WO2019044717A1 - モータの制御装置及び記憶媒体 - Google Patents

モータの制御装置及び記憶媒体 Download PDF

Info

Publication number
WO2019044717A1
WO2019044717A1 PCT/JP2018/031406 JP2018031406W WO2019044717A1 WO 2019044717 A1 WO2019044717 A1 WO 2019044717A1 JP 2018031406 W JP2018031406 W JP 2018031406W WO 2019044717 A1 WO2019044717 A1 WO 2019044717A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficient
inverter
output voltage
motor
difference
Prior art date
Application number
PCT/JP2018/031406
Other languages
English (en)
French (fr)
Inventor
佐藤 圭
Original Assignee
日本電産トーソク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産トーソク株式会社 filed Critical 日本電産トーソク株式会社
Priority to US16/632,581 priority Critical patent/US10992241B2/en
Priority to JP2019539462A priority patent/JP6841336B2/ja
Priority to CN201880054376.7A priority patent/CN111034025B/zh
Publication of WO2019044717A1 publication Critical patent/WO2019044717A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations

Definitions

  • the present invention relates to a control device of a motor and a storage medium.
  • the rotation speed of a motor such as a brushless motor is controlled by the control device to a target rotation speed.
  • the rotational speed of the motor is controlled by changing the phase difference between the rotor position of the motor and the drive current supplied to the motor (see, for example, Patent Document 1).
  • Adjustment of the output voltage of the inverter is performed by, for example, PID control.
  • PID control using the respective coefficients of P (proportional), I (differential) and D (integral), the control value of the output voltage from the difference between the target rotational speed and the current rotational speed, for example, a pulse signal for driving an inverter Calculate the duty ratio etc. of
  • the response of the motor is likely to fluctuate due to the input voltage of the inverter.
  • the number of revolutions of the motor fluctuates according to the output voltage of the inverter
  • the speed at which the output voltage changes after control fluctuates according to the input voltage of the inverter. For example, even if the duty ratio of the pulse signal is the same, the lower the input voltage, the lower the output voltage, and the longer it takes to stabilize at the target output voltage. Therefore, under the environment where the input voltage fluctuates, the response time of the motor with respect to the control of the output voltage fluctuates.
  • An object of the present invention is to stabilize responsiveness to rotational control of a motor.
  • a first exemplary invention of the present application is a control device of a motor to which a drive current from a power supply is supplied by an inverter, and a difference calculation unit that calculates a difference between a current rotation number of the motor and a target rotation number.
  • a coefficient correction unit which multiplies each of the initially set proportional coefficient and integral coefficient by the correction coefficient as a coefficient used to determine the control value of the output voltage of the inverter, and outputs the corrected proportional coefficient and integral coefficient A proportional term obtained by multiplying the difference calculated by the difference calculating unit by the proportional coefficient after the correction, and at least one term of an integral term obtained by integrating the difference by the integral coefficient after the correction
  • An output voltage determination unit that determines any one of the proportional term and the integral term or the sum of two terms as the control value of the output voltage, and the control value of the output voltage determined by the output voltage determination unit
  • a signal generation unit that generates a control signal to be output to the inverter, wherein the correction coefficient is a value of a ratio of a reference voltage to a current input voltage of the inverter, and the reference voltage is set to the initial value It is the input voltage of the said inverter used or assumed at the time of determination of a proportionality factor and an integral coefficient.
  • FIG. 1 shows a configuration of a control device 110 of a motor 20 according to an embodiment of the present invention.
  • the control device 110 of the motor 20 is used as part of the configuration of the drive device 100 of the motor 20.
  • Drive device 100 includes rotational position detection unit 101, inverter 102, and inverter drive unit 103 in addition to control device 110.
  • the motor 20 is a three-phase brushless motor.
  • the coils are delta-connected, but may be star-connected.
  • the three phases of the motor 20 are represented as a U phase, a V phase and a W phase, respectively.
  • the rotational position detection unit 101 detects the rotational position of the motor 20.
  • a magnetic sensor such as a Hall element or a magnetoresistive element, an optical encoder, a resolver, or the like can be used.
  • three Hall elements disposed between the coils of the motor 20 are used as the rotational position detection unit 101.
  • Each Hall element detects a magnetic field and outputs a detection signal proportional to its magnitude. From one set of three detection signals output from each Hall element, for example, the rotational position can be detected every electrical angle of 60 °.
  • the number of Hall elements forming one set is not limited to this, and the number of Hall elements corresponding to the configuration of the motor 20 can be used.
  • the inverter 102 is provided with three sets of arms Q respectively corresponding to the three phases of the U phase, the V phase and the W phase of the motor 20.
  • Each arm Q is bridged.
  • Each arm Q includes an upper switching element Q1 and a lower switching element Q2 connected in series.
  • semiconductor elements such as FETs (Field Effect Transistors) and MOSFETs (Metal-Oxide-Semiconductor FETs) can be used. In the present embodiment, MOSFETs are used.
  • a power supply 200 is connected to the upper switching element Q1 and the lower switching element Q2 of each arm Q.
  • the inverter 102 receives the control signal generated by the control device 110 and output from the inverter drive unit 103.
  • the inverter 102 switches on and off of the switching elements Q1 and Q2 on the upper side and the lower side of the arm Q of each phase according to the input control signal, for example, the motor 20 by the on and off time like a duty ratio.
  • the drive current of the AC voltage waveform is supplied to each phase of.
  • the inverter drive unit 103 generates and outputs control signals for the switching element Q1 on the upper side and the switching element Q2 on the lower side of each arm Q of the inverter 102 from the control signal generated in the control device 110.
  • the control device 110 includes an energization pattern determination unit 111, a rotation number calculation unit 112, a difference calculation unit 113, an output voltage determination unit 114, a signal generation unit 115, an A / D conversion unit 116, and a coefficient correction unit. And 117.
  • the processing content of each component of the control device 110 can be realized by software processing in which a computer reads and executes a program describing the processing procedure of each component from a storage medium storing the program.
  • a processor such as a central processing unit (CPU) or a graphics processing unit (GPU), a microcomputer, or the like can be used.
  • a storage medium a hard disk, a ROM (Read Only Memory) or the like can be used.
  • the processing content of each component may be realized by hardware such as a field-programmable gate array (FPGA) or a large scale integration (LSI).
  • FPGA field-programmable gate array
  • LSI large scale integration
  • the energization pattern determination unit 111 determines the energization pattern of each phase of the motor 20 based on the rotational positions indicated by one set of detection signals output from the rotational position detection unit 101. For example, in the case of 120 ° conduction, the conduction pattern changes every 60 °, and the current direction is different in each conduction pattern.
  • the rotation number calculation unit 112 obtains the amount of change in rotational position per unit time from the one set of detection signals output from the rotation position detection unit 101, and calculates the current number of rotations of the motor 20 from the amount of change.
  • the difference calculation unit 113 calculates the difference between the target rotation number and the current rotation number calculated by the rotation number calculation unit 112.
  • the difference calculation unit 113 can also input the target rotational speed instructed each time from an external control device such as a vehicle or the like on which the motor 20 is mounted, or can store a constant target rotational speed stored in the storage medium as a storage medium You can also read and input from.
  • the output voltage determination unit 114 determines the control value of the output voltage of the drive current supplied from the power supply 200 to the motor 20 via the inverter 102 based on the difference in the rotational speed calculated by the difference calculation unit 113.
  • the signal generation unit 115 outputs a pulse signal of the PWM (Pulse Width Modulation) method.
  • the output voltage determination unit 114 determines the duty ratio of the pulse signal as the control value of the output voltage.
  • the output voltage determination unit 114 determines the duty ratio by PI control.
  • the output voltage determination unit 114 calculates a proportional term obtained by multiplying the difference in rotational speed calculated by the difference calculation unit 113 by the corrected proportional coefficient output from the coefficient correction unit 117. Further, the output voltage determination unit 114 calculates an integral term obtained by multiplying the difference in rotational speed by the corrected integration coefficient to integrate. The output voltage determination unit 114 determines the sum of the calculated proportional term and integral term as the duty ratio.
  • the signal generation unit 115 is a pulse signal that is a control signal to be output to each of the switching elements Q1 and Q2 of the inverter 102 based on the energization pattern determined by the energization pattern determination unit 111 and the duty ratio determined by the output voltage determination unit 114.
  • the A / D converter 116 A / D converts the input voltage of the drive current supplied from the power supply 200 and outputs it as a digital value.
  • the coefficient correction unit 117 multiplies the correction coefficient by the proportional coefficient and integration coefficient initially set as coefficients used by the output voltage determination unit 114 to determine the duty ratio, and outputs the corrected proportional coefficient and integration coefficient. Do.
  • the correction factor is a value of the ratio of the reference voltage to the current input voltage of the inverter 102.
  • the current input voltage of the inverter 102 is an input voltage obtained by A / D conversion in the A / D conversion unit 116.
  • the reference voltage is the input voltage of the inverter 102 which has been used or assumed at the time of determination of the initial setting proportional coefficient and integral coefficient.
  • the initial setting proportional coefficient and integral coefficient are coefficients determined and adjusted to values satisfying the responsiveness required of the motor 20.
  • the proportional coefficient and the integral coefficient are such that the oil discharge pressure and discharge amount reach the target values when the input voltage of the inverter 102 is x1 (V) It is determined to a value that satisfies the requirement of within milliseconds.
  • the reference voltage is x1 (V).
  • the coefficient correction unit 117 holds the initially set proportional coefficient and integral coefficient, and the reference voltage in a storage medium such as a register, for example, and acquires it from the storage medium when calculating the correction coefficient.
  • the difference calculation unit 113 calculates the difference between the target rotation number and the current rotation number according to the following equation (1).
  • C is the target revolution speed (rpm)
  • a n represents the current rotational speed (rpm).
  • the coefficient correction unit 117 determines the value of the ratio of the reference voltage to the current input voltage of the inverter 102 as a correction coefficient. Assuming that the current input voltage of the inverter 102 is E n and the reference voltage is E ref , the correction coefficient is E ref / E n .
  • the coefficient correction unit 117 multiplies each coefficient of the initially set proportional coefficient and integral coefficient by the correction coefficient, and outputs the corrected proportional coefficient and integral coefficient. Assuming that the proportional coefficient of the initial setting is K p and the integral coefficient of the initial setting is K i , the proportional coefficient after correction is K p ⁇ E ref / E n and the integral coefficient after correction is K i ⁇ E ref / E n It is.
  • the output voltage determination unit 114 uses the corrected proportional coefficient and integral coefficient output from the coefficient correction unit 117 to calculate the duty ratio according to the following equation (2) from the rotational speed difference d n .
  • Wf n K p ⁇ E ref / E n ⁇ d n + ⁇ (K i ⁇ E ref / E n ⁇ d n )
  • Wf n represents a duty ratio (%) calculated by the proportional coefficient and the integral coefficient after correction.
  • K p represents a proportionality factor (% / rpm)
  • K i represents an integration factor (% / rpm).
  • K p ⁇ E ref / E n ⁇ d n is a proportional term obtained by multiplying the rotational speed difference d n by a corrected proportional coefficient.
  • ⁇ (K i ⁇ E ref / E n ⁇ d n ) is an integral term obtained by multiplying the rotational speed difference d n by the corrected integral coefficient for integration.
  • the duty ratio is the ratio of the input voltage to the output voltage at inverter 102. Therefore, the rotational speed An + 1 (rpm) after controlling the motor 20 with the duty ratio Wf n calculated by the above equation (2) is the current ratio of the duty ratio Wf n and the inverter 102 as shown in the following equation (3). proportional to the multiplied value of the input voltage E n. (3) A n + 1 ⁇ Wf n ⁇ E n
  • the rotational speed A n + 1 after controlling the motor 20 at a duty ratio W n (rpm) is the multiplication value of the current input voltage E n of the duty ratio W n and an inverter 102 as shown in the following formula (5) Proportional. (5) A n + 1 ⁇ W n ⁇ E n
  • the duty ratio is the ratio of the input voltage to the output voltage at inverter 102.
  • the current input voltage E n is lower if the output voltage of the inverter 102 is low, since the change rate of the output voltage is slow, small changes in the speed.
  • high output voltage the current input voltage E n is also high, since the change rate of the output voltage is high, a large change in the rotational speed. Therefore, when the duty ratio W n is calculated with the proportional coefficient K p and the integration coefficient K i of fixed values as in the prior art, the change in the number of rotations of the motor 20 is calculated as shown in equation (5) above. affected by the input voltage E n of. Since the change speed of the output voltage until the output voltage is stabilized by the control of the duty ratio fluctuates depending on the input voltage, the response time of the motor 20 varies.
  • a correction that multiplies the correction coefficient E ref / E n by the proportional coefficient K p and the integration coefficient K i that are initially set is introduced.
  • the proportionality factor K p and the integral coefficient K i can be adjusted to the duty ratio Wf n to raise the output voltage.
  • the higher the current input voltage, by correcting the proportional coefficient K p and the integral coefficient K i to a small value can be adjusted to the duty ratio Wf n to lower the output voltage.
  • the fluctuation of the change rate of the output voltage due to the input voltage is reduced, and the rotational speed of the motor 20 is PI controlled using the coefficient initially set under the reference voltage as shown in the equation (3a). It becomes. Also the input voltage the voltage value E n are different, a predetermined time for a response time of the motor 20, i.e. it is easy to control the response time of the assumed object under reference voltage, the responsiveness of the motor 20 can be stabilized .
  • “before and after the change in input voltage” means not a change with time but a change in an environment in which the motor 20 is used. That is, even in the current input voltage the voltage value E n are different, the response time is substantially constant time response of the motor 20 is stabilized.
  • the response time of 10% -90% when controlling the test motor with the duty ratio Wf n is 279 ms.
  • the response time of 10% -90% when changing the input voltage to the inverter to 16 V and controlling the test motor with the duty ratio Wf n was 287 ms.
  • the error was as small as 8 ms, and the response time was close to a fixed time.
  • the error of 10% -90% response time when driving the motor for the same test under the condition of 10 V and 16 V of the input voltage was 150 ms. It can be seen that the error is large compared to the response time at the duty ratio Wf n , and the response time varies depending on the input voltage.
  • FIGS. 2A and 2B are graphs showing the duty ratio Wf n calculated using the proportional coefficient and the integration coefficient after correction, and the actual number of revolutions of the test motor driven by the duty ratio Wf n .
  • FIG. 2A is a graph when an input voltage of an inverter for driving a test motor is 10V.
  • FIG. 2B is a graph when an input voltage of an inverter for driving a test motor is 16V.
  • the rate of change of the duty ratio Wf n calculated using the corrected proportionality factor and integration factor changes depending on the current input voltage of the inverter.
  • the rate of change of the duty ratio Wf n is faster as the current input voltage is lower and as the current input voltage is higher.
  • the input voltage of 10 V is faster than that of 16 V. That is, since the duty ratio Wf n changes quickly when the input voltage is low and changes slowly when the input voltage is high, the response time of the motor can be made constant or close to the fixed time.
  • the slope of the amount of change of the duty ratio Wf n calculated using the proportional coefficient and the integral coefficient after correction is larger as the current input voltage of the inverter is lower and smaller as the current input voltage is higher.
  • the duty ratio Wf n having the slope of the change amount changes quickly when the input voltage is low and changes slowly when the input voltage is high. Therefore, the response time of the motor should be constant time or close to constant time be able to.
  • the first duty ratio Wf n calculated using the corrected proportional coefficient and integral coefficient is also larger as the current input voltage of the inverter is lower and smaller as the current input voltage is higher.
  • FIGS. 3A and 3B are graphs showing a duty ratio W n calculated using an initial setting proportional coefficient and an integral coefficient, and an actual rotation number when the test motor is driven by the duty ratio W n .
  • FIG. 3A is a graph when an input voltage of an inverter for driving a test motor is 10V.
  • FIG. 3B is a graph when the input voltage of the inverter for driving the test motor is 16V.
  • the change speed of the duty ratio W n is faster and the slope of the change amount is larger.
  • the change in speed of the duty ratio W n is a phenomenon due to the difference in rotational speed d n becoming large because the rotational speed is lower as the input voltage is lower at a certain time. Even if the speed change due to this phenomenon is considered, the response time will vary.
  • the response time of the motor 20 with respect to the control of the output voltage of the inverter 102 can be made close to a constant time regardless of the current input voltage of the inverter 102. Therefore, the responsiveness of motor 20 to rotation control can be stabilized even when motor 20 is used in an environment where the input voltage of inverter 102 fluctuates or an environment different from the assumed reference voltage.
  • the power supply 200 is a power supply in which the voltage of the drive current supplied to the motor 20 fluctuates and the input voltage of the inverter 102 fluctuates, stable response can be obtained regardless of the input voltage, which is effective. is there. Since the battery is susceptible to fluctuations in input voltage depending on the amount of charge, stable response can be obtained when the power supply 200 is a battery, which is also effective.
  • the proportional factor K p and the integral coefficient K i of default by changing the input voltage of the inverter 102, should be adjusted to an appropriate value when the input voltage response time of interest can be obtained by variation is there.
  • the proportional coefficient K p and the integral coefficient K i may be determined because the target response time may be determined under the reference voltage E ref. The setting work of i becomes easy.
  • the output voltage determination unit 114 can also determine the duty ratio not from the difference between the current rotation speed and the target rotation speed but from the amount of change between the current calculated difference and the previously calculated difference. Since the response time of the motor 20 affects the magnitude of acceleration of the rotational speed, the rotation control of the motor 20 can be performed with high accuracy by controlling the output voltage by the change amount of the difference.
  • the difference calculation unit 113 calculates the amount of change of the difference calculated this time and the difference calculated last time by the following equation (1a).
  • d n represents the difference calculated this time.
  • d n-1 represents the previously calculated difference.
  • d in can also be represented by the following formula (1 b).
  • (1b) d in A n-1 -A n
  • a n represents the number of revolutions calculated this time.
  • An-1 represents the previously calculated rotational speed.
  • the output voltage determining unit 114 uses the change amount d in the differential, the following formula (2a), and calculates the duty ratio Wf in.
  • Wf in K p ⁇ E ref / E n ⁇ d in + K i ⁇ E ref / E n ⁇ d n Wf in represents the duty ratio calculated by the proportional and integral coefficients corrected.
  • the duty ratio Wf in can also be represented by the following formula.
  • W in K p ⁇ d in + K i ⁇ d n
  • the output voltage determination unit 114 further calculates the differential term, calculates at least two of the proportional term, the integral term, and the differential term, and determines the sum of two or more terms as the duty ratio. Can. The output voltage determination unit 114 can also determine any one of the proportional term, the integral term, and the derivative term as the duty ratio.
  • the coefficient correction unit 117 further multiplies the initially set derivative coefficient by the above-described correction coefficient as a coefficient to be used for determining the control value of the output voltage of the inverter 102, Output the derivative.
  • the output voltage determination unit 114 calculates a derivative term obtained by multiplying the derivative value of the difference calculated by the difference calculation unit 113 by the corrected derivative coefficient.
  • the output voltage determination unit 114 determines the sum of the calculated proportional term, integral term and derivative term as the control value of the output voltage, that is, the duty ratio.
  • Wf n K p ⁇ E ref / E n ⁇ d n + ⁇ (K i ⁇ E ref / E n ⁇ d n ) + K d ⁇ E ref / E n ⁇ d / dt (d n ) d / dt (d n ) is a differential value of the difference, and K d ⁇ E ref / E n ⁇ d / dt (d n ) is an integral term.
  • the output voltage determination unit 114 takes the sum of the proportional term and the derivative term in the case of PD control and the sum of the integral term and the derivative term in the case of ID control as the duty ratio. decide.
  • the output voltage determination unit 114 determines, of the proportional term, the integral term, and the differential term, the proportional term in the case of P control, the integral term in the case of I control, and the differential term in the case of D control as the duty ratio. Do.
  • the derivative term is also calculated in the first modification and the sum of at least two of the proportional term, the integral term, and the derivative term is used as the duty ratio
  • the differential coefficient after correction is corrected to the change amount d in of the difference.
  • the multiplication may be performed to calculate the differential term.
  • the motor is not limited to the three-phase brushless motor described above as long as the motor can control the rotational speed by PID control.
  • the signal generation unit 115 may generate a pulse signal of PAM (Pulse Amplitude Modulation) method, and the output voltage determination unit 114 may determine the amplitude of the pulse signal as a control value of the output voltage.
  • PAM Pulse Amplitude Modulation
  • the present invention can also be applied to the case where the amplitude of a PAM pulse signal is determined by PID control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

モータの制御装置110は、モータの現在の回転数と目標の回転数との差を算出する差算出部113と、初期設定された比例係数及び積分係数にそれぞれ補正係数を乗算して補正後の比例係数及び積分係数を出力する係数補正部117と、前記差に補正後の比例係数を乗算した比例項と前記差に補正後の積分係数を乗算して積分した積分項の少なくとも1項を算出し、比例項及び積分項のいずれか1項を又は2項の和を前記出力電圧の制御値として決定する出力電圧決定部114と、前記制御値に基づいて制御信号を生成する信号生成部115とを備え、前記補正係数は、前記インバータの現在の入力電圧に対する基準電圧の比の値であり、前記基準電圧は、前記初期設定された比例係数及び積分係数の決定時に使用又は想定していたインバータ102の入力電圧である。

Description

モータの制御装置及び記憶媒体
 本発明は、モータの制御装置及び記憶媒体に関する。
 ブラシレスモータ等のモータの回転数は、制御装置によって、目標回転数に制御される。例えば、モータのロータ位置とモータに供給する駆動電流との位相差を変化させて、モータの回転数を制御することが行われている(例えば、特許文献1参照。)
 また、インバータからモータへ供給する駆動電流の出力電圧を調整することで、モータの回転数を目標の回転数に制御することも行われる。インバータの出力電圧の調整は、例えばPID制御によって行われる。PID制御では、P(比例)、I(微分)及びD(積分)の各係数を用いて、目標回転数と現在の回転数との差から出力電圧の制御値、例えばインバータを駆動するパルス信号のデューティ比等を算出する。
 PID制御によりモータの回転制御を行う場合、インバータの入力電圧によってモータの応答性が変動しやすい。モータの回転数はインバータの出力電圧によって変動するが、制御後に出力電圧が変化する速度はインバータの入力電圧に応じて変動するためである。例えば、パルス信号のデューティ比が同じであっても、入力電圧が低い方が出力電圧も低くなり、目的の出力電圧に安定化するまでの時間が長くなる。そのため、入力電圧が変動する環境下では、出力電圧の制御に対するモータの応答時間にばらつきが生じていた。
特開2004-350496号公報
 本発明は、モータの回転制御に対する応答性を安定化することを目的とする。
 本願の例示的な第1発明は、インバータによって電源からの駆動電流が供給されるモータの制御装置であって、前記モータの現在の回転数と目標の回転数との差を算出する差算出部と、前記インバータの出力電圧の制御値の決定に使用する係数として、初期設定された比例係数及び積分係数にそれぞれ補正係数を乗算して、補正後の比例係数及び積分係数を出力する係数補正部と、前記差算出部により算出した差に前記補正後の比例係数を乗算した比例項と、前記差に前記補正後の積分係数を乗算して積分した積分項の少なくとも1項を算出し、算出した比例項及び積分項のいずれか1項を、又は2項の和を、前記出力電圧の制御値として決定する出力電圧決定部と、前記出力電圧決定部により決定した前記出力電圧の制御値に基づいて、前記インバータに出力する制御信号を生成する信号生成部と、を備え、前記補正係数は、前記インバータの現在の入力電圧に対する基準電圧の比の値であり、前記基準電圧は、前記初期設定された比例係数及び積分係数の決定時に使用又は想定していた前記インバータの入力電圧である。
 本願の例示的な第1発明によれば、モータの回転制御に対する応答性を安定化することができる。
本発明の一実施形態のモータの制御装置の構成を示すブロック図である。 インバータへの入力電圧が10Vの条件下で、補正後の係数を用いて算出したデューティ比と、当該デューティ比により駆動したモータの回転数を示すグラフである。 インバータへの入力電圧が16Vの条件下で、補正後の係数を用いて算出したデューティ比と、当該デューティ比により駆動したモータの回転数を示すグラフである。 インバータへの入力電圧が10Vの条件下で、初期設定の係数を用いて算出したデューティ比と、当該デューティ比により駆動したモータの回転数を示すグラフである。 インバータへの入力電圧が16Vの条件下で、初期設定の係数を用いて算出したデューティ比と、当該デューティ比により駆動したモータの回転数を示すグラフである。
 以下、図面を参照しながら、本発明の実施形態に係るモータの制御装置及び記憶媒体について、説明する。
 図1は、本発明の一実施形態であるモータ20の制御装置110の構成を示す。
 図1に示すように、モータ20の制御装置110は、モータ20の駆動装置100の構成の一部として使用される。駆動装置100は、制御装置110の他に、回転位置検出部101、インバータ102及びインバータ駆動部103を備える。
<モータ>
 本実施形態では、モータ20は3相ブラシレスモータである。図1に示すモータ20は、コイルがデルタ結線されるが、スター結線であってもよい。図1に示すように、モータ20の3相を、それぞれU相、V相及びW相と表す。
 回転位置検出部101は、モータ20の回転位置を検出する。回転位置検出部101としては、例えばホール素子、磁気抵抗素子等の磁気式センサ、光学式エンコーダ、レゾルバ等を使用することができる。
 本実施形態では、回転位置検出部101としてモータ20の各コイル間に配置された3つのホール素子を用いる。各ホール素子は、磁界を検出し、その大きさに比例した検出信号を出力する。各ホール素子から出力された3つで1組の検出信号から、例えば60°の電気角ごとに回転位置を検出できる。なお、3つのホール素子の検出信号を1組とする例を説明したが、1組とするホール素子の数はこれに限定されず、モータ20の構成に応じた数のホール素子を使用できる。
<インバータ>
 インバータ102は、図1に示すように、モータ20のU相、V相及びW相の3相にそれぞれ対応する3組のアームQを備える。各アームQは、ブリッジ接続される。各アームQは、直列接続された上側のスイッチング素子Q1と下側のスイッチング素子Q2を備える。スイッチング素子Q1及びQ2としては、FET(Field Effect Transistor)、MOSFET(Metal-Oxide-Semiconductor FET)等の半導体素子を用いることでき、本実施形態ではMOSFETを用いる。
 各アームQの上側のスイッチング素子Q1及び下側のスイッチング素子Q2には、電源200が接続される。インバータ102は、制御装置110により生成され、インバータ駆動部103から出力された制御信号を入力する。インバータ102は、入力した制御信号にしたがって、各相のアームQの上側及び下側の各スイッチング素子Q1及びQ2のオンとオフを切り替えて、例えばデューティ比のようにオンとオフの時間によってモータ20の各相に交流電圧波形の駆動電流を供給する。
<インバータ駆動部>
 インバータ駆動部103は、制御装置110において生成した制御信号から、インバータ102の各アームQの上側のスイッチング素子Q1及び下側のスイッチング素子Q2に対する制御信号をそれぞれ生成して、出力する。
<モータの制御装置>
 制御装置110は、図1に示すように、通電パターン決定部111、回転数算出部112、差算出部113、出力電圧決定部114、信号生成部115、A/D変換部116及び係数補正部117を備える。制御装置110の各構成部の処理内容は、各部の処理手順を記述したプログラムを、当該プログラムを記憶する記憶媒体からコンピュータが読み取って実行するソフトウェア処理により、実現することができる。コンピュータとしては、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサー、マイクロコンピュータ等を使用することができる。記憶媒体としては、ハードディスク、ROM(Read Only Memory)等を使用することができる。なお、各構成部の処理内容を、FPGA(Field-Programmable Gate Array)、LSI(Large Scale Integration)等のハードウェアにより実現してもよい。
 通電パターン決定部111は、回転位置検出部101から出力された3つで1組の検出信号が示す回転位置に基づき、モータ20の各相の通電パターンを決定する。通電パターンは、例えば120°通電の場合、60°ごとに切り替わり、各通電パターンで電流方向が異なる。
 回転数算出部112は、回転位置検出部101から出力された1組の検出信号から、回転位置の単位時間あたりの変化量を求め、当該変化量からモータ20の現在の回転数を算出する。
 差算出部113は、目標回転数と、回転数算出部112において算出した現在の回転数との差を算出する。差算出部113は、モータ20が搭載された車両等の外部の制御装置からその都度指示された目標回転数を入力することもできるし、記憶媒体に保存された一定の目標回転数を記憶媒体から読み取って入力することもできる。
 出力電圧決定部114は、差算出部113において算出した回転数の差により、電源200からインバータ102を介してモータ20へ供給する駆動電流の出力電圧の制御値を決定する。本実施形態では、インバータ102に出力する制御信号として、信号生成部115においてPWM(Pulse Width Modulation)方式のパルス信号を出力する。出力電圧決定部114は、パルス信号のデューティ比を出力電圧の制御値として決定する。
 本実施形態において、出力電圧決定部114は、PI制御によってデューティ比を決定する。出力電圧決定部114は、差算出部113により算出した回転数の差に、係数補正部117から出力される補正後の比例係数を乗算した比例項を算出する。また、出力電圧決定部114は、回転数の差に補正後の積分係数を乗算して積分した積分項を算出する。出力電圧決定部114は、算出した比例項及び積分項の和を、デューティ比として決定する。
 信号生成部115は、通電パターン決定部111により決定した通電パターンと、出力電圧決定部114により決定したデューティ比に基づいて、インバータ102の各スイッチング素子Q1及びQ2に出力する制御信号であるパルス信号を生成する。
 A/D変換部116は、電源200から供給される駆動電流の入力電圧をA/D変換し、デジタル値として出力する。
 係数補正部117は、出力電圧決定部114がデューティ比の決定に使用する係数として、初期設定された比例係数及び積分係数にそれぞれ補正係数を乗算して、補正後の比例係数及び積分係数を出力する。
 補正係数は、インバータ102の現在の入力電圧に対する基準電圧の比の値である。インバータ102の現在の入力電圧は、A/D変換部116においてA/D変換して得られる入力電圧である。基準電圧は、初期設定の比例係数及び積分係数の決定時に使用又は想定していたインバータ102の入力電圧である。初期設定の比例係数及び積分係数は、モータ20に要求される応答性を満足する値に調整され、決定された係数である。例えば、モータ20を電動オイルポンプに使用する場合、比例係数及び積分係数は、インバータ102の入力電圧がx1(V)の時の油の吐出圧及び吐出量が目的値に到達する時間がx2(ミリ秒)内という要求を満足する値に決定される。この例において、基準電圧はx1(V)である。係数補正部117は、初期設定された比例係数及び積分係数と基準電圧とを、例えばレジスタ等の記憶媒体に保持し、補正係数の算出時に当該記憶媒体から取得する。
<出力電圧の制御値の決定手順>
 以下、制御装置110において出力電圧の制御値であるデューティ比を決定する流れを説明する。
 まず、差算出部113が、目標回転数と現在の回転数の差を、下記式(1)により算出する。
 (1) d=C-A
 dは、目標回転数と現在の回転数の差(rpm)を表す。Cは目標回転数(rpm)、Aは現在の回転数(rpm)を表す。
 係数補正部117は、インバータ102の現在の入力電圧に対する基準電圧の比の値を、補正係数として決定する。インバータ102の現在の入力電圧をE、基準電圧をErefと表すと、補正係数は、Eref/Eである。
 係数補正部117は、初期設定の比例係数及び積分係数の各係数に補正係数を乗算して、補正後の比例係数及び積分係数を出力する。初期設定の比例係数をK、初期設定の積分係数をKと表すと、補正後の比例係数はK×Eref/E、補正後の積分係数はK×Eref/Eである。
 出力電圧決定部114は、係数補正部117から出力される補正後の比例係数及び積分係数を使用して、回転数の差dから、下記式(2)によりデューティ比を算出する。
 (2) Wf=K×Eref/E×d+Σ(K×Eref/E×d
 Wfは、補正後の比例係数及び積分係数により算出したデューティ比(%)を表す。Kは比例係数(%/rpm)、Kは積分係数(%/rpm)を表す。K×Eref/E×dは回転数の差dに補正後の比例係数を乗算した比例項である。Σ(K×Eref/E×d)は回転数の差dに補正後の積分係数を乗算して積分した積分項である。
 デューティ比は、インバータ102における入力電圧と出力電圧の比である。よって、上記式(2)により算出したデューティ比Wfでモータ20を制御した後の回転数An+1(rpm)は、下記式(3)に示すようにデューティ比Wfとインバータ102の現在の入力電圧Eの乗算値に比例する。
 (3) An+1∝Wf×E
 従来の一般的なPI制御では、デューティ比の算出に初期設定の比例係数K及び積分係数Kがそのまま用いられる。下記式(4)は、従来のデューティ比の算出式である。
 (4) W=K×d+Σ(K×d
 Wは、初期設定の比例係数及び積分係数により算出したデューティ比(%)を表す。
 上記式(2)及び(4)から、Wf=W×Eref/Eであるので、上記式(3)は、下記式(3a)で表すことができる。
 (3a) An+1∝Wf×E=W×Eref
 すなわち、デューティ比Wfで制御した後の回転数An+1は、初期設定の比例係数及び積分係数を使用して算出したデューティ比Wと基準電圧Erefの乗算値に比例する。
 一方、デューティ比Wでモータ20を制御した後の回転数An+1(rpm)は、下記式(5)に示すようにデューティ比Wとインバータ102の現在の入力電圧Eの乗算値に比例する。
 (5) An+1∝W×E
 デューティ比は、インバータ102における入力電圧と出力電圧の比である。同じデューティ比でも、インバータ102の現在の入力電圧Eが低ければ出力電圧は低く、出力電圧の変化速度が遅いため、回転数の変化が小さい。一方、現在の入力電圧Eが高いと出力電圧も高く、出力電圧の変化速度が速いため、回転数の変化が大きい。したがって、従来のように、固定値の比例係数K及び積分係数Kでデューティ比Wを算出すると、上記式(5)に示すように、モータ20の回転数の変化がインバータ102の現在の入力電圧Eの影響を受ける。デューティ比の制御によって出力電圧が安定化するまでの出力電圧の変化速度が入力電圧によって変動するため、モータ20の応答時間がばらつく。
 これに対し、本実施形態では、初期設定の比例係数K及び積分係数Kに、補正係数Eref/Eを乗算する補正を導入する。これにより、インバータ102の現在の入力電圧Eが低ければ、比例係数K及び積分係数Kを大きい値に補正して、出力電圧を上昇させるデューティ比Wfに調整できる。また、本実施形態によれば、現在の入力電圧が高ければ、比例係数K及び積分係数Kを小さい値に補正して、出力電圧を低下させるデューティ比Wfに調整できる。したがって、入力電圧による出力電圧の変化速度の変動が減り、上記式(3a)に示すようにモータ20の回転数が、基準電圧下で初期設定した係数を使用してPI制御したときの回転数となる。入力電圧Eが異なる電圧値でも、モータ20の応答時間を一定時間、すなわち基準電圧下で想定した目的の応答時間に制御することが容易となり、モータ20の応答性を安定化させることができる。
 補正後の比例係数K及び積分係数Kにより算出したデューティ比Wfに対するモータ20の応答時間は、インバータ102の入力電圧が変化する前後において、一定時間であるか、又は一定時間に近づく。
 なお、入力電圧が変化する前後とは、時間的な変化ではなく、モータ20を使用する環境下での変化をいう。すなわち、現在の入力電圧Eが異なる電圧値であっても、応答時間がほぼ一定時間となり、モータ20の応答性が安定化する。
 ある実験結果では、インバータへの入力電圧が10Vの条件下で、デューティ比Wfで試験用のモータを制御したときの10%-90%の応答時間は、279msであった。インバータへの入力電圧を16Vに変更して、デューティ比Wfで試験用のモータを制御したときの10%-90%の応答時間は、287msであった。誤差は8msと少なく、応答時間が一定時間に近かった。
 一方、デューティ比Wにより、入力電圧が10V及び16Vの条件下で同じ試験用のモータを駆動したときの10%-90%の応答時間の誤差は150msであった。デューティ比Wfのときの応答時間と比べて誤差が大きく、応答時間が入力電圧によってばらつくことが分かる。
 図2A及び図2Bは、補正後の比例係数及び積分係数を用いて算出したデューティ比Wfと、当該デューティ比Wfにより駆動した試験用のモータの実回転数を示すグラフである。図2Aは、試験用のモータを駆動するインバータの入力電圧を10Vとしたときのグラフである。図2Bは、試験用のモータを駆動するインバータの入力電圧を16Vとしたときのグラフである。図2A及び図2Bにおいて、横軸の離散時間(N)は、制御をインターバルで実施した時間を、制御の実施回数N(N=0~n)で表す。
 図2A及び図2Bに示すように、補正後の比例係数及び積分係数を用いて算出したデューティ比Wfの変化の速度は、インバータの現在の入力電圧によって変化する。デューティ比Wfの変化の速度は、現在の入力電圧が低いほど速く、現在の入力電圧が高いほど遅い。例えば、図2A及び図2B中の離散時間がN=40のときのデューティ比Wfの変化の速度を比較すると、入力電圧が10Vのときの方が、16Vのときよりも速い。すなわち、デューティ比Wfは、入力電圧が低いときは早く変化し、入力電圧が高いときは遅く変化するため、モータの応答時間を一定時間とするか、又は一定時間に近づけることができる。
 また、補正後の比例係数及び積分係数を用いて算出したデューティ比Wfの変化量の傾きは、インバータの現在の入力電圧が低いほど大きく、現在の入力電圧が高いほど小さい。例えば、図2A及び図2B中のデューティ比Wfの曲線の傾きが、デューティ比Wfの変化量の傾きであるが、N=40の離散時間における傾きを比較すると、入力電圧が10Vのときの方が、16Vのときよりも大きい。上記変化量の傾きを有するデューティ比Wfは、入力電圧が低いときは早く変化し、入力電圧が高いときは遅く変化するため、モータの応答時間を一定時間とするか、又は一定時間に近づけることができる。
 同様に、補正後の比例係数及び積分係数を用いて算出した最初のデューティ比Wfも、インバータの現在の入力電圧が低いほど大きく、現在の入力電圧が高いほど小さい。最初のデューティ比Wfとは、制御を開始した実施回数N=0の時に算出されたデューティ比である。
 制御開始時、現在回転数A=0rpmであり、0rpmより大きい目標回転数Cが与えられるため、回転数の差dは、d=C-A=Cである。最初のデューティ比Wfは、Wf=K×Eref/E×C+K×Eref/E×Cであることから、現在の入力電圧Eが小さいほど大きくなる。したがって、図2A及び図2Bに示すように、N=0の離散時間における最初のデューティ比Wfは、入力電圧が低い10Vのときの方が16Vのときよりも大きい。
 図3A及び図3Bは、初期設定の比例係数及び積分係数を用いて算出したデューティ比Wと、当該デューティ比Wにより試験用のモータを駆動したときの実際の回転数を示すグラフである。図3Aは、試験用のモータを駆動するインバータの入力電圧を10Vとしたときのグラフである。図3Bは、試験用のモータを駆動するインバータの入力電圧を16Vとしたときのグラフである。図3A及び図3Bにおいて、横軸の離散時間(N)は、制御をインターバルで実施した時間を、制御の実施回数N(N=0~n)で表す。
 図3A及び図3Bに示すように、デューティ比Wの場合も、入力電圧が低い方が、変化速度が速く、変化量の傾きも大きい。しかし、デューティ比Wの速度変化は、ある時間において入力電圧が低いほど回転数が低いことで、回転数の差dが大きくなることによる現象である。この現象による速度変化を考慮しても、応答時間にはばらつきが生じる。
 また、デューティ比Wの場合、最初のデューティWは、入力電圧によらず一定である。制御開始時の最初のデューティWは、W=K×C+K×Cであるためである。
 以上のように、本実施形態の制御装置110によれば、インバータ102の現在の入力電圧によらず、インバータ102の出力電圧の制御に対するモータ20の応答時間を一定時間に近付けることができる。したがって、インバータ102の入力電圧が変動する環境下又は想定した基準電圧と異なる環境下でモータ20を使用する場合も、回転制御に対するモータ20の応答性を安定化することができる。
 特に、電源200が、モータ20へ供給する駆動電流の電圧が変動する電源であり、インバータ102の入力電圧が変動する場合、入力電圧によらず、安定した応答性を得ることができ、有効である。
 バッテリーは、充電量によって入力電圧が変動しやすいため、電源200がバッテリーである場合には、安定した応答性を得ることができ、同様に有効である。
 また、初期設定の比例係数K及び積分係数Kは、インバータ102の入力電圧を変化させて、入力電圧が変動しても目的の応答時間が得られるときの適切な値に調整する必要がある。しかしながら、比例係数K及び積分係数Kを補正する本実施形態によれば、基準電圧Eref下で目的の応答時間が得られる値に決定すればよいため、比例係数K及び積分係数Kの設定作業が容易となる。
〔変形例1〕
 上記実施形態において、出力電圧決定部114は、現在の回転数と目標回転数の差ではなく、今回算出した差と前回算出した差の変化量から、デューティ比を決定することもできる。モータ20の応答時間は、回転数の加速の大きさに影響することから、差の変化量によって出力電圧を制御することにより、モータ20の回転制御を精度良く行うことができる。
 変形例1において、差算出部113は、下記式(1a)により今回算出した差と前回算出した差の変化量を算出する。
 (1a) din=d-dn-1
 dinは、差の変化量を表す。dは、今回算出した差を表す。dn-1は、前回算出した差を表す。
 dinは、下記式(1b)で表すこともできる。
 (1b) din=An-1-A
 は、今回算出した回転数を表す。An-1は、前回算出した回転数を表す。
 変形例1において、出力電圧決定部114は、差の変化量dinを用いて、下記式(2a)により、デューティ比Wfinを算出する。
 (2a) Wfin=K×Eref/E×din+K×Eref/E×d
 Wfinは、補正後の比例係数及び積分係数により算出したデューティ比を表す。
 上記デューティ比Wfinは、下記式で表すこともできる。
  Wfin=Win×Eref/E
 Winは、初期設定の比例係数及び積分係数を用いて下記式(4a)で算出したデューティ比である。
 (4a) Win=K×din+K×d
 デューティ比Wfinによって制御した後の回転数Afin+1(rpm)は、下記式(3b)に示すようにインバータ102への入力電圧Eに比例する。Wfin×Eは、Win×Erefに等しいため、回転数Afin+1(rpm)は、デューティ比Winと基準電圧Erefの乗算値にも比例する。
 (3b) Afin+1∝Wfin×E=Win×Eref
〔変形例2〕
 上記実施形態において、出力電圧決定部114は、さらに微分項を算出して、比例項、積分項及び微分項のうちの少なくとも2項を算出し、2項以上の和をデューティ比として決定することができる。また、出力電圧決定部114は、比例項、積分項及び微分項のうちのいずれか1項をデューティ比として決定することもできる。
 例えば、PID制御の場合、係数補正部117は、さらに、インバータ102の出力電圧の制御値の決定に使用する係数として、初期設定された微分係数に上述した補正係数を乗算して、補正後の微分係数を出力する。出力電圧決定部114は、上述した比例項及び積分項に加え、差算出部113により算出した差の微分値に補正後の微分係数を乗算した微分項を算出する。出力電圧決定部114は、算出した比例項、積分項及び微分項の和を、出力電圧の制御値、すなわちデューティ比として決定する。
 下記式は、PID制御の場合のデューティ比の算出式である。
 (2d) Wf=K×Eref/E×d+Σ(K×Eref/E×d
         +K×Eref/E×d/dt(d
 d/dt(d)は、差の微分値であり、K×Eref/E×d/dt(d)は積分項である。
 出力電圧決定部114は、比例項、積分項及び微分項のうち、PD制御の場合は比例項と微分項の和を、ID制御の場合は積分項と微分項の和を、それぞれデューティ比として決定する。
 出力電圧決定部114は、比例項、積分項及び微分項のうち、P制御の場合は比例項を、I制御の場合は積分項を、D制御の場合は微分項を、それぞれデューティ比として決定する。
 なお、変形例1において微分項も算出し、比例項、積分項及び微分項のうちの少なくとも2項以上の和をデューティ比とする場合は、差の変化量dinに補正後の微分係数を乗算して微分項を算出すればよい。
 本発明は、上述した実施形態及び変形例に限定されない。
 例えば、モータは、PID制御によって回転数を制御できるモータであれば、上述した3相ブラシレスモータに限らない。
 また、信号生成部115においてPAM(Pulse Amplitude Modulation)方式のパルス信号を生成し、出力電圧決定部114において、当該パルス信号の振幅を出力電圧の制御値として決定してもよい。PAM方式のパルス信号の振幅をPID制御によって決定する場合にも、本発明を適用することができる。
 本出願は、2017年8月31日に出願された日本特許出願である特願2017-166566号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。
20  モータ
102  インバータ
110  モータの制御装置
112  回転数算出部
113  差算出部
114  出力電圧決定部
115  信号生成部
116  A/D変換部
117  係数補正部
200  電源

 

Claims (10)

  1.  インバータによって電源からの駆動電流が供給されるモータの制御装置であって、
     前記モータの現在の回転数と目標の回転数との差を算出する差算出部と、
     前記インバータの出力電圧の制御値の決定に使用する係数として、初期設定された比例係数及び積分係数にそれぞれ補正係数を乗算して、補正後の比例係数及び積分係数を出力する係数補正部と、
     前記差算出部により算出した差に前記補正後の比例係数を乗算した比例項と、前記差に前記補正後の積分係数を乗算して積分した積分項の少なくとも1項を算出し、算出した比例項及び積分項のいずれか1項を、又は2項の和を、前記出力電圧の制御値として決定する出力電圧決定部と、
     前記出力電圧決定部により決定した前記出力電圧の制御値に基づいて、前記インバータに出力する制御信号を生成する信号生成部と、を備え、
     前記補正係数は、前記インバータの現在の入力電圧に対する基準電圧の比の値であり、前記基準電圧は、前記初期設定された比例係数及び積分係数の決定時に使用又は想定していた前記インバータの入力電圧である、
     モータの制御装置。
  2.  前記インバータの入力電圧が変化する前後において、前記制御値に対する前記モータの応答時間が、一定時間であるか、又は一定時間に近づく、
     請求項1に記載のモータの制御装置。
  3.  前記制御信号は、PWM方式のパルス信号であり、
     前記出力電圧決定部は、前記出力電圧の制御値として、前記パルス信号のデューティ比を決定し、
     前記出力電圧決定部により決定した前記パルス信号のデューティ比の変化の速度は、前記インバータの現在の入力電圧によって変化する、
     請求項2に記載のモータの制御装置。
  4.  前記デューティ比の変化の速度は、前記インバータの現在の入力電圧が低いほど速く、前記インバータの現在の入力電圧が高いほど遅い、
     請求項3に記載のモータの制御装置。
  5.  前記制御信号は、PWM方式のパルス信号であり、
     前記出力電圧決定部は、前記出力電圧の制御値として、前記パルス信号のデューティ比を決定し、
     前記出力電圧決定部により決定した前記パルス信号のデューティ比の変化量の傾きは、前記インバータの現在の入力電圧が低いほど大きく、前記インバータの現在の入力電圧が高いほど小さい、
     請求項2に記載のモータの制御装置。
  6.  前記係数補正部は、さらに、前記インバータの出力電圧の制御値の決定に使用する係数として、初期設定された微分係数に前記補正係数を乗算して、補正後の微分係数を出力し、
     前記出力電圧決定部は、前記比例項、前記積分項及び前記差の微分値に前記補正後の微分係数を乗算した微分項の少なくとも2項を算出し、算出した2項以上の和を、前記出力電圧の制御値として決定する、
     請求項1~5のいずれか一項に記載のモータの制御装置。
  7.  前記差算出部は、今回算出した差と前回算出した差の変化量を算出し、
     前記出力電圧決定部は、前記差の変化量に前記補正後の比例係数を乗算して前記比例項を算出し、前記差に前記補正後の積分係数を乗算して積分した積分項を算出し、前記差の変化量に前記補正後の微分係数を乗算して前記微分項を算出する、
     請求項6に記載のモータの制御装置。
  8.  前記電源は、前記インバータに供給する駆動電流の電圧が変動する電源である、
     請求項1~7のいずれか一項に記載のモータの制御装置。
  9.  前記電源は、バッテリーである、
     請求項1~7のいずれか一項に記載のモータの制御装置。
  10.  コンピュータにモータの制御方法を実行させるプログラムが記憶されたコンピュータ読み取り可能な記憶媒体であって、
     前記モータの制御方法は、
     前記モータの現在の回転数と目標の回転数との差を算出する工程と、
     前記インバータの出力電圧の制御値の決定に使用する係数として、初期設定された比例係数及び積分係数にそれぞれ補正係数を乗算して、補正後の比例係数及び積分係数を出力する工程と、
     前記算出した差に前記補正後の比例係数を乗算した比例項と、前記差に前記補正後の積分係数を乗算して積分した積分項の少なくとも1項を算出し、算出した比例項及び積分項のいずれか1項を、又は2項の和を、前記出力電圧の制御値として決定する工程と、を含み、
     前記補正係数は、前記インバータの現在の入力電圧に対する基準電圧の比の値であり、前記基準電圧は、前記初期設定された比例係数及び積分係数の決定時に使用又は想定していた前記インバータの入力電圧である、
     記憶媒体。

     
PCT/JP2018/031406 2017-08-31 2018-08-24 モータの制御装置及び記憶媒体 WO2019044717A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/632,581 US10992241B2 (en) 2017-08-31 2018-08-24 Control device of motor and storage medium
JP2019539462A JP6841336B2 (ja) 2017-08-31 2018-08-24 モータの制御装置及び記憶媒体
CN201880054376.7A CN111034025B (zh) 2017-08-31 2018-08-24 马达的控制装置和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017166566 2017-08-31
JP2017-166566 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044717A1 true WO2019044717A1 (ja) 2019-03-07

Family

ID=65525482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031406 WO2019044717A1 (ja) 2017-08-31 2018-08-24 モータの制御装置及び記憶媒体

Country Status (4)

Country Link
US (1) US10992241B2 (ja)
JP (1) JP6841336B2 (ja)
CN (1) CN111034025B (ja)
WO (1) WO2019044717A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113315449B (zh) * 2021-04-25 2023-02-03 深圳拓邦股份有限公司 开关磁阻电机低速变载控制方法、装置及开关磁阻电机
CN113373560B (zh) * 2021-05-25 2022-12-06 湖州师范学院 单纱整理集成设备的电机控制方法、设备、产品及介质
CN115453856A (zh) * 2022-09-23 2022-12-09 中国兵器工业集团第二一四研究所苏州研发中心 一种用于制冷机的自适应pid控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042070A1 (en) * 1997-03-19 1998-09-24 Hitachi, Ltd. Apparatus and method for controlling induction motor
JP2004064837A (ja) * 2002-07-26 2004-02-26 Toyota Central Res & Dev Lab Inc モータ駆動制御装置
US9007004B2 (en) * 2009-11-06 2015-04-14 University Of Technology, Sydney Sensorless AC motor controller
JP2015159626A (ja) * 2014-02-21 2015-09-03 京セラ株式会社 インバータおよびインバータの制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19739917A1 (de) * 1997-09-11 1999-03-18 Siemens Ag System zur Versorgung elektromotorischer Verbraucher mit elektrischer Energie
JP3675431B2 (ja) * 2002-10-01 2005-07-27 松下電器産業株式会社 電動機駆動装置
JP4580679B2 (ja) 2003-04-30 2010-11-17 パナソニック株式会社 モータ駆動装置
CN101286725A (zh) * 2008-04-17 2008-10-15 戴政 同步电机矢量控制系统中电机旋转速度和转子位置推测方法
JP5265413B2 (ja) * 2009-02-27 2013-08-14 株式会社ショーワ 電動パワーステアリング装置
JP2011050170A (ja) * 2009-08-27 2011-03-10 Sharp Corp インバータ装置
JP6301748B2 (ja) * 2014-06-23 2018-03-28 トヨタ自動車株式会社 電動車両
BR112018003257B1 (pt) * 2015-08-28 2023-04-25 Panasonic intellectual property Management co., Ltd Refrigerador
JP7014014B2 (ja) * 2018-03-30 2022-02-01 株式会社豊田自動織機 車載流体機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042070A1 (en) * 1997-03-19 1998-09-24 Hitachi, Ltd. Apparatus and method for controlling induction motor
JP2004064837A (ja) * 2002-07-26 2004-02-26 Toyota Central Res & Dev Lab Inc モータ駆動制御装置
US9007004B2 (en) * 2009-11-06 2015-04-14 University Of Technology, Sydney Sensorless AC motor controller
JP2015159626A (ja) * 2014-02-21 2015-09-03 京セラ株式会社 インバータおよびインバータの制御方法

Also Published As

Publication number Publication date
JPWO2019044717A1 (ja) 2020-07-27
JP6841336B2 (ja) 2021-03-10
CN111034025A (zh) 2020-04-17
US10992241B2 (en) 2021-04-27
CN111034025B (zh) 2023-02-17
US20200244196A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
WO2017154239A1 (ja) モータ駆動装置及びモータ駆動装置における相電流検出方法
JP6841336B2 (ja) モータの制御装置及び記憶媒体
JP5491207B2 (ja) ステッピングモータの駆動装置
JP5917294B2 (ja) モータ駆動回路
JP2006054995A (ja) 交流電動機の駆動制御装置および駆動制御方法
JP5702126B2 (ja) モータ制御回路
US20060012329A1 (en) Method and apparatus for controlling synchronous motor
US10224842B2 (en) Control device and brushless motor
CN110323977B (zh) 马达单元
US11515822B2 (en) Adaptive torque disturbance cancellation for electric motors
JP3333442B2 (ja) ブラシレスモータの駆動装置
JP2004274855A (ja) ローター位置検出調整方法及びローター位置検出調整装置
US11843342B2 (en) Motor drive control device and motor drive control method
JP4068392B2 (ja) モータ制御装置
KR100643244B1 (ko) Bldc 모터의 제어장치 및 그 제어방법
CN112398373B (zh) 一种无刷直流电机的控制方法、装置及存储介质
JP2004180431A (ja) ステッピングモータ駆動装置
JP2009027907A (ja) 通電タイミング決定回路及びモータの通電タイミング決定方法
JP2016171707A (ja) モータ駆動制御装置及びモータ制御システム
JP2005304133A (ja) モータ駆動方法およびモータ駆動装置
JP2006081322A (ja) 交流電動機の制御装置
JP4037536B2 (ja) モータ制御装置
JP2003092896A (ja) Dcブラシレスモータのトルク制御装置
CN112910358A (zh) 马达控制装置
JP2021106477A (ja) 電力変換器制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849759

Country of ref document: EP

Kind code of ref document: A1