络设备和终端设备
WO2021026844A1 (zh) 数据传输方法、终端设备、网络设备及存储介质
CA3064964C (en) Method and device for radio communication
WO2020118520A1 (zh) 数据传输的方法和设备
WO2019157755A1 (zh) 信号传输的方法和设备
WO2020087311A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2020093403A1 (zh) 一种随机接入方法及装置、终端、基站
TW202037126A (zh) 確定上行控制訊息傳輸資源個數的方法、裝置及程式
WO2019178843A1 (zh) 确定多天线发送模式的方法和设备
WO2019019057A1 (zh) 无线通信方法、终端设备和网络设备
WO2023065334A1 (zh) 无线通信方法、终端设备和网络设备
US20220061034A1 (en) Method for information feedback, terminal device and network device
WO2019191964A1 (zh) 传输物理随机接入信道prach的方法和设备
WO2019157749A1 (zh) 信号传输的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026333

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018906404

Country of ref document: EP

Effective date: 20200914

ENP Entry into the national phase

Ref document number: 2018409037

Country of ref document: AU

Date of ref document: 20180214

Kind code of ref document: A