WO2021163957A1 - 一种基于反向散射的传输方法、电子设备及存储介质 - Google Patents

一种基于反向散射的传输方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2021163957A1
WO2021163957A1 PCT/CN2020/076024 CN2020076024W WO2021163957A1 WO 2021163957 A1 WO2021163957 A1 WO 2021163957A1 CN 2020076024 W CN2020076024 W CN 2020076024W WO 2021163957 A1 WO2021163957 A1 WO 2021163957A1
Authority
WO
WIPO (PCT)
Prior art keywords
backscatter
backscatter signal
signal
frequency
computer program
Prior art date
Application number
PCT/CN2020/076024
Other languages
English (en)
French (fr)
Inventor
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080083084.3A priority Critical patent/CN114731197A/zh
Priority to PCT/CN2020/076024 priority patent/WO2021163957A1/zh
Publication of WO2021163957A1 publication Critical patent/WO2021163957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a transmission method, electronic equipment and storage medium based on backscattering.
  • embodiments of the present application provide a transmission method, electronic equipment, and storage medium based on backscatter, which can effectively transmit information while simplifying the structure of the receiver.
  • an embodiment of the present application provides a transmission method based on backscatter, including: a first device receives a backscatter signal, and the backscatter signal corresponds to a detection signal transmitted by a second device at a first frequency
  • the backscatter signal includes indication information indicating insufficient energy of the third device or information obtained by the third device.
  • an embodiment of the present application provides a backscatter-based transmission method, including: a second device transmits a detection signal at a first frequency, and the backscatter signal corresponding to the detection signal is received by the first device;
  • the backscatter signal includes indication information indicating insufficient energy of the third device or information obtained by the third device.
  • an embodiment of the present application provides a first device.
  • the first device includes: a first receiving unit configured to receive a backscatter signal, where the backscatter signal and the second device are at a first frequency.
  • the transmitted detection signal corresponds;
  • the backscatter signal includes indication information indicating insufficient energy of the third device or information obtained by the third device.
  • an embodiment of the present application provides a second device, the second device includes: a second sending unit configured to transmit a detection signal at a first frequency, and the backscatter signal corresponding to the detection signal is Received by a device; the backscatter signal includes indication information indicating insufficient energy of the third device or information obtained by the third device.
  • an embodiment of the present application provides a first device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is configured to execute the above-mentioned computer program when the computer program is running. Steps of the backscatter-based transmission method performed by the first device.
  • an embodiment of the present application provides a second device, including a processor and a memory configured to store a computer program that can run on the processor, wherein the processor is configured to execute the above-mentioned computer program when the computer program is running. Steps of the backscatter-based transmission method performed by the second device.
  • an embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the backscatter-based transmission performed by the first device. method.
  • an embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the backscatter-based transmission performed by the second device. method.
  • an embodiment of the present application provides a storage medium that stores an executable program, and when the executable program is executed by a processor, it implements the backscatter-based transmission method executed by the above-mentioned first device.
  • an embodiment of the present application provides a storage medium storing an executable program, and when the executable program is executed by a processor, the backscatter-based transmission method executed by the above-mentioned second device is implemented.
  • an embodiment of the present application provides a computer program product, including computer program instructions that cause a computer to execute the backscatter-based transmission method executed by the above-mentioned first device.
  • an embodiment of the present application provides a computer program product, including computer program instructions that cause a computer to execute the backscatter-based transmission method executed by the above-mentioned second device.
  • an embodiment of the present application provides a computer program that enables a computer to execute the backscatter-based transmission method executed by the above-mentioned first device.
  • an embodiment of the present application provides a computer program that enables a computer to execute the backscatter-based transmission method executed by the above-mentioned second device.
  • the transmission method, electronic device, and storage medium based on backscatter include: a second device transmits a detection signal at a first frequency, and the first device receives a backscatter signal corresponding to the detection signal,
  • the backscatter signal includes indication information indicating insufficient energy of the third device or information obtained by the third device; the second device can send electromagnetic waves according to the backscatter signal to provide energy for the third device.
  • FIG. 1 is a schematic diagram of the composition structure of a communication system according to an embodiment of the application
  • FIG. 2 is a schematic diagram of an optional processing flow of the transmission method based on backscattering according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of another optional processing flow of the transmission method based on backscattering according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of the hardware composition structure of an electronic device according to an embodiment of the application.
  • the transmitter In a wireless communication system, the transmitter generates a carrier with a certain frequency or certain frequencies, and some useful information is superimposed on the carrier generated by the transmitter by means of amplitude/phase/frequency offset; the carrier carrying useful information is then transmitted to the carrier through the antenna In the space environment.
  • the main energy consumption is in the process of generating carrier waves by the transmitter.
  • Backscatter communication is a technology that uses electromagnetic waves in the space environment to transmit useful information.
  • equipment that utilizes backscatter communication since there is no radio frequency device that specifically generates carrier waves, the cost, power consumption, and volume of the equipment are very small.
  • radio frequency device that specifically generates carrier waves, the cost, power consumption, and volume of the equipment are very small.
  • antennas to reflect electromagnetic waves in the space environment, and use meta-materials or diodes to superimpose the information that needs to be transmitted on the reflected electromagnetic waves. For example, you can change the reflection
  • the frequency, phase and amplitude of the electromagnetic wave achieve the purpose of transmitting information.
  • backscatter communication technology Due to the small cost, power consumption and volume of the backscatter communication technology, it is very suitable for information transmission of environmental sensors; for example, temperature sensors and humidity sensors scattered in the environment use backscatter communication to collect data. The information is transmitted out.
  • This type of sensor has a large demand and a wide range of dispersion.
  • the use of backscatter communication can greatly extend the service life of the sensor battery; in some designs, it can even be used without battery power. So backscatter communication has very good application prospects in this kind of environmental sensors.
  • the transmitter that emits electromagnetic waves used for backscatter communication and the receiver that receives the reflected signal are located on the same device, which will cause very serious self-interference (ie, interference from the transmitter to the receiver located on the same device). Since backscatter communication relies purely on reflected electromagnetic waves to transmit information, the transmission distance is generally not too far.
  • the time interval from the transmitter sending out the signal to the receiver receiving the reflected signal is very short, usually less than one microsecond (us), so the time division method cannot be used to avoid the intensity of the transmitted signal on the received signal. interference.
  • the methods that can be used include adding a filter at the front end of the receiver to filter out strong interference.
  • the above-mentioned methods can solve the problem of strong interference from the transmitter to the receiver, the schemes are relatively complicated. Using any of the above methods will significantly increase the implementation complexity of the receiver, thereby increasing the cost of the receiver.
  • a relatively large use of backscatter communication is to collect signals from low-cost environmental sensors, but in order to solve the problem of strong self-interference, it will greatly increase the cost of using backscatter communication.
  • the antenna array can be used to obtain the electromagnetic waves in the surrounding environment.
  • the efficiency of obtaining electromagnetic waves is also extremely low; one reason is that the distribution of various electromagnetic waves is random, and the other is that the efficiency of antennas capable of supporting various electromagnetic waves is relatively low.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • LTE-A advanced long term evolution
  • NR new radio
  • evolution system of NR system LTE on unlicensed frequency bands (LTE-based access to unlicensed spectrum, LTE-U) system, NR (NR-based access to unlicensed spectrum, NR-U) system on unlicensed frequency bands, universal mobile telecommunication system (UMTS), global Connected microwave access (worldwide interoperability for microwave access, WiMAX) communication systems, wireless local area networks (WLAN), wireless fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • WiMAX wireless local area networks
  • WiFi wireless fidelity
  • next-generation communication systems or other communication systems etc.
  • the network equipment involved in the embodiments of this application may be a common base station (such as NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Radio remote module, micro base station, relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • a common base station such as NodeB or eNB or gNB
  • NR controller new radio controller
  • a centralized network element centralized unit
  • a new radio base station Radio remote module
  • micro base station relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • TRP transmission reception point
  • TP transmission point
  • the terminal device may be any terminal.
  • the terminal device may be a user equipment for machine-type communication. That is to say, the terminal equipment can also be referred to as user equipment UE, mobile station (mobile station, MS), mobile terminal (mobile terminal), terminal (terminal), etc., and the terminal device can be accessed via a radio access network.
  • network, RAN communicates with one or more core networks.
  • the terminal device can be a mobile phone (or called a "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal device can also be a portable or pocket-sized , Handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • the terminal device may be a user equipment for machine-type communication. That is to say, the terminal equipment can also be referred to as user equipment UE, mobile station (mobile station, MS), mobile terminal (mobile terminal), terminal (terminal), etc., and the terminal device can be accessed via a radio access network.
  • network, RAN
  • network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, an on-board device, Wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in the future evolution of public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, an on-board device, Wearable devices, hubs,
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal devices 120 may perform direct terminal connection (Device to Device, D2D) communication.
  • D2D Direct terminal connection
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiment of the present application.
  • An optional processing procedure of the backscatter-based transmission method provided by the embodiment of the present application, as shown in FIG. 2, includes the following steps:
  • Step S201 The first device receives a backscattered signal, and the backscattered signal corresponds to the detection signal transmitted by the second device at the first frequency.
  • the first device and the second device are two independent devices; the first device transmits a detection signal at a first frequency, and the backscatter signal corresponding to the detection signal is received by the first device.
  • the backscatter signal when the energy of the third device is sufficient, includes information obtained by the third device.
  • the backscatter signal when the energy of the temperature sensor is sufficient, includes the temperature collected by the temperature sensor.
  • the backscatter signal may also include identification information of the third device and/or type information of the third device.
  • the identification information of the third device may be the ID of the third device; the type information of the third device may be the type to which the third device belongs.
  • the third device as a sensor as an example, the third device’s
  • the type information can be a temperature sensor, or a humidity sensor, or a pressure sensor.
  • the backscatter signal may also include the frequency of electromagnetic waves required to provide energy to the third device.
  • the backscatter signal includes indication information indicating that the third device has insufficient energy; wherein, the third device may be a device independent of the first device and the second device, such as a sensor.
  • the indication information indicating that the third device is insufficient in energy may only be 1-bit indication information indicating that the third device is insufficient in energy.
  • the backscatter signal may also include identification information of the third device and/or type information of the third device.
  • the identification information of the third device may be the ID of the third device; the type information of the third device may be the type to which the third device belongs. Taking the third device as a sensor as an example, the third device’s
  • the type information can be a temperature sensor, or a humidity sensor, or a pressure sensor.
  • the backscatter signal may also include the frequency of electromagnetic waves required to provide energy to the third device.
  • the backscatter signal includes indication information indicating that the third device has insufficient energy
  • the first device when the first device provides energy electromagnetic waves to the third device, there may be a problem that it is difficult to determine the transmission power. Based on this, if the first device can obtain the location information of the third device, the first device can provide energy to the third device more efficiently in a beam manner.
  • the backscatter signal may further include: the location information of the third device.
  • the first device determines the time when the second device transmits the detection signal and the distance between the second device and the third device. The first distance; the first device determines the second distance between the first device and the third device based on the time when the second device transmits the detection signal and the first distance; the first A device determines location information of the third device based on the first distance and the second distance. Wherein, the time when the second device transmits the detection signal and the first distance between the second device and the third device can be determined by the second device.
  • the time of the backscatter signal corresponding to the detection signal can determine the first distance between the second device and the third device, and the second device sends the first distance and the time when the second device transmits the detection signal to the first device.
  • the first device can determine the first distance between the first device and the third device according to the time when the first device receives the backscatter signal and the time when the third device transmits the backscatter signal. Based on the principle of three-point positioning, the position information of the third device can be estimated based on the first distance and the second distance.
  • the first device can associate the information collected by the third device with the location information of the third device.
  • the association of environmental information such as temperature and humidity with the corresponding collection location has strong application value.
  • the correlation between temperature information and location information can help to find abnormal temperature in the area, which is helpful for safety monitoring;
  • the correlation between gas sensors and location information can help monitor gas leakage at a specific location;
  • the photosensitive sensor can be associated with location information , To be able to judge the light or lighting conditions of different locations.
  • Step S202 The first device emits electromagnetic waves at a second frequency.
  • the second frequency may be the frequency of the electromagnetic wave required to provide energy for the third device included in the backscattered signal received by the first device. That is, the first device uses the frequency of the electromagnetic wave indicated in the backscatter signal to emit electromagnetic waves to provide energy to the third device. In this way, the first device can accurately provide the third device with the electromagnetic wave required by the third device by knowing the electromagnetic wave frequency required by the third device in advance, which improves the efficiency of the third device in obtaining energy.
  • the first device may not emit electromagnetic waves.
  • An optional processing procedure of the backscatter-based transmission method provided by the embodiment of the present application, as shown in FIG. 3, includes the following steps:
  • Step S301 The second device transmits a detection signal at the first frequency, and the backscatter signal corresponding to the detection signal is received by the first device.
  • the backscatter signal includes indication information indicating insufficient energy of the third device or information obtained by the third device.
  • the backscatter signal when the backscatter signal includes indication information indicating that the third device has insufficient energy, the backscatter signal may further include the frequency of electromagnetic waves required to provide energy to the third device.
  • the backscatter signal when the backscatter signal includes indication information indicating that the energy of the third device is insufficient, the backscatter signal further includes location information of the third device.
  • the method when the backscatter signal includes indication information indicating insufficient energy of the third device, the method further includes:
  • Step S302 The second device sends the time at which the second device transmits the detection signal to the first device.
  • Step S303 The second device receives the backscatter signal.
  • the second device determines the second device based on the time when the second device transmits the detection signal and the time when the second device receives the backscatter signal. The first distance to the third device.
  • the first device can determine the location information of the third device according to the first distance and the time when the second device transmits the detection signal, and the first device can provide energy to the third device more efficiently in a beam manner.
  • the function of the first device may be implemented by the receiver, and the function of the second device may be implemented by the transmitter.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • An optional structural schematic diagram of the first device 400 includes:
  • the first receiving unit 401 is configured to receive a backscatter signal, the backscatter signal corresponding to the detection signal transmitted by the second device at the first frequency;
  • the backscatter signal includes indication information indicating insufficient energy of the third device or information obtained by the third device.
  • the backscatter signal further includes: identification information of the third device and/or type information of the third device.
  • the backscatter signal when the backscatter signal includes indication information indicating that the third device has insufficient energy, the backscatter signal further includes: the frequency of the electromagnetic wave required to provide energy to the third device .
  • the backscatter signal when the backscatter signal includes indication information indicating that the third device has insufficient energy, the backscatter signal further includes: the frequency of the electromagnetic wave required to provide energy to the third device .
  • the backscatter signal in a case where the backscatter signal includes indication information indicating that the third device is insufficient in energy, the backscatter signal further includes: location information of the third device.
  • the first device 400 further includes: a first processing unit 402 configured to determine the distance between the first device and the first device based on the time when the second device transmits the detection signal and the first distance The second distance between the third device; the location information of the third device is determined based on the first distance and the second distance.
  • a first processing unit 402 configured to determine the distance between the first device and the first device based on the time when the second device transmits the detection signal and the first distance The second distance between the third device; the location information of the third device is determined based on the first distance and the second distance.
  • the first device 400 further includes: a first sending unit 403 configured to emit electromagnetic waves at a second frequency.
  • An optional structural schematic diagram of the second device 500 includes:
  • the second sending unit 501 is configured to transmit a detection signal on a first frequency, and the backscatter signal corresponding to the detection signal is received by the first device; the backscatter signal includes indication information indicating that the third device has insufficient energy or Information obtained by the third device.
  • the backscatter signal further includes: identification information of the third device and/or type information of the third device.
  • the backscatter signal when the backscatter signal includes indication information indicating that the third device has insufficient energy, the backscatter signal further includes: the frequency of the electromagnetic wave required to provide energy to the third device .
  • the backscatter signal in a case where the backscatter signal includes indication information indicating that the third device is insufficient in energy, the backscatter signal further includes: location information of the third device.
  • the second sending unit 501 is further configured to send the time at which the second device transmits the detection signal to the first device.
  • the second device 500 further includes a second receiving unit 502 and a second processing unit 503;
  • the second receiving unit 502 is configured to receive the backscatter signal
  • the second processing unit 503 is configured to determine the difference between the second device and the third device based on the time when the second device transmits the detection signal and the time when the second device receives the backscatter signal. The first distance between.
  • the second sending unit 501 is further configured to send the first distance to the first device.
  • An embodiment of the present application further provides a first device, including a processor and a memory configured to store a computer program that can run on the processor, where the processor is configured to execute the above-mentioned first device when the computer program is running. Perform the steps of the backscatter-based transmission method.
  • An embodiment of the present application further provides a second device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned second device when the computer program is running. Perform the steps of the backscatter-based transmission method.
  • An embodiment of the present application further provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the backscatter-based transmission method executed by the second device.
  • An embodiment of the present application further provides a storage medium storing an executable program, and when the executable program is executed by a processor, the backscatter-based transmission method executed by the above-mentioned second device is implemented.
  • An embodiment of the present application also provides a computer program product, including computer program instructions, which cause a computer to execute the backscatter-based transmission method executed by the above-mentioned first device.
  • An embodiment of the present application also provides a computer program product, including computer program instructions, which cause a computer to execute the backscatter-based transmission method executed by the above-mentioned second device.
  • An embodiment of the present application also provides a computer program that enables a computer to execute the transmission method based on backscattering executed by the above-mentioned first device.
  • An embodiment of the present application also provides a computer program that enables a computer to execute the backscatter-based transmission method executed by the above-mentioned second device.
  • the electronic device 700 includes: at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in the electronic device 700 are coupled together through the bus system 705. It can be understood that the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clear description, various buses are marked as the bus system 705 in FIG. 6.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM (CD) -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • the memory 702 in the embodiment of the present application is used to store various types of data to support the operation of the electronic device 700.
  • Examples of such data include: any computer program used to operate on the electronic device 700, such as the application program 7022.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 7022.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 700 may be used by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex programmable logic device (CPLD). , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components are used to implement the aforementioned methods.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD complex programmable logic device
  • FPGA field-programmable Logic Device
  • controller MCU
  • MPU MPU
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种基于反向散射的传输方法,包括:第一设备接收反向散射信号,所述反向散射信号与第二设备在第一频率上发射的探测信号对应;所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。本申请还公开了另一种基于反向散射的传输方法、设备及存储介质。

Description

一种基于反向散射的传输方法、电子设备及存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种基于反向散射的传输方法、电子设备及存储介质。
背景技术
相关技术中,基于反向散射传输信息时,如何在有效传输信息的同时,简化接收机的结构尚未被明确。
发明内容
为解决上述技术问题,本申请实施例提供一种基于反向散射的传输方法、电子设备及存储介质,能够在有效传输信息的同时,简化接收机的结构。
第一方面,本申请实施例提供一种基于反向散射的传输方法,包括:第一设备接收反向散射信号,所述反向散射信号与第二设备在第一频率上发射的探测信号对应;所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
第二方面,本申请实施例提供一种基于反向散射的传输方法,包括:第二设备在第一频率上发射探测信号,所述探测信号对应的反向散射信号被第一设备接收;所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
第三方面,本申请实施例提供一种第一设备,所述第一设备包括:第一接收单元,配置为接收反向散射信号,所述反向散射信号与第二设备在第一频率上发射的探测信号对应;所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
第四方面,本申请实施例提供一种第二设备,所述第二设备包括:第二发送单元,配置为在第一频率上发射探测信号,所述探测信号对应的反向散射信号被第一设备接收;所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
第五方面,本申请实施例提供一种第一设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第一设备执行的基于反向散射的传输方法的步骤。
第六方面,本申请实施例提供一种第二设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第二设备执行的基于反向散射的传输方法的步骤。
第七方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述第一设备执行的基于反向散射的传输方法。
第八方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述第二设备执行的基于反向散射的传输方法。
第九方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述第一设备执行的基于反向散射的传输方法。
第十方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述第二设备执行的基于反向散射的传输方法。
第十一方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一设备执行的基于反向散射的传输方法。
第十二方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第二设备执行的基于反向散射的传输方法。
第十三方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述第一设备执行的基于反向散射的传输方法。
第十四方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述第二设备执行的基于反向散射的传输方法。
本申请实施例提供的基于反向散射的传输方法、电子设备及存储介质,包括:第二设备在第一频率上发射探测信号,第一设备接收与所述探测信号对应的反向散射信号,所述反向散射信号包括指示第三设备能量不足的 指示信息或所述第三设备获取的信息;第二设备能够根据所述反向散射信号发送电磁波,以为第三设备提供能量。如此,通过在第二设备和第一设备两个独立的设备上分别发射探测信号和接收与探测信号对应的反射信号,能够降低第一设备的结构的复杂度。
附图说明
图1为本申请实施例通信系统的组成结构示意图;
图2为本申请实施例基于反向散射的传输方法的一种可选处理流程示意图;
图3为本申请实施例基于反向散射的传输方法的另一种可选处理流程示意图;
图4为本申请实施例第一设备的组成结构示意图;
图5为本申请实施例第二设备的组成结构示意图;
图6为本申请实施例电子设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点和技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
在无线通信系统中,发射机产生具有某个或某些频率的载波,一些有用信息通过幅度/相位/频偏等方式叠加到发射机产生的载波上;携带有用信息的载波再通过天线发射到空间环境中。在这个过程中,对发射机而言,主要的能量消耗在发射机产生载波的过程中。
在空间环境中存在着大量的各种频率的电磁波信号,反向散射通信是利用空间环境中的电磁波传输有用信息的一种技术。在利用反向散射通信的设备中,由于没有专门产生载波的射频器件,因而设备的成本、功耗和设备的体积都很小。当这类设备需要传输信息时,可以利用天线反射空间环境中的电磁波,利用超材料(meta-material)或二极管等器件将需要传输的信息叠加在被反射的电磁波上,譬如:可以通过改变反射的电磁波的频率、相位和幅度等达到传输信息的目的。
由于反向散射通信技术的成本,功耗以及设备的体积都很小,所以非常适合用于环境传感器的信息传输;例如,散布于环境中的温度传感器、湿度传感器等利用反向散射通信将采集的信息传输出去。这类传感器需求 量大,散布范围很广,采用反向散射通信可以大大延长传感器电池的使用寿命;在某些设计下甚至可以做到不需要电池供电。所以反向散射通信在这类环境传感器中有非常良好的应用前景。
前述介绍了反向散射通信的基本原理,下面介绍与反向散射通信相结合的能量采集技术。
如上所述,反向散射通信适用于低成本的传感器。虽然使用反向散射通信可以大大降低通信所需要的能量,但是传感器在采集信号的过程中还仍需要能量驱动;如果这些传感器采集信号的能量也可以从环境中获取,那么传感器采集信号以及传输信号的过程都将只依赖于环境电磁波,即传感器本身就是无源的,这将大大拓展反向散射通信的适用场景。
反向散射通信依赖于周围环境中的电磁波,但是在一些场景下,当一个传感器需要传输数据时,周围环境中可能没有合适的电磁波。虽然环境中的电磁波来源很丰富,但是由于使用反向散射通信的设备的结构通常很简单,其反射天线设计也会比较简单,如果周围环境电磁波与反向散射通信的设备的反射天线不匹配,则反向散射通信的设备采集的信息也无法通过环境中的电磁波传输。
为了解决上述问题,可以利用接收反向散射信号的设备主动发射特定频率的电磁波;其中,所述特定的频率是支持反向散射通信的设备天线能够支持的频率,通过接收上述信号的反射信号,达到基于反向散射通信进行信息传输的目的。
但是,该方案中发射反向散射通信使用的电磁波的发射机与接收反射信号的接收机位于同一台设备上,会造成非常严重的自干扰(即发射机对位于同一设备接收机的干扰)。由于反向散射通信纯粹依靠反射电磁波传输信息,因此传输距离一般不会太远。采用上述方法,从发射机发出信号,到接收机接收到反射信号的时间间隔非常短,通常不到一微秒(us)的量级,因此无法采用时分的方式规避发射信号对接收信号的强干扰。
为了抑制上述发射机对接收机的强干扰。可采用的方法包括,在接收机前端增加滤波器,以滤除强干扰。采用数字方法重建干扰并消除等等方法。上述方法虽然能解决发射机对接收机强干扰的问题,但方案都比较复杂。采用上述任何一种方法,都会显著的增加接收机的实现复杂度,进而增加接收机的成本。如前所述,反向散射通信的一个比较大的用途是采集低成本的环境传感器的信号,但是为了解决强自干扰问题又会大大增加使用反向散射通信的成本。
在利用周围环境中的电磁波发射传感器采集的信息的情况下,可利用天线阵列获取周围环境中的电磁波。但是,如果周围环境中广泛的存在多种电磁波,则获取电磁波的效率也是极低的;一个原因是各种电磁波的分布具有随机性,另一个原因是能够支持各种电磁波的天线效率比较低。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(new radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备。本申请的实施例对网 络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,终端设备可以是任意的终端,比如,终端设备可以是机器类通信的用户设备。也就是说,该终端设备也可称之为用户设备UE、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
可选的,网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
可选的,网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过7吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过7GHz以上的频谱进行通信,还可以同时使用7GHz以下的频谱和7GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
示例性的,本申请实施例应用的通信系统100,如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以 是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图3示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例提供的基于反向散射的传输方法的一种可选处理流程,如图2所示,包括以下步骤:
步骤S201,第一设备接收反向散射信号,所述反向散射信号与第二设备在第一频率上发射的探测信号对应。
在一些实施例中,第一设备和第二设备是两个独立的设备;第一设备在第一频率上发射探测信号,所述探测信号对应的反向散射信号被第一设备接收。
在一些实施方式中,在所述第三设备的能量充足的情况下,所述反向散射信号包括所述第三设备获取的信息。以第三设备是温度传感器为例,在温度传感器能量充足的情况下,所述反向散射信号中包括温度传感器采集的温度。当然,所述反向散射信号还可以包括所述第三设备的标识信息和/或所述第三设备的类型信息。其中,所述第三设备的标识信息可以是第三设备的ID;所述第三设备的类型信息可以是第三设备所属的类型,以第三设备是传感器为例,所述第三设备的类型信息可以是温度传感器、或湿度传感器、或压力传感器等。所述反向散射信号还可以包括为所述第三设备提供能量所需的电磁波的频率。
在另一些实施方式中,所述反向散射信号包括指示第三设备能量不足的指示信息;其中,所述第三设备可以是与第一设备、第二设备独立的设备,如传感器。
在具体实施时,所述指示第三设备能量不足的指示信息可以仅仅是1比特的指示信息,指示第三设备能量不足。当然,所述反向散射信号还可以包括所述第三设备的标识信息和/或所述第三设备的类型信息。其中,所 述第三设备的标识信息可以是第三设备的ID;所述第三设备的类型信息可以是第三设备所属的类型,以第三设备是传感器为例,所述第三设备的类型信息可以是温度传感器、或湿度传感器、或压力传感器等。所述反向散射信号还可以包括为所述第三设备提供能量所需的电磁波的频率。
若所述反向散射信号包括指示第三设备能量不足的指示信息,则所述第一设备在向所述第三设备提供能量电磁波时,可能存在难以确定发射功率的问题。基于此,若第一设备能够获取第三设备的位置信息,则第一设备便能够以波束的方式更高效地向第三设备提供能量。
为使第一设备获取第三设备的位置信息,一些可实现的方式是在所述反向散射信号还可以包括:第三设备的位置信息。
为使第一设备获取第三设备的位置信息,另一些可实现的方式是所述第一设备确定所述第二设备发射探测信号的时间和所述第二设备与所述第三设备之间的第一距离;所述第一设备基于所述第二设备发射探测信号的时间和所述第一距离,确定所述第一设备与所述第三设备之间的第二距离;所述第一设备基于所述第一距离和所述第二距离确定所述第三设备的位置信息。其中,所述第二设备发射探测信号的时间和所述第二设备与所述第三设备之间的第一距离可以由第二设备确定,如第二设备基于自身发射探测信号的时间和接收探测信号对应的反向散射信号的时间,能够确定第二设备与第三设备之间的第一距离,第二设备再将第一距离和第二设备发射探测信号的时间发送至第一设备。第一设备根据自身接收反向散射信号的时间和第三设备发射反向散射信号的时间,便能确定第一设备与第三设备之间的第一距离。基于三点定位的原理,根据第一距离和第二距离能够估算出第三设备位置信息。
在一些实施例中,所述第一设备确定所述第三设备的位置信息之后,可以估计待获取能量的第三设备的最远距离,以此决定第一设备发射的电磁波的发射功率。第一设备也可以通过收集第三设备的信息,估计出哪些第三设备已经不需要能量收集了,据此实时的调整第一设备的发射功率。
第一设备也可以估计待获取能量的第三设备的分布情况,譬如:如果第三设备在第一位置区域分布比较集中,第一设备(多天线传输)的方式集中能量向第一位置区域传递能量,加快第一位置区域内的第三设备的能量采集过程。
第一设备可以把第三设备采集的信息与第三设备的位置信息进行关联,譬如温度、湿度等环境信息和相应的采集位置关联具有很强的应用价 值。举例来说,温度信息和位置信息进行关联,能够帮助发现区域温度异常,有助于安全监测;气体传感器和位置信息进行关联,有助于监测特定位置的气体泄漏;光敏传感器和位置信息进行关联,能够判断不同位置的光照或照明情况。
在一些实施例中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述方法还包括:
步骤S202,所述第一设备在第二频率上发射电磁波。
其中,所述第二频率可以是所述第一设备接收的反向散射信号中包括的为所述第三设备提供能量所需的电磁波的频率。即,所述第一设备利用反向散射信号中指示的电磁波的频率发射电磁波,以为第三设备提供能量。如此,第一设备通过预先获知第三设备所需的电磁波频率,能够精准的为第三设备提供第三设备所需的电磁波,提高了第三设备获取能量的效率。
当然,所述第一设备根据接收到的反向散射信号中包括的第三设备的标识信息和/或所述第三设备的类型信息确定不需要获取第三设备采集的信息的情况下,所述第一设备可以不发射电磁波。
本申请实施例提供的基于反向散射的传输方法的一种可选处理流程,如图3所示,包括以下步骤:
步骤S301,第二设备在第一频率上发射探测信号,所述探测信号对应的反向散射信号被第一设备接收。
在一些实施例中,所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
在一些实施例中,所述反向散射信号还可以包括所述第三设备的标识信息和/或所述第三设备的类型信息。其中,所述第三设备的标识信息可以是第三设备的ID;所述第三设备的类型信息可以是第三设备所属的类型,以第三设备是传感器为例,所述第三设备的类型信息可以是温度传感器、或湿度传感器、或压力传感器等。
在一些实施例中,所述反向散射信号包括指示第三设备能量不足的指示信息时,所述反向散射信号还可以包括为所述第三设备提供能量所需的电磁波的频率。
在一些实施例中,所述反向散射信号包括指示第三设备能量不足的指示信息时,所述反向散射信号还包括:所述第三设备的位置信息。
在一些实施例中,所述反向散射信号包括指示第三设备能量不足的指示信息时,所述方法还包括:
步骤S302,所述第二设备向所述第一设备发送所述第二设备发射探测信号的时间。
步骤S303,所述第二设备接收所述反向散射信号二设备基于所述第二设备发射探测信号的时间和所述第二设备接收所述反向散射信号的时间,确定所述第二设备与所述第三设备之间的第一距离。
如此,第一设备根据第一距离以及所述第二设备发射探测信号的时间,能够确定第三设备的位置信息,第一设备便能够以波束的方式更高效地向第三设备提供能量。
需要说明的是,本申请各实施例中,第一设备的功能可以由接收机实现,第二设备的功能可以由发射机实现。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
为实现上述基于反向散射的传输方法,本申请实施例提供一种第一设备,所述第一设备400的可选组成结构示意图,如图4所示,包括:
第一接收单元401,配置为接收反向散射信号,所述反向散射信号与第二设备在第一频率上发射的探测信号对应;
所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
在一些实施例中,所述反向散射信号还包括:所述第三设备的标识信息和/或所述第三设备的类型信息。
在一些实施例中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:为所述第三设备提供能量所需的电磁波的频率。
在一些实施例中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:为所述第三设备提供能量所需的电磁波的频率。
在一些实施例中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:所述第三设备的位置信息。
在一些实施例中,所述第一设备400还包括:第一处理单元402,配置为基于所述第二设备发射探测信号的时间和所述第一距离,确定所述第一设备与所述第三设备之间的第二距离;基于所述第一距离和所述第二距离确定所述第三设备的位置信息。
在一些实施例中,所述第一设备400还包括:第一发送单元403,配置为在第二频率上发射电磁波。
在一些实施例中,所述第二频率为所述反向散射信号包括的为所述第三设备提供能量所需的电磁波的频率。
为实现上述基于反向散射的传输方法,本申请实施例提供一种第二设备,所述第二设备500的可选组成结构示意图,如图5所示,包括:
第二发送单元501,配置为在第一频率上发射探测信号,所述探测信号对应的反向散射信号被第一设备接收;所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
在一些实施例中,所述反向散射信号还包括:所述第三设备的标识信息和/或所述第三设备的类型信息。
在一些实施例中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:为所述第三设备提供能量所需的电磁波的频率。
在一些实施例中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:所述第三设备的位置信息。
在一些实施例中,所述第二发送单元501,还配置为向所述第一设备发送所述第二设备发射探测信号的时间。
在一些实施例中,所述第二设备500还包括第二接收单元502和第二处理单元503;
所述第二接收单元502,配置为接收所述反向散射信号;
所述第二处理单元503,配置为基于所述第二设备发射探测信号的时间和所述第二设备接收所述反向散射信号的时间,确定所述第二设备与所述第三设备之间的第一距离。
在一些实施例中,所述第二发送单元501,还配置为向所述第一设备发送所述第一距离。
本申请实施例还提供一种第一设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第一设备执行的基于反向散射的传输方法的步骤。
本申请实施例还提供一种第二设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第二设备执行的基于反向散射的传输方法的步骤。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用 并运行计算机程序,使得安装有所述芯片的设备执行上述第一设备执行的基于反向散射的传输方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述第二设备执行的基于反向散射的传输方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述一设备执行的基于反向散射的传输方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述第二设备执行的基于反向散射的传输方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一设备执行的基于反向散射的传输方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第二设备执行的基于反向散射的传输方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述第一设备执行的基于反向散射的传输方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述第二设备执行的基于反向散射的传输方法。
图6是本申请实施例的电子设备(第一设备或第二设备)的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线系统705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可 以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex  Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应理解,本申请中术语“系统”和“网络”在本文中常被可互换使用。本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (40)

  1. 一种基于反向散射的传输方法,所述方法包括:
    第一设备接收反向散射信号,所述反向散射信号与第二设备在第一频率上发射的探测信号对应;
    所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
  2. 根据权利要求1所述的方法,其中,所述反向散射信号还包括:
    所述第三设备的标识信息和/或所述第三设备的类型信息。
  3. 根据权利要求1或2所述的方法,其中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:
    为所述第三设备提供能量所需的电磁波的频率。
  4. 根据权利要求1至3任一项所述的方法,其中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:
    所述第三设备的位置信息。
  5. 根据权利要求1至3任一项所述的方法,其中,所述方法还包括:
    所述第一设备确定所述第二设备发射探测信号的时间和所述第二设备与所述第三设备之间的第一距离。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    所述第一设备基于所述第二设备发射探测信号的时间和所述第一距离,确定所述第一设备与所述第三设备之间的第二距离;
    所述第一设备基于所述第一距离和所述第二距离确定所述第三设备的位置信息。
  7. 根据权利要求1至6任一项所述的方法,其中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述方法还包括:
    所述第一设备在第二频率上发射电磁波。
  8. 根据权利要求7所述的方法,其中,所述第二频率为所述反向散射信号包括的为所述第三设备提供能量所需的电磁波的频率。
  9. 一种基于反向散射的传输方法,所述方法包括:
    第二设备在第一频率上发射探测信号,所述探测信号对应的反向散射信号被第一设备接收;
    所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三 设备获取的信息。
  10. 根据权利要求9所述的方法,其中,所述反向散射信号还包括:
    所述第三设备的标识信息和/或所述第三设备的类型信息。
  11. 根据权利要求9或10所述的方法,其中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:
    为所述第三设备提供能量所需的电磁波的频率。
  12. 根据权利要求9至11任一项所述的方法,其中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:
    所述第三设备的位置信息。
  13. 根据权利要求9至12任一项所述的方法,其中,所述方法还包括:
    所述第二设备向所述第一设备发送所述第二设备发射探测信号的时间。
  14. 根据权利要求9至13任一项所述的方法,其中,所述方法还包括:
    所述第二设备接收所述反向散射信号;
    所述第二设备基于所述第二设备发射探测信号的时间和所述第二设备接收所述反向散射信号的时间,确定所述第二设备与所述第三设备之间的第一距离。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述第二设备向所述第一设备发送所述第一距离。
  16. 一种第一设备,所述第一设备包括:
    第一接收单元,配置为接收反向散射信号,所述反向散射信号与第二设备在第一频率上发射的探测信号对应;
    所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
  17. 根据权利要求16所述的第一设备,其中,所述反向散射信号还包括:
    所述第三设备的标识信息和/或所述第三设备的类型信息。
  18. 根据权利要求16或17所述的第一设备,其中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:
    为所述第三设备提供能量所需的电磁波的频率。
  19. 根据权利要求16至18任一项所述的第一设备,其中,在所述反 向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:
    为所述第三设备提供能量所需的电磁波的频率。
  20. 根据权利要求16至18任一项所述的第一设备,其中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:
    所述第三设备的位置信息。
  21. 根据权利要求20所述的第一设备,其中,所述第一设备还包括:
    第一处理单元,配置为基于所述第二设备发射探测信号的时间和所述第一距离,确定所述第一设备与所述第三设备之间的第二距离;
    基于所述第一距离和所述第二距离确定所述第三设备的位置信息。
  22. 根据权利要求16至21任一项所述的第一设备,其中,所述第一设备还包括:
    第一发送单元,配置为在第二频率上发射电磁波。
  23. 根据权利要求22所述的第一设备,其中,所述第二频率为所述反向散射信号包括的为所述第三设备提供能量所需的电磁波的频率。
  24. 一种第二设备,所述第二设备包括:
    第二发送单元,配置为在第一频率上发射探测信号,所述探测信号对应的反向散射信号被第一设备接收;
    所述反向散射信号包括指示第三设备能量不足的指示信息或所述第三设备获取的信息。
  25. 根据权利要求24所述的第二设备,其中,所述反向散射信号还包括:
    所述第三设备的标识信息和/或所述第三设备的类型信息。
  26. 根据权利要求24或25所述的第二设备,其中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:
    为所述第三设备提供能量所需的电磁波的频率。
  27. 根据权利要求24至26任一项所述的第二设备,其中,在所述反向散射信号包括指示第三设备能量不足的指示信息的情况下,所述反向散射信号还包括:
    所述第三设备的位置信息。
  28. 根据权利要求24至27任一项所述的第二设备,其中,所述第二 发送单元,还配置为向所述第一设备发送所述第二设备发射探测信号的时间。
  29. 根据权利要求24至28任一项所述的第二设备,其中,所述第二设备还包括第二接收单元和第二处理单元;
    所述第二接收单元,配置为接收所述反向散射信号;
    所述第二处理单元,配置为基于所述第二设备发射探测信号的时间和所述第二设备接收所述反向散射信号的时间,确定所述第二设备与所述第三设备之间的第一距离。
  30. 根据权利要求29所述的第二设备,其中,所述第二发送单元,还配置为向所述第一设备发送所述第一距离。
  31. 一种设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至8任一项所述的基于反向散射的传输方法的步骤。
  32. 一种设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求9至15任一项所述的基于反向散射的传输方法的步骤。
  33. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至8任一项所述的基于反向散射的传输方法。
  34. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求9至15任一项所述的基于反向散射的传输方法。
  35. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至8任一项所述的基于反向散射的传输方法。
  36. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求9至15任一项所述的基于反向散射的传输方法。
  37. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至8任一项所述的基于反向散射的传输方法。
  38. 一种计算机程序,所述计算机程序使得计算机执行如权利要求9至15任一项所述的基于反向散射的传输方法。
  39. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至8任一项所述的基于 反向散射的传输方法。
  40. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求9至15任一项所述的基于反向散射的传输方法。
PCT/CN2020/076024 2020-02-20 2020-02-20 一种基于反向散射的传输方法、电子设备及存储介质 WO2021163957A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080083084.3A CN114731197A (zh) 2020-02-20 2020-02-20 一种基于反向散射的传输方法、电子设备及存储介质
PCT/CN2020/076024 WO2021163957A1 (zh) 2020-02-20 2020-02-20 一种基于反向散射的传输方法、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076024 WO2021163957A1 (zh) 2020-02-20 2020-02-20 一种基于反向散射的传输方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021163957A1 true WO2021163957A1 (zh) 2021-08-26

Family

ID=77390376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076024 WO2021163957A1 (zh) 2020-02-20 2020-02-20 一种基于反向散射的传输方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN114731197A (zh)
WO (1) WO2021163957A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186088A1 (zh) * 2022-03-31 2023-10-05 维沃移动通信有限公司 发起bsc链路建立的方法、终端及网络侧设备
WO2023185756A1 (zh) * 2022-03-28 2023-10-05 维沃移动通信有限公司 信息传输方法、装置、终端及网络侧设备
WO2024007907A1 (zh) * 2022-07-04 2024-01-11 维沃移动通信有限公司 消息收发方法及设备
CN117640018A (zh) * 2024-01-26 2024-03-01 中国科学技术大学 实现并发Wi-Fi反向散射通信的译码方法及系统
WO2024087186A1 (zh) * 2022-10-28 2024-05-02 北京小米移动软件有限公司 通信方法、装置、设备及可读存储介质
WO2024159933A1 (zh) * 2023-02-03 2024-08-08 中兴通讯股份有限公司 通信装置、通信方法、电子设备及存储介质
WO2024168844A1 (zh) * 2023-02-17 2024-08-22 Oppo广东移动通信有限公司 一种信息指示方法及装置、通信设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024026771A1 (zh) * 2022-08-04 2024-02-08 Oppo广东移动通信有限公司 接入认证的方法和设备
CN117674978A (zh) * 2022-08-18 2024-03-08 维沃移动通信有限公司 传输处理方法、装置及设备
CN118101686A (zh) * 2022-11-25 2024-05-28 中兴通讯股份有限公司 一种环境反射的传输方法、通信装置及存储介质
WO2024113172A1 (zh) * 2022-11-29 2024-06-06 Oppo广东移动通信有限公司 无线通信的方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549692A (zh) * 2016-12-12 2017-03-29 电子科技大学 一种用于反向散射通信系统的信号接收方法
CN106685538A (zh) * 2016-11-01 2017-05-17 清华大学 一种环境反向散射系统及其信号传输方法
WO2017132400A1 (en) * 2016-01-26 2017-08-03 University Of Washington Backscatter devices including examples of single sideband operation
CN108702035A (zh) * 2016-01-08 2018-10-23 泰斯尼克斯公司 对远程射频识别标签进行充电
CN108964751A (zh) * 2018-07-30 2018-12-07 太原理工大学 一种利用环境rf无线充电的通信设备间的通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702035A (zh) * 2016-01-08 2018-10-23 泰斯尼克斯公司 对远程射频识别标签进行充电
WO2017132400A1 (en) * 2016-01-26 2017-08-03 University Of Washington Backscatter devices including examples of single sideband operation
CN106685538A (zh) * 2016-11-01 2017-05-17 清华大学 一种环境反向散射系统及其信号传输方法
CN106549692A (zh) * 2016-12-12 2017-03-29 电子科技大学 一种用于反向散射通信系统的信号接收方法
CN108964751A (zh) * 2018-07-30 2018-12-07 太原理工大学 一种利用环境rf无线充电的通信设备间的通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, GONGPU: "Backscatter communication technology and Internet of Things", CHINESE JOURNAL ON INTERNET OF THINGS, vol. 1, no. 1, 30 June 2017 (2017-06-30), pages 67 - 75, XP055838550 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023185756A1 (zh) * 2022-03-28 2023-10-05 维沃移动通信有限公司 信息传输方法、装置、终端及网络侧设备
WO2023186088A1 (zh) * 2022-03-31 2023-10-05 维沃移动通信有限公司 发起bsc链路建立的方法、终端及网络侧设备
WO2024007907A1 (zh) * 2022-07-04 2024-01-11 维沃移动通信有限公司 消息收发方法及设备
WO2024087186A1 (zh) * 2022-10-28 2024-05-02 北京小米移动软件有限公司 通信方法、装置、设备及可读存储介质
WO2024159933A1 (zh) * 2023-02-03 2024-08-08 中兴通讯股份有限公司 通信装置、通信方法、电子设备及存储介质
WO2024168844A1 (zh) * 2023-02-17 2024-08-22 Oppo广东移动通信有限公司 一种信息指示方法及装置、通信设备
CN117640018A (zh) * 2024-01-26 2024-03-01 中国科学技术大学 实现并发Wi-Fi反向散射通信的译码方法及系统
CN117640018B (zh) * 2024-01-26 2024-05-17 中国科学技术大学 实现并发Wi-Fi反向散射通信的译码方法及系统

Also Published As

Publication number Publication date
CN114731197A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2021163957A1 (zh) 一种基于反向散射的传输方法、电子设备及存储介质
WO2021163971A1 (zh) 一种反向散射通信方法、电子设备及存储介质
CN109891958B (zh) 用于测距测量的装置、系统和方法
US11943824B2 (en) Apparatus, system and method of transmitting a multiple basic service set identifier (BSSID) element
US20240027574A1 (en) Collaborative Sensing Method, Electronic Device, and Readable Storage Medium
US20160241433A1 (en) Apparatus, system and method of communicating in an awareness cluster
US11212835B2 (en) Method of transmitting information in unlicensed band, network device, and terminal
US20210120586A1 (en) Apparatus, system and method of communicating a multi-link element
US11277852B2 (en) Data transmission method, terminal device, and network device
US20220159555A1 (en) Apparatus, system, and method of communicating over a millimeterwave (mmwave) channel based on information communicated over a sub 10 gigahertz (ghz) (sub-10ghz) channel
WO2023010563A1 (zh) 一种无线通信方法及装置、终端设备、网络设备
JP2022521719A (ja) 電力制御方法および電力制御装置
US20240348395A1 (en) Downlink transmission method and apparatus
US20220116862A1 (en) Apparatus, system, and method of link disablement of an access point (ap)
US20220338133A1 (en) Multiple power class operation
US20230336974A1 (en) Method for radio communication, terminal device, and network device
EP3703424A1 (en) Random access method, spectrum reporting method, terminal device, and network device
US20230126999A1 (en) Method for wireless communication and network device
WO2023115354A1 (zh) 通信方法及装置
US20230208474A1 (en) Apparatus, system and method of body proximity sensing
EP3275281B1 (en) Apparatus, system and method of performing a wireless association
US11089497B2 (en) Apparatus, system and method of wireless passive scanning
US20210204093A1 (en) Apparatus, system and method of wireless communication over an indoor-only wireless communication channel
WO2021233443A1 (zh) 一种上行传输方法及装置
US20230371056A1 (en) Frequency band configuration method, terminal device, network device, chip and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920618

Country of ref document: EP

Kind code of ref document: A1