WO2019049791A1 - 封止光半導体デバイスの製造方法 - Google Patents

封止光半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2019049791A1
WO2019049791A1 PCT/JP2018/032424 JP2018032424W WO2019049791A1 WO 2019049791 A1 WO2019049791 A1 WO 2019049791A1 JP 2018032424 W JP2018032424 W JP 2018032424W WO 2019049791 A1 WO2019049791 A1 WO 2019049791A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
sealing film
semiconductor element
layer sealing
outermost layer
Prior art date
Application number
PCT/JP2018/032424
Other languages
English (en)
French (fr)
Inventor
英二 北浦
雅章 尼子
スティーブン スウィアー
Original Assignee
東レ・ダウコーニング株式会社
ダウ シリコーンズ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社, ダウ シリコーンズ コーポレーション filed Critical 東レ・ダウコーニング株式会社
Priority to JP2019540933A priority Critical patent/JP6957630B2/ja
Priority to US16/637,531 priority patent/US11257992B2/en
Priority to EP18854026.4A priority patent/EP3680943B1/en
Priority to KR1020207004448A priority patent/KR102344560B1/ko
Priority to CN201880053054.0A priority patent/CN111033769B/zh
Publication of WO2019049791A1 publication Critical patent/WO2019049791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the present invention relates to a method of manufacturing a sealed optical semiconductor device using a sealing film, and more particularly, to a method of manufacturing a sealed optical semiconductor device using a sealing film containing a phosphor and / or a filler in a high loading.
  • a sealing film containing a phosphor and / or a filler in a high loading.
  • an optical semiconductor device mounted with an optical semiconductor device such as a photo coupler, a light emitting diode, or a solid-state imaging device
  • the optical semiconductor device is sealed using a sealant in order to improve the reliability of the optical semiconductor device.
  • a method of sealing an optical semiconductor device a method of sealing using a sealing film is known.
  • Patent Document 1 discloses a binder in which at least one LED element is placed on a substrate, has a first and a second surface, and the first surface is supported by a substrate film, A lamination layer having a predetermined shape, including body particles, is disposed on the above-described LED element, and the lamination layer is heated to a first temperature to soften the lamination layer, and the lamination layer and the LED element are surrounded.
  • the central portion of the lamination layer is A reduced pressure lamination method comprising one heating step of heating to a flowable state, the airtight seal formed by the end portion of the lamination layer and the outer portion of the first surface, and From the inner portion of the first surface, the central portion of the lamination layer which has been heated and flowable is formed by the airtight inner region constituted by the lamination layer and the first surface described above.
  • a reduced pressure lamination method is described which comprises the steps of being placed apart.
  • Patent Document 3 shows a sealing sheet provided with a sealing layer used to seal an optical semiconductor element, wherein the above-mentioned sealing layer is subjected to a frequency of 1 Hz and a temperature rising rate of 10 ° C./min.
  • the curve showing the relationship between the storage shear modulus G ′ obtained by performing dynamic viscoelasticity measurement and the temperature T has a local minimum, and the temperature T at the above local minimum is 60 ° C. or higher and 200 ° C. or lower
  • sealing the above-described sealing sheet at a temperature of 60 ° C. or more and 200 ° C. or less The manufacturing method of the optical semiconductor device is described It is.
  • Patent Document 4 discloses a sticking sheet provided with a sticking layer used to stick directly or indirectly to an optical semiconductor element, wherein the sticking layer described above has a frequency of 1 Hz and a temperature rising rate of 20.
  • the curve showing the relationship between the storage shear elastic modulus G 'and the temperature T obtained by measuring the dynamic viscoelasticity under the conditions of ° C./min has a minimum value, and the temperature T at the above-mentioned minimum value is 40 ° C.
  • An object of the present invention is to provide a method of manufacturing a sealed optical semiconductor device capable of sealing an optical semiconductor element with high reliability even when the sealing film of the inner layer has physical properties that are difficult to stretch. It is in.
  • the inventors of the present invention have conducted intensive studies to solve the problems described above, and when sealing the optical semiconductor element using a sealing film, the sealing film is highly filled with particles such as phosphors and fillers, for example. Even in the case of having physical properties that are difficult to be stretched, such a sealing film is combined with another sealing film to perform a laminating process under a specific temperature condition, thereby achieving high reliability on the substrate.
  • the present invention has been completed by finding that the optical semiconductor device mounted on can be sealed.
  • the manufacturing method of the encapsulated optical semiconductor device of the present invention is At least two types of sealing films including an inner layer sealing film and an outermost layer sealing film are placed in this order on the optical semiconductor element mounting substrate on which the optical semiconductor element is mounted in the vacuum chamber, and the inside of the vacuum chamber is Depressurizing process, Heating the outermost layer sealing film to thermally fuse at least a peripheral portion of the outermost layer sealing film to the surface of the optical semiconductor element mounting substrate; and releasing the pressure reduction in the pressure reducing chamber,
  • a method for producing a sealed optical semiconductor device comprising the step of sealing the optical semiconductor element mounting substrate with an outermost layer sealing film and an inner layer sealing film, Temperature T 2 of the optical semiconductor element mounting board at the time of releasing the vacuum in the vacuum chamber is a tensile strength and 200 to 450 percent elongation at break of the outermost sealing film is 0.02 ⁇ 0.15 MPa Is the temperature indicated,
  • the inner layer sealing film, at the temperature T 2, to characterized in that indicating 1.6 or more of the loss
  • the sealing film is preferably made of a thermosetting silicone resin.
  • the particles are preferably selected from a phosphor and a filler.
  • the sealing film preferably has a thickness of 10 ⁇ m or more and 300 ⁇ m or less.
  • temperature T 2 is preferably at 70 ° C. or higher 180 ° C. or less.
  • the minimum distance between the optical semiconductor elements is longer than the total thickness of the sealing film.
  • the aspect ratio (T / L) between the height T of the optical semiconductor element and the distance L between the optical semiconductor elements is preferably at most 3 or less.
  • the method for manufacturing a sealed optical semiconductor device according to the present invention is characterized in that the sealed optical semiconductor device can be manufactured with high reliability even when the inner-layer sealing film has physical properties that are difficult to stretch.
  • FIG. 1 is a schematic cross-sectional view showing an example of the method according to the present invention, which is performed using a vacuum laminator having a lift pin lifting mechanism.
  • FIG. 2 is a schematic cross-sectional view showing an example of the method according to the present invention, which is performed using a diaphragm type vacuum laminator and a lamination jig.
  • the manufacturing method of the encapsulated optical semiconductor device of the present invention is (1) At least two types of sealing films including an inner layer sealing film and an outermost layer sealing film are placed in this order on the optical semiconductor element mounting substrate on which the optical semiconductor element is mounted in the pressure reducing chamber, Reducing the pressure in the chamber; (2) heating the outermost layer sealing film to thermally fuse at least a peripheral portion of the outermost layer sealing film to the surface of the optical semiconductor element mounting substrate; and (3) reducing pressure in the pressure reducing chamber And sealing the optical semiconductor element mounting substrate with the outermost layer sealing film and the inner layer sealing film, the method for producing a sealed optical semiconductor device, Temperature T 2 of the optical semiconductor element mounting board at the time of releasing the vacuum in the vacuum chamber is a tensile strength and 200 to 450 percent elongation at break of the outermost sealing film is 0.02 ⁇ 0.15 MPa Is the temperature indicated, The inner layer sealing film, at the temperature T 2, is characterized by showing a greater than 1.6
  • the outermost layer sealing film disposed on the outer side of the inner layer sealing film, at a temperature T 2 of the optical semiconductor element mounting substrate at the time of releasing the vacuum in the vacuum chamber the shape of the optical semiconductor element Since it exhibits mechanical properties capable of covering an optical semiconductor element along the length (hereinafter also referred to as "conformal lamination"), the optical semiconductor element can be covered with high reliability along with the inner layer sealing film. it can.
  • the outermost layer sealing film is heated under heat reduction to thermally fuse the peripheral portion of the outermost layer sealing film to the surface of the optical semiconductor element mounting substrate, and the outermost layer sealing film and the optical semiconductor element are mounted Performing a step of forming an airtight space between the surface of the sealed region of the substrate and a step of releasing the reduced pressure and sealing the optical semiconductor element mounting substrate with the outermost layer sealing film Because it can be done, the encapsulated optical semiconductor device can be easily manufactured. Each step will be described in detail below.
  • At least two types of sealing films including an inner layer sealing film and an outermost layer sealing film are placed in this order on the optical semiconductor element mounting substrate on which the optical semiconductor element is mounted in the pressure reducing chamber, and the pressure reducing chamber
  • the step of depressurizing the inside is a step of depressurizing the inside of the depressurizing chamber after laminating at least two types of sealing films on the optical semiconductor element mounting substrate on which the optical semiconductor element to be sealed is mounted in the depressurizing chamber. is there.
  • At least two types of sealing films are at least one inner layer sealing film and the outermost layer sealing film, and are laminated in the order of the optical semiconductor element mounting substrate, the inner layer sealing film, and the outermost layer sealing film. Such a sealing film is mounted on the optical semiconductor element mounting substrate at a position suitable for sealing the optical semiconductor element to be sealed.
  • the decompression chamber is internally provided with heating means for heating the optical semiconductor element mounting substrate and the sealing film.
  • the decompression chamber is internally provided with a heating plate for heating the optical semiconductor element mounting substrate and the sealing film as heating means.
  • a vacuum laminating apparatus is exemplified.
  • the internal decompression is completed in order to prevent the peripheral portion of the outermost sealing film from heat-sealing to the optical semiconductor element mounting substrate before the internal decompression is completed.
  • a mechanism is provided to prevent contact between the optical semiconductor element mounting substrate and the heating means.
  • a decompression chamber although not particularly limited, for example, a vacuum laminator having a lift pin lifting mechanism can be mentioned.
  • a diaphragm type vacuum laminator can also be used by using a dedicated lamination jig.
  • the lamination jig has a structure for supporting the optical semiconductor element mounting substrate with an elastic body such as a spring, and when the diaphragm rubber film is in the steady position, keep the optical semiconductor element mounting substrate away from the heating means.
  • pressure is applied to the diaphragm rubber film, it is designed so that the optical semiconductor element mounting substrate can be brought into contact with the heating means by pressing the elastic body provided in the lamination jig.
  • the lamination jig is an optical semiconductor element mounting substrate so that the diaphragm rubber film does not directly contact the optical semiconductor element mounting substrate and the outermost layer sealing film even when the diaphragm rubber film presses the lamination jig. And the outermost layer sealing film is protected.
  • the photo semiconductor device is not particularly limited, and examples thereof include light emitting diodes (LEDs), semiconductor lasers, photodiodes, phototransistors, solid-state imaging, light emitters and light receivers for photo couplers, and in particular, light emitting diodes (LEDs) Is preferred.
  • LEDs light emitting diodes
  • semiconductor lasers semiconductor lasers
  • photodiodes phototransistors
  • solid-state imaging solid-state imaging
  • light emitters and light receivers for photo couplers and in particular, light emitting diodes (LEDs) Is preferred.
  • the optical semiconductor element mounting substrate is a substrate on which the optical semiconductor element is mounted or mounted.
  • a material having a high light transmittance or a high reflectance is preferable.
  • the substrate on which the optical semiconductor device is mounted include conductive metals such as silver, gold and copper; nonconductive metals such as aluminum and nickel; thermoplastic resins mixed with white pigments such as PPA and LCP; Thermosetting resins containing white pigments such as epoxy resin, BT resin, polyimide resin, and silicone resin; and ceramics such as alumina and alumina nitride.
  • the sealing film is for sealing the optical semiconductor element to be sealed, and is obtained by processing the sealing agent into a film shape.
  • the present invention uses, as a sealing film, at least two types of sealing films including an inner layer sealing film and an outermost layer sealing film. In addition to the inner layer sealing film and the outermost layer sealing film, another sealing film may be included as a sealing film.
  • the sealing agent which comprises a sealing film may be comprised with a thermoplastic material or a thermosetting material.
  • a thermoplastic material such materials may be organic polymers or silicones.
  • the organic polymer includes a thermoplastic resin or a thermosetting resin such as polyolefin resin, ethyl vinyl acetate (EVA) resin, epoxy resin, polyacrylate resin, or poly (vinyl butyral) resin.
  • Silicones include thermoplastic silicones or thermosetting silicones, such as hot melt silicones or linear silicones (or "linear silicones"). Silicones can also be cured by condensation reactions, hydrosilylation reactions, or free radical reactions.
  • the sealing film may be composed of a thermoplastic resin.
  • the sealing film may be composed of a thermosetting resin.
  • the sealing film may be comprised of a hydrosilylation reaction curable silicone.
  • a hydrosilylation reaction curable silicone for example, those disclosed by WO 2016/065016 can be used.
  • Such a sealing film is available as trade name LF-1200 or LF-1201 manufactured by Toray Dow Corning Co., Ltd.
  • the inner layer sealing film may contain particles, and the content in that case is preferably 80% by mass or more in the sealing film. Usually, the inner layer sealing film contains 95% by mass or less of particles. On the other hand, the outermost layer sealing film may or may not contain particles in the sealing film. From the viewpoint of controlling the chromaticity of the sealing optical semiconductor device, the outermost layer sealing film is preferably transparent. For example, the light transmittance at a wavelength of 450 nm of the outermost sealing film having a thickness of 1 mm is preferably 90% or more.
  • the content thereof is, for example, 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more, and usually 80% by mass in the sealing film. Less than%.
  • Examples of the particles contained in the sealing film include a phosphor and a filler.
  • the phosphor is not particularly limited.
  • Examples include yellow, red, green and blue light emitting phosphors made of sulfide type phosphors and the like.
  • oxide-based phosphors As oxide-based phosphors, yttrium, aluminum, garnet-based YAG-based green to yellow light-emitting phosphors including cerium ions, terbium, aluminum, garnet-based TAG-based yellow light-emitting phosphors including cerium ions, Examples are silicate based green to yellow light emitting phosphors including cerium and europium ions. Examples of oxynitride phosphors include silicon including europium ions, aluminum, oxygen, and nitrogen-based sialon red to green light emitting phosphors.
  • nitride-based phosphors examples include calcium, strontium, aluminum, silicon, and cathode-based red light-emitting phosphors based on nitrogen, including europium ions.
  • a sulfide type fluorescent substance ZnS type green color development fluorescent substance containing a copper ion and an aluminum ion is illustrated.
  • the oxysulfide phosphor include europium ion Y 2 O 2 S based red phosphors may be exemplified. These phosphors may be used alone or in combination of two or more.
  • the average particle size of the phosphor is not limited, but is usually in the range of 1 ⁇ m or more, preferably 5 ⁇ m or more and 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the average particle size can be measured, for example, by measuring the volume cumulative average particle size (D 50 ) with a laser diffraction scattering particle size distribution measurement method.
  • these fillers are hydrophobized by organosilicon compounds such as organohalosilane, organoalkoxysilane, hexaorganodisilazane and the like , Alumina, calcined silica, titanium oxide, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, silicon carbonate, silicon carbide, silicon nitride, boron nitride, etc .; inorganic filler; silicone resin, epoxy resin, fluorocarbon resin And fine powder of organic resin such as
  • the average particle size of the filler is not limited, but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more and 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the average particle size can be measured, for example, by measuring the volume cumulative average particle size (D 50 ) with a laser diffraction scattering particle size distribution measurement method.
  • the sealing film can be blended with a dye, a pigment, a flame retardant, a heat resistant agent, and the like as other optional components.
  • the thickness of the sealing film is not particularly limited, but is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and 300 ⁇ m or less, preferably 200 ⁇ m or less.
  • the sizes of the outermost layer sealing film and the inner layer sealing film are appropriately designed to be able to cover the optical semiconductor element mounting substrate.
  • the outermost layer sealing film has a size larger than that of the inner layer sealing film so that the photosemiconductor element mounting substrate can be covered with the inner layer sealing film.
  • the optical semiconductor element mounting substrate mounts a plurality of optical semiconductor elements.
  • the minimum distance between the optical semiconductor elements ensures covering with the sealing film along the shape of the optical semiconductor element, that is, formation of conformal lamination. In order to do so, it is preferable to be longer than the thickness of the outermost layer sealing film in the sealing film. Therefore, the minimum distance between optical semiconductor elements is usually 20 ⁇ m or more. Further, the maximum distance between the optical semiconductor elements is not particularly limited, but usually, it is shorter than twice of the outermost layer sealing film in the sealing film.
  • the maximum distance between the optical semiconductor elements is usually 0.6 mm or less, preferably 0.4 mm or less.
  • the distance from the top surface of the optical semiconductor device to the surface of the optical semiconductor device mounting substrate, that is, the height T of the optical semiconductor device and the distance L between the optical semiconductor devices is preferably designed to be at most 3 or less, more preferably at most 2.5 or less, still more preferably at most 2 or less.
  • the decompression in the decompression chamber can be performed by a conventionally known decompression means, for example, by operating a vacuum pump connected to the inside of the decompression chamber.
  • the pressure in the decompression chamber is reduced to 300 Pa or less, preferably 200 Pa or less, or 133 Pa or less.
  • the outermost layer sealing film is brought into contact with the optical semiconductor element mounting substrate by flexing and bending the outermost layer sealing film, and at least the peripheral portion of the outermost layer sealing film is sealed with the optical semiconductor element mounting substrate Heat sealing at the periphery of the region to form an airtight space between the outermost sealing film and the surface of the sealed region of the optical semiconductor element mounting substrate.
  • the outermost layer sealing film is given flexibility suitable for conformal lamination, and the space between the outermost layer sealing film and the surface of the sealed area of the optical semiconductor element mounting substrate is sealed. It can be made airtight (also called "seal").
  • the inner layer sealing film can be provided with a suitable flexibility for conformal lamination.
  • the heating of the outermost layer sealing film and the inner layer sealing film is performed by the heating means provided in the decompression chamber.
  • a heating means a hot plate provided in a decompression chamber can be used.
  • the outermost layer sealing film and the inner layer sealing film are heated by heating the optical semiconductor element mounting substrate.
  • heat plate as a heating means, heat is transmitted from the optical semiconductor element mounting substrate to the outermost layer sealing film and the inner layer sealing film by bringing the optical semiconductor element mounting substrate into contact with the heat plate. The sealing film and the inner layer sealing film are heated.
  • the outermost layer sealing film and the inner layer sealing film a temperature above T 1 of the temperature is held at temperature T 2 lower.
  • the temperature T 1 is not particularly limited as long as heat fusion of the film occurs during chamber pressure reduction and the sealed area can not be made airtight (air is trapped and remains), and it is at most 60 ° C.
  • the sealing film is typically held for less than 10 minutes or more for 1 minute to a temperature above T 1 T 2 or lower. This is because if it is held for more than 10 minutes, curing of the sealing film proceeds and it becomes easy to cause lamination failure.
  • the step of heating the outermost layer sealing film to thermally fuse at least the peripheral portion of the outermost layer sealing film to the optical semiconductor element mounting substrate may be performed after the step (1) is completed, or (1) It may be performed during execution of the above-mentioned (1) process before the process is completed. That is, heating of the outermost layer sealing film to a temperature T 1 or higher may be started before the reduced pressure in the reduced pressure chamber is reduced to a predetermined range. From the stability of the step, the step (2) is preferably performed after the pressure reduction in the pressure reduction chamber of the step (1) is completed.
  • the reduced pressure in the reduced pressure chamber is released to seal the outermost layer
  • the outermost sealing film is crimped to the optical semiconductor element mounting substrate by the pressure difference between the film and the surface of the sealed area of the optical semiconductor element mounting substrate and the air pressure between the air and the air, and the optical semiconductor element mounting It is a process of laminating a substrate.
  • the outermost layer sealing film is pressed against the optical semiconductor element mounting substrate, whereby the inner layer sealing film disposed between the optical semiconductor element mounting substrate and the outermost layer sealing film is also mounted with the optical semiconductor element. Crimp against the substrate to form a coating.
  • “To release the reduced pressure in the reduced pressure chamber” usually means to open the reduced pressure chamber to the atmosphere to return the reduced pressure in the reduced pressure chamber to the atmospheric pressure. It is not necessary to immediately return to the atmospheric pressure, and the sealing film may be pressure-bonded to the optical semiconductor element mounting substrate to gradually release the pressure within a range that enables conformal lamination of the optical semiconductor element mounting substrate.
  • the reduced pressure in the reduced pressure chamber is returned to atmospheric pressure at a rate of 10 kPa / sec, preferably at a rate of 50 kPa / sec, or at a rate of 100 kPa / sec. This is because if the speed from the depressurization to the atmospheric pressure is too slow, an airtight leak may occur and the lamination may not be sufficient.
  • Temperature T 2 of the optical semiconductor element mounting substrate at the time of releasing the vacuum in the vacuum chamber have physical properties suitable for the outermost layer sealing film to allow the formation of a conformal lamination of the optical semiconductor element Set to temperature.
  • the temperature is a temperature at which the outermost sealing film exhibits a tensile strength of 0.02 to 0.15 MPa and a breaking elongation of 200 to 450%.
  • T 2 is the outermost layer sealing film is a temperature showing a tensile strength of at least 0.03 MPa.
  • T 2 is a temperature at which the outermost sealing film exhibits a breaking elongation of 250% or more.
  • T 2 is the outermost layer sealing film is a temperature showing a breaking elongation of less 400%.
  • the tensile strength and the elongation at break of the outermost layer sealing film are measured in advance according to a conventional method in the art prior to the practice of the present invention. For example, it can be measured using an RSA-G2 dynamic viscoelasticity measuring instrument manufactured by TA Instruments.
  • outermost layer sealing film exhibits physical properties as described above at a temperature T 2, it can be sealed optical semiconductor element mounted on the substrate with high reliability.
  • Inner sealing film at a temperature T 2 shows a 1.6 loss tangent (tan [delta]).
  • the inner layer sealing film shows 1.7 or more of the loss tangent (tan [delta]) at a temperature T 2.
  • the loss tangent (tan ⁇ ) of the inner layer sealing film can be measured in advance using a viscoelasticity measuring apparatus (for example, ARES viscoelasticity measuring apparatus manufactured by Reometric Scientific).
  • ARES viscoelasticity measuring apparatus manufactured by Reometric Scientific
  • Temperature T 2 of the optical semiconductor element mounting substrate at the time of releasing the vacuum in the vacuum chamber is not particularly limited if it meets the criteria, for example, 70 ° C. or more, preferably 90 ° C. or higher, 180 ° C. or less Preferably it is 150 degrees C or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of a manufacturing method according to the present invention implemented using a vacuum laminator 10 having a lift pin lifting mechanism as a decompression chamber.
  • FIG. 1 (a) shows the step (1) of the present invention in the embodiment.
  • the inner layer sealing film 3 and the outermost layer sealing film 4 are mounted in this order on the optical semiconductor element mounting substrate 1 on which the optical semiconductor element 2 is mounted.
  • the optical semiconductor element mounting substrate 1 is disposed on the middle plate 12 which can be moved up and down by the lift pins 13.
  • the inside of the vacuum laminator 10 is connected to a pressure reducing means (not shown) through the opening 14, and the inside of the vacuum laminator 10 is reduced in pressure by the function of the pressure reducing means.
  • the middle plate 12 is installed apart from the heat plate 11 by the lift pins 13 and the inner plate is sealed by the heat plate 11 before the pressure reduction inside the vacuum laminator 10 sufficiently proceeds. It is possible to prevent the film 3 and the outermost layer sealing film 4 from being heated to a temperature T 1 or more. Therefore, the stability of the process can be ensured.
  • FIG.1 (b) has shown the process (2) of this invention in the said embodiment.
  • step (2) the lift pins 13 are lowered to move the middle plate 12 into contact with the heat plate 11.
  • T 1 the heat from the heat plate 11 is transmitted to the inner layer sealing film 3 and the outermost layer sealing film 4 through the optical semiconductor element mounting substrate 1 and the inner layer sealing film 3 and the outermost layer sealing film 4 have a temperature T 1 It is heated to a higher temperature.
  • the outermost layer sealing film 4 is heated, the outermost layer sealing film 4 becomes flexible and deformed, and at least the peripheral portion 20 of the outermost layer sealing film 4 contacts the surface of the optical semiconductor element mounting substrate 1, The peripheral portion 20 is thermally fused to the surface of the semiconductor element mounting substrate 1.
  • an airtight space 21 is formed between the outermost sealing film 4 or the inner sealing film 3 and the surface of the sealed area of the optical semiconductor element mounting substrate 1.
  • FIG. 1 (c) shows the step (3) of the present invention in the embodiment.
  • this step (3) when the temperature of the optical semiconductor element mounting substrate 1 becomes T 2, by releasing the vacuum laminator 10 inside the vacuum through the opening 14, the outside air airtight space 21 (FIG. 1 ( The outermost layer sealing film 4 and the inner layer sealing film 3 are pressure-bonded to the optical semiconductor element mounting substrate 1 by the pressure difference with c) and the optical semiconductor element 2 is sealed. As a result, a sealed optical semiconductor device 30 is obtained.
  • the temperature T of the optical semiconductor element mounting substrate 1 is a temperature at which the outermost sealing film has physical properties suitable for enabling formation of conformal lamination of the optical semiconductor element.
  • FIG. 2 is a schematic cross-sectional view showing an example of a manufacturing method according to the present invention, which is performed using a diaphragm type vacuum laminator 40 and a lamination jig 50 as a decompression chamber.
  • FIG. 2 (a) shows a step (1) of the present invention in the embodiment.
  • the inside of the diaphragm type vacuum laminator 40 is divided into an upper chamber 42 and a lower chamber 43 via a diaphragm rubber film 41, and the insides of the upper chamber 42 and the lower chamber 43 are pressure reducing means via respective openings 15 and 16 Both are connected to (not shown), and the pressure in the upper chamber 42 and the lower chamber 43 is reduced by the action of the pressure reducing means.
  • the opening 15 of the upper chamber 42 may also be connected to the pressurizing unit.
  • the inner layer sealing film 3 and the outermost layer sealing film 4 are placed in this order on the optical semiconductor element mounting substrate 1 on which the optical semiconductor element 2 is mounted.
  • the optical semiconductor element mounting substrate 1 is disposed inside a dedicated lamination jig 50.
  • the lamination jig 50 is provided with a spring 51, and the lamination jig 50 is set apart from the heat plate 11 by the spring 51, and before the pressure reduction of the lower chamber 43 sufficiently proceeds, the heat plate 11 is used. It is possible to prevent the inner layer sealing film 3 and the outermost layer sealing film 4 from being heated to a temperature T 1 or more. Therefore, the stability of the process can be ensured.
  • FIG.2 (b) has shown the process (2) of this invention in the said embodiment.
  • step (2) the pressure reduction of the upper chamber 42 is released through the opening 15.
  • the diaphragm rubber film 41 is deformed to press the lower chamber 43 by the pressure difference between the upper chamber 42 and the lower chamber 43 (not shown in FIG. 2B), and the spring 51 is pressed.
  • the lamination jig 50 contacts the heat plate 11.
  • the heat from the heat plate 11 is transmitted to the inner layer sealing film 3 and the outermost layer sealing film 4 through the optical semiconductor element mounting substrate 1, and the inner layer sealing film 3 and the outermost layer sealing film 4 have T 1 or more.
  • the outermost sealing film 4 is heated to a temperature T 1 or more, the outermost sealing film 4 becomes flexible, and the peripheral portion 20 of the outermost sealing film 4 contacts the surface of the optical semiconductor element mounting substrate 1 . As a result, the peripheral portion 20 is thermally fused to the surface of the semiconductor element mounting substrate 1, and between the outermost layer sealing film 4 or the inner layer sealing film 3 and the surface of the sealed area of the optical semiconductor element mounting substrate 1. An airtight space 21 is formed. In this embodiment, even if the diaphragm rubber film 41 presses the lower chamber 43 due to the structure of the upper frame 52 of the lamination jig 50, the outermost layer sealing film 4 is a semiconductor element mounting substrate by the diaphragm rubber film 41. It can prevent that 1 is pressed, as a result, formation of airtight space 21 can be secured.
  • FIG.2 (c) has shown the process (3) of this invention in the said embodiment.
  • the step (3) when the temperature of the optical semiconductor element mounting substrate 1 reaches T 2 , the pressure reduction inside the lower chamber 43 is released through the opening 16 to open the air and the airtight space 21 (FIG.
  • the outermost layer sealing film 4 and the inner layer sealing film 3 are pressure-bonded to the optical semiconductor element mounting substrate 1 by the pressure difference with c) and the optical semiconductor element 2 is sealed.
  • the temperature T of the optical semiconductor element mounting substrate 1 is a temperature at which the sealing film 3 exhibits physical characteristics suitable for enabling the formation of the conformal lamination of the optical semiconductor element 2.
  • YAG-based yellow light emitting phosphor particles (Intematix, trade name: NYAG4454-S) in an amount of 85% by mass relative to a thermosetting silicone composition (made by Toray Dow Corning Co., Ltd., trade name: LF-1201) A particle diameter of 8 ⁇ m was mixed to prepare a 100 ⁇ m-thick sealing film C (containing 85% by mass of phosphor particles).
  • a transparent outermost layer sealing film A having a thickness of 100 ⁇ m was prepared using a thermosetting silicone composition (manufactured by Toray Dow Corning Co., Ltd., trade name: LF-1200).
  • the thickness of the outermost sealing film A was 1 mm, and the light transmittance at a wavelength of 450 nm was 100%.
  • a transparent outermost layer sealing film B having a thickness of 100 ⁇ m was prepared using a thermosetting silicone composition (manufactured by Toray Dow Corning Co., Ltd., trade name LF-1201).
  • the outermost layer sealing film B had a thickness of 1 mm and a light transmittance at a wavelength of 450 nm of 100%.
  • the tensile strength and elongation at break of the outermost layer sealing film at 60 ° C, 80 ° C, 100 ° C, 120 ° C, and / or 140 ° C were measured using a TA Instruments RSA-G2 dynamic viscoelasticity measuring machine. It measured using. A measurement sample having a size of 10 mm in length and 25 mm in width was prepared, and the tensile speed was measured at 10 mm / min. The results are shown in Table 1 below.
  • the loss tangent of the inner layer sealing film was measured using an RSA-G2 dynamic viscoelasticity measuring instrument manufactured by TA Instruments. Measured from 25 ° C to 200 ° C at a heating rate of 25 ° C / min with 8 mm parallel plate, gap: 0.5 to 1.5 mm, strain: 0.2%, frequency: 1.0 Hz, each target temperature
  • the loss tangent (tan ⁇ ) at 100 ° C., 110 ° C., 120 ° C., 130 ° C., and / or 140 ° C. was determined.
  • optical semiconductor element mounting substrate As an optical semiconductor element mounting substrate, an optical semiconductor element mounting substrate in which 10 rectangular optical semiconductor elements having a depth of 1 mm, a width of 1 mm, and a height of 0.15 mm are vertically disposed and 10 on a glass substrate It was. The distance L between the optical semiconductor devices was uniformly 0.15 mm, and the aspect ratio (T / L) between the height T of the optical semiconductor devices and the distance L between the optical semiconductor devices was 1.
  • Examples 1 to 2 and Comparative Examples 1 to 8 Using the obtained inner layer sealing films A and B and the outermost layer sealing film, vacuum lamination was performed on the semiconductor element mounting substrate.
  • a vacuum laminator manufactured by Nisshinbo Mechatronics, trade name PVL-050 with lift pin mechanism
  • the optical semiconductor element mounting substrate is placed on the middle plate which can be raised and lowered by the lift pin lifting mechanism disposed at a position away from the heating plate in the vacuum laminator, and the inner layer sealing film A or B is placed thereon.
  • the outermost layer sealing film was placed thereon.
  • the vacuum pump was driven to reduce the pressure in the vacuum laminator to 133 Pa.
  • the midplate was then lowered into contact with a hot plate heated to 100 ° C. to 180 ° C. Then heated over a sealing film 3 minutes to 7 minutes, the temperature of the optical semiconductor element mounting substrate is reduced pressure over 10 seconds upon reaching a predetermined temperature T 2 is returned to atmospheric pressure, sealing optical semiconductors I got a device.
  • the obtained encapsulated semiconductor device was visually observed to confirm the occurrence of voids and / or cracks.
  • the results are shown in Table 1 below.
  • the encapsulated optical semiconductor device manufactured by the manufacturing method of Examples 1 to 2 does not cause the occurrence of voids and / or cracks, and the covering along the shape of the optical semiconductor element by the sealing film was confirmed to be formed.
  • the method for manufacturing a sealed optical semiconductor device according to the present invention is useful as a method for sealing optical semiconductor devices such as light emitting diodes (LEDs), semiconductor lasers, photodiodes, phototransistors, solid-state imaging, light emitters for photo couplers and light receivers It is.
  • LEDs light emitting diodes
  • semiconductor lasers semiconductor lasers
  • photodiodes phototransistors
  • solid-state imaging solid-state imaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

内層の封止フィルムが伸張しにくい物理的特性を有する場合であっても、高い信頼性で光半導体素子を封止できる、封止光半導体デバイスの製造方法を提供する。本発明は、減圧チャンバー内で光半導体素子を搭載する光半導体素子搭載基板上に、内層封止フィルム及び最外層封止フィルムを含む少なくとも2種の封止フィルムをこの順で載置し、前記減圧チャンバー内を減圧する工程、前記最外層封止フィルムを加熱して、前記最外層封止フィルムの少なくとも周辺部を前記光半導体素子搭載基板の表面に熱融着させる工程、及び、前記減圧チャンバー内の減圧を解除して、前記最外層封止フィルムと内層封止フィルムで前記光半導体素子搭載基板を封止する工程を含み、前記減圧チャンバー内の減圧を解除する時点の前記光半導体素子搭載基板の温度Tは、前記最外層封止フィルムが0.02~0.15MPaの引張強度及び200~450%の破断伸度を示す温度であり、前記内層封止フィルムが、前記温度Tで、1.6以上の損失正接(tan δ)を示す。

Description

封止光半導体デバイスの製造方法
 本発明は、封止フィルムを用いた封止光半導体デバイスの製造方法に関し、特に、蛍光体及び/又はフィラーを高充填で含有する封止フィルムを用いた封止光半導体デバイスの製造方法に関する。
 本願は、2017年9月8日に、日本に出願された特願2017-172929号に基づき優先権を主張し、その内容をここに援用する。
 フォトカプラー、発光ダイオード、固体撮像素子等の光半導体素子を搭載する光半導体装置において、光半導体素子は、光半導体素子の信頼性を向上させるために封止剤を用いて封止される。光半導体装置を封止する方法としては、封止フィルムを用いて封止する方法が知られている。
 例えば、特許文献1には、少なくとも1つのLED素子を基材上に載置し、第1及び第2の表面を有し、該第1の表面が基材フィルムで支持されたバインダーと、蛍光体粒子とを含む、所定の形状のラミネーション層を前記したLED素子上に配置し、前記ラミネーション層を第1の温度まで加熱し、該ラミネーション層を軟化させ、前記ラミネーション層とLED素子の周囲の基材との間で気密シールを形成し、次いで、前記基材フィルムを取り除いた上で、減圧下でラミネーション層を第2の温度まで加熱して前記ラミネーション層と基材の間の空気を除去し、その後、大気圧下に戻すことにより前記基材に対してラミネーション層をプレスしてLED素子を覆うラミネーション層を形成する、LEDデバイスの製造方法が記載されている。
 特許文献2には、基材ウエハーの第1の面の内側部分に載置された発光ダイオードアレイ等の物品を所定形状のラミネーション層でコンフォーマルコートする前に、前記したラミネーション層の中央部分を加熱して流動可能な状態にする1回の加熱工程を含む減圧ラミネーション方法であって、前記したラミネーション層の端部と前記第1の面の外側部分とで形成された気密シールと、前記したラミネーション層と、前記した第1の面とで構成された気密された内側領域により、加熱して流動可能な状態となった前記したラミネーション層の中央部分が前記した第1の面の内側部分から離れて配置される工程を含む、減圧ラミネーション方法が記載されている。
 特許文献3には、光半導体素子を封止するように使用される封止層を備える封止シートであって、前記した封止層を、周波数1Hzおよび昇温速度10℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線が、極小値を有し、前記した極小値における温度Tが、60℃以上、200℃以下の範囲にあり、前記した極小値における貯蔵剪断弾性率G’が、5Pa以上、1,000Pa以下の範囲にある封止シートを用意するシート用意工程と、基材に配置される光半導体素子を用意する素子用意工程と、前記した封止シートを、60℃以上、200℃以下の温度で、前記した光半導体素子に対して熱プレスする熱プレス工程と、を備えることを特徴とする、封止光半導体素子の製造方法が記載されている。
 特許文献4には、光半導体素子に直接的または間接的に貼着するように使用される貼着層を備える貼着シートであって、前記した貼着層を、周波数1Hzおよび昇温速度20℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線が、極小値を有し、前記した極小値における温度Tが、40℃以上、200℃以下の範囲にあり、前記した極小値における貯蔵剪断弾性率G’が、1,000Pa以上、90,000Pa以下の範囲にある貼着シートを用意するシート用意工程と、基材に配置される光半導体素子を用意する素子用意工程と、前記した貼着シートを、40℃以上、200℃以下の温度で、前記した光半導体素子に対して直接的または間接的に熱プレスする熱プレス工程と、を備えることを特徴とする、貼着光半導体素子の製造方法が記載されている。
国際公開第2012/023119号 国際公開第2016/065016号 特開2016-171314号公報 特開2016-171315号公報
 しかしながら、封止フィルムを用いて光半導体素子を封止する方法において、封止フィルムが伸張しにくい物理的特性を有する場合、従来の方法では光半導体素子を高い信頼性で封止できないという問題点があった。
 本発明の目的は、内層の封止フィルムが伸張しにくい物理的特性を有する場合であっても、高い信頼性で光半導体素子を封止できる、封止光半導体デバイスの製造方法を提供することにある。
 本発明者は、上述した課題を解決するために鋭意検討し、封止フィルムを用いて光半導体素子を封止する場合に、封止フィルムが、例えば蛍光体、フィラー等の粒子を高充填していることにより伸張しにくい物理的特性を有する場合であっても、こうした封止フィルムを、別の封止フィルムと組み合わせて特定の温度条件でラミネート工程を行うことにより、高い信頼性で基板上に搭載された光半導体素子を封止できることを見出し、本発明を完成させた。
 本発明の封止光半導体デバイスの製造方法は、
 減圧チャンバー内で光半導体素子を搭載する光半導体素子搭載基板上に、内層封止フィルム及び最外層封止フィルムを含む少なくとも2種の封止フィルムをこの順で載置し、前記減圧チャンバー内を減圧する工程、
 前記最外層封止フィルムを加熱して、前記最外層封止フィルムの少なくとも周辺部を前記光半導体素子搭載基板の表面に熱融着させる工程、及び
 前記減圧チャンバー内の減圧を解除して、前記最外層封止フィルムと内層封止フィルムで前記光半導体素子搭載基板を封止する工程を含む、封止光半導体デバイスの製造方法であって、
 前記減圧チャンバー内の減圧を解除する時点の前記光半導体素子搭載基板の温度Tは、前記最外層封止フィルムが0.02~0.15MPaの引張強度及び200~450%の破断伸度を示す温度であり、
 前記内層封止フィルムが、前記温度Tで、1.6以上の損失正接(tan δ)を示すことを特徴にする。
 本発明の封止光半導体デバイスの製造方法において、封止フィルムが、熱硬化性シリコーン樹脂で構成されることが好ましい。
 本発明の封止光半導体デバイスの製造方法において、粒子が、蛍光体及び充填剤から選択されることが好ましい。
 本発明の封止光半導体デバイスの製造方法において、封止フィルムが、10μm以上300μm以下の厚さを有することが好ましい。
 本発明の封止光半導体デバイスの製造方法において、温度Tが、70℃以上180℃以下であることが好ましい。
 本発明の封止光半導体デバイスの製造方法において、光半導体素子間の最小距離が、封止フィルムの合計の厚さよりも長いことが好ましい。
 本発明の封止光半導体デバイスの製造方法において、光半導体素子の高さTと、光半導体素子間の距離Lとのアスペクト比(T/L)が、最大で3以下であることが好ましい。
 本発明の封止光半導体デバイスの製造方法は、内層の封止フィルムが伸張しにくい物理的特性を有する場合であっても、高い信頼性で封止光半導体デバイスを製造できるという特徴がある。
図1は、リフトピン昇降機構を有する真空ラミネータを用いて実施される、本発明に係る方法の一例を示す模式的な断面図である。 図2は、ダイアフラム型真空ラミネータ及びラミネーション治具を用いて実施される、本発明に係る方法の一例を示す模式的な断面図である。
 以下、本発明の実施の形態について詳細に説明する。本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 [封止光半導体デバイスの製造方法]
 本発明の封止光半導体デバイスの製造方法は、
(1) 減圧チャンバー内で光半導体素子を搭載する光半導体素子搭載基板上に、内層封止フィルム及び最外層封止フィルムを含む少なくとも2種の封止フィルムをこの順で載置し、前記減圧チャンバー内を減圧する工程、
(2) 前記最外層封止フィルムを加熱して、前記最外層封止フィルムの少なくとも周辺部を前記光半導体素子搭載基板の表面に熱融着させる工程、及び
(3) 前記減圧チャンバー内の減圧を解除して、前記最外層封止フィルムと内層封止フィルムで前記光半導体素子搭載基板を封止する工程を含む、封止光半導体デバイスの製造方法であって、
 前記減圧チャンバー内の減圧を解除する時点の前記光半導体素子搭載基板の温度Tは、前記最外層封止フィルムが0.02~0.15MPaの引張強度及び200~450%の破断伸度を示す温度であり、
 前記内層封止フィルムが、前記温度Tで、1.6以上の損失正接(tan δ)を示すことに特徴がある。
 こうした本発明によれば、内層封止フィルムの外側に配置された最外層封止フィルムが、減圧チャンバー内の減圧を解除する時点の光半導体素子搭載基板の温度Tで、光半導体素子の形状に沿って光半導体素子を被覆する(以下、「コンフォーマルラミネーション」とも言う)ことが可能な力学的物性を示すので、内層封止フィルムを伴って光半導体素子を高い信頼性で被覆することができる。また、減圧下で最外層封止封止フィルムを加熱して最外層封止フィルムの周辺部を光半導体素子搭載基板の表面に熱融着させ工程により、最外層封止フィルムと光半導体素子搭載基板の封止される領域の表面の間に気密空間を形成する工程と、減圧を解除して最外層封止フィルムにより光半導体素子搭載基板を封止する工程とを一連した操作で行うことができるので、簡便に封止光半導体デバイスを製造できる。以下、各工程について詳細に説明する。
(1) 減圧チャンバー内で光半導体素子を搭載する光半導体素子搭載基板上に、内層封止フィルム及び最外層封止フィルムを含む少なくとも2種の封止フィルムをこの順で載置し、減圧チャンバー内を減圧する工程は、減圧チャンバー内に封止対象である光半導体素子を搭載する光半導体素子搭載基板上に、少なくとも2種の封止フィルムを積層した後、減圧チャンバー内を減圧する工程である。少なくとも2種の封止フィルムは、少なくとも1種の内層封止フィルムと最外層封止フィルムであり、光半導体素子搭載基板から内層封止フィルム、最外層封止フィルムの順で積層される。こうした封止フィルムは、封止対象である光半導体素子を封止するのに適した位置で光半導体素子搭載基板上に載置される。
 減圧チャンバーは、光半導体素子搭載基板及び封止フィルムを加熱する加熱手段を内部に備える。好ましくは、減圧チャンバーは、加熱手段として、光半導体素子搭載基板及び封止フィルムを加熱するための熱板を内部に備える。こうした減圧チャンバーとしては、例えば、真空ラミネート装置が例示される。工程の安定上、減圧チャンバーは、内部の減圧が完了する前に最外層封止フィルムの周辺部が光半導体素子搭載基板に熱融着することを防ぐために、好ましくは、内部の減圧が完了するまで光半導体素子搭載基板と加熱手段とが接触するのを防ぐための機構を備える。こうした減圧チャンバーとしては、特に限定されないが、例えば、リフトピン昇降機構を有する真空ラミネータが挙げられる。また、専用のラミネーション治具を用いることにより、ダイアフラム型真空ラミネータを用いることもできる。例えば、ラミネーション治具は、スプリング等の弾性体で光半導体素子搭載基板を支える構造を有しており、ダイアフラムゴム膜が定常位置にある場合は、光半導体素子搭載基板を加熱手段から離しておくことができ、ダイアフラムゴム膜に圧力がかかった場合、ラミネーション治具に備えられた弾性体を押圧して光半導体素子搭載基板を加熱手段に接することができるように設計される。また、ラミネーション治具は、ダイアフラムゴム膜がラミネーション治具を押圧する場合であっても、ダイアフラムゴム膜が光半導体素子搭載基板及び最外層封止フィルムに直接接しないように、光半導体素子搭載基板及び最外層封止フィルムを保護する構造を有する。
 光半導体素子は、特に限定されないが、例えば、発光ダイオード(LED)、半導体レーザ、フォトダイオード、フォトトランジスタ、固体撮像、フォトカプラー用発光体と受光体が例示され、特に、発光ダイオード(LED)であることが好ましい。
 光半導体素子搭載基板は、光半導体素子を搭載又は実装している基板である。こうした基板としては、光透過率が高いか、反射率の高い材料が好ましい。光半導体素子搭載する基板としては、例えば、銀、金、および銅等の導電性金属;アルミニウム、およびニッケル等の非導電性の金属;PPA、およびLCP等の白色顔料を混合した熱可塑性樹脂;エポキシ樹脂、BT樹脂、ポリイミド樹脂、およびシリコーン樹脂等の白色顔料を含有する熱硬化性樹脂;アルミナ、および窒化アルミナ等のセラミックス等が挙げられる。
 封止フィルムは、封止対象である光半導体素子を封止するためのものであり、封止剤をフィルム形状に加工したものである。本発明は、封止フィルムとして、内層封止フィルムと最外層封止フィルムを含む少なくとも2種の封止フィルムを用いる。内層封止フィルムと最外層封止フィルム以外に、封止フィルムとして他の封止フィルムを含んでもよい。
 封止フィルムを構成する封止剤は、熱可塑性材料又は熱硬化性材料で構成され得る。こうした材料としては、有機ポリマー又はシリコーンであり得る。有機ポリマーとしては、熱可塑性樹脂又は熱硬化性樹脂、例えば、ポリオレフィン樹脂、エチルビニルアセテート(EVA)樹脂、エポキシ樹脂、ポリアクリレート樹脂、又はポリ(ビニルブチラール)樹脂が挙げられる。シリコーンとしては、熱可塑性シリコーン又は熱硬化性シリコーンが挙げられ、例えば、ホットメルトシリコーン又は線状シリコーン(又は「直鎖状シリコーン」)が挙げられる。シリコーンはまた、縮合反応、ヒドロシリル化反応、又はフリーラジカル反応により硬化され得る。ある実施形態によれば、封止フィルムは、熱可塑性樹脂で構成され得る。別の実施形態によれば、封止フィルムは、熱硬化性樹脂で構成され得る。さらに別の実施形態によれば、封止フィルムは、ヒドロシリル化反応硬化性シリコーンで構成され得る。封止フィルムとしては、例えば、国際公開第2016/065016号により開示されているものを使用することができる。このような封止フィルムとしては、東レ・ダウコーニング株式会社製の商品名LF-1200やLF-1201として入手可能である。
 内層封止フィルムは、粒子を含んでもよく、その場合の含有量は、封止フィルム中に80質量%以上であることが好ましい。通常、内層封止フィルムは、95質量%以下の粒子を含む。一方、最外層封止フィルムは、封止フィルム中に粒子を含んでもよいが、含まなくてもよい。封止光半導体デバイスの色度をコントロールする観点から、最外層封止フィルムは透明であることが好ましい。例えば、厚さ1mmの最外層封止フィルムの波長450nmにおける光線透過率が90%以上であることが好ましい。最外層封止フィルムが粒子を含む場合、その含有量は、例えば、封止フィルム中に40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上の量であり、通常80質量%未満の量である。
 封止フィルムに含まれる粒子としては、例えば、蛍光体及び充填剤が挙げられる。蛍光体としては、特に限定されないが、例えば、発光ダイオード(LED)に広く利用されている、酸化物系蛍光体、酸窒化物系蛍光体、窒化物系蛍光体、硫化物系蛍光体、酸硫化物系蛍光体等からなる黄色、赤色、緑色、青色発光蛍光体が挙げられる。酸化物系蛍光体としては、セリウムイオンを包含するイットリウム、アルミニウム、ガーネット系のYAG系緑色~黄色発光蛍光体、セリウムイオンを包含するテルビウム、アルミニウム、ガーネット系のTAG系黄色発光蛍光体、および、セリウムやユーロピウムイオンを包含するシリケート系緑色~黄色発光蛍光体が例示される。酸窒化物系蛍光体としては、ユーロピウムイオンを包含するケイ素、アルミニウム、酸素、窒素系のサイアロン系赤色~緑色発光蛍光体が例示される。窒化物系蛍光体としては、ユーロピウムイオンを包含するカルシウム、ストロンチウム、アルミニウム、ケイ素、窒素系のカズン系赤色発光蛍光体が例示される。硫化物系蛍光体としては、銅イオンやアルミニウムイオンを包含するZnS系緑色発色蛍光体が例示される。酸硫化物系蛍光体としては、ユーロピウムイオンを包含するYS系赤色発光蛍光体が例示される。これらの蛍光体は、1種または2種以上の混合物を用いてもよい。
 蛍光体の平均粒子径は、限定されないが、通常1μm以上、好ましくは5μm以上で、50μm以下、好ましくは20μm以下の範囲内である。平均粒子径は、例えば、レーザー回折散乱式粒度分布測定法で体積累積平均粒子径(D50)を測定することにより測定できる。
 充填剤としては、例えば、沈降シリカないし湿式シリカ、ヒュームドシリカのような補強性充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、ヘキサオルガノジシラザン等の有機ケイ素化合物により疎水化処理したもの、アルミナ、焼成シリカ、酸化チタン、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質増量充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末が挙げられる。
 充填剤の平均粒子径は、限定されないが、通常1μm以上、好ましくは5μm以上で、50μm以下、好ましくは20μm以下の範囲内である。平均粒子径は、例えば、レーザー回折散乱式粒度分布測定法で体積累積平均粒子径(D50)を測定することにより測定できる。
 封止フィルムは、その他任意成分として、染料、顔料、難燃剤、耐熱剤等を配合することができる。
 封止フィルムの厚さは、特に限定されないが、例えば、10μm以上、好ましくは20μm以上で、300μm以下、好ましくは200μm以下である。
 最外層封止フィルムと内層封止フィルムのサイズは、光半導体素子搭載基板を被覆することができるようなサイズに適宜設計される。通常、最外層封止フィルムは、内層封止フィルムを伴って光半導体素子搭載基板を被覆することができるように、内層封止フィルムよりも大きいサイズを有する。
 光半導体素子搭載基板において、光半導体素子は1つ実装されていてもよいし、2つ以上の複数で実装されていてもよい。好ましくは、光半導体素子搭載基板は複数の光半導体素子を搭載している。光半導体素子搭載基板が複数の光半導体素子を搭載している場合、光半導体素子間の最小距離は、封止フィルムによる光半導体素子の形状に沿った被覆、すなわち、コンフォーマルラミネーションの形成を確保するために、封止フィルムにおける最外層封止フィルムの厚さよりも長いことが好ましい。そのため、光半導体素子間の最小距離は、通常20μm以上である。また、光半導体素子間の最大距離は、特に限定されないが、通常、封止フィルムにおける最外層封止フィルムの2倍よりも短い。そのため、光半導体素子間の最大距離は、通常0.6mm以下であり、好ましくは0.4mm以下である。また、コンフォーマルラミネーションの形成を確保するために、光半導体素子の頂面から光半導体素子搭載基板の表面までの距離、すなわち、光半導体素子の高さTと、光半導体素子間の距離Lとのアスペクト比(T/L)は、好ましくは最大で3以下であり、より好ましくは最大で2.5以下、さらに好ましくは最大で2以下となるように設計される。
 減圧チャンバー内の減圧は、従来公知の減圧手段によって行うことができ、例えば、減圧チャンバーの内部と接続された真空ポンプを稼働させることにより行われる。通常、減圧チャンバー内の気圧は300Pa以下、好ましくは、200Pa以下、あるいは133Pa以下まで減圧される。
(2) 最外層封止フィルムを加熱して、最外層封止フィルムの少なくとも周辺部を光半導体素子搭載基板の表面に熱融着させる工程は、最外層封止フィルムを温度T以上に加熱して、最外層封止フィルムを柔軟にして撓ませることにより最外層封止フィルムと光半導体素子搭載基板を接触させ、最外層封止フィルムの少なくとも周辺部を光半導体素子搭載基板の封止される領域の周辺部に熱融着させて、最外層封止封止フィルムと光半導体素子搭載基板の封止される領域の表面の間に気密空間を形成する工程である。この工程により、最外層封止フィルムにコンフォーマルラミネーションのための適した柔軟性を付与すると共に、最外層封止フィルムと光半導体素子搭載基板の封止される領域の表面の間の空間を密閉(「シール」とも言う)して気密状態にすることができる。また、内層封止フィルムにもコンフォーマルラミネーションのための適した柔軟性を付与することができる。
 最外層封止フィルム及び内層封止フィルムの加熱は、減圧チャンバーに備えられた加熱手段により行われる。例えば、加熱手段としては、減圧チャンバー内に備えられた熱板を利用できる。通常、最外層封止フィルム及び内層封止フィルムは、光半導体素子搭載基板を加熱することにより加熱される。例えば、加熱手段として熱板を利用する場合、光半導体素子搭載基板と熱板を接触させることにより、光半導体素子搭載基板より最外層封止フィルム及び内層封止フィルムフィルムに熱が伝わり、最外層封止フィルム及び内層封止フィルムが加熱される。
 この工程において、最外層封止フィルム及び内層封止フィルムは、温度T以上の温度であって、温度T以下の温度に保持される。温度Tは、チャンバー減圧中にフィルムの熱融着が発生して、封止される領域を気密にできない(空気がトラップされて残留する)ほど高温でなければ特に限定されず、高くとも60℃である。また、封止フィルムは、通常、温度T以上T以下の温度に1分以上10分以下の間保持される。これは、10分を超えて保持されると、封止フィルムの硬化が進行し、ラミネート不良を起こしやすくなるからである。
 最外層封止フィルムを加熱して、最外層封止フィルムの少なくとも周辺部を光半導体素子搭載基板に熱融着させる工程は、上記(1)工程が完了した後行われてもよいし、上記(1)工程が完了する前に、上記(1)工程の実行中に行われてもよい。すなわち、減圧チャンバー内の減圧が所定の範囲まで減圧される前に最外層封止フィルムの温度T以上への加熱を開始してもよい。工程の安定性から、(2)工程は、上記(1)工程の減圧チャンバー内の減圧が完了してから行われることが好ましい。
(3) 減圧チャンバー内の減圧を解除して、最外層封止フィルムと内層封止フィルムで光半導体素子搭載基板を封止する工程は、減圧チャンバー内の減圧を解除して、最外層封止フィルムと光半導体素子搭載基板の封止される領域の表面の間の気密空間と、外気との気圧差により、最外層封止フィルムを光半導体素子搭載基板に対して圧着させ、光半導体素子搭載基板をラミネートする工程である。この工程において、最外層封止フィルムを光半導体素子搭載基板に対して圧着させることにより、光半導体素子搭載基板と最外層封止フィルムとの間に配置された内層封止フィルムも光半導体素子搭載基板に対して圧着され、被覆を形成する。
 「減圧チャンバー内の減圧を解除する」とは、通常、減圧チャンバーを大気に開放して減圧チャンバー内の減圧を大気圧まで戻すこと意味する。大気圧まで直ぐに戻す必要はなく、封止フィルムを光半導体素子搭載基板に対して圧着させて光半導体素子搭載基板のコンフォーマルラミネーションを可能にする範囲で徐々に減圧を解除してもよい。通常、減圧チャンバー内の減圧は10kPa/秒の速度、好ましくは、50kPa/秒の速度、あるいは100kPa/秒の速度で大気圧まで戻される。これは、減圧から大気圧までの速度があまりに遅いと、気密のリークが発生し、ラミネーションが十分にできないおそれがあるからである。
 減圧チャンバー内の減圧を解除する時点での光半導体素子搭載基板の温度Tは、最外層封止フィルムが光半導体素子のコンフォーマルラミネーションの形成を可能にするのに適した物理的特性を有する温度に設定される。具体的には、最外層封止フィルムが0.02~0.15MPaの引張強度及び200~450%の破断伸度を示す温度である。好ましくは、Tは、最外層封止フィルムが0.03MPa以上の引張強度を示す温度である。また、好ましくは、Tは、最外層封止フィルムが250%以上の破断伸度を示す温度である。好ましくは、Tは、最外層封止フィルムが400%以下の破断伸度を示す温度である。最外層封止フィルムの引張強度及び破断伸度は、本発明の実施前に予め当該技術分野の通常の方法により測定される。例えば、TAインスツルメント社製、RSA-G2動的粘弾性測定機を用いて測定することができる。最外層封止フィルムが温度Tで上記した物理的特性を示すことにより、高い信頼性で基板上に搭載された光半導体素子を封止できる。
 内層封止フィルムは、温度Tにおいて、1.6以上の損失正接(tan δ)を示す。好ましくは、内層封止フィルムは、温度Tにおいて1.7以上の損失正接(tan δ)を示す。内層封止フィルムの損失正接(tan δ)は、予め粘弾性測定装置(例えば、Reometric  Scientific社製のARES粘弾性測定装置)を用いて測定することができる。内層封止フィルムが、温度Tにおいて1.6以上の損失正接(tan δ)を示すことにより、ボイドやクラックを生じることなく、ラミネーションが十分にできるからである。
 減圧チャンバー内の減圧を解除する時点での光半導体素子搭載基板の温度Tは、上記した条件を満たせば特に限定されないが、例えば、70℃以上、好ましくは90℃以上であり、180℃以下、好ましくは150℃以下である。
 以下、図面を用いて本願発明の特定の実施形態をより詳細に説明する。
 図1は、減圧チャンバーとして、リフトピン昇降機構を有する真空ラミネータ10を用いて実施される本発明に係る製造方法の一例を示す模式的な断面図である。
 図1(a)は、当該実施形態における本発明の工程(1)を示している。この工程(1)において、光半導体素子2を搭載する光半導体素子搭載基板1上に、内層封止フィルム3及び最外層封止フィルム4がこの順で載置されている。また、光半導体素子搭載基板1は、リフトピン13によって昇降可能な中板12上に配置されている。真空ラミネータ10の内部は、開口14を介して減圧手段(図示せず)と接続しており、減圧手段の働きにより真空ラミネータ10の内部が減圧される。ここで、工程(1)の開始時点では、中板12はリフトピン13によって熱板11から離れて設置されており、真空ラミネータ10内部の減圧が十分に進行する前に熱板11によって内層封止フィルム3及び最外層封止フィルム4が温度T以上に加熱されるのを防ぐことができる。このため、工程の安定性が確保できる。
 図1(b)は、当該実施形態における本発明の工程(2)を示している。この工程(2)において、リフトピン13を下降させ、中板12を熱板11と接触するように移動させる。その結果、熱板11からの熱が光半導体素子搭載基板1を介して内層封止フィルム3及び最外層封止フィルム4に伝わり、内層封止フィルム3及び最外層封止フィルム4が温度Tより高い温度まで加熱される。最外層封止フィルム4が加熱されると、最外層封止フィルム4は柔軟になって変形し、少なくとも最外層封止フィルム4の周辺部20が光半導体素子搭載基板1の表面と接触し、周辺部20は半導体素子搭載基板1の表面に熱融着される。この時、最外層封止フィルム4又は内層封止フィルム3と光半導体素子搭載基板1の封止される領域の表面の間に気密空間21が形成される。
 図1(c)は、当該実施形態における本発明の工程(3)を示している。この工程(3)において、光半導体素子搭載基板1の温度がTとなった時点で、開口14を介して真空ラミネータ10内部の減圧を解除することにより、外気と気密空間21(図1(c)には図示されていない)との気圧差によって最外層封止フィルム4及び内層封止フィルム3が光半導体素子搭載基板1に対して圧着され、光半導体素子2が封止される。その結果、封止光半導体デバイス30が得られる。工程(3)において、光半導体素子搭載基板1の温度が、最外層封止フィルムが光半導体素子のコンフォーマルラミネーションの形成を可能にするのに適した物理的特性を有する温度である、温度Tとなった時点で真空ラミネータ10の内部の減圧を解除することにより、内層封止フィルム3及び最外層封止フィルム4による光半導体素子2の形状に沿った被覆を高い信頼性で形成できる。
 図2は、減圧チャンバーとして、ダイアフラム型真空ラミネータ40及びラミネーション治具50を用いて実施される、本発明に係る製造方法の一例を示す模式的な断面図である。
 図2(a)は、当該実施形態における本発明の工程(1)を示している。ダイアフラム型真空ラミネータ40の内部は、ダイアフラムゴム膜41を介して上室42と下室43に分かれており、上室42と下室43の内部は、それぞれの開口15及び16を介して減圧手段(いずれも図示せず)に接続しており、減圧手段の働きにより上室42と下室43の内部が減圧される。なお、上室42の開口15は、加圧手段にも接続されていてもよい。この図では、下室43内で、光半導体素子2を搭載する光半導体素子搭載基板1上に内層封止フィルム3及び最外層封止フィルム4がこの順で載置されている。さらに、光半導体素子搭載基板1は、専用のラミネーション治具50の内部に配置されている。このラミネーション治具50は、スプリング51を備えており、スプリング51により、ラミネーション治具50は熱板11から離れて設置されており、下室43の減圧が十分に進行する前に熱板11によって内層封止フィルム3及び最外層封止フィルム4が温度T以上に加熱されるのを防ぐことができる。このため、工程の安定性が確保できる。
 図2(b)は、当該実施形態における本発明の工程(2)を示している。この工程(2)において、上室42の減圧を、開口15を介して解除する。これにより、上室42と下室43(図2(b)には図示されていない)の減圧差によりダイアフラムゴム膜41が下室43を押圧するように変形し、スプリング51が押圧されて、ラミネーション治具50が熱板11と接触する。その結果、熱板11からの熱が光半導体素子搭載基板1を介して内層封止フィルム3及び最外層封止フィルム4に伝わり、内層封止フィルム3及び最外層封止フィルム4がT以上の温度まで加熱される。最外層封止フィルム4が温度T以上に加熱されると、最外層封止フィルム4は柔軟になり、最外層封止フィルム4の周辺部20が光半導体素子搭載基板1の表面と接触する。その結果、周辺部20は半導体素子搭載基板1の表面に熱融着され、最外層封止フィルム4又は内層封止フィルム3と光半導体素子搭載基板1の封止される領域の表面の間に気密空間21が形成される。この実施形態において、ラミネーション治具50の上枠52の構造により、ダイアフラムゴム膜41が下室43を押圧した場合であっても、ダイアフラムゴム膜41により最外層封止フィルム4が半導体素子搭載基板1に対して押圧されるのを防ぐことができ、その結果、気密空間21の形成を確保できる。
 図2(c)は、当該実施形態における本発明の工程(3)を示している。この工程(3)において、光半導体素子搭載基板1の温度がTとなった時点で、開口16を介して下室43内部の減圧を解除することにより、外気と気密空間21(図2(c)には図示されていない)との気圧差によって最外層封止フィルム4及び内層封止フィルム3が光半導体素子搭載基板1に対して圧着され、光半導体素子2が封止される。その結果、封止光半導体デバイス30が得られる。工程(3)において、光半導体素子搭載基板1の温度が、封止フィルム3が光半導体素子2のコンフォーマルラミネーションの形成を可能にするのに適した物理的特性を示す温度である、温度Tとなった時点で、下室43の内部の減圧を解除することにより、内層封止フィルム3及び最外層封止フィルム4による光半導体素子2の形状に沿った被覆を高い信頼性で形成できる。
 本発明の封止光半導体デバイスの製造方法を実施例および比較例により詳細に説明する。但し本発明は以下の実施例の記載に限定されない。
[封止フィルム]
 熱硬化性シリコーン組成物(東レ・ダウコーニング株式会社製、商品名LF-1200)に対して、85質量%の量でYAG系黄色発光蛍光体粒子(Intematix社製、商品名NYAG4454-S、平均粒径8μm)を混合し、厚さ100μmの封止フィルムD(蛍光体粒子85質量%含有)を調製した。
 熱硬化性シリコーン組成物(東レ・ダウコーニング株式会社製、商品名LF-1201)に対して、85質量%の量でYAG系黄色発光蛍光体粒子(Intematix社製、商品名NYAG4454-S、平均粒径8μm)を混合し、厚さ100μmの封止フィルムC(蛍光体粒子85質量%含有)を調製した。
 熱硬化性シリコーン組成物(東レ・ダウコーニング株式会社製、商品名LF-1200)を用いて、厚さ100μmの透明な最外層封止フィルムAを調製した。なお、この最外層封止フィルムAの厚さ1mm、波長450nmにおける光線透過率は100%であった。
 熱硬化性シリコーン組成物(東レ・ダウコーニング株式会社製、商品名LF-1201)を用いて、厚さ100μmの透明な最外層封止フィルムBを調製した。なお、この最外層封止フィルムBの厚さ1mm、波長450nmにおける光線透過率は100%であった。
 最外層封止フィルムの60℃、80℃、100℃、120℃、及び/又は140℃での引張強度及び破断伸度を、TAインスツルメント社製、RSA-G2動的粘弾性測定機を用いて測定した。長さ10mm、幅25mmのサイズの測定サンプルを調製し、引張速度を10mm/分として測定した。結果を以下の表1に示す。
 内層封止フィルムの損失正接を、TAインスツルメント社製、RSA-G2動的粘弾性測定機を用いて測定した。25℃から200℃まで25℃/分の昇温速度で、8mmパラレルプレート、ギャップ:0.5~1.5mm、歪み:0.2%、振動数:1.0Hzで測定し、各目標温度、100℃、110℃、120℃、130℃、及び/又は140℃での損失正接(tan δ)を求めた。
[光半導体素子搭載基板]
 光半導体素子搭載基板として、ガラス基板上に、奥行き1mm、幅1mm、高さ0.15mmの直方体状の光半導体素子を、縦に10個、横に10個配置した光半導体素子搭載基板を用いた。光半導体素子間の距離Lは均等に0.15mmであり、光半導体素子の高さTと光半導体素子間の距離Lとのアスペクト比(T/L)は1であった。
[実施例1~2及び比較例1~8]
 得られた内層封止フィルムA及びB、並びに最外層封止フィルムを用いて、上記半導体素子搭載基板に対して真空ラミネーションを行った。減圧チャンバーとしては、真空ポンプと接続したリフトピン昇降機構を有する真空ラミネータ(日清紡メカトロニクス社製、商品名PVL-050リフトピン機構付き)を用いた。まず、真空ラミネータ内の熱板から離れた位置に配置されたリフトピン昇降機構により昇降可能な中板上に光半導体素子搭載基板を設置し、その上に内層封止フィルムA又はBを載置し、その上に最外層封止フィルムを載置した。次いで、真空ポンプを駆動させて真空ラミネータ内を133Paまで減圧させた。次いで、中板を下降させて100℃から180℃に加熱された熱板に接触させた。その後、封止フィルムを3分~7分間かけて加熱し、光半導体素子搭載基板の温度が所定の温度Tに達した時点で10秒間かけて減圧を大気圧まで戻して、封止光半導体デバイスを得た。
 得られた封止半導体デバイスを目視により観察して、ボイド及び/又はクラックの発生の有無を確認した。結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~2の製造方法で製造された封止光半導体デバイスは、ボイド及び/又はクラックの発生を生じることがなく、封止フィルムにより、光半導体素子の形状に沿った被覆が形成されていることが確認された。
 本発明の封止光半導体デバイスの製造方法は、発光ダイオード(LED)、半導体レーザ、フォトダイオード、フォトトランジスタ、固体撮像、フォトカプラー用発光体及び受光体等の光半導体素子の封止方法として有用である。
 1 光半導体素子搭載基板
 2 光半導体素子
 3 内層封止フィルム
 4 最外層封止フィルム
 10 真空ラミネータ
 11 熱板
 12 中板
 13 リフトピン
 14~16 開口
 20 封止フィルムの周辺部
 21 気密空間
 30 封止光半導体デバイス
 40 ダイアフラム型真空ラミネータ
 41 ダイアフラムゴム膜
 42 上室
 43 下室
 50 ラミネーション治具
 51 スプリング
 52 上枠

Claims (7)

  1.  減圧チャンバー内で光半導体素子を搭載する光半導体素子搭載基板上に、内層封止フィルム及び最外層封止フィルムを含む少なくとも2種の封止フィルムをこの順で載置し、前記減圧チャンバー内を減圧する工程、
     前記最外層封止フィルムを加熱して、前記最外層封止フィルムの少なくとも周辺部を前記光半導体素子搭載基板の表面に熱融着させる工程、及び
     前記減圧チャンバー内の減圧を解除して、前記最外層封止フィルムと内層封止フィルムで前記光半導体素子搭載基板を封止する工程を含む、封止光半導体デバイスの製造方法であって、
     前記減圧チャンバー内の減圧を解除する時点の前記光半導体素子搭載基板の温度Tは、前記最外層封止フィルムが0.02~0.15MPaの引張強度及び200~450%の破断伸度を示す温度であり、
     前記内層封止フィルムが、前記温度Tで、1.6以上の損失正接(tan δ)を示す、製造方法。
  2.  前記封止フィルムが、熱硬化性シリコーン樹脂で構成される、請求項1に記載の封止光半導体デバイスの製造方法。
  3.  前記粒子が、蛍光体及び充填剤から選択される、請求項1又は2に記載の封止光半導体デバイスの製造方法。
  4.  前記封止フィルムが、10μm以上300μm以下の厚さを有する、請求項1~3のいずれか一項に記載の封止光半導体デバイスの製造方法。
  5.  前記温度Tが、70℃以上180℃以下である、請求項1~4のいずれか一項に記載の封止光半導体デバイスの製造方法。
  6.  前記光半導体素子搭載基板において、前記光半導体素子間の最小距離が、前記封止フィルムの合計の厚さよりも長い、請求項1~5のいずれか一項に記載の封止光半導体デバイスの製造方法。
  7.  前記光半導体素子搭載基板において、前記光半導体素子の高さTと、光半導体素子間の距離Lとのアスペクト比(T/L)が、最大で3以下である、請求項1~6のいずれか一項に記載の封止光半導体デバイスの製造方法。 
PCT/JP2018/032424 2017-09-08 2018-08-31 封止光半導体デバイスの製造方法 WO2019049791A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019540933A JP6957630B2 (ja) 2017-09-08 2018-08-31 封止光半導体デバイスの製造方法
US16/637,531 US11257992B2 (en) 2017-09-08 2018-08-31 Method for producing sealed optical semiconductor device
EP18854026.4A EP3680943B1 (en) 2017-09-08 2018-08-31 Method for producing sealed optical semiconductor device
KR1020207004448A KR102344560B1 (ko) 2017-09-08 2018-08-31 봉지 광학 반도체 장치의 제조 방법
CN201880053054.0A CN111033769B (zh) 2017-09-08 2018-08-31 用于生产密封光半导体装置的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017172929 2017-09-08
JP2017-172929 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019049791A1 true WO2019049791A1 (ja) 2019-03-14

Family

ID=65634152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032424 WO2019049791A1 (ja) 2017-09-08 2018-08-31 封止光半導体デバイスの製造方法

Country Status (7)

Country Link
US (1) US11257992B2 (ja)
EP (1) EP3680943B1 (ja)
JP (1) JP6957630B2 (ja)
KR (1) KR102344560B1 (ja)
CN (1) CN111033769B (ja)
TW (1) TWI779077B (ja)
WO (1) WO2019049791A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132711A1 (ja) 2019-12-27 2021-07-01 ダウ・東レ株式会社 積層体及びそれからなる電子部品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774184B (zh) * 2020-03-18 2022-08-11 日商日本航空電子工業股份有限公司 可薄型化半導體裝置及其製造方法
JP2022028180A (ja) 2020-08-03 2022-02-16 日本航空電子工業株式会社 デバイス及びデバイスの製造方法
CN112382716A (zh) * 2020-10-28 2021-02-19 厦门三安光电有限公司 一种led发光装置及其制造方法
CN116712579B (zh) * 2023-06-25 2024-01-09 中山市光圣半导体科技有限公司 一种光源可全方位均匀出射的led杀菌模组及led杀菌灯

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105428A1 (ja) * 2004-04-28 2005-11-10 Zeon Corporation 積層体、発光素子及びその使用
WO2012023119A1 (en) 2010-08-20 2012-02-23 Koninklijke Philips Electronics N.V. Lamination process for leds
US20130319607A1 (en) * 2010-11-18 2013-12-05 Bridgelux, Inc. System for flash-free over-molding of led array substrates
WO2016065016A1 (en) 2014-10-24 2016-04-28 Dow Corning Corporation Vacuum lamination method for forming a conformally coated article and associated conformally coated articles formed therefrom
JP2016171314A (ja) 2015-03-09 2016-09-23 日東電工株式会社 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法
JP2016171315A (ja) 2015-03-09 2016-09-23 日東電工株式会社 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法
JP2016201546A (ja) * 2012-04-12 2016-12-01 サン−ゴバン パフォーマンス プラスティックス コーポレイション 発光装置を製造する方法
WO2017057074A1 (ja) * 2015-09-29 2017-04-06 東レ株式会社 蛍光体組成物、蛍光体シート並びにそれらを用いた形成物、ledチップ、ledパッケージ、発光装置、バックライトユニット、ディスプレイおよびledパッケージの製造方法
JP2017172929A (ja) 2016-03-25 2017-09-28 東芝キヤリア株式会社 冷凍サイクル装置の室外機、及び冷凍サイクル装置の室外機の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110256A (ja) 1991-10-21 1993-04-30 Hitachi Chem Co Ltd 多層プリント板用銅張り積層板の製造方法
JPH06190956A (ja) 1992-12-25 1994-07-12 Yokohama Rubber Co Ltd:The ハニカムサンドイッチパネルの製造方法
JP3375217B2 (ja) * 1994-10-14 2003-02-10 新日本石油化学株式会社 電気電子部品用封止材
JPH08264577A (ja) * 1995-03-24 1996-10-11 Nitto Denko Corp 半導体パッケージの製造方法およびこれに用いられる金型
JP4872587B2 (ja) * 2006-10-12 2012-02-08 日立化成工業株式会社 封止フィルム、及びこれを用いた半導体装置
JP5080881B2 (ja) * 2007-06-27 2012-11-21 ナミックス株式会社 発光ダイオードチップの封止体の製造方法
KR102228997B1 (ko) * 2012-03-29 2021-03-18 루미리즈 홀딩 비.브이. Led 응용들을 위한 무기 바인더 내의 형광체
KR102092707B1 (ko) * 2013-09-17 2020-03-25 삼성디스플레이 주식회사 플렉서블 디스플레이 장치와, 이의 제조 방법
CN105637660B (zh) * 2013-11-07 2018-11-09 东丽株式会社 层叠体及使用所述层叠体的发光装置的制造方法
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105428A1 (ja) * 2004-04-28 2005-11-10 Zeon Corporation 積層体、発光素子及びその使用
WO2012023119A1 (en) 2010-08-20 2012-02-23 Koninklijke Philips Electronics N.V. Lamination process for leds
US20130319607A1 (en) * 2010-11-18 2013-12-05 Bridgelux, Inc. System for flash-free over-molding of led array substrates
JP2016201546A (ja) * 2012-04-12 2016-12-01 サン−ゴバン パフォーマンス プラスティックス コーポレイション 発光装置を製造する方法
WO2016065016A1 (en) 2014-10-24 2016-04-28 Dow Corning Corporation Vacuum lamination method for forming a conformally coated article and associated conformally coated articles formed therefrom
JP2016171314A (ja) 2015-03-09 2016-09-23 日東電工株式会社 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法
JP2016171315A (ja) 2015-03-09 2016-09-23 日東電工株式会社 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法
WO2017057074A1 (ja) * 2015-09-29 2017-04-06 東レ株式会社 蛍光体組成物、蛍光体シート並びにそれらを用いた形成物、ledチップ、ledパッケージ、発光装置、バックライトユニット、ディスプレイおよびledパッケージの製造方法
JP2017172929A (ja) 2016-03-25 2017-09-28 東芝キヤリア株式会社 冷凍サイクル装置の室外機、及び冷凍サイクル装置の室外機の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680943A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132711A1 (ja) 2019-12-27 2021-07-01 ダウ・東レ株式会社 積層体及びそれからなる電子部品
KR20220123030A (ko) 2019-12-27 2022-09-05 다우 도레이 캄파니 리미티드 적층체 및 이것으로 이루어진 전자 부품
CN115052742A (zh) * 2019-12-27 2022-09-13 陶氏东丽株式会社 层叠体以及由该层叠体构成的电子零件

Also Published As

Publication number Publication date
KR102344560B1 (ko) 2021-12-30
US11257992B2 (en) 2022-02-22
EP3680943B1 (en) 2023-07-05
EP3680943A1 (en) 2020-07-15
TW201913829A (zh) 2019-04-01
JPWO2019049791A1 (ja) 2020-08-06
CN111033769A (zh) 2020-04-17
CN111033769B (zh) 2023-03-14
EP3680943A4 (en) 2021-05-26
TWI779077B (zh) 2022-10-01
KR20200031135A (ko) 2020-03-23
US20200220055A1 (en) 2020-07-09
JP6957630B2 (ja) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2019049791A1 (ja) 封止光半導体デバイスの製造方法
JP5680210B2 (ja) 封止層被覆半導体素子および半導体装置の製造方法
TWI693730B (zh) 發光裝置的製造方法
EP2712908A2 (en) Phosphor adhesive sheet, optical semiconductor element-phosphor layer pressure-sensitive adhesive body, and optical semiconductor device
JP2014096491A (ja) 蛍光体層被覆半導体素子、その製造方法、半導体装置およびその製造方法
JP6362834B2 (ja) 半導体装置の製造方法
WO2017221606A1 (ja) 蛍光体層付光半導体素子およびその製造方法
WO2015029664A1 (ja) 封止半導体素子および半導体装置の製造方法
JP6987871B2 (ja) 封止光半導体デバイスの製造方法
JP2013206925A (ja) 半導体基板、半導体装置、および、半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540933

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207004448

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018854026

Country of ref document: EP

Effective date: 20200408