WO2023134717A1 - 用于波束失败恢复的设备、方法和介质 - Google Patents

用于波束失败恢复的设备、方法和介质 Download PDF

Info

Publication number
WO2023134717A1
WO2023134717A1 PCT/CN2023/071853 CN2023071853W WO2023134717A1 WO 2023134717 A1 WO2023134717 A1 WO 2023134717A1 CN 2023071853 W CN2023071853 W CN 2023071853W WO 2023134717 A1 WO2023134717 A1 WO 2023134717A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
network device
group
failure recovery
network
Prior art date
Application number
PCT/CN2023/071853
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼集团公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 曹建飞 filed Critical 索尼集团公司
Publication of WO2023134717A1 publication Critical patent/WO2023134717A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates to the field of wireless communication, and in particular to a device, method and medium for beam failure recovery in wireless communication.
  • the user equipment monitors the downlink beam failure by measuring the control resource set (CORESET) where the physical downlink control channel (PDCCH) is located and calculating the assumed error Block rate (BLER).
  • CORESET control resource set
  • PDCCH physical downlink control channel
  • BLER assumed error Block rate
  • 3GPP Rel.17 for high-speed mobile scenarios, a single carrier frequency network (SFN) transmission scheme is introduced, and a unified TCI state is newly defined. Therefore, new beam failure recovery schemes need to be studied.
  • SFN single carrier frequency network
  • an electronic device for beam failure recovery including a processing circuit configured to: determine a reference signal group for beam failure detection, and use the reference signal A group performs beam failure detection, wherein the reference signal group corresponds to a group of network devices, and wherein the electronic device communicates with the group of network devices in the mode of a single carrier frequency network;
  • the network device group sends a beam failure recovery request, receives a beam failure recovery response from a network device in the network device group, the beam failure recovery response indicates at least one new beam, and uses the at least one new beam with the At least one network device in the group of network devices communicates.
  • an electronic device for beam failure recovery comprising a processing circuit configured to perform beam failure detection using a configured reference signal, wherein the configuration is updated according to a unified TCI state and if a beam failure is detected, a beam failure recovery request is sent to the network device, the beam failure recovery request indicates a new beam that the electronic device wishes to use, and a beam failure recovery response is received from the network device, the The beam failure recovery response indicates the new beam confirmed by the network device, and communicates with the network device using the new beam confirmed by the network device.
  • a method for beam failure recovery performed by a user equipment including: determining a reference signal group for beam failure detection, and using the reference signal group to perform beam failure detection , wherein the reference signal group corresponds to a network device group, and wherein the user device Prepare to communicate with the network device group in the mode of a single carrier frequency network; and in the case of detecting a beam failure, send a beam failure recovery request to the network device group, and receive a beam from a network device in the network device group A failure recovery response, the beam failure recovery response indicating at least one new beam, and communicating with at least one network device in the group of network devices using the at least one new beam.
  • a method for beam failure recovery performed by a user equipment including: performing beam failure detection using a configured reference signal, wherein the configured reference signal is updated according to a unified TCI state; and in When a beam failure is detected, a beam failure recovery request is sent to the network device, the beam failure recovery request indicates a new beam that the user equipment wishes to use, and a beam failure recovery response is received from the network device, the beam failure recovery response indicates The new beam confirmed by the network device, and communicated with the network device using the new beam confirmed by the network device.
  • a non-transitory computer-readable storage medium on which program instructions are stored, the program instructions, when executed by a computer, cause the computer to perform the method of the present disclosure.
  • Fig. 1 is a schematic diagram showing an SFN transmission mode in a high-speed mobile scenario.
  • FIG. 2 is a schematic diagram showing a non-UE-specific BFD RS and a UE-specific BFD RS.
  • FIG. 3 is a flowchart illustrating a beam failure recovery process according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram showing SFN transmission using two network devices.
  • FIG. 5 is a schematic diagram illustrating transmission of PUCCH-SR in SFN mode.
  • FIG. 6 is a schematic diagram illustrating utilization of PUCCH-SR in a BFRQ procedure of a BFR procedure.
  • FIG. 7 is a diagram illustrating a beam failure recovery procedure utilizing a unified TCI state according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing TCI states.
  • FIG. 9 is a block diagram illustrating an example of a schematic configuration of a computing device to which the techniques of the present disclosure can be applied.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • Fig. 1 is a schematic diagram showing an SFN transmission mode in a high-speed mobile scenario.
  • NW network
  • TRP transmission and reception points
  • TCI Transport Configuration Information
  • UE 130 on the high-speed rail performs SFN transmission with TRP 110 and TRP 120.
  • the antenna panels of UE 130 face different TRPs at the same time.
  • the present disclosure provides a beam failure recovery (BFR) process applicable to the SFN transmission mode, including beam failure detection and new beam discovery and reporting.
  • the beam failure recovery process of the present disclosure includes 4 steps. The first step is the UE's beam failure detection on the downlink, that is, BFD. The second step is that the UE performs beam failure reporting, that is, BFRQ. If this step is based on the reporting of the uplink Media Access Control (MAC) Control Element (CE), it can be further divided into 2 sub-steps, because the UE also needs to provide the Physical Uplink Shared Channel (PUSCH) for carrying the MAC CE. To apply for resources, that is, the UE sends a scheduling request to the NW.
  • MAC Media Access Control
  • CE Physical Uplink Shared Channel
  • the third step is the NW's response to the beam failure report request, namely BFRR.
  • the fourth step is beam failure recovery, that is, the UE restores the failed beam to a newly reported beam.
  • the NW configures the UE through RRC signaling. After completing the RRC configuration, the UE usually only uses the UE-dedicated channel. These UE-dedicated channels use 2 active TCI states in SFN mode.
  • FIG. 2 is a schematic diagram showing non-UE-specific BFD RSs and UE-specific BFD RSs.
  • network device 210 and network device 220 perform SFN transmission with UE 230 using a UE-specific CORESET.
  • the UE-specific CORESET carries a BFD reference signal (RS) pair #1, including BFD RS #1 and BFD RS #2.
  • RS BFD reference signal
  • the network device 220 also uses a non-UE-specific CORESET (for example, CORESET#0 associated with a specific CSS) for non-SFN transmission, on which BFD RS#0 is carried.
  • CORESET#0 associated with a specific CSS
  • processing in a network device and/or in a UE may be performed by itself or a component thereof (eg, an electronic device such as a chip).
  • the electronic device may include processing circuitry.
  • the processing circuit may output signals (digital or analog) to the network device and/or other components in the UE, and may also receive signals (digital or analog) from the network device and/or other components in the UE.
  • the processing circuit may also operate with part or all of other components in the network device and/or UE.
  • the processing circuitry may be in the form of a general purpose processor or a special purpose processing circuitry such as an ASIC.
  • the processing circuit can be configured by an electric circuit (hardware) or a central processing device such as a central processing unit (CPU).
  • a program (software) for operating the circuit (hardware) or central processing device may be carried on the processing circuit.
  • the program can be stored in a memory (such as arranged in distributed nodes and/or a central processing device or electronic equipment) or an external storage medium connected from the outside, and downloaded via a network (such as the Internet).
  • FIG. 3 is a flowchart illustrating a beam failure recovery process 300 according to an embodiment of the disclosure.
  • the UE communicates with a network device group including multiple network devices in a single carrier frequency network mode.
  • the UE determines a reference signal group (BFD RS group) for beam failure detection, and uses the reference signal group to perform beam failure detection.
  • the reference signals in the reference signal group correspond to network devices in the network device group. In some embodiments of the present disclosure, both the number of network devices in the network device group and the number of reference signals in the reference signal group are two.
  • FIG. 4 is a schematic diagram showing SFN transmission using two network devices. In FIG. 4, UE 430 performs SFN transmission with two network devices (network device 410 and network device 420).
  • the BFD RS group can be determined explicitly or implicitly. If explicit BFD RS is selected, the network device configures K BFD RS groups for the UE through radio resource control (RRC) signaling, and the RSs in each BFD RS group come from their corresponding network devices.
  • RRC radio resource control
  • the UE receives RRC signaling from the network equipment group, the RRC signaling indicates the BFD RS group.
  • the UE needs to use the downlink (DL) RS of the TCI state in the CORESET where the UE-specific PDCCH is located as the BFD RS.
  • the UE uses two or more downlink reference signals in two or more TCI states corresponding to the network device group as a BFD RS group.
  • CSI-RS periodic channel state information reference signal
  • SSB synchronization signal block
  • step S304 the UE judges whether beam failure is detected.
  • the UE can evaluate the downlink of the BFD RS group The quality of the link channel is used to determine whether a beam failure is detected. It is determined that a beam failure is detected in a case where the quality of the downlink channel of the BFD RS group is poor.
  • the UE calculates the joint received signal quality of the BFD RS set to evaluate the downlink channel.
  • the joint received signal quality refers to the received signal quality calculated by taking all the BFD RS signals in the BFD RS group as useful signals. For example, the UE calculates the joint BLER to characterize the channel quality in the downlink SFN transmission mode. It should be noted that in this SFN mode, the UE considers the signals from the network equipment group to be useful signals rather than interference.
  • the UE calculates the individual received signal quality of each BFD RS in the BFD RS group to evaluate the downlink channel. For example, the UE calculates a separate BLER based on each BFD RS in the BFD RS group, and evaluates the quality of the downlink channel based on all calculated BLERs. For example, the UE may select the minimum value of all calculated BLERs as the channel quality of the SFN transmission mode.
  • the UE can calculate the joint BLER and evaluate the downlink channel according to the joint BLER.
  • the UE can calculate a separate BLER for each BFD RS, and use all calculated BLERs to evaluate the downlink channel through a preset algorithm.
  • the UE sends capability information to the group of network devices, the capability information indicating the maximum number of BFD RS groups that the UE can detect for each bandwidth part, each component carrier or each UE.
  • the network device can configure BFD RS within its capability range for the UE according to the capability information of the UE.
  • step S306 the US performs a beam failure report (BFRQ) process by sending a beam failure recovery request to the network device.
  • BFRQ beam failure report
  • the UE requests PUSCH resources in a physical uplink control channel scheduling request (PUCCH-SR) and indicates one or more new beams in a medium access control control element (MAC CE).
  • PUCCH-SR is the PUCCH resource used to carry the SR, and its function is to apply for an uplink resource (ie PUSCH) to the network device to carry the MAC CE.
  • PUCCH-SR can have two modes.
  • the first mode is that the PUCCH-SR is transmitted according to the SFN mode.
  • the UE sends the PUCCH-SR to the network device group in SFN mode.
  • FIG. 5 is a schematic diagram illustrating transmission of PUCCH-SR in SFN mode.
  • UE 530 uses uplink SFN to send PUCCH-SR to the network including Device 510 and network device 520 are multiple network devices. The advantage of doing this is that at multiple network devices, the transmission of the PUCCH has the gain of space diversity.
  • the second mode is that the UE sends the PUCCH-SR to one of the network device groups, which is selected by the UE from multiple network devices and which the UE thinks has better performance, or is designated by the network.
  • FIG. 6 is a schematic diagram illustrating utilization of PUCCH-SR in a BFRQ procedure of a BFR procedure.
  • the BFRQ process is implemented by UE 620 sending PUCCH-SR to network device 610, network device 610 sending UL grant to UE 620 as a response and UE sending MAC CE to network device 610 after receiving the UL grant.
  • a MAC CE may indicate one or more new beams.
  • the UE no longer performs SFN communication with multiple network devices in the network device group, but performs non-SFN communication with a single network device in the network device group.
  • the MAC CE indicates multiple new beams corresponding to multiple DL RSs, the UE continues SFN communication with multiple network devices in the network device group. Therefore, it is up to the UE to revert to the SFN mode or the non-SFN mode.
  • the UE informs the network device that it wants to restore to some current non-serving cells (these non-serving cells allow the UE to perform certain measurements, And activated part of the TCI state).
  • the UE can also report more new beams than the number of network devices in the network device group in the MAC CE.
  • the network device notifies the UE whether it should return to the single network device mode of a beam or the SFN mode through the subsequent confirmation of the PDCCH in the specific search space.
  • the network device can directly provide the restored DL RS in the TCI field in the DCI. If there is one DL RS, the UE returns to the single network device mode. If there are 2 DL RSs, the UE returns to the SFN mode of multiple network devices.
  • the UE sends a preamble corresponding to one or more new beams.
  • the UE may send preambles corresponding to multiple new beams.
  • the UE may send a preamble corresponding to a new beam. If both modes are available, the UE can decide on its own which mode to revert to.
  • the UE receives a beam failure recovery response from a network device in the network device group, the beam failure recovery response indicating at least one new beam.
  • multiple network devices may send DCI in the SFN mode to confirm with the UE.
  • the network device selected by the UE may send corresponding DCI to confirm with the UE.
  • the acknowledgment DCI itself does not need to contain a specific TCI state, it only needs to be sent from a specific search space.
  • step S310 the UE communicates with at least one network device in the TPR group using at least one new beam.
  • the UE communicates with multiple network devices in the SFN mode.
  • the UE performs non-SFN communication with the selected network equipment.
  • the UE determines the BFD RS through the DL RS in the TCI state in CORESET. Since the TCI state in CORESET can be dynamically updated through DCI, after beam failure recovery, the TCI state of CORESET can also be dynamically updated to a new beam. Naturally, BFD RS has also been updated.
  • the BFD RS is configured by RRC signaling. If the BFD RS is dynamically updated through RRC signaling, the overhead will be relatively large. Considering that the unified TCI state is newly defined in Rel.17, this disclosure proposes to use the unified TCI state in DCI to update the BFD RS.
  • FIG. 7 is a diagram illustrating a beam failure recovery process 700 utilizing a unified TCI state according to an embodiment of the disclosure.
  • step S702 the UE uses the configured reference signal to perform beam failure detection.
  • the configured reference signal may be updated according to the unified TCI state.
  • step S704 the UE judges whether beam failure is detected. If a beam failure is detected, in step S706, the UE sends a beam failure recovery request to the network device, and the beam failure recovery request indicates a new beam that the UE wants to use. In step S708, the UE receives a beam failure recovery response from the network device, and the beam failure recovery response indicates a new beam confirmed by the network device. In step S709, the UE communicates with the network device using the new beam confirmed by the network device.
  • the beam failure recovery request indicates a unified TCI status.
  • the unified DCI state indicated by the beam failure restoration request may be an uplink TCI state, so as to restore only uplink channels and/or signals to this uplink TCI state.
  • the unified DCI state indicated by the beam failure restoration request may be a downlink TCI state, so as to only restore downlink channels and/or signals to the downlink TCI state.
  • the unified DCI state indicated by the beam failure recovery request may be the uplink TCI state and the downlink TCI state, to restore the uplink channel and/or signal to the uplink TCI state, and restore Downlink channels and/or signals to the downlink TCI state.
  • the downlink and sad cross-face can revert to different beam directions.
  • the unified DCI state indicated by the beam failure recovery request may be a joint TCI state to restore the downlink and uplink channels/signals to the joint TCI state.
  • the beam failure recovery request includes an activated codepoint of the TCI field.
  • FIG. 8 is a schematic diagram showing TCI states.
  • the far left is the pool of TCI states configured by RRC, and there can be up to 128 TCI states. Because there are too many TCI states, DCI has no way to directly indicate. Therefore, the MAC CE is required to activate 8 TCI states from a maximum of 128 TCI states.
  • the TCI status field in DCI contains up to 3 bits, equivalent to 8 codes point. Each code point corresponds to the activated TCI state of the MAC CE one by one. Because the TCI states corresponding to these 8 code points are all active states, if the UE directly reports one of the 8 TCI states, then there is no need to deactivate the new TCI state, thereby reducing a certain delay.
  • new beams acknowledged by the network device are communicated to the network device for one or more of the channels, signals and component carriers configured to share a unified TCI state.
  • the network device decides which channels, signals and component carriers can share the unified TCI status indicated by the network device through configuration. Channels, signals and/or component carriers sharing a unified TCI state can be restored to the same beam after BFR.
  • PDCCH, PDSCH and/or CSI-RS may share a unified TCI state for downlink.
  • PUSCH, PUCCH and/or SRS may share the unified TCI state of the uplink.
  • PDCCH, PDSCH, CSI-RS, PUSCH, PUCCH and/or SRS may share joint TCI state.
  • some CCs can also be restored to the same beam.
  • the UE may consider that all corresponding beams on the CCs in the list have been restored to new beams.
  • network devices and user devices may be implemented as various types of computing devices.
  • the network device can be implemented as any type of evolved Node B (eNB), gNB or TRP (Transmit Receive Point), such as macro eNB/gNB and small eNB/gNB.
  • eNB evolved Node B
  • gNB gNode B
  • TRP Transmit Receive Point
  • a small eNB/gNB may be an eNB/gNB that covers a cell smaller than a macro cell, such as a pico eNB/gNB, micro eNB/gNB, and home (femto) eNB/gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • a base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at places different from the main body.
  • a main body also referred to as a base station device
  • RRHs remote radio heads
  • various types of terminals to be described below can operate as a base station by temporarily or semi-permanently performing the base station function.
  • the user equipment may be implemented as a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal such as a car navigation device ).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • FIG. 9 is a block diagram illustrating an example of a schematic configuration of a computing device 700 to which techniques of this disclosure may be applied.
  • the computing device 700 includes a processor 701 , a memory 702 , a storage device 703 , a network interface 704 and a bus 706 .
  • the processor 701 may be, for example, a central processing unit (CPU) or a digital signal processor (DSP), and controls functions of the server 700 .
  • the memory 702 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 701 .
  • the storage device 703 may include a storage medium such as a semiconductor memory and a hard disk.
  • the network interface 704 is a wired communication interface for connecting the server 700 to a wired communication network 705 .
  • the wired communication network 705 may be a core network such as an evolved packet core (EPC) or a packet data network (PDN) such as the Internet.
  • EPC evolved packet core
  • PDN packet data network
  • the bus 706 connects the processor 701, the memory 702, the storage device 703, and the network interface 704 to each other.
  • Bus 706 may include two or more buses each having a different speed (such as a high-speed bus and a low-speed bus).
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • gNB 800 includes one or more antennas 810 and base station equipment 820 .
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used for the base station apparatus 820 to transmit and receive wireless signals.
  • a gNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by gNB 800.
  • FIG. 10 shows an example in which the gNB 800 includes multiple antennas 810, the gNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821 , a memory 822 , a network interface 823 and a wireless communication interface 825 .
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 generates data packets from data in signals processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have a logical function to perform control such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby gNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • Controller 821 can to communicate with a core network node or another gNB via the network interface 823 .
  • gNB 800 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • the wireless communication interface 825 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the gNB 800 via the antenna 810.
  • Wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
  • the BB processor 826 may have part or all of the logic functions described above.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor configured to execute a program and related circuits.
  • the update program may cause the function of the BB processor 826 to change.
  • the module may be a card or a blade inserted into a slot of the base station device 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by gNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827 , the wireless communication interface 825 may include a single BB processor 826 or a single RF circuit 827 .
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • gNB 830 includes one or more antennas 840, base station equipment 850 and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • a gNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by gNB 830.
  • FIG. 11 shows an example in which the gNB 830 includes multiple antennas 840, the gNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 and a connection interface 857 .
  • the controller 851, memory 852, and network interface 853 are the same as the controller 821, memory 822, and network interface 823 described with reference to FIG. 10 .
  • the wireless communication interface 855 supports any cellular communication scheme such as LTE and LTE-Advanced, and provides wireless communication to terminals located in the sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 10 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by gNB 830.
  • FIG. 11 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856 , the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line used to connect the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may generally include RF circuitry 864, for example.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864 , the wireless communication interface 863 may also include a single RF circuit 864 .
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls functions of application layers and other layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900 .
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 910 , a keypad, a keyboard, buttons, or switches, and receives operations or information input from the user.
  • the display device 910 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts an audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which a BB processor 913 and an RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 may include multiple BB processors 913 and multiple RF circuits 914 .
  • FIG. 12 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914 , the wireless communication interface 912 may include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to a cellular communication scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 . While FIG. 12 shows an example in which the smartphone 900 includes multiple antennas 916 , the smartphone 900 may include a single antenna 916 as well.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other. connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 12 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 919 operates minimum necessary functions of the smartphone 900, for example, in a sleep mode.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the location (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928 .
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930 , and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935 .
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include multiple BB processors 934 and multiple RF circuits 935 .
  • FIG. 13 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935
  • the wireless communication interface 933 may include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-distance wireless communication scheme, a near field communication scheme, and a wireless LAN scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 , such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a MIMO antenna, and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 13 shows an example in which the car navigation device 920 includes a plurality of antennas 937
  • the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920 .
  • the battery 938 supplies power to the various blocks of the car navigation device 920 shown in FIG. 13 via feeder lines, which are partially shown as dotted lines in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in a car navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 941 .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, and/or state machine.
  • a processor may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, and/or any other such configuration.
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be performed using software executed by a processor, hardware, firmware, hardwiring or combinations of any of these. Features implementing functions may also be physically located at various locations, including being distributed such that parts of functions are implemented at different physical locations.
  • Non-transitory computer readable media can be any available non-transitory media that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, EEPROM, flash memory, CD-ROM, DVD, or other optical disk storage, magnetic disk storage, or other magnetic storage devices. device, or any other medium that can be used to carry or store the desired program code components in the form of instructions or data structures and which can be accessed by a general purpose or special purpose computer or a general purpose or special purpose processor.
  • An electronic device for beam failure recovery comprising processing circuitry configured to:
  • the reference signal group corresponds to a network device group, and wherein the electronic device communicates with the group of network devices communicates;
  • the beam failure recovery response indicating at least one new beam
  • determining the set of reference signals for beam failure detection comprises:
  • Radio resource control signaling indicating the set of reference signals is received from the set of network devices.
  • determining the set of reference signals for beam failure detection comprises:
  • Two or more downlink reference signals in two or more TCI states corresponding to the network device group are used as the reference signal group.
  • a joint received signal quality of the set of reference signals is calculated to evaluate a downlink channel.
  • An individual received signal quality is calculated for each reference signal in the set of reference signals to estimate the downlink channel.
  • processing circuit is further configured to:
  • Capability information is sent to the group of network devices, the capability information indicating a maximum number of reference signal groups that the electronic device can detect for one or more of each bandwidth portion, each component carrier, or each user equipment.
  • sending a beam failure recovery request to the group of network devices comprises:
  • One or more new beams are indicated to the group of network devices in a medium access control control element.
  • sending a beam failure recovery request to the group of network devices comprises:
  • One or more new beams are indicated to the one network device in a medium access control control element.
  • transmission beam failure recovery request comprises:
  • Preambles corresponding to one or more new beams are sent.
  • the at least one network device comprises a plurality of network devices
  • the at least one new beam comprises a plurality of new beams
  • the electronic device communicates with The plurality of network devices communicate.
  • An electronic device for beam failure recovery comprising processing circuitry configured to:
  • the beam failure recovery request indicating a new beam that the electronic device wishes to use
  • the beam failure recovery response indicating a new beam acknowledged by the network device
  • a method performed by a user equipment for beam failure recovery comprising:
  • the reference signal group corresponds to a network device group, and wherein the user equipment communicates with the group of network devices communicates;
  • the beam failure recovery response indicating at least one new beam
  • a method performed by a user equipment for beam failure recovery comprising:
  • the beam failure recovery request indicating a new beam that the user equipment wishes to use
  • the beam failure recovery response indicating a new beam acknowledged by the network device
  • a non-transitory computer readable storage medium having stored thereon program instructions which, when executed by a computer, cause the computer to perform the method according to item 16 or 17.
  • a computer program product comprising program instructions which, when executed by a computer, cause the computer to perform the method according to item 16 or 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了用于波束失败恢复的设备、方法和介质。用于波束失败恢复的电子设备,包括处理电路,所述处理电路被配置为:确定用于进行波束失败检测的参考信号组,并且利用所述参考信号组进行波束失败检测,其中所述参考信号组对应于网络设备组,并且其中所述电子设备以单载频网络的模式与所述网络设备组通信;以及在检测到波束失败的情况下,向所述网络设备组发送波束失败恢复请求,从所述网络设备组中的网络设备接收波束失败恢复响应,所述波束失败恢复响应指示至少一个新波束,和使用所述至少一个新波束与所述网络设备组中的至少一个网络设备通信。

Description

用于波束失败恢复的设备、方法和介质 技术领域
本公开涉及无线通信领域,具体涉及无线通信中用于波束失败恢复的设备、方法和介质。
背景技术
在目前的新无线电(NR)系统中,用户设备(UE)对于下行链路的波束失败的监测是对物理下行控制信道(PDCCH)所在的控制资源集合(CORESET)来进行测量并计算假设的误块率(BLER)。在3GPP Rel.17中,对于高速移动场景,引入了单载频网络(SFN)的传输方案,并且新定义了统一TCI状态。因此,需要研究新的波束失败恢复方案。
发明内容
根据本公开的一个方面,提供了一种用于波束失败恢复的电子设备,包括处理电路,所述处理电路被配置为:确定用于进行波束失败检测的参考信号组,并且利用所述参考信号组进行波束失败检测,其中所述参考信号组对应于网络设备组,并且其中所述电子设备以单载频网络的模式与所述网络设备组通信;以及在检测到波束失败的情况下,向所述网络设备组发送波束失败恢复请求,从所述网络设备组中的网络设备接收波束失败恢复响应,所述波束失败恢复响应指示至少一个新波束,和使用所述至少一个新波束与所述网络设备组中的至少一个网络设备通信。
根据本公开的又一个方面,提供了一种用于波束失败恢复的电子设备,包括处理电路,所述处理电路被配置为:利用配置的参考信号进行波束失败检测,其中根据统一TCI状态更新配置的参考信号;以及在检测到波束失败的情况下,向网络设备发送波束失败恢复请求,所述波束失败恢复请求指示电子设备希望使用的新波束,从所述网络设备接收波束失败恢复响应,所述波束失败恢复响应指示网络设备确认的新波束,和使用网络设备确认的新波束与网络设备通信。
根据本公开的又一个方面,提供了一种由用户设备执行的用于波束失败恢复的方法,包括:确定用于进行波束失败检测的参考信号组,并且利用所述参考信号组进行波束失败检测,其中所述参考信号组对应于网络设备组,并且其中所述用户设 备以单载频网络的模式与所述网络设备组通信;以及在检测到波束失败的情况下,向所述网络设备组发送波束失败恢复请求,从所述网络设备组中的网络设备接收波束失败恢复响应,所述波束失败恢复响应指示至少一个新波束,和使用所述至少一个新波束与所述网络设备组中的至少一个网络设备通信。
根据本公开的又一个方面,提供了一种由用户设备执行的用于波束失败恢复的方法,包括:利用配置的参考信号进行波束失败检测,其中根据统一TCI状态更新配置的参考信号;以及在检测到波束失败的情况下,向网络设备发送波束失败恢复请求,所述波束失败恢复请求指示用户设备希望使用的新波束,从所述网络设备接收波束失败恢复响应,所述波束失败恢复响应指示网络设备确认的新波束,和使用网络设备确认的新波束与网络设备通信。
根据本公开的又一个方面,提供了一种非暂态计算机可读存储介质,其上存储了程序指令,所述程序指令在由计算机执行时使计算机执行本公开的方法。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。
图1是示出高速移动场景中的SFN传输方式的示意图。
图2是示出非UE专用BFD RS和UE专用BFD RS的示意图。
图3是示出根据本公开的实施例的波束失败恢复过程的流程图。
图4是示出利用两个网络设备进行SFN传输的示意图。
图5是示出以SFN模式传输PUCCH-SR的示意图。
图6是示出在BFR过程的BFRQ过程中利用PUCCH-SR的示意图。
图7是示出根据本公开的实施例的利用统一TCI状态的波束失败恢复过程。
图8是示出TCI状态的示意图。
图9是示出可以应用本公开的技术的计算设备的示意性配置的示例的框图。
图10是示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图。
图11是示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图。
图12是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图。
图13是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
具体实施方式
在下文中,将参照附图详细地描述本公开的优选实施例。注意,在本说明书和附图中,用相同的附图标记来表示具有基本上相同的功能和结构的结构元件,并且省略对这些结构元件的重复说明。
SFN传输方案要求网络(NW)从两个发送接收点(TRP)同时给UE传输相同内容的数据或控制信息,且完全占用相同的时频资源。这就要求给从多个TRP的发送出来的CORESET进行2个传输配置信息(TCI)状态的激活。图1是示出高速移动场景中的SFN传输方式的示意图。如图1所示,高铁上的UE 130与TRP 110和TRP 120进行SFN传输。UE 130的天线面板同时朝向不同的TRP。
本公开提供了适用于SFN传输模式的波束失败恢复(BFR)过程,包括波束失败检测以及新波束的发现和上报。本公开的波束失败恢复过程包括4个步骤。第一步是UE对下行链路的波束失败检测,即BFD。第二步是UE进行波束失败上报,即BFRQ。如果该步骤是基于上行媒体接入控制(MAC)控制元素(CE)的上报,那么它可以被进一步地拆分为2个子步骤,因为UE还需要为承载MAC CE的物理上行共享信道(PUSCH)来申请资源,即UE向NW发送调度请求。如果该步骤是基于物理随机接入信道(PRACH)的过程,那么从物理层的角度看,只需要一个步骤即可。第三步是NW对于波束失败上报的请求的响应,即BFRR。第四步是波束失败的恢复,即UE将失败的波束恢复成新上报的波束。
在实际的SFN传输过程中,除了非UE专用PDCCH信道,其他的UE专用PDCCH都是通过SFN传输方式传输的。在原始的SFN传输方式中,当UE接入网络之后,由NW通过RRC信令对UE进行配置。UE完成RRC配置后往往仅使用UE专用信道。这些UE专用信道在SFN模式下要使用2个激活的TCI状态。
另外,需要说明的是,对于PDCCH来说,如果它所在的CORESET关联的搜索空间集如果是Type0/0a/1/2的类型的话,那么该PDCCH以及它所调度的信道和信号属于非UE专用的类型,一般不使用SFN传输。
图2是示出非UE专用BFD RS和UE专用BFD RS的示意图。如图2所示,网络设备210和网络设备220利用UE专用CORESET与UE 230进行SFN传输。在该UE专用CORESET上承载了BFD参考信号(RS)对#1,包括BFD RS#1和BFD RS#2。此 外,网络设备220还利用非UE专用CORESET(例如,与特定CSS关联的CORESET#0)进行非SFN传输,其上承载了BFD RS#0。
下面将描述根据本公开的实施例的网络设备和UE中的波束失败恢复过程。在本公开的实施例中,网络设备和/或UE中的处理可以由其自身或其部件(例如,诸如芯片的电子设备)执行。该电子设备可以包括处理电路。该处理电路可以向网络设备和/或UE中的其它部件输出信号(数字或模拟),也可以从网络设备和/或UE中的其它部件接收信号(数字或模拟)。此外,处理电路还可以网络设备和/或UE中的其它部件的部分或全部操作。
处理电路可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。此外,处理电路上可以承载用于使电路(硬件)或中央处理设备工作的程序(软件)。该程序能够存储在存储器(诸如,布置在分布式节点和/或中央处理装置或电子设备中)或从外面连接的外部存储介质中,以及经网络(诸如,互联网)下载。
图3是示出根据本公开的实施例的波束失败恢复过程300的流程图。UE以单载频网络的模式与包括多个网络设备的网络设备组通信。
在步骤S302,UE确定用于进行波束失败检测的参考信号组(BFD RS组),并利用该参考信号组进行波束失败检测。该参考信号组中的参考信号与网络设备组中的网络设备对应。在本公开的一些实施例中,网络设备组中的网络设备的数量和参考信号组中的参考信号的数量均为2。图4是示出利用两个网络设备进行SFN传输的示意图。在图4中,UE 430与两个网络设备(网络设备410和网络设备420)进行SFN传输。
可以通过显式或隐式的方式确定BFD RS组。如果选择显式BFD RS的话,网络设备通过无线电资源控制(RRC)信令为UE配置K个BFD RS组,每个BFD RS组中的RS分别来自于各自所对应的网络设备。UE从网络设备组接收RRC信令,该RRC信令指示BFD RS组。
如果选择隐式的BFD RS的话,那么UE需要根据UE专用PDCCH所在的CORESET中的TCI状态的下行链路(DL)RS作为BFD RS。UE将与网络设备组对应的两个或更多个TCI状态中的两个或更多个下行链路参考信号作为BFD RS组。
在本公开的一些实施例中,可以选择周期性的信道状态信息参考信号(CSI-RS)或同步信号块(SSB(本身就是周期性的))作为BFD RS。
在步骤S304,UE判断是否检测到波束失败。UE可以通过评估BFD RS组的下行 链路信道的质量来判断是否检测到波束失败。在BFD RS组的下行链路信道的质量差的情况下确定检测到波束失败。
在本公开的一些实施例中,UE计算BFD RS组的联合接收信号质量来评估下行链路信道。联合接收信号质量是指将BFD RS组中的BFD RS信号均作为有用信号而计算出的接收信号质量。例如,UE计算联合BLER来表征下行SFN传输模式下的信道质量。需要注意的是在这种SFN模式下,UE认为来自网络设备组的信号都是有用信号,而不是干扰。举例来说,在两个网络设备进行SFN传输的情况下,首先测量来自两个网络设备的有用信号强度,如S1和S2,然后测量总体的干扰加噪声(I+N),从而得出信干噪比SINR=(S1+S2)/(I+N)。随后,UE可以通过自己的接收机结构得到一个SINR到BLER的映射关系。例如,SINR=0dB的时候,BLER为0.01。从而UE可以从1个BFD RS组中计算出联合的一个BLER。
在本公开的一些实施例中,UE计算BFD RS组中的每个BFD RS的单独的接收信号质量来评估下行链路信道。例如,UE根据BFD RS组中的每个BFD RS来分别计算单独的BLER,并根据所有计算出的BLER来评估下行链路信道的质量。例如,UE可以选择所有计算出的BLER中的最小值作为该SFN传输模式的信道质量。
当UE支持联合BLER时,UE可以计算联合BLER,并根据联合BLER评估下行链路信道。当UE不支持联合BLER时,UE可以计算每个BFD RS的单独的BLER,并通过预设算法利用所有计算出的BLER评估下行链路信道。
在本公开的一些实施例中,UE向网络设备组发送能力信息,该能力信息指示UE对于每个带宽部分、每个分量载波或者每个UE能够检测的最大数量的BFD RS组。网络设备能够根据UE的能力信息为UE配置其能力范围内的BFD RS。
在检测到波束失败的情况下,处理流程300前进到步骤S306。在步骤S306,US通过向网络设备发送波束失败恢复请求来执行波束失败上报(BFRQ)过程。
在本公开的一些实施例中,UE在物理上行控制信道调度请求(PUCCH-SR)中请求PUSCH资源,并且在媒体接入控制控制元素(MAC CE)中指示一个或多个新波束。这里所说的PUCCH-SR是用来承载SR的PUCCH资源,它的作用是向网络设备申请上行资源(即PUSCH)来承载MAC CE。
PUCCH-SR可以有两种模式。第一种模式是PUCCH-SR按照SFN的模式来传输。UE以SFN模式向网络设备组发送PUCCH-SR。图5是示出以SFN模式传输PUCCH-SR的示意图。如图5所示,UE 530使用上行SFN的方式来将PUCCH-SR发送给包括网络 设备510和网络设备520的多个网络设备。这样做的好处是在多个网络设备处,PUCCH的发送具有空间分集的增益。第二种模式是UE向网络设备组的其中一个来发送PUCCH-SR,这个网络设备是UE从多个网络设备中选择的、自认为性能较好的,或者是由网络指定的。
图6是示出在BFR过程的BFRQ过程中利用PUCCH-SR的示意图。在图6中,BFRQ过程通过UE 620向网络设备610发送PUCCH-SR,网络设备610向UE 620发送UL许可作为响应以及UE在接收到UL许可之后向网络设备610发送MAC CE来实现。
MAC CE可以指示一个或多个新波束。在MAC CE指示与一个DL RS对应的一个新波束的情况下,UE不再与网络设备组中的多个网络设备进行SFN通信,而是与网络设备组中的单个网络设备进行非SFN通信。在MAC CE指示与多个DL RS对应的多个新波束的情况下,UE继续与网络设备组中的多个网络设备进行SFN通信。因此,恢复到SFN模式还是非SFN模式是由UE自己决定的。另外,除了从正在为UE服务的小区内选择可以恢复的波束外,我们也可以考虑UE告知网络设备它想恢复到一些当前的非服务小区(这些非服务的小区可以让UE进行一定的测量,且激活了部分的TCI状态)。
此外,UE还可以在MAC CE中上报比网络设备组中的网络设备数量更多的新波束。网络设备通过后续的特定搜索空间中PDCCH的确认来告知UE应该恢复到一个波束的单个网络设备模式,还是SFN模式。具体来说,网络设备可以在DCI中TCI字段中直接给出恢复后的DL RS。DL RS如果是1个,则UE恢复到单个网络设备模式。DL RS如果是2个,则UE恢复到多个网络设备的SFN模式。
在本公开的一些实施例中,UE发送与一个或多个新波束对应的前导码。当UE被配置为可以恢复到SFN模式的时候,UE可以发送与多个新波束对应的前导码。当UE被配置为只能恢复到单个网络设备模式的时候,UE可以发送与一个新波束对应的前导码。如果两种模式都可行的时候,UE可以自行决定到底是要恢复到哪种模式。
在步骤S308,UE从网络设备组中的网络设备接收波束失败恢复响应,该波束失败恢复响应指示至少一个新波束。对于恢复到SFN模式的响应,可以通过多个网络设备以SFN的模式来发送DCI来和UE进行确认。对于恢复到单个网络设备模式的响应,可以通过UE选定的网络设备来发送对应的DCI来和UE进行确认。这里的确认DCI当中本身并不需要包含特定的TCI状态,只需要是从特定搜索空间中发出就可以了。
在步骤S310,UE使用至少一个新波束与TPR组中的至少一个网络设备通信。在恢复到SFN模式的情况下,UE与多个网络设备以SFN模式通信。在恢复到单个网络设备 模式的情况下,UE与选定的网络设备进行非SFN通信。
如果在BFD过程中使用隐式的BFD RS,则UE通过CORESET中的TCI状态中的DL RS来确定BFD RS。由于CORESET中的TCI状态可以通过DCI动态地更新,所以在波束失败恢复之后,CORESET的TCI状态也能够动态更新为新的波束。自然地,BFD RS也就跟着得到了更新。
然而,如果在BFD过程中使用显式的BFD RS,则BFD RS是由RRC信令来配置的。如果通过RRC信令来动态更新BFD RS,则开销会比较大。考虑到Rel.17中新定义了统一TCI状态,本公开提出利用DCI中的统一TCI状态来更新BFD RS。
图7是示出根据本公开的实施例的利用统一TCI状态的波束失败恢复过程700。
在步骤S702,UE利用配置的参考信号进行波束失败检测。该配置的参考信号可以根据统一TCI状态来更新。在步骤S704,UE判断是否检测到波束失败。如果检测到波束失败,则在步骤S706,UE向网络设备发送波束失败恢复请求,所述波束失败恢复请求指示UE希望使用的新波束。在步骤S708,UE从网络设备接收波束失败恢复响应,所述波束失败恢复响应指示网络设备确认的新波束。在步骤S709,UE使用网络设备确认的新波束与网络设备通信。
在本公开的一些实施例中,波束失败恢复请求指示统一TCI状态。在第一种情况下,波束失败恢复请求指示的统一DCI状态可以是上行链路TCI状态,以仅恢复上行链路信道和/或信号到该上行链路TCI状态。在第二种情况下,波束失败恢复请求指示的统一DCI状态可以是下行链路TCI状态,以仅恢复下行链路信道和/或信号到该下行链路TCI状态。在第三种情况下,波束失败恢复请求指示的统一DCI状态可以是上行链路TCI状态和下行链路TCI状态,以恢复上行链路信道和/或信号到该上行链路TCI状态,并且恢复下行链路信道和/或信号到该下行链路TCI状态。在第三种情况下,下行链路和伤心过脸露可以恢复到不同的波束方向。在第四种情况下,波束失败恢复请求指示的统一DCI状态可以是联合TCI状态,以恢复下行链路和上行链路信道/信号到该联合TCI状态。
在本公开的一些实施例中,波束失败恢复请求包括TCI域的激活的码点。这样可以避免TCI状态重新激活所带来的时间消耗。图8是示出TCI状态的示意图。在图8中,最左边是RRC配置的TCI状态的池子,最多可以有128个TCI状态。因为TCI状态太多,DCI没有办法直接进行指示。所以需要MAC CE从最多128个TCI状态中激活8个TCI状态。DCI中的TCI状态域最多包含3个比特,相当于8个码 点。每一个码点都一一对应着MAC CE激活的TCI状态。因为这8个码点对应的TCI状态都是激活的状态,所以如果UE直接上报8个TCI状态中的1个TCI状态,那么不需要去激活新的TCI状态,从而减少了一定的延时。
在本公开的一些实施例中,对被配置为共享统一TCI状态的信道、信号和分量载波中的一个或多个使用网络设备确认的新波束与网络设备通信。网络设备通过配置来决定哪些信道、信号和分量载波可以共享网络设备指示的统一TCI状态。共享统一TCI状态的信道、信号和/或分量载波在BFR之后可以恢复到相同的波束上。例如,PDCCH、PDSCH和/或CSI-RS可以共享下行链路的统一TCI状态。PUSCH、PUCCH和/或SRS可以共享上行链路的统一TCI状态。PDCCH、PDSCH、CSI-RS、PUSCH、PUCCH和/或SRS可以共享联合TCI状态。
另外,还可以将一些CC恢复到相同的波束上。基于配置的CC列表,当发生BFRR之后,UE可以认为该列表中的CC上的所有对应的波束都恢复到了新的波束上。
<应用示例>
本公开的技术能够应用于各种产品。例如,网络设备和用户设备均可以被实现为各种类型的计算设备。
此外,网络设备可以被实现为任何类型的演进型节点B(eNB)、gNB或TRP(Transmit Receive Point),诸如宏eNB/gNB和小eNB/gNB。小eNB/gNB可以为覆盖比宏小区小的小区的eNB/gNB,诸如微微eNB/gNB、微eNB/gNB和家庭(毫微微)eNB/gNB。代替地,基站可以被实现为任何其它类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
此外,用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于计算设备的应用示例]
图9是示出可以应用本公开的技术的计算设备700的示意性配置的示例的框图。计算设备700包括处理器701、存储器702、存储装置703、网络接口704以及总线706。
处理器701可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器700的功能。存储器702包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器701执行的程序。存储装置703可以包括存储介质,诸如半导体存储器和硬盘。
网络接口704为用于将服务器700连接到有线通信网络705的有线通信接口。有线通信网络705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线706将处理器701、存储器702、存储装置703和网络接口704彼此连接。总线706可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
[关于基站的应用示例]
(第一应用示例)
图10是示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图。gNB800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图10所示,gNB 800可以包括多个天线810。例如,多个天线810可以与gNB 800使用的多个频带兼容。虽然图10示出其中gNB 800包括多个天线810的示例,但是gNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可 以经由网络接口823而与核心网节点或另外的gNB进行通信。在此情况下,gNB 800与核心网节点或其它gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于gNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图10所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与gNB 800使用的多个频带兼容。如图10所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图10示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图11是示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图。gNB830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图11所示,gNB 830可以包括多个天线840。例如,多个天线840可以与gNB 830使用的多个频带兼容。虽然图11示出其中gNB 830包括多个天线840的示例,但是gNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图10描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图10描述的BB处理器826相同。如图11所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与gNB 830使用的多个频带兼容。虽然图11示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图11所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图11示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
[关于终端设备的应用示例]
(第一应用示例)
图12是示出可以应用本公开的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图12所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图12示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图12所示,智能电话900可以包括多个天线916。虽然图12示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图12所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
(第二应用示例)
图13是示出可以应用本公开的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图13所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图13示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图13所示,汽车导航设备920可以包括多个天线937。虽然图13示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图13所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
本公开的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
结合本公开所述的各种示意性的块和部件可以用被设计来执行本文所述的功能的通用处理器、数字信号处理器(DSP)、ASIC、FPGA或其它可编程逻辑设备、离散门或晶体管逻辑、离散硬件部件或它们的任意组合来实现或执行。通用处理器可以是微处理器,但是可替代地,处理器可以是任何传统的处理器、控制器、微控制器和/或状态机。处理器也可以被实现为计算设备的组合,例如DSP与微处理器、多个微处理器、结合DSP核的一个或多个微处理器和/或任何其它这样的配置的组合。
本文所述的功能可以在硬件、由处理器执行的软件、固件或它们的任意组合中实现。如果在由处理器执行的软件中实现,则功能可以被存储在非暂态计算机可读介质上或者被传输作为非暂态计算机可读介质上的一个或多个指令或代码。其它示例和实现在本公开和所附权利要求的范围和精神内。例如,鉴于软件的本质,以上所述的功能可以使用由处理器执行的软件、硬件、固件、硬连线或这些中的任意的组合来执行。实现功能的特征也可以被物理地置于各种位置处,包括被分布使得功能的部分在不同物理位置处实现。
此外,包含于其它部件内的或者与其它部件分离的部件的公开应当被认为是示例性的,因为潜在地可以实现多种其它架构以达成同样的功能,包括并入全部的、大部分的、和/或一些的元件作为一个或多个单一结构或分离结构的一部分。
非暂态计算机可读介质可以是能够被通用计算机或专用计算机存取的任何可用的非暂态介质。举例而言而非限制地,非暂态计算机可读介质可以包括RAM、ROM、EEPROM、闪速存储器、CD-ROM、DVD或其它光盘存储、磁盘存储或其它磁存储设 备、或能够被用来承载或存储指令或数据结构形式的期望的程序代码部件和能够被通用或专用计算机或者通用或专用处理器存取的任何其它介质。
本公开的先前描述被提供来使本领域技术人员能够制作或使用本公开。对本公开的各种修改对本领域技术人员而言是明显的,本文定义的通用原理可以在不脱离本公开的范围的情况下应用到其它变形。因此,本公开并不限于本文所述的示例和设计,而是对应于与所公开的原理和新特征一致的最宽范围。
本公开的实施例还包括:
1.一种用于波束失败恢复的电子设备,包括处理电路,所述处理电路被配置为:
确定用于进行波束失败检测的参考信号组,并且利用所述参考信号组进行波束失败检测,其中所述参考信号组对应于网络设备组,并且其中所述电子设备以单载频网络的模式与所述网络设备组通信;以及
在检测到波束失败的情况下,
向所述网络设备组发送波束失败恢复请求,
从所述网络设备组中的网络设备接收波束失败恢复响应,所述波束失败恢复响应指示至少一个新波束,和
使用所述至少一个新波束与所述网络设备组中的至少一个网络设备通信。
2.如项目1所述的电子设备,其中,确定用于进行波束失败检测的参考信号组包括:
从所述网络设备组接收指示所述参考信号组的无线电资源控制信令。
3.如项目1所述的电子设备,其中,确定用于进行波束失败检测的参考信号组包括:
将与所述网络设备组对应的两个或更多个TCI状态中的两个或更多个下行链路参考信号作为所述参考信号组。
4.如项目1所述的电子设备,其中,利用所述参考信号组进行波束失败检测包括:
计算所述参考信号组的联合接收信号质量来评估下行链路信道。
5.如项目1所述的电子设备,其中,利用所述参考信号组进行波束失败检测包括:
计算所述参考信号组中的每个参考信号的单独的接收信号质量来评估下行链路信道。
6.如项目1所述的电子设备,其中,所述处理电路还被配置为:
向所述网络设备组发送能力信息,所述能力信息指示所述电子设备对于每个带宽部分、每个分量载波或者每个用户设备中的一个或多个能够检测的最大数量的参考信号组。
7.如项目1所述的电子设备,其中,向所述网络设备组发送波束失败恢复请求包括:
以单载频网络的模式向所述网络设备组发送物理上行控制信道调度请求,以及
在媒体接入控制控制元素中向所述网络设备组指示一个或多个新波束。
8.如项目1所述的电子设备,其中,向所述网络设备组发送波束失败恢复请求包括:
向所述网络设备组中的一个网络设备发送物理上行控制信道调度请求,以及
在媒体接入控制控制元素中向所述一个网络设备指示一个或多个新波束。
9.如项目1所述的电子设备,其中,发送波束失败恢复请求包括:
发送与一个或多个新波束对应的前导码。
10.如项目1所述的电子设备,其中,所述至少一个网络设备包括多个网络设备,所述至少一个新波束包括多个新波束,并且所述电子设备以单载频网络的模式与所述多个网络设备通信。
11.如项目1所述的电子设备,其中,所述至少一个网络设备仅包括一个网络设备,所述至少一个新波束仅包括一个新波束。
12.一种用于波束失败恢复的电子设备,包括处理电路,所述处理电路被配置为:
利用配置的参考信号进行波束失败检测,其中根据统一TCI状态更新配置的参考信号;以及
在检测到波束失败的情况下,
向网络设备发送波束失败恢复请求,所述波束失败恢复请求指示电子设备希望使用的新波束,
从所述网络设备接收波束失败恢复响应,所述波束失败恢复响应指示网络设备确认的新波束,和
使用网络设备确认的新波束与网络设备通信。
13.如项目12所述的电子设备,其中,所述波束失败恢复请求指示以下之一:
上行链路TCI状态;
下行链路TCI状态;
上行链路TCI状态和下行链路TCI状态;以及
联合TCI状态。
14.如项目12所述的电子设备,其中,所述波束失败恢复请求包括TCI域的激活的码点。
15.如项目12所述的电子设备,其中,对被配置为共享统一TCI状态的信道、信号和分量载波中的一个或多个使用网络设备确认的新波束与网络设备通信。
16.一种由用户设备执行的用于波束失败恢复的方法,包括:
确定用于进行波束失败检测的参考信号组,并且利用所述参考信号组进行波束失败检测,其中所述参考信号组对应于网络设备组,并且其中所述用户设备以单载频网络的模式与所述网络设备组通信;以及
在检测到波束失败的情况下,
向所述网络设备组发送波束失败恢复请求,
从所述网络设备组中的网络设备接收波束失败恢复响应,所述波束失败恢复响应指示至少一个新波束,和
使用所述至少一个新波束与所述网络设备组中的至少一个网络设备通信。
17.一种由用户设备执行的用于波束失败恢复的方法,包括:
利用配置的参考信号进行波束失败检测,其中根据统一TCI状态更新配置的参考信号;以及
在检测到波束失败的情况下,
向网络设备发送波束失败恢复请求,所述波束失败恢复请求指示用户设备希望使用的新波束,
从所述网络设备接收波束失败恢复响应,所述波束失败恢复响应指示网络设备确认的新波束,和
使用网络设备确认的新波束与网络设备通信。
18.一种非暂态计算机可读存储介质,其上存储了程序指令,所述程序指令在由计算机执行时使计算机执行根据项目16或17所述的方法。
19.一种计算机程序产品,包括程序指令,所述程序指令在由计算机执行时使计算机执行根据项目16或17所述的方法。

Claims (19)

  1. 一种用于波束失败恢复的电子设备,包括处理电路,所述处理电路被配置为:
    确定用于进行波束失败检测的参考信号组,并且利用所述参考信号组进行波束失败检测,其中所述参考信号组对应于网络设备组,并且其中所述电子设备以单载频网络的模式与所述网络设备组通信;以及
    在检测到波束失败的情况下,
    向所述网络设备组发送波束失败恢复请求,
    从所述网络设备组中的网络设备接收波束失败恢复响应,所述波束失败恢复响应指示至少一个新波束,和
    使用所述至少一个新波束与所述网络设备组中的至少一个网络设备通信。
  2. 如权利要求1所述的电子设备,其中,确定用于进行波束失败检测的参考信号组包括:
    从所述网络设备组接收指示所述参考信号组的无线电资源控制信令。
  3. 如权利要求1所述的电子设备,其中,确定用于进行波束失败检测的参考信号组包括:
    将与所述网络设备组对应的两个或更多个TCI状态中的两个或更多个下行链路参考信号作为所述参考信号组。
  4. 如权利要求1所述的电子设备,其中,利用所述参考信号组进行波束失败检测包括:
    计算所述参考信号组的联合接收信号质量来评估下行链路信道。
  5. 如权利要求1所述的电子设备,其中,利用所述参考信号组进行波束失败检测包括:
    计算所述参考信号组中的每个参考信号的单独的接收信号质量来评估下行链路信道。
  6. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    向所述网络设备组发送能力信息,所述能力信息指示所述电子设备对于每个带宽部分、每个分量载波或者每个用户设备中的一个或多个能够检测的最大数量的参考信号组。
  7. 如权利要求1所述的电子设备,其中,向所述网络设备组发送波束失败恢复请求包括:
    以单载频网络的模式向所述网络设备组发送物理上行控制信道调度请求,以及
    在媒体接入控制控制元素中向所述网络设备组指示一个或多个新波束。
  8. 如权利要求1所述的电子设备,其中,向所述网络设备组发送波束失败恢复请求包括:
    向所述网络设备组中的一个网络设备发送物理上行控制信道调度请求,以及
    在媒体接入控制控制元素中向所述一个网络设备指示一个或多个新波束。
  9. 如权利要求1所述的电子设备,其中,发送波束失败恢复请求包括:
    发送与一个或多个新波束对应的前导码。
  10. 如权利要求1所述的电子设备,其中,所述至少一个网络设备包括多个网络设备,所述至少一个新波束包括多个新波束,并且所述电子设备以单载频网络的模式与所述多个网络设备通信。
  11. 如权利要求1所述的电子设备,其中,所述至少一个网络设备仅包括一个网络设备,所述至少一个新波束仅包括一个新波束。
  12. 一种用于波束失败恢复的电子设备,包括处理电路,所述处理电路被配置为:
    利用配置的参考信号进行波束失败检测,其中根据统一TCI状态更新配置的参考信号;以及
    在检测到波束失败的情况下,
    向网络设备发送波束失败恢复请求,所述波束失败恢复请求指示电子设备希望 使用的新波束,
    从所述网络设备接收波束失败恢复响应,所述波束失败恢复响应指示网络设备确认的新波束,和
    使用网络设备确认的新波束与网络设备通信。
  13. 如权利要求12所述的电子设备,其中,所述波束失败恢复请求指示以下之一:
    上行链路TCI状态;
    下行链路TCI状态;
    上行链路TCI状态和下行链路TCI状态;以及
    联合TCI状态。
  14. 如权利要求12所述的电子设备,其中,所述波束失败恢复请求包括TCI域的激活的码点。
  15. 如权利要求12所述的电子设备,其中,对被配置为共享统一TCI状态的信道、信号和分量载波中的一个或多个使用网络设备确认的新波束与网络设备通信。
  16. 一种由用户设备执行的用于波束失败恢复的方法,包括:
    确定用于进行波束失败检测的参考信号组,并且利用所述参考信号组进行波束失败检测,其中所述参考信号组对应于网络设备组,并且其中所述用户设备以单载频网络的模式与所述网络设备组通信;以及
    在检测到波束失败的情况下,
    向所述网络设备组发送波束失败恢复请求,
    从所述网络设备组中的网络设备接收波束失败恢复响应,所述波束失败恢复响应指示至少一个新波束,和
    使用所述至少一个新波束与所述网络设备组中的至少一个网络设备通信。
  17. 一种由用户设备执行的用于波束失败恢复的方法,包括:
    利用配置的参考信号进行波束失败检测,其中根据统一TCI状态更新配置的参 考信号;以及
    在检测到波束失败的情况下,
    向网络设备发送波束失败恢复请求,所述波束失败恢复请求指示用户设备希望使用的新波束,
    从所述网络设备接收波束失败恢复响应,所述波束失败恢复响应指示网络设备确认的新波束,和
    使用网络设备确认的新波束与网络设备通信。
  18. 一种非暂态计算机可读存储介质,其上存储了程序指令,所述程序指令在由计算机执行时使计算机执行如权利要求16或17所述的方法。
  19. 一种计算机程序产品,包括程序指令,所述程序指令在由计算机执行时使计算机执行如权利要求16或17所述的方法。
PCT/CN2023/071853 2022-01-14 2023-01-12 用于波束失败恢复的设备、方法和介质 WO2023134717A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210039888.4 2022-01-14
CN202210039888.4A CN116489770A (zh) 2022-01-14 2022-01-14 用于波束失败恢复的设备、方法和介质

Publications (1)

Publication Number Publication Date
WO2023134717A1 true WO2023134717A1 (zh) 2023-07-20

Family

ID=87221868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071853 WO2023134717A1 (zh) 2022-01-14 2023-01-12 用于波束失败恢复的设备、方法和介质

Country Status (2)

Country Link
CN (1) CN116489770A (zh)
WO (1) WO2023134717A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200052769A1 (en) * 2018-08-09 2020-02-13 Comcast Cable Communications, Llc Resource Management for Beam Failure Recovery Procedures
US20200350972A1 (en) * 2019-05-01 2020-11-05 Yunjung Yi Beam Failure Recovery In Mult-TRP Scenarios
CN111972026A (zh) * 2018-03-30 2020-11-20 欧芬诺有限责任公司 基于调度请求的波束故障复原
CN112204899A (zh) * 2018-06-08 2021-01-08 鸿颖创新有限公司 用于多trp传输的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111972026A (zh) * 2018-03-30 2020-11-20 欧芬诺有限责任公司 基于调度请求的波束故障复原
CN112204899A (zh) * 2018-06-08 2021-01-08 鸿颖创新有限公司 用于多trp传输的方法和装置
US20200052769A1 (en) * 2018-08-09 2020-02-13 Comcast Cable Communications, Llc Resource Management for Beam Failure Recovery Procedures
US20200350972A1 (en) * 2019-05-01 2020-11-05 Yunjung Yi Beam Failure Recovery In Mult-TRP Scenarios

Also Published As

Publication number Publication date
CN116489770A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US11757510B2 (en) Electronic devices and communication methods
EP3726740A1 (en) Electronic device, wireless communication method and computer-readable medium
WO2021169904A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US10630363B2 (en) Electronic device in wireless communication system, and wireless communication method
EP3637918B1 (en) Electronic apparatus, wireless communication device, and wireless communication method
US20230096215A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US10958401B2 (en) Electronic device and user equipment in wireless communication system and wireless communication method
US20210288711A1 (en) Network device, user equipment, wireless communication method and storage medium
EP4007192A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
WO2021218676A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230208476A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
US20220338023A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20230362687A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
WO2023134717A1 (zh) 用于波束失败恢复的设备、方法和介质
WO2021027705A1 (zh) 无线通信系统中的用户设备、电子设备、方法及存储介质
WO2021068880A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022083535A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022078272A1 (zh) 用于无线通信的发送电子设备和接收电子设备以及方法
WO2022083525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023185659A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
US20240171522A1 (en) Electronic device, communication method, and computer-readable storage medium
CN116471607A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740059

Country of ref document: EP

Kind code of ref document: A1