WO2022078272A1 - 用于无线通信的发送电子设备和接收电子设备以及方法 - Google Patents

用于无线通信的发送电子设备和接收电子设备以及方法 Download PDF

Info

Publication number
WO2022078272A1
WO2022078272A1 PCT/CN2021/122960 CN2021122960W WO2022078272A1 WO 2022078272 A1 WO2022078272 A1 WO 2022078272A1 CN 2021122960 W CN2021122960 W CN 2021122960W WO 2022078272 A1 WO2022078272 A1 WO 2022078272A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
transmitting
information
receiving
sending
Prior art date
Application number
PCT/CN2021/122960
Other languages
English (en)
French (fr)
Inventor
王晓雪
孙晨
Original Assignee
索尼集团公司
王晓雪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 王晓雪 filed Critical 索尼集团公司
Priority to EP21879317.2A priority Critical patent/EP4207821A4/en
Priority to US18/044,579 priority patent/US20230379886A1/en
Priority to JP2023523070A priority patent/JP2023546129A/ja
Priority to CN202180069056.0A priority patent/CN116325814A/zh
Priority to KR1020237015936A priority patent/KR20230088403A/ko
Publication of WO2022078272A1 publication Critical patent/WO2022078272A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/48Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to helping a transmitting electronic device to correctly select available time-frequency resource blocks. More specifically, it relates to a transmitting electronic device and a receiving electronic device and method for wireless communication, and a computer-readable storage medium.
  • a transmitting electronic device for wireless communication, wherein the transmitting electronic device is configured to transmit data to a receiving electronic device in communication therewith, the transmitting electronic device includes a processing circuit configured to : determine at least one first positional relationship between the sending electronic device and at least one other sending electronic device located within a predetermined range of the sending electronic device and a second positional relationship between the sending electronic device and the receiving electronic device; The information of the candidate resource set corresponding to the electronic device is used as the assistance information, wherein the candidate resource set is a set composed of time-frequency resource blocks that the receiving electronic device can use to receive data; , and assistance information to select at least one time-frequency resource block for transmitting data from the resource pool to form a final set of available resources.
  • a receiving electronic device for wireless communication, wherein the receiving electronic device is configured to receive data from a transmitting electronic device in communication therewith, the receiving electronic device includes a processing circuit configured to : reporting information about a candidate resource set corresponding to the receiving electronic device to the sending electronic device as assistance information, where the candidate resource set is a set consisting of time-frequency resource blocks that the receiving electronic device can use to receive data; and Sending the location relationship information about the location relationship between the receiving electronic device and the sending electronic device to the sending electronic device, so as to cooperate with the sending electronic device to select at least one time-frequency from the resource pool for sending data based on the assistance information and the location relationship information resource block.
  • a method for wireless communication the method being performed by a transmitting electronic device transmitting data to a receiving electronic device in communication with it, the method comprising: determining the transmitting electronic device and a location at the transmitting electronic device at least one first positional relationship between at least one other sending electronic device within a predetermined range of the device and a second positional relationship between the sending electronic device and the receiving electronic device; receiving information about a candidate resource set corresponding to the receiving electronic device as the assistance information, wherein the candidate resource set is a set composed of time-frequency resource blocks that the receiving electronic device can use to receive data; At least one time-frequency resource block for transmitting data is selected to form a final set of available resources.
  • a method for wireless communication the method being performed by a receiving electronic device receiving data from a transmitting electronic device in communication with it, the method comprising: The information of the candidate resource set is reported to the sending electronic device as assistance information, wherein the candidate resource set is a set composed of time-frequency resource blocks that the receiving electronic device can use to receive data; and will communicate with the receiving electronic device and the sending electronic device.
  • the location relationship information related to the location relationship is sent to the sending electronic device, so as to cooperate with the sending electronic device to select at least one time-frequency resource block from the resource pool for sending data based on the assistance information and the location relationship information.
  • a computer program code and a computer program product for implementing the above-mentioned method for wireless communication, and a computer on which the computer program code for implementing the above-mentioned method for wireless communication is recorded Readable storage medium.
  • FIG. 1 shows a functional block diagram of a transmitting electronic device for wireless communication according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram illustrating time-frequency resource selection performed by a sender user equipment in the prior art in sidelink resource selection mode 2;
  • FIG. 3 is a schematic diagram illustrating a hidden node in the prior art
  • FIG. 4 is a schematic diagram illustrating an exposed node in the prior art
  • FIG. 5 is a schematic diagram illustrating an example of a communication scenario of a transmitting electronic device according to an embodiment of the present disclosure
  • FIG. 6 shows a functional block diagram of a receiving electronic device for wireless communication according to an embodiment of the present disclosure
  • FIG. 7 shows a flowchart of a method for wireless communication according to an embodiment of the present disclosure
  • FIG. 8 shows a flowchart of a method for wireless communication according to another embodiment of the present disclosure.
  • FIG. 9 is a block diagram illustrating a first example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure may be applied;
  • FIG. 10 is a block diagram illustrating a second example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure may be applied;
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a smartphone to which the techniques of the present disclosure may be applied;
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • FIG. 13 is a block diagram of an exemplary structure of a general-purpose personal computer in which methods and/or apparatuses and/or systems according to embodiments of the present invention may be implemented.
  • the sending electronic device 100 includes: a determining unit 101 configured to determine at least one first position between the sending electronic device 100 and at least one other sending electronic device located within a predetermined range of the sending electronic device 100 relationship and a second positional relationship between the sending electronic device 100 and the receiving electronic device; the communication unit 103 is configured to receive, as assistance information, information on a candidate resource set corresponding to the receiving electronic device, wherein the candidate resource set is composed of receiving a set of time-frequency resource blocks that the electronic device can use to receive data; and a selection unit 105 configured to select from the resource pool based on at least one first location relationship, second location relationship, and assistance information for At least one time-frequency resource block of data is sent to form the final set of available resources.
  • the determination unit 101, the communication unit 103 and the selection unit 105 may be implemented by one or more processing circuits, and the processing circuits may be implemented as chips, for example.
  • the sending electronic device 100 may be provided on the user equipment (UE) side or communicatively connected to the user equipment, for example.
  • the sending electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the transmitting electronic device 100 may work as the user equipment itself, and may also include external devices such as a memory, a transceiver (not shown in the figure) and the like.
  • the memory can be used to store programs and related data information that the user equipment needs to execute to achieve various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (e.g., base stations, other user equipment, etc.), and the implementation form of the transceiver is not particularly limited here.
  • the base station may be, for example, an eNB or a gNB.
  • the transmitting electronic device 100 is in unicast communication with the receiving electronic device.
  • other transmitting electronic devices may be user equipments different from the transmitting electronic device 100 for transmitting data.
  • the predetermined range may be an area of any shape with the transmitting electronic device 100 as a reference point.
  • the predetermined range may be a circular area with a predetermined radius centered on the transmitting electronic device 100 .
  • the size of the predetermined radius may be determined by those skilled in the art according to experience or actual application scenarios. Those skilled in the art can also think of other examples of predetermined ranges, which will not be described here.
  • the determining unit 101 may determine the first positional relationship between the sending electronic device 100 and the other sending electronic device for each other sending electronic device in the at least one other sending electronic device.
  • the first positional relationship and the second positional relationship may be determined based on the positional information of the transmitting electronic device 100 and the positional information of each other transmitting electronic device and the positional information of the receiving electronic device.
  • the first positional relationship and the second positional relationship may be determined based on reference signal strengths of reference signals received from other transmitting and receiving electronic devices.
  • Those skilled in the art can also think of other ways of determining the first positional relationship and the second positional relationship. A specific example of how to determine the first positional relationship and the second positional relationship will be given below.
  • the resource pool may consist of predetermined time-frequency resource blocks.
  • the resource pool may also include one or more time-frequency resource blocks in the abnormal resource pool.
  • the set of candidate resources corresponding to the receiving electronic device is at least a part of the resource pool.
  • a set consisting of time-frequency resource blocks that the sending electronic device 100 can use to send data is referred to as a candidate resource set corresponding to the sending electronic device 100, wherein the candidate resource set corresponding to the sending electronic device 100 is a resource pool in the resource pool. at least part of it.
  • the candidate resource set corresponding to the receiving electronic device and the candidate resource set corresponding to the transmitting electronic device 100 may be selected according to the prior art.
  • the transmitting electronic device 100 and the receiving electronic device may use resource selection mode 2 (mode 2) to select the corresponding candidate resource sets respectively.
  • mode 2 resource selection mode 2
  • the transmitting electronic device 100 may transmit data to the receiving electronic device by using the time-frequency resource blocks in the final available resource set.
  • the candidate resource set corresponding to the receiving electronic device and the above-mentioned first and second positional relationships are not considered.
  • the candidate resource set corresponding to the sending electronic device is directly used as the final available resource set, without considering the candidate resource set corresponding to the receiving electronic device and the above-mentioned first positional relationship and the second positional relationship, resulting in a high probability of resource collision, thereby reducing the reliability of data transmission performed by the sending electronic device, and/or causing the sending electronic device to excessively exclude resources that could be used, thereby reducing resource utilization efficiency.
  • the sending electronic device 100 can correctly select available time-frequency resources based on at least one of the first positional relationship, the second positional relationship, and the assistance information, thereby reducing the probability of resource collision and improving data transmission reliability, and/or avoid excessive exclusion of resources that could otherwise be used to improve resource utilization efficiency.
  • the selection unit 105 may be configured to select the final set of available resources in the scenario of sidelink resource selection mode 2 .
  • resource selection mode 1 the base station schedules the sidelink resources
  • mode 2 the UE autonomously selects resources
  • FIG. 2 is a schematic diagram illustrating time-frequency resource selection performed by a user equipment in a sidelink resource selection mode 2 in the prior art.
  • time-frequency resources are sometimes simply referred to as resources.
  • a user equipment (referred to as UE for short) first determines a candidate resource set in advance through a resource sensing process.
  • the data packet triggers resource selection at time n, and the UE will use the sensing result during the sensing window [nT 0 ,nT proc,0 ] to exclude resources.
  • the UE will decode the received sidelink control information (SCI) from other user equipment, and obtain the information of the occupied resources (reserved resources) by decoding the SCI, Therefore, these resources are excluded; the UE will also measure the reference signal received power (RSRP) strength of the entire frequency band.
  • SCI sidelink control information
  • RSRP reference signal received power
  • the UE uses a random resource selection mechanism to select one or more resources for transmission in the candidate resource set. For example, the UE may randomly select a resource whose time domain is between [n+T 1 , n+T 2 ] in the candidate resource set as a resource for transmitting data (initial transmission and/or retransmission data). For example, as shown in FIG. 2 , the UE selects the resource represented by the rectangle filled with diagonal lines as the selected resource.
  • T 0 is the maximum range threshold of the sensing window
  • T proc,0 represents the processing time for the UE to decode the SCI and perform RSRP measurement
  • T 1 represents the processing time of the UE from resource selection trigger n to the earliest candidate resource Time
  • T2 represents the maximum range threshold of the resource selection window, which needs to be less than the allowable delay size of the data block to be transmitted.
  • the transmitting electronic device 100 each of the other transmitting electronic devices and the receiving electronic device can select the corresponding candidate resource set using the sidelink resource selection mode 2 described in conjunction with FIG. 2 .
  • the candidate resource set selected by each other sending electronic device is referred to as a candidate resource set corresponding to each other sending electronic device.
  • the sending electronic device 100 uses the corresponding candidate resource set selected by the resource selection method described in FIG. 2 as the final available resource set, the influence of hidden nodes and/or exposed nodes cannot be avoided.
  • FIG. 3 is a schematic diagram illustrating a hidden node in the prior art.
  • FIG. 4 is a schematic diagram illustrating an exposed node in the related art.
  • TX UEC is the exposed node of TX UEB. Exposing nodes causes the TX UEB to exclude too many resources that could otherwise be used.
  • the selection of the final available resource set from the resource pool by the sending electronic device 100 is mainly described in conjunction with the scenario of the sidelink resource selection mode 2 .
  • the following description about the selection of the final available resource set is not limited to the scenario of sidelink resource selection mode 2, but can be applied to 4G or 5G or other communication methods.
  • the electronic device 100 selects other scenarios for the final set of available resources.
  • the distance between the transmitting electronic device 100 and each of the above-mentioned at least one other transmitting electronic device is smaller than the distance between the transmitting electronic device 100 and the receiving electronic device.
  • the above predetermined range can be a circular area with the sending electronic device 100 as the center and the radius as the distance between the sending electronic device 100 and the receiving electronic device. Equipment is included as much as possible in this circular area.
  • FIG. 5 is a schematic diagram illustrating an example of a communication scenario of the transmitting electronic device 100 according to an embodiment of the present disclosure.
  • the transmitting electronic device 100 is denoted as TX UE2
  • RX UE is denoted as a receiving electronic device communicating with TX UE2
  • both TX UE1 and TX UE3 are electronic devices used for transmission.
  • the distance between TX UE2 and TX UE1 is smaller than the distance between TX UE2 and RX UE, so TX UE1 is an example of the other transmitting electronic devices mentioned above, and it can be seen from Figure 4 that TX UE1 is the exposed node of TX UE2.
  • TX UE1 transmitting electronic device
  • TX UE3 transmitting electronic device
  • the resource pool includes time-frequency resources (hereinafter sometimes simply referred to as resources) ⁇ R1, R2, R3, R4, R5, R6, R7, R8, R9 ⁇ .
  • resources time-frequency resources
  • Fig. 2 it is assumed that the reserved resources indicated in the SCI of the TX UE1 (that is, a part of the candidate resource set selected by the TX UE1 through the sidelink resource selection mode 2 described in conjunction with Fig. 2 can also be referred to as corresponding to the TX UE1
  • a part of the candidate resource set of hereinafter referred to as the candidate resource set corresponding to TX UE1
  • TX UE2 selects the candidate resources through the sidelink resource selection mode 2 described in conjunction with FIG.
  • the set is ⁇ R2, R3, R8 ⁇ (that is, the candidate resource set corresponding to TX UE2), the reserved resources indicated in the SCI of TX UE3 (that is, TX UE3 selects the mode through the sidelink resource described in conjunction with FIG. 2 ) 2
  • a part of the selected candidate resource set may also be referred to as a part of the candidate resource set corresponding to TX UE3, hereinafter referred to as the candidate resource set corresponding to TX UE3) is ⁇ R2, R6, R7 ⁇ , which is the same as RX UE3.
  • the corresponding candidate resource set is ⁇ R1, R8, R9 ⁇ , wherein the TX UE2 receives information about the candidate resource set ⁇ R1, R8, R9 ⁇ corresponding to the RX UE as assistance information.
  • the distance between TX UE2 and TX UE1 is close, and the distance between RX UE and TX UE1 is far. Therefore, TX UE2 and TX UE1 can receive and correctly decode the SCI sent by each other, while RX UE will not be transmitted by TX UE1. Influence.
  • the candidate resource set corresponding to TX UE1 includes resource R1 (that is, the SCI of TX UE1 indicates that the resource R1 is reserved), since the RX UE will not be affected by the transmission of TX UE1, therefore, R1 is the resource that the RX UE can use.
  • R1 is the resource that the RX UE can use.
  • TX UE2 since the RSRP of the reference signal from TX UE1 measured by TX UE2 will exceed the threshold, then TX UE2 will exclude the resource R1 already reserved by TX UE1 (That is, R1 is not included in the candidate resource set corresponding to TX UE2). Therefore, exposing node TX UE1 causes TX UE2 to exclude too many resources (eg, R1) that could otherwise be used.
  • the selection unit 105 may be configured to: for each other transmitting electronic device in at least a part of the above-mentioned at least one other transmitting electronic device, select the same as each other transmitting electronic device.
  • the intersection of the candidate resource set corresponding to the sending electronic device and the candidate resource set corresponding to the receiving electronic device is added to the first set, and the first set is used as at least a part of the final available resource set.
  • the first set is initialized to an empty set.
  • the intersection ⁇ R1 ⁇ of R9 ⁇ is added to the first set, and the first set ⁇ R1 ⁇ can be used as at least a part of the final set of available resources for TX UE2 to send data to RX UE, thereby reducing the exposure of node TX UE1 Influence.
  • the sending electronic device 100 reduces the influence of exposed nodes, avoids excessive exclusion of resources that can be used, thereby further improving resource utilization efficiency.
  • the candidate resource set corresponding to TX UE3 includes R2, that is, R2 is a resource reserved by TX UE3, but because TX UE3 is far away from TX UE2, TX UE2 cannot correctly exclude this resource, so , R2 is also included in the candidate resource set corresponding to TX UE2. If both TX UE2 and TX UE3 use R2 to send data, resource collision will occur, thereby reducing the reliability of data transmission.
  • the RX UE can correctly exclude the resource R2. Therefore, the resource R2 is not included in the candidate resource set ⁇ R1, R8, R9 ⁇ corresponding to the RX UE.
  • the selection unit 105 may be configured to: take the intersection of the candidate resource set corresponding to the sending electronic device 100 and the candidate resource set corresponding to the receiving electronic device as the second set, and take the union of the first set and the second set as the second set At least a portion of the set is used as the final set of available resources.
  • the second intersection is initially an empty set.
  • TX UE2 can exclude resource R2, thereby reducing the influence of hidden node TX UE3; in addition, since resource R8 is a resource that can be used by both TX UE2 and RX UE, R8 is selected It is one of the final available resources of TX UE2, so that the available resources can be correctly selected.
  • the union of the first set and the second set is ⁇ R1, R8 ⁇ , and at least a part of the union is used as the final available resource set.
  • the transmitting electronic device 100 can reduce the influence of the exposed nodes, and also can reduce the influence of the hidden nodes, which can further reduce the probability of resource collision and improve the data transmission performed by the transmitting electronic device 100 reliability.
  • the selection unit 105 may be configured to use the candidate resource set corresponding to the sending electronic device 100 as the final available resource set when the final available resource set is empty.
  • the communication unit 103 may be configured to request the receiving electronic device to report assistance information in an event-triggered manner. For example, when a data packet arrives at TX UE2, if TX UE2 needs RX UE to report assistance information, it requests RX UE to report assistance information.
  • the communication unit 103 may be configured to transmit the request through an assistance request field included in the control information for data transmission, wherein the assistance request field includes information about the request.
  • control information including the assist request field is the sidelink control information SCI, where the SCI is the first stage SCI as the control information transmitted on the control channel.
  • TX UE2 adds an assistance request field (ie, a field requesting assistance information) in the control information.
  • an assistance request field ie, a field requesting assistance information
  • a 2-bit field can be added as an assistance request field, and the assistance request field includes information about the request (for example, "01"), indicating that the TX UE2 requests assistance information from the RX UE.
  • the communication unit 103 may be configured to receive assistance information from the receiving electronic device based on an assistance request field in the control information received from the receiving electronic device.
  • the RX UE can use different formats of the assistance request field in the control information (for example, "10" different from "01") to notify the TX UE2 that the information transmitted this time is the assistance that the TX UE2 needs information for the TX UE2 to receive assistance information from the RX UE.
  • different formats of the assistance request field in the control information for example, "10" different from "01"
  • the first-stage SCI after adding the assistance request field may be compatible with the first-stage SCI in the prior art.
  • the determining unit 101 may be configured to determine at least one of the first positional relationship and the second positional relationship based on control information for data transmission received from at least one other transmitting electronic device and receiving electronic device, wherein the control information Include information about the physical location of the electronic device sending the control information.
  • ZoneId For example, for user equipment UE (eg, sending electronic equipment 100, other sending electronic equipment, and receiving electronic equipment), in Section 5.8.11 of the 5G series protocol TS 38.331, the calculation steps of ZoneId are given, which uses two The variables x and y indicate the physical location of the UE: x is the longitude geodetic distance between the current location of the UE and the origin of geographic coordinates (0, 0), in meters; y is the current location of the UE to the origin of geographic coordinates (0 , 0) dimension geodesic distance in meters.
  • the control information received by the sending electronic device 100 from other sending electronic devices includes the physical location information of the other sending electronic devices
  • the control information received by the sending electronic device 100 from the receiving electronic device includes the physical location of the receiving electronic device Information.
  • the distance between the transmitting electronic device 100 and other transmitting electronic devices may be calculated based on the information of the physical location of the transmitting electronic device 100 itself and the information of the physical locations of other transmitting electronic devices, thereby determining the first positional relationship; and The second positional relationship is determined by calculating the distance between the transmitting electronic device 100 and the receiving electronic device based on the information of the physical location of the transmitting electronic device 100 itself and the information of the physical location of the receiving electronic device.
  • control information including physical location information is sidelink control information SCI, wherein the SCI is a first stage SCI as control information transmitted on a control channel or as control information transmitted on a data channel The second stage of SCI. That is, using the signaling of the physical layer, a field including the information of the physical location is added to the first-stage SCI or the second-stage SCI.
  • the determining unit 101 may be configured to determine each other transmission of the transmitting electronic device 100 and the at least one other transmitting electronic device based on the reference signal strength of the reference signal received from the at least one other transmitting electronic device and the receiving electronic device The distance between the electronic devices and the distance between the transmitting electronic device 100 and the receiving electronic device in order to determine at least a first positional relationship and a second positional relationship. Since passing through a wall or the like will cause a greater weakening of the signal, this determination method is suitable for scenarios where the communication environment in which other sending electronic devices and receiving electronic devices are located is consistent, or in a scenario where the communication environment is relatively open. Since this determination method does not require additional signaling overhead, it has good performance in energy saving and resource saving.
  • the sending electronic device 100 may select a suitable manner from the above manners to determine the first positional relationship and the second positional relationship according to the communication scenario, the QoS index or the capability of the sending electronic device 100 .
  • the present disclosure also provides a receiving electronic device for wireless communication.
  • 6 shows a functional block diagram of a receiving electronic device 600 for wireless communication according to an embodiment of the present disclosure, wherein the receiving electronic device 600 is used to receive data from a transmitting electronic device with which it communicates. As shown in FIG.
  • the receiving electronic device 600 includes: a reporting unit 601, which can be configured to report information about a candidate resource set corresponding to the receiving electronic device 600 to the sending electronic device as assistance information, wherein the candidate resource set is composed of a set of time-frequency resource blocks that the receiving electronic device can use to receive data; and the cooperation unit 603, which can be configured to send positional relationship information related to the positional relationship between the receiving electronic device 600 and the sending electronic device to the sending electronic device.
  • the device in cooperation with the sending electronic device, selects at least one time-frequency resource block for sending data from the resource pool based on the assistance information and the location relationship information.
  • the reporting unit 601 and the matching unit 603 may be implemented by one or more processing circuits, and the processing circuits may be implemented as chips, for example.
  • the receiving electronic device 600 may, for example, be provided on the user equipment (UE) side or be communicatively connected to the user equipment.
  • the receiving electronic device 600 may be implemented at the chip level, or may also be implemented at the device level.
  • the receiving electronic device 600 may work as the user equipment itself, and may also include external devices such as a memory, a transceiver (not shown in the figure), and the like.
  • the memory can be used to store programs and related data information that the user equipment needs to execute to achieve various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, base stations, other user equipment, etc.), and the implementation form of the transceiver is not particularly limited here.
  • the base station may be, for example, an eNB or a gNB.
  • the receiving electronic device 600 is in unicast communication with the transmitting electronic device.
  • the sending electronic device may be the sending electronic device 100 described above.
  • the resource pool may consist of predetermined time-frequency resource blocks.
  • the resource pool may also include one or more time-frequency resource blocks in the abnormal resource pool.
  • the set of candidate resources corresponding to the receiving electronic device 600 is at least a part of the resource pool.
  • a set consisting of time-frequency resource blocks that the sending electronic device can use to send data is referred to as a candidate resource set corresponding to the sending electronic device, wherein the candidate resource set corresponding to the sending electronic device is at least a part of the resource pool .
  • the candidate resource set corresponding to the receiving electronic device 600 and the candidate resource set corresponding to the transmitting electronic device may be selected according to the prior art.
  • the receiving electronic device 600 and the transmitting electronic device may use resource selection mode 2 (mode 2) to select the corresponding candidate resource sets respectively.
  • mode 2 resource selection mode 2
  • the transmitting electronic device when selecting a time-frequency resource block for sending data to the receiving electronic device, the transmitting electronic device does not consider the candidate resource set corresponding to the receiving electronic device and the above-mentioned position relationship.
  • the candidate resource set corresponding to the sending electronic device is directly used as the final available resource set, without considering the candidate resource set corresponding to the receiving electronic device and the above-mentioned positional relationship, thus This leads to a high probability of resource collision, thereby reducing the reliability of data transmission performed by the sending electronic device, and/or causing the sending electronic device to excessively exclude resources that could be used, thereby reducing resource utilization efficiency.
  • the receiving electronic device 600 cooperates with the transmitting electronic device to select a time-frequency resource block for transmitting data from the resource pool based on the assistance information and the location relationship information, so that the receiving electronic device 600 can cooperate with the transmitting electronic device to correctly select and use it Therefore, the probability of resource collision is reduced, the reliability of data transmission is improved, and the resource utilization efficiency is improved by avoiding excessive exclusion of resources that can be used.
  • the cooperating unit 603 may be configured to cooperate with the sending electronic device to select the time-frequency resource block in the scenario of the sidelink resource selection mode 2 .
  • the following description about selecting time-frequency resource blocks in cooperation with sending electronic devices is not limited to the scenario of sidelink resource selection mode 2, but can be applied to 4G or 5G or other communication methods
  • the receiving electronic device 600 cooperates with the sending electronic device to select the time-frequency resource block.
  • the reporting unit 601 may be configured to report assistance information in response to a request sent by the sending electronic device in an event-triggered manner.
  • the sending electronic device sending the request in an event-triggered manner reference may be made to the description of the corresponding part of the communication unit 103 in the embodiment of the sending electronic device 100, which will not be repeated here.
  • the reporting unit 601 may be configured to report assistance information based on an assistance request field included in the control information for data transmission, wherein the assistance request field includes information about the request.
  • control information including the assist request field is the sidelink control information SCI, where the SCI is the first stage SCI as the control information transmitted on the control channel.
  • control information including the assistance request field
  • the reporting unit 601 may be configured to transmit the assistance information by using part of the time-frequency resource blocks in the candidate resource set corresponding to the receiving electronic device 600 as the physical sidelink shared channel PSSCH. That is, information (assistance information) on the candidate resource set corresponding to the receiving electronic device 600 is transmitted on the PSSCH composed of some time-frequency resource blocks in the above-mentioned candidate resource set.
  • the cooperating unit 603 may be configured to include information on the physical location of the receiving electronic device 600 as the location relationship information in the control information for data transmission.
  • the transmitting electronic device determines the positional relationship between the transmitting electronic device and the receiving electronic device 600 based on the information of its own physical location and the information of the physical location of the receiving electronic device 600 .
  • control information including the information of the physical location is the sidelink control information SCI, where the SCI is the first stage SCI as the control information transmitted on the control channel or the first stage SCI as the control information transmitted on the data channel Two-stage SCI.
  • the cooperating unit 603 may be configured to send the information about the physical location of the receiving electronic device as the location relationship information through radio resource control RRC signaling.
  • the cooperation unit 603 may be configured to send a reference signal to the sending electronic device, so that the sending electronic device uses the measured reference signal strength as the position relationship information.
  • the transmitting electronic device receives a reference signal from the receiving electronic device 600, and based on the measured reference signal strength, determines the distance between the transmitting electronic device and the receiving electronic device 600 in order to determine the aforementioned positional relationship.
  • FIG. 7 shows a flowchart of a method S700 for wireless communication according to an embodiment of the present disclosure.
  • Method S700 The method is performed by a sending electronic device that sends data to a receiving electronic device with which it communicates.
  • Method S700 begins at step S702.
  • step S704 at least one first positional relationship between the sending electronic device and at least one other sending electronic device located within a predetermined range of the sending electronic device and a second positional relationship between the sending electronic device and the receiving electronic device are determined.
  • information on a candidate resource set corresponding to the receiving electronic device is received as assistance information, wherein the candidate resource set is a set consisting of time-frequency resource blocks that the receiving electronic device can use to receive data.
  • step S708 based on the at least one first location relationship, the second location relationship, and the assistance information, at least one time-frequency resource block for transmitting data is selected from the resource pool to form a final available resource set.
  • Method S700 ends at step S710.
  • the method can be performed by the sending electronic device 100 described above, and the specific details thereof can be referred to the descriptions in the corresponding positions above, which will not be repeated here.
  • FIG. 8 shows a flowchart of a method S800 for wireless communication according to another embodiment of the present disclosure.
  • Method S800 The method is performed by a receiving electronic device that receives data from a transmitting electronic device with which it communicates.
  • Method S800 begins at step S802.
  • step S804 the information about the candidate resource set corresponding to the receiving electronic device is reported to the sending electronic device as assistance information, where the candidate resource set is a set consisting of time-frequency resource blocks that the receiving electronic device can use to receive data .
  • step S806 the location relationship information related to the location relationship between the receiving electronic device and the sending electronic device is sent to the sending electronic device, so as to cooperate with the sending electronic device to select from the resource pool based on the assistance information and the location relationship information for At least one time-frequency resource block of data is transmitted.
  • Method S800 ends at step S808.
  • the method can be performed by the receiving electronic device 600 described above, and the specific details thereof can be referred to the descriptions in the corresponding positions above, which will not be repeated here.
  • the transmitting electronic device 100 and the receiving electronic device 600 may be implemented as various user equipments.
  • User equipment may be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital cameras or vehicle-mounted terminals such as car navigation devices.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • eNB 800 includes one or more antennas 810 and base station equipment 820.
  • the base station apparatus 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 9 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station apparatus 820 includes a controller 821 , a memory 822 , a network interface 823 , and a wireless communication interface 825 .
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 generates data packets from data in the signal processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control may be performed in conjunction with nearby eNB or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • the controller 821 may communicate with core network nodes or further eNBs via the network interface 823 .
  • eNB 800 and core network nodes or other eNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • Wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of eNB 800 via antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 826 may have some or all of the above-described logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 826 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 9 shows an example in which the wireless communication interface 825 includes multiple BB processors 826 and multiple RF circuits 827 , the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827 .
  • the transceiver may be implemented by the wireless communication interface 825. At least a portion of the functionality may also be implemented by the controller 821 .
  • eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via high-speed lines such as fiber optic cables.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • 10 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station apparatus 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 , and a connection interface 857 .
  • the controller 851 , the memory 852 and the network interface 853 are the same as the controller 821 , the memory 822 and the network interface 823 described with reference to FIG. 9 .
  • Wireless communication interface 855 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 860 and antenna 840 to terminals located in a sector corresponding to RRH 860.
  • Wireless communication interface 855 may generally include, for example, BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 9, except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 10 shows an example in which the wireless communication interface 855 includes multiple BB processors 856
  • the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station apparatus 850 (the wireless communication interface 855 ) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station apparatus 850 (the wireless communication interface 855) to the RRH 860.
  • RRH 860 includes connection interface 861 and wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (the wireless communication interface 863 ) to the base station apparatus 850.
  • the connection interface 861 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may typically include RF circuitry 864, for example.
  • RF circuitry 864 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 863 includes multiple RF circuits 864
  • the wireless communication interface 863 may include a single RF circuit 864 .
  • the transceiver may be implemented by the wireless communication interface 855. At least a portion of the functionality may also be implemented by the controller 851 .
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the techniques of the present disclosure can be applied.
  • Smartphone 900 includes processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 900 .
  • USB Universal Serial Bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives operations or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 912 may typically include, for example, BB processor 913 and RF circuitry 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 11 , the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 . Although FIG. 11 shows an example in which the wireless communication interface 912 includes multiple BB processors 913 and multiple RF circuits 914 , the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 may include the BB processor 913 and the RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 11 shows an example in which the smartphone 900 includes multiple antennas 916 , the smartphone 900 may also include a single antenna 916 .
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera device 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 11 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900, eg, in a sleep mode.
  • the communication between the transmitting electronic device 100 and the receiving electronic device 600 may be implemented by the wireless communication interface 912 .
  • At least a portion of the functionality may also be implemented by the processor 901 or the auxiliary controller 919 .
  • the processor 901 or the auxiliary controller 919 can make the sending electronic device 100 correctly select the available time-frequency resource blocks by executing the functions of the units described above with reference to FIG. 1 , or execute the units described above with reference to FIG. 6 . function to cooperate with the sending electronic device to correctly select the available time-frequency resource blocks.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless A communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and a battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the position (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 927 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 928 .
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives operations or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935 .
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 .
  • FIG. 12 shows an example in which the wireless communication interface 933 includes multiple BB processors 934 and multiple RF circuits 935 , the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include the BB processor 934 and the RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 12 shows an example in which the car navigation device 920 includes a plurality of antennas 937 , the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation apparatus 920 .
  • the battery 938 provides power to the various blocks of the car navigation device 920 shown in FIG. 12 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • the transmitting electronic device 100 described with reference to FIG. 1 and the receiving electronic device 600 described with reference to FIG. 6 are implemented as user equipment
  • the transceiver may be implemented by the wireless communication interface 933.
  • At least a portion of the functionality may also be implemented by the processor 921 .
  • the processor 921 can enable the sending electronic device 100 to correctly select available time-frequency resource blocks by executing the functions of the units described above with reference to FIG. 1 , or perform the functions of the units described above with reference to FIG. 6 to cooperate with the sending The electronic device correctly selects available time-frequency resource blocks.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 940 that includes one or more blocks of a car navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941 .
  • the present invention also provides a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above method according to the embodiment of the present invention can be executed.
  • Storage media include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware configuration (for example, a general-purpose computer 1300 shown in FIG. 13 ) in which various programs are installed. can perform various functions, etc.
  • a central processing unit (CPU) 1301 executes various processes according to a program stored in a read only memory (ROM) 1302 or a program loaded from a storage section 1308 to a random access memory (RAM) 1303 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processes and the like is also stored as needed.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are connected to each other via a bus 1304.
  • Input/output interface 1305 is also connected to bus 1304 .
  • the following components are connected to the input/output interface 1305: an input section 1306 (including a keyboard, mouse, etc.), an output section 1307 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.), A storage section 1308 (including a hard disk, etc.), a communication section 1309 (including a network interface card such as a LAN card, a modem, etc.). The communication section 1309 performs communication processing via a network such as the Internet.
  • a driver 1310 may also be connected to the input/output interface 1305 as desired.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1310 as needed, so that a computer program read therefrom is installed into the storage section 1308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1311 .
  • a storage medium is not limited to the removable medium 1311 shown in FIG. 13 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1311 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disk (DVD)), magneto-optical disks (including minidisc (MD) (registered trademark) trademark)) and semiconductor memory.
  • the storage medium may be the ROM 1302, a hard disk contained in the storage section 1308, or the like, in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined. These disaggregations and/or recombinations should be considered equivalents of the present invention. Also, the steps of executing the above-described series of processes can naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps may be performed in parallel or independently of each other.
  • the present technology can also be implemented as follows.
  • a sending electronic device for wireless communication wherein the sending electronic device is used to send data to a receiving electronic device that communicates with it, and the sending electronic device includes:
  • processing circuitry configured as:
  • the candidate resource set is a set consisting of time-frequency resource blocks that the receiving electronic device can use to receive the data
  • At least one time-frequency resource block for transmitting the data is selected from a resource pool to form a final set of available resources.
  • the first set is included as at least part of the final set of available resources.
  • the processing circuit is configured to send the request through an assistance request field included in the control information for the data transfer,
  • the assistance request field includes information about the request.
  • control information is sidelink control information SCI
  • SCI is a first-stage SCI as control information transmitted on a control channel .
  • the processing circuit is configured to receive the assistance information from the receiving electronic device based on an assistance request field in the control information received from the receiving electronic device.
  • control information includes information about the physical location of the electronic device that sends the control information.
  • control information is sidelink control information SCI
  • SCI is a first-stage SCI as control information transmitted on a control channel Or as a second stage SCI that transmits control information on the data channel.
  • the transmitting electronic device according to any one of (1) to (8), wherein the processing circuit is configured to be based on data received from the at least one other transmitting electronic device and the receiving electronic device the reference signal strength of the reference signal, determine the distance between the transmitting electronic device and each of the at least one other transmitting electronic device and the distance between the transmitting electronic device and the receiving electronic device distance in order to determine the at least one first positional relationship and the second positional relationship.
  • the processing circuit is configured to use a candidate resource set corresponding to the sending electronic device as the final available resource set when the final available resource set is empty.
  • a receiving electronic device for wireless communication wherein the receiving electronic device is used to receive data from a transmitting electronic device that communicates with it, and the receiving electronic device comprises:
  • processing circuitry configured as:
  • the candidate resource set is a time-frequency that can be used by the receiving electronic device to receive the data a collection of resource blocks;
  • At least one time-frequency resource block for transmitting the data is selected from the resource pool.
  • the processing circuit is configured to report the assistance information based on an assistance request field included in the control information for the data transmission,
  • the assistance request field includes information about the request.
  • control information is sidelink control information SCI
  • SCI is a first stage SCI as control information transmitted on a control channel .
  • control information is sidelink control information SCI
  • SCI is a first-stage SCI as control information transmitted on a control channel Or as a second stage SCI that transmits control information on the data channel.
  • a method for wireless communication the method being performed by a transmitting electronic device that transmits data to a receiving electronic device communicating therewith, the method comprising:
  • the candidate resource set is a set consisting of time-frequency resource blocks that the receiving electronic device can use to receive the data
  • At least one time-frequency resource block for transmitting the data is selected from a resource pool to form a final set of available resources.
  • a method for wireless communication the method being performed by a receiving electronic device that receives data from a transmitting electronic device with which it communicates, the method comprising:
  • the candidate resource set is a time-frequency that can be used by the receiving electronic device to receive the data a collection of resource blocks;
  • At least one time-frequency resource block for transmitting the data is selected from the resource pool.
  • a computer-readable storage medium having computer-executable instructions stored thereon, and when the computer-executable instructions are executed, perform the method for wireless communication according to (24) or (25) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于无线通信的发送电子设备和接收电子设备以及方法,其中,用于无线通信的发送电子设备包括处理电路,处理电路被配置为:确定发送电子设备和位于发送电子设备的预定范围内的至少一个其他发送电子设备之间的至少一个第一位置关系以及发送电子设备和接收电子设备之间的第二位置关系;接收关于与接收电子设备对应的候选资源集合的信息作为协助信息,其中,候选资源集合是由接收电子设备能够用于接收数据的时频资源块构成的集合;以及基于至少一个第一位置关系、第二位置关系、以及协助信息,从资源池中选择用于发送数据的至少一个时频资源块以构成最终可用资源集合。

Description

用于无线通信的发送电子设备和接收电子设备以及方法 技术领域
本公开涉及无线通信技术领域,具体地涉及帮助发送电子设备正确地选择可以使用的时频资源块。更具体地,涉及一种用于无线通信的发送电子设备和接收电子设备以及方法、计算机可读存储介质。
背景技术
在现有的通信方式中,如何帮助发送电子设备正确地选择可以使用的时频资源块以避免资源碰撞和/或提高资源利用效率是关键的问题。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本公开的一个方面,提供了一种用于无线通信的发送电子设备,其中,发送电子设备用于向与其进行通信的接收电子设备发送数据,发送电子设备包括处理电路,处理电路被配置为:确定发送电子设备和位于发送电子设备的预定范围内的至少一个其他发送电子设备之间的至少一个第一位置关系以及发送电子设备和接收电子设备之间的第二位置关系;接收关于与接收电子设备对应的候选资源集合的信息作为协助信息,其中,候选资源集合是由接收电子设备能够用于接收数据的时频资源块构成的集合;以及基于至少一个第一位置关系、第二位置关系、以及协助信息,从资源池中选择用于发送数据的至少一个时频资源块以构成最终可用资源集合。
根据本公开的一个方面,提供了一种用于无线通信的接收电子设备,其中,接收电子设备用于从与其进行通信的发送电子设备接收数据,接收电子设备包括处理电路,处理电路被配置为:将关于与接收电子设备 对应的候选资源集合的信息作为协助信息上报给发送电子设备,其中,候选资源集合是由接收电子设备能够用于接收数据的时频资源块构成的集合;以及将与接收电子设备和发送电子设备之间的位置关系有关的位置关系信息发送给发送电子设备,以配合发送电子设备基于协助信息和位置关系信息来从资源池中选择用于发送数据的至少一个时频资源块。
根据本公开的另一个方面,提供了一种用于无线通信的方法,该方法由向与其进行通信的接收电子设备发送数据的发送电子设备执行,该方法包括:确定发送电子设备和位于发送电子设备的预定范围内的至少一个其他发送电子设备之间的至少一个第一位置关系以及发送电子设备和接收电子设备之间的第二位置关系;接收关于与接收电子设备对应的候选资源集合的信息作为协助信息,其中,候选资源集合是由接收电子设备能够用于接收数据的时频资源块构成的集合;以及基于至少一个第一位置关系、第二位置关系、以及协助信息,从资源池中选择用于发送数据的至少一个时频资源块以构成最终可用资源集合。
根据本公开的另一个方面,提供了一种用于无线通信的方法,该方法由从与其进行通信的发送电子设备接收数据的接收电子设备执行,该方法包括:将关于与接收电子设备对应的候选资源集合的信息作为协助信息上报给发送电子设备,其中,候选资源集合是由接收电子设备能够用于接收数据的时频资源块构成的集合;以及将与接收电子设备和发送电子设备之间的位置关系有关的位置关系信息发送给发送电子设备,以配合发送电子设备基于协助信息和位置关系信息来从资源池中选择用于发送数据的至少一个时频资源块。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细 说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了根据本公开的一个实施例的用于无线通信的发送电子设备的功能模块框图;
图2是示出现有技术中的发送方用户设备在侧行链路资源选择模式2下进行时频资源选择的示意图;
图3是示出现有技术中的隐藏节点的示意图;
图4是示出现有技术中的暴露节点的示意图;
图5是示出根据本公开实施例的发送电子设备的通信场景的示例的示意图;
图6示出了根据本公开的一个实施例的用于无线通信的接收电子设备的功能模块框图;
图7示出了根据本公开的一个实施例的用于无线通信的方法的流程图;
图8示出了根据本公开的另一实施例的用于无线通信的方法的流程图;
图9是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图10是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图11是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图12是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图13是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
图1示出了根据本公开的一个实施例的用于无线通信的发送电子设备100的功能模块框图,其中,发送电子设备100用于向与其进行通信的接收电子设备发送数据。如图1所示,发送电子设备100包括:确定单元101,其被配置为确定发送电子设备100和位于发送电子设备100的预定范围内的至少一个其他发送电子设备之间的至少一个第一位置关系以及发送电子设备100和接收电子设备之间的第二位置关系;通信单元103,其被配置为接收关于与接收电子设备对应的候选资源集合的信息作为协助信息,其中,候选资源集合是由接收电子设备能够用于接收数据的时频资源块构成的集合;以及选择单元105,其被配置为基于至少一个第一位置关系、第二位置关系、以及协助信息,从资源池中选择用于发送数据的至少一个时频资源块以构成最终可用资源集合。
其中,确定单元101、通信单元103和选择单元105可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
发送电子设备100例如可以设置在用户设备(UE)侧或者可通信地连接到用户设备。这里,还应指出,发送电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,发送电子设备100可以工作为用户设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同 设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。基站例如可以是eNB或gNB。
作为示例,发送电子设备100与接收电子设备进行单播通信。
作为示例,其他发送电子设备可以是不同于发送电子设备100的、用于发送数据的用户设备。
作为示例,预定范围可以是以发送电子设备100为参考点的任意形状的区域。例如,预定范围可以是以发送电子设备100为圆心的具有预定半径的圆形区域。其中,本领域技术人员可以根据经验或者实际应用场景而确定预定半径的大小。本领域技术人员还可以想到预定范围的其他示例,这里不再累述。
作为示例,确定单元101可以针对上述至少一个其他发送电子设备中的每个其他发送电子设备,确定发送电子设备100和该其他发送电子设备之间的第一位置关系。
作为示例,可以基于发送电子设备100的位置信息和每个其他发送电子设备的位置信息以及接收电子设备的位置信息而确定第一位置关系和第二位置关系。作为示例,可以基于从其他发送电子设备和接收电子设备接收到的参考信号的参考信号强度,确定第一位置关系和第二位置关系。本领域技术人员还可以想到确定第一位置关系和第二位置关系的其他方式。在下文中将给出如何确定第一位置关系和第二位置关系的具体示例。
作为示例,资源池可以由预先确定的时频资源块构成。作为示例,除了预先确定的时频资源块之外,资源池还可以包括异常资源池中的一个或多个时频资源块。与接收电子设备对应的候选资源集合是资源池中的至少一部分。
在下文中,将由发送电子设备100能够用于发送数据的时频资源块构成的集合称为与发送电子设备100对应的候选资源集合,其中,与发送电子设备100对应的候选资源集合是资源池中的至少一部分。
作为示例,可以根据现有技术来选择与接收电子设备对应的候选资源集合和与发送电子设备100对应的候选资源集合。例如,在5G NR侧行链路(sidelink)通信中,发送电子设备100和接收电子设备可以采用 资源选择模式2(mode 2)来分别选择与其对应的候选资源集合。
作为示例,根据本公开实施例的发送电子设备100可以利用最终可用资源集合中的时频资源块向接收电子设备发送数据。
在现有技术中,在选择用于发送电子设备向接收电子设备发数据的时频资源块时,不会考虑与接收电子设备对应的候选资源集合以及上述第一位置关系和第二位置关系。例如,在现有技术中的资源选择模式2中,将与发送电子设备对应的候选资源集合直接作为最终可用资源集合,而不会考虑与接收电子设备对应的候选资源集合以及上述第一位置关系和第二位置关系,从而导致资源碰撞的机率高从而降低发送电子设备所进行的数据传输的可靠性,和/或导致发送电子设备过度排除原本可以使用的资源从而降低资源利用效率。
相反,根据本公开实施例的发送电子设备100基于至少一个第一位置关系、第二位置关系、以及协助信息,能够正确地选择可以使用的时频资源,因此降低资源碰撞的机率从而提高数据传输的可靠性,以及/或者避免过度排除原本可以使用的资源从而提高资源利用效率。
作为示例,选择单元105可以被配置为在侧行链路(sidelink)资源选择模式2的场景下,选择最终可用资源集合。
在5G NR sidelink通信中,有两种资源选择方式,一种是基站对sidelink资源进行调度,称为资源选择模式1(mode 1),另一种是UE自主选择资源,称为资源选择模式2(mode 2)。
图2是示出现有技术中的用户设备在侧行链路资源选择模式2下进行时频资源选择的示意图。在下文中进行的描述中,有时将时频资源简称为资源。
用户设备(简称为UE)首先通过资源感知过程,预先确定候选资源集合。如图2所示,在侧行链路资源选择模式2的资源选择过程中,数据包在n时刻触发了资源选择,则UE会使用感知窗口[n-T 0,n-T proc,0]期间感知的结果来排除资源。在[n-T 0,n-T proc,0]期间,UE会解码收到的来自其他用户设备的侧行链路控制信息(SCI),通过解码SCI,获得已经被占用资源(预留资源)的信息,从而对这些资源进行排除;UE还会测量整个频带的参考信号接收功率(RSRP)强度,如果RSRP强度超过阈值,认为对应的频域资源被其他用户设备占用(被预留),从而对这些资源进行排除。 完成资源排除之后剩余的资源可以作为可用的候选资源,候选资源的集合为可用的候选资源集合。接下来,UE使用随机资源选择机制,在候选资源集合中,选择一个或者多个资源进行传输。例如,UE会在候选资源集合中随机选择时域处于[n+T 1,n+T 2]间的资源作为发送数据(初传和/或重传数据)的资源。例如,如图2所示,UE选择用斜线填充的矩形框所表示的资源来作为所选资源。
在图2中,T 0是感知窗口的最大范围门限;T proc,0表示UE解码SCI并进行RSRP测量的处理时间;T 1表示从资源选择触发n到最早的候选资源之间,UE的处理时间;T2表示资源选择窗口的最大范围门限,其需要小于待传输数据块允许的时延大小。
作为示例,发送电子设备100、上述每个其他发送电子设备以及接收电子设备均可以利用结合图2描述的侧行链路资源选择模式2选择与其对应的候选资源集合。在下文中,将每个其他发送电子设备选择到的候选资源集合称为与每个其他发送电子设备对应的候选资源集合。
如果发送电子设备100将通过图2描述的资源选择方式所选择到的与其对应的候选资源集合作为最终可用资源集合,则不能避免隐藏节点和/或暴露节点的影响。
图3是示出现有技术中的隐藏节点的示意图。
在图3中,假设用于发送的用户设备TX UEB与用于接收的用户设备RX UEA是一对传输对,用于发送的用户设备TX UEC是一个离RX UEA近但是离TX UEB很远的用户设备。则TX UEB无法接收并正确解码TX UEC的SCI,且TX UEB所测量的来自TX UEC的参考信号的RSRP的测量值将会比阈值低,因此根据结合图2描述的侧行链路资源选择模式2,TX UEB不能正确排除被TX UEC预留的资源,从而导致资源碰撞的机率高。若TX UEB与TX UEC选择了相同的资源传输数据,则RX UEA会受到TX UEC的干扰。因此,TX UEC为TX UEB的隐藏节点。
图4是示出现有技术中的暴露节点的示意图。
在图4中,假设存在两个传输对,即用于发送的用户设备TX UEB与用于接收的用户设备RX UEA是一个传输对,用于发送的用户设备TX UEC与用于接收的用户设备RX UED是一个传输对,TX UEB与TX UEC距离近,RX UEA与TX UEC距离远,RX UED与TX UEB距离远。TX UEB 与TX UEC可以互相接收并正确解码对方发出的SCI,且TX UEB所测量的来自TX UEC的参考信号的RSRP将超过阈值,则TX UEB将排除TX UEC已经预留的资源。但是由于RX UEA与TX UEC的距离远,RX UEA并不会受到TX UEC传输的影响。因此,TX UEC为TX UEB的暴露节点。暴露节点会造成TX UEB排除了过多原本可以使用的资源。
在下文中,主要结合侧行链路资源选择模式2的场景来描述发送电子设备100从资源池中选择最终可用资源集合。然而,本领域技术人员可以理解,下文中有关选择最终可用资源集合的描述并不限于侧行链路资源选择模式2的场景,而是可以应用于4G或5G或其他通信方式中的、由发送电子设备100来选择最终可用资源集合的其他场景。
作为示例,发送电子设备100和上述至少一个其他发送电子设备中的每个其他发送电子设备之间的距离均小于发送电子设备100和接收电子设备之间的距离。这样可以使得上述预定范围是以发送电子设备100为圆心、半径为发送电子设备100和接收电子设备之间的距离的圆形区域,由此可以将作为发送电子设备100的暴露节点的其他发送电子设备尽量包括在该圆形区域。
图5是示出根据本公开实施例的发送电子设备100的通信场景的示例的示意图。在图5中,将发送电子设备100表示为TX UE2,RX UE表示与TX UE2进行通信的接收电子设备,TX UE1和TX UE3都是用于发送的电子设备。TX UE2和TX UE1之间的距离小于TX UE2和RX UE之间的距离,因此TX UE1是上述其他发送电子设备的示例,并且结合图4可知,TX UE1是TX UE2的暴露节点。需要说明的是,为了简便,在图5中仅示出了一个其他发送电子设备TX UE1,本领域技术人员可以理解,可以存在多个其他发送电子设备。TX UE2和TX UE3之间的距离大于TX UE2和RX UE之间的距离,因此TX UE3不是上述其他发送电子设备,并且结合图3可知,TX UE3是TX UE2的隐藏节点。
举例说明,假设资源池中包括时频资源(下文中有时简称为资源){R1,R2,R3,R4,R5,R6,R7,R8,R9}。结合图2,假设TX UE1的SCI中指示的预留资源(即,TX UE1通过结合图2描述的侧行链路资源选择模式2选择的候选资源集合的一部分,还可以称为与TX UE1对应的候选资源集合的一部分,在下文中,简称为与TX UE1对应的候选资源集合)为{R1,R4,R5},TX UE2通过结合图2描述的侧行链路资源选择模式2选择 的候选资源集合为{R2,R3,R8}(即,与TX UE2对应的候选资源集合),TX UE3的SCI中指示的预留资源(即,TX UE3通过结合图2描述的侧行链路资源选择模式2选择的候选资源集合的一部分,还可以称为与TX UE3对应的候选资源集合的一部分,在下文中,简称为与TX UE3对应的候选资源集合)为{R2,R6,R7},与RX UE对应的候选资源集合为{R1,R8,R9},其中,TX UE2接收关于与RX UE对应的候选资源集合{R1,R8,R9}的信息作为协助信息。
如图5所示,TX UE2与TX UE1距离近,RX UE与TX UE1距离远,因此,TX UE2与TX UE1可以互相接收并正确解码对方发出的SCI,而RX UE不会受到TX UE1传输的影响。结合图5的示例可知,与TX UE1对应的候选资源集合中包括资源R1(即,TX UE1的SCI中指示该资源R1被预留),由于RX UE不会受到TX UE1传输的影响,因此,R1是RX UE可以使用的资源。然而,在根据图2描述的现有技术的资源选择方式选择资源时,由于TX UE2所测量的来自TX UE1的参考信号的RSRP将超过阈值,则TX UE2将排除TX UE1已经预留的资源R1(即,与TX UE2对应的候选资源集合中不包括R1)。因此,暴露节点TX UE1会造成TX UE2排除了过多原本可以使用的资源(例如,R1)。
作为示例,在根据本公开实施例的发送电子设备100中,选择单元105可以被配置为:针对上述至少一个其他发送电子设备中的至少一部分中的每个其他发送电子设备,将与每个其他发送电子设备对应的候选资源集合和与接收电子设备对应的候选资源集合的交集添加到第一集合,以及将第一集合作为最终可用资源集合的至少一部分。
作为示例,第一集合初始化为空集。
在根据本公开实施例中,结合图5所示的示例,将与其他发送电子设备TX UE1对应的候选资源集合{R1,R4,R5}和与RX UE对应的候选资源集合{R1,R8,R9}的交集{R1}添加到第一集合,并且,可以将第一集合{R1}作为最终可用资源集合的至少一部分来用于TX UE2向RX UE发送数据,由此减少暴露节点TX UE1的影响。
由以上描述可知,根据本公开实施例的发送电子设备100减少了暴露节点的影响,避免过度排除原本可以使用的资源,从而进一步提高了资源利用效率。
结合图5所示的示例可知,与TX UE3对应的候选资源集合中包括R2,即R2是TX UE3预留的资源,但是由于TX UE3与TX UE2距离远,TX UE2无法正确排除该资源,因此,与TX UE2对应的候选资源集合中也包括R2。如果TX UE2和TX UE3都使用R2来发送数据,则会造成资源碰撞,从而降低数据传输的可靠性。
然而,由于TX UE3与RX UE距离较近,因此RX UE能够正确排除该资源R2,因此,与RX UE对应的候选资源集合{R1,R8,R9}中不包括资源R2。
作为示例,选择单元105可以被配置为:将与发送电子设备100对应的候选资源集合和与接收电子设备对应的候选资源集合的交集作为第二集合,以及将第一集合和第二集合的并集中的至少一部分作为最终可用资源集合。
作为示例,第二交集初始为空集。
在根据本公开实施例中,结合图5所示的示例,将与TX UE2对应的候选资源集合{R2,R3,R8}和与RX UE对应的候选资源集合{R1,R8,R9}的交集{R8}作为第二集合,通过该方式,TX UE2能够排除资源R2,从而减少隐藏节点TX UE3的影响;另外,由于资源R8是TX UE2和RX UE都能使用的资源,因此,将R8选择为TX UE2的最终可用资源之一,从而能够正确地选择可以使用的资源。
结合图5所示的示例,第一集合和第二集合的并集为{R1,R8},该并集中的至少一部分作为最终可用资源集合。
由以上描述可知,根据本公开实施例的发送电子设备100除了减少暴露节点的影响之外,还能够减少隐藏节点的影响,能够进一步降低资源碰撞的机率从而提高发送电子设备100所进行的数据传输的可靠性。
作为示例,选择单元105可以被配置为在最终可用资源集合为空的情况下,将与发送电子设备100对应的候选资源集合作为最终可用资源集合。
作为示例,通信单元103可以被配置为通过事件触发的方式请求接收电子设备上报协助信息。例如,一个数据包到达了TX UE2,若TX UE2需要RX UE上报协助信息,则请求RX UE上报协助信息。
作为示例,通信单元103可以被配置为通过用于数据传输的控制信息中包括的协助请求字段来发送请求,其中,协助请求字段包括关于请求的信息。
作为示例,上述包括协助请求字段的控制信息为侧行链路控制信息SCI,其中,SCI是作为传输在控制信道上的控制信息的第一阶段SCI。
例如,TX UE2在控制信息中增加协助请求字段(即,请求协助信息的字段)。例如在第一阶段SCI中,可以增加2比特字段为协助请求字段,协助请求字段包括关于请求的信息(例如“01”)表示TX UE2向RX UE请求协助信息。
作为示例,通信单元103可以被配置为基于从接收电子设备接收到的控制信息中的协助请求字段,从接收电子设备接收协助信息。
例如,RX UE在准备好协助信息后,可以使用控制信息中的协助请求字段的不同格式(例如与“01”不同的“10”)通知TX UE2,本次传输的信息为TX UE2需要的协助信息,以便于TX UE2从RX UE接收协助信息。
另外,例如,TX UE2的控制信息中的协助请求字段的其他格式(例如00或11)可以表示TX UE2不需要协助信息。
由于现有技术中的第一阶段SCI存在一些预留比特,因此根据本公开实施例的增加协助请求字段后的第一阶段SCI可以与现有技术中的第一阶段SCI兼容。
作为示例,确定单元101可以被配置为基于从至少一个其他发送电子设备和接收电子设备接收到的用于数据传输的控制信息,确定至少一个第一位置关系和第二位置关系,其中,控制信息包括有关发送控制信息的电子设备的物理位置的信息。
例如,对于用户设备UE(例如,发送电子设备100、其他发送电子设备以及接收电子设备),在5G系列协议TS 38.331的第5.8.11节中,给出了ZoneId的计算步骤,其中使用到了两个变量x和y指示UE的物理位置:x是UE的当前位置到地理坐标原点(0,0)之间的经度测地距离,单位是米;y是UE的当前位置到地理坐标原点(0,0)的维度测地距离,单位是米。
例如,发送电子设备100从其他发送电子设备接收到的控制信息中包括该其他发送电子设备的物理位置的信息,发送电子设备100从接收电子设备接收到的控制信息中包括接收电子设备的物理位置的信息。例如,可以基于发送电子设备100自身的物理位置的信息和其他发送电子设备的物理位置的信息来计算发送电子设备100和其他发送电子设备之间的距离,由此确定第一位置关系;以及可以基于发送电子设备100自身的物理位置的信息和接收电子设备的物理位置的信息来计算发送电子设备100和接收电子设备之间的距离,由此确定第二位置关系。
作为示例,上述包括物理位置的信息的控制信息是侧行链路控制信息SCI,其中,SCI是作为传输在控制信道上的控制信息的第一阶段SCI或作为传输在数据信道上的控制信息的第二阶段SCI。即,使用物理层的信令,在第一阶段SCI或第二阶段SCI中增加包括物理位置的信息的字段。
作为示例,确定单元101可以被配置为基于从至少一个其他发送电子设备和接收电子设备接收到的参考信号的参考信号强度,确定发送电子设备100和至少一个其他发送电子设备中的每个其他发送电子设备之间的距离以及发送电子设备100和接收电子设备之间的距离,以便确定至少一个第一位置关系和第二位置关系。由于穿墙等会对信号造成较大的衰弱,因此该确定方式适用于其他发送电子设备与接收电子设备所处的通信环境一致的场景,或者通信环境较为开阔的场景中。由于该确定方式不需要额外的信令开销,因此在节能以及节约资源方面表现良好。
例如,发送电子设备100可以根据通信场景、QoS指标或者发送电子设备100的能力,从上述方式中选择适合的方式来确定第一位置关系和第二位置关系。
本公开还提供了一种用于无线通信的接收电子设备。图6示出了根据本公开的一个实施例的用于无线通信的接收电子设备600的功能模块框图,其中,接收电子设备600用于从与其进行通信的发送电子设备接收数据。如图6所示,接收电子设备600包括:上报单元601,可以被配置为将关于与接收电子设备600对应的候选资源集合的信息作为协助信息上报给发送电子设备,其中,候选资源集合是由接收电子设备能够用于接收数据的时频资源块构成的集合;以及配合单元603,可以被配置为将与接收电子设备600和发送电子设备之间的位置关系有关的位置关系 信息发送给发送电子设备,以配合发送电子设备基于协助信息和位置关系信息来从资源池中选择用于发送数据的至少一个时频资源块。
其中,上报单元601和配合单元603可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
接收电子设备600例如可以设置在用户设备(UE)侧或者可通信地连接到用户设备。这里,还应指出,接收电子设备600可以以芯片级来实现,或者也可以以设备级来实现。例如,接收电子设备600可以工作为用户设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。基站例如可以是eNB或gNB。
作为示例,接收电子设备600与发送电子设备与进行单播通信。
作为示例,发送电子设备可以是上文中描述的发送电子设备100。
作为示例,资源池可以由预先确定的时频资源块构成。作为示例,除了预先确定的时频资源块之外,资源池还可以包括异常资源池中的一个或多个时频资源块。与接收电子设备600对应的候选资源集合是资源池中的至少一部分。
在下文中,将由发送电子设备能够用于发送数据的时频资源块构成的集合称为与发送电子设备对应的候选资源集合,其中,与发送电子设备对应的候选资源集合是资源池中的至少一部分。
作为示例,可以根据现有技术来选择与接收电子设备600对应的候选资源集合和与发送电子设备对应的候选资源集合。例如,在5G NR侧行链路通信中,接收电子设备600和发送电子设备可以采用资源选择模式2(mode 2)来分别选择与其对应的候选资源集合。
在现有技术中,发送电子设备在选择用于向接收电子设备发送数据的时频资源块时,不会考虑与接收电子设备对应的候选资源集合以及上述位置关系。例如,在现有技术中的资源选择模式2中,将与发送电子设备对应的候选资源集合直接作为最终可用资源集合,而不会考虑与接收电子设备对应的候选资源集合以及上述位置关系,从而导致资源碰撞 的机率高从而降低发送电子设备所进行的数据传输的可靠性,和/或导致发送电子设备过度排除原本可以使用的资源从而降低资源利用效率。
相反,根据本公开实施例的接收电子设备600配合发送电子设备基于协助信息和位置关系信息来从资源池中选择用于发送数据的时频资源块,从而能够配合发送电子设备正确地选择可以使用的时频资源,因此降低资源碰撞的机率从而提高数据传输的可靠性,以及避免过度排除原本可以使用的资源从而提高资源利用效率。
作为示例,配合单元603可以配置为在侧行链路资源选择模式2的场景下,配合发送电子设备选择时频资源块。然而,本领域技术人员可以理解,下文中有关配合发送电子设备选择时频资源块的描述并不限于侧行链路资源选择模式2的场景,而是可以应用于4G或5G或其他通信方式中的、由接收电子设备600配合发送电子设备选择时频资源块的其他场景。
作为示例,上报单元601可以被配置为响应于发送电子设备通过事件触发的方式而发送的请求,上报协助信息。有关发送电子设备通过事件触发的方式而发送请求的描述可以参见发送电子设备100实施例中关于通信单元103的相应部分描述,这里不再累述。
作为示例,上报单元601可以被配置为基于用于数据传输的控制信息中包括的协助请求字段,上报协助信息,其中,协助请求字段包括关于请求的信息。
作为示例,包括协助请求字段的控制信息是侧行链路控制信息SCI,其中,SCI是作为传输在控制信道上的控制信息的第一阶段SCI。
有关包括协助请求字段的控制信息的描述可以参见发送电子设备100实施例中关于通信单元103的相应部分的描述,这里不再累述。
作为示例,上报单元601可以被配置为将与接收电子设备600对应的候选资源集合中的部分时频资源块作为物理侧行链路共享信道PSSCH,来传输协助信息。即,在由上述候选资源集合中的部分时频资源块构成的PSSCH上,传输有关与接收电子设备600对应的候选资源集合的信息(协助信息)。
作为示例,配合单元603可以被配置为在用于数据传输的控制信息 中包括有关接收电子设备600的物理位置的信息,作为位置关系信息。
有关接收电子设备600的物理位置的信息的描述可以参见发送电子设备100实施例中关于确定单元101的相应部分的描述,这里不再累述。
例如,发送电子设备基于其自身的物理位置的信息和接收电子设备600的物理位置的信息,确定发送电子设备和接收电子设备600之间的位置关系。
作为示例,包括物理位置的信息的控制信息是侧行链路控制信息SCI,其中,SCI是作为传输在控制信道上的控制信息的第一阶段SCI或作为传输在数据信道上的控制信息的第二阶段SCI。
作为示例,配合单元603可以被配置为通过无线资源控制RRC信令发送有关接收电子设备的物理位置的信息,作为位置关系信息。
作为示例,配合单元603可以被配置为向发送电子设备发送参考信号,以供发送电子设备将所测量的参考信号强度作为位置关系信息。例如,发送电子设备从接收电子设备600接收参考信号,并且基于所测量到的参考信号强度,确定发送电子设备和接收电子设备600之间的距离,以便确定上述位置关系。
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图7示出了根据本公开的一个实施例的用于无线通信的方法S700的流程图。方法S700方法由向与其进行通信的接收电子设备发送数据的发送电子设备执行。方法S700在步骤S702开始。在步骤S704中,确定发送电子设备和位于发送电子设备的预定范围内的至少一个其他发送电子设备之间的至少一个第一位置关系以及发送电子设备和接收电子设备之间的第二位置关系。在步骤S706中,接收关于与接收电子设备对应的候选资源集合的信息作为协助信息,其中,候选资源集合是由接收电子设 备能够用于接收数据的时频资源块构成的集合。在步骤S708中,基于至少一个第一位置关系、第二位置关系、以及协助信息,从资源池中选择用于发送数据的至少一个时频资源块以构成最终可用资源集合。方法S700在步骤S710结束。
该方法例如可以通过上文所描述的发送电子设备100来执行,其具体细节可参见以上相应位置的描述,在此不再重复。
图8示出了根据本公开的另一实施例的用于无线通信的方法S800的流程图。方法S800方法由从与其进行通信的发送电子设备接收数据的接收电子设备执行。方法S800在步骤S802开始。在步骤S804中,将关于与接收电子设备对应的候选资源集合的信息作为协助信息上报给发送电子设备,其中,候选资源集合是由接收电子设备能够用于接收数据的时频资源块构成的集合。在步骤S806中,将与接收电子设备和发送电子设备之间的位置关系有关的位置关系信息发送给发送电子设备,以配合发送电子设备基于协助信息和位置关系信息来从资源池中选择用于发送数据的至少一个时频资源块。方法S800在步骤S808结束。
该方法例如可以通过上文所描述的接收电子设备600来执行,其具体细节可参见以上相应位置的描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
发送电子设备100和接收电子设备600可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图9是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站 设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图9所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图9示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。 代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图9所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图9所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图9示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图9所示的eNB 800中,收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。
(第二应用示例)
图10是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图10所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图10示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图9描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的 终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图9描述的BB处理器826相同。如图10所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图10示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图10所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图10示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图10所示的eNB 830中,收发器可以由无线通信接口855实现。功能的至少一部分也可以由控制器851实现。
[关于用户设备的应用示例]
(第一应用示例)
图11是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制 器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图11所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图11示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图11所示,智能电话900可以包括多个天线916。虽然图11示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图11所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图11所示的智能电话900中,当参照图1描述的发送电子设备100和参照图6描述的接收电子设备600被实施为用户设备的情况下、发送电子设备100和接收电子设备600的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行上述参照图1描述的各单元的功能来使发送电子设备100正确地选择可以使用的时频资源块,或者执行上述参照图6描述的各单元的功能来配合发送电子设备正确地选择可以使用的时频资源块。
(第二应用示例)
图12是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图12所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图12示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图12所示,汽车导航设备920可以包括多个天线937。虽然图12示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图12所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图12示出的汽车导航设备920中,当参照图1描述的发送电子设备100和参照图6描述的接收电子设备600被实施为用户设备的情况下、发送电子设备100和接收电子设备600的收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行上述参照图1描述的各单元的功能来使发送电子设备100正确地选择可以使用的时频资源块,或者执行上述参照图6描述的各单元的功能来配合发送电子设备正确地选择可以使用的时频资源块。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。存储介质包括但不限于软盘、光盘、 磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图13所示的通用计算机1300)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图13中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM 1303中,也根据需要存储当CPU 1301执行各种处理等等时所需的数据。CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件连接到输入/输出接口1305:输入部分1306(包括键盘、鼠标等等)、输出部分1307(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1308(包括硬盘等)、通信部分1309(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1309经由网络比如因特网执行通信处理。根据需要,驱动器1310也可连接到输入/输出接口1305。可移除介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1311安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图13所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1311。可移除介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。
本技术还可以如下实现。
(1).一种用于无线通信的发送电子设备,其中,所述发送电子设备用于向与其进行通信的接收电子设备发送数据,所述发送电子设备包括:
处理电路,被配置为:
确定所述发送电子设备和位于所述发送电子设备的预定范围内的至少一个其他发送电子设备之间的至少一个第一位置关系以及所述发送电子设备和所述接收电子设备之间的第二位置关系;
接收关于与所述接收电子设备对应的候选资源集合的信息作为协助信息,其中,所述候选资源集合是由所述接收电子设备能够用于接收所述数据的时频资源块构成的集合;以及
基于所述至少一个第一位置关系、所述第二位置关系、以及所述协助信息,从资源池中选择用于发送所述数据的至少一个时频资源块以构成最终可用资源集合。
(2).根据(1)所述的发送电子设备,其中,所述发送电子设备和所述至少一个其他发送电子设备中的每个其他发送电子设备之间的距离均小于所述发送电子设备和所述接收电子设备之间的距离。
(3).根据(2)所述的发送电子设备,其中,所述处理电路被配置为:
针对所述至少一个其他发送电子设备中的至少一部分中的每个其他发送电子设备,将与所述每个其他发送电子设备对应的候选资源集合和 与所述接收电子设备对应的候选资源集合的交集添加到第一集合,以及
将所述第一集合作为所述最终可用资源集合的至少一部分。
(4).根据(3)所述的发送电子设备,其中,所述处理电路被配置为:
将与所述发送电子设备对应的候选资源集合和与所述接收电子设备对应的候选资源集合的交集作为第二集合,以及
将所述第一集合和所述第二集合的并集中的至少一部分作为所述最终可用资源集合。
(5).根据(1)至(4)中任一项所述的发送电子设备,其中,所述处理电路被配置为通过事件触发的方式请求所述接收电子设备上报所述协助信息。
(6).根据(5)所述的发送电子设备,其中,
所述处理电路被配置为通过用于数据传输的控制信息中包括的协助请求字段来发送所述请求,
其中,所述协助请求字段包括关于所述请求的信息。
(7).根据(6)所述的发送电子设备,其中,所述控制信息为侧行链路控制信息SCI,其中,所述SCI是作为传输在控制信道上的控制信息的第一阶段SCI。
(8.)根据(6)或(7)所述的发送电子设备,其中,
所述处理电路被配置为基于从所述接收电子设备接收到的所述控制信息中的协助请求字段,从所述接收电子设备接收所述协助信息。
(9).根据(1)至(5)中任一项所述的发送电子设备,其中,所述处理电路被配置为:
基于从所述至少一个其他发送电子设备和所述接收电子设备接收到的用于数据传输的控制信息,确定所述至少一个第一位置关系和所述第二位置关系,
其中,所述控制信息包括有关发送所述控制信息的电子设备的物理位置的信息。
(10).根据(9)所述的发送电子设备,其中,所述控制信息为侧行链路 控制信息SCI,其中,所述SCI是作为传输在控制信道上的控制信息的第一阶段SCI或作为传输在数据信道上的控制信息的第二阶段SCI。
(11).根据(1)至(8)中任一项所述的发送电子设备,其中,所述处理电路被配置为基于从所述至少一个其他发送电子设备和所述接收电子设备接收到的参考信号的参考信号强度,确定所述发送电子设备和所述至少一个其他发送电子设备中的每个其他发送电子设备之间的距离以及所述发送电子设备和所述接收电子设备之间的距离,以便确定所述至少一个第一位置关系和所述第二位置关系。
(12).根据(4)所述的发送电子设备,其中,
所述处理电路被配置为在所述最终可用资源集合为空的情况下,将与所述发送电子设备对应的候选资源集合作为所述最终可用资源集合。
(13).根据(1)至(12)中任一项所述的发送电子设备,其中,所述处理电路被配置为在侧行链路资源选择模式2的场景下,选择所述最终可用资源集合。
(14).一种用于无线通信的接收电子设备,其中,所述接收电子设备用于从与其进行通信的发送电子设备接收数据,所述接收电子设备包括:
处理电路,被配置为:
将关于与所述接收电子设备对应的候选资源集合的信息作为协助信息上报给所述发送电子设备,其中,所述候选资源集合是由所述接收电子设备能够用于接收所述数据的时频资源块构成的集合;以及
将与所述接收电子设备和所述发送电子设备之间的位置关系有关的位置关系信息发送给所述发送电子设备,以配合所述发送电子设备基于所述协助信息和所述位置关系信息来从资源池中选择用于发送所述数据的至少一个时频资源块。
(15).根据(14)所述的接收电子设备,其中,所述处理电路被配置为响应于所述发送电子设备通过事件触发的方式而发送的请求,上报所述协助信息。
(16).根据(15)所述的接收电子设备,其中,
所述处理电路被配置为基于用于数据传输的控制信息中包括的协助请求字段,上报所述协助信息,
其中,所述协助请求字段包括关于所述请求的信息。
(17).根据(16)所述的接收电子设备,其中,所述控制信息为侧行链路控制信息SCI,其中,所述SCI是作为传输在控制信道上的控制信息的第一阶段SCI。
(18).根据(15)至(17)中任一项所述的接收电子设备,其中,所述处理电路被配置为将所述候选资源集合中的部分时频资源块作为物理侧行链路共享信道PSSCH,来传输所述协助信息。
(19).根据(14)至(15)中任一项所述的接收电子设备,其中,所述处理电路被配置为在用于数据传输的控制信息中包括有关所述接收电子设备的物理位置的信息,作为所述位置关系信息。
(20).根据(19)所述的接收电子设备,其中,所述控制信息为侧行链路控制信息SCI,其中,所述SCI是作为传输在控制信道上的控制信息的第一阶段SCI或作为传输在数据信道上的控制信息的第二阶段SCI。
(21).根据(14)至(18)中任一项所述的接收电子设备,其中,所述处理电路被配置为通过无线资源控制RRC信令发送有关所述接收电子设备的物理位置的信息,作为所述位置关系信息。
(22).根据(14)至(18)中任一项所述的接收电子设备,其中,所述处理电路被配置为向所述发送电子设备发送参考信号,以供所述发送电子设备将所测量的参考信号强度作为所述位置关系信息。
(23).根据(14)至(22)中任一项所述的接收电子设备,其中,所述处理电路被配置为在侧行链路资源选择模式2的场景下,配合所述发送电子设备选择所述至少一个时频资源块。
(24).一种用于无线通信的方法,所述方法由向与其进行通信的接收电子设备发送数据的发送电子设备执行,所述方法包括:
确定所述发送电子设备和位于所述发送电子设备的预定范围内的至少一个其他发送电子设备之间的至少一个第一位置关系以及所述发送电子设备和所述接收电子设备之间的第二位置关系;
接收关于与所述接收电子设备对应的候选资源集合的信息作为协助信息,其中,所述候选资源集合是由所述接收电子设备能够用于接收所述数据的时频资源块构成的集合;以及
基于所述至少一个第一位置关系、所述第二位置关系、以及所述协助信息,从资源池中选择用于发送所述数据的至少一个时频资源块以构成最终可用资源集合。
(25).一种用于无线通信的方法,所述方法由从与其进行通信的发送电子设备接收数据的接收电子设备执行,所述方法包括:
将关于与所述接收电子设备对应的候选资源集合的信息作为协助信息上报给所述发送电子设备,其中,所述候选资源集合是由所述接收电子设备能够用于接收所述数据的时频资源块构成的集合;以及
将与所述接收电子设备和所述发送电子设备之间的位置关系有关的位置关系信息发送给所述发送电子设备,以配合所述发送电子设备基于所述协助信息和所述位置关系信息来从资源池中选择用于发送所述数据的至少一个时频资源块。
(26).一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据(24)或(25)所述的用于无线通信的方法。

Claims (26)

  1. 一种用于无线通信的发送电子设备,其中,所述发送电子设备用于向与其进行通信的接收电子设备发送数据,所述发送电子设备包括:
    处理电路,被配置为:
    确定所述发送电子设备和位于所述发送电子设备的预定范围内的至少一个其他发送电子设备之间的至少一个第一位置关系以及所述发送电子设备和所述接收电子设备之间的第二位置关系;
    接收关于与所述接收电子设备对应的候选资源集合的信息作为协助信息,其中,所述候选资源集合是由所述接收电子设备能够用于接收所述数据的时频资源块构成的集合;以及
    基于所述至少一个第一位置关系、所述第二位置关系、以及所述协助信息,从资源池中选择用于发送所述数据的至少一个时频资源块以构成最终可用资源集合。
  2. 根据权利要求1所述的发送电子设备,其中,所述发送电子设备和所述至少一个其他发送电子设备中的每个其他发送电子设备之间的距离均小于所述发送电子设备和所述接收电子设备之间的距离。
  3. 根据权利要求2所述的发送电子设备,其中,所述处理电路被配置为:
    针对所述至少一个其他发送电子设备中的至少一部分中的每个其他发送电子设备,将与所述每个其他发送电子设备对应的候选资源集合和与所述接收电子设备对应的候选资源集合的交集添加到第一集合,以及
    将所述第一集合作为所述最终可用资源集合的至少一部分。
  4. 根据权利要求3所述的发送电子设备,其中,所述处理电路被配置为:
    将与所述发送电子设备对应的候选资源集合和与所述接收电子设备对应的候选资源集合的交集作为第二集合,以及
    将所述第一集合和所述第二集合的并集中的至少一部分作为所述最终可用资源集合。
  5. 根据权利要求1至4中任一项所述的发送电子设备,其中,所述 处理电路被配置为通过事件触发的方式请求所述接收电子设备上报所述协助信息。
  6. 根据权利要求5所述的发送电子设备,其中,
    所述处理电路被配置为通过用于数据传输的控制信息中包括的协助请求字段来发送所述请求,
    其中,所述协助请求字段包括关于所述请求的信息。
  7. 根据权利要求6所述的发送电子设备,其中,所述控制信息为侧行链路控制信息SCI,其中,所述SCI是作为传输在控制信道上的控制信息的第一阶段SCI。
  8. 根据权利要求6或7所述的发送电子设备,其中,
    所述处理电路被配置为基于从所述接收电子设备接收到的所述控制信息中的协助请求字段,从所述接收电子设备接收所述协助信息。
  9. 根据权利要求1至5中任一项所述的发送电子设备,其中,所述处理电路被配置为:
    基于从所述至少一个其他发送电子设备和所述接收电子设备接收到的用于数据传输的控制信息,确定所述至少一个第一位置关系和所述第二位置关系,
    其中,所述控制信息包括有关发送所述控制信息的电子设备的物理位置的信息。
  10. 根据权利要求9所述的发送电子设备,其中,所述控制信息为侧行链路控制信息SCI,其中,所述SCI是作为传输在控制信道上的控制信息的第一阶段SCI或作为传输在数据信道上的控制信息的第二阶段SCI。
  11. 根据权利要求1至8中任一项所述的发送电子设备,其中,所述处理电路被配置为基于从所述至少一个其他发送电子设备和所述接收电子设备接收到的参考信号的参考信号强度,确定所述发送电子设备和所述至少一个其他发送电子设备中的每个其他发送电子设备之间的距离以及所述发送电子设备和所述接收电子设备之间的距离,以便确定所述至少一个第一位置关系和所述第二位置关系。
  12. 根据权利要求4所述的发送电子设备,其中,
    所述处理电路被配置为在所述最终可用资源集合为空的情况下,将与所述发送电子设备对应的候选资源集合作为所述最终可用资源集合。
  13. 根据权利要求1至12中任一项所述的发送电子设备,其中,所述处理电路被配置为在侧行链路资源选择模式2的场景下,选择所述最终可用资源集合。
  14. 一种用于无线通信的接收电子设备,其中,所述接收电子设备用于从与其进行通信的发送电子设备接收数据,所述接收电子设备包括:
    处理电路,被配置为:
    将关于与所述接收电子设备对应的候选资源集合的信息作为协助信息上报给所述发送电子设备,其中,所述候选资源集合是由所述接收电子设备能够用于接收所述数据的时频资源块构成的集合;以及
    将与所述接收电子设备和所述发送电子设备之间的位置关系有关的位置关系信息发送给所述发送电子设备,以配合所述发送电子设备基于所述协助信息和所述位置关系信息来从资源池中选择用于发送所述数据的至少一个时频资源块。
  15. 根据权利要求14所述的接收电子设备,其中,所述处理电路被配置为响应于所述发送电子设备通过事件触发的方式而发送的请求,上报所述协助信息。
  16. 根据权利要求15所述的接收电子设备,其中,
    所述处理电路被配置为基于用于数据传输的控制信息中包括的协助请求字段,上报所述协助信息,
    其中,所述协助请求字段包括关于所述请求的信息。
  17. 根据权利要求16所述的接收电子设备,其中,所述控制信息为侧行链路控制信息SCI,其中,所述SCI是作为传输在控制信道上的控制信息的第一阶段SCI。
  18. 根据权利要求15至17中任一项所述的接收电子设备,其中,所述处理电路被配置为将所述候选资源集合中的部分时频资源块作为物理侧行链路共享信道PSSCH,来传输所述协助信息。
  19. 根据权利要求14至15中任一项所述的接收电子设备,其中,所 述处理电路被配置为在用于数据传输的控制信息中包括有关所述接收电子设备的物理位置的信息,作为所述位置关系信息。
  20. 根据权利要求19所述的接收电子设备,其中,所述控制信息为侧行链路控制信息SCI,其中,所述SCI是作为传输在控制信道上的控制信息的第一阶段SCI或作为传输在数据信道上的控制信息的第二阶段SCI。
  21. 根据权利要求14至18中任一项所述的接收电子设备,其中,所述处理电路被配置为通过无线资源控制RRC信令发送有关所述接收电子设备的物理位置的信息,作为所述位置关系信息。
  22. 根据权利要求14至18中任一项所述的接收电子设备,其中,所述处理电路被配置为向所述发送电子设备发送参考信号,以供所述发送电子设备将所测量的参考信号强度作为所述位置关系信息。
  23. 根据权利要求14至22中任一项所述的接收电子设备,其中,所述处理电路被配置为在侧行链路资源选择模式2的场景下,配合所述发送电子设备选择所述至少一个时频资源块。
  24. 一种用于无线通信的方法,所述方法由向与其进行通信的接收电子设备发送数据的发送电子设备执行,所述方法包括:
    确定所述发送电子设备和位于所述发送电子设备的预定范围内的至少一个其他发送电子设备之间的至少一个第一位置关系以及所述发送电子设备和所述接收电子设备之间的第二位置关系;
    接收关于与所述接收电子设备对应的候选资源集合的信息作为协助信息,其中,所述候选资源集合是由所述接收电子设备能够用于接收所述数据的时频资源块构成的集合;以及
    基于所述至少一个第一位置关系、所述第二位置关系、以及所述协助信息,从资源池中选择用于发送所述数据的至少一个时频资源块以构成最终可用资源集合。
  25. 一种用于无线通信的方法,所述方法由从与其进行通信的发送电子设备接收数据的接收电子设备执行,所述方法包括:
    将关于与所述接收电子设备对应的候选资源集合的信息作为协助信息上报给所述发送电子设备,其中,所述候选资源集合是由所述接收电 子设备能够用于接收所述数据的时频资源块构成的集合;以及
    将与所述接收电子设备和所述发送电子设备之间的位置关系有关的位置关系信息发送给所述发送电子设备,以配合所述发送电子设备基于所述协助信息和所述位置关系信息来从资源池中选择用于发送所述数据的至少一个时频资源块。
  26. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求24或25所述的用于无线通信的方法。
PCT/CN2021/122960 2020-10-16 2021-10-11 用于无线通信的发送电子设备和接收电子设备以及方法 WO2022078272A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21879317.2A EP4207821A4 (en) 2020-10-16 2021-10-11 ELECTRONIC TRANSMISSION DEVICE AND ELECTRONIC RECEIVING DEVICE AND WIRELESS COMMUNICATION METHODS
US18/044,579 US20230379886A1 (en) 2020-10-16 2021-10-11 Transmitting electronic device and receiving electronic device and methods for wireless communication
JP2023523070A JP2023546129A (ja) 2020-10-16 2021-10-11 無線通信のための送信電子機器及び受信電子機器、並びに方法
CN202180069056.0A CN116325814A (zh) 2020-10-16 2021-10-11 用于无线通信的发送电子设备和接收电子设备以及方法
KR1020237015936A KR20230088403A (ko) 2020-10-16 2021-10-11 무선 통신을 위한 송신 전자 디바이스 및 수신 전자 디바이스 및 방법들

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011109690.6A CN114390428A (zh) 2020-10-16 2020-10-16 用于无线通信的发送电子设备和接收电子设备以及方法
CN202011109690.6 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022078272A1 true WO2022078272A1 (zh) 2022-04-21

Family

ID=81193156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122960 WO2022078272A1 (zh) 2020-10-16 2021-10-11 用于无线通信的发送电子设备和接收电子设备以及方法

Country Status (6)

Country Link
US (1) US20230379886A1 (zh)
EP (1) EP4207821A4 (zh)
JP (1) JP2023546129A (zh)
KR (1) KR20230088403A (zh)
CN (2) CN114390428A (zh)
WO (1) WO2022078272A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141699A (zh) * 2015-10-08 2018-06-08 瑞典爱立信有限公司 无网络覆盖下的设备到设备操作
WO2020034610A1 (en) * 2019-02-15 2020-02-20 Zte Corporation Resource configuration and selection for device-to-device links
CN110958096A (zh) * 2018-09-27 2020-04-03 电信科学技术研究院有限公司 一种资源指示方法及终端
WO2020085853A1 (ko) * 2018-10-25 2020-04-30 엘지전자 주식회사 Nr v2x에서 동기화 정보를 전송할지 여부를 결정하는 방법 및 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11570755B2 (en) * 2019-01-20 2023-01-31 Qualcomm Incorporated Control forwarding techniques for wireless communications
US11818716B2 (en) * 2020-07-17 2023-11-14 Samsung Electronics Co., Ltd User equipment assistance for resource selection in new radio vehicle to everything

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141699A (zh) * 2015-10-08 2018-06-08 瑞典爱立信有限公司 无网络覆盖下的设备到设备操作
CN110958096A (zh) * 2018-09-27 2020-04-03 电信科学技术研究院有限公司 一种资源指示方法及终端
WO2020085853A1 (ko) * 2018-10-25 2020-04-30 엘지전자 주식회사 Nr v2x에서 동기화 정보를 전송할지 여부를 결정하는 방법 및 장치
WO2020034610A1 (en) * 2019-02-15 2020-02-20 Zte Corporation Resource configuration and selection for device-to-device links

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Considerations on inter-UE coordination for mode 2 enhancements", 3GPP DRAFT; R1-2005546, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051914984 *
LENOVO, MOTOROLA MOBILITY: "Discussion on resource allocation for NR sidelink Mode 2", 3GPP DRAFT; R1-1912324, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051819998 *
LG ELECTRONICS: "WID revision: NR sidelink enhancement", 3GPP DRAFT; RP-201385, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20200629 - 20200703, 3 July 2020 (2020-07-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051906759 *
See also references of EP4207821A4 *

Also Published As

Publication number Publication date
JP2023546129A (ja) 2023-11-01
US20230379886A1 (en) 2023-11-23
KR20230088403A (ko) 2023-06-19
EP4207821A1 (en) 2023-07-05
EP4207821A4 (en) 2024-03-06
CN114390428A (zh) 2022-04-22
CN116325814A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US11765600B2 (en) Electronic device and method for wireless communication and computer-readable storage medium
US11757510B2 (en) Electronic devices and communication methods
WO2021169904A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
EP4152798A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US10904814B2 (en) Electronic device and method for wireless communication
US20230208476A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
US10674515B2 (en) User equipment and base station in wireless communications system, and wireless communications method
US20230362687A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022078272A1 (zh) 用于无线通信的发送电子设备和接收电子设备以及方法
US20230345533A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
CN116848918A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
KR20220047971A (ko) 무선 통신을 위한 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체
WO2022048486A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021068880A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023134717A1 (zh) 用于波束失败恢复的设备、方法和介质
WO2022222784A1 (zh) 用于无线通信的调度电子设备和成员电子设备以及方法
EP4016911A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2023083108A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021160076A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20240155647A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
CN116419155A (zh) 用于无线通信系统的电子设备、方法和存储介质
CN116801376A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN116471607A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021879317

Country of ref document: EP

Effective date: 20230328

WWE Wipo information: entry into national phase

Ref document number: 2023523070

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237015936

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE