WO2019049551A1 - 基板処理装置および基板処理方法 - Google Patents

基板処理装置および基板処理方法 Download PDF

Info

Publication number
WO2019049551A1
WO2019049551A1 PCT/JP2018/028339 JP2018028339W WO2019049551A1 WO 2019049551 A1 WO2019049551 A1 WO 2019049551A1 JP 2018028339 W JP2018028339 W JP 2018028339W WO 2019049551 A1 WO2019049551 A1 WO 2019049551A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
processing
adhesion
ultraviolet light
Prior art date
Application number
PCT/JP2018/028339
Other languages
English (en)
French (fr)
Inventor
雄大 和食
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020207002921A priority Critical patent/KR102385847B1/ko
Priority to CN201880038561.7A priority patent/CN110770879B/zh
Publication of WO2019049551A1 publication Critical patent/WO2019049551A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0751Silicon-containing compounds used as adhesion-promoting additives or as means to improve adhesion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67225Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one lithography chamber

Definitions

  • the present invention relates to a substrate processing apparatus for processing a substrate and a substrate processing method.
  • a resist solution is applied onto the surface to be treated of the substrate to form a resist film on the surface to be treated of the substrate.
  • the adhesion between the treated surface of the substrate and the resist film is lowered. Therefore, the resist film may be peeled off from the surface to be processed of the substrate. Therefore, the hydrophobicity of the surface to be treated of the substrate can be enhanced by supplying an adhesion enhancing agent such as HMDS (hexamethyldisilazane) to the surface to be treated of the substrate before forming the resist film (for example, patent document 1).
  • HMDS hexamethyldisilazane
  • the resist solution tends to aggregate on the surface to be treated when the resist solution is applied. Therefore, depending on the type of resist solution, the resist solution may not be applied to cover a desired area of the surface to be treated. As a result, the resist film can not be properly formed, and processing defects occur.
  • An object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of appropriately forming a processing film on one surface of a substrate.
  • a substrate processing apparatus comprises: an adhesion strengthening portion that supplies an adhesion strengthening agent made of an organic material on one surface of the substrate; and ultraviolet light on one surface of the substrate to which the adhesion strengthening agent is supplied by the adhesion strengthening portion.
  • the hydrophobicity of one surface of the substrate is enhanced by the supply of the adhesion enhancing agent
  • the hydrophobicity of the one surface of the substrate is adjusted by the irradiation of ultraviolet light.
  • the organic material may contain hexamethyldisilazane.
  • the hydrophobicity of one surface of the substrate can be enhanced while suppressing the increase in cost.
  • the adhesion strengthening portion supplies an adhesion strengthening agent to one surface of the substrate so that the hydroxy group on one surface of the substrate changes to a trimethylsiloxy group, and the irradiated portion has a trimethylsiloxy group on one surface of the substrate being a hydroxyl group
  • One side of the substrate may be irradiated with ultraviolet light so as to separate into and hexamethyl diloxane. In this case, the hydrophobicity of one surface of the substrate can be appropriately adjusted.
  • the processing solution may contain a photosensitive material.
  • a photosensitive film made of a photosensitive material can be appropriately formed on one surface of the substrate.
  • the irradiation unit may adjust the irradiation amount of the ultraviolet light such that the contact angle with the processing liquid on one surface of the substrate is equal to or less than a predetermined value.
  • the hydrophobicity of the one surface of the substrate can be adjusted to a desired degree so that the treatment liquid can be appropriately applied to the one surface of the substrate.
  • the substrate processing apparatus may further include a cooling unit that cools the substrate before the treatment film is formed by the film forming unit after the irradiation unit emits the ultraviolet light.
  • the temperature of the substrate can be adjusted to a temperature suitable for formation of the processing film. As a result, the treated film can be formed better.
  • the adhesion strengthening portion includes the placement portion on which the substrate is placed, and the substrate processing apparatus holds the substrate while the delivery position for delivering the substrate onto the placement portion and the outside away from the delivery position
  • the apparatus further comprises a transport unit movably provided between the position, the adhesion strengthening unit supplies an adhesion enhancing agent to the substrate placed on the placement unit, and the irradiation unit holds the substrate by the transport unit.
  • the substrate held by the transport unit may be irradiated with ultraviolet light.
  • the adhesion enhancer is supplied to the substrate placed on the placement unit, and the substrate transported from the placement unit is irradiated with ultraviolet light.
  • the supply of the adhesion enhancing agent to the substrate and the irradiation of the ultraviolet light can be efficiently performed, and the throughput can be improved.
  • the substrate processing method comprises the steps of: supplying an adhesion enhancing agent made of an organic material on one surface of the substrate by the adhesion enhancing portion; and one surface of the substrate to which the adhesion enhancing agent is supplied by the adhesion enhancing portion. And a step of forming a treatment film on one surface of the substrate by supplying the treatment liquid to the one surface of the substrate irradiated with the ultraviolet light by the irradiation unit.
  • the hydrophobicity of one surface of the substrate is adjusted by the irradiation of ultraviolet light.
  • the contact angle with the processing liquid on the one surface of the substrate is controlled to an appropriate range.
  • the processing solution can be appropriately applied to a desired region on one surface of the substrate, and the adhesion between the one surface of the substrate and the processing film can be secured. Therefore, the treatment film can be appropriately formed on one surface of the substrate.
  • the organic material may contain hexamethyldisilazane.
  • the hydrophobicity of one surface of the substrate can be enhanced while suppressing the increase in cost.
  • the step of supplying the adhesion enhancing agent includes converting the hydroxy group on one surface of the substrate to a trimethylsiloxy group, and the step of irradiating the ultraviolet radiation comprises converting the trimethylsiloxy group on one surface of the substrate to a hydroxy group and hexa It may include separation into methyl diloxane. In this case, the hydrophobicity of one surface of the substrate can be appropriately adjusted.
  • the treatment liquid may contain a photosensitive material.
  • a photosensitive film made of a photosensitive material can be appropriately formed on one surface of the substrate.
  • the step of irradiating the ultraviolet light may include adjusting the irradiation amount of the ultraviolet light so that the contact angle with the processing liquid on one surface of the substrate is equal to or less than a predetermined value.
  • the hydrophobicity of the one surface of the substrate can be adjusted to a desired degree so that the treatment liquid can be appropriately applied to the one surface of the substrate.
  • the substrate processing method may further include the step of cooling the substrate after the step of irradiating the ultraviolet light and before the step of forming the processing film.
  • the temperature of the substrate can be adjusted to a temperature suitable for formation of the processing film. As a result, the treated film can be formed better.
  • the substrate transfer method moves the transfer unit between the delivery position for delivering the substrate onto the placement unit of the adhesion strengthening unit and the external position away from the transfer position while holding the substrate by the transfer unit.
  • the method may further include the step of supplying the adhesion enhancing agent, the step of supplying the adhesion enhancing agent including supplying the adhesion enhancing agent to the substrate placed on the placement unit, and the step of irradiating the ultraviolet radiation, the transport unit holds and delivers the substrate.
  • the method may include irradiating the substrate held by the transport unit with ultraviolet light when moving from the position to the external position.
  • a treatment film can be appropriately formed on one surface of a substrate.
  • FIG. 1 is a schematic plan view of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the substrate processing apparatus mainly showing the coating processing unit, the development processing unit and the cleaning / drying processing unit of FIG.
  • FIG. 3 is a schematic side view of the substrate processing apparatus mainly showing the heat treatment section and the cleaning / drying processing section of FIG.
  • FIG. 4 is a schematic side view mainly showing the transport unit of FIG.
  • FIG. 5 is a view for explaining the change in hydrophobicity of the surface to be treated of the substrate due to the adhesion strengthening treatment and the overall exposure treatment.
  • FIG. 6 is a schematic cross-sectional view showing a specific configuration example of the adhesion strengthening processing unit.
  • FIG. 7 is an external perspective view showing a specific configuration example of the overall exposure processing unit.
  • FIG. 8 is a schematic side view showing a specific configuration example of the overall exposure processing unit.
  • FIG. 9 is a diagram for explaining a configuration example of a control system of the substrate processing apparatus.
  • FIG. 10 is a flowchart showing the operation of each control unit of FIG.
  • FIG. 11 is a schematic side view showing a configuration example of the hydrophobicity adjusting unit.
  • the substrate refers to a substrate for an FPD (Flat Panel Display) such as a semiconductor substrate, a liquid crystal display device or an organic EL (Electro Luminescence) display device, a substrate for an optical disk, a substrate for a magnetic disk, and a substrate for a magneto-optical disk.
  • FPD Fluorescence Panel Display
  • FIG. 1 is a schematic plan view of a substrate processing apparatus according to an embodiment of the present invention.
  • FIGS. 1 and 2 and the subsequent drawings in order to clarify the positional relationship, arrows indicating X, Y, and Z directions orthogonal to one another are attached.
  • the X direction and the Y direction are orthogonal to each other in the horizontal plane, and the Z direction corresponds to the vertical direction.
  • the substrate processing apparatus 100 includes an indexer block 11, a first processing block 12, a second processing block 13, a cleaning / drying processing block 14A, and a loading / unloading block 14B.
  • the washing and drying processing block 14A and the loading and unloading block 14B constitute an interface block 14.
  • the exposure device 15 is disposed adjacent to the loading / unloading block 14B. In the exposure apparatus 15 of this embodiment, the exposure process is performed on the substrate W by the liquid immersion method.
  • the indexer block 11 includes a plurality of carrier placement units 111 and a transport unit 112. On each carrier mounting portion 111, a carrier 113 for storing a plurality of substrates W in multiple stages is mounted.
  • the transport unit 112 is provided with a main control unit 114 and a transport mechanism 115.
  • the main control unit 114 controls various components of the substrate processing apparatus 100.
  • the first processing block 12 includes a coating processing unit 121, a conveyance unit 122, and a heat treatment unit 123.
  • the coating processing unit 121 and the thermal processing unit 123 are provided to face each other with the transport unit 122 interposed therebetween.
  • the second processing block 13 includes a development processing unit 131, a conveyance unit 132, and a heat treatment unit 133.
  • the development processing unit 131 and the heat treatment unit 133 are provided to face each other with the conveyance unit 132 interposed therebetween.
  • the washing and drying processing block 14 A includes washing and drying processing units 161 and 162 and a transport unit 163.
  • the cleaning and drying processing units 161 and 162 are provided to face each other with the transport unit 163 interposed therebetween.
  • the transport unit 163 is provided with transport mechanisms 141 and 142.
  • a transport mechanism 146 is provided in the carry-in / out block 14B.
  • the exposure device 15 is provided with a substrate loading unit 15 a for loading the substrate W and a substrate unloading unit 15 b for unloading the substrate W.
  • FIG. 2 is a schematic side view of the substrate processing apparatus 100 mainly showing the coating processing unit 121, the development processing unit 131, and the cleaning / drying processing unit 161 of FIG.
  • coating processing chambers 21, 22, 23, 24 are provided hierarchically.
  • a coating processing unit (spin coater) 129 is provided in each of the coating processing chambers 21 to 24.
  • development processing unit 131 development processing chambers 31, 32, 33, 34 are provided hierarchically.
  • a development processing unit (spin developer) 139 is provided in each of the development processing chambers 31 to 34.
  • Each coating processing unit 129 includes a spin chuck 25 for holding the substrate W and a cup 27 provided to cover the periphery of the spin chuck 25.
  • each coating processing unit 129 is provided with two sets of spin chucks 25 and cups 27.
  • the spin chuck 25 is rotated by a driving device (not shown), and one of the processing liquid nozzles 28 among the plurality of processing liquid nozzles 28 is moved above the substrate W by the nozzle transport mechanism 29.
  • the processing liquid is discharged from the processing liquid nozzle 28.
  • a resist solution made of a photosensitive material is used as the processing solution.
  • the development processing unit 139 includes the spin chuck 35 and the cup 37 as in the coating processing unit 129. Further, as shown in FIG. 1, the development processing unit 139 includes two developing nozzles 38 for discharging the developing solution and a moving mechanism 39 for moving the developing nozzles 38 in the X direction.
  • the spin chuck 35 is rotated by a driving device (not shown), and one developing nozzle 38 moves in the X direction to supply the developing solution to each substrate W, and then the other developing nozzle 38 Supplies the developer to each substrate W while moving.
  • the developing solution is supplied to the substrate W, whereby the development processing of the substrate W is performed.
  • cleaning and drying processing chambers 81, 82, 83, 84 are provided hierarchically.
  • a washing and drying processing unit SD1 is provided in each of the washing and drying processing chambers 81 to 84. In the cleaning and drying processing unit SD1, cleaning and drying processing of the substrate W before the exposure processing is performed.
  • FIG. 3 is a schematic side view of the substrate processing apparatus 100 mainly showing the thermal processing units 123 and 133 and the cleaning / drying processing unit 162 of FIG.
  • the heat treatment unit 123 includes an upper heat treatment unit 301 and a lower heat treatment unit 302.
  • Each of the upper thermal processing section 301 and the lower thermal processing section 302 is provided with a plurality of heating units PHP, a plurality of adhesion strengthening processing units AHP, a plurality of cooling units CP, and a whole surface exposure processing unit OWE.
  • the heating unit PHP heat treatment of the substrate W is performed.
  • the cooling unit CP a cooling process of the substrate W is performed.
  • the adhesion strengthening processing unit AHP the adhesion strengthening processing is performed on the substrate W.
  • the entire surface exposure processing unit OWE performs the entire surface exposure processing on the substrate W. Details of the adhesion strengthening process and the overall exposure process will be described later.
  • the heat treatment unit 133 includes an upper heat treatment unit 303 and a lower heat treatment unit 304.
  • a cooling unit CP, a plurality of heating units PHP, and an edge exposure unit EEW are provided in each of the upper thermal processing unit 303 and the lower thermal processing unit 304.
  • edge exposure unit EEW exposure processing (edge exposure processing) is performed on a region of a fixed width of the peripheral portion of the resist film formed on the substrate W.
  • exposure processing edge exposure processing
  • the heating unit PHP provided adjacent to the cleaning / drying processing block 14A is configured to be able to carry in the substrate W from the cleaning / drying processing block 14A.
  • washing and drying processing chambers 91, 92, 93, 94, and 95 are provided hierarchically.
  • a washing and drying processing unit SD2 is provided in each of the washing and drying processing chambers 91 to 95.
  • the substrate W after the exposure processing is cleaned and dried.
  • FIG. 4 is a schematic side view mainly showing the transport sections 122, 132, 163 of FIG.
  • the transport unit 122 has an upper transfer chamber 125 and a lower transfer chamber 126.
  • the transfer unit 132 has an upper transfer chamber 135 and a lower transfer chamber 136.
  • the upper transfer chamber 125 is provided with a transfer mechanism (transfer robot) 127
  • the lower transfer chamber 126 is provided with a transfer mechanism 128.
  • the upper transfer chamber 135 is provided with a transfer mechanism 137
  • the lower transfer chamber 136 is provided with a transfer mechanism 138.
  • Each of the transport mechanisms 127, 128, 137, 138 has hands H1, H2 for holding the substrate W.
  • the transport mechanism 115 transports the substrate W while holding the substrate W by the hands H1 and H2.
  • the substrate platform PASS 1, PASS 2 is provided between the transport unit 112 and the upper transfer chamber 125, and the substrate platform PASS 3, PASS 4 is provided between the transport unit 112 and the lower transfer chamber 126.
  • the substrate platform PASS5 and PASS6 are provided between the upper transfer chamber 125 and the upper transfer chamber 135, and the substrate platforms PASS7 and PASS8 are provided between the lower transfer chamber 126 and the lower transfer chamber 136.
  • a placement / buffer unit P-BF1 is provided between the upper transfer chamber 135 and the transport unit 163, and a placement / buffer unit P-BF2 is provided between the lower transport chamber 136 and the transport unit 163. .
  • a substrate platform PASS 9 and a plurality of placement / cooling units P-CP are provided adjacent to the loading / unloading block 14 B in the transport unit 163.
  • the operation of the substrate processing apparatus 100 will be described with reference to FIGS. 1 to 4.
  • the carrier 113 in which the unprocessed substrate W is accommodated is placed on the carrier placement unit 111 (FIG. 1) of the indexer block 11.
  • the transport mechanism 115 transports the unprocessed substrate W from the carrier 113 to the substrate platform PASS1, PASS3 (FIG. 4). Further, the transport mechanism 115 transports the processed substrate W placed on the substrate platforms PASS 2 and PASS 4 (FIG. 4) to the carrier 113.
  • the transport mechanism 127 adheres the substrate W placed on the substrate platform PASS1 to the adhesion strengthening processing unit AHP (FIG. 3), the entire-surface exposure processing unit OWE (FIG. 3)
  • the substrate W is sequentially transported to the cooling unit CP (FIG. 3), and the substrate W is further transported to one of the coating processing chambers 21 and 22 (FIG. 2).
  • the transport mechanism 127 transports the substrate W on which the resist film is formed by the coating processing chamber 21 or the coating processing chamber 22 to the heating unit PHP (FIG. 3) and the substrate platform PASS 5 (FIG. 4) in order.
  • the entire surface exposure processing is performed on the substrate W in the entire surface exposure processing unit OWE.
  • the substrate W is cooled to a temperature suitable for forming the antireflective film in the cooling unit CP, the substrate W is placed on the substrate W by the coating processing unit 129 (FIG. 2) in any of the coating processing chambers 21 and 22. A resist film is formed. Thereafter, heat treatment of the substrate W is performed in the heating unit PHP, and the substrate W is placed on the substrate platform PASS5.
  • the transport mechanism 127 transports the substrate W after development processing placed on the substrate platform PASS6 (FIG. 4) to the substrate platform PASS2 (FIG. 4).
  • the transport mechanism 128 (FIG. 4) combines the substrate W placed on the substrate platform PASS3 into the adhesion strengthening processing unit AHP (FIG. 3), the overall exposure processing unit OWE (FIG. 3) and the cooling unit CP (FIG. 3). Then, the substrate W is transferred to one of the coating processing chambers 23 and 24 (FIG. 2). The transport mechanism 128 transports the substrate W on which the resist film is formed by the coating processing chamber 23 or the coating processing chamber 24 to the heating unit PHP (FIG. 3) and the substrate platform PASS 7 (FIG. 4) in order.
  • the transport mechanism 128 transports the substrate W after development processing placed on the substrate platform PASS 8 (FIG. 4) to the substrate platform PASS 4 (FIG. 4).
  • the processing contents of the substrate W in the coating processing chambers 23, 24 (FIG. 2) and the lower thermal processing section 302 (FIG. 3) are the substrates in the coating processing chambers 21, 22 (FIG. 2) and the upper thermal processing section 301 (FIG. 3). It is the same as the processing content of W.
  • the transport mechanism 137 (FIG. 4) performs the edge exposure unit EEW (FIG. 3) and the placement / buffer unit P on the substrate W after resist film formation placed on the substrate platform PASS5. Convey sequentially to BF1 (FIG. 4). In this case, after the edge exposure process is performed on the substrate W in the edge exposure unit EEW, the substrate W is placed on the placement / buffer unit P-BF1.
  • the transport mechanism 137 takes out the substrate W after the exposure processing by the exposure device 15 and after the heat treatment from the heating unit PHP (FIG. 3) adjacent to the cleaning / drying processing block 14A.
  • the transport mechanism 137 transports the substrate W to the cooling unit CP (FIG. 3) and then transports the substrate W to one of the development processing chambers 31 and 32 (FIG. 2), and further heats the substrate W to the heating unit PHP (FIG. 3) and The sheet is sequentially transported to the substrate platform PASS6 (FIG. 4).
  • the transport mechanism 138 sequentially forms the substrate W after the resist film formation placed on the substrate platform PASS 7 into the edge exposure unit EEW (FIG. 3) and the placement / buffer unit P-BF 2 (FIG. 4) Transport Further, the transport mechanism 138 (FIG. 4) takes out the substrate W after the exposure processing by the exposure device 15 and after the heat treatment from the heating unit PHP (FIG. 3) adjacent to the cleaning / drying processing block 14A.
  • the transport mechanism 138 transports the substrate W to the cooling unit CP (FIG. 3) and then transports the substrate W to one of the development processing chambers 33 and 34 (FIG. 2), and further heats the substrate W to the heating unit PHP (FIG.
  • the wafers are sequentially transported to the substrate platform PASS8 (FIG. 4).
  • the processing contents of the substrate W in the development processing chambers 33 and 34 and the lower heat treatment section 304 are the same as the processing contents of the substrate W in the development processing chambers 31 and 32 (FIG. 2) and the upper heat processing section 303 (FIG. 3). .
  • the transport mechanism 141 (FIG. 1) cleans and dries the substrate W placed on the mounting / buffering units P-BF1 and P-BF2 (FIG. 4). Transport to SD1 (Fig. 2). Subsequently, the transport mechanism 141 transports the substrate W from the cleaning / drying processing unit SD1 to the placement / cooling unit P-CP (FIG. 4). In this case, after the cleaning and drying processing of the substrate W is performed in the cleaning and drying processing unit SD1, the substrate W at a temperature suitable for the exposure processing in the exposure device 15 (FIG. 1) in the placement / cooling unit P-CP. Is cooled.
  • the transport mechanism 142 (FIG. 1) transports the substrate W after exposure processing placed on the substrate platform PASS 9 (FIG. 4) to the cleaning / drying processing unit SD2 (FIG. 3) of the cleaning / drying processing unit 162. Further, the transport mechanism 142 transports the substrate W after the cleaning and drying processing from the cleaning / drying processing unit SD2 to the heating unit PHP (FIG. 3) of the upper thermal processing section 303 (FIG. 3) or the heating unit PHP (FIG. 3) of the lower thermal processing section 304. . In this case, after the substrate W is cleaned and dried in the cleaning / drying processing unit SD2, a post-exposure bake (PEB) processing is performed in the heating unit PHP.
  • PEB post-exposure bake
  • the transport mechanism 146 (FIG. 1) is the substrate carry-in portion 15a (FIG. 1) of the exposure apparatus 15 before the exposure processing placed on the placement / cooling unit P-CP (FIG. 4).
  • Transport to The transport mechanism 146 (FIG. 1) takes out the substrate W after the exposure processing from the substrate unloading unit 15b (FIG. 1) of the exposure device 15, and transports the substrate W to the substrate platform PASS9 (FIG. 4).
  • an adhesion enhancing agent made of an organic material is supplied to the surface to be treated of the substrate W.
  • the organic material for example, HMDS (hexamethyldisilazane) is used.
  • HMDS hexamethyldisilazane
  • a resist solution so as to cover a desired region (for example, the entire treated surface) of the treated surface of the substrate W.
  • the higher the hydrophobicity of the treated surface of the substrate W the larger the contact angle with the resist solution on the treated surface.
  • the resist solution is coagulated on the treated surface, and the resist solution is not applied to the portion of the treated surface to which the resist solution is to be applied (hereinafter referred to as coating chipping). May occur.
  • coating chipping the resist solution having high cohesiveness is used, such coating defects are likely to occur. In that case, a resist film can not be appropriately formed on the surface to be treated.
  • the entire surface exposure process is performed after the adhesion strengthening process and before the application of the resist solution.
  • the entire surface to be processed of the substrate W is irradiated with ultraviolet light. Thereby, the hydrophobicity of the processed surface of the substrate W can be adjusted.
  • FIG. 5 is a view for explaining the change in the hydrophobicity of the surface to be processed of the substrate W due to the adhesion strengthening process and the entire surface exposure process.
  • FIG. 5 (a) shows the chemical change on the processed surface of the substrate W by the adhesion strengthening process.
  • FIG. 5C shows a chemical change on the processed surface of the substrate W due to the entire surface exposure processing.
  • the substrate W is a semiconductor substrate.
  • a large number of hydroxyl groups (-OH) are present on the surface to be treated of the substrate W before the adhesion strengthening treatment.
  • the HMDS reacts with some hydroxyl groups (-OH).
  • the hydroxyl group (-OH) is changed to a trimethylsiloxy group (-OSi (CH 3 ) 3 ).
  • -OSi (CH 3 ) 3 a trimethylsiloxy group
  • the hydrophobicity of the surface to be treated of the substrate W is rapidly increased even if the supply amount of the adhesion enhancing agent is small. Therefore, it is extremely difficult to adjust the hydrophobicity of the treated surface of the substrate W to a desired degree at the time of the adhesion strengthening treatment.
  • the hydrophobicity of the treated surface of the substrate W is lowered depending on the irradiation amount of the ultraviolet light (exposure amount of the treated surface) to the treated surface of the substrate W. Therefore, the hydrophobicity of the processing surface of the substrate W can be adjusted to a desired degree by adjusting the irradiation amount of the ultraviolet light. In this case, it is preferable that the irradiation amount of the ultraviolet light be adjusted so that the contact angle with the resist solution on the surface to be processed of the substrate W is in a predetermined range.
  • the inventor examined the change in hydrophobicity of the treated surface of the substrate W in each of the case where only the adhesion strengthening treatment was performed and the case where both the adhesion strengthening treatment and the entire surface exposure treatment were performed.
  • the contact angle to pure water on the treated surface of the bare wafer was simply measured.
  • the average value of the contact angles with respect to pure water on the treated surface of the bare wafer was about 63 degrees.
  • the average value of the contact angles with respect to pure water was about 47 degrees.
  • the average value of the contact angle with respect to pure water was about 31 degrees.
  • the contact angle with respect to the pure water in the to-be-processed surface of a bare wafer was able to be reduced by performing whole surface exposure processing after adhesion strengthening processing.
  • the contact angle with respect to the pure water in the to-be-processed surface of a bare wafer was able to be adjusted by adjusting the irradiation amount of an ultraviolet-ray. From these results, it was found that hydrophobization of the surface to be treated of the substrate W can be suppressed by performing the entire surface exposure treatment after the adhesion strengthening treatment. Moreover, it turned out that the hydrophobicity of the to-be-processed surface of the board
  • substrate W can be adjusted by adjusting the irradiation amount of an ultraviolet-ray.
  • the contact angle to the resist solution on the treated surface of the substrate W can be controlled by performing the entire surface exposure treatment after the adhesion strengthening treatment. I found it to be.
  • FIG. 6 is a schematic cross-sectional view showing a specific configuration example of the adhesion enhancement processing unit AHP.
  • the adhesion strengthening processing unit AHP of FIG. 6 includes a plate 205, a cover 207, a cover lifting mechanism 209, a plurality of support pins 243, and a support pin lifting mechanism 247.
  • a plurality of (eg, three) proximity balls 241 are provided on the upper surface of the plate 205.
  • the substrate W is mounted on the plurality of proximity balls 241 in a horizontal posture.
  • the cover 207 is provided to cover the upper side of the substrate W on the plate 205.
  • the cover 207 is connected to the cover lifting and lowering mechanism 209.
  • the cover lifting and lowering mechanism 209 is, for example, an air cylinder, and lifts and lowers the cover 207 between the upper position and the lower position. In FIG. 6, the cover 207 is in the lower position. When the cover 207 is at the lower position, an airtight processing space PS is formed between the cover 207 and the plate 205.
  • the cover 207 is provided with a gas flow channel 213.
  • One end of a gas supply pipe 261 is connected to the gas flow channel 213.
  • the other end of the gas supply pipe 261 is connected to a gas supply unit (not shown) capable of selectively supplying a processing gas and an inert gas.
  • the process gas contains an adhesion enhancer.
  • the inert gas is, for example, nitrogen gas.
  • a plurality of (for example, three) through holes 245 are provided so as to vertically penetrate the plate 205.
  • a plurality of (for example, three) support pins 243 are respectively inserted into the through holes 245 of the plate 205.
  • the lower end portion of each support pin 243 is connected to the support pin lifting mechanism 247 below the plate 205.
  • the support pin raising and lowering mechanism 247 raises and lowers the plurality of support pins 243.
  • a sealing portion 243 a on the disc is attached to the upper end portion of each support pin 243.
  • a concave portion 245a capable of accommodating the sealing portion 243a is formed.
  • the sealing portion 243a is in close contact with the bottom surface of the recess 245a, whereby the airtightness of the processing space PS is ensured.
  • a temperature control unit 249 for adjusting the temperature of the substrate W is provided inside the plate 205.
  • the temperature control unit 249 is, for example, a heater.
  • the temperature control unit 249 performs heat treatment on the substrate W placed on the plate 205 by adjusting the temperature of the plate 205.
  • An exhaust slit 251 is formed on the plate 205 so as to extend in the circumferential direction outward of the region on which the substrate W is to be mounted. Further, a plurality of exhaust ports 253 are formed to communicate with the exhaust slits 251, respectively.
  • An exhaust pipe 255 is connected to the plurality of exhaust ports 253.
  • a pump 256 is inserted in the exhaust pipe 255. The gas in the processing space PS is exhausted from the adhesion strengthening processing unit AHP through the exhaust pipe 255 by the pump 256. Thereby, the processing space PS is decompressed.
  • adhesion reinforcement processing in the adhesion reinforcement processing unit AHP will be described with reference to FIG.
  • the operation of the adhesion strengthening processing unit AHP provided in the upper heat treatment section 301 of FIG. 3 will be described.
  • the transport mechanism 127 of FIG. 4 transports the substrate W above the plate 5 with the cover 207 at the upper position.
  • the substrate is transferred from the transport mechanism 127 to the plurality of support pins 243.
  • the support pin 243 is lowered, the substrate W is placed on the plurality of proximity balls 241.
  • the pump 256 discharges the gas from the processing space PS. Thereby, the processing space PS is decompressed. Further, the temperature control unit 249 adjusts the temperature of the substrate W on the plate 205.
  • the processing gas is supplied to the processing space PS through the gas supply pipe 261 and the gas flow channel 213.
  • the adhesion enhancing agent is applied to the surface to be processed of the substrate W.
  • the processing gas that has flowed to the outside of the substrate W is exhausted from the adhesion strengthening processing unit AHP through the exhaust pipe 255.
  • the inert gas is supplied to the processing space PS through the gas supply pipe 261 and the gas flow channel 213.
  • the processing gas in the processing space PS is replaced with the inert gas.
  • the operation of the pump 256 is stopped, and the cover 207 moves to the upper position. Further, the substrate W is transferred from the plurality of proximity balls 241 to the plurality of support pins 243 by raising the plurality of support pins 243.
  • the transport mechanism 127 of FIG. 4 receives the substrate W from the plurality of support pins 243 and carries it out of the adhesion strengthening processing unit AHP.
  • FIGS. 7 and 8 are an external perspective view and a schematic side view showing a specific configuration example of the overall exposure unit OWE.
  • the entire surface exposure processing unit OWE includes a light emitting unit 300, a substrate moving unit 400, and a carry in / out unit 500.
  • the substrate moving unit 400 includes a casing 410 having a substantially rectangular parallelepiped shape.
  • a direction parallel to the horizontal surface and going from one surface to the other surface of the casing 410 is called the front, and is parallel to the horizontal surface and a direction from the other surface to the one surface Is called the back.
  • a direction parallel to the horizontal plane and orthogonal to the front and rear is referred to as the width direction.
  • the light emitting unit 300 is provided to extend in the width direction, and is attached to a central upper portion of the casing 410.
  • a loading / unloading unit 500 is provided behind the light emitting unit 300.
  • the loading and unloading unit 500 includes a lid member 510, a lid driving unit 590, and a support plate 591.
  • the support plate 591 is fixed to the casing 410 in a horizontal posture.
  • a lid drive unit 590 is attached to the lower surface of the support plate 591.
  • a lid member 510 is provided below the lid driving unit 590.
  • An opening 412 is formed on the upper surface of the rear of the casing 410.
  • the lid driving unit 590 moves the lid member 510 in the vertical direction. Thereby, the opening 412 is closed or opened.
  • the light emitting unit 300 includes a casing 310, an ultraviolet lamp 320 and an inert gas supply unit 330.
  • the casing 310 is indicated by an alternate long and short dash line.
  • the ultraviolet lamp 320 and the inert gas supply unit 330 are accommodated in the casing 310.
  • the ultraviolet lamp 320 and the inert gas supply unit 330 are provided to extend in the width direction.
  • a xenon excimer lamp that generates vacuum ultraviolet light having a wavelength of 172 nm is used as the ultraviolet light lamp 320.
  • the ultraviolet lamp 320 may be any lamp that generates vacuum ultraviolet light having a wavelength of 230 nm or less, and may be replaced by another excimer lamp or a deuterium lamp instead of the xenon excimer lamp.
  • An emission surface 321 is formed on the lower surface of the ultraviolet lamp 320.
  • the ultraviolet ray lamp 320 When the ultraviolet ray lamp 320 is lit, vacuum ultraviolet rays are emitted downward from the emission surface 321.
  • the vacuum ultraviolet rays emitted from the ultraviolet ray lamp 320 have a band-like cross section orthogonal to the traveling direction (vertical direction in this example).
  • the inert gas supply unit 330 a plurality of injection holes (not shown) are formed downward.
  • the inert gas supply unit 330 jets the inert gas downward through the plurality of jet holes.
  • the oxygen concentration in the space between the emission surface 321 of the ultraviolet ray lamp 320 and the substrate W can be reduced. Therefore, the attenuation of the vacuum ultraviolet rays irradiated to the substrate W can be suppressed.
  • the delivery mechanism 420 includes a plurality of elevation pins 421, a pin support member 422, and a pin elevation drive unit 423.
  • a plurality of lifting pins 421 extending in the vertical direction are attached to the pin support member 422, respectively.
  • the pin raising and lowering driving unit 423 supports the pin supporting member 422 so as to be movable in the vertical direction.
  • the plurality of lift pins 421 are disposed below the opening 412.
  • the pin raising and lowering driving unit 423 moves the upper end of the plurality of raising and lowering pins 421 between the delivery position above the opening 412 and the waiting position below the local transport hand 434 described later.
  • the local transport mechanism 430 includes a feed shaft 431, a feed shaft motor 432, a pair of guide rails 433, a local transport hand 434 and a pair of hand support members 435.
  • the feed shaft motor 432 is provided at the front of the casing 410.
  • a feed shaft 431 is provided to extend rearward from the feed shaft motor 432.
  • the feed shaft 431 is, for example, a ball screw, and is connected to the rotation shaft of the feed shaft motor 432.
  • the pair of guide rails 433 are provided on the lower surface inside the casing 410 so as to extend in the front-rear direction parallel to each other.
  • a pair of hand support members 435 are provided on the pair of guide rails 433 so as to be movable in the front-rear direction. In FIG. 8, only one guide rail 433 and one hand support member 435 are shown.
  • the local transport hand 434 is supported by the pair of hand support members 435.
  • the local transfer hand 434 is connected to the feed shaft 431 via a connection member (not shown).
  • the local transport hand 434 is provided with a plurality of holes (not shown) into which a plurality of elevation pins 421 of the delivery mechanism 420 can be inserted.
  • the substrate W is placed on the local transfer hand 434.
  • the feed shaft motor 432 rotates the feed shaft 431.
  • the local transport hand 434 moves in the front-rear direction between the rear position rearward of the light emitting unit 300 and the front position forward of the light emitting unit 300.
  • the local transfer hand 434 in the rear position is shown by a solid line
  • the local transfer hand 434 in the front position is shown by a two-dot chain line.
  • the local transport hand 43 moves from the front position to the rear position at a constant moving speed, whereby the vacuum ultraviolet ray moves from one end to the other end of the substrate W. It is scanned. Thereby, vacuum ultraviolet rays are irradiated on the entire area of the upper surface of the substrate W.
  • the inert gas supply unit 450 is provided at the rear of the casing 410 so as to extend in the width direction.
  • a plurality of injection holes are formed in the inert gas supply unit 450, and the inert gas is injected from the plurality of injection holes.
  • an illuminance sensor SE1 is further provided.
  • the illuminance sensor SE1 is provided at a position facing the light emitting surface 321 of the light emitting unit 300.
  • the illuminance sensor SE1 includes a light receiving element such as a photodiode, and detects the illuminance of light irradiated to the light receiving surface of the light receiving element.
  • the illuminance is the power of light irradiated per unit area of the light receiving surface.
  • the unit of illuminance is represented by, for example, “W / m 2 ”.
  • the illuminance sensor SE1 is raised and lowered between an upper position and a lower position by a sensor drive unit (not shown).
  • the illuminance sensor SE1 detects the illuminance of vacuum ultraviolet light to be irradiated to the substrate W at the upper position.
  • the exposure amount is predetermined for each substrate W or for each type of substrate W based on the processing content of the substrate W.
  • the exposure amount determined in advance is stored in advance in the entire surface exposure control unit 52 as a set exposure amount before the exposure processing of the substrate W.
  • the set exposure dose is, for example, a value in which the contact angle with the resist solution on the surface to be processed of the substrate W is in a predetermined range.
  • a strip of vacuum ultraviolet light is scanned at a constant speed from one end to the other end of the substrate W.
  • the moving speed of the substrate W it is possible to adjust the exposure amount of the processed surface of the substrate W.
  • the exposure amount can be decreased by increasing the moving speed of the substrate W, and the exposure amount can be increased by decreasing the moving speed of the substrate W.
  • the illuminance of the vacuum ultraviolet light is detected in advance by the illuminance sensor SE1, and the moving speed of the substrate W is adjusted based on the detection result. Thereby, the exposure amount of the to-be-processed surface of the board
  • substrate W is adjusted to setting exposure amount.
  • the overall exposure processing in the overall exposure processing unit OWE will be described with reference to FIG.
  • the operation of the overall exposure processing unit OWE provided in the upper thermal processing section 301 of FIG. 3 will be described.
  • the inert gas is supplied from the inert gas supply unit 450 into the casing 410 with the opening 412 of the casing 410 closed by the lid member 510.
  • the oxygen concentration in the casing 410 is kept lower than, for example, 1%.
  • the cover member 510 is lifted, the opening 412 is opened, and the plurality of lifting pins 421 of the delivery mechanism 420 are lifted.
  • the upper end portions of the plurality of lifting pins 421 move from the standby position to the delivery position.
  • the substrate W in a horizontal posture is horizontally inserted between the lid member 510 and the opening 412 by the transport mechanism 127 of FIG. 4 and placed on the plurality of lifting pins 421.
  • the plurality of lifting pins 421 of the delivery mechanism 420 are lowered.
  • the lid 412 is lowered to close the opening 412.
  • the local transport hand 434 is moved from the rear position to the front position.
  • the ultraviolet lamp 320 is in the extinguished state. Therefore, the substrate W is not exposed.
  • the ultraviolet ray lamp 320 is switched from the light-off state to the light-on state.
  • an inert gas is supplied from the inert gas supply unit 330 into the casing 410.
  • the local transport hand 434 is moved from the front position to the rear position.
  • the moving speed at this time is adjusted based on the illuminance of the vacuum ultraviolet rays detected in advance by the illuminance sensor SE1.
  • the ultraviolet lamp 320 is switched from the lighting state to the lighting off state. Also, the supply of the inert gas by the inert gas supply unit 330 is stopped.
  • the opening 412 is opened, and the plurality of lifting pins 421 of the delivery mechanism 420 are lifted.
  • the substrate W is transferred from the local transfer hand 434 to the plurality of lifting pins 421, and the substrate W is moved above the opening 412. In that state, the substrate W is received by the transport mechanism 127 of FIG. 4 and carried out of the overall exposure processing unit OWE.
  • FIG. 9 is a diagram for describing a configuration example of a control system of the substrate processing apparatus 100.
  • the substrate processing apparatus 100 in addition to the main control unit 114, the substrate processing apparatus 100 further includes an adhesion strengthening control unit 51, an overall exposure control unit 52, a film formation control unit 53, a development control unit 54, an edge exposure control unit 55, The cleaning and drying control unit 56, the heating and cooling control unit 57, and the conveyance control unit 58 are included.
  • the main control unit 114 includes an adhesion strengthening control unit 51, an overall exposure control unit 52, a film formation control unit 53, a development control unit 54, an edge exposure control unit 55, a cleaning and drying control unit 56, a heating and cooling control unit 57, and a conveyance control unit.
  • By controlling 58 the operation of the substrate processing apparatus 100 is generally controlled.
  • the adhesion reinforcement control unit 51 controls the operation of the adhesion reinforcement processing unit group G1.
  • Adhesion reinforcement processing unit group G1 includes a plurality of adhesion reinforcement processing units AHP shown in FIG.
  • the entire surface exposure control unit 52 controls the operation of the entire surface exposure processing unit group G2.
  • the overall exposure processing unit group G2 includes the plurality of overall exposure processing units OWE shown in FIG.
  • the film formation control unit 53 controls the operation of the coating processing unit group G3.
  • the coating processing unit group G3 includes the plurality of coating processing units 129 shown in FIG.
  • the development control unit 54 controls the operation of the development processing unit group G4.
  • the development processing unit group G4 includes a plurality of development processing units 139 shown in FIG.
  • the edge exposure control unit 55 controls the operation of the edge exposure unit group G5.
  • the edge exposure unit group G5 includes a plurality of edge exposure units EEW shown in FIG.
  • the washing and drying control unit 56 controls the operation of the washing and drying processing unit group G6.
  • the washing and drying processing unit group G6 includes the plurality of washing and drying processing units SD1 of FIG. 2 and the plurality of washing and drying processing units SD2 of FIG.
  • the heating and cooling control unit 57 controls the operation of the heat treatment unit group G7.
  • the heat treatment unit group G7 includes the plurality of heating units PHP and the plurality of cooling units CP of FIG. 3 and the plurality of placement / cooling units P-CP of FIG.
  • the transport control unit 58 controls the operation of the transport mechanism group G8.
  • the transport mechanism group G8 includes the transport mechanisms 115, 142, 141, 146 of FIG. 1 and the transport mechanisms 127, 128, 137, 138 of FIG.
  • a plurality of control units are provided to correspond to various processing contents, but the substrate processing apparatus 100 is divided into a plurality of processing regions, and a control unit is provided for each of the processing regions. It is also good. Further, the operation of the entire substrate processing apparatus 100 may be controlled by the main control unit 114 alone.
  • FIG. 10 is a flowchart showing the operation of each control unit of FIG. Here, the operation for one substrate W transported by the transport mechanisms 127 and 137 in FIG. 4 will be described. The same operation is performed on the substrate W transported by the transport mechanisms 128 and 138 in FIG. 4.
  • the transport control unit 58 controls the transport mechanisms 115 and 127 in FIG. 4 to transport the unprocessed substrate W in the carrier 113 to any one of the adhesion strengthening processing units AHP in the upper thermal processing unit 301 in FIG. 3.
  • the adhesion strengthening control unit 51 controls the adhesion strengthening processing unit AHP to which the substrate W has been transported, and performs an adhesion strengthening process of supplying an adhesion strengthening agent to the treated surface of the substrate W (step S1).
  • the transport control unit 58 controls the transport mechanism 127 of FIG. 4 to transport the substrate W after the adhesion strengthening processing from the adhesion strengthening processing unit AHP to the entire surface exposure processing unit OWE of the upper thermal processing section 301 of FIG.
  • the entire surface exposure control unit 52 controls the entire surface exposure processing unit OWE in which the substrate W is transported, and performs the entire surface exposure processing for irradiating the surface to be processed of the substrate W with ultraviolet light (step S2).
  • the transfer control unit 58 controls the transfer mechanism 127 to transfer the substrate W after the entire surface exposure processing from the entire surface exposure processing unit OWE to one of the cooling units CP of the upper thermal processing unit 301 in FIG.
  • the heating and cooling control unit 57 cools the substrate W by controlling the cooling unit CP to which the substrate W has been transported (step S3).
  • the transport control unit 58 controls the transport mechanism 127 to transport the substrate W after cooling from the cooling unit CP to the coating processing unit 129 in any of the coating processing chambers 21 and 22 in FIG.
  • the film formation control unit 53 controls the coating processing unit 129 to which the substrate W has been transported, and forms a resist film by applying a resist solution on the processing target surface of the substrate W (step S4).
  • the transport control unit 58 controls the transport mechanism 127 to transport the substrate W on which the resist film is formed from the coating processing unit 129 to one of the heating units PHP in the upper thermal processing unit 301 of FIG. 3.
  • the heating and cooling control unit 57 heats the substrate W by controlling the heating unit PHP to which the substrate W has been transferred (step S5).
  • the transport control unit 58 controls the transport mechanisms 127 and 137 to transport the heated substrate W from the heating unit PHP to the edge exposure unit EEW of the upper thermal processing unit 303 in FIG. 3.
  • the edge exposure control unit 55 controls the edge exposure unit EEW to which the substrate W has been transported to perform edge exposure processing on the substrate W (step S6).
  • the transport control unit 58 controls the transport mechanisms 137 and 141 to transfer the substrate W after the edge exposure processing from the edge exposure unit EEW to any one of the cleaning / drying processing units SD1 of the cleaning / drying processing unit 161 in FIG. Transport
  • the cleaning and drying control unit 56 controls the cleaning and drying processing unit SD1 to which the substrate W has been transported, to perform the cleaning and drying processing on the substrate W (step S7).
  • the transport control unit 58 controls the transport mechanism 141 to transport the substrate W after the cleaning and drying processing from the cleaning / drying processing unit SD1 to any one of the placement / cooling units P-CP in FIG.
  • the heating and cooling control unit 57 cools the substrate W by controlling the placement / cooling unit P-CP to which the substrate W has been transported (step S8).
  • the transport control unit 58 controls the transport mechanism 146 to load the cooled substrate W from the placement / cooling unit P-CP into the exposure apparatus 15 of FIG. 1 (step S9).
  • the transport control unit 58 controls the transport mechanisms 146 and 142 to carry the substrate W after the exposure processing out of the exposure device 15 (step S10),
  • the substrate W is transported to one of the cleaning / drying processing units SD2 of the cleaning / drying processing unit 162 in FIG.
  • the cleaning and drying control unit 56 controls the cleaning and drying processing unit SD2 to which the substrate W has been transported, to perform the cleaning and drying processing on the substrate W (step S11).
  • the transport control unit 58 controls the transport mechanism 142 to transport the substrate W after the cleaning and drying processing from the cleaning / drying processing unit SD2 to one of the heating units PHP in the upper thermal processing unit 303 in FIG.
  • the heating and cooling control unit 57 controls the heating unit PHP to which the substrate W has been transferred, and performs the PEB process on the substrate W (step S12).
  • the transport control unit 58 controls the transport mechanism 137 to transport the substrate W after the PEB processing to one of the cooling units CP of the upper thermal processing unit 303 in FIG. 3.
  • the heating and cooling control unit 57 cools the substrate W by controlling the cooling unit CP to which the substrate W has been transported (step S13).
  • the transport control unit 58 controls the transport mechanism 137 to transport the cooled substrate W to the development processing unit 139 in any of the development processing chambers 31 and 32 in FIG. 2.
  • the development control unit 54 controls the development processing unit 139 to which the substrate W has been transported, and performs development processing on the substrate W (step S14).
  • the transport control unit 58 controls the transport mechanisms 137, 127, and 115 to return the substrate W after development processing from the development processing unit 139 to the carrier 113 of FIG. Thereby, the process of an example of the substrate W is completed.
  • the substrate processing apparatus 100 after the adhesion enhancing agent made of an organic material is supplied to the surface to be processed of the substrate W in the adhesion enhancing processing unit AHP, the substrate is processed in the overall exposure processing unit OWE. Ultraviolet rays are irradiated on the surface to be treated of W.
  • the hydrophobicity of the treated surface of the substrate W is enhanced by the supply of the adhesion enhancing agent, the hydrophobicity of the treated surface of the substrate W is adjusted by the irradiation of ultraviolet light.
  • the contact angle with the resist solution on the surface to be processed of the substrate W is controlled within an appropriate range in the subsequent application of the resist solution.
  • the occurrence of coating chipping can be prevented, and the resist solution can be appropriately coated on a desired region of the processing surface of the substrate W. Further, the adhesion between the surface to be processed of the substrate W and the resist film can be secured. As a result, a resist film can be appropriately formed on the surface to be processed of the substrate W.
  • the hydroxy group on the treated surface of the substrate W is changed to a trimethylsiloxy group by the adhesion strengthening process, and the trimethylsiloxy group on one surface of the substrate W is a hydroxy group and hexa It is separated into methyl diloxane.
  • substrate W can be adjusted appropriately.
  • FIG. 11 is a schematic side view showing a configuration example of a hydrophobicity adjusting unit for performing the adhesion strengthening process and the entire surface exposure process.
  • the hydrophobicity adjusting unit 600 of FIG. 11 is provided, for example, in each of the upper heat processing unit 301 and the lower heat processing unit 302 of FIG. 3.
  • the hydrophobicity adjusting unit 600 of FIG. 11 includes a housing 601, a close contact reinforcing portion 610, a light emitting portion 620, and a local transport mechanism 630.
  • the adhesion strengthening unit 610 and the light emitting unit 620 are provided in the housing 601, respectively.
  • the adhesion strengthening portion 610 has the same configuration as the adhesion strengthening processing unit AHP of FIG. 6, includes the plate 205 and the cover 207, and includes other various components not shown.
  • the adhesion enhancing unit 610 supplies an adhesion enhancing agent to the substrate W in an airtight processing space.
  • the light emitting unit 620 has the same configuration as the light emitting unit 300 in FIG. 8 and emits vacuum ultraviolet light.
  • the local transport mechanism 630 has a configuration similar to that of the local transport mechanism 430 of FIG. 8 and includes a feed shaft 431, a feed shaft motor 432, a pair of guide rails 433, a local transport hand 434 and a pair of hand support members 435.
  • the local transfer hand 434 moves between a delivery position for delivering the substrate W to the adhesion strengthening unit 610 and an external position outside the adhesion strengthening unit 610. In FIG. 11, the local transport hand 434 is shown in an external position.
  • the transport mechanism 127 in FIG. 4 carries the substrate W into the housing 601 and delivers the substrate W to the local transport hand 434 located at the external position.
  • the local transfer hand 434 moves from the external position to the transfer position, and the substrate W is transferred from the local transfer hand 434 to the support pin 243 (see FIG. 6) not shown.
  • the local transfer hand 434 retracts to the outside position, the substrate W is mounted on the plate 205 by the support pin 243, and the cover 207 moves to the lower position.
  • the adhesion strengthening portion 610 the adhesion strengthening process is performed as in the case of the adhesion strengthening processing unit AHP of FIG.
  • the inert gas is supplied into the housing 601 by the inert gas supply unit (not shown).
  • the local transfer hand 434 moves to the delivery position, and the substrate W is transferred from the support pin 243 (see FIG. 6) (not shown) to the local transfer hand 434.
  • the local transport hand 434 moves from the delivery position to the external position while the light emitting unit 620 emits vacuum ultraviolet light downward.
  • vacuum ultraviolet rays are irradiated to the whole to-be-processed surface of the board
  • the illuminance of the vacuum ultraviolet ray is detected in advance by the illuminance sensor SE1 (see FIG. 8) not shown, and the moving speed of the substrate W is adjusted based on the detection result.
  • the adhesion enhancement process and the entire surface exposure process are sequentially performed in the common housing 601.
  • the adhesion strengthening processing unit AHP and the entire surface exposure processing unit OWE are separately provided, the adhesion strengthening processing and the entire surface exposure processing can be efficiently performed, and the throughput can be improved.
  • both the adhesion strengthening process and the entire surface exposure process can be performed in a small space, the substrate processing apparatus 100 can be miniaturized.
  • an adhesion enhancer made of HMDS is used as the organic material, but if it is possible to enhance the hydrophobicity of the substrate W, TMSDMA (trimethylsilyldimethylamine) or the like can be used. Adhesion enhancers made of other organic materials may be used.
  • the adhesion enhancement process and the entire surface exposure process are performed on the surface to be processed of the substrate W before the formation of the resist film, but the same process may be performed before the formation of other process films.
  • the adhesion enhancement process and the entire surface exposure process may be performed on the surface to be processed of the substrate W before the formation of the anti-reflection film for reducing the standing wave or the halation generated during the exposure process.
  • the treatment liquid for the antireflective film can be appropriately applied to a desired region of the treated surface of the substrate W while ensuring the adhesion between the treated surface of the substrate W and the antireflective film.
  • adhesion enhancement processing and overall exposure processing on the surface to be processed of the substrate W before formation of a processing film made of an induced self-assembly material for forming a fine pattern by DSA (Directed Self Assembly) technology May be performed.
  • the substrate processing apparatus 100 is an example of a substrate processing apparatus
  • the adhesion strengthening processing unit AHP is an example of a adhesion strengthening unit
  • the light emitting units 300 and 620 are an example of an irradiation unit.
  • the unit 129 is an example of a film forming unit
  • the cooling unit CP is an example of a cooling unit.
  • the case 601 is an example of a case
  • the plate 205 is an example of a placement unit
  • the local transfer hand 434 is an example of a transfer unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

基板処理装置は、基板(W)の一面に有機材料からなる密着強化剤を供給する密着強化部(610)と、密着強化部(610)により密着強化剤が供給された基板(W)の一面に紫外線を照射する照射部(620)と、照射部(620)により紫外線が照射された基板(W)の一面に処理液を供給することにより基板(W)の一面に処理膜を形成する成膜部とを備える。基板処理方法は、密着強化部(610)により基板(W)の一面に有機材料からなる密着強化剤を供給するステップと、前記密着強化部(610)により前記密着強化剤が供給された基板(W)の前記一面に紫外線を照射するステップと、前記照射部(620)により紫外線が照射された基板(W)の前記一面に処理液を供給することにより基板(W)の前記一面に処理膜を形成するステップとを含む。

Description

基板処理装置および基板処理方法
 本発明は、基板を処理する基板処理装置および基板処理方法に関する。
 半導体デバイス等の製造におけるリソグラフィ工程では、基板の被処理面上にレジスト液が塗布されることにより、基板の被処理面上にレジスト膜が形成される。この場合、基板の被処理面の親水性が高い状態でレジスト膜が形成されると、基板の被処理面とレジスト膜との密着性が低くなる。そのため、基板の被処理面からレジスト膜が剥離する可能性がある。そこで、レジスト膜の形成前に、基板の被処理面にHMDS(ヘキサメチルジシラザン)等の密着強化剤が供給されることにより、基板の被処理面の疎水性が高められる(例えば、特許文献1参照)。
特開2005-93952号公報
 一方、基板の被処理面の疎水性が高いと、レジスト液の塗布時に、被処理面上でレジスト液が凝集しやすい。そのため、レジスト液の種類によっては、被処理面の所望の領域を覆うようにレジスト液を塗布することができない場合がある。その結果、レジスト膜を適切に形成することができず、処理不良が発生する。
 本発明の目的は、基板の一面に処理膜を適切に形成することが可能な基板処理装置および基板処理方法を提供することである。
 (1)本発明の一局面に従う基板処理装置は、基板の一面に有機材料からなる密着強化剤を供給する密着強化部と、密着強化部により密着強化剤が供給された基板の一面に紫外線を照射する照射部と、照射部により紫外線が照射された基板の一面に処理液を供給することにより基板の一面に処理膜を形成する成膜部とを備える。
 この基板処理装置においては、密着強化剤の供給によって基板の一面の疎水性が高められた後、紫外線の照射により基板の一面の疎水性が調整される。それにより、基板に一面に処理液が塗布される際に、基板の一面における処理液に対する接触角が適切な範囲に制御される。それにより、基板の一面の所望の領域に適切に処理液を塗布することができかつ基板の一面と処理膜との密着性を確保することができる。したがって、基板の一面に処理膜を適切に形成することができる。
 (2)有機材料は、ヘキサメチルジシラザンを含んでもよい。この場合、コストの増大を抑制しつつ基板の一面の疎水性を高めることができる。
 (3)密着強化部は、基板の一面上のヒドロキシ基がトリメチルシロキシ基に変化するように密着強化剤を基板の一面に供給し、照射部は、基板の一面上のトリメチルシロキシ基がヒドロキシ基とヘキサメチルジロキサンとに分離するように、基板の一面に紫外線を照射してもよい。この場合、基板の一面の疎水性を適切に調整することができる。
 (4)処理液は、感光性材料を含んでもよい。この場合、基板の一面に感光性材料からなる感光性膜を適切に形成することができる。
 (5)照射部は、基板の一面における処理液に対する接触角が予め定められた値以下となるように、紫外線の照射量を調整してもよい。この場合、基板の一面上に処理液を適切に塗布することができるように、基板の一面の疎水性を所望の度合いに調整することができる。
 (6)基板処理装置は、照射部により紫外線が照射された後であって成膜部により処理膜が形成される前の基板を冷却する冷却部をさらに備えてもよい。この場合、基板の温度を処理膜の形成に適した温度に調整することができる。それにより、より良好に処理膜を形成することができる。
 (7)密着強化部は、基板が載置される載置部を含み、基板処理装置は、基板を保持しつつ載置部上に基板を受け渡すための受け渡し位置と受け渡し位置から離れた外部位置との間で移動可能に設けられた搬送部をさらに備え、密着強化部は、載置部に載置される基板に密着強化剤を供給し、照射部は、搬送部が基板を保持して受け渡し位置から外部位置に移動する際に搬送部により保持される基板に紫外線を照射してもよい。
 この場合、載置部に載置された基板に密着強化剤が供給され、載置部から搬送される基板に紫外線が照射される。それにより、基板に対する密着強化剤の供給および紫外線の照射を効率良く行うことができ、スループットを向上させることができる。
 (8)本発明の他の局面に従う基板処理方法は、密着強化部により基板の一面に有機材料からなる密着強化剤を供給するステップと、密着強化部により密着強化剤が供給された基板の一面に紫外線を照射するステップと、照射部により紫外線が照射された基板の一面に処理液を供給することにより基板の一面に処理膜を形成するステップとを含む。
 この基板処理方法によれば、密着強化剤の供給によって基板の一面の疎水性が高められた後、紫外線の照射により基板の一面の疎水性が調整される。それにより、基板に一面に処理液が塗布される際に、基板の一面における処理液に対する接触角が適切な範囲に制御される。それにより、基板の一面の所望の領域に適切に処理液を塗布することができかつ基板の一面と処理膜との密着性を確保することができる。したがって、基板の一面に処理膜を適切に形成することができる。
 (9)有機材料は、ヘキサメチルジシラザンを含んでもよい。この場合、コストの増大を抑制しつつ基板の一面の疎水性を高めることができる。
 (10)密着強化剤を供給するステップは、基板の一面上のヒドロキシ基をトリメチルシロキシ基に変化させることを含み、紫外線を照射するステップは、基板の一面上のトリメチルシロキシ基をヒドロキシ基とヘキサメチルジロキサンとに分離させることを含んでもよい。この場合、基板の一面の疎水性を適切に調整することができる。
 (11)処理液は、感光性材料を含んでもよい。この場合、基板の一面に感光性材料からなる感光性膜を適切に形成することができる。
 (12)紫外線を照射するステップは、基板の一面における処理液に対する接触角が予め定められた値以下となるように、紫外線の照射量を調整することを含んでもよい。この場合、基板の一面上に処理液を適切に塗布することができるように、基板の一面の疎水性を所望の度合いに調整することができる。
 (13)基板処理方法は、紫外線を照射するステップの後であって処理膜を形成するステップの前に基板を冷却するステップをさらに含んでもよい。この場合、基板の温度を処理膜の形成に適した温度に調整することができる。それにより、より良好に処理膜を形成することができる。
 (14)基板搬送方法は、搬送部により基板を保持しつつ密着強化部の載置部上に基板を受け渡すための受け渡し位置と受け渡し位置から離れた外部位置との間で搬送部を移動させるステップをさらに含み、密着強化剤を供給するステップは、載置部に載置される基板に密着強化剤を供給することを含み、紫外線を照射するステップは、搬送部が基板を保持して受け渡し位置から外部位置に移動する際に搬送部により保持される基板に紫外線を照射することを含んでもよい。
 本発明によれば、基板の一面に処理膜を適切に形成することができる。
図1は本発明の一実施の形態に係る基板処理装置の模式的平面図である。 図2は主として図1の塗布処理部、現像処理部および洗浄乾燥処理部を示す基板処理装置の模式的側面図である。 図3は主として図1の熱処理部および洗浄乾燥処理部を示す基板処理装置の模式的側面図である。 図4は主として図1の搬送部を示す模式的側面図である。 図5は密着強化処理および全面露光処理による基板の被処理面の疎水性の変化について説明するための図である。 図6は密着強化処理ユニットの具体的な構成例を示す模式的断面図である。 図7は全面露光処理ユニットの具体的な構成例を示す外観斜視図である。 図8は全面露光処理ユニットの具体的な構成例を示す模式的側面図である。 図9は基板処理装置の制御系の構成例について説明するための図である。 図10は図9の各制御部の動作を示すフローチャートである。 図11は疎水性調整ユニットの構成例を示す模式的側面図である。
 以下、本発明の実施の形態に係る基板処理装置について図面を参照しながら説明する。なお、以下の説明において、基板とは、半導体基板、液晶表示装置もしくは有機EL(Electro Luminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板または太陽電池用基板等をいう。
 [1]基板処理装置に構成
 図1は、本発明の一実施の形態に係る基板処理装置の模式的平面図である。図1および図2以降の図面には、位置関係を明確にするために互いに直交するX方向、Y方向およびZ方向を示す矢印を付している。X方向およびY方向は水平面内で互いに直交し、Z方向は鉛直方向に相当する。
 図1に示すように、基板処理装置100は、インデクサブロック11、第1の処理ブロック12、第2の処理ブロック13、洗浄乾燥処理ブロック14Aおよび搬入搬出ブロック14Bを備える。洗浄乾燥処理ブロック14Aおよび搬入搬出ブロック14Bにより、インターフェイスブロック14が構成される。搬入搬出ブロック14Bに隣接するように露光装置15が配置される。本例の露光装置15においては、液浸法により基板Wに露光処理が行われる。
 図1に示すように、インデクサブロック11は、複数のキャリア載置部111および搬送部112を含む。各キャリア載置部111には、複数の基板Wを多段に収納するキャリア113が載置される。搬送部112には、主制御部114および搬送機構115が設けられる。主制御部114は、基板処理装置100の種々の構成要素を制御する。
 第1の処理ブロック12は、塗布処理部121、搬送部122および熱処理部123を含む。塗布処理部121および熱処理部123は、搬送部122を挟んで対向するように設けられる。第2の処理ブロック13は、現像処理部131、搬送部132および熱処理部133を含む。現像処理部131および熱処理部133は、搬送部132を挟んで対向するように設けられる。
 洗浄乾燥処理ブロック14Aは、洗浄乾燥処理部161,162および搬送部163を含む。洗浄乾燥処理部161,162は、搬送部163を挟んで対向するように設けられる。搬送部163には、搬送機構141,142が設けられる。搬入搬出ブロック14Bには、搬送機構146が設けられる。露光装置15には、基板Wを搬入するための基板搬入部15aおよび基板Wを搬出するための基板搬出部15bが設けられる。
 図2は、主として図1の塗布処理部121、現像処理部131および洗浄乾燥処理部161を示す基板処理装置100の模式的側面図である。図2に示すように、塗布処理部121には、塗布処理室21,22,23,24が階層的に設けられる。塗布処理室21~24の各々には、塗布処理ユニット(スピンコータ)129が設けられる。現像処理部131には、現像処理室31,32,33,34が階層的に設けられる。現像処理室31~34の各々には、現像処理ユニット(スピンデベロッパ)139が設けられる。
 各塗布処理ユニット129は、基板Wを保持するスピンチャック25およびスピンチャック25の周囲を覆うように設けられるカップ27を備える。本実施の形態では、各塗布処理ユニット129に2組のスピンチャック25およびカップ27が設けられる。
 塗布処理ユニット129においては、図示しない駆動装置によりスピンチャック25が回転されるとともに、複数の処理液ノズル28のうちのいずれかの処理液ノズル28がノズル搬送機構29により基板Wの上方に移動され、その処理液ノズル28から処理液が吐出される。本例では、処理液として感光性材料からなるレジスト液が用いられる。基板Wの被処理面にレジスト液が塗布されることにより、基板W上にレジスト膜が形成される。
 現像処理ユニット139は、塗布処理ユニット129と同様に、スピンチャック35およびカップ37を備える。また、図1に示すように、現像処理ユニット139は、現像液を吐出する2つの現像ノズル38およびその現像ノズル38をX方向に移動させる移動機構39を備える。
 現像処理ユニット139においては、図示しない駆動装置によりスピンチャック35が回転されるとともに、一方の現像ノズル38がX方向に移動しつつ各基板Wに現像液を供給し、その後、他方の現像ノズル38が移動しつつ各基板Wに現像液を供給する。この場合、基板Wに現像液が供給されることにより、基板Wの現像処理が行われる。
 洗浄乾燥処理部161には、洗浄乾燥処理室81,82,83,84が階層的に設けられる。洗浄乾燥処理室81~84の各々には、洗浄乾燥処理ユニットSD1が設けられる。洗浄乾燥処理ユニットSD1においては、露光処理前の基板Wの洗浄および乾燥処理が行われる。
 図3は、主として図1の熱処理部123,133および洗浄乾燥処理部162を示す基板処理装置100の模式的側面図である。図3に示すように、熱処理部123は、上段熱処理部301および下段熱処理部302を有する。上段熱処理部301および下段熱処理部302の各々には、複数の加熱ユニットPHP、複数の密着強化処理ユニットAHP、複数の冷却ユニットCPおよび全面露光処理ユニットOWEが設けられる。
 加熱ユニットPHPにおいては、基板Wの加熱処理が行われる。冷却ユニットCPにおいては、基板Wの冷却処理が行われる。密着強化処理ユニットAHPにおいては、基板Wに密着強化処理が行われる。全面露光処理ユニットOWEにおいては、基板Wに全面露光処理が行われる。密着強化処理および全面露光処理の詳細については後述する。
 熱処理部133は、上段熱処理部303および下段熱処理部304を有する。上段熱処理部303および下段熱処理部304の各々には、冷却ユニットCP、複数の加熱ユニットPHPおよびエッジ露光部EEWが設けられる。
 エッジ露光部EEWにおいては、基板W上に形成されたレジスト膜の周縁部の一定幅の領域に露光処理(エッジ露光処理)が行われる。上段熱処理部303および下段熱処理部304において、洗浄乾燥処理ブロック14Aに隣り合うように設けられる加熱ユニットPHPは、洗浄乾燥処理ブロック14Aからの基板Wの搬入が可能に構成される。
 洗浄乾燥処理部162には、洗浄乾燥処理室91,92,93,94,95が階層的に設けられる。洗浄乾燥処理室91~95の各々には、洗浄乾燥処理ユニットSD2が設けられる。洗浄乾燥処理ユニットSD2においては、露光処理後の基板Wの洗浄および乾燥処理が行われる。
 図4は、主として図1の搬送部122,132,163を示す模式的側面図である。図4に示すように、搬送部122は、上段搬送室125および下段搬送室126を有する。搬送部132は、上段搬送室135および下段搬送室136を有する。上段搬送室125には搬送機構(搬送ロボット)127が設けられ、下段搬送室126には搬送機構128が設けられる。上段搬送室135には搬送機構137が設けられ、下段搬送室136には搬送機構138が設けられる。搬送機構127,128,137,138の各々は、基板Wを保持するためのハンドH1,H2を有する。搬送機構115は、ハンドH1,H2により基板Wを保持しつつその基板Wを搬送する。
 搬送部112と上段搬送室125との間には、基板載置部PASS1,PASS2が設けられ、搬送部112と下段搬送室126との間には、基板載置部PASS3,PASS4が設けられる。上段搬送室125と上段搬送室135との間には、基板載置部PASS5,PASS6が設けられ、下段搬送室126と下段搬送室136との間には、基板載置部PASS7,PASS8が設けられる。
 上段搬送室135と搬送部163との間には、載置兼バッファ部P-BF1が設けられ、下段搬送室136と搬送部163との間には載置兼バッファ部P-BF2が設けられる。搬送部163において搬入搬出ブロック14Bと隣接するように、基板載置部PASS9および複数の載置兼冷却部P-CPが設けられる。
 図1~図4を参照しながら基板処理装置100の動作を説明する。インデクサブロック11のキャリア載置部111(図1)に、未処理の基板Wが収容されたキャリア113が載置される。搬送機構115は、キャリア113から基板載置部PASS1,PASS3(図4)に未処理の基板Wを搬送する。また、搬送機構115は、基板載置部PASS2,PASS4(図4)に載置された処理済の基板Wをキャリア113に搬送する。
 第1の処理ブロック12において、搬送機構127(図4)は、基板載置部PASS1に載置された基板Wを密着強化処理ユニットAHP(図3)、全面露光処理ユニットOWE(図3)および冷却ユニットCP(図3)に順に搬送し、さらにその基板Wを塗布処理室21,22(図2)のいずれかに搬送する。また、搬送機構127は、塗布処理室21または塗布処理室22によりレジスト膜が形成された基板Wを、加熱ユニットPHP(図3)および基板載置部PASS5(図4)に順に搬送する。
 この場合、密着強化処理ユニットAHPにおいて、基板Wに密着強化処理が行われた後、全面露光処理ユニットOWEにおいて、基板Wに全面露光処理が行われる。続いて、冷却ユニットCPにおいて、反射防止膜の形成に適した温度に基板Wが冷却された後、塗布処理室21,22のいずれかにおいて、塗布処理ユニット129(図2)により基板W上にレジスト膜が形成される。その後、加熱ユニットPHPにおいて、基板Wの熱処理が行われ、その基板Wが基板載置部PASS5に載置される。
 また、搬送機構127は、基板載置部PASS6(図4)に載置された現像処理後の基板Wを基板載置部PASS2(図4)に搬送する。
 搬送機構128(図4)は、基板載置部PASS3に載置された基板Wを密着強化処理ユニットAHP(図3)、全面露光処理ユニットOWE(図3)および冷却ユニットCP(図3)に順に搬送し、さらにその基板Wを塗布処理室23,24(図2)のいずれかに搬送する。また、搬送機構128は、塗布処理室23または塗布処理室24によりレジスト膜が形成された基板Wを、加熱ユニットPHP(図3)および基板載置部PASS7(図4)に順に搬送する。
 また、搬送機構128(図4)は、基板載置部PASS8(図4)に載置された現像処理後の基板Wを基板載置部PASS4(図4)に搬送する。塗布処理室23,24(図2)および下段熱処理部302(図3)における基板Wの処理内容は、上記の塗布処理室21,22(図2)および上段熱処理部301(図3)における基板Wの処理内容と同様である。
 第2の処理ブロック13において、搬送機構137(図4)は、基板載置部PASS5に載置されたレジスト膜形成後の基板Wをエッジ露光部EEW(図3)および載置兼バッファ部P-BF1(図4)に順に搬送する。この場合、エッジ露光部EEWにおいて、基板Wにエッジ露光処理が行われた後、その基板Wが載置兼バッファ部P-BF1に載置される。
 また、搬送機構137(図4)は、洗浄乾燥処理ブロック14Aに隣接する加熱ユニットPHP(図3)から露光装置15による露光処理後でかつ熱処理後の基板Wを取り出す。搬送機構137は、その基板Wを冷却ユニットCP(図3)に搬送した後に現像処理室31,32(図2)のいずれかに搬送し、さらにその基板Wを加熱ユニットPHP(図3)および基板載置部PASS6(図4)に順に搬送する。
 この場合、冷却ユニットCPにおいて、現像処理に適した温度に基板Wが冷却された後、現像処理室31または現像処理室32において、現像処理ユニット139により基板Wの現像処理が行われる。その後、加熱ユニットPHPにおいて、基板Wの熱処理が行われ、その基板Wが基板載置部PASS6に載置される。
 搬送機構138(図4)は、基板載置部PASS7に載置されたレジスト膜形成後の基板Wをエッジ露光部EEW(図3)および載置兼バッファ部P-BF2(図4)に順に搬送する。また、搬送機構138(図4)は、洗浄乾燥処理ブロック14Aに隣接する加熱ユニットPHP(図3)から露光装置15による露光処理後でかつ熱処理後の基板Wを取り出す。搬送機構138は、その基板Wを冷却ユニットCP(図3)に搬送した後に現像処理室33,34(図2)のいずれかに搬送し、さらにその基板Wを加熱ユニットPHP(図3)および基板載置部PASS8(図4)に順に搬送する。現像処理室33,34および下段熱処理部304における基板Wの処理内容は、上記の現像処理室31,32(図2)および上段熱処理部303(図3)における基板Wの処理内容と同様である。
 洗浄乾燥処理ブロック14Aにおいて、搬送機構141(図1)は、載置兼バッファ部P-BF1,P-BF2(図4)に載置された基板Wを洗浄乾燥処理部161の洗浄乾燥処理ユニットSD1(図2)に搬送する。続いて、搬送機構141は、基板Wを洗浄乾燥処理ユニットSD1から載置兼冷却部P-CP(図4)に搬送する。この場合、洗浄乾燥処理ユニットSD1において、基板Wの洗浄および乾燥処理が行われた後、載置兼冷却部P-CPにおいて、露光装置15(図1)における露光処理に適した温度に基板Wが冷却される。
 搬送機構142(図1)は、基板載置部PASS9(図4)に載置された露光処理後の基板Wを洗浄乾燥処理部162の洗浄乾燥処理ユニットSD2(図3)に搬送する。また、搬送機構142は、洗浄および乾燥処理後の基板Wを洗浄乾燥処理ユニットSD2から上段熱処理部303の加熱ユニットPHP(図3)または下段熱処理部304の加熱ユニットPHP(図3)に搬送する。この場合、洗浄乾燥処理ユニットSD2において、基板Wの洗浄および乾燥処理が行われた後、加熱ユニットPHPにおいて、露光後ベーク(PEB)処理が行われる。
 搬入搬出ブロック14Bにおいて、搬送機構146(図1)は、載置兼冷却部P-CP(図4)に載置された露光処理前の基板Wを露光装置15の基板搬入部15a(図1)に搬送する。また、搬送機構146(図1)は、露光装置15の基板搬出部15b(図1)から露光処理後の基板Wを取り出し、その基板Wを基板載置部PASS9(図4)に搬送する。
 [2]密着強化処理および全面露光処理
 上記のように、本実施の形態では、密着強化処理ユニットAHPにおいて基板Wに密着強化処理が行われた後、全面露光処理ユニットOWEにおいて基板Wの全面露光処理が行われる。その後、塗布処理ユニット129により基板Wの被処理面上にレジスト膜が形成される。
 密着強化処理では、基板Wの被処理面に有機材料からなる密着強化剤が供給される。有機材料としては、例えばHMDS(ヘキサメチルジシラザン)が用いられる。この場合、基板Wの被処理面の疎水性が高まることにより、基板Wの被処理面とレジスト膜との密着性が高まる。
 一方、レジスト膜を適切に形成するためには、基板Wの被処理面の所望の領域(例えば被処理面の全体)を覆うようにレジスト液を塗布する必要がある。しかしながら、基板Wの被処理面の疎水性が高いほど、被処理面におけるレジスト液に対する接触角が大きくなる。レジスト液に対する接触角が大きすぎると、被処理面上でレジスト液が凝集することにより、レジスト液が塗布されるべき被処理面の部分にレジスト液が塗布されない現象(以下、塗布欠けと呼ぶ。)が生じることがある。特に、高い凝集性を有するレジスト液が用いられる場合に、このような塗布欠けが生じやすい。その場合、被処理面にレジスト膜を適切に形成することができない。
 そこで、本実施の形態では、密着強化処理後であってレジスト液の塗布前に、全面露光処理が行われる。全面露光処理では、基板Wの被処理面の全体に紫外線が照射される。これにより、基板Wの被処理面の疎水性を調整することができる。
 紫外線の照射によって基板Wの被処理面の疎水性が低下する理由は、次のように考えられる。図5は、密着強化処理および全面露光処理による基板Wの被処理面の疎水性の変化について説明するための図である。
 図5(a)には、HMDSの化学式が示される。図5(b)には、密着強化処理による基板Wの被処理面上での化学的変化が示される。図5(c)には、全面露光処理による基板Wの被処理面上での化学的変化が示される。本例において、基板Wは半導体基板である。
 図5(b)に示すように、密着強化処理前の基板Wの被処理面には多数のヒドロキシル基(-OH)が存在する。密着強化処理によって基板Wの被処理面にHMDSが供給されると、HMDSが一部のヒドロキシル基(-OH)と反応する。それにより、ヒドロキシル基(-OH)がトリメチルシロキシ基(-OSi(CH)に変化する。その結果、基板Wの被処理面の疎水性が高まる。
 図5(c)に示すように、全面露光処理によって基板Wの被処理面に紫外線が照射されると、雰囲気中の水蒸気(HO)が一部のトリメチルシロキシ基(-OSi(CH)と反応する。それにより、トリメチルシロキシ基(-OSi(CH)がヒドロキシル基(-OH)とヘキサメチルジロキサン(O[Si(CH)とに分離する。これにより、基板Wの被処理面の疎水性が低下する。
 密着強化処理では、密着強化剤の供給量がわずかであっても、基板Wの被処理面の疎水性は急激に高くなる。そのため、密着強化処理時に基板Wの被処理面の疎水性を所望の度合いに調整することは極めて難しい。一方、全面露光処理では、基板Wの被処理面への紫外線の照射量(被処理面の露光量)に依存して、基板Wの被処理面の疎水性が低下する。したがって、紫外線の照射量を調整することにより、基板Wの被処理面の疎水性を所望の度合いに調整することができる。この場合、基板Wの被処理面におけるレジスト液に対する接触角が予め定められた範囲となるように、紫外線の照射量が調整されることが好ましい。
 発明者は、密着強化処理のみを行った場合と密着強化処理および全面露光処理の両方を行った場合との各々において、基板Wの被処理面の疎水性の変化を調べた。ここでは、簡易的に、ベアウエハの被処理面における純水に対する接触角を計測した。その結果、密着強化処理のみを行った場合には、ベアウエハの被処理面における純水に対する接触角の平均値が約63度であった。一方、密着強化処理後にベアウエハの被処理面の露光量が100mJとなるように全面露光処理を行った場合、純水に対する接触角の平均値が約47度であった。また、密着強化処理後にベアウエハの被処理面の露光量が300mJとなるように全面露光処理を行った場合、純水に対する接触角の平均値が約31度であった。
 このように、密着強化処理後に全面露光処理を行うことにより、ベアウエハの被処理面における純水に対する接触角を低下させることができた。また、紫外線の照射量を調整することにより、ベアウエハの被処理面における純水に対する接触角を調整することができた。これらの結果から、密着強化処理後に全面露光処理を行うことにより、基板Wの被処理面の疎水化を抑制することができることがわかった。また、紫外線の照射量を調整することにより、基板Wの被処理面の疎水性を調整することができることがわかった。ベアウエハと純水との関係は基板Wとレジスト液との関係と同様であるので、密着強化処理後に全面露光処理を行うことにより、基板Wの被処理面におけるレジスト液に対する接触角を制御可能であることがわかった。
 [3]密着強化処理ユニット
 図6は、密着強化処理ユニットAHPの具体的な構成例を示す模式的断面図である。図6の密着強化処理ユニットAHPは、プレート205、カバー207、カバー昇降機構209、複数の支持ピン243および支持ピン昇降機構247を備える。
 プレート205の上面には、複数(例えば3つ)のプロキシミティボール241が設けられる。複数のプロキシミティボール241上に、基板Wが水平姿勢で載置される。カバー207は、プレート205上の基板Wの上方を覆うように設けられる。カバー207は、カバー昇降機構209に接続されている。カバー昇降機構209は、例えばエアシリンダであり、カバー207を上方位置と下方位置との間で昇降させる。図6においては、カバー207が下方位置にある。カバー207が下方位置にあるときに、カバー207とプレート205との間に気密な処理空間PSを形成される。
 カバー207には、ガス流路213が設けられる。ガス流路213には、ガス供給管261の一端が接続される。ガス供給管261の他端は、処理ガスおよび不活性ガスを選択的に供給可能なガス供給部(図示せず)が接続される。処理ガスは、密着強化剤を含む。不活性ガスは、例えば窒素ガスである。
 プレート205を上下方向に貫通するように、複数(例えば3つ)の貫通孔245が設けられる。複数(例えば3つ)の支持ピン243は、それぞれプレート205の貫通孔245に挿入される。プレート205の下方において、各支持ピン243の下端部が、支持ピン昇降機構247に接続されている。支持ピン昇降機構247は、複数の支持ピン243を昇降させる。各支持ピン243の上端部には、円板上の封止部243aが取り付けられている。プレート205の各貫通孔245の上端部には、封止部243aを収容可能な凹部245aが形成されている。封止部243aが凹部245aの底面と密着することにより、処理空間PSの気密性が確保される。
 プレート205の内部には、基板Wの温度を調整する温調部249が設けられている。温調部249は、例えばヒータである。温調部249は、プレート205の温度を調整することにより、プレート205に載置された基板Wに熱処理を施す。
 プレート205には、基板Wが載置される領域の外方で周方向に延びるように、排気スリット251が形成されている。また、排気スリット251にそれぞれ連通するように複数の排気ポート253が形成されている。複数の排気ポート253には、排気管255が接続されている。排気管255には、ポンプ256が介挿される。ポンプ256によって処理空間PS内の気体が排気管255を通して密着強化処理ユニットAHPから排出される。これにより、処理空間PSが減圧される。
 図6を参照しながら密着強化処理ユニットAHPにおける密着強化処理について説明する。ここでは、図3の上段熱処理部301に設けられる密着強化処理ユニットAHPの動作を説明する。
 まず、カバー207が上方位置にある状態で、図4の搬送機構127がプレート5の上方に基板Wを搬送する。複数の支持ピン243が上昇することにより、搬送機構127から複数の支持ピン243に基板が渡される。支持ピン243が下降すると、複数のプロキシミティボール241上に基板Wが載置される。
 カバー207が下方位置に移動することによって気密な処理空間PSが形成された後、ポンプ256が処理空間PSから気体を排出する。これにより、処理空間PSが減圧される。また、温調部249によってプレート205上の基板Wの温度が調整される。
 その状態で、ガス供給管261およびガス流路213を通して処理空間PSに処理ガスが供給される。これにより、基板Wの被処理面に密着強化剤が塗布される。基板Wの外方に流れた処理ガスは、排気管255を通して密着強化処理ユニットAHPから排出される。続いて、ガス供給管261およびガス流路213を通して処理空間PSに不活性ガスが供給される。これにより、処理空間PS内の処理ガスが不活性ガスで置換される。
 その後、ポンプ256の動作が停止され、カバー207が上方位置に移動する。また、複数の支持ピン243が上昇することにより、基板Wが複数のプロキシミティボール241から複数の支持ピン243に渡される。図4の搬送機構127は、複数の支持ピン243から基板Wを受け取り、密着強化処理ユニットAHPから搬出する。
 [4]全面露光処理ユニット
 図7および図8は、全面露光処理ユニットOWEの具体的な構成例を示す外観斜視図および模式的側面図である。図7に示すように、全面露光処理ユニットOWEは、光出射部300、基板移動部400および搬入搬出部500を備える。基板移動部400は略直方体形状を有するケーシング410を含む。以下の説明においては、図7に矢印で示すように、水平面に平行でかつケーシング410の一面から他面に向かう方向を前方と呼び、水平面に平行でかつケーシング410の他面から一面に向かう方向を後方と呼ぶ。また、水平面に平行でかつ前方および後方と直交する方向を幅方向と呼ぶ。
 光出射部300は、幅方向に延びるように設けられ、ケーシング410の中央上部に取り付けられる。光出射部300の後方に搬入搬出部500が設けられる。搬入搬出部500は、蓋部材510、蓋駆動部590、支持板591を含む。支持板591は、ケーシング410に水平姿勢で固定される。支持板591の下面に蓋駆動部590が取り付けられる。蓋駆動部590の下方に蓋部材510が設けられる。ケーシング410の後部の上面には開口部412が形成されている。蓋駆動部590は、蓋部材510を上下方向に移動させる。それにより、開口部412が閉塞されまたは開放される。
 図8に示すように、光出射部300は、ケーシング310、紫外線ランプ320および不活性ガス供給部330を含む。図8において、ケーシング310は一点鎖線で示される。ケーシング310内に、紫外線ランプ320および不活性ガス供給部330が収容される。
 紫外線ランプ320および不活性ガス供給部330は、それぞれ幅方向に延びるように設けられる。本例では、紫外線ランプ320として、波長172nmの真空紫外線を発生するキセノンエキシマランプが用いられる。なお、紫外線ランプ320は、波長230nm以下の真空紫外線を発生するランプであればよく、キセノンエキシマランプに代えて他のエキシマランプまたは重水素ランプ等が用いられてもよい。
 紫外線ランプ320の下面に出射面321が形成されている。紫外線ランプ320の点灯時には、出射面321から下方に向かって真空紫外線が出射される。紫外線ランプ320から出射される真空紫外線は、進行方向(本例では上下方向)に直交する帯状の断面を有する。
 不活性ガス供給部330には、下方に向けて複数の噴射孔(図示せず)が形成されている。基板Wの露光処理時に、不活性ガス供給部330は、複数の噴射孔を通して下方に向けて不活性ガスを噴射する。これにより、紫外線ランプ320の出射面321と基板Wとの間の空間における酸素濃度を低下させることができる。したがって、基板Wに照射される真空紫外線の減衰を抑制することができる。
 基板移動部400のケーシング410内には、受渡機構420、ローカル搬送機構430、不活性ガス供給部450および照度センサSE1が設けられる。受渡機構420は、複数の昇降ピン421、ピン支持部材422およびピン昇降駆動部423を含む。
 ピン支持部材422に上下方向に延びる複数の昇降ピン421がそれぞれ取り付けられる。ピン昇降駆動部423は、ピン支持部材422を上下方向に移動可能に支持する。複数の昇降ピン421は、開口部412の下方に配置される。ピン昇降駆動部423により、複数の昇降ピン421の上端部が、開口部412よりも上方の受渡位置と後述するローカル搬送ハンド434よりも下方の待機位置との間を移動する。
 ローカル搬送機構430は、送り軸431、送り軸モータ432、一対のガイドレール433、ローカル搬送ハンド434および一対のハンド支持部材435を含む。送り軸モータ432は、ケーシング410の前部に設けられる。送り軸モータ432から後方に延びるように送り軸431が設けられる。送り軸431は、例えばボールねじであり、送り軸モータ432の回転軸に接続される。
 一対のガイドレール433は、互いに平行に前後方向に延びるようにケーシング410の内部の下面に設けられる。一対のガイドレール433上に一対のハンド支持部材435がそれぞれ前後方向に移動可能に設けられる。図8においては、一方のガイドレール433および一方のハンド支持部材435のみが示される。一対のハンド支持部材435によりローカル搬送ハンド434が支持される。ローカル搬送ハンド434は、図示しない連結部材を介して送り軸431と連結される。ローカル搬送ハンド434には、受渡機構420の複数の昇降ピン421がそれぞれ挿入可能な複数の孔部(図示せず)が設けられる。ローカル搬送ハンド434上に基板Wが載置される。
 送り軸モータ432により送り軸431が回転される。それにより、ローカル搬送ハンド434が光出射部300よりも後方の後方位置と光出射部300よりも前方の前方位置との間で前後方向に移動する。なお、図8では、後方位置にあるローカル搬送ハンド434が実線で示され、前方位置にあるローカル搬送ハンド434が二点鎖線で示される。
 紫外線ランプ320から帯状の真空紫外線が出射された状態でローカル搬送ハンド43が前方位置から後方位置に一定の移動速度で移動することにより、基板Wの一端部から他端部に向かって真空紫外線が走査される。それにより、基板Wの上面の全ての領域に真空紫外線が照射される。
 不活性ガス供給部450は、幅方向に延びるようにケーシング410の後部に設けられる。不活性ガス供給部450には複数の噴射孔が形成されており、その複数の噴射孔から不活性ガスが噴射される。
 ケーシング410内には、さらに照度センサSE1が設けられる。照度センサSE1は、光出射部300の出射面321に対向する位置に設けられる。照度センサSE1は、フォトダイオード等の受光素子を含み、受光素子の受光面に照射される光の照度を検出する。ここで、照度とは、受光面の単位面積当たりに照射される光の仕事率である。照度の単位は、例えば「W/m」で表される。照度センサSE1は、図示しないセンサ駆動部により上方位置と下方位置との間で昇降される。照度センサSE1は、上方位置において、基板Wに照射されるべき真空紫外線の照度を検出する。
 露光量は基板Wの処理内容に基づいて基板Wごとまたは基板Wの種類ごとに予め定められている。予め定められた露光量は、基板Wの露光処理前に設定露光量として後述の全面露光制御部52に予め記憶される。設定露光量は、例えば、基板Wの被処理面におけるレジスト液に対する接触角が予め定められた範囲となる値である。
 上記のように、基板Wの一端部から他端部に帯状の真空紫外線が一定の速度で走査される。その場合、基板Wの移動速度を制御することにより基板Wの被処理面の露光量を調整することができる。例えば、基板Wの移動速度を高くすることにより露光量を減少させることができ、基板Wの移動速度を低くすることにより露光量を増加させることができる。
 本実施の形態では、基板Wの全面露光処理前に予め照度センサSE1により真空紫外線の照度が検出され、その検出結果に基づいて、基板Wの移動速度が調整される。これにより、基板Wの被処理面の露光量が設定露光量に調整される。
 図8を参照しながら全面露光処理ユニットOWEにおける全面露光処理について説明する。ここでは、図3の上段熱処理部301に設けられる全面露光処理ユニットOWEの動作を説明する。
 まず、ケーシング410の開口部412が蓋部材510によって閉塞された状態で、不活性ガス供給部450からケーシング410内に不活性ガスが供給される。それにより、ケーシング410内の酸素濃度が例えば1%よりも低く保持される。
 次に、蓋部材510が上昇されることにより開口部412が開放されるとともに、受渡機構420の複数の昇降ピン421が上昇される。それにより、複数の昇降ピン421の上端部が待機位置から受渡位置まで移動する。その状態で、図4の搬送機構127によって水平姿勢の基板Wが蓋部材510と開口部412との間に水平方向に挿入され、複数の昇降ピン421上に載置される。続いて、受渡機構420の複数の昇降ピン421が下降される。それにより、複数の昇降ピン421の上端部が受渡位置から待機位置まで移動し、水平姿勢の基板Wが複数の昇降ピン421からローカル搬送ハンド434に渡される。次いで、蓋部材510が下降されることにより開口部412が閉塞される。
 次に、ローカル搬送ハンド434が後方位置から前方位置に移動される。このとき、紫外線ランプ320は消灯状態にある。そのため、基板Wは露光されない。次に、紫外線ランプ320が消灯状態から点灯状態に切り替えられる。また、不活性ガス供給部330からケーシング410内に不活性ガスが供給される。
 続いて、ローカル搬送ハンド434が前方位置から後方位置に移動される。このときの移動速度は、予め照度センサSE1により検出された真空紫外線の照度に基づいて調整される。それにより、上記のように、基板Wの被処理面が設定露光量で露光される。その後、紫外線ランプ320が点灯状態から消灯状態に切り替えられる。また、不活性ガス供給部330による不活性ガスの供給が停止される。
 次に、蓋部材510が上昇されることにより開口部412が開放されるとともに、受渡機構420の複数の昇降ピン421が上昇される。それにより、ローカル搬送ハンド434から複数の昇降ピン421に基板Wが渡され、開口部412の上方に基板Wが移動される。その状態で、図4の搬送機構127によって基板Wが受け取られ、全面露光処理ユニットOWEから搬出される。
 [5]制御系
 図9は、基板処理装置100の制御系の構成例について説明するための図である。図9に示すように、基板処理装置100は、主制御部114に加えて、密着強化制御部51、全面露光制御部52、成膜制御部53、現像制御部54、エッジ露光制御部55、洗浄乾燥制御部56、加熱冷却制御部57および搬送制御部58を含む。主制御部114は、密着強化制御部51、全面露光制御部52、成膜制御部53、現像制御部54、エッジ露光制御部55、洗浄乾燥制御部56、加熱冷却制御部57および搬送制御部58を制御することにより、基板処理装置100の動作を統括的に制御する。
 密着強化制御部51は、密着強化処理ユニット群G1の動作を制御する。密着強化処理ユニット群G1は、図3の複数の密着強化処理ユニットAHPを含む。全面露光制御部52は、全面露光処理ユニット群G2の動作を制御する。全面露光処理ユニット群G2は、図3の複数の全面露光処理ユニットOWEを含む。成膜制御部53は、塗布処理ユニット群G3の動作を制御する。塗布処理ユニット群G3は、図2の複数の塗布処理ユニット129を含む。現像制御部54は、現像処理ユニット群G4の動作を制御する。現像処理ユニット群G4は、図2の複数の現像処理ユニット139を含む。
 エッジ露光制御部55は、エッジ露光部群G5の動作を制御する。エッジ露光部群G5は、図3の複数のエッジ露光部EEWを含む。洗浄乾燥制御部56は、洗浄乾燥処理ユニット群G6の動作を制御する。洗浄乾燥処理ユニット群G6は、図2の複数の洗浄乾燥処理ユニットSD1および図3の複数の洗浄乾燥処理ユニットSD2を含む。加熱冷却制御部57は、熱処理ユニット群G7の動作を制御する。熱処理ユニット群G7は、図3の複数の加熱ユニットPHPおよび複数の冷却ユニットCPならびに図4の複数の載置兼冷却部P-CPを含む。搬送制御部58は、搬送機構群G8の動作を制御する。搬送機構群G8は、図1の搬送機構115,142,141,146および図4の搬送機構127,128,137,138を含む。
 なお、図9の例では、種々の処理内容に対応するように複数の制御部が設けられるが、基板処理装置100が複数の処理領域に区画され、その処理領域毎に制御部が設けられてもよい。また、主制御部114のみによって基板処理装置100全体の動作が制御されてもよい。
 図10は、図9の各制御部の動作を示すフローチャートである。ここでは、図4の搬送機構127,137により搬送される1枚の基板Wに対する動作を説明する。図4の搬送機構128,138により搬送される基板Wに対しても同様の動作が行われる。
 まず、搬送制御部58が図4の搬送機構115,127を制御して、キャリア113内の未処理の基板Wを図3の上段熱処理部301のいずれかの密着強化処理ユニットAHPに搬送する。密着強化制御部51は、基板Wが搬送された密着強化処理ユニットAHPを制御して、基板Wの被処理面に密着強化剤を供給する密着強化処理を行う(ステップS1)。
 次に、搬送制御部58が図4の搬送機構127を制御して、密着強化処理後の基板Wを密着強化処理ユニットAHPから図3の上段熱処理部301の全面露光処理ユニットOWEに搬送する。全面露光制御部52は、基板Wが搬送された全面露光処理ユニットOWEを制御して、基板Wの被処理面に紫外線を照射する全面露光処理を行う(ステップS2)。
 次に、搬送制御部58は、搬送機構127を制御して、全面露光処理後の基板Wを全面露光処理ユニットOWEから図3の上段熱処理部301のいずれかの冷却ユニットCPに搬送する。加熱冷却制御部57は、基板Wが搬送された冷却ユニットCPを制御して、基板Wを冷却する(ステップS3)。
 次に、搬送制御部58は、搬送機構127を制御して、冷却後の基板Wを冷却ユニットCPから図2の塗布処理室21,22のいずれかの塗布処理ユニット129に搬送する。成膜制御部53は、基板Wが搬送された塗布処理ユニット129を制御し、基板Wの被処理面上にレジスト液を塗布することによりレジスト膜を形成する(ステップS4)。
 次に、搬送制御部58は、搬送機構127を制御して、レジスト膜が形成された基板Wを塗布処理ユニット129から図3の上段熱処理部301のいずれかの加熱ユニットPHPに搬送する。加熱冷却制御部57は、基板Wが搬送された加熱ユニットPHPを制御して、基板Wを加熱する(ステップS5)。
 次に、搬送制御部58は、搬送機構127,137を制御して、加熱後の基板Wを加熱ユニットPHPから図3の上段熱処理部303のエッジ露光部EEWに搬送する。エッジ露光制御部55は、基板Wが搬送されたエッジ露光部EEWを制御して、基板Wにエッジ露光処理を行う(ステップS6)。
 次に、搬送制御部58は、搬送機構137,141を制御して、エッジ露光処理後の基板Wをエッジ露光部EEWから図2の洗浄乾燥処理部161のいずれかの洗浄乾燥処理ユニットSD1に搬送する。洗浄乾燥制御部56は、基板Wが搬送された洗浄乾燥処理ユニットSD1を制御して、基板Wに洗浄および乾燥処理を行う(ステップS7)。
 次に、搬送制御部58は、搬送機構141を制御して、洗浄および乾燥処理後の基板Wを洗浄乾燥処理ユニットSD1から図4のいずれかの載置兼冷却部P-CPに搬送する。加熱冷却制御部57は、基板Wが搬送された載置兼冷却部P-CPを制御して、基板Wを冷却する(ステップS8)。
 次に、搬送制御部58は、搬送機構146を制御して、冷却後の基板Wを載置兼冷却部P-CPから図1の露光装置15に搬入する(ステップS9)。露光装置15において基板Wに露光処理が行われた後、搬送制御部58は、搬送機構146,142を制御して、露光処理後の基板Wを露光装置15から搬出し(ステップS10)、その基板Wを図3の洗浄乾燥処理部162のいずれかの洗浄乾燥処理ユニットSD2に搬送する。洗浄乾燥制御部56は、基板Wが搬送された洗浄乾燥処理ユニットSD2を制御して、基板Wに洗浄および乾燥処理を行う(ステップS11)。
 次に、搬送制御部58は、搬送機構142を制御して、洗浄および乾燥処理後の基板Wを洗浄乾燥処理ユニットSD2から図3の上段熱処理部303のいずれかの加熱ユニットPHPに搬送する。加熱冷却制御部57は、基板Wが搬送された加熱ユニットPHPを制御して、基板WにPEB処理を行う(ステップS12)。
 次に、搬送制御部58は、搬送機構137を制御して、PEB処理後の基板Wを図3の上段熱処理部303のいずれかの冷却ユニットCPに搬送する。加熱冷却制御部57は、基板Wが搬送された冷却ユニットCPを制御して、基板Wを冷却する(ステップS13)。
 次に、搬送制御部58は、搬送機構137を制御して、冷却後の基板Wを図2の現像処理室31,32のいずれかの現像処理ユニット139に搬送する。現像制御部54は、基板Wが搬送された現像処理ユニット139を制御して、基板Wに現像処理を行う(ステップS14)。
 次に、搬送制御部58は、搬送機構137,127,115を制御して、現像処理後の基板Wを現像処理ユニット139から図1のキャリア113に戻す。これにより、基板Wの一例の処理が終了する。
 [6]効果
 上記実施の形態に係る基板処理装置100においては、密着強化処理ユニットAHPにおいて基板Wの被処理面に有機材料からなる密着強化剤が供給された後、全面露光処理ユニットOWEにおいて基板Wの被処理面に紫外線が照射される。この場合、密着強化剤の供給によって基板Wの被処理面の疎水性が高められた後、紫外線の照射により基板Wの被処理面の疎水性が調整される。それにより、その後のレジスト液の塗布の際に、基板Wの被処理面におけるレジスト液に対する接触角が適切な範囲に制御される。したがって、塗布欠けの発生を防止することができ、基板Wの被処理面の所望の領域に適切にレジスト液を塗布することができる。また、基板Wの被処理面とレジスト膜との密着性を確保することができる。その結果、基板Wの被処理面にレジスト膜を適切に形成することができる。
 また、本実施の形態では、密着強化処理によって基板Wの被処理面上のヒドロキシ基がトリメチルシロキシ基に変化し、その後の全面露光処理によって基板Wの一面上のトリメチルシロキシ基がヒドロキシ基とヘキサメチルジロキサンに分離される。これにより、基板Wの被処理面の疎水性を適切に調整することができる。
 [7]密着強化処理ユニットおよび全面露光処理ユニットの他の例
 上記実施の形態では、互いに別体の密着強化処理ユニットAHPおよび全面露光処理ユニットOWEにおいて密着強化処理および全面露光処理がそれぞれ行われるが、一体のユニットにおいて密着強化処理および全面露光処理の両方が行われてもよい。図11は、密着強化処理および全面露光処理を行うための疎水性調整ユニットの構成例を示す模式的側面図である。図11の疎水性調整ユニット600は、例えば、図3の上段熱処理部301および下段熱処理部302の各々に設けられる。
 図11の疎水性調整ユニット600は、筐体601、密着強化部610、光出射部620およびローカル搬送機構630を含む。密着強化部610および光出射部620は、それぞれ筐体601内に設けられる。密着強化部610は、図6の密着強化処理ユニットAHPと同様の構成を有し、プレート205およびカバー207を含むとともに、図示しない他の種々の構成要素を備える。密着強化部610は、気密な処理空間内で基板Wに密着強化剤を供給する。
 光出射部620は、図8の光出射部300と同様の構成を有し、真空紫外線を出射する。ローカル搬送機構630は、図8のローカル搬送機構430と同様の構成を有し、送り軸431、送り軸モータ432、一対のガイドレール433、ローカル搬送ハンド434および一対のハンド支持部材435を含む。ローカル搬送ハンド434は、密着強化部610に基板Wを受け渡すための受け渡し位置と、密着強化部610の外部の外部位置との間で移動する。図11においては、外部位置にあるローカル搬送ハンド434が示される。
 図11の疎水性調整ユニット600における密着強化処理および全面露光処理について説明する。ここでは、図3の上段熱処理部301に設けられる疎水性調整ユニット600の動作を説明する。まず、図4の搬送機構127が、筐体601内に基板Wを搬入し、外部位置にあるローカル搬送ハンド434に基板Wを渡す。ローカル搬送ハンド434が外部位置から受け渡し位置に移動し、ローカル搬送ハンド434から図示しない支持ピン243(図6参照)に基板Wが渡される。続いて、ローカル搬送ハンド434が外部位置に退避し、支持ピン243によってプレート205上に基板Wが載置されるとともに、カバー207が下方位置に移動する。その後、密着強化部610において、図6の密着強化処理ユニットAHPと同様に密着強化処理が行われる。
 密着強化処理が終了すると、図示しない不活性ガス供給部により筐体601内に不活性ガスが供給される。続いて、ローカル搬送ハンド434が受け渡し位置に移動し、図示しない支持ピン243(図6参照)からローカル搬送ハンド434に基板Wが渡される。続いて、光出射部620が下方に向けて真空紫外線を出射しながら、ローカル搬送ハンド434が受け渡し位置から外部位置に移動する。これにより、密着強化剤が供給された基板Wの被処理面の全体に真空紫外線が照射される。この場合、図示しない照度センサSE1(図8参照)によって予め真空紫外線の照度が検出され、その検出結果に基づいて、基板Wの移動速度が調整されることが好ましい。
 このように、図11の疎水性調整ユニット600においては、共通の筐体601内で、密着性強化処理および全面露光処理が順に行われる。これにより、密着強化処理ユニットAHPおよび全面露光処理ユニットOWEが別個に設けられる場合に比べて、密着強化処理および全面露光処理を効率良く行うことができ、スループットを向上させることができる。また、小さいスペースで密着強化処理および全面露光処理の両方を実施可能であるので、基板処理装置100の小型化が可能となる。
 [8]他の実施の形態
 上記実施の形態では、有機材料としてHMDSからなる密着強化剤が用いられるが、基板Wの疎水性を高めることが可能であれば、TMSDMA(トリメチルシリルジメチルアミン)等の他の有機材料からなる密着強化剤が用いられてもよい。
 上記実施の形態では、レジスト膜の形成前に基板Wの被処理面に密着強化処理および全面露光処理が行われるが、他の処理膜の形成前に同様の処理が行われてもよい。例えば、露光処理時に発生する定在波またはハレーションを減少させるための反射防止膜の形成前に、基板Wの被処理面に密着強化処理および全面露光処理が行われてもよい。この場合、基板Wの被処理面と反射防止膜との密着性を確保しつつ基板Wの被処理面の所望の領域に反射防止膜用の処理液を適切に塗布することができる。あるいは、DSA(Directed Self Assembly;誘導自己組織化)技術によって微細パターンを形成するための誘導自己組織化材料からなる処理膜の形成前に、基板Wの被処理面に密着強化処理および全面露光処理が行われてもよい。
 [9]請求項の各構成要素と実施の形態の各要素との対応関係
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
 上記の実施の形態では、基板処理装置100が基板処理装置の例であり、密着強化処理ユニットAHPが密着強化部の例であり、光出射部300,620が照射部の例であり、塗布処理ユニット129が成膜部の例であり、冷却ユニットCPが冷却部の例である。また、筐体601が筐体の例であり、プレート205が載置部の例であり、ローカル搬送ハンド434が搬送部の例である。
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。

Claims (14)

  1. 基板の一面に有機材料からなる密着強化剤を供給する密着強化部と、
     前記密着強化部により前記密着強化剤が供給された基板の前記一面に紫外線を照射する照射部と、
     前記照射部により紫外線が照射された基板の前記一面に処理液を供給することにより基板の前記一面に処理膜を形成する成膜部とを備えた、基板処理装置。
  2. 前記有機材料は、ヘキサメチルジシラザンを含む、請求項1記載の基板処理装置。
  3. 前記密着強化部は、基板の前記一面上のヒドロキシ基がトリメチルシロキシ基に変化するように前記密着強化剤を基板の前記一面に供給し、
     前記照射部は、基板の前記一面上のトリメチルシロキシ基がヒドロキシ基とヘキサメチルジロキサンとに分離するように、基板の前記一面に紫外線を照射する、請求項1または2記載の基板処理装置。
  4. 前記処理液は、感光性材料を含む、請求項1~3のいずれか一項に記載の基板処理装置。
  5. 前記照射部は、基板の前記一面における前記処理液に対する接触角が予め定められた値以下となるように、紫外線の照射量を調整する、請求項1~4のいずれか一項に記載の基板処理装置。
  6. 前記照射部により紫外線が照射された後であって前記成膜部により前記処理膜が形成される前の基板を冷却する冷却部をさらに備える、請求項1~5のいずれか一項に記載の基板処理装置。
  7. 前記密着強化部は、基板が載置される載置部を含み、
     基板を保持しつつ前記載置部上に基板を受け渡すための受け渡し位置と前記受け渡し位置から離れた外部位置との間で移動可能に設けられた搬送部をさらに備え、
     前記密着強化部は、前記載置部に載置される基板に密着強化剤を供給し、
     前記照射部は、前記搬送部が基板を保持して前記受け渡し位置から前記外部位置に移動する際に前記搬送部により保持される基板に紫外線を照射する、請求項1~6のいずれか一項に記載の基板処理装置。
  8. 密着強化部により基板の一面に有機材料からなる密着強化剤を供給するステップと、
     前記密着強化部により前記密着強化剤が供給された基板の前記一面に紫外線を照射するステップと、
     前記照射部により紫外線が照射された基板の前記一面に処理液を供給することにより基板の前記一面に処理膜を形成するステップとを含む、基板処理方法。
  9. 前記有機材料は、ヘキサメチルジシラザンを含む、請求項8記載の基板処理方法。
  10. 前記密着強化剤を供給するステップは、基板の前記一面上のヒドロキシ基をトリメチルシロキシ基に変化させることを含み、
     前記紫外線を照射するステップは、基板の前記一面上のトリメチルシロキシ基をヒドロキシ基とヘキサメチルジロキサンとに分離させることを含む、請求項8または9記載の基板処理方法。
  11. 前記処理液は、感光性材料を含む、請求項8~10のいずれか一項に記載の基板処理方法。
  12. 前記紫外線を照射するステップは、基板の前記一面における前記処理液に対する接触角が予め定められた値以下となるように、紫外線の照射量を調整することを含む、請求項8~11のいずれか一項に記載の基板処理方法。
  13. 前記紫外線を照射するステップの後であって前記処理膜を形成するステップの前に基板を冷却するステップをさらに含む、請求項8~12のいずれか一項に記載の基板処理方法。
  14. 搬送部により基板を保持しつつ前記密着強化部の載置部上に基板を受け渡すための受け渡し位置と前記受け渡し位置から離れた外部位置との間で前記搬送部を移動させるステップをさらに含み、
     前記密着強化剤を供給するステップは、前記載置部に載置される基板に密着強化剤を供給することを含み、
     前記紫外線を照射するステップは、前記搬送部が基板を保持して前記受け渡し位置から前記外部位置に移動する際に前記搬送部により保持される基板に紫外線を照射することを含む、請求項8~13のいずれか一項に記載の基板処理方法。
PCT/JP2018/028339 2017-09-05 2018-07-27 基板処理装置および基板処理方法 WO2019049551A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207002921A KR102385847B1 (ko) 2017-09-05 2018-07-27 기판 처리 장치 및 기판 처리 방법
CN201880038561.7A CN110770879B (zh) 2017-09-05 2018-07-27 基板处理装置以及基板处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017170526A JP7009122B2 (ja) 2017-09-05 2017-09-05 基板処理装置および基板処理方法
JP2017-170526 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049551A1 true WO2019049551A1 (ja) 2019-03-14

Family

ID=65633927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028339 WO2019049551A1 (ja) 2017-09-05 2018-07-27 基板処理装置および基板処理方法

Country Status (5)

Country Link
JP (1) JP7009122B2 (ja)
KR (1) KR102385847B1 (ja)
CN (1) CN110770879B (ja)
TW (2) TWI716282B (ja)
WO (1) WO2019049551A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255736A (ja) * 1995-03-16 1996-10-01 Hitachi Ltd パターン形成方法およびレジスト塗布装置
JP2004319559A (ja) * 2003-04-11 2004-11-11 Tokyo Electron Ltd 基板処理方法及び基板処理装置
JP2006093693A (ja) * 1996-03-18 2006-04-06 Fujitsu Ltd 微細加工方法、それにより製造された半導体素子及び磁気ヘッド
JP2011066113A (ja) * 2009-09-16 2011-03-31 Tokyo Electron Ltd 疎水化処理装置、疎水化処理方法、プログラム及びコンピュータ記憶媒体
JP2011259001A (ja) * 2011-10-04 2011-12-22 Dainippon Printing Co Ltd パターン形成体の製造方法、機能性素子の製造方法および半導体素子の製造方法
JP2012059956A (ja) * 2010-09-09 2012-03-22 Tokyo Electron Ltd レジストパターン形成方法及びその装置
JP2012227318A (ja) * 2011-04-19 2012-11-15 Tokyo Electron Ltd 基板処理方法、プログラム、コンピュータ記憶媒体、基板処理装置及びインプリントシステム
WO2018062362A1 (ja) * 2016-09-30 2018-04-05 東京エレクトロン株式会社 基板処理方法および基板処理装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054159B2 (ja) * 2000-03-08 2008-02-27 東京エレクトロン株式会社 基板処理方法及びその装置
JP2005093952A (ja) 2003-09-19 2005-04-07 Dainippon Screen Mfg Co Ltd 密着強化装置および密着強化方法
TWI355970B (en) * 2007-01-19 2012-01-11 Tokyo Electron Ltd Coating treatment apparatus, substrate treatment s
JP5516931B2 (ja) * 2009-03-12 2014-06-11 ルネサスエレクトロニクス株式会社 レジストパターン形成方法
JP5099054B2 (ja) * 2009-03-13 2012-12-12 東京エレクトロン株式会社 基板処理装置、基板処理方法、塗布、現像装置、塗布、現像方法及び記憶媒体
JP5926753B2 (ja) * 2014-02-26 2016-05-25 東京エレクトロン株式会社 基板処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム
US10437153B2 (en) * 2014-10-23 2019-10-08 SCREEN Holdings Co., Ltd. Heat treatment method and heat treatment apparatus
JP6543064B2 (ja) * 2015-03-25 2019-07-10 株式会社Screenホールディングス 露光装置、基板処理装置、基板の露光方法および基板処理方法
JP6495707B2 (ja) * 2015-03-25 2019-04-03 株式会社Screenホールディングス 露光装置および基板処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255736A (ja) * 1995-03-16 1996-10-01 Hitachi Ltd パターン形成方法およびレジスト塗布装置
JP2006093693A (ja) * 1996-03-18 2006-04-06 Fujitsu Ltd 微細加工方法、それにより製造された半導体素子及び磁気ヘッド
JP2004319559A (ja) * 2003-04-11 2004-11-11 Tokyo Electron Ltd 基板処理方法及び基板処理装置
JP2011066113A (ja) * 2009-09-16 2011-03-31 Tokyo Electron Ltd 疎水化処理装置、疎水化処理方法、プログラム及びコンピュータ記憶媒体
JP2012059956A (ja) * 2010-09-09 2012-03-22 Tokyo Electron Ltd レジストパターン形成方法及びその装置
JP2012227318A (ja) * 2011-04-19 2012-11-15 Tokyo Electron Ltd 基板処理方法、プログラム、コンピュータ記憶媒体、基板処理装置及びインプリントシステム
JP2011259001A (ja) * 2011-10-04 2011-12-22 Dainippon Printing Co Ltd パターン形成体の製造方法、機能性素子の製造方法および半導体素子の製造方法
WO2018062362A1 (ja) * 2016-09-30 2018-04-05 東京エレクトロン株式会社 基板処理方法および基板処理装置

Also Published As

Publication number Publication date
JP2019047040A (ja) 2019-03-22
JP7009122B2 (ja) 2022-01-25
KR102385847B1 (ko) 2022-04-12
CN110770879A (zh) 2020-02-07
TWI688000B (zh) 2020-03-11
TW202025295A (zh) 2020-07-01
KR20200019750A (ko) 2020-02-24
TWI716282B (zh) 2021-01-11
CN110770879B (zh) 2023-09-19
TW201916169A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6543064B2 (ja) 露光装置、基板処理装置、基板の露光方法および基板処理方法
US6620251B2 (en) Substrate processing method and substrate processing apparatus
JP4704221B2 (ja) 基板処理装置および基板処理方法
KR101908143B1 (ko) 기판 처리 장치 및 기판 처리 방법
US11400480B2 (en) Substrate processing apparatus and substrate processing method
KR20020010442A (ko) 기판처리장치 및 기판처리방법
KR101846652B1 (ko) 노광 장치 및 기판 처리 장치
JP2008177468A (ja) 基板の処理方法、塗布処理装置及び基板処理システム
US6875281B2 (en) Method and system for coating and developing
KR20160023562A (ko) 소수화 처리 방법, 소수화 처리 장치 및 소수화 처리용 기록 매체
JP2002043268A (ja) 基板処理装置
WO2019049551A1 (ja) 基板処理装置および基板処理方法
JP5025546B2 (ja) 基板処理方法及び基板処理装置
JP5014208B2 (ja) 基板処理方法及び基板処理装置
KR100873265B1 (ko) 기판처리장치 및 막형성장치
US20240192611A1 (en) Apparatus for treating substrate and method for treating a substrate
US20230176485A1 (en) Apparatus for treating substrate and method for treating substrate
JP3772325B2 (ja) 基板処理装置及び基板処理方法
WO2023276723A1 (ja) 基板処理装置及び基板処理方法
JP2009176862A (ja) 基板処理装置
KR20150076808A (ko) 기판반송유닛
KR20200052079A (ko) 기판 처리 장치 및 기판 처리 방법
JP2008198970A (ja) 塗布処理方法、プログラム及びコンピュータ記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207002921

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855045

Country of ref document: EP

Kind code of ref document: A1