WO2022206720A1 - 电子设备、通信方法、存储介质和计算机程序产品 - Google Patents

电子设备、通信方法、存储介质和计算机程序产品 Download PDF

Info

Publication number
WO2022206720A1
WO2022206720A1 PCT/CN2022/083543 CN2022083543W WO2022206720A1 WO 2022206720 A1 WO2022206720 A1 WO 2022206720A1 CN 2022083543 W CN2022083543 W CN 2022083543W WO 2022206720 A1 WO2022206720 A1 WO 2022206720A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
antenna
antenna panel
srs
electronic device
Prior art date
Application number
PCT/CN2022/083543
Other languages
English (en)
French (fr)
Inventor
徐瑨
彭彧嫣
曹建飞
Original Assignee
索尼集团公司
徐瑨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 徐瑨 filed Critical 索尼集团公司
Priority to CN202280024199.4A priority Critical patent/CN117063405A/zh
Publication of WO2022206720A1 publication Critical patent/WO2022206720A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present disclosure relates to the field of wireless communication, and in particular, to electronic devices, communication methods, storage media, and computer program products used in wireless communication systems.
  • 3GPP's Rel-17 for 5G New Radio (NR) features the use of large-scale antennas and higher frequencies.
  • the multi-antenna information theory shows that if multiple antennas are used at the receiving and transmitting ends of a wireless communication link, the channel capacity of the system will far exceed the transmission capacity limit of the traditional single-antenna system. It has become a trend to use multi-antenna panels at User Equipment (UE).
  • UE User Equipment
  • the increase of the antenna scale brings narrower beam width, which puts forward higher requirements for the beam management performance of the system.
  • the present disclosure provides an electronic device and method in a wireless communication system that can improve beam management in the wireless communication system.
  • An aspect of the present disclosure relates to an electronic device for a UE side of a user equipment
  • the UE includes a plurality of antenna panels, including a processing circuit configured to receive one or more antenna panels from a base station through the plurality of antenna panels and providing a beam report to the base station, the beam report indicating the association of the plurality of antenna panels with the one or more DL RSs, wherein the beam report includes: at least one of the plurality of antenna panels a panel status of an antenna panel; an index of at least one of the one or more DL RSs received via the at least one antenna panel; and a channel quality measurement result for the at least one DL RS.
  • Yet another aspect of the present disclosure relates to an electronic device for a base station BS side, comprising: a processing circuit configured to: send one or more downlink reference signals to a user equipment UE including a plurality of antenna panels DL RS; and receiving a beam report from the UE, wherein the beam report includes: a panel status of at least one antenna panel of the plurality of antenna panels; at least one of the one or more DL RSs received via the at least one antenna panel an index of one DL RS; and a channel quality measurement result for the at least one DL RS.
  • Another aspect of the present disclosure relates to an electronic device for a UE side of a user equipment, the UE including a plurality of antenna panels, including a processing circuit configured to receive a sounding reference signal SRS configuration from a base station, the SRS Configure to configure multiple SRS resource sets for the UE; provide SRS-antenna panel association information to the base station, the SRS-antenna panel association information includes: the panel status of each antenna panel in the multiple antenna panels; and the antenna to be used an index of the corresponding SRS resource set sent by the panel or an index of any SRS in the corresponding SRS resource set to be sent using the antenna panel; and using at least one antenna panel of the plurality of antenna panels based on the SRS-antenna panel association information to the base station Send the SRS in the corresponding SRS resource set.
  • Yet another aspect of the present disclosure relates to an electronic device for a base station BS, including: a processing circuit configured to: send a sounding reference signal SRS configuration to a user equipment UE, where the SRS configuration configures a plurality of UEs SRS resource set; receive SRS-antenna panel association information from the UE, the SRS-antenna panel association information including: the panel status of each antenna panel of the plurality of antenna panels of the UE; and the corresponding information to be sent using the antenna panel an index of an SRS resource set or any SRS in a corresponding SRS resource set to be transmitted using the antenna panel; and receiving from the UE one or more SRSs from the plurality of SRS resource sets.
  • a processing circuit configured to: send a sounding reference signal SRS configuration to a user equipment UE, where the SRS configuration configures a plurality of UEs SRS resource set; receive SRS-antenna panel association information from the UE, the SRS-antenna panel association information including
  • Another aspect of the present disclosure relates to a method performed on the UE side, the method may include operations performed by the aforementioned processing circuit of the electronic device on the UE side.
  • Another aspect of the present disclosure relates to a method performed on the BS side, the method may include operations performed by the aforementioned processing circuit of the electronic device on the UE side.
  • Another aspect of the present disclosure relates to a computer-readable storage medium storing one or more instructions that, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as before the method described.
  • Another aspect of the present disclosure relates to a computer program product comprising a computer program which, when executed by a processor, implements the steps of a method as previously described.
  • FIG. 1 shows a schematic diagram of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 shows a block diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 3 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 4A shows an example of a mapping relationship between antenna panels and DL RSs according to an embodiment of the present disclosure.
  • FIG. 4B shows another example of a mapping relationship between antenna panels and DL RSs according to an embodiment of the present disclosure.
  • FIG. 4C shows another example of a mapping relationship between antenna panels and DL RSs according to an embodiment of the present disclosure.
  • FIG. 4D shows another example of a mapping relationship between antenna panels and DL RSs according to an embodiment of the present disclosure.
  • FIG. 5 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 6 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating that the association of an antenna panel and a DL RS is updated according to an embodiment of the present disclosure.
  • FIG. 8 illustrates an exemplary signaling flow diagram for sending updated beam reports in accordance with embodiments of the present disclosure.
  • FIG 9 illustrates an exemplary signaling flow diagram for sending updated beam reports according to embodiments of the present disclosure.
  • FIG. 10 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 11 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 12 shows a schematic diagram of associating an SRS resource set with an antenna panel according to an embodiment of the present disclosure.
  • FIG. 13 shows an example flow diagram of a method according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram schematically showing an example structure of a personal computer of an information processing apparatus that can be employed in an embodiment of the present disclosure
  • 15 is a block diagram illustrating a first example of a schematic configuration of an eNB to which techniques of the present disclosure may be applied;
  • 16 is a block diagram illustrating a second example of a schematic configuration of an eNB to which techniques of the present disclosure may be applied;
  • 17 is a block diagram showing an example of a schematic configuration of a communication device to which the technology of the present disclosure can be applied.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • Wireless communication system 100 may include base station 110 and UE 120. It should be understood that although only one base station 110 and three UEs 120 are shown in FIG. 1, it should be understood that the wireless communication system 100 may also include any other suitable number of base stations and UEs.
  • the base station 110 is an example of a network-side device in the wireless communication system 100 .
  • the terms “base station” and “network side device” may be used interchangeably.
  • the operation of the base station 110 may be implemented using any network-side device instead.
  • Base station 110 may be implemented as any type of base station.
  • base station 110 may be implemented as an eNB, such as a macro eNB and a small eNB.
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • the base station 110 may also be implemented as a gNB, such as a macro gNB and a small gNB.
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the UE 120 is an example of a user-side device in the wireless communication system 100.
  • UE 120 may be implemented as any type of terminal device.
  • the UE 120 may be implemented as a mobile terminal (such as a smartphone, tablet personal computer (PC), notebook PC, portable game terminal, portable/dongle type mobile router, and digital camera) or a vehicle-mounted terminal (such as a car navigation device) ).
  • the UE 120 may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine-type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine-type communication
  • the UE 120 may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the above-mentioned terminals.
  • Base station 110 and UE 120 may perform wireless communication according to any suitable communication protocol.
  • wireless communication may be performed according to a cellular communication protocol.
  • Cellular communication protocols can include 4G, 5G, and any cellular communication protocol under development or to be developed.
  • FIG. 2 shows a block diagram of an electronic device 200 according to an embodiment of the present disclosure.
  • the electronic device 200 may include a communication unit 210 , a storage unit 220 , and a processing circuit 230 .
  • the communication unit 210 may be used to receive or send radio transmissions.
  • the radio transmissions may include downlink transmissions from base station 110 to UE 120 and/or uplink transmissions from UE 120 to base station 110.
  • the radio transmission may be used to convey various control signaling (eg Radio Resource Control (RRC), Downlink Control Information (DCI), Uplink Control Information (UCI)) and/or or user data.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • the radio transmission may also be used to transmit one or more synchronization signals, reference signals or measurement signals, such as Synchronization Signal Block (SSB), Channel State Information Reference Signal (CSI-RS) , Sounding Reference Signal (Sounding Reference Signal, SRS), etc.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • SRS Sounding Reference Signal
  • the communication unit 210 may perform functions such as frequency up-conversion, digital-to-analog conversion on transmitted radio signals, and/or functions such as down-conversion, analog-to-digital conversion on received radio signals.
  • the communication unit 210 may be implemented using various technologies.
  • the communication unit 210 may be implemented as a communication interface component such as an antenna device, a radio frequency circuit, and a part of a baseband processing circuit.
  • the communication unit 210 is drawn in dashed lines, as it may alternatively be located within the processing circuit 230 or outside the electronic device 200 .
  • the storage unit 220 may store information generated by the processing circuit 230, information received from or to be transmitted to other devices through the communication unit 210, programs, machine codes and data for the operation of the electronic device 200, and the like.
  • the storage unit 220 may be a volatile memory and/or a nonvolatile memory.
  • the storage unit 220 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • ROM read only memory
  • flash memory flash memory
  • the processing circuit 230 may be configured to perform one or more operations to provide various functions of the electronic device 200 .
  • the processing circuit 230 may perform corresponding operations by executing one or more executable instructions stored in the storage unit 220.
  • the processing circuit 230 may be configured to perform one or more operations on the base station side described in the present disclosure.
  • the processing circuit 230 may be configured to perform one or more operations on the UE-side described in the present disclosure.
  • the electronic device 200 (and more specifically, the processing circuit 230 ) may be used to perform one or more of the operations described herein in relation to the base station 110 .
  • the electronic device 200 may be implemented as the base station 110 itself, a part of the base station 110 , or a control device for controlling the base station 110 .
  • the electronic device 200 may be implemented as a chip for controlling the base station 110 .
  • electronic device 200, and more specifically, processing circuit 230 may also be used to perform one or more of the operations described herein in relation to UE 120.
  • the electronic device 200 may be implemented as the UE 120 itself, a part of the UE 120, or a control device for controlling the UE 120.
  • the electronic device 200 may be implemented as a chip for controlling the UE 120.
  • the communication unit 210 of the electronic device 200 includes a plurality of antenna panels, such as antenna panels 240-1 to 240-4 shown in FIG. 2 . Although four antenna panels are shown in FIG. 4, it should be appreciated that the number of antenna panels may be any one or more. Each antenna panel may include one or more antenna elements. Each antenna panel can have an independent transceiver circuit and thus can form receive or transmit beams independently of each other. The individual antenna panels may have the same or different antenna array sizes.
  • modules described above are exemplary and/or preferred modules for implementing the processes described in this disclosure. These modules may be hardware units (such as central processing units, field programmable gate arrays, digital signal processors or application specific integrated circuits, etc.) and/or software modules (such as computer readable programs).
  • the modules used to implement the various steps described below are not described in detail above. However, as long as there is a step of performing a certain process, there may be a corresponding module or unit (implemented by hardware and/or software) for implementing the same process.
  • the technical solutions defined by the steps described below and all combinations of units corresponding to these steps are included in the disclosure content of the present disclosure, as long as the technical solutions they constitute are complete and applicable.
  • a device constituted by various units may be incorporated into a hardware device such as a computer as functional modules.
  • the computer may of course have other hardware or software components.
  • FIG. 3 shows an example flow diagram of a method 300 according to an embodiment of the present disclosure.
  • the method 300 may be used to implement an association scheme for downlink reference signals and antenna panels according to embodiments of the present disclosure.
  • the method 300 may be performed on the UE 120 side.
  • Method 300 may include steps 310 to 320 .
  • the UE 120 may be configured to receive one or more downlink reference signals (DL RS) from the base station through multiple antenna panels.
  • DL RS downlink reference signals
  • the antenna panel of the UE 120 may have different panel states.
  • the panel state may be any of the following states: (1) “inactive”; (2) “partially active for downlink measurements only”; (3) “only for downlink measurements” link measurement and data transmission” and (4) “fully activated”.
  • “Inactive” means that the antenna panel is turned off and cannot receive/transmit any radio signals.
  • Partially activated for downlink measurements only means that this antenna panel does not support downlink data transmission and uplink transmission.
  • Partially activated for downlink measurements and data transmission only means that this antenna panel does not support uplink transmission.
  • “Fully active” means that the antenna panel supports both downlink reception and uplink transmission.
  • the UE 120 may change the panel state of each of its antenna panels according to factors such as device rotation, movement, channel blocking, maximum allowable exposure (Maximum Power Exposure, MPE) requirements, power control, and the like. For example, multiple antenna panels may be located at different locations of the UE 120 device.
  • MPE maximum allowable exposure
  • multiple antenna panels may be located at different locations of the UE 120 device.
  • the UE 120 When the UE 120 is in the first device attitude or position, the antenna panel at the first position can provide a better beam relative to the base station but the antenna panel at the second position cannot provide a better beam.
  • the UE 120 may partially activate or fully activate (eg, open) the antenna panel at the first position and close the antenna panel at the second position.
  • the UE 120 may deactivate (eg, turn off) the antenna panel at the first position and partially activate or fully activate the antenna panel at the second position.
  • the UE 120 may selectively disable the uplink transmission function of some antenna panels.
  • the antenna panel in the UE that is closer to the human body may be turned off for the consideration of meeting the MPE requirements.
  • some antenna panels may be turned off or partially turned off for power saving.
  • each DL RS received by UE 120 may be a channel state information reference signal CSI-RS or a synchronization signal block SSB.
  • CSI-RS is used for channel sounding. Both CSI-RS and SSB can be used for beam management.
  • the CSI-RS may be sent from the base station to the UE in a periodic, semi-persistent or aperiodic manner. Semi-persistent CSI-RS requires the base station to send a MAC control element (MAC CE) to activate/deactivate. Aperiodic CSI-RS needs to be triggered by the base station through downlink control information DCI.
  • MAC CE MAC control element
  • the DL RS received by UE 120 may be a CSI-RS resource set, wherein the repetition parameter Repetition of the CSI-RS resource set is configured to be ON.
  • the value of the Repetition parameter may indicate whether all CSI-RSs in the CSI-RS resource set correspond to the same beam.
  • Repetition being configured as an ON value means that all CSI-RSs in the CSI-RS resource set correspond to the same beam.
  • Repetition being configured as OFF means that all CSI-RSs in the CSI-RS resource set correspond to different beams.
  • a CSI-RS resource set with the Repetition parameter configured as ON is advantageous when used for receive beam optimization at the UE.
  • the DL RS received by UE 120 may be an SSB resource set.
  • the UE 120 may decide for itself how to use multiple antenna panels to receive DL RS. Typically, UE 120 uses a different antenna panel to receive each DL RS. In other embodiments, UE 120 may be configured to receive multiple DL RSs using one antenna panel and/or receive one DL RS using multiple antenna panels. That is to say, the mapping relationship between the antenna panel and the DL RS will be one-to-one, one-to-many, and many-to-one. The UE 120 may determine which mapping relationship to use specifically based on various factors such as the number of DL RS ports, the number of antenna panels, the transmit beam width of the base station, and the receive beam width of the antenna panel. The mapping relationship can be changed during use of the UE.
  • the UE 120 is configured to provide a beam report to the base station that can indicate the association of multiple antenna panels with one or more DL RSs.
  • the beam report includes the panel status of at least one of the plurality of antenna panels of the UE 120, the index of the DL RS received via the at least one antenna panel, and the channel quality measurement result for the DL RS.
  • the beam report includes the panel state corresponding to each of the entire antenna panels of UE 120, the index of the received DL RS, and the channel quality measurements for the DL RS. If the panel state of the antenna panel is "inactive", the index of the received DL RS and the channel quality measurement result for the DL RS are both null.
  • beam reporting may only be directed to those antenna panels capable of receiving DL RS, that is, antenna panels whose panel status is not "inactive", thereby reducing the transmission resource overhead required for beam reporting.
  • CSI-RS For CSI-RS, its index may be Channel State Information Resource Indicator (CRI).
  • SSB For SSB, its index may be a synchronization signal block resource indicator (Sychronization Signal Block Resource Indicator, SSBRI).
  • SSBRI Synchronization Signal Block Resource Indicator
  • IDs resource set identifiers
  • the channel quality measurement for DL RS is Layer 1 Reference Signal Received Power (L1-RSRP) or Layer 1 Signal-to-Interference-plus-Noise Ratio (L1-SINR).
  • L1-RSRP Layer 1 Reference Signal Received Power
  • L1-SINR Layer 1 Signal-to-Interference-plus-Noise Ratio
  • the beam report may also optionally include a panel ID or tag for identifying the antenna panel.
  • the panel ID can reflect the specific implementation of the corresponding antenna panel, such as the size of the antenna array, while the label can hide this information.
  • the panel ID or tag can facilitate the base station to directly know the specific antenna panel, it is not necessary in beam reporting. By including the panel status of the antenna panel and the index of the corresponding DL RS in the beam report, the base station can already know the existence of the association between the antenna panel and the DL RS, and can use this association in subsequent downlink or uplink transmission to beam instruct.
  • the UE 120 is configured to receive each DL RS with a different antenna panel, in which case the beam report includes its panel status, by which The index of the DL RS received by the antenna panel and the channel quality measurements for that DL RS.
  • FIG. 4A shows an example of a mapping relationship between antenna panels and DL RSs according to an embodiment of the present disclosure, wherein one antenna panel is only used to receive one DL RS.
  • UE 120 has four antenna panels 410-1 to 410-4, of which only antenna panels 410-1 and 410-2 are fully or partially activated for downlink measurements.
  • the base station 110 is configured with four DL RS ports, corresponding to the four DL RS beams 420-1 to 420-4, respectively. Since the UE 120 has previously determined that the antenna panel is only used to receive one DL RS beam, the situation shown in FIG.
  • the receive beams 430-1 and 430-2 of the antenna panels 410-1 and 410-2 for receiving the corresponding DL RSs may be default or pre-selected.
  • the antenna panels 410-1 and 410-2 After receiving the DL RS beams 420-2 and 420-3, the antenna panels 410-1 and 410-2 measure them and provide beam reports to the base station.
  • Table 1 shows an example of the signaling format of the corresponding beam report.
  • Each entry of beam report signaling corresponds to each antenna panel receiving the DL RS.
  • entry 1 corresponds to antenna panel 410-1
  • entry 2 corresponds to antenna panel 410-2.
  • the order between items can be set arbitrarily.
  • the beam report signaling includes the index of the DL RS received by the antenna panel, the channel quality measurement result of the DL RS, and the panel status of the antenna panel.
  • the index of the DL RS can be determined by the UE based on the RRC parameter CSI-ResourceConfig provided by the base station.
  • the RRC parameter CSI-ResourceConfig is used to indicate to the UE how the CSI-RS resources are configured.
  • Table 1 the antenna panel 410-1 correspondingly receives DL RS#2, its channel quality measurement result is L1 RSRP#2, and the panel state is "fully activated".
  • the beam signaling report also includes the panel ID or label of the antenna panel.
  • the entry of the antenna panel 410-1 includes the label "P1", which does not reflect the specific implementation of the antenna panel; the entry of the antenna panel 410-2 includes the panel ID "P2-2" *4", where "2*4" indicates that the antenna panel 410-2 includes a 2*4 antenna array.
  • Table 1 it is shown in Table 1 that different items may use panel IDs or tags respectively, in other embodiments, each item may use panel IDs or tags uniformly.
  • FIG. 4B shows another example of a mapping relationship between antenna panels and DL RSs according to an embodiment of the present disclosure, wherein one antenna panel is used to receive multiple DL RSs.
  • the antenna panel 410-2 is predetermined to receive two DL RS beams, eg, DL RS beams 420-2 and 420-3.
  • the beam report when the UE is configured to receive multiple DL RSs with the same antenna panel, the beam report includes the panel status of the same antenna panel, the DL RS with the best channel quality measurement among the multiple DL RSs index and the best channel quality measurement result.
  • Table 2-1 shows an example of the signaling format of the corresponding beam report. Among them, the channel quality measurement result L1 RSRP#2 corresponding to the DL RS beam 420-2 is better than the channel quality measurement result L1 RSRP#3 corresponding to the DL RS beam 420-3, so in the entry 1 corresponding to the antenna panel 410-2 , only "DL RS#2" and "L1 RSRP#2" can be included.
  • the beam report when the UE is configured to receive multiple DL RSs with the same antenna panel, the beam report includes, for each of the multiple DL RSs, the panel status of the same antenna panel, shared by the multiple DL RSs , the index of the DL RS, and the corresponding channel quality measurement result.
  • Table 2-2 shows an example of the signaling format of the corresponding beam report. Unlike Table 2-1, Table 2-2 includes corresponding entries, ie, entry 1 and entry 2, for DL RS beams 420-2 and 420-3 received by antenna panel 410-2, respectively. Entry 1 and Entry 2 share the same group label "G1", thereby indicating that the two entries correspond to the same antenna panel.
  • FIG. 4C shows another example of a mapping relationship between antenna panels and DL RSs, wherein one DL RS is received by multiple antenna panels, according to an embodiment of the present disclosure.
  • antenna beam 420-2 is received simultaneously by two antenna panels 410-1 and 410-2.
  • the antenna panels 410-1 and 410-2 can be regarded as one virtual panel.
  • the UE may combine and report the channel quality measurement results measured by each antenna panel in the virtual panel. Combining the channel quality measurement results can be done in various ways depending on the situation, for example, it can include taking a linear average.
  • Table 3 shows an example of the signaling format of the corresponding beam report.
  • the channel quality measurements, panel status, and panel ID/tag (if any) of the antenna panels 410-1 and 410-2 are combined in Item 1, respectively.
  • the respective antenna panels used as one dummy panel may be set to Set to have the same panel state for easy management and use.
  • the UE may preferentially select multiple antenna panels with the same panel state to use as virtual panels.
  • FIG. 4D shows another example of the mapping relationship between antenna panels and DL RSs according to an embodiment of the present disclosure, wherein multiple DL RSs are resource sets with the same beam direction, for example, the repetition parameter Repetition is configured to be on ON CSI-RS resource set or SSB resource set.
  • the multiple DL RS beams 430-1 to 430-4 in the DL RS resource set 440 have the same beam direction.
  • the UE 120 can utilize one antenna panel 410-2 to generate four different receive beams, corresponding to the DL RS beams 430-1 to 430-4 respectively, whereby the optimal receive beam can be determined by measurement. Due to the channel reciprocity of uplink and downlink, this optimal receive beam can also be used for uplink transmission of UE.
  • Table 4 shows an example of the signaling format of the corresponding beam report.
  • Entry 1 corresponds to the antenna panel 410-2 used to receive the DL RS resource set 440.
  • the DL RS index is the index of the DL RS resource set 440 (eg, CSI-RS resource set ID or SSB resource set ID).
  • the UE 120 may include the measurement results for each DL RS beam in the beam report, and may also include the optimal channel quality measurement results for the DL RS resource set 440 measured by each receive beam.
  • FIG. 5 shows an example flow diagram of a method 500 according to an embodiment of the present disclosure.
  • the method 500 may be used to implement a scheme for antenna panel selection utilizing an association between a downlink reference signal and an antenna panel according to an embodiment of the present disclosure.
  • method 500 may be performed on the UE 120 side.
  • the method 500 may include steps 510 to 540, wherein the steps 510 and 520 are the same as the steps 310 and 320 in FIG. 3, and will not be repeated here.
  • UE 120 is configured to receive DCI from the base station.
  • the DCI indicates a DL RS selected by the base station among one or more DL RSs (see step S310) previously sent by the base station to the UE for channel sounding or beam management.
  • the selection of the DL RS may be performed by the base station based on the channel quality measurement result and panel status in the beam report (see step S320). For example, the base station may select the DL RS corresponding to the best channel quality measurement result in the beam report.
  • the base station may further The DL RS corresponding to the sub-optimal channel quality measurement is selected and the corresponding panel status is also checked, and so on, until the DL RS corresponding to the antenna panel capable of supporting downlink and/or uplink transmission is found. It can be recognized that including the panel status in the beam report helps the base station to select a more suitable DL RS, and then select a more suitable panel. After selecting the DL RS, the base station includes the information of the DL RS in the DCI for sending to the UE.
  • the UE 120 is configured to communicate with the base station using the same antenna panel indicated in the beam report for receiving the selected DL RS. Specifically, after obtaining the information of the DL RS selected by the base station from the received DCI, the UE 120 can know that the base station will use the same transmit beam as the selected DL RS in subsequent transmissions. Accordingly, the UE 120 The transmit beam is also received using the same antenna panel that was previously used to receive the selected DL RS. According to uplink and downlink reciprocity, the base station may also use the same receive beam as the selected DL RS in subsequent transmissions, and accordingly, the UE 120 will also use the same antenna that was previously used to receive the selected DL RS panel to send. It can be appreciated that since the association between the DL RS and the antenna panel is indicated in the beam report, the base station makes the panel selection indirectly by indicating the DL RS.
  • the state of the UE's antenna panel may change due to factors such as UE rotation, movement, communication congestion, MPE, or power control, or the channel quality measurements measured by the antenna panel may change in some cases, as previously described. Very bad, the association between the antenna panel and the DL RS that has been reported to the base station will no longer apply.
  • the UE may receive the transmit beam indicated by the previous DL RS or receive the transmit beam indicated by the new DL RS using the new antenna panel.
  • the inventor of the present disclosure realizes that, compared with the base station, the UE can detect information such as antenna panel status, rotation, movement, communication blocking, MPE status or power control in a more timely manner, so it is more advantageous that the UE actively initiates the DL RS Reporting of association updates with the Antenna Panel.
  • FIG. 6 shows an example flow diagram of a method 600 according to an embodiment of the present disclosure.
  • the method 600 may be used to implement the scheme of reporting the update of the association between the downlink reference signal and the antenna panel according to an embodiment of the present disclosure.
  • method 600 may be performed on the UE 120 side.
  • the method 600 may include steps 610 to 640, wherein the steps 610 and 620 are the same as the steps 310 and 320 in FIG. 3, and will not be repeated here.
  • the UE 120 is configured to update the association between the antenna panel and the DL RS in response to detecting the first condition.
  • the first condition may indicate that the association of the antenna panel with the DL RS should change.
  • the first condition includes a change in panel state of the antenna panel. For example, an antenna panel originally used to receive downlink beams may need to be turned off due to power control.
  • the first condition includes that the channel quality measurement for the DL RS is less than a predetermined threshold.
  • Updating the association between the antenna panel and the DL RS may include: (1) using the new antenna panel to receive the original DL RS in the beam report (eg, provided in step 320); (2) using the new antenna panel to receive the new DL RS; or (3) use the original antenna panel in the beam report (eg, provided in step 320) to receive the new DL RS.
  • new antenna panel and new DL RS are relative to the antenna panel and DL RS already associated in the beam report. As long as the "new antenna panel” or “new DL RS" replaces the original antenna panel or DL RS in the beam report to form a new association relationship, it can be considered that the association between the antenna panel and the DL RS is updated.
  • the UE 120 is configured to send an updated beam report to the base station to indicate the updated association of the antenna panels to the DL RS.
  • the updated beam report may have the same signaling format as the original beam report (eg, provided in step 320). Specifically, the updated beam report may include the status of the antenna panel, the index of the DL RS received by the antenna panel, and the channel quality measurements for the DL RS. The updated beam report may also optionally include panel IDs or tags as well. For example, the updated beam report may have a similar signaling format as shown in Table 1, Table 2-1, Table 2-2, Table 3, and Table 4 above.
  • the state of the antenna panel in the updated beam report may be the panel state of the new antenna panel, the original DL RS The index of the RS and the channel quality measurements of the legacy DL RS measured with the new antenna panel. If updating the association between the antenna panel and the DL RS includes using the new antenna panel to receive the new DL RS, the updated beam report may include the panel status of the new antenna panel, the index of the new DL RS, and the new DL RS's Channel quality measurement results.
  • the updated beam report may include the old antenna panel panel status, the index of the new DL RS, and the new DL RS channel quality measurement results.
  • FIG. 7 is a schematic diagram illustrating that the association of an antenna panel and a DL RS is updated according to an embodiment of the present disclosure.
  • FIG. 7 is an extension on the basis of FIG. 4 , and the reference numerals in FIG. 7 have the same meanings as those in FIG. 4 .
  • antenna panel 410-2 has been associated with DL RS beam 420-3. Since the UE 120 is turned over, the antenna panel 410-2 is no longer the best choice for receiving the transmit beam of the base station, and the antenna panel 410-1 uses the receive beam to receive the DL RS beam 420-4, that is, the antenna panel 410-1 and the DL RS beam Beam 420-4 has a new association.
  • the UE 120 may actively send an updated beam report to the base station, which may include the index of the new DL RS beam (eg, "DL RS #4"), the channel of the new DL RS beam Quality measurements (eg, "L1-RSRP#4 (measured by new antenna panel 410-1)" and the panel status of new antenna panel 410-1.
  • the index of the new DL RS beam eg, "DL RS #4”
  • the channel of the new DL RS beam Quality measurements eg, "L1-RSRP#4 (measured by new antenna panel 410-1)
  • the panel status of new antenna panel 410-1 may include the index of the new DL RS beam (eg, "DL RS #4"), the channel of the new DL RS beam Quality measurements (eg, "L1-RSRP#4 (measured by new antenna panel 410-1)" and the panel status of new antenna panel 410-1.
  • FIG. 8 and 9 respectively illustrate exemplary signaling flow diagrams for sending updated beam reports according to embodiments of the present disclosure.
  • FIG. 8 is based on the uplink control information UCI
  • FIG. 9 is based on the MAC CE.
  • the UE is configured to perform the steps of step 630 in FIG. 6, ie, update the association between the antenna panel and the DL RS in response to detecting the first condition.
  • the UE sends to the base station an uplink scheduling request (Scheduling Request, SR).
  • the UE receives an uplink grant for the PUCCH or PUSCH from the base station.
  • the UE transmits UCI on the PUCCH or PUSCH configured by the uplink grant, the UCI carrying the updated beam report as described above.
  • the UE considers that, starting from time T1, the updated antenna panel-DL RS association indicated in the updated beam report starts to be applied.
  • the base station processes the updated beam report to learn the updated association.
  • the updated antenna panel-DL RS association indicated in the updated beam report begins to be applied.
  • the UCI-based association update method shown in FIG. 8 has a low time delay, and is suitable for a scenario where the panel state of the antenna panel changes rapidly due to the high-speed movement of the UE.
  • the UE is configured to perform the steps of step 630 in FIG. 6, ie, update the association between the antenna panel and the DL RS in response to detecting the first condition . Then, at 920, the UE sends an uplink SR for the PUSCH to the base station. At 930, the UE receives an uplink grant for the PUSCH from the base station. At 940, the UE sends a MAC CE on the PUSCH configured by the uplink grant, the MAC CE carrying the updated beam report as described above. At 950, the base station processes the updated beam report to learn the updated association.
  • the base station sends an implicit HARQ for the MAC CE with the same HARQ process ID and toggled New Data Indicator (toggled-NDI).
  • new-NDI New Data Indicator
  • both the base station and the UE consider that, starting from this time (time T3), the updated antenna panel-DL RS association indicated in the updated beam report starts to be applied.
  • the MAC CE-based association update method in FIG. 9 has higher reliability and is better compatible with existing communication standards or specifications.
  • the updated beam report may have a different signaling format than the original beam report.
  • the updated beam report may include the panel status of the antenna panel and the corresponding updated uplink transmission configuration indicator (Transmission Configuration Indicator, TCI) or joint TCI.
  • TCI Transmission Configuration Indicator
  • FIG. 10 shows an example flow diagram of a method 1000 according to an embodiment of the present disclosure.
  • the method 1000 may be used to implement the association scheme for downlink reference signals and antenna panels according to embodiments of the present disclosure.
  • the method 1000 may be performed on the base station 110 side.
  • Method 1000 may include steps 1010 to 1020 .
  • the base station 110 is configured to transmit one or more DL RSs to the UE comprising multiple antenna panels.
  • each DL RS sent by base station 110 may be a CSI-RS or SSB.
  • the DL RS sent by the base station 110 may be a CSI-RS resource set, wherein the repetition parameter Repetition of the CSI-RS resource set is configured to be ON.
  • the DL RS received by UE 120 may be an SSB resource set. The base station may transmit the DL RS in a periodic, semi-persistent or aperiodic manner.
  • the base station 110 is configured to receive a beam report from the UE that can indicate the association of multiple antenna panels with one or more DL RSs.
  • the beam report includes the panel status of at least one of the plurality of antenna panels of the UE, the index of the DL RS received via the at least one antenna panel, and the channel quality measurement result for the DL RS.
  • the beam report includes the panel status corresponding to each of the UE's overall antenna panels, the index of the received DL RS, and the channel quality measurements for the DL RS. In other embodiments, beam reporting may only be for those antenna panels capable of receiving DL RS, ie antenna panels whose panel status is not "inactive".
  • the panel state may be any of the following states: (1) “inactive”; (2) “partially active for downlink measurements only”; (3) “only for downlink measurements” link measurement and data transmission” and (4) "fully activated”.
  • the index of DL RS may include CRI, SSBRI, CSI-RS resource set ID or SSB resource set ID.
  • the channel quality measurement for DL RS is L1-RSRP or L1-SINR.
  • the beam report signaling includes one or more entries, each entry corresponding to an antenna panel of the UE. Each entry includes the index of the DL RS received by the corresponding antenna panel, the channel quality measurement result of that DL RS, and the panel status of that antenna panel.
  • the base station can know that one DL RS is associated with one or more antenna panels, or multiple DL RSs are associated with the same antenna panel and the reported DL RS corresponds to the best channel quality measurement result .
  • the beam report signaling includes multiple entries, each entry including the index of the DL RS, the channel quality measurements of the DL RS, the same panel status, and a group tag shared by the multiple entries.
  • the base station can learn that multiple DL RSs are associated with the same antenna panel.
  • the beam report signaling includes at least one entry including a DL RS resource set ID, channel quality measurements, and panel status.
  • the base station can know that one DL RS resource set is associated with one antenna panel.
  • the beam report signaling further includes a panel ID or label of the antenna panel, wherein the panel ID can reflect the implementation of the antenna panel, while the label does not reflect the specific implementation of the antenna panel.
  • the base station 110 may be configured to continue to perform steps 1030 and 1040 after step 1020 to implement a solution for antenna panel selection using the association between downlink reference signals and antenna panels according to an embodiment of the present disclosure.
  • the base station 110 is configured to send DCI to the UE.
  • the DCI indicates a selected DL RS among one or more DL RSs previously sent by the base station to the UE for channel sounding or beam management.
  • the selection of DL RSs may be performed by the base station based on the channel quality measurement results and panel status in the beam report.
  • the base station 110 may notify the UE of the DL RS selected by the base station through downlink MAC signaling of RRC configuration and TCI. Further, the base station 110 selects a specific TCI state as valid from a subset of candidate states corresponding to CORESET (Control Resource Set, control resource set) through MAC signaling.
  • CORESET Control Resource Set, control resource set
  • the UE when listening to the Physical Downlink Control Channel (PDCCH) or the Physical Downlink Shared Channel (PDSCH), it considers the The PDCCH or PUSCH will use the transmit beam used by the DL RS associated with the TCI specified by the MAC signaling.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the DCI may include the DL RS resource set.
  • the information of the DL RS resource set may also include the information of any DL RS in the reference signal resource set.
  • the base station 110 is configured to communicate with the UE using the same beam as the selected DL RS.
  • the same beam may include the same transmit beam, and according to uplink and downlink reciprocity, the same beam may also include the same receive beam.
  • FIG. 10 corresponds to the methods performed by the UE side shown in FIG. 3 and FIG. 5 , if the technical details omitted here, refer to the corresponding descriptions in FIG. 3 and FIG. 5 .
  • FIG. 11 shows an example flowchart of a method 1100 according to an embodiment of the present disclosure.
  • the method 1100 may be used to implement an association scheme for uplink reference signals and antenna panels according to embodiments of the present disclosure.
  • the method 1100 may be performed on the UE 120 side.
  • Method 1100 may include steps 1110 to 1130 .
  • the UE 120 is configured to receive a sounding reference signal SRS configuration from the base station, the SRS configuration configuring a plurality of SRS resource sets for the UE.
  • the SRS configuration can set the number of SRS resource sets, and the number of SRSs in each SRS resource set.
  • SRS Configuration The SRS can be configured to be sent in a periodic, semi-persistent or aperiodic manner. Similar to CSI-RS, semi-persistent SRS requires activation/deactivation of MAC CE, while aperiodic SRS requires DCI command triggering.
  • UE 120 is configured to provide SRS-antenna panel association information to the base station.
  • the SRS-antenna panel association information may include the panel status of each antenna panel of the UE's multiple antenna panels and the index of the SRS resource set to be transmitted using the antenna panel or the index of any SRS in the SRS resource set.
  • the SRS-antenna panel association information is the same as the beam report used in the association scheme of the downlink reference signal and the antenna panel introduced above in that it includes the panel status and the reference signal (DL RS or SRS). index.
  • the panel state in the SRS-antenna panel association information can be any of the following states: (1) “Inactive”; (2) “Only for uplink Partially activated for measurements”; (3) “Partially activated for uplink measurements and data transmission only” and (4) “Fully activated”.
  • the SRS-antenna panel association information may also include, for each antenna panel, the panel ID or tag of the antenna panel.
  • the difference between the SRS-antenna panel association information and the beam report is that: first, in the association scheme between the uplink reference signal and the antenna panel, the antenna panel is associated with the SRS resource set, correspondingly, in the SRS-antenna
  • the panel association information may include the index of the SRS resource set (for example, the resource set ID) or the index of any SRS in the resource set; secondly, the channel quality measurement information may not be included in the association scheme between the uplink reference signal and the antenna panel, because for SRS, channel measurement is done at the base station.
  • the UE reports UE capability (Capability) information to the base station when establishing an initial connection with the base station.
  • the UE capability information indicates the number of antenna panels that the UE has.
  • the UE capability information also indicates the maximum number of beams supported by each antenna panel of the UE.
  • the base station can configure the SRS resource set accordingly. For example, the base station may configure the number of SRS resource sets equal to the number of antenna panels. In this case, the UE can allocate each SRS resource set to a different antenna panel, so that the SRS resource set corresponds to the antenna panel one-to-one. In some cases, the base station may also configure the number of SRSs in the SRS resource set to not exceed the maximum number of beams supported by the antenna panel.
  • FIG. 12 shows a schematic diagram of associating an SRS resource set with an antenna panel according to an embodiment of the present disclosure.
  • the antenna panel 410-1 is used to transmit SRS resource set #1 1210-1
  • the antenna panel 410-2 is used to transmit SRS resource set #2 1210-2
  • the antenna panel 410-3 is used to transmit SRS resources Episode #2 1210-3.
  • the UE may set the SRS-antenna panel association information to be reported to the base station as follows: entry 1, including the panel status of the antenna panel 410-1 and the index of the SRS resource set 1210-1 (eg, "SRS Resource Set #1”); Item 2, including the panel status of Antenna Panel 410-2 and the index of SRS Resource Set 1210-2 (eg, "SRS Resource Set #2”); and Item 3, including Antenna Panel The panel state of 410-3 and the index of SRS resource set 1210-3 (eg "SRS resource set #3").
  • the UE 120 is configured to transmit the SRS in the associated SRS resource set to the base station using the antenna panel based on the SRS-antenna panel association information.
  • the UE 120 may use each antenna panel in turn to transmit each SRS in the SRS resource set associated with the antenna panel to the base station for channel sounding by the base station.
  • the SRS-based channel sounding results will be used by the base station for antenna panel selection in combination with SRS-antenna panel association information.
  • SRS-antenna panel association information can also be used for antenna panel selection.
  • the UE 120 may be configured to receive DCI from the base station, wherein the DCI indicates the SRS resource set or the selected SRS in the SRS resource set selected by the base station in the SRS previously sent to the base station for channel sounding.
  • the selection of the SRS may be performed by the base station based on the measurement of the received SRS and the panel status in the SRS-antenna panel association information. For example, the base station may select the SRS corresponding to the best measurement result among the SRSs.
  • the base station can further select the SRS corresponding to the suboptimal measurement result and also check the corresponding panel status, and so on, until it finds the SRS corresponding to the antenna panel capable of supporting downlink and/or uplink transmission. It can be recognized that including the panel status in the SRS-antenna panel association information is helpful for the base station to select a more suitable SRS, and then select a more suitable antenna panel. After selecting the SRS, the base station includes the information of the SRS or the resource set where the SRS is located in the DCI for sending to the UE.
  • the UE 120 upon receiving the DCI, the UE 120 is configured to communicate with the base station using the same antenna panel indicated in the SRS-antenna panel association information for transmitting the selected SRS resource set or selected SRS. Specifically, after obtaining the information of the SRS selected by the base station from the received DCI, the UE 120 can know that the base station will use the receive beam corresponding to the selected SRS in subsequent transmissions, and accordingly, the UE 120 will also The uplink transmission is sent using the same antenna panel that was previously used to send the selected SRS. Also, due to uplink and downlink reciprocity, UE 120 may also use this same antenna panel to receive downlink transmissions from the base station. It can be appreciated that since the association between the SRS and the antenna panel is indicated in the SRS-antenna panel association information, the base station indirectly performs panel selection by indicating the SRS.
  • the updated reporting of SRS-antenna panel association information is similar to the updated reporting of beam reports described above in connection with Figures 6-9.
  • the state of the antenna panel of the UE may change due to factors such as the rotation, movement, communication congestion, MPE or power control of the UE. No longer applies.
  • the UE can use the new antenna panel to associate with the SRS, and can actively initiate the reporting of the association update between the SRS and the antenna panel.
  • the UE 120 may be configured to update the association between the SRS resource set and the antenna panel in response to detecting the first condition, and then send the updated SRS-antenna panel association information to the base station.
  • the first condition indicates that the association of the antenna panel with the SRS resource set should change.
  • the first condition may include a change in the panel state of the antenna panel associated with the SRS resource set. For example, the antenna panel may be changed to only support uplink measurements and not uplink or downlink data transmission.
  • updating the association between the SRS resource set and the antenna panel may include planning to use the new antenna panel to transmit SRS in the old SRS resource set.
  • the updated SRS-antenna panel association information may have the same signaling format as the original SRS-antenna panel association information.
  • the updated SRS-antenna panel association information may include the panel state of the new antenna panel and the index of the original SRS resource set to be sent using the new antenna panel or the index of any SRS in the original SRS resource set .
  • the updated SRS-antenna panel association information may have a different signaling format from the original SRS-antenna panel association information.
  • the updated SRS-antenna panel association information may include the panel status of the new antenna panel and the corresponding updated uplink TCI or joint TCI.
  • the method of sending the updated SRS-antenna panel association information can also include two types based on UCI and based on MAC CE. Similar to Figure 8, in the UCI-based approach, the UE is configured to send the uplink SR to the base station and, after getting the scheduling grant, send the updated SRS-antenna panel association in the UCI using the scheduled PUSCH or PUCCH channel information.
  • the UE is configured to send the uplink SR to the base station, and after obtaining the scheduling grant, use the scheduled PUSCH to send the updated SRS-antenna panel association information in the MAC CE And finally ends with the receipt of implicit HARQ from the base station, where the implicit HARQ has the same HARQ process ID and a reversed new data indication NDI.
  • the two methods reference may be made to the corresponding descriptions in FIG. 8 and FIG. 9 , which will not be repeated here.
  • FIG. 13 shows an example flow diagram illustrating a method 1300 according to an embodiment of the present disclosure.
  • the method 1300 may be used to implement an association scheme for uplink reference signals and antenna panels according to embodiments of the present disclosure.
  • the method 1300 may be performed on the base station 110 side.
  • Method 1300 may include steps 1310 to 1330 . It can be seen that the method 1300 for the base station 110 side corresponds to the method 1100 for the UE side, therefore, the specific details of the features or functions roughly mentioned here may refer to the description of the method 1100.
  • the base station 110 is configured to send a sounding reference signal SRS configuration to the UE, where the SRS configuration configures multiple SRS resource sets for the UE.
  • SRS configuration can set the number of SRS resource sets. Further, the SRS configuration can also set the number of SRSs in each SRS resource set.
  • the base station 110 is configured to receive SRS-antenna panel association information from the UE.
  • the SRS-antenna panel association information may include the panel status of each antenna panel of the UE's multiple antenna panels and the index of the SRS resource set to be transmitted using the antenna panel or the index of any SRS in the SRS resource set.
  • the base station 110 is configured to receive the SRS in the SRS resource set from the UE for uplink channel sounding.
  • the content of performing antenna panel selection using SRS-antenna panel association information and updating the SRS-antenna panel association information performed on the base station side can also refer to the corresponding solution described for the UE side, and will not be repeated here.
  • Embodiments of an electronic device and method for associating and updating an antenna panel of a UE with a reference signal in a wireless communication system are described above.
  • the base station by actively reporting the panel status of the antenna panel to the base station by the UE, the base station can be assisted to make a more appropriate panel selection, the delay or communication quality degradation caused by inappropriate selection can be reduced, and the user can be guaranteed experience.
  • the base station by reporting the association between the antenna panel and the reference signal by the UE to the base station, it is convenient for the base station to indirectly indicate the antenna panel that the UE should use by indicating the reference signal, thereby making the selection of the antenna panel faster.
  • the base station by actively updating the association between the antenna panel and the reference signal by the UE, the base station can respond to the state change of the UE in a more timely manner, thereby ensuring the quality of communication as much as possible.
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • FIG. 14 is a block diagram showing an example structure of a personal computer of an information processing apparatus that can be employed in an embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary transmitting device or terminal-side electronic device according to the present disclosure.
  • a central processing unit (CPU) 1401 executes various processes according to a program stored in a read only memory (ROM) 1402 or a program loaded from a storage section 1408 to a random access memory (RAM) 1403.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1401 executes various processes and the like is also stored as needed.
  • the CPU 1401, ROM 1402, and RAM 1403 are connected to each other via a bus 1404.
  • Input/output interface 1405 is also connected to bus 1404 .
  • the following components are connected to the input/output interface 1405: an input section 1406, including a keyboard, a mouse, etc.; an output section 1407, including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage section 1408 , including a hard disk, etc.; and a communication section 1409, including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1409 performs communication processing via a network such as the Internet.
  • a driver 1410 is also connected to the input/output interface 1405 as required.
  • a removable medium 1411 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1410 as needed, so that a computer program read therefrom is installed into the storage section 1408 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1411 .
  • such a storage medium is not limited to the removable medium 1411 shown in FIG. 14 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1411 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be the ROM 1402, a hard disk contained in the storage section 1408, or the like, in which programs are stored and distributed to users together with the devices containing them.
  • control-side electronic device may be implemented as or included in various control devices/base stations.
  • transmitting apparatus and the terminal apparatus according to the embodiments of the present disclosure may be implemented as or included in various terminal apparatuses.
  • control device/base station mentioned in the present disclosure may be implemented as any type of base station, eg eNB, such as macro eNB and small eNB.
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • gNBs such as macro gNBs and small gNBs.
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (Remote Radio Heads, RRHs) disposed at a place different from the main body.
  • RRHs Remote Radio Heads
  • various types of terminals to be described below can each operate as a base station by temporarily or semi-persistently performing a base station function.
  • the terminal devices mentioned in this disclosure may in some embodiments be implemented as mobile terminals such as smartphones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital camera) or in-vehicle terminals (such as car navigation devices).
  • a terminal device may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine-type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine-type communication
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single die) mounted on each of the above-mentioned terminals.
  • base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station used as a wireless communication system or part of a radio system to facilitate communication.
  • Examples of base stations may be, for example, but not limited to the following:
  • a base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, or a radio network controller in a WCDMA system
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • Node B which may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (such as gNB, eLTE that may appear in 5G communication systems) eNB, etc.).
  • Some functions in the base station of the present disclosure may also be implemented as entities with control functions for communication in D2D, M2M and V2V communication scenarios, or as entities with spectrum coordination functions in cognitive radio communication scenarios.
  • gNB 1500 is a block diagram showing a first example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • gNB 1500 includes multiple antennas 1510 and base station equipment 1520.
  • the base station apparatus 1520 and each antenna 1510 may be connected to each other via an RF cable.
  • the gNB 1500 (or the base station device 1520) here may correspond to the above-mentioned control-side electronic device.
  • Each of the antennas 1510 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station apparatus 1520 to transmit and receive wireless signals.
  • gNB 1500 may include multiple antennas 1510.
  • multiple antennas 1510 may be compatible with multiple frequency bands used by gNB 1500.
  • the base station apparatus 1520 includes a controller 1521 , a memory 1522 , a network interface 1517 , and a wireless communication interface 1525 .
  • the controller 1521 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1520 . For example, the controller 1521 determines the location of the target terminal device in the at least one terminal device according to the positioning information of the at least one terminal device on the terminal side in the wireless communication system and the specific location configuration information of the at least one terminal device acquired by the wireless communication interface 1525. location information.
  • the controller 1521 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, access control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1522 includes RAM and ROM, and stores programs executed by the controller 1521 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1523 is a communication interface for connecting the base station apparatus 1520 to the core network 1524 .
  • Controller 1521 may communicate with core network nodes or additional gNBs via network interface 1517 .
  • gNB 1500 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1523 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1523 is a wireless communication interface, the network interface 1523 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1525 .
  • Wireless communication interface 1525 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of gNB 1500 via antenna 1510.
  • Wireless communication interface 1525 may generally include, for example, a baseband (BB) processor 1526 and RF circuitry 1527 .
  • the BB processor 1526 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 1526 may have some or all of the above-described logical functions.
  • the BB processor 1526 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1526 to change.
  • the module may be a card or blade that is inserted into a slot in the base station device 1520. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1527 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1510 .
  • FIG. 15 shows an example in which one RF circuit 1527 is connected to one antenna 1510, the present disclosure is not limited to this illustration, but one RF circuit 1527 may connect multiple antennas 1510 at the same time.
  • the wireless communication interface 1525 may include multiple BB processors 1526 .
  • multiple BB processors 1526 may be compatible with multiple frequency bands used by gNB 1500.
  • the wireless communication interface 1525 may include a plurality of RF circuits 1527 .
  • multiple RF circuits 1527 may be compatible with multiple antenna elements.
  • FIG. 15 shows an example in which the wireless communication interface 1525 includes multiple BB processors 1526 and multiple RF circuits 1527 , the wireless communication interface 1525 may also include a single BB processor 1526 or a single RF circuit 1527 .
  • gNB 1600 includes multiple antennas 1610, RRH 1620, and base station equipment 1630.
  • the RRH 1620 and each antenna 1610 may be connected to each other via RF cables.
  • the base station apparatus 1630 and the RRH 1620 may be connected to each other via high-speed lines such as fiber optic cables.
  • the gNB 1600 (or the base station device 1630) here may correspond to the above-mentioned control-side electronic device.
  • Each of the antennas 1610 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1620 to transmit and receive wireless signals.
  • gNB 1600 may include multiple antennas 1610.
  • multiple antennas 1610 may be compatible with multiple frequency bands used by gNB 1600.
  • the base station apparatus 1630 includes a controller 1631 , a memory 1632 , a network interface 1633 , a wireless communication interface 1634 , and a connection interface 1636 .
  • the controller 1631 , the memory 1632 and the network interface 1633 are the same as the controller 1521 , the memory 1522 and the network interface 1523 described with reference to FIG. 15 .
  • Wireless communication interface 1634 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 1620 and antenna 1610 to terminals located in a sector corresponding to RRH 1620.
  • Wireless communication interface 1634 may generally include, for example, BB processor 1635.
  • the BB processor 1635 is the same as the BB processor 1526 described with reference to FIG. 15, except that the BB processor 1635 is connected to the RF circuit 1622 of the RRH 1620 via the connection interface 1636.
  • the wireless communication interface 1634 may include multiple BB processors 1635.
  • multiple BB processors 1635 may be compatible with multiple frequency bands used by gNB 1600.
  • FIG. 16 shows an example in which the wireless communication interface 1634 includes multiple BB processors 1635 , the wireless communication interface 1634 may include a single BB processor 1635 .
  • connection interface 1636 is an interface for connecting the base station apparatus 1630 (the wireless communication interface 1634) to the RRH 1620.
  • the connection interface 1636 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1630 (the wireless communication interface 1634) to the RRH 1620.
  • RRH 1620 includes connection interface 1623 and wireless communication interface 1621.
  • connection interface 1623 is an interface for connecting the RRH 1620 (the wireless communication interface 1621) to the base station apparatus 1630.
  • the connection interface 1623 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1621 transmits and receives wireless signals via the antenna 1610 .
  • Wireless communication interface 1621 may typically include RF circuitry 1622, for example.
  • RF circuitry 1622 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1610 .
  • FIG. 16 shows an example in which one RF circuit 1622 is connected to one antenna 1610 , the present disclosure is not limited to this illustration, but one RF circuit 1622 may connect multiple antennas 1610 at the same time.
  • the wireless communication interface 1621 may include a plurality of RF circuits 1622 .
  • multiple RF circuits 1622 may support multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1621 includes a plurality of RF circuits 1622 , the wireless communication interface 1621 may include a single RF circuit 1622 .
  • the communication device 1700 includes a processor 1701, a memory 1702, a storage device 1703, an external connection interface 1704, a camera device 1706, a sensor 1707, a microphone 1708, an input device 1709, a display device 1710, a speaker 1711, a wireless communication interface 1712, one or more Antenna switch 1715 , one or more antennas 1716 , bus 1717 , battery 1718 , and auxiliary controller 1719 .
  • the communication device 1700 (or the processor 1701 ) here may correspond to the above-mentioned transmitting device or terminal-side electronic device.
  • the processor 1701 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the communication device 1700 .
  • the memory 1702 includes RAM and ROM, and stores data and programs executed by the processor 1701 .
  • the storage device 1703 may include storage media such as semiconductor memories and hard disks.
  • the external connection interface 1704 is an interface for connecting external devices such as memory cards and Universal Serial Bus (USB) devices to the communication apparatus 1700 .
  • the camera 1706 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1707 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1708 converts the sound input to the communication device 1700 into an audio signal.
  • the input device 1709 includes, for example, a touch sensor, keypad, keyboard, button, or switch configured to detect a touch on the screen of the display device 1710, and receives operations or information input from a user.
  • the display device 1710 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the communication device 1700 .
  • the speaker 1711 converts the audio signal output from the communication device 1700 into sound.
  • the wireless communication interface 1712 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1712 may typically include, for example, BB processor 1713 and RF circuitry 1714.
  • the BB processor 1713 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1714 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1716 .
  • the wireless communication interface 1712 may be a chip module on which the BB processor 1713 and the RF circuit 1714 are integrated. As shown in FIG.
  • the wireless communication interface 1712 may include a plurality of BB processors 1713 and a plurality of RF circuits 1714 .
  • FIG. 17 shows an example in which the wireless communication interface 1712 includes multiple BB processors 1713 and multiple RF circuits 1714, the wireless communication interface 1712 may include a single BB processor 1713 or a single RF circuit 1714.
  • the wireless communication interface 1712 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1712 may include a BB processor 1713 and an RF circuit 1714 for each wireless communication scheme.
  • Each of the antenna switches 1715 switches the connection destination of the antenna 1716 between a plurality of circuits included in the wireless communication interface 1712 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 1716 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1712 to transmit and receive wireless signals.
  • the communication device 1700 may include multiple antennas 1716 .
  • FIG. 17 shows an example in which the communication device 1700 includes multiple antennas 1716 , the communication device 1700 may also include a single antenna 1716 .
  • the communication device 1700 may include an antenna 1716 for each wireless communication scheme.
  • the antenna switch 1715 may be omitted from the configuration of the communication device 1700 .
  • the bus 1717 connects the processor 1701, the memory 1702, the storage device 1703, the external connection interface 1704, the camera device 1706, the sensor 1707, the microphone 1708, the input device 1709, the display device 1710, the speaker 1711, the wireless communication interface 1712, and the auxiliary controller 1719 to each other connect.
  • the battery 1718 provides power to the various blocks of the communication device 1700 shown in FIG. 17 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 1719 operates the minimum necessary functions of the communication device 1700, eg, in sleep mode.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 1800 to which the technology of the present disclosure can be applied.
  • the car navigation device 1800 includes a processor 1801, a memory 1802, a global positioning system (GPS) module 1804, a sensor 1805, a data interface 1806, a content player 1807, a storage medium interface 1808, an input device 1809, a display device 1810, a speaker 1811, a wireless Communication interface 1813 , one or more antenna switches 1816 , one or more antennas 1817 , and battery 1818 .
  • the car navigation device 1800 (or the processor 1801 ) here may correspond to a transmitting device or a terminal-side electronic device.
  • the processor 1801 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 1800 .
  • the memory 1802 includes RAM and ROM, and stores data and programs executed by the processor 1801 .
  • the GPS module 1804 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1800 using GPS signals received from GPS satellites.
  • Sensors 1805 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1806 is connected to, for example, the in-vehicle network 1821 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 1807 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 1808 .
  • the input device 1809 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1810, and receives operations or information input from a user.
  • the display device 1810 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 1811 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1813 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1813 may generally include, for example, BB processor 1814 and RF circuitry 1815.
  • the BB processor 1814 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1815 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1817 .
  • the wireless communication interface 1813 can also be a chip module on which the BB processor 1814 and the RF circuit 1815 are integrated. As shown in FIG.
  • the wireless communication interface 1813 may include a plurality of BB processors 1814 and a plurality of RF circuits 1815 .
  • FIG. 18 shows an example in which the wireless communication interface 1813 includes multiple BB processors 1814 and multiple RF circuits 1815
  • the wireless communication interface 1813 may include a single BB processor 1814 or a single RF circuit 1815 .
  • the wireless communication interface 1813 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1813 may include the BB processor 1814 and the RF circuit 1815 for each wireless communication scheme.
  • Each of the antenna switches 1816 switches the connection destination of the antenna 1817 among a plurality of circuits included in the wireless communication interface 1813, such as circuits for different wireless communication schemes.
  • Each of the antennas 1817 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1813 to transmit and receive wireless signals.
  • the car navigation device 1800 may include a plurality of antennas 1817 .
  • FIG. 18 shows an example in which the car navigation device 1800 includes a plurality of antennas 1817 , the car navigation device 1800 may also include a single antenna 1817 .
  • the car navigation device 1800 may include an antenna 1817 for each wireless communication scheme.
  • the antenna switch 1816 may be omitted from the configuration of the car navigation apparatus 1800 .
  • the battery 1818 provides power to the various blocks of the car navigation device 1800 shown in FIG. 18 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 1818 accumulates power provided from the vehicle.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 1820 that includes one or more blocks of a car navigation device 1800 , an in-vehicle network 1821 , and a vehicle module 1822 .
  • the vehicle module 1822 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1821 .
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.
  • Embodiment 1 An electronic device for a UE side of a user equipment, where the UE includes multiple antenna panels, including:
  • a processing circuit configured to:
  • the beam report indicating the association of the plurality of antenna panels with the one or more DL RSs, wherein the beam report includes:
  • Embodiment 2 The electronic device of embodiment 1, wherein each of the one or more DL RSs is selected from the group consisting of:
  • CSI-RS Channel State Information Reference Signal
  • the repetition parameter Repetition is configured to turn ON the set of CSI-RS resources.
  • Embodiment 3 The electronic device of Embodiment 1, wherein the beam report further includes a panel ID or tag for identifying the at least one panel.
  • Embodiment 4 The electronic device of Embodiment 1, wherein the panel state indicates that the corresponding antenna panel is in one of the following states:
  • Embodiment 5 The electronic device of embodiment 1, wherein the UE is configured to receive each of the one or more DL RSs using a different antenna panel of the at least one antenna panel,
  • the beam report for each of the at least one antenna panel includes:
  • Embodiment 6 The electronic device of embodiment 1, wherein the UE is configured to receive a plurality of DL RSs of the one or more DL RSs using the same antenna panel of the at least one antenna panel,
  • the beam report includes:
  • Embodiment 7 The electronic device of embodiment 1, wherein the UE is configured to receive a plurality of the one or more DL RSs using the same antenna panel of the at least one antenna panel,
  • the beam report includes for each of the plurality of DL RSs:
  • Embodiment 8 The electronic device of embodiment 1, wherein the UE is configured to receive one of the one or more DL RSs using a plurality of the at least one antenna panel,
  • the beam report includes:
  • Embodiment 9 The electronic device of Embodiment 1, wherein the processing circuit is further configured to:
  • Embodiment 10 The electronic device of Embodiment 1, wherein the channel quality measurement result includes at least one of L1-RSRP or L1-SINR.
  • Embodiment 11 The electronic device according to Embodiment 1, wherein the processing circuit is further configured to:
  • An updated beam report is sent to the base station to indicate an updated association of the plurality of antenna panels with the one or more DL RSs.
  • Embodiment 12 The electronic device of Embodiment 11, wherein the first condition includes a change in a panel state of the at least one antenna panel.
  • Embodiment 13 The electronic device of Embodiment 11, wherein the first condition comprises a channel quality measurement for the at least one DL RS being less than a predetermined threshold.
  • Embodiment 14 The electronic device of Embodiment 11, wherein the updated beam report has the same signaling format as the beam report.
  • Embodiment 15 The electronic device of Embodiment 11, wherein in order to send the updated beam report, the processing circuit is further configured to:
  • the updated beam report is sent in the uplink control information UCI using the scheduled PUSCH or PUCCH channel in response to receiving the uplink scheduling grant from the base station.
  • Embodiment 16 The electronic device of Embodiment 11, wherein in order to send the updated beam report, the processing circuit is further configured to:
  • An implicit HARQ is received from the base station with the same HARQ process ID and a reversed new data indication NDI.
  • Embodiment 17 The electronic device of Embodiment 16, wherein the updated beam report and the beam report have a different signaling format, the updated beam report comprising:
  • Embodiment 18 a method performed on a user equipment UE side, comprising:
  • a beam report is provided to the base station, wherein the beam report includes:
  • Embodiment 19 an electronic device for a base station BS side, comprising:
  • a processing circuit configured to:
  • a beam report is received from the UE, wherein the beam report includes:
  • Embodiment 20 The electronic device of Embodiment 19, wherein each of the one or more DL RSs is selected from the group consisting of:
  • CSI-RS Channel State Information Reference Signal
  • the repetition parameter Repetition is configured to turn ON the set of CSI-RS resources.
  • Embodiment 21 The electronic device of Embodiment 19, wherein the beam report includes further comprising a panel ID or tag for identifying the at least one antenna panel.
  • Embodiment 22 The electronic device of Embodiment 19, wherein the panel state indicates that the corresponding antenna panel is in one of the following states:
  • Embodiment 23 The electronic device of Embodiment 19, wherein the UE is configured to receive each of the one or more DL RSs using a different antenna panel of the at least one antenna panel
  • the beam report includes for each of the at least one antenna panel:
  • Embodiment 24 The electronic device of Embodiment 19, wherein the UE is configured to receive a plurality of the one or more DL RSs using the same antenna panel of the at least one antenna panel , the beam report includes:
  • Embodiment 25 The electronic device of Embodiment 19, wherein the UE is configured to receive a plurality of the one or more DL RSs using the same antenna panel of the at least one antenna panel
  • the beam report includes, for each of the plurality of DL RSs:
  • Embodiment 26 The electronic device of Embodiment 19, wherein the UE is configured to receive one of the one or more DL RSs using a plurality of antenna panels of the at least one antenna panel , the beam report includes:
  • Embodiment 27 The electronic device of Embodiment 19, wherein the processing circuit is further configured to:
  • Embodiment 28 The electronic device of Embodiment 27, wherein the processing circuit is further configured to:
  • the specific DL RS is determined according to at least one of channel quality measurements and panel status in the beam report.
  • Embodiment 29 The electronic device of Embodiment 19, wherein the channel quality measurement result includes at least one of L1-RSRP or L1-SINR.
  • Embodiment 30 a method performed on the side of a base station BS, comprising:
  • a beam report is received from the UE, wherein the beam report includes:
  • Embodiment 31 An electronic device for a UE side of a user equipment, where the UE includes multiple antenna panels, including:
  • a processing circuit configured to:
  • SRS-antenna panel association information to the base station, where the SRS-antenna panel association information includes:
  • the SRS in the corresponding SRS resource set is sent to the base station using at least one antenna panel of the plurality of antenna panels based on the SRS-antenna panel association information.
  • Embodiment 32 The electronic device of Embodiment 31, wherein the SRS-antenna panel association information further includes, for each antenna panel, a panel ID or label of the antenna panel.
  • Embodiment 33 The electronic device of Embodiment 31, wherein the processing circuit is further configured to:
  • Embodiment 34 The electronic device of Embodiment 31, wherein the panel state indicates that the corresponding antenna panel is in one of the following states:
  • Embodiment 35 The electronic device according to Embodiment 31, wherein the processing circuit is further configured to:
  • Embodiment 36 The electronic device of Embodiment 31, wherein the first condition includes a change in a panel state of the at least one antenna panel.
  • Embodiment 37 The electronic device of Embodiment 31, wherein the updated SRS-antenna panel association information has the same signaling format as the SRS-antenna panel association information.
  • Embodiment 38 The electronic device according to Embodiment 31, wherein in order to send the updated SRS-antenna panel association information, the processing circuit is further configured to:
  • the updated SRS-antenna panel association information is sent in the uplink control information UCI using the scheduled PUSCH or PUCCH in response to receiving the uplink scheduling grant from the base station.
  • Embodiment 39 The electronic device of Embodiment 31, wherein in order to send the updated beam report, the processing circuit is further configured to:
  • An implicit HARQ is received from the base station with the same HARQ process ID and a reversed new data indication NDI.
  • Embodiment 40 The electronic device of Embodiment 31, wherein the updated SRS-antenna panel association information and the SRS-antenna panel association information have different signaling formats, the updated SRS-antenna panel association information Information includes:
  • Embodiment 41 a method performed on the UE side of a user equipment, the UE includes multiple antenna panels, and the method includes:
  • SRS-antenna panel association information to the base station, where the SRS-antenna panel association information includes:
  • the SRS in the corresponding SRS resource set is sent to the base station using at least one antenna panel of the plurality of antenna panels based on the SRS-antenna panel association information.
  • Embodiment 42 an electronic device for a base station BS side, comprising:
  • a processing circuit configured to:
  • One or more SRSs from the plurality of SRS resource sets are received from the UE.
  • Embodiment 43 The electronic device of Embodiment 42, wherein the SRS-antenna panel association information further includes, for each antenna panel, a panel ID or tag of the antenna panel.
  • Embodiment 44 The electronic device of Embodiment 42, wherein the processing circuit is further configured to:
  • the DCI indicating a selected SRS resource set of the plurality of SRS resource sets or a selected SRS in a selected SRS resource set;
  • Embodiment 45 The electronic device of Embodiment 42, wherein the panel state indicates that the corresponding antenna panel is in one of the following states:
  • Embodiment 46 a method performed on the side of a base station BS, the method comprising:
  • One or more SRSs from the plurality of SRS resource sets are received from the UE.
  • Embodiment 47 A computer-readable storage medium storing one or more instructions, the one or more instructions, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as in Embodiment 18, The method of any one of 30, 41, 46.
  • Embodiment 48 A computer program product comprising one or more instructions that, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as in Embodiments 18, 30, and 41 The method of any one of , 46.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信系统中的电子设备和方法。公开了一种用于用户设备UE侧的电子设备,该UE包括多个天线面板,包括:处理电路,该处理电路被配置为:通过该多个天线面板从基站接收一个或多个下行链路参考信号DL RS;以及向基站提供波束报告,该波束报告指示该多个天线面板与该一个或多个DL RS的关联,其中该波束报告包括:该多个天线面板中的至少一个天线面板的面板状态;该一个或多个DL RS中经由该至少一个天线面板接收的至少一个DL RS的索引;和针对该至少一个DL RS的信道质量测量结果。

Description

电子设备、通信方法、存储介质和计算机程序产品
优先权声明
本申请要求于2021年4月2日递交、申请号为202110362243.X、发明名称为“电子设备、通信方法、存储介质和计算机程序产品”的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及无线通信领域,并且具体而言,涉及用于无线通信系统中的电子设备、通信方法、存储介质和计算机程序产品。
背景技术
3GPP针对5G新无线电(New Radio,NR)的Rel-17以使用大规模天线和更高的频率为一个重要特征。多天线信息理论表明,若在无线通信链路的收、发端均使用多个天线,系统的信道容量将会远远超越传统单天线系统的传输能力极限。在用户设备(User Equipment,UE)处使用多天线面板成为趋势。天线规模的增大带来更窄的波束宽度,对系统的波束管理性能提出了更高的要求。
发明内容
本公开提供了一种无线通信系统中的电子设备和方法,其能够改进无线通信系统中的波束管理。
本公开的一方面涉及一种用于用户设备UE侧的电子设备,该UE包括多个天线面板,包括:处理电路,该处理电路被配置为:通过该多个天线面板从基站接收一个或多个下行链路参考信号DL RS;以及向基站提供波束报告,该波束报告指示该多个天线面板与该一个或多个DL RS的关联,其中该波束报告包括:该多个天线面板中的至少一个天线面板的面板状态;该一个或多个DL RS中经由该至少一个天线面板接收的至少一个DL RS的索引;和针对该至少一个DL RS的信道质量测量结果。
本公开的又一方面涉及一种用于基站BS侧的电子设备,包括:处理电路,该处理电路被配置为:向包括多个天线面板的用户设备UE发送一个或多个下行链路参考信号DL RS;以及从该UE接收波束报告,其中,该波束报告包括:该多个天线面板 中的至少一个天线面板的面板状态;该一个或多个DL RS中经由该至少一个天线面板接收的至少一个DL RS的索引;和针对该至少一个DL RS的信道质量测量结果。
本公开的另一方面涉及一种用于用户设备UE侧的电子设备,该UE包括多个天线面板,包括:处理电路,该处理电路被配置为:从基站接收探测参考信号SRS配置,该SRS配置为该UE配置多个SRS资源集;向基站提供SRS-天线面板关联信息,该SRS-天线面板关联信息包括:该多个天线面板中的每个天线面板的面板状态;以及要使用该天线面板发送的相应SRS资源集的索引或者要使用该天线面板发送的相应SRS资源集中的任何SRS的索引;以及基于该SRS-天线面板关联信息使用该多个天线面板中的至少一个天线面板向基站发送相应SRS资源集中的SRS。
本公开的再一方面涉及一种用于基站BS侧的电子设备,包括:处理电路,该处理电路被配置为:向用户设备UE发送探测参考信号SRS配置,该SRS配置为该UE配置多个SRS资源集;从该UE接收SRS-天线面板关联信息,该SRS-天线面板关联信息包括:该UE的多个天线面板中的每个天线面板的面板状态;以及要使用该天线面板发送的相应SRS资源集的索引或者要使用该天线面板发送的相应SRS资源集中的任何SRS的索引;以及从该UE接收来自该多个SRS资源集中的一个或多个SRS。
本公开的另一方面涉及在UE侧执行的方法,该方法可以包括前述UE侧的电子设备的处理电路所执行的操作。
本公开的另一方面涉及在BS侧执行的方法,该方法可以包括前述UE侧的电子设备的处理电路所执行的操作。
本公开的另一个方面涉及一种存储有一个或多个指令的计算机可读存储介质,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如前所述的方法。
本公开的另一个方面涉及一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现如前所述的方法的步骤。
附图说明
下面结合具体的实施例,并参照附图,对本公开的上述和其它目的和优点做进一步的描述。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记来表示。
图1示出了根据本公开的实施例的无线通信系统的示意图。
图2示出了根据本公开的实施例的电子设备的框图。
图3示出了根据本公开的实施例的方法的示例流程图。
图4A示出了根据本公开的实施例的天线面板与DL RS之间的映射关系的一种示例。
图4B示出了根据本公开的实施例的天线面板与DL RS之间的映射关系的另一种示例。
图4C示出了根据本公开的实施例的天线面板与DL RS之间的映射关系的另一种示例。
图4D示出了根据本公开的实施例的天线面板与DL RS之间的映射关系的另一种示例。
图5示出了根据本公开的实施例的方法的示例流程图。
图6示出了根据本公开的实施例的方法的示例流程图。
图7示出了根据本公开的实施例的天线面板和DL RS的关联发生更新的示意图。
图8示出了根据本公开的实施例的用于发送更新的波束报告的示例性信令流程图。
图9示出了根据本公开的实施例的用于发送更新的波束报告的示例性信令流程图。
图10示出了根据本公开的实施例的方法的示例流程图。
图11示出了根据本公开的实施例的方法的示例流程图。
图12示出了根据本公开的实施例的将SRS资源集与天线面板进行关联的示意图。
图13示出了根据本公开的实施例的方法的示例流程图。
图14是示意性地示出了根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图;
图15是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图;
图16是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图;
图17是示出可以应用本公开的技术的通讯设备的示意性配置的示例的框图,以及
图18是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实施例的所有特征。然而,应该了解,在对实施例进行实施的过程中必须做出很多特定于实施方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还应当注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。
以下将参照附图来描述本公开的无线通信系统的基本技术构思以及示例性实施例。
1、示例无线通信系统与示例电子设备
图1示出了根据本公开的实施例的无线通信系统100的示意图。可以在无线通信系统100内执行本公开描述的各种技术。无线通信系统100可以包括基站110和UE 120。应理解,虽然图1中仅示出了一个基站110和三个UE 120,但是应理解,无线通信系统100还可以包括其他任意合适数量的基站和UE。
基站110是无线通信系统100中网络侧设备的示例。在本公开中,术语“基站”与“网络侧设备”可以互换地使用。可以使用任意网络侧设备来替代地实现基站110的操作。基站110可以被实现为任何类型的基站。例如,基站110可以被实现为eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。又例如,基站110也可以实现为gNB,诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。
UE 120无线通信系统100中用户侧设备的示例。UE 120可以被实现为任何类型的终端设备。例如,UE 120可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装 置)或者车载终端(诸如汽车导航设备)。又例如,UE 120还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,UE 120可以为安装在上述终端中的每一个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
基站110与UE 120可以根据任何适当的通信协议来执行无线通信。例如,可以根据蜂窝通信协议来执行无线通信。蜂窝通信协议可以包括4G、5G以及任何正在开发或将要开发的蜂窝通信协议。
图2示出了根据本公开的实施例的电子设备200的框图。电子设备200可以包括通信单元210、存储单元220以及处理电路230。
通信单元210可以被用于接收或发送无线电传输。例如,该无线电传输可以包括从基站110到UE 120的下行链路传输和/或从UE 120到基站110的上行链路传输。该无线电传输可以被用于传送各种控制信令(例如无线电资源控制(RRC)、下行链路控制信息(Downlink Control Information,DCI)、上行链路控制信息(Uplink Control Information,UCI))和/或用户数据。该无线电传输也可以被用于传送一个或多个同步信号、参考信号或测量信号,例如同步信号块(Synchronization Signal Block,SSB)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、探测参考信号(Sounding Reference Signal,SRS)等。通信单元210可以对所发送的无线电信号执行诸如上变频、数字-模拟转换之类的功能,和/或对所接收的无线电信号执行诸如下变频、模拟-数字变换之类的功能。在本公开的实施例中,可以使用各种技术来实现通信单元210。例如,通信单元210可以被实现为天线器件、射频电路和部分基带处理电路等通信接口部件。通信单元210用虚线绘出,因为它可以替代地位于处理电路230内或者位于电子设备200之外。
存储单元220可以存储由处理电路230产生的信息,通过通信单元210从其他设备接收的信息或将要发送到其他设备的信息,用于电子设备200操作的程序、机器代码和数据等。存储单元220可以是易失性存储器和/或非易失性存储器。例如,存储单元220可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。存储单元220用虚线绘出,因为它可以替代地位于处理电路230内或者位于电子设备200之外。
处理电路230可以被配置为执行一个或多个操作,从而提供电子设备200的各种功能。作为示例,处理电路230可以通过执行存储单元220所存储的一个或多个可执 行指令而执行对应的操作。例如,当电子设备200被用于实现本公开所描述的基站侧的设备时,处理电路230可以被配置为执行本公开所描述的基站侧一个或多个操作。当电子设备200被用于实现本公开所描述的UE侧的设备时,处理电路230可以被配置为执行本公开所描述的UE侧的一个或多个操作。可以使用电子设备200(更具体地,处理电路230)来执行本文描述的与基站110相关的一个或多个操作。在这种情况下,电子设备200可以被实现为基站110本身、基站110的一部分、或者用于控制基站110的控制设备。例如,电子设备200可以被实现为用于控制基站110的芯片。此外,也可以使用电子设备200(更具体地,处理电路230)来执行本文描述的与UE 120相关的一个或多个操作。在这种情况下,电子设备200可以被实现为UE 120本身、UE 120的一部分、或者用于控制UE 120的控制设备。例如,电子设备200可以被实现为用于控制UE 120的芯片。
当电子设备200被实现为UE 120本身时,电子设备200的通信单元210包括多个天线面板,例如图2中所示的天线面板240-1至240-4。虽然图4中示出了四个天线面板,但应认识到,天线面板的数量可以为任意一个或多个。每个天线面板可以包括一个或多个天线单元。每个天线面板可以具有独立的收发电路,因而可以彼此独立地形成接收或发射波束。各个天线面板可以具有相同或不同的天线阵列尺寸。
应当注意的是,以上描述的各个单元是用于实施本公开中描述的处理的示例性和/或优选的模块。这些模块可以是硬件单元(诸如中央处理器、场可编程门阵列、数字信号处理器或专用集成电路等)和/或软件模块(诸如计算机可读程序)。以上并未详尽地描述用于实施下文描述各个步骤的模块。然而,只要有执行某个处理的步骤,就可以有用于实施同一处理的对应的模块或单元(由硬件和/或软件实施)。通过下文所描述的步骤以及与这些步骤对应的单元的所有组合限定的技术方案都被包括在本公开的公开内容中,只要它们构成的这些技术方案是完整并且可应用的。
此外,由各种单元构成的设备可以作为功能模块被并入到诸如计算机之类的硬件设备中。除了这些功能模块之外,计算机当然可以具有其他硬件或者软件部件。
下面将结合附图来进一步描述本公开的示例实施例。应当注意,在下面的描述中,各种在基站侧执行的方法可以由在基站侧实现的电子设备200的处理电路230执行。以下为了方便,将这种方法描述为由基站110执行。但是,本领域技术人员可以知晓,这些方法也可以由基站110的一部分执行,或者由基站110的控制设备执行。此外,各种在UE侧执行的方法可以是由在UE侧实现的电子设备200的处理电路230执行。 以下为了方便,将这种方法描述为由UE 120执行。但是,本领域技术人员可以知晓,这些方法也可以由UE 120的一部分执行,或者由UE 120的控制设备执行。
现有的波束管理和波束选择仅仅依赖于对参考信号的测量,且是在基站处完成的。在UE具有多天线面板的情况下,面板选择也称为波束管理中的一部分。UE在接收下行链路传输或发送上行链路传输时需要快速选择出合适的天线面板。而且,由于基站并不能及时获知UE处的天线面板的状态变化,会导致仅仅依赖参考信号测量而做出的选择可能并不是最合适的。需要改进的波束管理方案来解决至少一个上述问题。
2、下行参考信号与天线面板的关联
2.1关联上报
图3示出了根据本公开的实施例的方法300的示例流程图。方法300可以被用于实现根据本公开的实施例的用于下行参考信号与天线面板的关联方案。方法300可以在UE 120侧执行。方法300可以包括步骤310至步骤320。
在步骤310中,UE 120可以被配置为通过多个天线面板从基站接收一个或多个下行链路参考信号(Downlink Reference signal,DL RS)。
UE 120的天线面板可以具有不同的面板状态。在一些实施例中,面板状态可以为以下几种状态中的任意一种:(1)“未激活”;(2)“仅针对下行链路测量而部分激活”;(3)“仅针对下行链路测量和数据传输而部分激活”和(4)“完全激活”。“未激活”意味着该天线面板被关闭而无法接收/发送任何无线电信号。“仅针对下行链路测量而部分激活”意味着该天线面板不支持下行链路数据传输和上行链路发送。“仅针对下行链路测量和数据传输而部分激活”意味着该天线面板不支持上行链路发送。“完全激活”意味着该天线面板对下行链路接收和上行链路发送均支持。
UE 120可以根据设备的旋转、移动、信道阻塞、最大允许暴露量(Maximum Power Exposure,MPE)要求、功率控制等因素而改变其各个天线面板的面板状态。例如,多个天线面板可以位于UE 120设备的不同位置处。当UE 120处于第一设备姿态或位置时,处于第一位置处的天线面板可以相对于基站提供较好的波束而处于第二位置处的天线面板则无法提供较好的波束。此时,UE 120可以部分激活或完全激活(例如,打开)第一位置处的天线面板,而关闭第二位置处的天线面板。而当UE 120由于旋转或移动改变至第二设备姿态或位置时,位于第二位置处的天线面板将可以相对于基站提供较好的波束。这时,UE 120可以去激活(例如,关闭)第一位置处的天线面板, 而部分激活或完全激活处于第二位置处的天线面板。又例如,当多个天线面板同时进行上行传输而彼此间出现干扰或者与其它UE的传输发生干扰导致阻塞时,UE 120可以选择性关闭部分天线面板的上行发送功能。又例如,当UE 120靠近人体时,可以出于满足MPE要求的考虑而关闭UE中距离人体较近侧的天线面板。又例如,当UE 120电量受限时,可以为了省电而关闭或部分关闭一些天线面板。
在一些实施例中,UE 120所接收的每个DL RS可以是信道状态信息参考信号CSI-RS或同步信号块SSB。CSI-RS用于信道探测。CSI-RS和SSB都可以用于波束管理。CSI-RS可以以周期性、半持续或非周期性方式从基站发送到UE。半持续CSI-RS需要基站发送MAC控制信元(MAC CE)来激活/去激活。非周期CSI-RS需要基站通过下行控制信息DCI来触发。
在一些实施例中,UE 120所接收的DL RS可以是CSI-RS资源集,其中该CSI-RS资源集的重复参数Repetition被配置为ON。Repetition参数的值可以指示该CSI-RS资源集中的所有CSI-RS是否对应同一波束。Repetition被配置为ON值意味着该CSI-RS资源集中的所有CSI-RS对应同一波束。Repetition被配置为OFF值意味着该CSI-RS资源集中的所有CSI-RS对应不同波束。如后文将介绍的,Repetition参数被配置为ON的CSI-RS资源集在用于UE处的接收波束优化时有利的。在一些实施例中,UE 120所接收的DL RS可以是SSB资源集。
UE 120可以自行决定以何种方式使用多个天线面板来接收DL RS。典型地,UE 120使用不同的天线面板来接收每个DL RS。在其它实施例中,UE 120可以被配置为使用一个天线面板来接收多个DL RS和/或使用多个天线面板来接收一个DL RS。也就是说,天线面板与DL RS之间的映射关系会出现一对一、一对多和多对一的情形。UE 120可以基于DL RS端口数量、天线面板数量、基站发送波束宽度、天线面板接收波束宽度等各种因素来确定具体使用哪种映射关系。映射关系可以在UE的使用过程中改变。
在步骤320中,UE 120被配置为向基站提供能够指示多个天线面板与一个或多个DL RS的关联的波束报告。具体地,波束报告包括UE 120的多个天线面板中至少一个天线面板的面板状态、经由所述至少一个天线面板接收的DL RS的索引以及针对DL RS的信道质量测量结果。
在一些实施例中,波束报告包括UE 120的全部天线面板中的每个天线面板所对应的面板状态、接收的DL RS的索引以及针对DL RS的信道质量测量结果。若天线 面板的面板状态为“未激活”,则接收的DL RS的索引以及针对DL RS的信道质量测量结果均为空值。
在另一些实施例中,波束报告可以仅针对能够接收DL RS的那些天线面板,即面板状态不为“未激活”的天线面板,由此可以减小波束报告所需要的传输资源开销。
对于CSI-RS,其索引可以是信道状态信息资源指示(Channel State Information Resource Indicator,CRI)。对于SSB,其索引可以是同步信号块资源指示(Sychronization Signal Block Resource Indicator,SSBRI)。对于CSI-RS资源集和SSB资源集,其索引可以分别是对应的资源集标识(ID)。
在一些实施例中,针对DL RS的信道质量测量结果是层1参考信号接收功率(Layer 1 Reference Signal Received Power,L1-RSRP)或层1信号与干扰加噪声比(L1-SINR)。相比需要高层信令上报,利用L1-RSRP或L1-SINR可以快速向基站反馈信道质量。
在一些实施例中,波束报告还可以可选地包括用于标识天线面板的面板ID或标签。面板ID与标签的区别在于面板ID可以反映相应天线面板的具体实现方式,例如天线阵列的尺寸,而标签则可以隐去这一信息。需要指出,尽管面板ID或标签可以便于基站直接获知具体的天线面板,但在波束报告中并非是必须的。通过在波束报告中包括天线面板的面板状态和对应DL RS的索引,基站已经能够获知天线面板和DL RS之间的关联的存在,即可在后续的下行或上行传输中利用这种关联进行波束指示。
如前所述,在一些实施例中,UE 120被配置为利用不同的天线面板接收每个DL RS,此时,波束报告针对用来接收DL RS的每个天线面板包括其面板状态、由该天线面板接收的DL RS的索引以及针对该DL RS的信道质量测量结果。
图4A示出了根据本公开的实施例的天线面板与DL RS之间的映射关系的一种示例,其中一个天线面板仅用来接收一个DL RS。如图4A所示,UE 120具有四个天线面板410-1至410-4,其中仅有天线面板410-1和410-2被完全激活或部分激活用于下行链路测量。基站110被配置为具有四个DL RS端口,分别对应四个DL RS波束420-1至420-4。由于UE 120事先已确定天线面板仅用于接收一个DL RS波束,因此在实际接收中可能会出现图4A中所示的情形,即波束420-2由天线面板410-1接收,波束420-3由天线面板410-2接收。天线面板410-1和410-2用于接收相应DL RS的接收波束430-1和430-2可以是默认的或者预先选择好的。
天线面板410-1和410-2在接收到DL RS波束420-2和420-3后,对其进行测量, 并向基站提供波束报告。表1示出了对应的波束报告的信令格式示例。波束报告信令的每个条目对应接收DL RS的每个天线面板。在该示例中,条目1对应天线面板410-1,条目2对应天线面板410-2。条目之间的顺序可以任意设定。对于每个条目,即对应每个天线面板,波束报告信令包括该天线面板接收的DL RS的索引、该DL RS的信道质量测量结果和该天线面板的面板状态。DL RS的索引可以由UE基于基站提供的RRC参数CSI-ResourceConfig确定。RRC参数CSI-ResourceConfig用于向UE指示CSI-RS资源是如何配置的。表1中天线面板410-1对应接收的是DL RS#2,其信道质量测量结果是L1 RSRP#2,面板状态为“完全激活”。
可选地,波束信令报告还包括天线面板的面板ID或标签。如表1所示,天线面板410-1的条目中包括的是标签“P1”,该标签不反映天线面板的具体实现方式;天线面板410-2的条目中包括的是面板ID“P2-2*4”,其中“2*4”指示了天线面板410-2包括2*4的天线阵列。虽然表1中示出了不同条目可以分别使用面板ID或标签,但在其它实施例中,各个条目可以统一使用面板ID,或者统一使用标签。
表1:与图4A对应的波束报告示例
Figure PCTCN2022083543-appb-000001
图4B示出了根据本公开的实施例的天线面板与DL RS之间的映射关系的另一种示例,其中一个天线面板用来接收多个DL RS。如图4B所示,与图4A不同,天线面板410-2被事先确定为可以接收两个DL RS波束,例如DL RS波束420-2和420-3。
在一些实施例中,在UE被配置为利用同一天线面板接收多个DL RS时,波束报告包括该同一天线面板的面板状态、该多个DL RS中具有最佳的信道质量测量结果的DL RS的索引以及最佳的信道质量测量结果。表2-1示出了对应的波束报告的信令格式示例。其中与DL RS波束420-2对应的信道质量测量结果L1 RSRP#2优于与DL RS波束420-3对应的信道质量测量结果L1 RSRP#3,因此在与天线面板410-2对应的条目1中,可以仅包括“DL RS#2”和“L1 RSRP#2”。
表2-1:与图4B对应的波束报告示例
Figure PCTCN2022083543-appb-000002
在其它实施例中,在UE被配置为利用同一天线面板接收多个DL RS时,波束报告针对该多个DL RS中的每一个包括该同一天线面板的面板状态、由该多个DL RS共享的组标签、该DL RS的索引以及对应的信道质量测量结果。表2-2示出了对应的波束报告的信令格式示例。与表2-1不同,表2-2中针对由天线面板410-2接收的DL RS波束420-2和420-3分别包括相应的条目,即条目1和条目2。条目1和条目2共享相同的组标签“G1”,由此指示这两个条目对应同一个天线面板。
表2-2:与图4B对应的波束报告示例
Figure PCTCN2022083543-appb-000003
图4C示出了根据本公开的实施例的天线面板与DL RS之间的映射关系的另一种示例,其中一个DL RS被多个天线面板接收。如图4C所示,天线波束420-2被两个天线面板410-1和410-2同时接收。这种情况下,天线面板410-1和410-2可以被视为一个虚拟面板。UE可以将虚拟面板中的各个天线面板测得的信道质量测量结果进行组合并上报。对信道质量测量结果的组合可以根据情况采用各种方式,例如可以包括取线性平均。表3示出了对应的波束报告的信令格式示例。天线面板410-1和410-2的信道质量测量结果、面板状态以及面板ID/标签(如果有的话)分别在条目1中被组合。尽管表3中示出了被用作一个虚拟面板的两个天线面板410-1和410-2具有不同的面板状态,但在其它实施例中,可以将用作一个虚拟面板的各个天线面板设定为具有相同的面板状态,以方便管理和使用。在一些情况下,UE可以优先选择具有相同面板状态的多个天线面板来用作虚拟面板。
表3:与图4C对应的波束报告示例
Figure PCTCN2022083543-appb-000004
图4D示出了根据本公开的实施例的天线面板与DL RS之间的映射关系的另一种示例,其中多个DL RS为具有相同波束方向的资源集,例如重复参数Repetition被配置为打开ON的CSI-RS资源集或者SSB资源集。如图4D所示,DL RS资源集440中的多个DL RS波束430-1至430-4具有相同的波束方向。UE 120可以利用一个天线面板410-2来产生四个不同的接收波束,分别对应DL RS波束430-1至430-4,由此可以通过测量确定最优的接收波束。由于上下行的信道互易性,这个最优的接收波束也可以用于UE的上行链路发送。表4示出了对应的波束报告的信令格式示例。条目1对应于用于接收DL RS资源集440的天线面板410-2。DL RS索引为DL RS资源集440的索引(例如,CSI-RS资源集ID或者SSB资源集ID)。UE 120可以在波束报告中包括对各个DL RS波束的测量结果,也可以包括由各个接收波束测量的针对该DL RS资源集440的最优的信道质量测量结果。
表4:与图4D对应的波束报告示例
Figure PCTCN2022083543-appb-000005
2.2利用关联
图5示出了根据本公开的实施例的方法500的示例流程图。方法500可以被用于实现根据本公开的实施例的利用下行参考信号与天线面板之间的关联进行天线面板 选择的方案。与方法300相同,方法500可以在UE 120侧执行。方法500可以包括步骤510至步骤540,其中步骤510与步骤520同图3中的步骤310和步骤320相同,在此不做赘述。
在步骤530中,UE 120被配置为从基站接收DCI。该DCI指示在基站先前发送给UE用于进行信道探测或波束管理的一个或多个DL RS(参见步骤S310)中的由基站选择的DL RS。DL RS的选择可以由基站基于波束报告(参见步骤S320)中的信道质量测量结果和面板状态进行。例如,基站可以在波束报告中选择具有最佳的信道质量测量结果所对应的DL RS。然而,若最佳的信道质量测量结果所对应的面板状态为“仅针对下行链路测量而部分激活”,即相应天线面板并不支持下行链路或上行链路的数据传输,则基站可以进一步选择具有次优的信道质量测量结果所对应的DL RS并同样检查相应的面板状态,以此类推,直至找到与能够支持下行链路和/或上行链路传输的天线面板对应的DL RS。可以认识到,在波束报告中包括面板状态有利于基站选择更加合适的DL RS,进而选择更加合适的面板。在选择好DL RS后,基站将该DL RS的信息包含在DCI中以供发送给UE。
在步骤540中,UE 120被配置为利用在波束报告中指示的用于接收所选择的DL RS的相同的天线面板与基站通信。具体地,UE 120在从接收的DCI中获取到基站所选择的DL RS的信息后,就可以知道基站将在后续的传输中使用与所选择的DL RS相同的发送波束,相应地,UE 120也会使用先前用于接收所选择的DL RS的相同的天线面板来接收该发送波束。根据上下行链路互易性,基站在后续的传输中也可以使用与所选择的DL RS相同的接收波束,相应地,UE 120也会使用先前用于接收所选择的DL RS的相同的天线面板来发送。可以认识到,由于在波束报告中指示了DL RS与天线面板之间的关联,基站通过指示DL RS就间接地进行了面板选择。
2.3更新关联上报
在一些情况下,如前所述,由于UE的旋转、移动、通信阻塞、MPE或功率控制等因素,UE的天线面板的状态可能因此发生变化,或者天线面板测得的信道质量测量结果变得很差,此时已经上报给基站的天线面板与DL RS之间的关联关系将不再适用。UE可以使用新的天线面板接收由先前DL RS指示的发送波束或者接收新的DL RS指示的发送波束。本公开的发明人认识到,由于相比基站,UE能够更加及时地检测天线面板状态、旋转、移动、通信阻塞、MPE状况或功率控制等信息,因此较为有 利的是,由UE主动发起DL RS与天线面板之间的关联更新的上报。
图6示出了根据本公开的实施例的方法600的示例流程图。方法600可以被用于实现根据本公开的实施例的对下行参考信号与天线面板之间的关联的更新进行上报的方案。与方法600相同,方法600可以在UE 120侧执行。方法600可以包括步骤610至步骤640,其中步骤610与步骤620同图3中的步骤310和步骤320相同,在此不做赘述。
在步骤630中,UE 120被配置为响应于检测到第一条件,更新天线面板与DL RS之间的关联。
第一条件可以指示天线面板与DL RS的关联应当发生改变。在一些实施例中,第一条件包括天线面板的面板状态的改变。例如,原来用于接收下行链路波束的天线面板可能由于功率控制而需要关闭。在一些实施例中,第一条件包括针对DL RS的信道质量测量结果小于预定阈值。
更新天线面板和DL RS之间的关联可以包括:(1)使用新的天线面板接收波束报告(例如步骤320中提供的)中原有的DL RS;(2)使用新的天线面板接收新的DL RS;或者(3)使用波束报告(例如步骤320中提供的)中原有的天线面板接收新的DL RS。注意,这里“新的天线面板”和“新的DL RS”都是相对于波束报告中已经关联的天线面板和DL RS而言的。只要“新的天线面板”或者“新的DL RS”替代波束报告中原有的天线面板或者DL RS而形成了新的关联关系,就可以认为更新了天线面板和DL RS之间的关联。
在步骤640中,UE 120被配置为向基站发送更新的波束报告以指示天线面板与DL RS的更新后的关联。
更新的波束报告可以与原来的波束报告(例如步骤320中提供的)具有相同的信令格式。具体而言,更新的波束报告可以包括天线面板的状态、由该天线面板接收的DL RS的索引以及针对该DL RS的信道质量测量结果。更新的波束报告还同样可以可选地包括面板ID或标签。例如,更新的波束报告可以具有以上表1、表2-1、表2-2、表3和表4中示出的类似的信令格式。其中,若更新天线面板和DL RS之间的关联包括使用新的天线面板接收原有的DL RS,那么更新的波束报告中天线面板的状态可以为新的天线面板的面板状态、原有的DL RS的索引以及利用新的天线面板测得的原有DL RS的信道质量测量结果。若更新天线面板和DL RS之间的关联包括使用新的天线面板接收新的DL RS,那么更新的波束报告可以包括新的天线面板的面板状态、新 的DL RS的索引和新的DL RS的信道质量测量结果。若更新天线面板和DL RS之间的关联包括使用原有的天线面板接收新的DL RS,那么更新的波束报告可以包括原有的天线面板面板状态、新的DL RS的索引和新的DL RS的信道质量测量结果。
图7示出了根据本公开的实施例的天线面板和DL RS的关联发生更新的示意图。图7是在图4基础上的延伸,图7中附图标记与图4的附图标记具有相同含义。如图7左侧所示,天线面板410-2已经与DL RS波束420-3建立了关联。由于UE 120发生翻转,天线面板410-2不再是接收基站发送波束的最优选择,而天线面板410-1使用接收波束来接收DL RS波束420-4,即天线面板410-1与DL RS波束420-4发生了新的关联。在这种情况下,UE 120可以主动向基站发送更新的波束报告,该更新的波束报告可以包括新的DL RS波束的索引(例如,“DL RS#4”)、新的DL RS波束的信道质量测量结果(例如,“(由新的天线面板410-1测得的)L1-RSRP#4”)以及新的天线面板410-1的面板状态。
图8和图9分别示出了根据本公开的实施例的用于发送更新的波束报告的示例性信令流程图。其中图8是基于上行链路控制信息UCI的,而图9是基于MAC CE的。
在图8中,在框810处,UE被配置为执行图6中步骤630的步骤,即响应于检测到第一条件,更新天线面板与DL RS之间的关联。随后,在820处,UE向基站发送对于物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)或者物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)的上行链路调度请求(Scheduling Request,SR)。在830处,UE从基站接收针对PUCCH或者PUSCH的上行链路授权。在840处,UE在上行链路授权配置的PUCCH或PUSCH上发送UCI,该UCI携带了如上文所述的更新的波束报告。UE在发送UCI后就认为,从时间T1开始,更新的波束报告中所指示的更新的天线面板-DL RS关联开始被应用。在850处,基站处理更新的波束报告,以得知更新的关联。由此,在基站看来,从时间T2开始,更新的波束报告中所指示的更新的天线面板-DL RS关联开始被应用。图8所示的基于UCI的关联更新方法具有较低的时延,适用于例如UE高速移动而导致天线面板的面板状态快速发生变化的场景。
在图9中,在框910处,与图8的框810类似,UE被配置为执行图6中步骤630的步骤,即响应于检测到第一条件,更新天线面板与DL RS之间的关联。随后,在920处,UE向基站发送对于PUSCH的上行链路SR。在930处,UE从基站接收针对PUSCH的上行链路授权。在940处,UE在上行链路授权配置的PUSCH上发送MAC  CE,该MAC CE携带了如上文所述的更新的波束报告。在950处,基站处理更新的波束报告,以得知更新的关联。在960处,基站发送针对MAC CE的隐式HARQ,该隐式HARQ具有相同的HARQ过程ID和翻转的新数据指示(toggled New Data Indicator,toggled-NDI)。在该隐式HARQ后,基站和UE都认为,从此时(时间T3)开始,更新的波束报告中所指示的更新的天线面板-DL RS关联开始被应用。图9的基于MAC CE的关联更新方法具有更高的可靠性,而且与现有通信标准或规范能够更好地兼容。
在一些实施例中,在使用图9所示的基于MAC CE的关联更新方法时,更新的波束报告可以具有与原波束报告不同的信令格式。具体来说,更新的波束报告可以包括天线面板的面板状态和对应的更新的上行链路传输配置指示(Transmission Configuration Indicator,TCI)或者联合TCI。
图10示出了根据本公开的实施例的方法1000的示例流程图。方法1000可以被用于实现根据本公开的实施例的用于下行参考信号与天线面板的关联方案。方法1000可以在基站110侧执行。方法1000可以包括步骤1010至步骤1020。
在步骤1010中,基站110被配置为向包括多个天线面板的UE发送一个或多个DL RS。
在一些实施例中,基站110所发送的每个DL RS可以是CSI-RS或SSB。在一些实施例中,基站110所发送的DL RS可以是CSI-RS资源集,其中该CSI-RS资源集的重复参数Repetition被配置为ON。在一些实施例中,UE 120所接收的DL RS可以是SSB资源集。基站可以周期性、半持续或非周期方式发送DL RS。
在步骤1020中,基站110被配置为从UE接收能够指示多个天线面板与一个或多个DL RS的关联的波束报告。具体地,波束报告包括UE的多个天线面板中至少一个天线面板的面板状态、经由所述至少一个天线面板接收的DL RS的索引以及针对DL RS的信道质量测量结果。
在一些实施例中,波束报告包括UE的全部天线面板中的每个天线面板所对应的面板状态、接收的DL RS的索引以及针对DL RS的信道质量测量结果。在另一些实施例中,波束报告可以仅针对能够接收DL RS的那些天线面板,即面板状态不为“未激活”的天线面板。
在一些实施例中,面板状态可以为以下几种状态中的任意一种:(1)“未激活”; (2)“仅针对下行链路测量而部分激活”;(3)“仅针对下行链路测量和数据传输而部分激活”和(4)“完全激活”。在一些实施例中,DL RS的索引可以包括CRI、SSBRI、CSI-RS资源集ID或SSB资源集ID。在一些实施例中,针对DL RS的信道质量测量结果是L1-RSRP或L1-SINR。
在一些实施例中,波束报告信令包括一个或多个条目,每个条目对应UE的一个天线面板。每个条目包括对应天线面板接收的DL RS的索引、该DL RS的信道质量测量结果和该天线面板的面板状态。对于这样的波束报告信令,基站能够获知一个DL RS与一个或多个天线面板相关联,或者多个DL RS与同一个天线面板相关联而且所报告的DL RS对应最佳的信道质量测量结果。
在一些实施例中,波束报告信令包括多个条目,每个条目包括DL RS的索引、DL RS的信道质量测量结果、相同的面板状态和多个条目共享的组标签。对于这样的波束报告信令,基站能够获知多个DL RS与同一个天线面板相关联。
在一些实施例中,波束报告信令包括至少一个条目,该条目包括DL RS资源集ID、信道质量测量结果和面板状态。对于这样的波束报告信令,基站能够获知一个DL RS资源集与一个天线面板相关联。
在一些实施例中,波束报告信令还包括天线面板的面板ID或标签,其中面板ID能够反映天线面板的实现方式,而标签不反映天线面板的具体实现方式。
可选地,基站110可以被配置为在步骤1020之后继续执行步骤1030和步骤1040以实现根据本公开的实施例的利用下行参考信号与天线面板之间的关联进行天线面板选择的方案。
在步骤1030中,基站110被配置为向UE发送DCI。该DCI指示在基站先前发送给UE用于进行信道探测或波束管理的一个或多个DL RS中的经选择的DL RS。如上文结合图5已经介绍的,DL RS的选择可以由基站基于波束报告中的信道质量测量结果和面板状态进行。在一些实施例中,基站110可以通过RRC配置和TCI的下行MAC信令来通知UE由基站所选择的DL RS。更进一步地,基站110通过MAC信令从CORESET(Control Resource Set,控制资源集)对应的备选状态子集中选择特定的TCI状态为有效。由此,UE在接收到该MAC信令后,当在侦听物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)或者物理下行链路共享信道(Physical Downlink Shared Channel,PDSCH)时,认为该PDCCH或PUSCH会使用MAC信令所指定的TCI相关联的DL RS所使用的发送波束。
在一些实施例中,若基站110选择的DL RS是具有相同波束方向的DL RS资源集,例如重复参数Repetition被配置为ON的CSI-RS资源集或SSB资源集,那么在DCI中可以包括该DL RS资源集的信息,也可以包括该参考信号资源集中任何DL RS的信息。
在步骤1040中,基站110被配置为利用与经选择的DL RS的相同的波束与所述UE通信。相同的波束可以包括相同的发送波束,而且根据上下行互易性,相同的波束也可以包括相同的接收波束。
需要注意,图10所示的步骤与图3和图5所示的由UE侧执行的方法相对应,若在此省略的技术细节可以参见图3和图5中的相应描述。
3.上行参考信号与天线面板的关联
图11示出了根据本公开的实施例的方法1100的示例流程图。方法1100可以被用于实现根据本公开的实施例的用于上行参考信号与天线面板的关联方案。方法1100可以在UE 120侧执行。方法1100可以包括步骤1110至步骤1130。
在步骤1110中,UE 120被配置为从基站接收探测参考信号SRS配置,该SRS配置为UE配置多个SRS资源集。SRS配置可以设置SRS资源集的数量,每个SRS资源集中的SRS的数量。SRS配置可以将SRS配置为以周期性、半持续性或非周期性方式发送。与CSI-RS类似,半持续性SRS需要MAC CE的激活/去激活,而非周期性SRS需要DCI命令触发。
在步骤1120中,UE 120被配置为向基站提供SRS-天线面板关联信息。SRS-天线面板关联信息可以包括UE的多个天线面板中的每个天线面板的面板状态和要使用该天线面板发送的SRS资源集的索引或者SRS资源集中任何SRS的索引。
一方面,SRS-天线面板关联信息与上文已介绍的下行参考信号与天线面板的关联方案中用到的波束报告的相同之处在于:都包括面板状态和参考信号(DL RS或SRS)的索引。
与波束报告类似,在一些实施例中,SRS-天线面板关联信息中的面板状态可以为以下几种状态中的任意一种:(1)“未激活”;(2)“仅针对上行链路测量而部分激活”;(3)“仅针对上行链路测量和数据传输而部分激活”和(4)“完全激活”。
与波束报告类似,在一些实施例中,SRS-天线面板关联信息还可以针对每个天线面板包括天线面板的面板ID或标签。
另一方面,SRS-天线面板关联信息与波束报告的不同之处在于:首先,在上行参考信号与天线面板的关联方案中,将天线面板与SRS资源集相关联,相应地,在SRS-天线面板关联信息中可以包括SRS资源集的索引(例如,资源集ID)或者是资源集中任何SRS的索引;其次,在上行参考信号与天线面板的关联方案中可以不包括信道质量测量信息,因为对于SRS,信道测量是在基站处完成的。
在一些实施例中,UE与基站建立初始连接时向基站报告UE能力(Capability)信息。该UE能力信息指示了UE所具有的天线面板的数量。在进一步的实施例中,UE能力信息还指示UE的每个天线面板所支持的最大波束数量。基站在获知这些能力信息后,可以据此配置SRS资源集。例如,基站可以将SRS资源集的数量配置为等于天线面板的数量。在这种情况下,UE可以将每个SRS资源集分配到一个不同的天线面板上,使得SRS资源集与天线面板一一对应。在一些情况下,基站还可以将SRS资源集中的SRS数量配置为不超过天线面板所支持的最大波束数量。
图12示出了根据本公开的实施例的将SRS资源集与天线面板进行关联的示意图。如图12所示,天线面板410-1用于发送SRS资源集#1 1210-1,天线面板410-2用于发送SRS资源集#2 1210-2,天线面板410-3用于发送SRS资源集#2 1210-3。对于这样的关联,仅作为非限制性的示例,UE可以这样设置要报告给基站的SRS-天线面板关联信息:条目1,包括天线面板410-1的面板状态以及SRS资源集1210-1的索引(例如“SRS资源集#1”);条目2,包括天线面板410-2的面板状态以及SRS资源集1210-2的索引(例如“SRS资源集#2”);以及条目3,包括天线面板410-3的面板状态以及SRS资源集1210-3的索引(例如“SRS资源集#3”)。
返回到图11,在步骤1130中,UE 120被配置为基于SRS-天线面板关联信息使用天线面板向基站发送相关联的SRS资源集中的SRS。UE 120可以依次使用每个天线面板向基站发送与该天线面板相关联的SRS资源集中的每一个SRS,以供基站进行信道探测。如接下来将介绍的,基于SRS的信道探测结果将被基站与SRS-天线面板关联信息相结合地用于天线面板选择。
与结合图5介绍的利用波束报告进行天线面板选择的方案类似,SRS-天线面板关联信息也可以用于天线面板选择。类似步骤530,UE 120可以被配置为从基站接收DCI,其中DCI指示在先前发送给基站用于进行信道探测的SRS中由基站选择的SRS资源集或SRS资源集中的经选择的SRS。与步骤530中对DL RS的选择类似,SRS的选择可以由基站基于对接收到的SRS的测量和SRS-天线面板关联信息中的面板状 态进行。例如,基站可以SRS中选择具有最佳的测量结果所对应的SRS。然而,若具有最佳的测量结果的SRS所关联的天线面板的面板状态为“仅针对上行链路测量而部分激活”,即相应天线面板并不支持下行链路或上行链路的数据传输,则基站可以进一步选择具有次优的测量结果所对应的SRS并同样检查相应的面板状态,以此类推,直至找到与能够支持下行链路和/或上行链路传输的天线面板对应的SRS。可以认识到,在SRS-天线面板关联信息中包括面板状态有利于基站选择更加合适的SRS,进而选择更加合适的天线面板。在选择好SRS后,基站将该SRS或SRS所在的资源集的信息包含在DCI中以供发送给UE。
类似步骤540,在接收到DCI后,UE 120被配置为利用在SRS-天线面板关联信息中指示的用于发送经选择的SRS资源集或经选择的SRS的相同的天线面板与基站通信。具体地,UE 120在从接收的DCI中获取到基站所选择的SRS的信息后,就可以知道基站将在后续的传输中使用与所选择的SRS相对应的接收波束,相应地,UE120也会使用先前用于发送所选择的SRS的相同的天线面板来发送上行链路传输。而且,由于上下行链路的互易性,UE 120也可以使用该相同的天线面板来接收来自基站的下行链路传输。可以认识到,由于在SRS-天线面板关联信息中指示了SRS与天线面板之间的关联,基站通过指示SRS就间接地进行了面板选择。
SRS-天线面板关联信息的更新的上报与上文结合图6-9介绍的波束报告的更新的上报类似。如前所述,由于UE的旋转、移动、通信阻塞、MPE或功率控制等因素,UE的天线面板的状态可能因此发生变化,此时已经上报给基站的天线面板与SRS之间的关联关系将不再适用。UE可以使用新的天线面板与SRS相关联,并可以主动发起SRS与天线面板之间的关联更新的上报。
在一些实施例中,UE 120可以配置为响应于检测到第一条件而更新SRS资源集与天线面板之间的关联,然后向基站发送更新的SRS-天线面板关联信息。具体地,第一条件指示天线面板与SRS资源集的关联应当发生改变。在一些实施例中,第一条件可以包括与SRS资源集发生关联的天线面板的面板状态发生改变。例如,天线面板可能被改变为仅支持上行链路测量而不支持上行或下行链路数据传输。
在一些实施例中,更新SRS资源集与天线面板之间的关联可以包括计划使用新的天线面板发送原有的SRS资源集中的SRS。
在一些实施例中,更新的SRS-天线面板关联信息可以与原有的SRS-天线面板关联信息具有相同的信令格式。具体而言,更新的SRS-天线面板关联信息可以包括新的 天线面板的面板状态和要使用该新的天线面板发送的原有的SRS资源集的索引或者原有的SRS资源集中任何SRS的索引。
在另一些实施例中,更新的SRS-天线面板关联信息可以与原有的SRS-天线面板关联信息具有不同的信令格式。具体而言,更新的SRS-天线面板关联信息可以包括新的天线面板的面板状态和对应的更新的上行链路TCI或者联合TCI。
发送更新的SRS-天线面板关联信息的方法同样可以包括基于UCI和基于MAC CE两种。与图8类似,在基于UCI的方法中,UE被配置为向基站发送上行链路SR,并在得到调度授权后,利用经调度的PUSCH或PUCCH信道在UCI中发送更新的SRS-天线面板关联信息。与图9类似,在基于MAC CE的方法中,UE被配置为向基站发送上行链路SR,并在得到调度授权后,利用经调度的PUSCH在MAC CE中发送更新的SRS-天线面板关联信息并最终以从基站接收到隐式HARQ而结束,其中隐式HARQ具有相同的HARQ过程ID以及翻转的新数据指示NDI。关于两种方法的进一步细节可以参照图8和图9的相应描述,在此不做赘述。
图13示出了示出了根据本公开的实施例的方法1300的示例流程图。方法1300可以被用于实现根据本公开的实施例的用于上行参考信号与天线面板的关联方案。方法1300可以在基站110侧执行。方法1300可以包括步骤1310至步骤1330。可以看到,用于基站110侧的方法1300与用于UE侧的方法1100相对应,因此,在此粗略提及的特征或功能的具体细节可以具体参照对方法1100的介绍。
在步骤1310中,基站110被配置为向UE发送探测参考信号SRS配置,该SRS配置为UE配置多个SRS资源集。SRS配置可以设置SRS资源集的数量。进一步地,SRS配置还可以设置每个SRS资源集中的SRS的数量。
在步骤1320中,基站110被配置为从UE接收SRS-天线面板关联信息。SRS-天线面板关联信息可以包括UE的多个天线面板中的每个天线面板的面板状态和要使用该天线面板发送的SRS资源集的索引或者SRS资源集中任何SRS的索引。
在步骤1330中,基站110被配置为从UE接收SRS资源集中的SRS,以进行上行信道探测。
类似地,在基站侧执行的利用SRS-天线面板关联信息进行天线面板选择以及对SRS-天线面板关联信息进行更新的内容同样可以参照对UE侧描述的相应方案,在此不做赘述。
以上描述了根据本公开的用于在无线通信系统中的将UE的天线面板与参考信号 进行关联以及对关联进行更新的电子设备和方法的实施例。在本公开的实施例中,通过由UE主动向基站报告天线面板的面板状态,可以辅助基站做出更合适的面板选择,减小因选择不合适而导致的延时或通信质量下降,保证用户体验。另外,通过由UE向基站报告天线面板与参考信号之间的关联,可以方便基站通过指示参考信号就能够间接指示UE所应该使用的天线面板,由此使得天线面板的选择更快速。此外,通过UE主动进行对天线面板与参考信号之间的关联进行更新,可以使得基站能够更及时地对UE的状态变化做出响应,从而尽量保证通信的质量。
应指出,上述描述仅仅是示例性的。本公开的实施例还可以任何其它适当的方式执行,仍可实现本公开的实施例所获得的有利效果。而且,本公开的实施例同样可应用于其它类似的应用实例,仍可实现本公开的实施例所获得的有利效果。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图14所示的通用个人计算机1400安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图14是示出根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性发射设备或终端侧电子设备。
在图14中,中央处理单元(CPU)1401根据只读存储器(ROM)1402中存储的程序或从存储部分1408加载到随机存取存储器(RAM)1403的程序执行各种处理。在RAM 1403中,也根据需要存储当CPU 1401执行各种处理等时所需的数据。
CPU 1401、ROM 1402和RAM 1403经由总线1404彼此连接。输入/输出接口1405也连接到总线1404。
下述部件连接到输入/输出接口1405:输入部分1406,包括键盘、鼠标等;输出部分1407,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1408,包括硬盘等;和通信部分1409,包括网络接口卡比如LAN卡、 调制解调器等。通信部分1409经由网络比如因特网执行通信处理。
根据需要,驱动器1410也连接到输入/输出接口1405。可拆卸介质1411比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1410上,使得从中读出的计算机程序根据需要被安装到存储部分1408中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1411安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图14所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1411。可拆卸介质1411的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1402、存储部分1408中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
4、应用示例
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的控制侧电子设备可以被实现为各种控制设备/基站或者被包含在各种控制设备/基站中。例如,根据本公开的实施例的发射设备和终端设备可以被实现为各种终端设备或者被包含在各种终端设备中。
例如,本公开中提到的控制设备/基站可以被实现为任何类型的基站,例如eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。还例如,可以实现为gNB,诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备,在一些实施例中可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终 端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照附图描述根据本公开的应用示例。
[关于基站的示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图15是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1500包括多个天线1510以及基站设备1520。基站设备1520和每个天线1510可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1500(或基站设备1520)可以对应于上述控制侧电子设备。
天线1510中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1520发送和接收无线信号。如图15所示,gNB 1500可以包括多个天线1510。例如,多个天线1510可以与gNB 1500使用的多个频段兼容。
基站设备1520包括控制器1521、存储器1522、网络接口1517以及无线通信接口1525。
控制器1521可以为例如CPU或DSP,并且操作基站设备1520的较高层的各种功能。例如,控制器1521根据由无线通信接口1525获取的无线通信系统中的终端侧的至少一个终端设备的定位信息和至少一个终端设备的特定位置配置信息来确定至少一个终端设备中的目标终端设备的位置信息。控制器1521可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接入控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1522包括RAM和 ROM,并且存储由控制器1521执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1523为用于将基站设备1520连接至核心网1524的通信接口。控制器1521可以经由网络接口1517而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1500与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1523还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1523为无线通信接口,则与由无线通信接口1525使用的频段相比,网络接口1523可以使用较高频段用于无线通信。
无线通信接口1525支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-Advanced),并且经由天线1510来提供到位于gNB 1500的小区中的终端的无线连接。无线通信接口1525通常可以包括例如基带(BB)处理器1526和RF电路1527。BB处理器1526可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1521,BB处理器1526可以具有上述逻辑功能的一部分或全部。BB处理器1526可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1526的功能改变。该模块可以为插入到基站设备1520的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1527可以包括例如混频器、滤波器和放大器,并且经由天线1510来传送和接收无线信号。虽然图15示出一个RF电路1527与一根天线1510连接的示例,但是本公开并不限于该图示,而是一个RF电路1527可以同时连接多根天线1510。
如图15所示,无线通信接口1525可以包括多个BB处理器1526。例如,多个BB处理器1526可以与gNB 1500使用的多个频段兼容。如图15所示,无线通信接口1525可以包括多个RF电路1527。例如,多个RF电路1527可以与多个天线元件兼容。虽然图15示出其中无线通信接口1525包括多个BB处理器1526和多个RF电路1527的示例,但是无线通信接口1525也可以包括单个BB处理器1526或单个RF电路1527。
第二示例
图16是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1600包括多个天线1610、RRH 1620和基站设备1630。RRH 1620和每个天线1610可以经由RF线缆而彼此连接。基站设备1630和RRH 1620可以经由诸如光纤线缆的 高速线路而彼此连接。在一种实现方式中,此处的gNB 1600(或基站设备1630)可以对应于上述控制侧电子设备。
天线1610中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于RRH 1620发送和接收无线信号。如图16所示,gNB 1600可以包括多个天线1610。例如,多个天线1610可以与gNB 1600使用的多个频段兼容。
基站设备1630包括控制器1631、存储器1632、网络接口1633、无线通信接口1634以及连接接口1636。控制器1631、存储器1632和网络接口1633与参照图15描述的控制器1521、存储器1522和网络接口1523相同。
无线通信接口1634支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且经由RRH 1620和天线1610来提供到位于与RRH 1620对应的扇区中的终端的无线通信。无线通信接口1634通常可以包括例如BB处理器1635。除了BB处理器1635经由连接接口1636连接到RRH 1620的RF电路1622之外,BB处理器1635与参照图15描述的BB处理器1526相同。如图16所示,无线通信接口1634可以包括多个BB处理器1635。例如,多个BB处理器1635可以与gNB 1600使用的多个频段兼容。虽然图16示出其中无线通信接口1634包括多个BB处理器1635的示例,但是无线通信接口1634也可以包括单个BB处理器1635。
连接接口1636为用于将基站设备1630(无线通信接口1634)连接至RRH 1620的接口。连接接口1636还可以为用于将基站设备1630(无线通信接口1634)连接至RRH 1620的上述高速线路中的通信的通信模块。
RRH 1620包括连接接口1623和无线通信接口1621。
连接接口1623为用于将RRH 1620(无线通信接口1621)连接至基站设备1630的接口。连接接口1623还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1621经由天线1610来传送和接收无线信号。无线通信接口1621通常可以包括例如RF电路1622。RF电路1622可以包括例如混频器、滤波器和放大器,并且经由天线1610来传送和接收无线信号。虽然图16示出一个RF电路1622与一根天线1610连接的示例,但是本公开并不限于该图示,而是一个RF电路1622可以同时连接多根天线1610。
如图16所示,无线通信接口1621可以包括多个RF电路1622。例如,多个RF电路1622可以支持多个天线元件。虽然图16示出其中无线通信接口1621包括多个RF电路1622的示例,但是无线通信接口1621也可以包括单个RF电路1622。
[关于用户设备/终端设备的示例]
第一示例
图17是示出可以应用本公开内容的技术的通讯设备1700(例如,智能电话,联络器等等)的示意性配置的示例的框图。通讯设备1700包括处理器1701、存储器1702、存储装置1703、外部连接接口1704、摄像装置1706、传感器1707、麦克风1708、输入装置1709、显示装置1710、扬声器1711、无线通信接口1712、一个或多个天线开关1715、一个或多个天线1716、总线1717、电池1718以及辅助控制器1719。在一种实现方式中,此处的通讯设备1700(或处理器1701)可以对应于上述发射设备或终端侧电子设备。
处理器1701可以为例如CPU或片上系统(SoC),并且控制通讯设备1700的应用层和另外层的功能。存储器1702包括RAM和ROM,并且存储数据和由处理器1701执行的程序。存储装置1703可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1704为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至通讯设备1700的接口。
摄像装置1706包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1707可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1708将输入到通讯设备1700的声音转换为音频信号。输入装置1709包括例如被配置为检测显示装置1710的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1710包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示通讯设备1700的输出图像。扬声器1711将从通讯设备1700输出的音频信号转换为声音。
无线通信接口1712支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口1712通常可以包括例如BB处理器1713和RF电路1714。BB处理器1713可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1714可以包括例如混频器、滤波器和放大器,并且经由天线1716来传送和接收无线信号。无线通信接口1712可以为其上集成有BB处理器1713和RF电路1714的一个芯片模块。如图17所示,无线通信接口1712可以包括多个BB处理器1713和多个RF电路1714。虽然图17示出其中无线通信接口1712包括多个BB处理器1713和多个RF电路1714的示例,但是 无线通信接口1712也可以包括单个BB处理器1713或单个RF电路1714。
此外,除了蜂窝通信方案之外,无线通信接口1712可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1712可以包括针对每种无线通信方案的BB处理器1713和RF电路1714。
天线开关1715中的每一个在包括在无线通信接口1712中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1716的连接目的地。
天线1716中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1712传送和接收无线信号。如图17所示,通讯设备1700可以包括多个天线1716。虽然图17示出其中通讯设备1700包括多个天线1716的示例,但是通讯设备1700也可以包括单个天线1716。
此外,通讯设备1700可以包括针对每种无线通信方案的天线1716。在此情况下,天线开关1715可以从通讯设备1700的配置中省略。
总线1717将处理器1701、存储器1702、存储装置1703、外部连接接口1704、摄像装置1706、传感器1707、麦克风1708、输入装置1709、显示装置1710、扬声器1711、无线通信接口1712以及辅助控制器1719彼此连接。电池1718经由馈线向图17所示的通讯设备1700的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1719例如在睡眠模式下操作通讯设备1700的最小必需功能。
第二示例
图18是示出可以应用本公开内容的技术的汽车导航设备1800的示意性配置的示例的框图。汽车导航设备1800包括处理器1801、存储器1802、全球定位系统(GPS)模块1804、传感器1805、数据接口1806、内容播放器1807、存储介质接口1808、输入装置1809、显示装置1810、扬声器1811、无线通信接口1813、一个或多个天线开关1816、一个或多个天线1817以及电池1818。在一种实现方式中,此处的汽车导航设备1800(或处理器1801)可以对应于发射设备或终端侧电子设备。
处理器1801可以为例如CPU或SoC,并且控制汽车导航设备1800的导航功能和另外的功能。存储器1802包括RAM和ROM,并且存储数据和由处理器1801执行的程序。
GPS模块1804使用从GPS卫星接收的GPS信号来测量汽车导航设备1800的位置(诸如纬度、经度和高度)。传感器1805可以包括一组传感器,诸如陀螺仪传感 器、地磁传感器和空气压力传感器。数据接口1806经由未示出的终端而连接到例如车载网络1821,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1807再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1808中。输入装置1809包括例如被配置为检测显示装置1810的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1810包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1811输出导航功能的声音或再现的内容。
无线通信接口1813支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口1813通常可以包括例如BB处理器1814和RF电路1815。BB处理器1814可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1815可以包括例如混频器、滤波器和放大器,并且经由天线1817来传送和接收无线信号。无线通信接口1813还可以为其上集成有BB处理器1814和RF电路1815的一个芯片模块。如图18所示,无线通信接口1813可以包括多个BB处理器1814和多个RF电路1815。虽然图18示出其中无线通信接口1813包括多个BB处理器1814和多个RF电路1815的示例,但是无线通信接口1813也可以包括单个BB处理器1814或单个RF电路1815。
此外,除了蜂窝通信方案之外,无线通信接口1813可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1813可以包括BB处理器1814和RF电路1815。
天线开关1816中的每一个在包括在无线通信接口1813中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1817的连接目的地。
天线1817中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1813传送和接收无线信号。如图18所示,汽车导航设备1800可以包括多个天线1817。虽然图18示出其中汽车导航设备1800包括多个天线1817的示例,但是汽车导航设备1800也可以包括单个天线1817。
此外,汽车导航设备1800可以包括针对每种无线通信方案的天线1817。在此情况下,天线开关1816可以从汽车导航设备1800的配置中省略。
电池1818经由馈线向图18所示的汽车导航设备1800的各个块提供电力,馈线在图中被部分地示为虚线。电池1818累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1800、车载网络1821以及 车辆模块1822中的一个或多个块的车载系统(或车辆)1820。车辆模块1822生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1821。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,在相关设备的存储介质存储构成相应软件的相应程序,当所述程序被执行时,能够执行各种功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
5、本公开的示例性实施例实现
根据本公开的实施例,可以想到各种实现本公开的概念的示例性实现方式,包括但不限于:
实施例1、一种用于用户设备UE侧的电子设备,所述UE包括多个天线面板,包括:
处理电路,所述处理电路被配置为:
通过所述多个天线面板从基站接收一个或多个下行链路参考信号DL RS;以及
向基站提供波束报告,所述波束报告指示所述多个天线面板与所述一个或多个DL RS的关联,其中所述波束报告包括:
所述多个天线面板中的至少一个天线面板的面板状态;
所述一个或多个DL RS中经由所述至少一个天线面板接收的至少一个DL RS的索引;和
针对所述至少一个DL RS的信道质量测量结果。
实施例2、根据实施例1所述的电子设备,其中所述一个或多个DL RS中的每一个选自包括以下的组:
信道状态信息参考信号(CSI-RS);
同步信号块(SSB);
重复参数Repetition被配置为打开ON的CSI-RS资源集;和
SSB资源集。
实施例3、根据实施例1所述的电子设备,其中所述波束报告还包括用于标识所述至少一个面板的面板ID或标签。
实施例4、根据实施例1所述的电子设备,其中所述面板状态指示相应天线面板处于以下状态之一:
未激活;
仅针对下行链路测量而部分激活;
仅针对下行链路测量和数据传输而部分激活;或
完全激活。
实施例5、根据实施例1所述的电子设备,其中所述UE被配置为利用所述至少一个天线面板中的不同的天线面板接收所述一个或多个DL RS中的每个DL RS,
其中所述波束报告针对所述至少一个天线面板中的每一个天线面板包括:
所述天线面板的面板状态;
与所述天线面板相关联的DL RS的索引;和
针对与所述天线面板相关联的DL RS的信道质量测量结果。
实施例6、根据实施例1所述的电子设备,其中所述UE被配置为利用所述至少一个天线面板中的同一天线面板接收所述一个或多个DL RS中的多个DL RS,
其中所述波束报告包括:
所述相同的天线面板的面板状态;
所述多个DL RS中具有最佳的信道质量测量结果的DL RS的索引;和
所述最佳的信道质量测量结果。
实施例7、根据实施例1所述的电子设备,其中所述UE被配置为利用所述至少一个天线面板中的同一天线面板接收所述一个或多个DL RS中的多个DL RS,
其中所述波束报告针对所述多个DL RS中的每个DL RS包括:
所述相同的天线面板的面板状态;
由所述多个DL RS共享的组标签;
所述DL RS的索引;和
针对所述DL RS的信道质量测量结果。
实施例8、根据实施例1所述的电子设备,其中所述UE被配置为利用所述至少一个天线面板中的多个天线面板接收所述一个或多个DL RS中的一个DL RS,
其中所述波束报告包括:
所述一个DL RS的索引;
所述多个天线面板各自的面板状态和各自测得的针对所述一个DL RS的信道质量测量结果。
实施例9、根据实施例1所述的电子设备,其中所述处理电路还被配置为:
从基站接收DCI,所述DCI指示所述一个或多个DL RS中的经选择的DL RS;
利用在所述波束报告中指示的用于接收所述经选择的DL RS的相同的面板与基站通信。
实施例10、根据实施例1所述的电子设备,其中所述信道质量测量结果包括L1-RSRP或L1-SINR中的至少一个。
实施例11、根据实施例1所述的电子设备,所述处理电路还被配置为:
响应于检测到指示所述多个天线面板与所述一个或多个DL RS的关联应当发生改变的第一条件,更新所述多个天线面板与所述一个或多个DL RS之间的关联;以及
向所述基站发送更新的波束报告以指示所述多个天线面板与所述一个或多个DL RS的更新后的关联。
实施例12、根据实施例11所述的电子设备,其中所述第一条件包括所述至少一个天线面板的面板状态的改变。
实施例13、根据实施例11所述的电子设备,其中所述第一条件包括针对所述至少一个DL RS的信道质量测量结果小于预定阈值。
实施例14、根据实施例11所述的电子设备,其中所述更新的波束报告与所述波束报告具有相同的信令格式。
实施例15、根据实施例11所述的电子设备,其中为了发送所述更新的波束报告,所述处理电路还被配置为:
向所述基站发送上行链路调度请求;以及
响应于从基站接收到上行链路调度授权,利用经调度的PUSCH或PUCCH信道在上行链路控制信息UCI中发送所述更新的波束报告。
实施例16、根据实施例11所述的电子设备,其中为了发送所述更新的波束报告,所述处理电路还被配置为:
向所述基站发送上行链路调度请求;
响应于从基站接收到上行链路调度授权,利用经调度的PUSCH在MAC CE中发送所述更新的波束报告;以及
从所述基站接收隐式HARQ,所述隐式HARQ具有相同的HARQ过程ID以及翻转的新数据指示NDI。
实施例17、根据实施例16所述的电子设备,其中所述更新的波束报告与所述波束报告具有不同的信令格式,所述更新的波束报告包括:
所述多个天线面板中的至少一个天线面板的面板状态;以及
与所述至少一个天线面板相关联的更新的上行链路TCI或联合TCI。
实施例18、一种在用户设备UE侧执行的方法,包括:
通过所述多个天线面板从基站接收一个或多个下行链路参考信号DL RS;以及
向基站提供波束报告,其中,所述波束报告包括:
所述多个天线面板中的至少一个天线面板的面板状态;
所述一个或多个DL RS中经由所述至少一个天线面板接收的至少一个DL RS的索引;和
针对所述至少一个DL RS的信道质量测量结果。
实施例19、一种用于基站BS侧的电子设备,包括:
处理电路,所述处理电路被配置为:
向包括多个天线面板的用户设备UE发送一个或多个下行链路参考信号DL RS;以及
从所述UE接收波束报告,其中,所述波束报告包括:
所述多个天线面板中的至少一个天线面板的面板状态;
所述一个或多个DL RS中经由所述至少一个天线面板接收的至少一个DL RS的索引;和
针对所述至少一个DL RS的信道质量测量结果。
实施例20、根据实施例19所述的电子设备,其中所述一个或多个DL RS中的每一个选自包括以下的组:
信道状态信息参考信号(CSI-RS);
同步信号块(SSB);
重复参数Repetition被配置为打开ON的CSI-RS资源集;和
SSB资源集。
实施例21、根据实施例19所述的电子设备,其中所述波束报告包括还包括用于标识所述至少一个天线面板的面板ID或标签。
实施例22、根据实施例19所述的电子设备,其中所述面板状态指示相应天线面板处于以下状态之一:
未激活;
仅针对下行链路测量而部分激活;
仅针对下行链路测量和数据传输而部分激活;或
完全激活。
实施例23、根据实施例19所述的电子设备,其中,在所述UE被配置为利用所述至少一个天线面板中的不同的天线面板接收所述一个或多个DL RS中的每个DL RS的情况下,所述波束报告针对所述至少一个天线面板中的每一个天线面板包括:
所述天线面板的面板状态;
与所述天线面板相关联的DL RS的索引;和
针对与所述天线面板相关联的DL RS的信道质量测量结果。
实施例24、根据实施例19所述的电子设备,其中,在所述UE被配置为利用所述至少一个天线面板中的同一天线面板接收所述一个或多个DL RS中的多个DL RS的情况下,所述波束报告包括:
所述相同的天线面板的面板状态;
所述多个DL RS中具有最佳的信道质量测量结果的DL RS的索引;和
所述最佳的信道质量测量结果。
实施例25、根据实施例19所述的电子设备,其中,在所述UE被配置为利用所述至少一个天线面板中的同一天线面板接收所述一个或多个DL RS中的多个DL RS的情况下,所述波束报告针对所述多个DL RS中的每个DL RS包括:
所述相同的天线面板的面板状态;
由所述多个DL RS共享的组标签;
所述DL RS的索引;和
针对所述DL RS的信道质量测量结果。
实施例26、根据实施例19所述的电子设备,其中,在所述UE被配置为利用所述至少一个天线面板中的多个天线面板接收所述一个或多个DL RS中的一个DL RS的情况下,所述波束报告包括:
所述一个DL RS的索引;
所述多个天线面板各自的面板状态和各自测得的针对所述一个DL RS的信道质量测量结果。
实施例27、根据实施例19所述的电子设备,其中所述处理电路还被配置为:
向所述UE发送DCI,所述DCI指示所述一个或多个DL RS中的经选择的DL RS;
利用与所述经选择的DL RS的相同的波束与所述UE通信。
实施例28、根据实施例27所述的电子设备,其中所述处理电路还被配置为:
根据所述波束报告中的信道质量测量结果和面板状态中的至少一者确定所述特定DL RS。
实施例29、根据实施例19所述的电子设备,其中所述信道质量测量结果包括L1-RSRP或L1-SINR中的至少一个。
实施例30、一种在基站BS侧执行的方法,包括:
向包括多个天线面板的用户设备UE发送一个或多个下行链路参考信号DL RS;以及
从所述UE接收波束报告,其中,所述波束报告包括:
所述多个天线面板中的至少一个天线面板的面板状态;
所述一个或多个DL RS中经由所述至少一个天线面板接收的至少一个DLRS的索引;和
针对所述至少一个DL RS的信道质量测量结果。
实施例31、一种用于用户设备UE侧的电子设备,所述UE包括多个天线面板, 包括:
处理电路,所述处理电路被配置为:
从基站接收探测参考信号SRS配置,所述SRS配置为所述UE配置多个SRS资源集;
向基站提供SRS-天线面板关联信息,所述SRS-天线面板关联信息包括:
所述多个天线面板中的每个天线面板的面板状态;以及
要使用所述天线面板发送的相应SRS资源集的索引或者要使用所述天线面板发送的相应SRS资源集中的任何SRS的索引;以及
基于所述SRS-天线面板关联信息使用所述多个天线面板中的至少一个天线面板向基站发送相应SRS资源集中的SRS。
实施例32、根据实施例31所述的电子设备,其中所述SRS-天线面板关联信息还针对每个天线面板包括所述天线面板的面板ID或标签。
实施例33、根据实施例31所述的电子设备,其中所述处理电路还被配置为:
从基站接收DCI,所述DCI指示所述多个SRS资源集中经选择的SRS资源集或者经选择的SRS资源集中的经选择的SRS;
利用在所述SRS-天线面板关联信息中指示的用于发送所述经选择的SRS资源集或所述经选择的SRS的相同的天线面板与基站通信。
实施例34、根据实施例31所述的电子设备,其中所述面板状态指示相应天线面板处于以下状态之一:
未激活;
仅针对上行链路测量而部分激活;
仅针对上行链路测量和数据传输而部分激活;或
完全激活。
实施例35、根据实施例31所述的电子设备,所述处理电路还被配置为:
响应于检测到指示所述多个天线面板与所述多个SRS资源集的关联应当发生改变的第一条件,更新所述多个天线面板与所述多个SRS资源集之间的关联;以及
向所述基站发送更新的SRS-天线面板关联信息以指示所述多个天线面板与所述多个SRS资源集的更新后的关联。
实施例36、根据实施例31所述的电子设备,其中所述第一条件包括所述至少一个天线面板的面板状态的改变。
实施例37、根据实施例31所述的电子设备,其中所述更新的SRS-天线面板关联信息与所述SRS-天线面板关联信息具有相同的信令格式。
实施例38、根据实施例31所述的电子设备,其中为了发送所述更新的SRS-天线面板关联信息,所述处理电路还被配置为:
向所述基站发送上行链路调度请求;以及
响应于从基站接收到上行链路调度授权,利用经调度的PUSCH或PUCCH在上行链路控制信息UCI中发送所述更新的SRS-天线面板关联信息。
实施例39、根据实施例31所述的电子设备,其中为了发送所述更新的波束报告,所述处理电路还被配置为:
向所述基站发送上行链路调度请求;
响应于从基站接收到上行链路调度授权,利用经调度的PUSCH在MAC CE中发送所述更新的SRS-天线面板关联信息;以及
从所述基站接收隐式HARQ,所述隐式HARQ具有相同的HARQ过程ID以及翻转的新数据指示NDI。
实施例40、根据实施例31所述的电子设备,其中所述更新的SRS-天线面板关联信息与所述SRS-天线面板关联信息具有不同的信令格式,所述更新的SRS-天线面板关联信息包括:
所述多个天线面板中的至少一个天线面板的面板状态;以及
与所述至少一个天线面板相关联的更新的上行链路TCI或联合TCI。
实施例41、一种在用户设备UE侧执行的方法,所述UE包括多个天线面板,所述方法包括:
从基站接收探测参考信号SRS配置,所述SRS配置为所述UE配置多个SRS资源集;
向基站提供SRS-天线面板关联信息,所述SRS-天线面板关联信息包括:
所述多个天线面板中的每个天线面板的面板状态;以及
要使用所述天线面板发送的相应SRS资源集的索引或者要使用所述天线面板发送的相应SRS资源集中的任何SRS的索引;以及
基于所述SRS-天线面板关联信息使用所述多个天线面板中的至少一个天线面板向所述基站发送相应SRS资源集中的SRS。
实施例42、一种用于基站BS侧的电子设备,包括:
处理电路,所述处理电路被配置为:
向用户设备UE发送探测参考信号SRS配置,所述SRS配置为所述UE配置多个SRS资源集;
从所述UE接收SRS-天线面板关联信息,所述SRS-天线面板关联信息包括:
所述UE的多个天线面板中的每个天线面板的面板状态;以及
要使用所述天线面板发送的相应SRS资源集的索引或者要使用所述天线面板发送的相应SRS资源集中的任何SRS的索引;以及
从所述UE接收来自所述多个SRS资源集中的一个或多个SRS。
实施例43、根据实施例42的电子设备,其中所述SRS-天线面板关联信息还针对每个天线面板包括所述天线面板的面板ID或标签。
实施例44、根据实施例42所述的电子设备,其中所述处理电路还被配置为:
向所述UE发送DCI,所述DCI指示所述多个SRS资源集中经选择的SRS资源集或者经选择的SRS资源集中的经选择的SRS;
利用在所述SRS-天线面板关联信息中指示的用于发送所述经选择的SRS资源集或所述经选择的SRS的相同的天线面板与所述UE通信。
实施例45、根据实施例42所述的电子设备,其中所述面板状态指示相应天线面板处于以下状态之一:
未激活;
仅针对上行链路测量而部分激活;
仅针对上行链路测量和数据传输而部分激活;或
完全激活。
实施例46、一种在基站BS侧执行的方法,所述方法包括:
向用户设备UE发送探测参考信号SRS配置,所述SRS配置为所述UE配置多个SRS资源集;
从所述UE接收SRS-天线面板关联信息,所述SRS-天线面板关联信息包括:
所述UE的多个天线面板中的每个天线面板的面板状态;以及
要使用所述天线面板发送的相应SRS资源集的索引或者要使用所述天线面板发送的相应SRS资源集中的任何SRS的索引;以及
从所述UE接收来自所述多个SRS资源集中的一个或多个SRS。
实施例47、一种存储有一个或多个指令的计算机可读存储介质,该一个或多个指 令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如实施例18、30、41、46中任一项所述的方法。
实施例48、一种包括一个或多个指令的计算机程序产品,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如实施例18、30、41、46中任一项所述的方法。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
虽然已详细描述了本公开的一些具体实施例,但是本领域技术人员应当理解,上述实施例仅是说明性的而不限制本公开的范围。本领域技术人员应该理解,上述实施例可以被组合、修改或替换而不脱离本公开的范围和实质。本公开的范围是通过所附的权利要求限定的。

Claims (48)

  1. 一种用于用户设备UE侧的电子设备,所述UE包括多个天线面板,包括:
    处理电路,所述处理电路被配置为:
    通过所述多个天线面板从基站接收一个或多个下行链路参考信号DL RS;以及
    向基站提供波束报告,所述波束报告指示所述多个天线面板与所述一个或多个DL RS的关联,其中所述波束报告包括:
    所述多个天线面板中的至少一个天线面板的面板状态;
    所述一个或多个DL RS中经由所述至少一个天线面板接收的至少一个DL RS的索引;和
    针对所述至少一个DL RS的信道质量测量结果。
  2. 根据权利要求1所述的电子设备,其中所述一个或多个DL RS中的每一个选自包括以下的组:
    信道状态信息参考信号(CSI-RS);
    同步信号块(SSB);
    重复参数Repetition被配置为打开ON的CSI-RS资源集;和
    SSB资源集。
  3. 根据权利要求1所述的电子设备,其中所述波束报告还包括用于标识所述至少一个面板的面板ID或标签。
  4. 根据权利要求1所述的电子设备,其中所述面板状态指示相应天线面板处于以下状态之一:
    未激活;
    仅针对下行链路测量而部分激活;
    仅针对下行链路测量和数据传输而部分激活;或
    完全激活。
  5. 根据权利要求1所述的电子设备,其中所述UE被配置为利用所述至少一个天线面板中的不同的天线面板接收所述一个或多个DL RS中的每个DL RS,
    其中所述波束报告针对所述至少一个天线面板中的每一个天线面板包括:
    所述天线面板的面板状态;
    与所述天线面板相关联的DL RS的索引;和
    针对与所述天线面板相关联的DL RS的信道质量测量结果。
  6. 根据权利要求1所述的电子设备,其中所述UE被配置为利用所述至少一个天线面板中的同一天线面板接收所述一个或多个DL RS中的多个DL RS,
    其中所述波束报告包括:
    所述相同的天线面板的面板状态;
    所述多个DL RS中具有最佳的信道质量测量结果的DL RS的索引;和
    所述最佳的信道质量测量结果。
  7. 根据权利要求1所述的电子设备,其中所述UE被配置为利用所述至少一个天线面板中的同一天线面板接收所述一个或多个DL RS中的多个DL RS,
    其中所述波束报告针对所述多个DL RS中的每个DL RS包括:
    所述相同的天线面板的面板状态;
    由所述多个DL RS共享的组标签;
    所述DL RS的索引;和
    针对所述DL RS的信道质量测量结果。
  8. 根据权利要求1所述的电子设备,其中所述UE被配置为利用所述至少一个天线面板中的多个天线面板接收所述一个或多个DL RS中的一个DL RS,
    其中所述波束报告包括:
    所述一个DL RS的索引;
    所述多个天线面板各自的面板状态和各自测得的针对所述一个DL RS的信道质量测量结果。
  9. 根据权利要求1所述的电子设备,其中所述处理电路还被配置为:
    从基站接收DCI,所述DCI指示所述一个或多个DL RS中的经选择的DL RS;
    利用在所述波束报告中指示的用于接收所述经选择的DL RS的相同的面板与基站通信。
  10. 根据权利要求1所述的电子设备,其中所述信道质量测量结果包括L1-RSRP或L1-SINR中的至少一个。
  11. 根据权利要求1所述的电子设备,所述处理电路还被配置为:
    响应于检测到指示所述多个天线面板与所述一个或多个DL RS的关联应当发生改变的第一条件,更新所述多个天线面板与所述一个或多个DL RS之间的关联;以及
    向所述基站发送更新的波束报告以指示所述多个天线面板与所述一个或多个DL RS的更新后的关联。
  12. 根据权利要求11所述的电子设备,其中所述第一条件包括所述至少一个天线面板的面板状态的改变。
  13. 根据权利要求11所述的电子设备,其中所述第一条件包括针对所述至少一个DL RS的信道质量测量结果小于预定阈值。
  14. 根据权利要求11所述的电子设备,其中所述更新的波束报告与所述波束报告具有相同的信令格式。
  15. 根据权利要求11所述的电子设备,其中为了发送所述更新的波束报告,所述处理电路还被配置为:
    向所述基站发送上行链路调度请求;以及
    响应于从基站接收到上行链路调度授权,利用经调度的PUSCH或PUCCH信道在上行链路控制信息UCI中发送所述更新的波束报告。
  16. 根据权利要求11所述的电子设备,其中为了发送所述更新的波束报告,所述处理电路还被配置为:
    向所述基站发送上行链路调度请求;
    响应于从基站接收到上行链路调度授权,利用经调度的PUSCH在MAC CE中发送所述更新的波束报告;以及
    从所述基站接收隐式HARQ,所述隐式HARQ具有相同的HARQ过程ID以及翻转的新数据指示NDI。
  17. 根据权利要求16所述的电子设备,其中所述更新的波束报告与所述波束报告具有不同的信令格式,所述更新的波束报告包括:
    所述多个天线面板中的至少一个天线面板的面板状态;以及
    与所述至少一个天线面板相关联的更新的上行链路TCI或联合TCI。
  18. 一种在用户设备UE侧执行的方法,包括:
    通过所述多个天线面板从基站接收一个或多个下行链路参考信号DL RS;以及
    向基站提供波束报告,其中,所述波束报告包括:
    所述多个天线面板中的至少一个天线面板的面板状态;
    所述一个或多个DL RS中经由所述至少一个天线面板接收的至少一个DL RS的索引;和
    针对所述至少一个DL RS的信道质量测量结果。
  19. 一种用于基站BS侧的电子设备,包括:
    处理电路,所述处理电路被配置为:
    向包括多个天线面板的用户设备UE发送一个或多个下行链路参考信号DL RS;以及
    从所述UE接收波束报告,其中,所述波束报告包括:
    所述多个天线面板中的至少一个天线面板的面板状态;
    所述一个或多个DL RS中经由所述至少一个天线面板接收的至少一个DL RS的索引;和
    针对所述至少一个DL RS的信道质量测量结果。
  20. 根据权利要求19所述的电子设备,其中所述一个或多个DL RS中的每一个 选自包括以下的组:
    信道状态信息参考信号(CSI-RS);
    同步信号块(SSB);
    重复参数Repetition被配置为打开ON的CSI-RS资源集;和
    SSB资源集。
  21. 根据权利要求19所述的电子设备,其中所述波束报告包括还包括用于标识所述至少一个天线面板的面板ID或标签。
  22. 根据权利要求19所述的电子设备,其中所述面板状态指示相应天线面板处于以下状态之一:
    未激活;
    仅针对下行链路测量而部分激活;
    仅针对下行链路测量和数据传输而部分激活;或
    完全激活。
  23. 根据权利要求19所述的电子设备,其中,在所述UE被配置为利用所述至少一个天线面板中的不同的天线面板接收所述一个或多个DL RS中的每个DL RS的情况下,所述波束报告针对所述至少一个天线面板中的每一个天线面板包括:
    所述天线面板的面板状态;
    与所述天线面板相关联的DL RS的索引;和
    针对与所述天线面板相关联的DL RS的信道质量测量结果。
  24. 根据权利要求19所述的电子设备,其中,在所述UE被配置为利用所述至少一个天线面板中的同一天线面板接收所述一个或多个DL RS中的多个DL RS的情况下,所述波束报告包括:
    所述相同的天线面板的面板状态;
    所述多个DL RS中具有最佳的信道质量测量结果的DL RS的索引;和
    所述最佳的信道质量测量结果。
  25. 根据权利要求19所述的电子设备,其中,在所述UE被配置为利用所述至少一个天线面板中的同一天线面板接收所述一个或多个DL RS中的多个DL RS的情况下,所述波束报告针对所述多个DL RS中的每个DL RS包括:
    所述相同的天线面板的面板状态;
    由所述多个DL RS共享的组标签;
    所述DL RS的索引;和
    针对所述DL RS的信道质量测量结果。
  26. 根据权利要求19所述的电子设备,其中,在所述UE被配置为利用所述至少一个天线面板中的多个天线面板接收所述一个或多个DL RS中的一个DL RS的情况下,所述波束报告包括:
    所述一个DL RS的索引;
    所述多个天线面板各自的面板状态和各自测得的针对所述一个DL RS的信道质量测量结果。
  27. 根据权利要求19所述的电子设备,其中所述处理电路还被配置为:
    向所述UE发送DCI,所述DCI指示所述一个或多个DL RS中的经选择的DL RS;
    利用与所述经选择的DL RS的相同的波束与所述UE通信。
  28. 根据权利要求27所述的电子设备,其中所述处理电路还被配置为:
    根据所述波束报告中的信道质量测量结果和面板状态中的至少一者确定所述特定DL RS。
  29. 根据权利要求19所述的电子设备,其中所述信道质量测量结果包括L1-RSRP或L1-SINR中的至少一个。
  30. 一种在基站BS侧执行的方法,包括:
    向包括多个天线面板的用户设备UE发送一个或多个下行链路参考信号DL RS;以及
    从所述UE接收波束报告,其中,所述波束报告包括:
    所述多个天线面板中的至少一个天线面板的面板状态;
    所述一个或多个DL RS中经由所述至少一个天线面板接收的至少一个DL RS的索引;和
    针对所述至少一个DL RS的信道质量测量结果。
  31. 一种用于用户设备UE侧的电子设备,所述UE包括多个天线面板,包括:
    处理电路,所述处理电路被配置为:
    从基站接收探测参考信号SRS配置,所述SRS配置为所述UE配置多个SRS资源集;
    向基站提供SRS-天线面板关联信息,所述SRS-天线面板关联信息包括:
    所述多个天线面板中的每个天线面板的面板状态;以及
    要使用所述天线面板发送的相应SRS资源集的索引或者要使用所述天线面板发送的相应SRS资源集中的任何SRS的索引;以及
    基于所述SRS-天线面板关联信息使用所述多个天线面板中的至少一个天线面板向基站发送相应SRS资源集中的SRS。
  32. 根据权利要求31所述的电子设备,其中所述SRS-天线面板关联信息还针对每个天线面板包括所述天线面板的面板ID或标签。
  33. 根据权利要求31所述的电子设备,其中所述处理电路还被配置为:
    从基站接收DCI,所述DCI指示所述多个SRS资源集中经选择的SRS资源集或者经选择的SRS资源集中的经选择的SRS;
    利用在所述SRS-天线面板关联信息中指示的用于发送所述经选择的SRS资源集或所述经选择的SRS的相同的天线面板与基站通信。
  34. 根据权利要求31所述的电子设备,其中所述面板状态指示相应天线面板处于以下状态之一:
    未激活;
    仅针对上行链路测量而部分激活;
    仅针对上行链路测量和数据传输而部分激活;或
    完全激活。
  35. 根据权利要求31所述的电子设备,所述处理电路还被配置为:
    响应于检测到指示所述多个天线面板与所述多个SRS资源集的关联应当发生改变的第一条件,更新所述多个天线面板与所述多个SRS资源集之间的关联;以及
    向所述基站发送更新的SRS-天线面板关联信息以指示所述多个天线面板与所述多个SRS资源集的更新后的关联。
  36. 根据权利要求31所述的电子设备,其中所述第一条件包括所述至少一个天线面板的面板状态的改变。
  37. 根据权利要求31所述的电子设备,其中所述更新的SRS-天线面板关联信息与所述SRS-天线面板关联信息具有相同的信令格式。
  38. 根据权利要求31所述的电子设备,其中为了发送所述更新的SRS-天线面板关联信息,所述处理电路还被配置为:
    向所述基站发送上行链路调度请求;以及
    响应于从基站接收到上行链路调度授权,利用经调度的PUSCH或PUCCH在上行链路控制信息UCI中发送所述更新的SRS-天线面板关联信息。
  39. 根据权利要求31所述的电子设备,其中为了发送所述更新的波束报告,所述处理电路还被配置为:
    向所述基站发送上行链路调度请求;
    响应于从基站接收到上行链路调度授权,利用经调度的PUSCH在MAC CE中发送所述更新的SRS-天线面板关联信息;以及
    从所述基站接收隐式HARQ,所述隐式HARQ具有相同的HARQ过程ID以及翻转的新数据指示NDI。
  40. 根据权利要求31所述的电子设备,其中所述更新的SRS-天线面板关联信息与所述SRS-天线面板关联信息具有不同的信令格式,所述更新的SRS-天线面板关联 信息包括:
    所述多个天线面板中的至少一个天线面板的面板状态;以及
    与所述至少一个天线面板相关联的更新的上行链路TCI或联合TCI。
  41. 一种在用户设备UE侧执行的方法,所述UE包括多个天线面板,所述方法包括:
    从基站接收探测参考信号SRS配置,所述SRS配置为所述UE配置多个SRS资源集;
    向基站提供SRS-天线面板关联信息,所述SRS-天线面板关联信息包括:
    所述多个天线面板中的每个天线面板的面板状态;以及
    要使用所述天线面板发送的相应SRS资源集的索引或者要使用所述天线面板发送的相应SRS资源集中的任何SRS的索引;以及
    基于所述SRS-天线面板关联信息使用所述多个天线面板中的至少一个天线面板向所述基站发送相应SRS资源集中的SRS。
  42. 一种用于基站BS侧的电子设备,包括:
    处理电路,所述处理电路被配置为:
    向用户设备UE发送探测参考信号SRS配置,所述SRS配置为所述UE配置多个SRS资源集;
    从所述UE接收SRS-天线面板关联信息,所述SRS-天线面板关联信息包括:
    所述UE的多个天线面板中的每个天线面板的面板状态;以及
    要使用所述天线面板发送的相应SRS资源集的索引或者要使用所述天线面板发送的相应SRS资源集中的任何SRS的索引;以及
    从所述UE接收来自所述多个SRS资源集中的一个或多个SRS。
  43. 根据权利要求42的电子设备,其中所述SRS-天线面板关联信息还针对每个天线面板包括所述天线面板的面板ID或标签。
  44. 根据权利要求42所述的电子设备,其中所述处理电路还被配置为:
    向所述UE发送DCI,所述DCI指示所述多个SRS资源集中经选择的SRS资源 集或者经选择的SRS资源集中的经选择的SRS;
    利用在所述SRS-天线面板关联信息中指示的用于发送所述经选择的SRS资源集或所述经选择的SRS的相同的天线面板与所述UE通信。
  45. 根据权利要求42所述的电子设备,其中所述面板状态指示相应天线面板处于以下状态之一:
    未激活;
    仅针对上行链路测量而部分激活;
    仅针对上行链路测量和数据传输而部分激活;或
    完全激活。
  46. 一种在基站BS侧执行的方法,所述方法包括:
    向用户设备UE发送探测参考信号SRS配置,所述SRS配置为所述UE配置多个SRS资源集;
    从所述UE接收SRS-天线面板关联信息,所述SRS-天线面板关联信息包括:
    所述UE的多个天线面板中的每个天线面板的面板状态;以及
    要使用所述天线面板发送的相应SRS资源集的索引或者要使用所述天线面板发送的相应SRS资源集中的任何SRS的索引;以及
    从所述UE接收来自所述多个SRS资源集中的一个或多个SRS。
  47. 一种存储有一个或多个指令的计算机可读存储介质,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如权利要求18、30、41、46中任一项所述的方法。
  48. 一种包括一个或多个指令的计算机程序产品,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如权利要求18、30、41、46中任一项所述的方法。
PCT/CN2022/083543 2021-04-02 2022-03-29 电子设备、通信方法、存储介质和计算机程序产品 WO2022206720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280024199.4A CN117063405A (zh) 2021-04-02 2022-03-29 电子设备、通信方法、存储介质和计算机程序产品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110362243.X 2021-04-02
CN202110362243.XA CN115173898A (zh) 2021-04-02 2021-04-02 电子设备、通信方法、存储介质和计算机程序产品

Publications (1)

Publication Number Publication Date
WO2022206720A1 true WO2022206720A1 (zh) 2022-10-06

Family

ID=83457946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083543 WO2022206720A1 (zh) 2021-04-02 2022-03-29 电子设备、通信方法、存储介质和计算机程序产品

Country Status (2)

Country Link
CN (2) CN115173898A (zh)
WO (1) WO2022206720A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178326A (zh) * 2017-01-09 2019-08-27 Lg 电子株式会社 用于在无线通信系统中报告信道状态信息的方法和设备
CN111278089A (zh) * 2019-01-08 2020-06-12 维沃移动通信有限公司 一种天线面板控制方法、终端设备及网络侧设备
CN112075029A (zh) * 2018-04-06 2020-12-11 诺基亚技术有限公司 用于多面板ue的波束指示
CN112567776A (zh) * 2018-08-21 2021-03-26 华为技术有限公司 用于与多天线面板装置进行通信的系统和方法
CN112584528A (zh) * 2019-09-27 2021-03-30 苹果公司 利用天线面板切换的下行链路信号接收

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178326A (zh) * 2017-01-09 2019-08-27 Lg 电子株式会社 用于在无线通信系统中报告信道状态信息的方法和设备
CN112075029A (zh) * 2018-04-06 2020-12-11 诺基亚技术有限公司 用于多面板ue的波束指示
CN112567776A (zh) * 2018-08-21 2021-03-26 华为技术有限公司 用于与多天线面板装置进行通信的系统和方法
CN111278089A (zh) * 2019-01-08 2020-06-12 维沃移动通信有限公司 一种天线面板控制方法、终端设备及网络侧设备
CN112584528A (zh) * 2019-09-27 2021-03-30 苹果公司 利用天线面板切换的下行链路信号接收

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITL: "UL power control and PHR", 3GPP DRAFT; R1-1718625 PC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 2 October 2017 (2017-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051352424 *

Also Published As

Publication number Publication date
CN115173898A (zh) 2022-10-11
CN117063405A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
ES2960749T3 (es) Equipo de usuario en sistema de comunicación inalámbrico
WO2021169904A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11757510B2 (en) Electronic devices and communication methods
WO2020108473A1 (zh) 电子设备、通信方法和存储介质
US20230102698A1 (en) Network device, user equipment, wireless communication method and storage medium
US11265069B2 (en) Electronic device, method and storage medium for wireless communication system
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US20210083914A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
EP4135449A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2021031882A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
JP2018164158A (ja) 通信装置、通信方法、及びプログラム
US20170207889A1 (en) Device
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022206720A1 (zh) 电子设备、通信方法、存储介质和计算机程序产品
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230276452A1 (en) Electronic device, wireless communication method and computer-readable storage medium
JP2024503679A (ja) 無線通信のための電子装置及び方法
US20240178887A1 (en) Electronic device, communication method, storage medium and computer program product
WO2023134528A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023056922A1 (zh) 电子设备、通信方法和计算机程序产品
WO2023134717A1 (zh) 用于波束失败恢复的设备、方法和介质
WO2023221913A1 (zh) 用于指示tci状态的方法及相关设备
WO2022083541A1 (zh) 电子设备、通信方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552190

Country of ref document: US

Ref document number: 202280024199.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778902

Country of ref document: EP

Kind code of ref document: A1