WO2023185659A1 - 用户设备、电子设备、无线通信方法和存储介质 - Google Patents
用户设备、电子设备、无线通信方法和存储介质 Download PDFInfo
- Publication number
- WO2023185659A1 WO2023185659A1 PCT/CN2023/083578 CN2023083578W WO2023185659A1 WO 2023185659 A1 WO2023185659 A1 WO 2023185659A1 CN 2023083578 W CN2023083578 W CN 2023083578W WO 2023185659 A1 WO2023185659 A1 WO 2023185659A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- panel
- panels
- coherence
- information
- wireless communication
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 179
- 238000000034 method Methods 0.000 title claims abstract description 88
- 230000005540 biological transmission Effects 0.000 claims abstract description 43
- 238000012545 processing Methods 0.000 claims abstract description 32
- 230000001427 coherent effect Effects 0.000 claims description 97
- 239000011159 matrix material Substances 0.000 claims description 57
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 claims description 47
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 claims description 47
- 238000010586 diagram Methods 0.000 description 23
- 230000006870 function Effects 0.000 description 19
- 230000002596 correlated effect Effects 0.000 description 10
- 238000013461 design Methods 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 9
- 230000010267 cellular communication Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
Definitions
- Embodiments of the present disclosure relate generally to the field of wireless communications, and specifically to user equipment, electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to a user equipment in a wireless communication system, an electronic device as a network side device in a wireless communication system, a wireless communication method executed by a user equipment in a wireless communication system, a A wireless communication method performed by a network side device in a wireless communication system and a computer-readable storage medium.
- User equipment can be equipped with multiple antenna panels, referred to as panels, to cover multiple different directions. For example, each panel of the user equipment sends one or more beams in one direction.
- the user equipment can use the user capability value set (UE capability value set) to report multiple panels of the user equipment to the network side device.
- Each user capability value set corresponds to one panel.
- the set of user capability values may include one or more user capability values.
- the existing protocol stipulates that the user equipment cannot report two user capability value sets with the same user capability value. That is to say, if the user equipment has two panels, and the user capability values in the user capability value sets of the two panels are the same, the user equipment cannot report the two panels to the network side device at the same time, that is, the network side device cannot schedule them at the same time. these two panels. As a result, the application scenarios of scheduling multiple panels in uplink transmission are greatly limited.
- the purpose of this disclosure is to provide a user equipment, electronic equipment, wireless communication method and computer-readable storage medium to optimize the multi-panel uplink transmission process of the user equipment.
- a user equipment including a processing circuit configured to: generate panel information, the panel information including a set of user capability values for each panel in a plurality of panels of the user equipment, Wherein, the user capability values in the user capability value sets of different panels are the same or different; and the panel information is sent to the network side device.
- an electronic device including a processing circuit configured to: receive panel information from a user device; and determine each of a plurality of panels of the user device based on the panel information.
- a set of user ability values wherein the user ability values in the user ability value sets of different panels are the same or different.
- a wireless communication method performed by a user equipment including: generating panel information, the panel information including a set of user capability values for each panel in a plurality of panels of the user equipment. , wherein the user capability values in the user capability value sets of different panels are the same or different; and the panel information is sent to the network side device.
- a wireless communication method performed by an electronic device including: receiving panel information from a user equipment; and determining each panel of a plurality of panels of the user equipment based on the panel information.
- a set of user ability values, wherein the user ability values in the user ability value sets of different panels are the same or different.
- a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to perform the wireless communication method according to the present disclosure.
- a computer program that, when executed by a computer, causes the computer to perform the wireless communication method according to the present disclosure.
- the user ability values in the user ability value sets of different panels are the same or different.
- this disclosure cancels that the user equipment cannot
- the restriction on reporting two panels with the same user capability value removes the restriction on multi-panel uplink transmission, allowing user equipment to report any panel, thus optimizing the multi-panel uplink transmission process of user equipment.
- FIG. 1 is a block diagram illustrating an example of a configuration of a user equipment according to an embodiment of the present disclosure
- Figure 2 is an example diagram illustrating a network side device sending feedback information using DCI format 0_1 according to an embodiment of the present disclosure
- Figure 3 is an example diagram illustrating a network side device sending feedback information using DCI format 2_x according to an embodiment of the present disclosure
- Figure 4 is an example diagram illustrating a network side device sending feedback information using DCI format 1_1 according to an embodiment of the present disclosure
- Figure 5 is an example diagram illustrating a network side device sending feedback information using DCI format 1_2 according to an embodiment of the present disclosure
- FIG. 6 is a block diagram illustrating an example of a configuration of an electronic device as a network-side device according to an embodiment of the present disclosure
- FIG. 7 is a signaling flow diagram illustrating a process of scheduling multiple panels of a user equipment according to an embodiment of the present disclosure
- FIG. 8 is a flowchart illustrating a wireless communication method performed by a user equipment according to an embodiment of the present disclosure
- FIG. 9 is a flowchart illustrating a wireless communication method performed by an electronic device as a network side device according to another embodiment of the present disclosure.
- Figure 10 is a block diagram showing a first example of a schematic configuration of a gNB (Evolved Node B);
- Figure 11 is a block diagram showing a second example of a schematic configuration of a gNB
- FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone.
- FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device.
- Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth, such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, neither of which should be construed to limit the scope of the present disclosure. In certain example embodiments, well-known processes, well-known structures, and well-known techniques have not been described in detail.
- the existing protocol stipulates that user equipment cannot report two user capability value sets with the same user capability value, which greatly limits the application scenarios of scheduling multiple panels in uplink transmission.
- the existing protocol does not specify which parameter or parameters of the antenna panel are used as the user capability value in the user capability value set.
- the existing protocol after the user equipment reports beam quality information to the network side equipment, whether the network side equipment needs to send feedback information, And how to send feedback information is also undecided. Furthermore, there are no details in the existing protocols on how to implement scheduling of multiple panels in uplink transmission.
- the present disclosure proposes an electronic device in a wireless communication system, a wireless communication method performed by the electronic device in the wireless communication system, and a computer-readable storage medium to optimize the multi-panel uplink transmission process of user equipment.
- the wireless communication system according to the present disclosure may be a 5G NR communication system, or a 6G or higher level communication system.
- the network side device may be a base station device, for example, it may be an eNB or a gNB (base station in the 5th generation communication system).
- the user equipment according to the present disclosure may be a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and a digital camera device, or a vehicle-mounted terminal such as a car navigation device ).
- the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also known as a machine type communication (MTC) terminal).
- M2M machine-to-machine
- MTC machine type communication
- the user equipment may be a wireless communication module (such as an integrated circuit module including a single die) installed on each of the above-mentioned terminals.
- user equipment according to the present disclosure may be equipped with multiple antenna panels.
- FIG. 1 is a block diagram illustrating an example of a configuration of a user equipment 100 according to an embodiment of the present disclosure.
- the user equipment 100 may include a generation unit 110 and a communication unit 120.
- each unit of the user equipment 100 may be included in the processing circuit.
- the user equipment 100 may include one processing circuit or multiple processing circuits.
- the processing circuitry may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
- the generating unit 110 may generate panel information.
- the panel information may include a user capability value set of each panel in multiple panels of the user equipment 100.
- the user capability values (UE capability values) in the user capability value sets of different panels are the same or different.
- the user equipment 100 may send the panel information to the network side device through the communication unit 120.
- the network side device here may provide services for the user equipment 100 network-side equipment for the service.
- the user capability values in the user capability value sets of different panels are the same or different. That is to say, this disclosure cancels the restriction that the user equipment cannot report two panels with the same user capability value, that is, cancels the restriction on multi-panel uplink transmission, thereby enabling the user equipment to report any panel, thereby optimizing the user equipment. Multi-panel uplink transmission process.
- the user equipment 100 may further include a coherence type determination unit 130 for determining an intra-panel coherence type of each of all panels of the user equipment 100 .
- the generation unit 110 may treat the intra-panel correlation type as a user ability value so as to be included in the user ability value set of the panel.
- the intra-panel coherence type represents a coherence situation between multiple ports of the panel, and the coherence situation between the multiple ports of the panel includes complete coherence, partial coherence, and incoherence.
- the coherence type determination unit 130 may determine that the intra-panel coherence type of the panel is fully coherent.
- the coherence of two SRS ports means that the phase difference between the two SRS ports is constant, so the two SRS ports can use the same precoding matrix. That is, in the case of complete coherence, all SRS ports of the panel use the same precoding matrix.
- panel A has 4 SRS ports, numbered 1-4. Any two SRS ports of these 4 SRS ports are coherent, that is, the 4 SRS ports use the same precoding matrix a, then the intra-panel coherent of panel A The type is completely coherent.
- the coherence type determination unit 130 may determine that the intra-panel coherence type of the panel is incoherent.
- the incoherence of the two SRS ports means that the phase difference between the two SRS ports is not constant, that is, changes with time, so the two SRS ports use different precoding matrices. That is, in the non-coherent case, all SRS ports of the panel use different precoding matrices.
- panel B has 4 SRS ports, numbered 1-4.
- any two SRS ports of these 4 SRS ports are irrelevant, that is, the 4 SRS ports use different precoding matrices a, b, c and d respectively. , then the intra-panel coherence type of panel B is non-coherent.
- the coherence type determination unit 130 may determine that the intra-panel coherence type of the panel is partially coherent. That is, in the case of partial coherence, all SRS of the panel Some SRS ports among the ports use the same precoding matrix. For example, panel C has 4 SRS ports, numbered 1-4. Ports 1 and 2 of these 4 SRS ports are coherent and use the same precoding matrix a, port 3 uses precoding matrix b, and port 4 uses precoding Matrix c, then the intra-panel coherence type of panel C is partial coherence.
- the coherence situation between the multiple ports of the panel also includes partially coherent ports.
- the coherence situation between multiple ports of the panel can also include information indicating that 1 and 2 are coherent, that is, the user capability value not only includes information indicating partial coherence, but also information indicating partial coherence. Includes some of the relevant ports of this panel.
- the user capability value may also include the number of SRS ports, that is, the generating unit 110 may use the number of SRS ports of the panel as a user capability value to be included in the user capability value set of the panel. That is to say, the user capability value set of each panel can include two user capability values: the number of SRS ports; and the correlation type within the panel.
- the set of user capability values for each panel may include one or more user capability values. If the user ability values in the user ability value sets of the two panels are the same, it means that all the user ability values in the user ability value sets of the two panels are the same. Otherwise, the user ability values in the user ability value sets of the two panels are the same. different. Furthermore, according to embodiments of the present disclosure, when the user ability values in the user ability value sets of the two panels are the same, it can also be said that the user ability value sets of the two panels are the same.
- the user capability value set of each panel includes the number of SRS ports and the coherence type within the panel
- the two user capability values of the number of SRS ports and the coherence type within the panel are the same respectively
- the user ability value sets of the two panels are the same; otherwise, the user ability value sets of the two panels are different.
- panels D and E have the same number of SRS ports.
- the intra-panel coherence type of panel D is partial coherence, where ports 1 and 2 are coherent, and ports 3 and 4 are coherent.
- the intra-panel coherence type of panel E is partial coherence, where If ports 1 and 4 are coherent and ports 2 and 3 are coherent, then the user capability value sets of panels D and E are different.
- the intra-panel coherence type of panel F is complete coherence
- the intra-panel coherence type of panel G is complete coherence
- the number of SRS ports of the panel and/or the intra-panel coherence type may be included in the user capability value set of the panel as user capability values. That is, the present disclosure defines two parameters that can be used as user capability values.
- the generating unit 110 may include the user capability value set of each panel in the panel information.
- the user equipment can report the panel to the network side device, that is, the network side does not have any restrictions when scheduling multiple panels.
- the user equipment 100 may receive RRC configuration information from the network side device through the communication unit 120.
- the user equipment 100 may further include a measurement unit 140 for measuring the channel quality of each beam according to the reference signal from the network side device.
- the user equipment 100 may be equipped with multiple panels, each panel including one or more beams, so that the measurement unit 140 may measure the channel quality of each beam of each panel.
- L1-RSRP Layer 1-Reference Signal Receiving Power, Layer 1 reference signal receiving power
- L1-SINR Layer 1-Signal to Interference plus Noise Ratio, Layer 1 signal-to-interference and noise ratio
- the user equipment 100 may further include a selection unit 150 for selecting a preferred beam for each panel, that is, selecting a beam with optimal channel quality for each panel.
- the generating unit 110 may also generate beam quality information for each panel, and the beam quality information includes the preferred beam of the panel, so that the user equipment 100 may send the beam quality information to the network side device through the communication unit 120 .
- the panel indication information and the beam indication information may be used to represent the preferred beam of the panel. Furthermore, since there is a one-to-one correspondence between the panel and the user capability value set, the identification information of the user capability value set (UE capability value set ID) can be used to represent the panel indication information. In addition, since there is a one-to-one correspondence between the downlink reference signal of the network side equipment and the beam, CRI (CSI-RS resource indicator, CSI-RS resource indicator) or SSBRI (SSB (Synchronization Signal block, synchronization signal block) resource can be used indicator, SSB resource indicator) to represent beam indication information. That is, the beam quality information of each panel may include panel indication information and beam indication information.
- CRI CSI-RS resource indicator, CSI-RS resource indicator
- SSBRI Synchrononization Signal block, synchronization signal block
- the coherence type determination unit 130 may also determine each panel inter-panel coherence type, and the generating unit 110 may include the inter-panel coherence type in the beam quality information.
- the inter-panel coherence type of a panel may represent a coherence condition between the panel and other panels, and the coherence conditions between the panel and other panels include incoherence and coherence.
- the intra-panel coherence type of panel X is completely coherent
- the intra-panel coherence type of panel Y is completely coherent
- the inter-panel coherence type of panel X is coherent
- the inter-panel coherence type of panel Y is coherent.
- each port of panel X and each port of panel Y can use the same precoding matrix.
- the coherence type determination unit 130 may determine whether there are other panels in the user device 100 that are coherent with the panel. If there are no other panels that are coherent with this panel, the panel's inter-panel coherence type is incoherent. If there are other panels that are coherent with this panel, the panel's inter-panel coherence type is coherent. Further, if there are other panels that are correlated with the panel, the correlation between the panel and the other panels also includes information about the other panels that are correlated with the panel. For example, other panels can be represented by identification information of user ability value sets. For example, if panel X is coherent with panel Y, then the inter-panel coherence type of panel X is coherent, and the inter-panel coherence type of panel The inter-coherence type includes information from panel X.
- the generating unit 110 may also include the channel quality information of the preferred beam of the panel in the beam quality information.
- Channel quality information includes but is not limited to L1-RSRP and L1-SINR.
- the generating unit 110 may generate beam quality information for each panel, and the beam quality information may include one or more of the following: the inter-panel coherence type of the panel; the preferred beam of the panel; the preferred beam of the panel channel quality information.
- the user equipment 100 when reporting beam quality information to the network side device, may report the inter-panel coherence type. In addition, when reporting panel information to the network side device, the user equipment 100 may report the intra-panel correlation type. In this way, the network side device can be facilitated to schedule panels for uplink transmission for the user equipment 100 according to the intra-panel coherence type and inter-panel coherence type of each panel and determine the precoding matrix for each panel.
- the user equipment 100 may receive the beam quality information from the network side device through the communication unit 120. Feedback information of beam quality information.
- the user equipment 100 may further include a decoding unit 160 for decoding the feedback information to determine whether the network side device has received the beam quality information.
- the user equipment 100 can use the PUCCH, such as UCI (Uplink Control Information, uplink control information) in the PUCCH to send beam quality information.
- the network side device may send feedback information using DCI format 0 (DCI format 0) or DCI format 2 (DCI format 2), so that the decoding unit 160 decodes the feedback information to determine ACK and NACK.
- DCI format 0 DCI format 0
- DCI format 2 DCI format 2
- the decoding unit 160 determines ACK
- the user equipment 100 may determine that the network side device receives the beam quality information
- the decoding unit 160 determines NACK
- the user equipment 100 may determine that the network side device does not receive the beam quality information. Two situations in which the network side device uses DCI format 0 and DCI format 2 to send feedback information will be described in detail below.
- the network side device may use DCI format 0, such as DCI format 0_1, to send feedback information.
- DCI format 0_1 DCI format 0_1
- the user equipment 100 obtains the information of DCI format 0_1, it can determine whether the information is feedback for PUSCH, PUCCH or PUSCH and PUCCH according to the DFI (Downlink Feedback Information) flag, and then according to the HARQ- ACK bitmap, or HARQ-ACK bitmap of PUSCH and PUCCH to determine ACK or NACK.
- DFI Downlink Feedback Information
- FIG. 2 is an example diagram illustrating a network side device sending feedback information using DCI format 0_1 according to an embodiment of the present disclosure.
- DCI format 0_1 includes the DCI format identifier, carrier indication, DFI flag, HARQ-ACK bitmap, TPC (Transmit Power Control, transmission power control) and reserved bits.
- the HARQ-ACK bitmap represents the HARQ-ACK bitmap for PUSCH, and TPC represents the TPC for PUSCH;
- the HARQ-ACK bitmap represents the HARQ for PUCCH -ACK bitmap, TPC represents TPC for PUCCH; in the case of DFI flag 11, HARQ-ACK bitmap represents HARQ-ACK bitmap for PUSCH and PUCCH, TPC represents TPC for PUSCH and PUCCH; in the case of DFI flag
- it is 00 there is no HARQ-ACK bitmap, TPC and reserved bit information, indicating uplink scheduling grant (Uplink grant) information.
- the network side device can reuse DCI format 0_1 to carry feedback information, and only needs to perform a lot of modifications to DCI format 0_1. small changes This enables the carrying of feedback information.
- the network side device may use DCI format 2, such as DCI format 2_x, to send feedback information.
- DCI format 2_x DCI format 2_x
- the feedback information of the user equipment 100 can be determined from the HARQ-ACK codebook for all PUCCH resources according to the PUCCH resources where the user equipment 100 sends the beam quality information, and then Determine ACK or NACK.
- FIG. 3 is an example diagram illustrating a network side device sending feedback information using DCI format 2_x according to an embodiment of the present disclosure.
- DCI format 2_x includes PUCCH resources 1 to PUCCH resources N, and HARQ-ACK codebooks for PUCCH resources 1-N.
- the network side device can newly design DCI format 2_x to carry feedback information. Further, the user equipment 100 can use the RNTI (Radio Network Tempory Identity, Wireless Network Temporary Identity) dedicated to DCI format 2_x to decode the DCI format.
- RNTI Radio Network Tempory Identity, Wireless Network Temporary Identity
- the user equipment 100 can use the PUCCH, such as UCI (Uplink Control Information, uplink control information) in the PUCCH to send beam quality information.
- the network side device may send feedback information using DCI format 1 (DCI format 1), such as DCI format 1_1 and DCI format 1_2, so that the decoding unit 160 decodes the feedback information to determine NACK.
- DCI format 1 DCI format 1
- the user equipment 100 may determine that the network side device does not receive the beam quality information.
- the user equipment 100 may determine that the network side device receives the beam quality information. . In this way, the network side device can only feed back NACK, thereby greatly reducing signaling overhead. Two situations in which the network side device uses DCI format 1_1 and DCI format 1_2 to send feedback information will be described in detail below.
- the network side device may use a specific value of one or more fields in DCI format 1_1 to represent NACK feedback information.
- the network side device can use one or more of the RV (Redundancy Version, redundancy version) field, MCS (Modulation and Coding Scheme, modulation and coding scheme) field, and FDRA (Frequency Domain Resource Assignment, frequency domain resource allocation) field.
- RV Redundancy Version, redundancy version
- MCS Modulation and Coding Scheme, modulation and coding scheme
- FDRA Frequency Domain Resource Assignment, frequency domain resource allocation
- the user equipment 100 may determine NACK, that is, the network The side device has not received the beam quality information, otherwise it is determined that the network side device has received the beam quality information.
- FIG. 4 is an example diagram illustrating a network side device sending feedback information using DCI format 1_1 according to an embodiment of the present disclosure.
- DCI format 1_1 includes a DCI format identifier, carrier indication, RV field, MCS field, FDRA field and PUCCH resource indication.
- RV field When the values of the RV field are all 1, the values of the MCS field are all 1, and the values of the FDRA field are all 0, the user equipment 100 may determine that the NACK information is received.
- the network side device may use a specific value of one or more fields in DCI format 1_2 to represent NACK feedback information.
- the network side device can use one or more of the RV (Redundancy Version) field, MCS (Modulation and Coding Scheme) field and FDRA (Frequency Domain Resource Assignment) field.
- RV Redundancy Version
- MCS Modulation and Coding Scheme
- FDRA Frequency Domain Resource Assignment
- the user equipment 100 may determine NACK, that is, the network The side device has not received the beam quality information, otherwise it is determined that the network side device has received the beam quality information.
- FIG. 5 is an example diagram illustrating a network side device sending feedback information using DCI format 1_2 according to an embodiment of the present disclosure.
- DCI format 1_2 includes a DCI format identifier, carrier indication, RV field, MCS field, FDRA field and PUCCH resource indication.
- RV field When the values of the RV field are all 1, the values of the MCS field are all 1, and the values of the FDRA field are all 0, the user equipment 100 may determine that the NACK information is received.
- the network side device may use other combinations of fields and other specific values of the fields to represent NACK.
- the network side device can use DCI format 1 to reuse the bearer Feedback.
- the user equipment 100 may transmit beam quality information using PUSCH, such as UCI or MAC CE in PUSCH.
- the network side device may send feedback information using DCI format 0 (DCI format 0), such as DCI format 0_0 and DCI format 0_1, so that the decoding unit 160 decodes the feedback information to determine the feedback information.
- DCI format 0 DCI format 0
- DCI format 0_0 DCI format 0_0
- DCI format 0_1 DCI format 0
- the network side device may use the contents of the NDI (New Data indicator, new data indication) field in the uplink scheduling grant in DCI format 0_0 or DCI format 0_1 to indicate Indicates ACK or NACK.
- the user equipment 100 may receive DCI format 0_0 or DCI format 0_1, it may be determined according to the value of the NDI field whether the network side device has received the beam quality information. For example, when the value of the NDI field is 1, it indicates an ACK message, that is, the network side device has received the beam quality information; when the value of the NDI field is 0, it indicates a NACK message, that is, the network side device has not received the beam quality information. Further, the user equipment 100 may determine the NDI corresponding to the transmitted beam quality information according to the identification information of the HARQ process (HARQ process ID).
- HARQ process ID the identification information of the HARQ process
- the network side device can carry feedback information through the identification information and NDI field of the HARQ process in DCI format 0.
- the user equipment 100 when the user equipment 100 determines that the network side device has not received the beam quality information, the user equipment 100 may retransmit the beam quality information.
- the present disclosure considers that the network side device needs to feedback the beam quality information sent by the user equipment 100. Furthermore, the present disclosure designs details for the network side device to send feedback information, thereby improving the reliability of the beam quality information.
- the user equipment 100 can also receive uplink scheduling information from the network side device through the communication unit 120.
- the user equipment 100 may receive uplink scheduling information according to DCI format 0.
- the uplink scheduling information may include multiple SRS Resource Indicators (SRS Resource Indicators).
- SRS Resource Indicators SRS Resource Indicators
- the user equipment 100 may further include a panel determining unit 170, configured to determine multiple panels for uplink transmission according to multiple SRIs in the uplink scheduling information.
- SRI can be used to indicate an SRS resource (SRS Resource) in an SRS resource set (SRS Resource Set), and the SRS resource has a one-to-one correspondence with the uplink beam, so it can be used to indicate the user
- SRS Resource SRS resource set
- the SRS resource has a one-to-one correspondence with the uplink beam, so it can be used to indicate the user
- a specific beam of the device 100 can be used to indicate a specific panel of the user device 100 . That is, the panel determination unit 170 can determine one panel according to each SRI, and thus can determine a plurality of panels according to a plurality of SRIs.
- the uplink scheduling information may also include an SRI
- the panel determination unit 170 is configured to determine multiple panels for uplink transmission according to an SRI in the uplink scheduling information.
- the user equipment 100 may be preset between the user equipment 100 and the network side device. Mapping relationship between beam combination and SRI. That is to say, various combinations of beams on different panels can be listed, and each combination has a mapping relationship with an SRI.
- the user equipment 100 can determine the beam combination according to an SRI in the uplink scheduling information, that is, determine multiple SRS resources in multiple SRS resource sets, thereby determining multiple beams, and then determine the panel where the multiple beams are located.
- the user equipment 100 can determine multiple beams on multiple panels scheduled by the network side device according to the uplink scheduling information from the network side device.
- the uplink scheduling information may also include TPMI (Transmission Precoder Matrix Index).
- TPMI Transmission Precoder Matrix Index
- the user equipment 100 may further include a precoding matrix determination unit 180, configured to determine precoding matrices for multiple panels scheduled by the network side device according to the TPMI in the uplink scheduling information.
- the precoding matrix determination unit 180 can use the precoding matrix indicated by the TPMI as the precoding matrix for multiple panels.
- the precoding matrix determination unit 180 may also determine the number of precoding matrices for each panel, that is, the number of TPMIs, according to the intra-panel coherence type of each scheduled panel.
- the network side device schedules Panel A and Panel B, and Panel A and Panel B are coherent, then the user equipment 100 can determine a precoding matrix based on a TPMI, and all ports of Panel A and all ports of Panel B use this precoding matrix. matrix.
- the network-side device schedules Panel C and Panel D. Panel C and Panel D are non-correlated. The intra-panel correlation of Panel C is completely coherent, the intra-panel correlation of Panel D is non-correlated, and Panel D has 2 port, then the user equipment can determine 3 precoding matrices based on 3 TPMIs, in which all ports of panel C use precoding matrix 1, and the 2 ports of panel D use precoding matrix 2 and precoding matrix 3 respectively.
- the network side device schedules panel E and panel F, and panel E and panel F are not Coherent, the intra-panel coherence relationship of panel E is completely coherent, the intra-panel coherence relationship of panel F is partially coherent, and panel F has 4 ports, among which ports a and b are coherent, then the user equipment can determine 4 based on 4 TPMI Precoding matrix, where all ports of panel E use precoding matrix 1, ports a and b of panel F use precoding matrix 2, port c uses precoding matrix 3, and port d uses precoding matrix 4.
- the network side device may, for example, determine the coherence relationship between the panels through the inter-panel coherence type in the beam quality information, and determine the coherence relationship between the ports of each panel through the intra-panel coherence type class in the panel information, so that Determine the number of precoding matrices required for each panel.
- the user equipment 100 can determine the precoding matrix used by each scheduled port of multiple antenna panels through the uplink scheduling information of the network side device.
- the present disclosure designs details for the network side device to simultaneously schedule multiple panels of the user equipment 100, so that the network side device can use the uplink scheduling information to simultaneously schedule multiple panels and configure precoding matrices for multiple panels. .
- the user equipment 100 can report the panel to the network side device, that is, the network side does not have any restrictions when scheduling multiple panels. Furthermore, the present disclosure defines two user capability values in the user capability value set: the number of SRS ports and the intra-panel coherence type. Furthermore, this disclosure believes that the network side device needs to feedback the beam quality information sent by the user equipment 100, and designs the details of the feedback information sent by the network side device, thereby improving the reliability of the beam quality information.
- the present disclosure designs details for the network side device to simultaneously schedule multiple panels of the user equipment 100, so that the network side device can use the uplink scheduling information to simultaneously schedule multiple panels and configure precoding matrices for multiple panels.
- the present disclosure optimizes the multi-panel uplink transmission process of the user equipment 100.
- FIG. 6 is a block diagram illustrating the structure of an electronic device 600 serving as a network-side device in a wireless communication system according to an embodiment of the present disclosure.
- the electronic device 600 here may be, for example, a base station device.
- the electronic device 600 may include a communication unit 610 and a determination unit 620.
- each unit of the electronic device 600 may be included in the processing circuit. It should be noted that the electronic device 600 may include one processing circuit or multiple processing circuits. road. Further, the processing circuitry may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
- the electronic device 600 may receive panel information from the user device through the communication unit 610.
- the user equipment here may be a user equipment within the service range of the electronic device 600.
- the determining unit 620 may determine a user capability value set for each panel in multiple panels of the user equipment according to the panel information, wherein the user capability values in the user capability value sets of different panels are the same or different. same.
- the user ability values in the user ability value sets of different panels in the panel information are the same or different. That is to say, the present disclosure cancels the restriction that the user equipment cannot report two panels with the same user capability value, that is, cancels the restriction on multi-panel uplink transmission, so that the user equipment can report any panel, so that the electronic device 600 can schedule Any panel, thereby optimizing the multi-panel upstream transmission process of user equipment.
- the determining unit 620 may determine one or more user capability values included in a set of user capability values according to the set.
- the user capability value may include an intra-panel coherence type.
- the intra-panel coherence type represents a coherence situation between multiple ports of the panel.
- the coherence situation between the multiple ports of the panel includes complete coherence, partial coherence and non-coherence. That is, the determining unit 620 may determine the intra-panel coherence type of each panel, that is, fully coherent, partially coherent, and non-coherent, according to the panel information from the user equipment.
- the coherence situation between the multiple ports of the panel also includes partially coherent ports. That is to say, when the intra-panel coherence type is partial coherence, the determination unit 620 may also determine a coherent port.
- the user capability value may also include the number of SRS ports, that is, the determining unit 620 may determine the number of SRS ports of each panel according to the panel information from the user equipment. That is to say, the user capability value set of each panel can include two user capability values: the number of SRS ports; and the correlation type within the panel.
- the electronic device 600 can perform RRC configuration on the user equipment and send the RRC configuration information to the user equipment.
- the electronic device 600 can also send a reference signal to the user equipment, so that the user equipment can measure the channel quality of each beam of each panel.
- the electronic device 600 can also receive data from a user through the communication unit 610 User equipment receives beam quality information for each panel.
- the determining unit 620 may determine a preferred beam of the panel according to the beam quality information.
- the beam quality information of each panel may include panel indication information and beam indication information
- the determining unit 620 may determine the preferred beam of each panel according to the panel indication information and beam indication information in the beam quality information.
- the identification information of the user capability value set (UE capability value set ID) can be used to represent the panel indication information, so that the determination unit 620 can determine the panel indication information according to the user capability value set. Identification information to identify the panel.
- CRI or SSBRI can be used to represent the beam indication information, so that the determining unit can determine the beam based on the CRI or SSBRI.
- the determining unit 620 may also determine channel quality information of the preferred beam of the panel according to the beam quality information, such as L1-SINR or L1-RSRP.
- the determining unit 620 may determine an inter-panel coherence type of the panel according to the beam quality information.
- the inter-panel coherence type represents the coherence condition between the panel and other panels, and the coherence condition between the panel and other panels includes incoherence. and related.
- the correlation between the panel and other panels also includes information about other panels that are correlated with the panel. That is, the determination unit 620 may determine whether there are other panels that are coherent with the panel according to the inter-panel coherence type, and if there are other panels that are coherent with the panel, the determination unit 620 may also determine that there are other panels that are coherent with the panel. panel.
- the determining unit 620 may determine other panels according to the identification information of the user capability value set.
- the electronic device 600 may further include a generating unit 630 for generating feedback information for beam quality information. Further, the electronic device 600 can send feedback information to the user device through the communication unit 610.
- the electronic device 600 may use DCI format 0 or DCI format 2 to carry feedback information, and the feedback information includes ACK and NACK. That is, when the electronic device 600 successfully receives the beam quality information, the generating unit 630 generates an ACK; when the electronic device 600 fails to receive the beam quality information, the generating unit 630 generates a NACK.
- the electronic device 600 may utilize DCI format 0, such as DCI format 0_1, to send feedback information.
- the electronic device 600 may use the DFI flag to represent Indicates whether the information is feedback for PUSCH, PUCCH, or PUSCH and PUCCH, and generates a HARQ-ACK bitmap for PUCCH or a HARQ-ACK bitmap for PUSCH and PUCCH based on the feedback information.
- DCI format 0_1 includes a DCI format identifier, carrier indication, DFI flag, HARQ-ACK bitmap, TPC and reserved bits.
- the HARQ-ACK bitmap represents the HARQ-ACK bitmap for PUSCH, and TPC represents the TPC for PUSCH;
- the HARQ-ACK bitmap represents the HARQ for PUCCH -ACK bitmap, TPC represents TPC for PUCCH; in the case of DFI flag 11, HARQ-ACK bitmap represents HARQ-ACK bitmap for PUSCH and PUCCH, TPC represents TPC for PUSCH and PUCCH; in the case of DFI flag
- it is 00 there is no HARQ-ACK bitmap, TPC and reserved bit information, indicating uplink scheduling grant (Uplink grant) information.
- the electronic device 600 can reuse DCI format 0_1 to carry feedback information, and only needs to make small changes to DCI format 0_1. Changes can realize the carrying of feedback information.
- the electronic device 600 may utilize DCI format 2, such as DCI format 2_x, to send feedback information.
- the generation unit may determine the HARQ-ACK codebook for all PUCCH resources according to the feedback information and the PUCCH resources for which the user equipment sends beam quality information. That is to say, the HARQ-ACK codebook for all PUCCH resources may include feedback information of multiple user equipments served by the electronic device 600.
- DCI format 2_x includes PUCCH resources 1 to PUCCH resources N, and HARQ-ACK codebooks for PUCCH resources 1-N.
- the electronic device 600 can newly design the DCI format 2_x to carry the feedback information. Further, the electronic device 600 can assign a new RNTI (Radio Network Tempory Identity, Wireless Network Temporary Identity) to scramble the newly designed DCI format 2_x.
- RNTI Radio Network Tempory Identity, Wireless Network Temporary Identity
- the electronic device 600 may use DCI format 1 to carry feedback information, and the feedback information includes NACK. That is to say, if the electronic device 600 successfully receives the beam quality information, no feedback information is sent; if the electronic device 600 does not successfully receive the beam quality information, the generating unit 630 generates a NACK.
- the electronic device 600 may utilize a specific value of one or more fields in DCI format 1_1 or DCI format 1_2 to represent the NACK feedback information.
- electronic device 600 may utilize a specific value of one or more of the RV field, MCS field, and FDRA field to represent a NACK.
- a value of all 1 in the RV field, all 1 in the MCS field, and all 0 in the FDRA field indicates a NACK.
- DCI format 1_1 and DCI format 1_2 include a DCI format identifier, a carrier indication, an RV field, an MCS field, an FDRA field and a PUCCH resource indication.
- the electronic device 600 may also use the PUCCH resource indication field to indicate the PUCCH that has not been successfully decoded.
- the electronic device 600 can use DCI format 1 to carry feedback by reusing information.
- the electronic device 600 may indicate feedback information using the content of the NDI field in DCI format 0.
- the electronic device 600 may use the content of the NDI field in the uplink scheduling grant in DCI format 0_0 or DCI format 0_1 to represent ACK or NACK. If the electronic device 600 successfully receives the beam quality information, the value of the NDI field may be set to 1; if the electronic device 600 does not successfully receive the beam quality information, the value of the NDI field may be set to 0. Further, the electronic device 600 may determine the NDI corresponding to the transmitted beam quality information according to the identification information (HARQ process ID) of the HARQ process.
- HARQ process ID the identification information
- the electronic device 600 may carry feedback information through the identification information and NDI field of the HARQ process in DCI format 0.
- the present disclosure considers that the electronic device 600 needs to provide feedback on the beam quality information sent by the user equipment. Further, the present disclosure designs details of the feedback information sent by the electronic device 600, thereby improving the reliability of the beam quality information.
- the electronic device 600 may further include a panel determining unit 640 for determining multiple panels for uplink transmission for the user equipment. Further, the generating unit 630 may generate uplink scheduling information, and the electronic device 600 may send the uplink scheduling information to the user equipment through the communication unit 610. Here, the electronic device 600 may send the uplink scheduling information through DCI format 0.
- the uplink scheduling information may include multiple SRIs for indicating multiple panels scheduled for the user equipment. That is to say, the electronic device 600 can determine multiple beams on multiple panels that need to be scheduled. Since SRI has a one-to-one correspondence with uplink beams, multiple SRIs can be used to indicate multiple beams, thereby indicating multiple panels. .
- the uplink scheduling information may include an SRI to indicate multiple beams on multiple panels scheduled for the user equipment.
- the mapping relationship between the beam combination and the SRI may be preset between the user equipment and the electronic device 600 . That is to say, various combinations of beams on different panels can be listed, and each combination has a mapping relationship with an SRI.
- the electronic device 600 can determine the SRI corresponding to the scheduled beam combination, thereby including the SRI in the uplink scheduling information.
- the electronic device 600 may further include a precoding matrix determining unit 650 for determining a precoding matrix for each port of the scheduled multiple panels.
- the multiple panels may use the same precoding matrix. Therefore, the precoding matrix determining unit 650 may determine a precoding matrix to be used as a precoding matrix for multiple panels, and the generating unit 630 may indicate the precoding matrix with a TPMI, and include the TPMI in the uplink scheduling information.
- the precoding matrix determination unit 650 may also determine the precoding matrix according to the intra-panel value of each scheduled panel.
- the coherence type determines the number of precoding matrices for each panel.
- all ports of the panel use the same precoding matrix, that is, the number of precoding matrices required by the panel is 1; when the intra-panel coherence type is non-coherent In this case, all ports of the panel use different precoding matrices, that is, the number of precoding matrices required by the panel is the same as the number of ports; when the coherence type within the panel is partially coherent, the coherent ports of the panel use For the same precoding matrix, irrelevant ports use different precoding matrices.
- the generating unit 630 may indicate multiple precoding matrices with a corresponding number of TPMIs, and include the multiple TPMIs in the uplink scheduling information.
- the electronic device 600 can determine the coherence relationship between each panel through the inter-panel coherence type in the beam quality information, and determine the coherence relationship between the ports of each panel through the intra-panel coherence type class in the panel information, thereby determining The number of TPMIs to be sent.
- the present disclosure designs details for the electronic device 600 to simultaneously schedule multiple panels of the user equipment, so that the electronic device 600 can utilize the uplink scheduling information to simultaneously schedule multiple panels and configure precoding matrices for the multiple panels.
- the user equipment can report the panel to the electronic device 600, that is, the electronic device 600 does not have any restrictions when scheduling multiple panels.
- the present disclosure defines two user capability values in the user capability value set: the number of SRS ports and the intra-panel coherence type.
- the present disclosure believes that the electronic device 600 needs to feedback the beam quality information sent by the user equipment, and designs the details of the feedback information sent by the electronic device 600, thereby improving the reliability of the beam quality information.
- the present disclosure designs details for the electronic device 600 to simultaneously schedule multiple panels of the user equipment, so that the electronic device 600 can utilize the uplink scheduling information to simultaneously schedule multiple panels and configure precoding matrices for multiple panels.
- the present disclosure optimizes the multi-panel uplink transmission process of user equipment.
- step S701 the UE generates panel information, including a set of user capability values for each panel.
- step S702 the UE sends the panel information to the gNB.
- step S703 the gNB performs RRC configuration on the UE.
- step S704 the gNB performs downlink beam scanning on the UE.
- step S705 the UE measures the channel quality of each beam and generates beam quality information.
- step S706 the UE sends the generated beam quality information to the gNB.
- step S707 the gNB generates feedback information.
- step S708 the gNB sends feedback information to the UE.
- step S709 the gNB determines multiple panels scheduled for the UE and the precoding matrices of each port of each panel, and generates uplink scheduling information.
- step S710 the gNB sends the uplink scheduling information to the UE.
- step S711 the UE uses the panel scheduled by gNB to perform uplink transmission. This enables the gNB to schedule multiple panels for the UE's uplink transmission.
- FIG. 8 is a flowchart illustrating a wireless communication method performed by the user equipment 100 in the wireless communication system according to an embodiment of the present disclosure.
- step S810 panel information is generated, and the panel information includes user settings A user ability value set of each panel in the multiple panels of the device 100, wherein the user ability values in the user ability value sets of different panels are the same or different.
- step S820 the panel information is sent to the network side device.
- the user capability value includes an intra-panel coherence type.
- the intra-panel coherence type represents a coherence situation between multiple ports of the panel.
- the coherence situation between the multiple ports of the panel includes complete coherence, partial coherence and non-coherence.
- the coherence condition between the multiple ports of the panel also includes partially coherent ports.
- the wireless communication method further includes: measuring the channel quality of each beam according to the reference signal from the network side device; generating beam quality information for each panel, the beam quality information including the preferred beam of the panel and the inter-panel coherence type of the panel , the inter-panel coherence type indicates the coherence condition between the panel and other panels.
- the coherence condition between the panel and other panels includes incoherence and coherence; and the beam quality information is sent to the network side device.
- the correlation between the panel and other panels also includes information about other panels that are correlated with the panel.
- the wireless communication method further includes: receiving feedback information for the beam quality information from the network side device.
- the wireless communication method further includes: using PUCCH to send beam quality information; and using DCI format 0 or DCI format 2 to determine feedback information, where the feedback information includes ACK and NACK.
- the wireless communication method further includes: using PUCCH to send beam quality information; and using DCI format 1 to determine feedback information, where the feedback information includes NACK.
- the wireless communication method further includes: using PUSCH to send beam quality information; and using new data in DCI format 0 to indicate the content of the NDI field to determine the feedback information.
- the wireless communication method further includes: receiving uplink scheduling information from a network side device, where the uplink scheduling information includes one or more sounding reference signals (SRS) resource indications (SRIs); and determining multiple panels for uplink transmission according to the one or more SRIs. .
- SRS sounding reference signals
- SRIs resource indications
- the uplink scheduling information further includes a transmission precoding matrix indication TPMI
- the wireless communication method further includes determining precoding matrices of multiple coherent panels according to the TPMI.
- the uplink scheduling information further includes a plurality of TPMIs
- the wireless communication method further includes determining precoding matrices of a plurality of non-coherent panels according to the plurality of TPMIs.
- the subject that performs the above method may be the user equipment 100 according to the embodiment of the present disclosure, so all the previous embodiments about the user equipment 100 are applicable here.
- FIG. 9 is a flowchart illustrating a wireless communication method performed by an electronic device 600 as a network-side device in a wireless communication system according to an embodiment of the present disclosure.
- step S910 panel information is received from the user equipment.
- step S920 a user capability value set for each panel in multiple panels of the user equipment is determined according to the panel information, where the user capability values in the user capability value sets of different panels are the same or different.
- the user capability value includes an intra-panel coherence type.
- the intra-panel coherence type represents a coherence situation between multiple ports of the panel.
- the coherence situation between the multiple ports of the panel includes complete coherence, partial coherence and non-coherence.
- the coherence condition between the multiple ports of the panel also includes partially coherent ports.
- the wireless communication method further includes: receiving beam quality information for each panel from the user equipment; and determining a preferred beam of the panel and an inter-panel coherence type of the panel according to the beam quality information, the inter-panel coherence type indicating the relationship between the panel and other panels.
- the coherence situation between panels and other panels includes incoherence and coherence.
- the correlation between the panel and other panels also includes information about other panels that are correlated with the panel.
- the wireless communication method further includes: generating feedback information for the beam quality information; and sending the feedback information to the user equipment.
- the wireless communication method further includes: using PUCCH to receive beam quality information; and using DCI format 0 or DCI format 2 to carry feedback information, where the feedback information includes ACK and NACK.
- the wireless communication method further includes: using PUCCH to receive beam quality information; and using DCI format 1 to carry feedback information, where the feedback information includes NACK.
- the wireless communication method further includes: using PUSCH to receive beam quality information; and using new data in DCI format 0 to indicate content of the NDI field to indicate feedback information.
- the wireless communication method further includes: determining multiple panels for uplink transmission for the user equipment; generating uplink scheduling information, where the uplink scheduling information includes one or more sounding reference signals SRS resource indications SRI for indicating the multiple panels; and sending uplink scheduling information to user equipment.
- the uplink scheduling information also includes a transmission precoding matrix indication TPMI for the user equipment to determine the precoding matrices of the multiple coherent panels; and when used for When multiple panels for uplink transmission are non-coherent, the uplink scheduling information also includes multiple TPMIs for the user equipment to determine precoding matrices for multiple non-coherent panels.
- TPMI transmission precoding matrix indication
- the subject that performs the above method may be an electronic device 600 according to an embodiment of the present disclosure, so all the previous embodiments about the electronic device 600 are applicable here.
- the technology of the present disclosure can be applied to a variety of products.
- the network side device can be implemented as any type of base station equipment, such as macro eNB and small eNB, and can also be implemented as any type of gNB (base station in the 5G system).
- a small eNB may be an eNB covering a smaller cell than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB, and may also be implemented as a gNB.
- the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
- the base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRH) disposed at a different place from the main body.
- RRH remote radio heads
- the user equipment may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and a digital camera, or a vehicle-mounted terminal such as a car navigation device.
- the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also known as a machine type communication (MTC) terminal).
- M2M machine-to-machine
- MTC machine type communication
- the user equipment may be a wireless communication module (such as an integrated circuit module including a single die) installed on each of the above-mentioned user equipments.
- gNB 1000 is a block diagram illustrating a first example of a schematic configuration of a gNB to which the technology of the present disclosure may be applied.
- gNB 1000 includes one or more antennas 1010 and base station equipment 1020.
- the base station device 1020 and each antenna 1010 may be connected to each other via an RF cable.
- Each of the antennas 1010 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used by the base station device 1020 to transmit and receive wireless signals.
- gNB 1000 may include multiple antennas 1010.
- multiple antennas 1010 may be compatible with multiple frequency bands used by gNB 1000.
- FIG. 10 shows an example in which gNB 1000 includes multiple antennas 1010, gNB 1000 may also include a single antenna 1010.
- the base station device 1020 includes a controller 1021, a memory 1022, a network interface 1023, and a wireless communication interface 1025.
- the controller 1021 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1020 .
- the controller 1021 generates data packets based on the data in the signal processed by the wireless communication interface 1025 and delivers the generated packets via the network interface 1023 .
- the controller 1021 may bundle data from multiple baseband processors to generate bundled packets, and deliver the generated bundled packets.
- the controller 1021 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
- the memory 1022 includes RAM and ROM, and stores programs executed by the controller 1021 and various types of control data such as terminal lists, transmission power data, and scheduling data.
- the network interface 1023 is a communication interface used to connect the base station device 1020 to the core network 1024. Controller 1021 may communicate with core network nodes or additional gNBs via network interface 1023. In this case, the gNB 1000 and the core network node or other gNBs may be connected to each other through logical interfaces such as the S1 interface and the X2 interface.
- the network interface 1023 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1023 is a wireless communication interface, the network interface 1023 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1025 .
- the wireless communication interface 1025 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced and provides wireless connection to terminals located in the cell of the gNB 1000 via the antenna 1010 .
- Wireless communication interface 1025 may generally include, for example, a baseband (BB) processor 1026 and RF circuitry 1027.
- the BB processor 1026 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
- the BB processor 1026 may have part or all of the above-mentioned logical functions.
- the BB processor 1026 may be a memory that stores a communication control program, or a module including a processor and related circuits configured to execute the program.
- the update program can enable BB to The functionality of the processor 1026 changes.
- the module may be a card or blade that is inserted into a slot of the base station device 1020. Alternatively, the module may be a chip mounted on a card or blade.
- the RF circuit 1027 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 1010.
- the wireless communication interface 1025 may include multiple BB processors 1026 .
- multiple BB processors 1026 may be compatible with multiple frequency bands used by gNB 1000.
- wireless communication interface 1025 may include a plurality of RF circuits 1027.
- multiple RF circuits 1027 may be compatible with multiple antenna elements.
- FIG. 10 shows an example in which the wireless communication interface 1025 includes multiple BB processors 1026 and multiple RF circuits 1027, the wireless communication interface 1025 may also include a single BB processor 1026 or a single RF circuit 1027.
- gNB 11 is a block diagram illustrating a second example of a schematic configuration of a gNB to which the technology of the present disclosure may be applied.
- gNB 1130 includes one or more antennas 1140, base station equipment 1150, and RRH 1160.
- RRH 1160 and each antenna 1140 may be connected to each other via RF cables.
- the base station equipment 1150 and the RRH 1160 may be connected to each other via high-speed lines such as fiber optic cables.
- Antennas 1140 each include single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by RRH 1160 to transmit and receive wireless signals.
- gNB 1130 may include multiple antennas 1140.
- multiple antennas 1140 may be compatible with multiple frequency bands used by gNB 1130.
- FIG. 11 shows an example in which gNB 1130 includes multiple antennas 1140, gNB 1130 may also include a single antenna 1140.
- the base station device 1150 includes a controller 1151, a memory 1152, a network interface 1153, a wireless communication interface 1155 and a connection interface 1157.
- the controller 1151, the memory 1152, and the network interface 1153 are the same as the controller 1021, the memory 1022, and the network interface 1023 described with reference to FIG. 10 .
- the wireless communication interface 1155 supports any cellular communication scheme such as LTE and LTE-Advanced and provides wireless communication to terminals located in the sector corresponding to the RRH 1160 via the RRH 1160 and the antenna 1140 .
- the wireless communication interface 1155 may generally include a BB processor 1156, for example.
- the BB processor 1156 is the same as the BB processor 1026 described with reference to FIG. 10 except that the BB processor 1156 is connected to the RF circuit 1164 of the RRH 1160 via the connection interface 1157 .
- the wireless communication interface 1155 may include multiple BB processors 1156 .
- multiple BB processors 1156 may be compatible with multiple frequency bands used by gNB 1130.
- FIG. 11 shows an example in which the wireless communication interface 1155 includes a plurality of BB processors 1156, there is no Line communication interface 1155 may also include a single BB processor 1156.
- connection interface 1157 is an interface for connecting the base station device 1150 (wireless communication interface 1155) to the RRH 1160.
- the connection interface 1157 may also be a communication module for communication in the above-mentioned high-speed line that connects the base station device 1150 (wireless communication interface 1155) to the RRH 1160.
- RRH 1160 includes a connection interface 1161 and a wireless communication interface 1163.
- connection interface 1161 is an interface for connecting the RRH 1160 (wireless communication interface 1663) to the base station device 1150.
- the connection interface 1161 may also be a communication module used for communication in the above-mentioned high-speed line.
- Wireless communication interface 1163 transmits and receives wireless signals via antenna 1140.
- Wireless communication interface 1163 may generally include RF circuitry 1164, for example.
- RF circuitry 1164 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1140 .
- wireless communication interface 1163 may include a plurality of RF circuits 1164.
- multiple RF circuits 1164 may support multiple antenna elements.
- FIG. 11 shows an example in which the wireless communication interface 1163 includes a plurality of RF circuits 1164, the wireless communication interface 1163 may also include a single RF circuit 1164.
- the determination unit 620, the generation unit 630, the panel determination unit 640 and the precoding matrix determination unit 650 described in FIG. 6 may be configured by the controller 1021 and/or Controller 1151 implements. At least part of the functions may also be implemented by the controller 1021 and the controller 1151.
- the controller 1021 and/or the controller 1151 can perform selecting and determining panel information, determining beam quality information, generating feedback information, generating uplink scheduling information, determining the panel of the user equipment, determining each panel by executing instructions stored in the corresponding memory. The function of the panel's precoding matrix.
- the smart phone 1200 includes a processor 1201, a memory 1202, a storage device 1203, an external connection interface 1204, a camera 1206, a sensor 1207, a microphone 1208, an input device 1209, a display device 1210, a speaker 1211, a wireless communication interface 1212, one or more Antenna switch 1215, one or more antennas 1216, bus 1217, battery 1218, and auxiliary controller 1219.
- the processor 1201 may be, for example, a CPU or a system on a chip (SoC), and controls functions of the application layer and other layers of the smartphone 1200 .
- Memory 1202 includes RAM and ROM, and And stores data and programs executed by the processor 1201.
- the storage device 1203 may include storage media such as semiconductor memory and hard disk.
- the external connection interface 1204 is an interface for connecting external devices, such as memory cards and Universal Serial Bus (USB) devices, to the smartphone 1200 .
- the camera 1206 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) and generates a captured image.
- Sensors 1207 may include a group of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
- the microphone 1208 converts the sound input to the smartphone 1200 into an audio signal.
- the input device 1209 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1210, and receives an operation or information input from a user.
- the display device 1210 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1200 .
- the speaker 1211 converts the audio signal output from the smartphone 1200 into sound.
- the wireless communication interface 1212 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
- the wireless communication interface 1212 may generally include a BB processor 1213 and an RF circuit 1214, for example.
- the BB processor 1213 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
- the RF circuit 1214 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1216.
- the wireless communication interface 1212 may be a chip module on which the BB processor 1213 and the RF circuit 1214 are integrated.
- the wireless communication interface 1212 may include multiple BB processors 1213 and multiple RF circuits 1214.
- FIG. 12 shows an example in which the wireless communication interface 1212 includes multiple BB processors 1213 and multiple RF circuits 1214, the wireless communication interface 1212 may also include a single BB processor 1213 or a single RF circuit 1214.
- the wireless communication interface 1212 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
- the wireless communication interface 1212 may include a BB processor 1213 and an RF circuit 1214 for each wireless communication scheme.
- Each of the antenna switches 1215 switches the connection destination of the antenna 1216 between a plurality of circuits included in the wireless communication interface 1212 (for example, circuits for different wireless communication schemes).
- Antennas 1216 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 1212 to transmit and receive wireless signals.
- smartphone 1200 may include multiple antennas 1216.
- FIG. 12 shows an example in which smartphone 1200 includes multiple antennas 1216 , but smartphone 1200 may also include a single antenna 1216 .
- smartphone 1200 may include an antenna 1216 for each wireless communication scheme.
- the antenna switch 1215 may be omitted from the configuration of the smartphone 1200.
- the bus 1217 connects the processor 1201, the memory 1202, the storage device 1203, the external connection interface 1204, the camera 1206, the sensor 1207, the microphone 1208, the input device 1209, the display device 1210, the speaker 1211, the wireless communication interface 1212, and the auxiliary controller 1219 to each other. connect.
- the battery 1218 provides power to the various blocks of the smartphone 1200 shown in FIG. 12 via feeders, which are partially shown in the figure as dashed lines.
- the auxiliary controller 1219 operates the minimum necessary functions of the smartphone 1200 in the sleep mode, for example.
- the generation unit 110 , the coherence type determination unit 130 , the measurement unit 140 , the selection unit 150 , the decoding unit 160 , the panel determination unit 170 and the precoding matrix determination unit described in FIG. 1 180 may be implemented by processor 1201 or auxiliary controller 1219. At least part of the functionality may also be implemented by processor 1201 or auxiliary controller 1219.
- the processor 1201 or the auxiliary controller 1219 may perform generating panel information, generating beam quality information, determining intra-panel coherence type, determining inter-panel coherence type, measuring channel quality, by executing instructions stored in the memory 1202 or storage device 1203. The function of selecting the preferred beam, decoding the feedback information, determining the panel for network side device scheduling, and determining the precoding matrix of the panel.
- the car navigation device 1320 includes a processor 1321, a memory 1322, a global positioning system (GPS) module 1324, a sensor 1325, a data interface 1326, a content player 1327, a storage media interface 1328, an input device 1329, a display device 1330, a speaker 1331, a wireless Communication interface 1333, one or more antenna switches 1336, one or more antennas 1337, and battery 1338.
- GPS global positioning system
- the processor 1321 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 1320 .
- the memory 1322 includes RAM and ROM, and stores data and programs executed by the processor 1321 .
- the GPS module 1324 measures the location (such as latitude, longitude, and altitude) of the car navigation device 1320 using GPS signals received from GPS satellites.
- Sensors 1325 may include a group of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
- Data interface 1326 It is connected to, for example, the in-vehicle network 1341 via a terminal not shown, and data generated by the vehicle (such as vehicle speed data) is acquired.
- the content player 1327 reproduces content stored in storage media, such as CDs and DVDs, which are inserted into the storage media interface 1328 .
- the input device 1329 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1330, and receives an operation or information input from a user.
- the display device 1330 includes a screen such as an LCD or an OLED display, and displays an image of a navigation function or reproduced content.
- the speaker 1331 outputs the sound of the navigation function or the reproduced content.
- the wireless communication interface 1333 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
- Wireless communication interface 1333 may generally include, for example, BB processor 1334 and RF circuitry 1335.
- the BB processor 1334 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communications.
- the RF circuit 1335 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 1337.
- the wireless communication interface 1333 may also be a chip module on which the BB processor 1334 and the RF circuit 1335 are integrated. As shown in FIG.
- the wireless communication interface 1333 may include a plurality of BB processors 1334 and a plurality of RF circuits 1335.
- FIG. 13 shows an example in which the wireless communication interface 1333 includes multiple BB processors 1334 and multiple RF circuits 1335, the wireless communication interface 1333 may also include a single BB processor 1334 or a single RF circuit 1335.
- the wireless communication interface 1333 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
- the wireless communication interface 1333 may include a BB processor 1334 and an RF circuit 1335 for each wireless communication scheme.
- Each of the antenna switches 1336 switches the connection destination of the antenna 1337 between a plurality of circuits included in the wireless communication interface 1333, such as circuits for different wireless communication schemes.
- Antennas 1337 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 1333 to transmit and receive wireless signals.
- car navigation device 1320 may include multiple antennas 1337 .
- FIG. 13 shows an example in which the car navigation device 1320 includes multiple antennas 1337, the car navigation device 1320 may also include a single antenna 1337.
- the car navigation device 1320 may include antennas for each wireless communication scheme 1337.
- the antenna switch 1336 may be omitted from the configuration of the car navigation device 1320.
- the battery 1338 provides power to the various blocks of the car navigation device 1320 shown in FIG. 13 via feeders, which are partially shown as dashed lines in the figure. Battery 1338 accumulates power provided from the vehicle.
- the precoding matrix determination unit 180 may be implemented by the processor 1321. At least part of the functionality may also be implemented by processor 1321.
- the processor 1321 may perform generating panel information, generating beam quality information, determining intra-panel coherence types, determining inter-panel coherence types, measuring channel quality, selecting preferred beams, and decoding feedback information by executing instructions stored in memory 1322 , determine the panel for network side device scheduling, and determine the function of the panel's precoding matrix.
- the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1340 including a car navigation device 1320 , an in-vehicle network 1341 , and one or more blocks of a vehicle module 1342 .
- vehicle module 1342 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1341 .
- the units shown in dotted boxes in the functional block diagrams shown in the accompanying drawings all indicate that the functional units are optional in the corresponding devices, and each optional functional unit can be combined in an appropriate manner to achieve the required functions. .
- a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
- multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices respectively.
- one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
- steps described in the flowchart include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in steps processed in time series, it goes without saying that the order can be appropriately changed.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种用户设备、电子设备、无线通信方法和存储介质。根据本申请的用户设备包括处理电路,被配置为:生成面板信息,所述面板信息包括所述用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同;以及将所述面板信息发送至网络侧设备。使用根据本申请的用户设备、电子设备、无线通信方法和存储介质,可以使得用户设备能够上报用户能力值相同的两个面板、设计了电子设备对波束质量信息进行反馈的细节和电子设备调度用户设备的多个面板的细节,从而能够优化用户设备的多面板上行传输过程。
Description
本申请要求于2022年4月1日提交中国专利局、申请号为202210339010.2、发明名称为“用户设备、电子设备、无线通信方法和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开的实施例总体上涉及无线通信领域,具体地涉及用户设备、电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种无线通信系统中的用户设备、一种作为无线通信系统中的网络侧设备的电子设备、一种由无线通信系统中的用户设备执行的无线通信方法、一种由无线通信系统中的网络侧设备执行的无线通信方法以及一种计算机可读存储介质。
用户设备可以装备多个天线面板,简称面板(panel),以覆盖多个不同的方向。例如,用户设备的每一个面板朝向一个方向、发送一个或多个波束。用户设备可以利用用户能力值集合(UE capability value set)来向网络侧设备上报用户设备的多个面板,每个用户能力值集合对应一个面板。用户能力值集合可以包括一个或多个用户能力值。而在现有的协议中规定,用户设备不能上报用户能力值相同的两个用户能力值集合。也就是说,如果用户设备具有两个面板,这两个面板的用户能力值集合中的用户能力值相同,则用户设备不能向网络侧设备同时上报这两个面板,即网络侧设备不能同时调度这两个面板。这样一来,大大限制了在上行传输中调度多个面板的应用场景。
此外,在现有的协议中,在用户设备装备多个天线面板的场景中,在用户设备向网络侧设备上报波束质量信息之后,网络侧设备是否需要发送反馈信息、以及如何发送反馈信息还没有定论。进一步,在网络侧设备确定为用户设备的上行传输调度多个面板的情况下,如何实现上行调度也是需要解决的技术问题之一。
因此,有必要提出一种技术方案,以优化用户设备的多面板上行传
输过程。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种用户设备、电子设备、无线通信方法和计算机可读存储介质,以优化用户设备的多面板上行传输过程。
根据本公开的一方面,提供了一种用户设备,包括处理电路,被配置为:生成面板信息,所述面板信息包括所述用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同;以及将所述面板信息发送至网络侧设备。
根据本公开的另一方面,提供了一种电子设备,包括处理电路,被配置为:从用户设备接收面板信息;以及根据所述面板信息确定所述用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同。
根据本公开的另一方面,提供了一种由用户设备执行的无线通信方法,包括:生成面板信息,所述面板信息包括所述用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同;以及将所述面板信息发送至网络侧设备。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:从用户设备接收面板信息;以及根据所述面板信息确定所述用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
根据本公开的另一方面,提供了一种计算机程序,所述计算机程序当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的用户设备、电子设备、无线通信方法和计算机可读存储介质,用户设备上报的面板信息中,不同的面板的用户能力值集合中的用户能力值相同或者不相同。也就是说,本公开取消了用户设备不能
上报用户能力值相同的两个面板的限制,即取消了对多面板上行传输的限制,从而使得用户设备能够上报任意的面板,进而优化了用户设备的多面板上行传输过程。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的用户设备的配置的示例的框图;
图2是示出根据本公开的实施例的网络侧设备利用DCI格式0_1发送反馈信息的示例图;
图3是示出根据本公开的实施例的网络侧设备利用DCI格式2_x发送反馈信息的示例图;
图4是示出根据本公开的实施例的网络侧设备利用DCI格式1_1发送反馈信息的示例图;
图5是示出根据本公开的实施例的网络侧设备利用DCI格式1_2发送反馈信息的示例图;
图6是示出根据本公开的实施例的作为网络侧设备的电子设备的配置的示例的框图;
图7是示出根据本公开的实施例的对用户设备的多个面板进行调度的过程的信令流程图;
图8是示出根据本公开的实施例的由用户设备执行的无线通信方法的流程图;
图9是示出根据本公开的另一个实施例的由作为网络侧设备的电子设备执行的无线通信方法的流程图;
图10是示出gNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图11是示出gNB的示意性配置的第二示例的框图;
图12是示出智能电话的示意性配置的示例的框图;以及
图13是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.问题的描述;
2.用户设备的配置示例;
3.网络侧设备的配置示例;
4.方法实施例;
5.应用示例。
<1.问题的描述>
前文中提到,在现有的协议中规定,用户设备不能上报用户能力值相同的两个用户能力值集合,大大限制了在上行传输中调度多个面板的应用场景。另外,现有的协议并未规定将天线面板的哪个或者哪些参数用作用户能力值集合中的用户能力值。此外,在现有的协议中,在用户设备向网络侧设备上报波束质量信息之后,网络侧设备是否需要发送反馈信息、
以及如何发送反馈信息也没有定论。进一步,在现有的协议中也没有关于如何实现在上行传输中调度多个面板的细节。
本公开针对这样的场景提出了一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以优化用户设备的多面板上行传输过程。
根据本公开的无线通信系统可以是5G NR通信系统,也可以是6G或者更高等级的通信系统。
根据本公开的网络侧设备可以是基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。此外,根据本公开的用户设备可以装备多个天线面板。
<2.用户设备的配置示例>
图1是示出根据本公开的实施例的用户设备100的配置的示例的框图。
如图1所示,用户设备100可以包括生成单元110和通信单元120。
这里,用户设备100的各个单元都可以包括在处理电路中。需要说明的是,用户设备100既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,生成单元110可以生成面板信息。这里,面板信息可以包括用户设备100的多个面板中的每个面板的用户能力值集合.进一步,不同的面板的用户能力值集合中的用户能力值(UE capability value)相同或不相同。
根据本公开的实施例,用户设备100可以通过通信单元120将面板信息发送至网络侧设备。这里的网络侧设备可以是为用户设备100提供服
务的网络侧设备。
由此可见,根据本公开的实施例的用户设备100,上报的面板信息中,不同的面板的用户能力值集合中的用户能力值相同或者不相同。也就是说,本公开取消了用户设备不能上报用户能力值相同的两个面板的限制,即取消了对多面板上行传输的限制,从而使得用户设备能够上报任意的面板,进而优化了用户设备的多面板上行传输过程。
根据本公开的实施例,如图1所示,用户设备100还可以包括相干类型确定单元130,用于确定用户设备100的所有面板中的每个面板的面板内相干类型。进一步,生成单元110可以将面板内相干类型作为一个用户能力值从而被包括在该面板的用户能力值集合中。
根据本公开的实施例,面板内相干类型表示面板的多个端口之间的相干情况,面板的多个端口之间的相干情况包括完全相干、部分相干和非相干。
根据本公开的实施例,在面板的所有SRS端口中的任意两个SRS端口均相干的情况下,相干类型确定单元130可以确定该面板的面板内相干类型为完全相干。这里,两个SRS端口相干指的是两个SRS端口之间的相位差恒定,因此两个SRS端口可以使用相同的预编码矩阵。也就是说,在完全相干的情况下,该面板的所有SRS端口均使用相同的预编码矩阵。例如,面板A具有4个SRS端口,编号为1-4,这4个SRS端口的任意两个SRS端口都相干,即4个SRS端口使用相同的预编码矩阵a,则面板A的面板内相干类型为完全相干。
根据本公开的实施例,在面板的所有SRS端口中的任意两个SRS端口均不相干的情况下,相干类型确定单元130可以确定该面板的面板内相干类型为非相干。这里,两个SRS端口不相干指的是两个SRS端口之间的相位差非恒定,即随时间变化,因此两个SRS端口使用不同的预编码矩阵。也就是说,在非相干的情况下,该面板的所有SRS端口均使用不同的预编码矩阵。例如,面板B具有4个SRS端口,编号为1-4,这4个SRS端口的任意两个SRS端口都不相干,即4个SRS端口分别使用不同的预编码矩阵a、b、c和d,则面板B的面板内相干类型为非相干。
根据本公开的实施例,在面板的所有SRS端口中存在部分的相干的SRS端口的情况下,相干类型确定单元130可以确定该面板的面板内相干类型为部分相干。也就是说,在部分相干的情况下,该面板的所有SRS
端口中有部分SRS端口使用相同的预编码矩阵。例如,面板C具有4个SRS端口,编号为1-4,这4个SRS端口中的端口1和2相干,使用相同的预编码矩阵a,端口3使用预编码矩阵b,端口4使用预编码矩阵c,则面板C的面板内相干类型为部分相干。
根据本公开的实施例,在面板的多个端口部分相干的情况下,面板的多个端口之间的相干情况还包括部分相干的端口。例如,在面板C中的端口1和2相干的情况下,面板的多个端口之间的相干情况还可以包括表示1和2相干的信息,即用户能力值不仅包括表示部分相干的信息,还包括该面板的部分相干的端口。
根据本公开的实施例,用户能力值还可以包括SRS端口的数目,即生成单元110可以将面板的SRS端口的数目作为一个用户能力值从而被包括在该面板的用户能力值集合中。也就是说,每个面板的用户能力值集合都可以包括两个用户能力值:SRS端口的数目;以及面板内相干类型。
根据本公开的实施例,每个面板的用户能力值集合可以包括一个或多个用户能力值。两个面板的用户能力值集合中的用户能力值相同指的是这两个面板的用户能力值集合中的所有用户能力值均相同,否则这两个面板的用户能力值集合中的用户能力值不同。此外,根据本公开的实施例,在两个面板的用户能力值集合中的用户能力值相同的情况下,也可以说这两个面板的用户能力值集合相同。
也就是说,在每个面板的用户能力值集合包括SRS端口的数目以及面板内相干类型的情况下,在两个面板的SRS端口的数目以及面板内相干类型这两个用户能力值分别相同的情况下,这两个面板的用户能力值集合相同,否则这两个面板的用户能力值集合不同。例如,面板D和面板E的SRS端口的数目相同,面板D的面板内相干类型为部分相干,其中端口1和2相干,端口3和4相干,面板E的面板内相干类型为部分相干,其中端口1和4相干,端口2和3相干,则面板D和面板E的用户能力值集合不同。再如,面板F和面板G的SRS端口的数目相同,面板F的面板内相干类型为完全相干,面板G的面板内相干类型为完全相干,则面板F和面板G的用户能力值集合相同。
如上所述,根据本公开的实施例,可以将面板的SRS端口的数目和/或面板内相干类型作为用户能力值从而包括在面板的用户能力值集合中。也就是说,本公开定义了两种可以用作用户能力值的参数。
根据本公开的实施例,在如上所述确定了用户设备100的所有面板中的每个面板的用户能力值集合之后,生成单元110可以将每个面板的用户能力值集合包括在面板信息中。
由此可见,根据本公开的实施例,不管用户能力值集合是否相同,用户设备都可以将该面板上报至网络侧设备,即网络侧在调度多面板时没有任何限制。
根据本公开的实施例,在上报面板信息之后,用户设备100可以通过通信单元120从网络侧设备接收RRC配置信息。
根据本公开的实施例,如图1所示,用户设备100还可以包括测量单元140,用于根据来自网络侧设备的参考信号对各个波束的信道质量进行测量。这里,用户设备100可以装备有多个面板,每个面板包括一个或多个波束,从而测量单元140可以对各个面板的各个波束的信道质量进行测量。
本公开对表示信道质量的参数不作任何限定。例如,可以用L1-RSRP(Lay 1-Reference Signal Receiving Power,层1参考信号接收功率)或者L1-SINR(Lay 1-Signal to Interference plus Noise Ratio,层1信干噪比)来表示各个波束的信道质量。
根据本公开的实施例,如图1所示,用户设备100还可以包括选择单元150,用于选择每个面板的优选波束,即针对每个面板选择信道质量最优的波束。
根据本公开的实施例,生成单元110还可以针对每个面板生成波束质量信息,波束质量信息包括该面板的优选波束,从而用户设备100可以通过通信单元120将波束质量信息发送至网络侧设备。
根据本公开的实施例,可以用面板指示信息和波束指示信息来表示面板的优选波束。进一步,由于面板与用户能力值集合存在一一对应的关系,因此可以用用户能力值集合的标识信息(UE capability value set ID)来表示面板指示信息。此外,由于网络侧设备的下行参考信号与波束存在一一对应的关系,因此可以用CRI(CSI-RS resource indicator,CSI-RS资源指示)或者SSBRI(SSB(Synchronization Signal block,同步信号块)resource indicator,SSB资源指示)来表示波束指示信息。也就是说,每个面板的波束质量信息可以包括面板指示信息和波束指示信息。
根据本公开的实施例,相干类型确定单元130还可以确定每个面板
的面板间相干类型,并且生成单元110可以将面板间相干类型包括在波束质量信息中。
根据本公开的实施例,面板的面板间相干类型可以表示该面板与其他面板之间的相干情况,该面板与其他面板之间的相干情况包括非相干和相干。
根据本公开的实施例,如果面板X的面板内相干类型为完全相干,面板Y的面板内相干类型为完全相干,且面板X的各个端口与面板Y的各个端口之间的相位差恒定,则面板X的面板间相干类型为相干,面板Y的面板间相干类型为相干。此时,面板X的各个端口与面板Y的各个端口可以使用相同的预编码矩阵。
针对每个面板,相干类型确定单元130可以确定用户设备100中是否存在与该面板相干的其他面板。如果不存在与该面板相干的其他面板,则该面板的面板间相干类型为非相干。如果存在与该面板相干的其他面板,则该面板的面板间相干类型为相干。进一步,在存在与该面板相干的其他面板的情况下,该面板与其他面板之间的相干情况还包括与该面板相干的其他面板的信息。例如,可以用用户能力值集合的标识信息来表示其他面板。例如,在面板X与面板Y相干,则面板X的面板间相干类型为相干,并且面板X的面板间相干类型包括面板Y的信息;面板Y的面板间相干类型为相干,并且面板Y的面板间相干类型包括面板X的信息。
根据本公开的实施例,生成单元110还可以将面板的优选波束的信道质量信息包括在波束质量信息中。信道质量信息包括但不限于L1-RSRP和L1-SINR。
如上所述,生成单元110可以针对每个面板生成波束质量信息,波束质量信息可以包括以下中的一种或多种:该面板的面板间相干类型;该面板的优选波束;该面板的优选波束的信道质量信息。
如上所述,根据本公开的实施例,用户设备100在向网络侧设备上报波束质量信息时,可以上报面板间相干类型。此外,用户设备100在向网络侧设备上报面板信息时,可以上报面板内相干类型。这样一来,可以便于网络侧设备根据各个面板的面板内相干类型和面板间相干类型来为用户设备100调度用于上行传输的面板并为各个面板确定预编码矩阵。
根据本公开的实施例,在用户设备100向网络侧设备发送波束质量信息之后,用户设备100可以通过通信单元120从网络侧设备接收针对波
束质量信息的反馈信息。
根据本公开的实施例,如图1所示,用户设备100还可以包括解码单元160,用于对反馈信息进行解码以确定网络侧设备是否接收到波束质量信息。
根据本公开的实施例,用户设备100可以利用PUCCH,例如PUCCH中的UCI(Uplink Control Information,上行控制信息)发送波束质量信息。在这种情况下,网络侧设备可以利用DCI格式0(DCI format 0)或DCI格式2(DCI format 2)发送反馈信息,从而解码单元160对反馈信息进行解码以确定ACK和NACK。在解码单元160确定ACK的情况下,用户设备100可以确定网络侧设备接收到波束质量信息;在解码单元160确定NACK的情况下,用户设备100可以确定网络侧设备没有接收到波束质量信息。下面将详细描述网络侧设备利用DCI格式0和DCI格式2发送反馈信息的两种情形。
根据本公开的实施例,网络侧设备可以利用DCI格式0,例如DCI格式0_1来发送反馈信息。具体地,当用户设备100获得DCI格式0_1的信息之后,可以根据DFI(Downlink Feedback Information,下行反馈信息)标志来确定该信息是针对PUSCH、PUCCH还是PUSCH和PUCCH的反馈,进而根据PUCCH的HARQ-ACK比特图、或者根据PUSCH和PUCCH的HARQ-ACK比特图来确定ACK或者NACK。
图2是示出根据本公开的实施例的网络侧设备利用DCI格式0_1发送反馈信息的示例图。如图2所示,DCI格式0_1包括DCI格式的标识、载波指示、DFI标志、HARQ-ACK比特图、TPC(Transmit Power Control,传输功率控制)以及预留位。在DFI标志为01的情况下,HARQ-ACK比特图表示针对PUSCH的HARQ-ACK比特图,TPC表示针对PUSCH的TPC;在DFI标志为10的情况下,HARQ-ACK比特图表示针对PUCCH的HARQ-ACK比特图,TPC表示针对PUCCH的TPC;在DFI标志为11的情况下,HARQ-ACK比特图表示针对PUSCH和PUCCH的HARQ-ACK比特图,TPC表示针对PUSCH和PUCCH的TPC;在DFI标志为00的情况下,没有HARQ-ACK比特图、TPC以及预留位信息,表示上行调度准许(Uplink grant)信息。
如上所述,在用户设备100利用PUCCH发送波束质量信息、并且网络侧设备发送ACK或者NACK的情况下,网络侧设备可以对DCI格式0_1进行重用从而承载反馈信息,仅需要对DCI格式0_1进行很小的改动
就可以实现反馈信息的承载。
根据本公开的实施例,网络侧设备可以利用DCI格式2,例如DCI格式2_x来发送反馈信息。具体地,当用户设备100获得DCI格式2_x的信息之后,可以根据用户设备100发送波束质量信息的PUCCH的资源从而从针对所有PUCCH资源的HARQ-ACK码本中确定用户设备100的反馈信息,进而确定ACK或者NACK。
图3是示出根据本公开的实施例的网络侧设备利用DCI格式2_x发送反馈信息的示例图。如图3所示,DCI格式2_x包括PUCCH资源1至PUCCH资源N、以及针对PUCCH资源1-N的HARQ-ACK码本。
如上所述,在用户设备100利用PUCCH发送波束质量信息、并且网络侧设备发送ACK或者NACK的情况下,网络侧设备可以新设计DCI格式2_x来承载反馈信息。进一步,用户设备100可以利用专用于DCI格式2_x的RNTI(Radio Network Tempory Identity,无线网络临时标识)来对该DCI格式进行解码。
根据本公开的实施例,用户设备100可以利用PUCCH,例如PUCCH中的UCI(Uplink Control Information,上行控制信息)发送波束质量信息。在这种情况下,网络侧设备可以利用DCI格式1(DCI format 1),例如DCI格式1_1和DCI格式1_2发送反馈信息,从而解码单元160对反馈信息进行解码以确定NACK。在解码单元160确定NACK的情况下,用户设备100可以确定网络侧设备没有接收到波束质量信息,在用户设备100没有收到NACK的情况下,用户设备100可以确定网络侧设备接收到波束质量信息。这样一来,网络侧设备可以只反馈NACK,从而大大减少信令开销。下面将详细描述网络侧设备利用DCI格式1_1和DCI格式1_2发送反馈信息的两种情形。
根据本公开的实施例,网络侧设备可以利用DCI格式1_1中的一个或多个字段的某个特定值来表示NACK反馈信息。例如,网络侧设备可以利用RV(Redundancy Version,冗余版本)字段、MCS(Modulation and Coding Scheme,调制编码方案)字段和FDRA(Frequency Domain Resource Assignment,频域资源分配)字段中的一个或多个的特定值来表示NACK。作为一个非限制性示例,当用户设备100根据DCI格式1_1确定RV字段的值全部为1、MCS字段的值全部为1、FDRA字段的值全部为0时,用户设备100可以确定NACK,即网络侧设备没有接收到波束质量信息,否则确定网络侧设备接收到波束质量信息。
图4是示出根据本公开的实施例的网络侧设备利用DCI格式1_1发送反馈信息的示例图。如图4所示,DCI格式1_1包括DCI格式的标识、载波指示、RV字段、MCS字段、FDRA字段和PUCCH资源指示。在RV字段的值全部为1、MCS字段的值全部为1、FDRA字段的值全部为0的情况下,用户设备100可以确定接收到NACK信息。
根据本公开的实施例,网络侧设备可以利用DCI格式1_2中的一个或多个字段的某个特定值来表示NACK反馈信息。例如,网络侧设备可以利用RV(Redundancy Version,冗余版本)字段、MCS(Modulation and Coding Scheme,调制编码方案)字段和FDRA(Frequency Domain Resource Assignment,频域资源分配)字段中的一个或多个的特定值来表示NACK。作为一个非限制性示例,当用户设备100根据DCI格式1_2确定RV字段的值全部为1、MCS字段的值全部为1、FDRA字段的值全部为0时,用户设备100可以确定NACK,即网络侧设备没有接收到波束质量信息,否则确定网络侧设备接收到波束质量信息。
图5是示出根据本公开的实施例的网络侧设备利用DCI格式1_2发送反馈信息的示例图。如图5所示,DCI格式1_2包括DCI格式的标识、载波指示、RV字段、MCS字段、FDRA字段和PUCCH资源指示。在RV字段的值全部为1、MCS字段的值全部为1、FDRA字段的值全部为0的情况下,用户设备100可以确定接收到NACK信息。
值得注意的是,如上虽然描述了利用RV字段的值全部为1、MCS字段的值全部为1、FDRA字段的值全部为0的情况指示NACK信息的实施例,但是该实施例并不是限制性的。网络侧设备可以利用字段的其他组合、以及字段的其他特定值来表示NACK。
如上所述,根据本公开的实施例,在用户设备100利用PUCCH来传输波束质量信息,并且网络侧设备只反馈NACK而不反馈ACK的情况下,网络侧设备可以利用通过重用DCI格式1来承载反馈信息。
根据本公开的实施例,用户设备100可以利用PUSCH,例如PUSCH中的UCI或MAC CE发送波束质量信息。在这种情况下,网络侧设备可以利用DCI格式0(DCI format 0),例如DCI格式0_0和DCI格式0_1发送反馈信息,从而解码单元160对反馈信息进行解码以确定反馈信息。
具体地,网络侧设备可以利用DCI格式0_0或DCI格式0_1中的上行调度准许中的NDI(New Data indicator,新数据指示)字段的内容来表
示ACK或者NACK。当用户设备100接收到DCI格式0_0或DCI格式0_1之后,可以根据NDI字段的值来确定网络侧设备是否接收到波束质量信息。例如,当NDI字段的值为1时,表示ACK消息,即网络侧设备接收到波束质量信息;当NDI字段的值为0时,表示NACK消息,即网络侧设备没有接收到波束质量信息。进一步,用户设备100可以根据HARQ进程的标识信息(HARQ process ID)来确定与发送的波束质量信息相对应的NDI。
如上所述,根据本公开的实施例,在用户设备100利用PUSCH来传输波束质量信息的情况下,网络侧设备可以通过DCI格式0中的HARQ进程的标识信息和NDI字段来承载反馈信息。
根据本公开的实施例,在用户设备100确定网络侧设备没有接收到波束质量信息的情况下,用户设备100可以对波束质量信息进行重传。
如上所述,本公开认为网络侧设备需要对用户设备100发送的波束质量信息进行反馈。进一步,本公开设计了网络侧设备发送反馈信息的细节,从而提高波束质量信息的可靠性。
根据本公开的实施例,用户设备100还可以通过通信单元120从网络侧设备接收上行调度信息。例如,用户设备100可以根据DCI格式0接收上行调度信息。
根据本公开的实施例,上行调度信息可以包括多个SRI(SRS Resource Indicator,SRS资源指示)。如图1所示,用户设备100还可以包括面板确定单元170,用于根据上行调度信息中的多个SRI确定用于上行传输的多个面板。
根据本公开的实施例,SRI可以用于指示一个SRS资源集合(SRS Resource Set)中的一个SRS资源(SRS Resource),而SRS资源与上行波束具有一一对应的关系,因此可以用于指示用户设备100的某个特定波束,即可以用于指示用户设备100的某个特定面板。也就是说,面板确定单元170可以根据每个SRI确定一个面板,从而可以根据多个SRI确定多个面板。
根据本公开的实施例,上行调度信息也可以包括一个SRI,面板确定单元170用于根据上行调度信息中的一个SRI确定用于上行传输的多个面板。
根据本公开的实施例,可以在用户设备100与网络侧设备之间预设
波束组合与SRI的映射关系。也就是说,可以将不同的面板上的波束的各种组合都列举出来,每个组合与一个SRI具有映射关系。这样一来,用户设备100可以根据上行调度信息中的一个SRI确定波束组合,即确定多个SRS资源集合中的多个SRS资源,从而确定多个波束,进而确定多个波束所在的面板。
由此可见,用户设备100可以根据来自网络侧设备的上行调度信息确定网络侧设备调度的多个面板上的多个波束。
根据本公开的实施例,上行调度信息还可以包括TPMI(Transmission Precoder Matrix Index,传输预编码矩阵索引)。如图1所示,用户设备100还可以包括预编码矩阵确定单元180,用于根据上行调度信息中的TPMI确定网络侧设备调度的多个面板的预编码矩阵。
根据本公开的实施例,在上行调度信息包括一个TPMI的情况下,说明网络侧设备调度的多个面板之间是相干的关系,因此这多个面板可以使用相同的预编码矩阵。因此,预编码矩阵确定单元180可以将该TPMI指示的预编码矩阵用作多个面板的预编码矩阵。
根据本公开的实施例,在上行调度信息包括多个TPMI的情况下,说明网络侧设备调度的多个面板之间是非相干的关系,因此多个面板使用不同的预编码矩阵。进一步,预编码矩阵确定单元180还可以根据调度的各个面板的面板内相干类型确定各个面板的预编码矩阵的数目,即TPMI的数目。也就是说,在面板内相干类型为完全相干的情况下,该面板的所有端口使用相同的预编码矩阵,即TPMI的数目为1;在面板内相干类型为非相干的情况下,该面板的所有端口使用不同的预编码矩阵,即TPMI的数目与端口的数目相同;在面板内相干类型为部分相干的情况下,该面板的相干的端口使用相同的预编码矩阵,不相干的端口使用不同的预编码矩阵。
例如,网络侧设备调度了面板A和面板B,面板A和面板B相干,则用户设备100可以根据一个TPMI确定一个预编码矩阵,面板A的所有端口和面板B的所有端口都使用该预编码矩阵。再如,网络侧设备调度了面板C和面板D,面板C和面板D非相干,面板C的面板内相干关系为完全相干,面板D的面板内相干关系为非相干、且面板D具有2个端口,则用户设备可以根据3个TPMI确定3个预编码矩阵,其中面板C的所有端口使用预编码矩阵1,面板D的2个端口分别使用预编码矩阵2和预编码矩阵3。又如,网络侧设备调度了面板E和面板F,面板E和面板F非
相干,面板E的面板内相干关系为完全相干,面板F的面板内相干关系为部分相干、且面板F具有4个端口,其中端口a和b相干,则用户设备可以根据4个TPMI确定4个预编码矩阵,其中面板E的所有端口使用预编码矩阵1,面板F的端口a和b使用预编码矩阵2,端口c使用预编码矩阵3,端口d使用预编码矩阵4。
这里,网络侧设备例如可以通过波束质量信息中的面板间相干类型来确定各个面板之间的相干关系,并且通过面板信息中的面板内相干类型类确定各个面板的端口之间的相干关系,从而确定各个面板所需要的预编码矩阵的数目。
如上所述,根据本公开的实施例,用户设备100可以通过网络侧设备的上行调度信息确定调度的多个天线面板的各个端口所使用的预编码矩阵。
如上所述,本公开对网络侧设备同时调度用户设备100的多个面板的细节进行了设计,从而使得网络侧设备可以利用上行调度信息同时调度多个面板,并为多个面板配置预编码矩阵。
由此可见,根据本公开的实施例,不管用户能力值集合是否相同,用户设备100都可以将该面板上报至网络侧设备,即网络侧在调度多面板时没有任何限制。此外,本公开定义了用户能力值集合中的两个用户能力值:SRS端口的数目和面板内相干类型。进一步,本公开认为网络侧设备需要对用户设备100发送的波束质量信息进行反馈,并且设计了网络侧设备发送反馈信息的细节,从而提高波束质量信息的可靠性。此外,本公开对网络侧设备同时调度用户设备100的多个面板的细节进行了设计,从而使得网络侧设备可以利用上行调度信息同时调度多个面板,并为多个面板配置预编码矩阵。综上,本公开优化了用户设备100的多面板上行传输过程。
<3.网络侧设备的配置示例>
图6是示出根据本公开的实施例的无线通信系统中的用作网络侧设备的电子设备600的结构的框图。这里的电子设备600例如可以为基站设备。
如图6所示,电子设备600可以包括通信单元610和确定单元620。
这里,电子设备600的各个单元都可以包括在处理电路中。需要说明的是,电子设备600既可以包括一个处理电路,也可以包括多个处理电
路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,电子设备600可以通过通信单元610从用户设备接收面板信息。这里的用户设备可以是电子设备600服务范围内的用户设备。
根据本公开的实施例,确定单元620可以根据面板信息确定用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同。
如上所述,根据本公开的实施例,面板信息中不同的面板的用户能力值集合中的用户能力值相同或者不相同。也就是说,本公开取消了用户设备不能上报用户能力值相同的两个面板的限制,即取消了对多面板上行传输的限制,从而使得用户设备能够上报任意的面板,从而电子设备600可以调度任意的面板,进而优化了用户设备的多面板上行传输过程。
根据本公开的实施例,确定单元620可以根据用户能力值集合确定其中包括的一个或多个用户能力值。这里,用户能力值可以包括面板内相干类型,面板内相干类型表示面板的多个端口之间的相干情况,面板的多个端口之间的相干情况包括完全相干、部分相干和非相干。也就是说,确定单元620可以根据来自用户设备的面板信息确定各个面板的面板内相干类型,即完全相干、部分相干和非相干。
根据本公开的实施例,在面板的多个端口部分相干的情况下,面板的多个端口之间的相干情况还包括部分相干的端口。也就是说,在面板内相干类型为部分相干的情况下,确定单元620还可以确定相干的端口。
根据本公开的实施例,用户能力值还可以包括SRS端口的数目,即确定单元620可以根据来自用户设备的面板信息确定各个面板的SRS端口的数目。也就是说,每个面板的用户能力值集合都可以包括两个用户能力值:SRS端口的数目;以及面板内相干类型。
根据本公开的实施例,电子设备600可以对用户设备进行RRC配置,并向用户设备发送RRC配置信息。此外,电子设备600还可以向用户设备发送参考信号,以用于用户设备对各个面板的各个波束的信道质量进行测量。
根据本公开的实施例,电子设备600还可以通过通信单元610从用
户设备接收针对每个面板的波束质量信息。
根据本公开的实施例,确定单元620可以根据波束质量信息确定面板的优选波束。
根据本公开的实施例,每个面板的波束质量信息可以包括面板指示信息和波束指示信息,确定单元620可以根据波束质量信息中的面板指示信息和波束指示信息来确定各个面板的优选波束。进一步,由于面板与用户能力值集合存在一一对应的关系,因此可以用用户能力值集合的标识信息(UE capability value set ID)来表示面板指示信息,从而确定单元620可以根据用户能力值集合的标识信息来确定面板。此外,由于网络侧设备的下行参考信号与波束存在一一对应的关系,因此可以用CRI或者SSBRI来表示波束指示信息,从而确定单元可以根据CRI或者SSBRI来确定波束。
根据本公开的实施例,确定单元620还可以根据波束质量信息确定面板的优选波束的信道质量信息,例如L1-SINR或者L1-RSRP。
根据本公开的实施例,确定单元620可以根据波束质量信息确定面板的面板间相干类型,面板间相干类型表示面板与其他面板之间的相干情况,面板与其他面板之间的相干情况包括非相干和相干。进一步,在面板与其他面板相干的情况下,面板与其他面板之间的相干情况还包括与面板相干的其他面板的信息。也就是说,确定单元620可以根据面板间相干类型确定是否存在与该面板相干的其他面板,并且在存在与该面板相干的其他面板的情况下,确定单元620还可以确定与该面板相干的其他面板。例如,确定单元620可以根据用户能力值集合的标识信息来确定其他面板。
根据本公开的实施例,如图6所示,电子设备600还可以包括生成单元630,用于生成针对波束质量信息的反馈信息。进一步,电子设备600可以通过通信单元610将反馈信息发送至用户设备。
根据本公开的实施例,在用户设备通过PUCCH发送波束质量信息的情况下,电子设备600可以利用DCI格式0或DCI格式2承载反馈信息,反馈信息包括ACK和NACK。也就是说,在电子设备600成功接收波束质量信息的情况下,生成单元630生成ACK;在电子设备600未成功接收波束质量信息的情况下,生成单元630生成NACK。
根据本公开的实施例,电子设备600可以利用DCI格式0,例如DCI格式0_1来发送反馈信息。具体地,电子设备600可以利用DFI标志来表
示该信息是针对PUSCH、PUCCH还是PUSCH和PUCCH的反馈,并且根据反馈信息生成PUCCH的HARQ-ACK比特图、或者生成PUSCH和PUCCH的HARQ-ACK比特图。具体地,如图2所示,DCI格式0_1包括DCI格式的标识、载波指示、DFI标志、HARQ-ACK比特图、TPC以及预留位。在DFI标志为01的情况下,HARQ-ACK比特图表示针对PUSCH的HARQ-ACK比特图,TPC表示针对PUSCH的TPC;在DFI标志为10的情况下,HARQ-ACK比特图表示针对PUCCH的HARQ-ACK比特图,TPC表示针对PUCCH的TPC;在DFI标志为11的情况下,HARQ-ACK比特图表示针对PUSCH和PUCCH的HARQ-ACK比特图,TPC表示针对PUSCH和PUCCH的TPC;在DFI标志为00的情况下,没有HARQ-ACK比特图、TPC以及预留位信息,表示上行调度准许(Uplink grant)信息。
如上所述,在用户设备利用PUCCH发送波束质量信息、并且电子设备600发送ACK或者NACK的情况下,电子设备600可以对DCI格式0_1进行重用从而承载反馈信息,仅需要对DCI格式0_1进行很小的改动就可以实现反馈信息的承载。
根据本公开的实施例,电子设备600可以利用DCI格式2,例如DCI格式2_x来发送反馈信息。具体地,生成单元可以根据反馈信息以及用户设备发送波束质量信息的PUCCH的资源来确定针对所有PUCCH资源的HARQ-ACK码本。也就是说,针对所有PUCCH资源的HARQ-ACK码本可以包括电子设备600服务的多个用户设备的反馈信息。具体地,如图3所示,DCI格式2_x包括PUCCH资源1至PUCCH资源N、以及针对PUCCH资源1-N的HARQ-ACK码本。
如上所述,在用户设备利用PUCCH发送波束质量信息、并且电子设备600发送ACK或者NACK的情况下,电子设备600可以新设计DCI格式2_x来承载反馈信息。进一步,电子设备600可以分配一个新的RNTI(Radio Network Tempory Identity,无线网络临时标识)来对新设计的DCI格式2_x进行加扰。
根据本公开的实施例,在用户设备通过PUCCH发送波束质量信息的情况下,电子设备600可以利用DCI格式1承载反馈信息,反馈信息包括NACK。也就是说,在电子设备600成功接收波束质量信息的情况下,不发送反馈信息;在电子设备600未成功接收波束质量信息的情况下,生成单元630生成NACK。
根据本公开的实施例,电子设备600可以利用DCI格式1_1或者DCI格式1_2中的一个或多个字段的某个特定值来表示NACK反馈信息。例如,电子设备600可以利用RV字段、MCS字段和FDRA字段中的一个或多个的特定值来表示NACK。作为一个非限制性示例,RV字段的值全部为1、MCS字段的值全部为1、FDRA字段的值全部为0表示NACK。具体地,如图4和图5所示,DCI格式1_1和DCI格式1_2包括DCI格式的标识、载波指示、RV字段、MCS字段、FDRA字段和PUCCH资源指示。在RV字段的值全部为1、MCS字段的值全部为1、FDRA字段的值全部为0的情况下,表示NACK信息。此外,电子设备600还可以利用PUCCH资源指示字段来指示未解码成功的PUCCH。
如上所述,根据本公开的实施例,在用户设备利用PUCCH来传输波束质量信息,并且电子设备600只反馈NACK而不反馈ACK的情况下,电子设备600可以利用通过重用DCI格式1来承载反馈信息。
根据本公开的实施例,在用户设备通过PUSCH发送波束质量信息的情况下,电子设备600可以利用DCI格式0中的NDI字段的内容指示反馈信息。例如,电子设备600可以利用DCI格式0_0或DCI格式0_1中的上行调度准许中的NDI字段的内容来表示ACK或者NACK。在电子设备600成功接收到波束质量信息的情况下,可以将NDI字段的值设置为1;在电子设备600没有成功接收到波束质量信息的情况下,可以将NDI字段的值设置为0。进一步,电子设备600可以根据HARQ进程的标识信息(HARQ process ID)来确定与发送的波束质量信息相对应的NDI。
如上所述,根据本公开的实施例,在用户设备利用PUSCH来传输波束质量信息的情况下,电子设备600可以通过DCI格式0中的HARQ进程的标识信息和NDI字段来承载反馈信息。
如上所述,本公开认为电子设备600需要对用户设备发送的波束质量信息进行反馈。进一步,本公开设计了电子设备600发送反馈信息的细节,从而提高波束质量信息的可靠性。
根据本公开的实施例,如图6所示,电子设备600还可以包括面板确定单元640,用于为用户设备确定用于上行传输的多个面板。进一步,生成单元630可以生成上行调度信息,并且电子设备600可以通过通信单元610将上行调度信息发送至用户设备。这里,电子设备600可以通过DCI格式0来发送上行调度信息。
根据本公开的实施例,上行调度信息可以包括多个SRI以用于指示为用户设备调度的多个面板。也就是说,电子设备600可以确定需要调度的多个面板上的多个波束,由于SRI与上行波束具有一一对应的关系,因此可以分别用多个SRI指示多个波束,从而指示多个面板。
根据本公开的实施例,上行调度信息可以包括一个SRI以用于指示为用户设备调度的多个面板上的多个波束。例如,可以在用户设备与电子设备600之间预设波束组合与SRI的映射关系。也就是说,可以将不同的面板上的波束的各种组合都列举出来,每个组合与一个SRI具有映射关系。这样一来,电子设备600可以确定与调度的波束组合相对应的SRI,从而将该SRI包括在上行调度信息中。
根据本公开的实施例,如图6所示,电子设备600还可以包括预编码矩阵确定单元650,用于为调度的多个面板的各个端口确定预编码矩阵。
根据本公开的实施例,在电子设备600调度的多个面板之间相干的情况下,这多个面板可以使用相同的预编码矩阵。因此,预编码矩阵确定单元650可以确定一个预编码矩阵以用作多个面板的预编码矩阵,生成单元630可以用一个TPMI指示该预编码矩阵,并将该TPMI包括在上行调度信息中。
根据本公开的实施例,在电子设备600调度的多个面板之间非相干的情况下,多个面板使用不同的预编码矩阵,预编码矩阵确定单元650还可以根据调度的各个面板的面板内相干类型确定各个面板的预编码矩阵的数目。也就是说,在面板内相干类型为完全相干的情况下,该面板的所有端口使用相同的预编码矩阵,即该面板需要的预编码矩阵的数目为1;在面板内相干类型为非相干的情况下,该面板的所有端口使用不同的预编码矩阵,即该面板需要的预编码矩阵的数目与端口的数目相同;在面板内相干类型为部分相干的情况下,该面板的相干的端口使用相同的预编码矩阵,不相干的端口使用不同的预编码矩阵。进一步,在预编码矩阵确定单元650确定了各个面板的预编码矩阵的数目之后,生成单元630可以用相应数目的TPMI指示多个预编码矩阵,并将这多个TPMI包括在上行调度信息中。
这里,电子设备600可以通过波束质量信息中的面板间相干类型来确定各个面板之间的相干关系,并且通过面板信息中的面板内相干类型类确定各个面板的端口之间的相干关系,从而确定需要发送的TPMI的数目。
如上所述,本公开对电子设备600同时调度用户设备的多个面板的细节进行了设计,从而使得电子设备600可以利用上行调度信息同时调度多个面板,并为多个面板配置预编码矩阵。
由此可见,根据本公开的实施例,不管用户能力值集合是否相同,用户设备都可以将该面板上报至电子设备600,即电子设备600在调度多面板时没有任何限制。此外,本公开定义了用户能力值集合中的两个用户能力值:SRS端口的数目和面板内相干类型。进一步,本公开认为电子设备600需要对用户设备发送的波束质量信息进行反馈,并且设计了电子设备600发送反馈信息的细节,从而提高波束质量信息的可靠性。此外,本公开对电子设备600同时调度用户设备的多个面板的细节进行了设计,从而使得电子设备600可以利用上行调度信息同时调度多个面板,并为多个面板配置预编码矩阵。综上,本公开优化了用户设备的多面板上行传输过程。
<4.方法实施例>
图7是示出根据本公开的实施例的对用户设备的多个面板进行调度的过程的信令流程图。在图7中,UE可以由用户设备100来实现,gNB可以由电子设备600来实现。如图7所示,在步骤S701中,UE生成面板信息,包括每个面板的用户能力值集合。在步骤S702中,UE将面板信息发送至gNB。在步骤S703中,gNB对UE进行RRC配置。在步骤S704中,gNB对UE进行下行波束扫描。在步骤S705中,UE对各个波束的信道质量进行测量,并生成波束质量信息。在步骤S706中,UE将生成的波束质量信息发送至gNB。在步骤S707中,gNB生成反馈信息。在步骤S708中,gNB将反馈信息发送至UE。在步骤S709中,gNB确定为UE调度的多个面板以及各个面板的各个端口的预编码矩阵,并生成上行调度信息。在步骤S710中,gNB将上行调度信息发送至UE。在步骤S711中,UE利用gNB调度的面板进行上行传输。由此,实现了gNB为UE的上行传输调度多个面板。
接下来将详细描述根据本公开实施例的由无线通信系统中的用户设备100执行的无线通信方法。
图8是示出根据本公开的实施例的由无线通信系统中的用户设备100执行的无线通信方法的流程图。
如图8所示,在步骤S810中,生成面板信息,面板信息包括用户设
备100的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同。
接下来,在步骤S820中,将面板信息发送至网络侧设备。
优选地,用户能力值包括面板内相干类型,面板内相干类型表示面板的多个端口之间的相干情况,面板的多个端口之间的相干情况包括完全相干、部分相干和非相干。
优选地,在面板的多个端口部分相干的情况下,面板的多个端口之间的相干情况还包括部分相干的端口。
优选地,无线通信方法还包括:根据来自网络侧设备的参考信号对各个波束的信道质量进行测量;针对每个面板生成波束质量信息,波束质量信息包括面板的优选波束以及面板的面板间相干类型,面板间相干类型表示面板与其他面板之间的相干情况,面板与其他面板之间的相干情况包括非相干和相干;以及将波束质量信息发送至网络侧设备。
优选地,在面板与其他面板相干的情况下,面板与其他面板之间的相干情况还包括与面板相干的其他面板的信息。
优选地,无线通信方法还包括:从网络侧设备接收针对波束质量信息的反馈信息。
优选地,无线通信方法还包括:利用PUCCH发送波束质量信息;以及利用DCI格式0或DCI格式2确定反馈信息,反馈信息包括ACK和NACK。
优选地,无线通信方法还包括:利用PUCCH发送波束质量信息;以及利用DCI格式1确定反馈信息,反馈信息包括NACK。
优选地,无线通信方法还包括:利用PUSCH发送波束质量信息;以及利用DCI格式0中的新数据指示NDI字段的内容确定反馈信息。
优选地,无线通信方法还包括:从网络侧设备接收上行调度信息,上行调度信息包括一个或多个探测参考信号SRS资源指示SRI;以及根据一个或多个SRI确定用于上行传输的多个面板。
优选地,上行调度信息还包括一个传输预编码矩阵指示TPMI,并且无线通信方法还包括根据所述TPMI确定多个相干的面板的预编码矩阵。
优选地,上行调度信息还包括多个TPMI,并且无线通信方法还包括根据多个TPMI确定多个非相干的面板的预编码矩阵。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的用户设备100,因此前文中关于用户设备100的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网络侧设备的电子设备600执行的无线通信方法。
图9是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备600执行的无线通信方法的流程图。
如图9所示,在步骤S910中,从用户设备接收面板信息。
接下来,在步骤S920中,根据面板信息确定用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同。
优选地,用户能力值包括面板内相干类型,面板内相干类型表示面板的多个端口之间的相干情况,面板的多个端口之间的相干情况包括完全相干、部分相干和非相干。
优选地,在面板的多个端口部分相干的情况下,面板的多个端口之间的相干情况还包括部分相干的端口。
优选地,无线通信方法还包括:从用户设备接收针对每个面板的波束质量信息;以及根据波束质量信息确定面板的优选波束以及面板的面板间相干类型,面板间相干类型表示面板与其他面板之间的相干情况,面板与其他面板之间的相干情况包括非相干和相干。
优选地,在面板与其他面板相干的情况下,面板与其他面板之间的相干情况还包括与面板相干的其他面板的信息。
优选地,无线通信方法还包括:生成针对波束质量信息的反馈信息;以及将反馈信息发送至用户设备。
优选地,无线通信方法还包括:利用PUCCH接收波束质量信息;以及利用DCI格式0或DCI格式2承载反馈信息,反馈信息包括ACK和NACK。
优选地,无线通信方法还包括:利用PUCCH接收波束质量信息;以及利用DCI格式1承载反馈信息,反馈信息包括NACK。
优选地,无线通信方法还包括:利用PUSCH接收波束质量信息;以及利用DCI格式0中的新数据指示NDI字段的内容指示反馈信息。
优选地,无线通信方法还包括:为用户设备确定用于上行传输的多个面板;生成上行调度信息,上行调度信息包括一个或多个探测参考信号SRS资源指示SRI以用于指示多个面板;以及将上行调度信息发送至用户设备。
优选地,在用于上行传输的多个面板相干的情况下,上行调度信息还包括一个传输预编码矩阵指示TPMI,以用于用户设备确定多个相干的面板的预编码矩阵;并且在用于上行传输的多个面板非相干的情况下,上行调度信息还包括多个TPMI,以用于用户设备确定多个非相干的面板的预编码矩阵。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备600,因此前文中关于电子设备600的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
例如,网络侧设备可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB,还可以被实现为gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图10是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1000包括一个或多个天线1010以及基站设备1020。基站设备1020和每个天线1010可以经由RF线缆彼此连接。
天线1010中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1020发送和接收无线信号。如图10所示,gNB 1000可以包括多个天线1010。例如,多个天线1010可以与gNB 1000使用的多个频带兼容。虽然图10示出其中gNB 1000包括多个天线1010的示例,但是gNB 1000也可以包括单个天线1010。
基站设备1020包括控制器1021、存储器1022、网络接口1023以及无线通信接口1025。
控制器1021可以为例如CPU或DSP,并且操作基站设备1020的较高层的各种功能。例如,控制器1021根据由无线通信接口1025处理的信号中的数据来生成数据分组,并经由网络接口1023来传递所生成的分组。控制器1021可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1021可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1022包括RAM和ROM,并且存储由控制器1021执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1023为用于将基站设备1020连接至核心网1024的通信接口。控制器1021可以经由网络接口1023而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1000与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1023还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1023为无线通信接口,则与由无线通信接口1025使用的频带相比,网络接口1023可以使用较高频带用于无线通信。
无线通信接口1025支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1010来提供到位于gNB 1000的小区中的终端的无线连接。无线通信接口1025通常可以包括例如基带(BB)处理器1026和RF电路1027。BB处理器1026可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1021,BB处理器1026可以具有上述逻辑功能的一部分或全部。BB处理器1026可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处
理器1026的功能改变。该模块可以为插入到基站设备1020的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1027可以包括例如混频器、滤波器和放大器,并且经由天线1010来传送和接收无线信号。
如图10所示,无线通信接口1025可以包括多个BB处理器1026。例如,多个BB处理器1026可以与gNB 1000使用的多个频带兼容。如图10所示,无线通信接口1025可以包括多个RF电路1027。例如,多个RF电路1027可以与多个天线元件兼容。虽然图10示出其中无线通信接口1025包括多个BB处理器1026和多个RF电路1027的示例,但是无线通信接口1025也可以包括单个BB处理器1026或单个RF电路1027。
(第二应用示例)
图11是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1130包括一个或多个天线1140、基站设备1150和RRH 1160。RRH 1160和每个天线1140可以经由RF线缆而彼此连接。基站设备1150和RRH 1160可以经由诸如光纤线缆的高速线路而彼此连接。
天线1140中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1160发送和接收无线信号。如图11所示,gNB 1130可以包括多个天线1140。例如,多个天线1140可以与gNB 1130使用的多个频带兼容。虽然图11示出其中gNB 1130包括多个天线1140的示例,但是gNB 1130也可以包括单个天线1140。
基站设备1150包括控制器1151、存储器1152、网络接口1153、无线通信接口1155以及连接接口1157。控制器1151、存储器1152和网络接口1153与参照图10描述的控制器1021、存储器1022和网络接口1023相同。
无线通信接口1155支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1160和天线1140来提供到位于与RRH 1160对应的扇区中的终端的无线通信。无线通信接口1155通常可以包括例如BB处理器1156。除了BB处理器1156经由连接接口1157连接到RRH 1160的RF电路1164之外,BB处理器1156与参照图10描述的BB处理器1026相同。如图11所示,无线通信接口1155可以包括多个BB处理器1156。例如,多个BB处理器1156可以与gNB 1130使用的多个频带兼容。虽然图11示出其中无线通信接口1155包括多个BB处理器1156的示例,但是无
线通信接口1155也可以包括单个BB处理器1156。
连接接口1157为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的接口。连接接口1157还可以为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的上述高速线路中的通信的通信模块。
RRH 1160包括连接接口1161和无线通信接口1163。
连接接口1161为用于将RRH 1160(无线通信接口1663)连接至基站设备1150的接口。连接接口1161还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1163经由天线1140来传送和接收无线信号。无线通信接口1163通常可以包括例如RF电路1164。RF电路1164可以包括例如混频器、滤波器和放大器,并且经由天线1140来传送和接收无线信号。如图11所示,无线通信接口1163可以包括多个RF电路1164。例如,多个RF电路1164可以支持多个天线元件。虽然图11示出其中无线通信接口1163包括多个RF电路1164的示例,但是无线通信接口1163也可以包括单个RF电路1164。
在图10和图11所示的gNB 1000和gNB 1130中,通过使用图6所描述的确定单元620、生成单元630、面板确定单元640和预编码矩阵确定单元650可以由控制器1021和/或控制器1151实现。功能的至少一部分也可以由控制器1021和控制器1151实现。例如,控制器1021和/或控制器1151可以通过执行相应的存储器中存储的指令而执行选择确定面板信息、确定波束质量信息、生成反馈信息、生成上行调度信息、确定用户设备的面板、确定各个面板的预编码矩阵的功能。
<关于终端设备的应用示例>
(第一应用示例)
图12是示出可以应用本公开内容的技术的智能电话1200的示意性配置的示例的框图。智能电话1200包括处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212、一个或多个天线开关1215、一个或多个天线1216、总线1217、电池1218以及辅助控制器1219。
处理器1201可以为例如CPU或片上系统(SoC),并且控制智能电话1200的应用层和另外层的功能。存储器1202包括RAM和ROM,并
且存储数据和由处理器1201执行的程序。存储装置1203可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1204为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1200的接口。
摄像装置1206包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1207可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1208将输入到智能电话1200的声音转换为音频信号。输入装置1209包括例如被配置为检测显示装置1210的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1210包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1200的输出图像。扬声器1211将从智能电话1200输出的音频信号转换为声音。
无线通信接口1212支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1212通常可以包括例如BB处理器1213和RF电路1214。BB处理器1213可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1214可以包括例如混频器、滤波器和放大器,并且经由天线1216来传送和接收无线信号。无线通信接口1212可以为其上集成有BB处理器1213和RF电路1214的一个芯片模块。如图12所示,无线通信接口1212可以包括多个BB处理器1213和多个RF电路1214。虽然图12示出其中无线通信接口1212包括多个BB处理器1213和多个RF电路1214的示例,但是无线通信接口1212也可以包括单个BB处理器1213或单个RF电路1214。
此外,除了蜂窝通信方案之外,无线通信接口1212可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1212可以包括针对每种无线通信方案的BB处理器1213和RF电路1214。
天线开关1215中的每一个在包括在无线通信接口1212中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1216的连接目的地。
天线1216中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1212传送和接收无线信号。如图12所示,智能电话1200可以包括多个天线1216。虽然
图12示出其中智能电话1200包括多个天线1216的示例,但是智能电话1200也可以包括单个天线1216。
此外,智能电话1200可以包括针对每种无线通信方案的天线1216。在此情况下,天线开关1215可以从智能电话1200的配置中省略。
总线1217将处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212以及辅助控制器1219彼此连接。电池1218经由馈线向图12所示的智能电话1200的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1219例如在睡眠模式下操作智能电话1200的最小必需功能。
在图12所示的智能电话1200中,通过使用图1所描述的生成单元110、相干类型确定单元130、测量单元140、选择单元150、解码单元160、面板确定单元170和预编码矩阵确定单元180可以由处理器1201或辅助控制器1219实现。功能的至少一部分也可以由处理器1201或辅助控制器1219实现。例如,处理器1201或辅助控制器1219可以通过执行存储器1202或存储装置1203中存储的指令而执行生成面板信息、生成波束质量信息、确定面板内相干类型、确定面板间相干类型、测量信道质量、选择优选波束、对反馈信息进行解码、确定网络侧设备调度的面板、确定面板的预编码矩阵的功能。
(第二应用示例)
图13是示出可以应用本公开内容的技术的汽车导航设备1320的示意性配置的示例的框图。汽车导航设备1320包括处理器1321、存储器1322、全球定位系统(GPS)模块1324、传感器1325、数据接口1326、内容播放器1327、存储介质接口1328、输入装置1329、显示装置1330、扬声器1331、无线通信接口1333、一个或多个天线开关1336、一个或多个天线1337以及电池1338。
处理器1321可以为例如CPU或SoC,并且控制汽车导航设备1320的导航功能和另外的功能。存储器1322包括RAM和ROM,并且存储数据和由处理器1321执行的程序。
GPS模块1324使用从GPS卫星接收的GPS信号来测量汽车导航设备1320的位置(诸如纬度、经度和高度)。传感器1325可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1326
经由未示出的终端而连接到例如车载网络1341,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1327再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1328中。输入装置1329包括例如被配置为检测显示装置1330的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1330包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1331输出导航功能的声音或再现的内容。
无线通信接口1333支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1333通常可以包括例如BB处理器1334和RF电路1335。BB处理器1334可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1335可以包括例如混频器、滤波器和放大器,并且经由天线1337来传送和接收无线信号。无线通信接口1333还可以为其上集成有BB处理器1334和RF电路1335的一个芯片模块。如图13所示,无线通信接口1333可以包括多个BB处理器1334和多个RF电路1335。虽然图13示出其中无线通信接口1333包括多个BB处理器1334和多个RF电路1335的示例,但是无线通信接口1333也可以包括单个BB处理器1334或单个RF电路1335。
此外,除了蜂窝通信方案之外,无线通信接口1333可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1333可以包括BB处理器1334和RF电路1335。
天线开关1336中的每一个在包括在无线通信接口1333中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1337的连接目的地。
天线1337中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1333传送和接收无线信号。如图13所示,汽车导航设备1320可以包括多个天线1337。虽然图13示出其中汽车导航设备1320包括多个天线1337的示例,但是汽车导航设备1320也可以包括单个天线1337。
此外,汽车导航设备1320可以包括针对每种无线通信方案的天线
1337。在此情况下,天线开关1336可以从汽车导航设备1320的配置中省略。
电池1338经由馈线向图13所示的汽车导航设备1320的各个块提供电力,馈线在图中被部分地示为虚线。电池1338累积从车辆提供的电力。
在图13示出的汽车导航设备1320中,通过使用图1所描述的图1所描述的生成单元110、相干类型确定单元130、测量单元140、选择单元150、解码单元160、面板确定单元170和预编码矩阵确定单元180可以由处理器1321实现。功能的至少一部分也可以由处理器1321实现。例如,处理器1321可以通过执行存储器1322中存储的指令而执行生成面板信息、生成波束质量信息、确定面板内相干类型、确定面板间相干类型、测量信道质量、选择优选波束、对反馈信息进行解码、确定网络侧设备调度的面板、确定面板的预编码矩阵的功能。
本公开内容的技术也可以被实现为包括汽车导航设备1320、车载网络1341以及车辆模块1342中的一个或多个块的车载系统(或车辆)1340。车辆模块1342生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1341。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。
对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。
Claims (45)
- 一种用户设备,包括处理电路,被配置为:生成面板信息,所述面板信息包括所述用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同;以及将所述面板信息发送至网络侧设备。
- 根据权利要求1所述的用户设备,其中,所述用户能力值包括面板内相干类型,所述面板内相干类型表示面板的多个端口之间的相干情况,面板的多个端口之间的相干情况包括完全相干、部分相干和非相干。
- 根据权利要求2所述的用户设备,其中,在面板的多个端口部分相干的情况下,面板的多个端口之间的相干情况还包括部分相干的端口。
- 根据权利要求1所述的用户设备,其中,所述处理电路还被配置为:根据来自所述网络侧设备的参考信号对各个波束的信道质量进行测量;针对每个面板生成波束质量信息,所述波束质量信息包括所述面板的优选波束以及所述面板的面板间相干类型,所述面板间相干类型表示所述面板与其他面板之间的相干情况,所述面板与其他面板之间的相干情况包括非相干和相干;以及将所述波束质量信息发送至所述网络侧设备。
- 根据权利要求4所述的用户设备,其中,在所述面板与其他面板相干的情况下,所述面板与其他面板之间的相干情况还包括与所述面板相干的其他面板的信息。
- 根据权利要求4所述的用户设备,其中,所述处理电路还被配置为:从所述网络侧设备接收针对所述波束质量信息的反馈信息。
- 根据权利要求6所述的用户设备,其中,所述处理电路还被配置为:利用PUCCH发送所述波束质量信息;以及利用DCI格式0或DCI格式2确定所述反馈信息,所述反馈信息包括ACK和NACK。
- 根据权利要求6所述的用户设备,其中,所述处理电路还被配置为:利用PUCCH发送所述波束质量信息;以及利用DCI格式1确定所述反馈信息,所述反馈信息包括NACK。
- 根据权利要求6所述的用户设备,其中,所述处理电路还被配置为:利用PUSCH发送所述波束质量信息;以及利用DCI格式0中的新数据指示NDI字段的内容确定所述反馈信息。
- 根据权利要求1所述的用户设备,其中,所述处理电路还被配置为:从所述网络侧设备接收上行调度信息,所述上行调度信息包括一个或多个探测参考信号SRS资源指示SRI;以及根据所述一个或多个SRI确定用于上行传输的多个面板。
- 根据权利要求10所述的用户设备,其中,所述上行调度信息还包括一个传输预编码矩阵指示TPMI,并且所述处理电路还被配置为根据所述TPMI确定多个相干的面板的预编码矩阵;或者其中,所述上行调度信息还包括多个TPMI,并且所述处理电路还被配置为根据所述多个TPMI确定多个非相干的面板的预编码矩阵。
- 一种电子设备,包括处理电路,被配置为:从用户设备接收面板信息;以及根据所述面板信息确定所述用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同。
- 根据权利要求12所述的电子设备,其中,所述用户能力值包括面板内相干类型,所述面板内相干类型表示面板的多个端口之间的相干情况,面板的多个端口之间的相干情况包括完全相干、部分相干和非相干。
- 根据权利要求13所述的电子设备,其中,在面板的多个端口部分相干的情况下,面板的多个端口之间的相干情况还包括部分相干的端 口。
- 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:从所述用户设备接收针对每个面板的波束质量信息;以及根据所述波束质量信息确定所述面板的优选波束以及所述面板的面板间相干类型,所述面板间相干类型表示所述面板与其他面板之间的相干情况,所述面板与其他面板之间的相干情况包括非相干和相干。
- 根据权利要求15所述的电子设备,其中,在所述面板与其他面板相干的情况下,所述面板与其他面板之间的相干情况还包括与所述面板相干的其他面板的信息。
- 根据权利要求15所述的电子设备,其中,所述处理电路还被配置为:生成针对所述波束质量信息的反馈信息;以及将所述反馈信息发送至所述用户设备。
- 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:利用PUCCH接收所述波束质量信息;以及利用DCI格式0或DCI格式2承载所述反馈信息,所述反馈信息包括ACK和NACK。
- 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:利用PUCCH接收所述波束质量信息;以及利用DCI格式1承载所述反馈信息,所述反馈信息包括NACK。
- 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:利用PUSCH接收所述波束质量信息;以及利用DCI格式0中的新数据指示NDI字段的内容指示所述反馈信息。
- 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:为所述用户设备确定用于上行传输的多个面板;生成上行调度信息,所述上行调度信息包括一个或多个探测参考信号SRS资源指示SRI以用于指示所述多个面板;以及将所述上行调度信息发送至所述用户设备。
- 根据权利要求21所述的电子设备,其中,在用于上行传输的多个面板相干的情况下,所述上行调度信息还包括一个传输预编码矩阵指示TPMI,以用于所述用户设备确定多个相干的面板的预编码矩阵;并且在用于上行传输的多个面板非相干的情况下,所述上行调度信息还包括多个TPMI,以用于所述用户设备确定多个非相干的面板的预编码矩阵。
- 一种由用户设备执行的无线通信方法,包括:生成面板信息,所述面板信息包括所述用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同;以及将所述面板信息发送至网络侧设备。
- 根据权利要求23所述的无线通信方法,其中,所述用户能力值包括面板内相干类型,所述面板内相干类型表示面板的多个端口之间的相干情况,面板的多个端口之间的相干情况包括完全相干、部分相干和非相干。
- 根据权利要求24所述的无线通信方法,其中,在面板的多个端口部分相干的情况下,面板的多个端口之间的相干情况还包括部分相干的端口。
- 根据权利要求23所述的无线通信方法,其中,所述无线通信方法还包括:根据来自所述网络侧设备的参考信号对各个波束的信道质量进行测量;针对每个面板生成波束质量信息,所述波束质量信息包括所述面板的优选波束以及所述面板的面板间相干类型,所述面板间相干类型表示所述面板与其他面板之间的相干情况,所述面板与其他面板之间的相干情况包括非相干和相干;以及将所述波束质量信息发送至所述网络侧设备。
- 根据权利要求26所述的无线通信方法,其中,在所述面板与其他面板相干的情况下,所述面板与其他面板之间的相干情况还包括与所述面板相干的其他面板的信息。
- 根据权利要求26所述的无线通信方法,其中,所述无线通信方法还包括:从所述网络侧设备接收针对所述波束质量信息的反馈信息。
- 根据权利要求28所述的无线通信方法,其中,所述无线通信方法还包括:利用PUCCH发送所述波束质量信息;以及利用DCI格式0或DCI格式2确定所述反馈信息,所述反馈信息包括ACK和NACK。
- 根据权利要求28所述的无线通信方法,其中,所述无线通信方法还包括:利用PUCCH发送所述波束质量信息;以及利用DCI格式1确定所述反馈信息,所述反馈信息包括NACK。
- 根据权利要求28所述的无线通信方法,其中,所述无线通信方法还包括:利用PUSCH发送所述波束质量信息;以及利用DCI格式0中的新数据指示NDI字段的内容确定所述反馈信息。
- 根据权利要求23所述的无线通信方法,其中,所述无线通信方法还包括:从所述网络侧设备接收上行调度信息,所述上行调度信息包括一个或多个探测参考信号SRS资源指示SRI;以及根据所述一个或多个SRI确定用于上行传输的多个面板。
- 根据权利要求32所述的无线通信方法,其中,所述上行调度信息还包括一个传输预编码矩阵指示TPMI,并且所述无线通信方法还包括根据所述TPMI确定多个相干的面板的预编码矩阵;或者其中,所述上行调度信息还包括多个TPMI,并且所述无线通信方法还包括根据所述多个TPMI确定多个非相干的面板的预编码矩阵。
- 一种由电子设备执行的无线通信方法,包括:从用户设备接收面板信息;以及根据所述面板信息确定所述用户设备的多个面板中的每个面板的用户能力值集合,其中,不同的面板的用户能力值集合中的用户能力值相同或不相同。
- 根据权利要求34所述的无线通信方法,其中,所述用户能力值包括面板内相干类型,所述面板内相干类型表示面板的多个端口之间的相干情况,面板的多个端口之间的相干情况包括完全相干、部分相干和非相干。
- 根据权利要求35所述的无线通信方法,其中,在面板的多个端口部分相干的情况下,面板的多个端口之间的相干情况还包括部分相干的端口。
- 根据权利要求34所述的无线通信方法,其中,所述无线通信方法还包括:从所述用户设备接收针对每个面板的波束质量信息;以及根据所述波束质量信息确定所述面板的优选波束以及所述面板的面板间相干类型,所述面板间相干类型表示所述面板与其他面板之间的相干情况,所述面板与其他面板之间的相干情况包括非相干和相干。
- 根据权利要求37所述的无线通信方法,其中,在所述面板与其他面板相干的情况下,所述面板与其他面板之间的相干情况还包括与所述面板相干的其他面板的信息。
- 根据权利要求37所述的无线通信方法,其中,所述无线通信方法还包括:生成针对所述波束质量信息的反馈信息;以及将所述反馈信息发送至所述用户设备。
- 根据权利要求39所述的无线通信方法,其中,所述无线通信方法还包括:利用PUCCH接收所述波束质量信息;以及利用DCI格式0或DCI格式2承载所述反馈信息,所述反馈信息包括ACK和NACK。
- 根据权利要求39所述的无线通信方法,其中,所述无线通信方法还包括:利用PUCCH接收所述波束质量信息;以及利用DCI格式1承载所述反馈信息,所述反馈信息包括NACK。
- 根据权利要求39所述的无线通信方法,其中,所述无线通信方法还包括:利用PUSCH接收所述波束质量信息;以及利用DCI格式0中的新数据指示NDI字段的内容指示所述反馈信息。
- 根据权利要求34所述的无线通信方法,其中,所述无线通信方法还包括:为所述用户设备确定用于上行传输的多个面板;生成上行调度信息,所述上行调度信息包括一个或多个探测参考信号SRS资源指示SRI以用于指示所述多个面板;以及将所述上行调度信息发送至所述用户设备。
- 根据权利要求43所述的无线通信方法,其中,在用于上行传输的多个面板相干的情况下,所述上行调度信息还包括一个传输预编码矩阵指示TPMI,以用于所述用户设备确定多个相干的面板的预编码矩阵;并且在用于上行传输的多个面板非相干的情况下,所述上行调度信息还包括多个TPMI,以用于所述用户设备确定多个非相干的面板的预编码矩阵。
- 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求23-44中任一项所述的无线通信方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210339010.2A CN116938404A (zh) | 2022-04-01 | 2022-04-01 | 用户设备、电子设备、无线通信方法和存储介质 |
CN202210339010.2 | 2022-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023185659A1 true WO2023185659A1 (zh) | 2023-10-05 |
Family
ID=88199334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/083578 WO2023185659A1 (zh) | 2022-04-01 | 2023-03-24 | 用户设备、电子设备、无线通信方法和存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116938404A (zh) |
WO (1) | WO2023185659A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111405663A (zh) * | 2019-01-03 | 2020-07-10 | 索尼公司 | 用于无线通信的电子设备和方法、计算机可读存储介质 |
CN112753169A (zh) * | 2018-10-03 | 2021-05-04 | 高通股份有限公司 | 用于报告波束对应性状态的系统和方法 |
WO2021151243A1 (en) * | 2020-01-31 | 2021-08-05 | Qualcomm Incorporated | Co-phasing factor indication in downlink control information |
WO2023027543A1 (en) * | 2021-08-27 | 2023-03-02 | Samsung Electronics Co., Ltd. | Method and apparatus for beam measurement and reporting |
-
2022
- 2022-04-01 CN CN202210339010.2A patent/CN116938404A/zh active Pending
-
2023
- 2023-03-24 WO PCT/CN2023/083578 patent/WO2023185659A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112753169A (zh) * | 2018-10-03 | 2021-05-04 | 高通股份有限公司 | 用于报告波束对应性状态的系统和方法 |
CN111405663A (zh) * | 2019-01-03 | 2020-07-10 | 索尼公司 | 用于无线通信的电子设备和方法、计算机可读存储介质 |
WO2021151243A1 (en) * | 2020-01-31 | 2021-08-05 | Qualcomm Incorporated | Co-phasing factor indication in downlink control information |
WO2023027543A1 (en) * | 2021-08-27 | 2023-03-02 | Samsung Electronics Co., Ltd. | Method and apparatus for beam measurement and reporting |
Non-Patent Citations (2)
Title |
---|
FRAUNHOFER IIS, FRAUNHOFER HHI: "Enhancements on multi-beam operation", 3GPP TSG RAN WG1 MEETING #107-E, R1-2111169, 5 November 2021 (2021-11-05), XP052074151 * |
MODERATOR (SAMSUNG): "Moderator summary#2 for multi-beam enhancement: ROUND 1", 3GPP TSG RAN WG1 #107-E, R1-2112581, 16 November 2021 (2021-11-16), XP052077424 * |
Also Published As
Publication number | Publication date |
---|---|
CN116938404A (zh) | 2023-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12074672B2 (en) | Electronic device, wireless communication method and computer-readable medium | |
WO2019142512A1 (ja) | 通信装置及び通信方法 | |
US11431391B2 (en) | Electronic devices and communication methods | |
JP2021168498A (ja) | 無線通信装置、基地局装置及び通信方法 | |
EP3927040B1 (en) | Communication device and communication method | |
US11856427B2 (en) | Wireless communication electronic device and method, and computer-readable storage medium | |
US20230102698A1 (en) | Network device, user equipment, wireless communication method and storage medium | |
KR20180080274A (ko) | 기지국 측 및 사용자 장비 측 장치들 및 방법들과, 무선 통신 시스템 | |
CN113382449A (zh) | 用于无线通信的电子设备和方法、计算机可读存储介质 | |
WO2021139669A1 (zh) | 用于无线通信系统的电子设备、方法和存储介质 | |
CN114424475B (zh) | 电子设备、无线通信方法和计算机可读存储介质 | |
CN106686745B (zh) | 无线通信系统中的电子设备、用户设备和无线通信方法 | |
CN111183597A (zh) | 电子设备、无线通信方法和计算机可读存储介质 | |
JP7140129B2 (ja) | 無線通信装置、無線通信方法およびコンピュータプログラム | |
US20220338023A1 (en) | Electronic device, wireless communication method, and computer readable storage medium | |
US11375496B2 (en) | Wireless communication device and wireless communication method | |
WO2022083525A1 (zh) | 用于无线通信的电子设备和方法、计算机可读存储介质 | |
US20230276452A1 (en) | Electronic device, wireless communication method and computer-readable storage medium | |
WO2023185659A1 (zh) | 用户设备、电子设备、无线通信方法和存储介质 | |
US20230262700A1 (en) | Electronic device, wireless communication method, and computer readable storage medium | |
US20240155647A1 (en) | Electronic device, wireless communication method, and computer-readable storage medium | |
CN118489280A (zh) | 用于波束失败恢复的设备、方法和介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23778028 Country of ref document: EP Kind code of ref document: A1 |