WO2019044687A1 - バスバーアッセンブリの製造方法 - Google Patents

バスバーアッセンブリの製造方法 Download PDF

Info

Publication number
WO2019044687A1
WO2019044687A1 PCT/JP2018/031314 JP2018031314W WO2019044687A1 WO 2019044687 A1 WO2019044687 A1 WO 2019044687A1 JP 2018031314 W JP2018031314 W JP 2018031314W WO 2019044687 A1 WO2019044687 A1 WO 2019044687A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
bar assembly
slit
forming
conductive metal
Prior art date
Application number
PCT/JP2018/031314
Other languages
English (en)
French (fr)
Inventor
正二郎 若林
雅也 中川
Original Assignee
サンコール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社 filed Critical サンコール株式会社
Priority to US16/642,783 priority Critical patent/US10784669B2/en
Priority to CN201880004399.7A priority patent/CN109983549B/zh
Priority to EP18850846.9A priority patent/EP3675142B1/en
Publication of WO2019044687A1 publication Critical patent/WO2019044687A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/005Laminated bus-bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/16Rails or bus-bars provided with a plurality of discrete connecting locations for counterparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/16Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • H05K2201/09154Bevelled, chamferred or tapered edge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09972Partitioned, e.g. portions of a PCB dedicated to different functions; Boundary lines therefore; Portions of a PCB being processed separately or differently
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/049Wire bonding

Definitions

  • the present invention relates to a method of manufacturing a busbar assembly in which a plurality of busbars are electrically insulated and mechanically connected.
  • a bus bar assembly comprising a plurality of bus bars electrically insulated and mechanically connected to each other has been proposed and used in various fields (see Patent Documents 1 and 2 below).
  • the conventional bus bar assembly is a laminated type in which one flat bus bar and another flat bus bar are stacked vertically in parallel with each other, and the opposite flat surface of the one flat bus bar Since the opposing flat surfaces of the other flat plate-like bus bars are disposed so as to entirely face each other with the insulating resin interposed therebetween, there is a surface where it is difficult to secure sufficient reliability regarding the insulating property.
  • Patent Document 2 heat resistance and insulation are provided on outer peripheral surfaces of the plurality of bus bars by the step of preparing a plurality of flat bus bars and electrodeposition coating using a paint having heat resistance and insulation properties.
  • the coating of the other bus bars is shifted from the semi-cured state to the fully cured state by overlapping the bus bar of the other bus bar and the other bus bars and performing the pressure heating process, and the coating shifted from the semi-cured state to the fully cured state
  • a method of manufacturing a bus bar assembly including the step of mechanically connecting the one bus bar and the other bus bar in a stacked state by a membrane.
  • Patent Document 2 Although the manufacturing method described in Patent Document 2 is useful in that the disadvantages in the manufacturing method described in Patent Document 1 can be eliminated, it is necessary to separately deposit a paint film on each of a plurality of bus bars. Also, when securing one bus bar and the other bus bar, a locking structure is required to lock both in the relative position required in the final product form.
  • the present invention has been made in view of such prior art, and can efficiently manufacture a bus bar assembly in which electrical insulation between a plurality of bus bars can be reliably ensured and the plurality of bus bars are positioned at desired relative positions. It is an object of the present invention to provide a method of manufacturing a bus bar assembly.
  • the present invention is a manufacturing method of a bus bar assembly in which a plurality of bus bars are electrically insulated and mechanically connected by an insulating resin layer to achieve the above object, and a bus bar assembly forming region Preparing a first conductive metal flat plate having a slit, and forming a slit in the bus bar assembly forming region between the first surface on one side in the thickness direction and the second surface on the other side in the thickness direction
  • a bus bar side curing step of curing to form the insulating resin layer, the insulating resin layer in the slit and the first conductive metal flat plate To provide a method of manufacturing a bus bar assembly comprising a cutting step of cutting the bus bar forming portion that face each other across the slit from the first conductive metal flat plate.
  • the manufacturing method of the present invention it is possible to reliably ensure the electrical insulation between the plurality of bus bars and efficiently manufacture the bus bar assembly in which the plurality of bus bars are positioned at the desired relative positions.
  • the bus bar side coating process is performed by electrodeposition coating. Instead of this, it is also possible to perform the bus bar side by electrostatic powder coating.
  • the manufacturing method according to the present invention includes a step of performing masking covering at least a part of the first surface of the bus bar forming portion with a mask before the bus bar side coating step; And removing the mask and forming a plating layer in a region covered with the mask in the bus bar forming portion.
  • the bus bar forming portion opposed through the slit is the first conductive metal flat plate It connects with each other via the connection site
  • the first conductive metal flat plate is cut in the thickness direction along a cutting line set so as to straddle the slit in the width direction on one side in the longitudinal direction of the slit;
  • a process of cutting the first conductive metal flat plate in the thickness direction along a cutting line set so as to straddle the slit in the width direction on the other side in the longitudinal direction of the slit is included.
  • the first conductive metal flat plate is adjacent in the X direction to a plurality of bus bar assembly forming regions arranged along the X direction in the XY plane in which the first conductive metal flat plate is located. And a connecting region connecting the bus bar assembly forming region, and the slit is formed along the X direction in the longitudinal direction.
  • the first conductive metal flat plate includes the plurality of bus bar assembly forming regions arranged along the X direction and the coupling region connecting the bus bar assembly forming regions adjacent in the X direction.
  • the slit is formed such that the width of the opening becomes narrower as it goes from one of the first surface and the second surface to the other.
  • the manufacturing method according to the present invention is a second conductive metal flat plate different from the first conductive metal flat plate before the cutting step, and a frame corresponding to the bus bar assembly forming region
  • At least one of the bus bar side curing step and the frame side curing step is configured to bring the insulating resin layer to be formed into a semi-cured state, and the manufacturing method according to the present invention is performed before the cutting step And an assembling step of fixing the peripheral portion and the bus bar assembly forming area by curing the insulating resin layer in a semi-cured state in a state in which the bus bar assembly forming area and the frame body forming area are polymerized. It shall be included.
  • the peripheral portion in addition to the process of cutting the insulating resin layer in the slit and the bus bar forming portion opposed to each other with the slit interposed therebetween from the first conductive metal flat plate, the peripheral portion is (2) A process of cutting from a conductive metal flat plate is included.
  • FIG. 1 (a) is a plan view of the bus bar assembly manufactured by the manufacturing method according to Embodiment 1 of the present invention, and FIG. 1 (b) is taken along line Ib-Ib in FIG. 1 (a).
  • FIG. 1C is a cross-sectional view in the same cross section as FIG. 1B in a state where the semiconductor element is mounted.
  • FIG. 2 is a plan view of a first conductive metal flat plate used in the manufacturing method according to the first embodiment, and shows a state at the time when the slit forming step in the manufacturing method is completed.
  • 3 (a) is an enlarged plan view of the bus bar assembly formation region shown by the portion III in FIG. 2, and FIG. 3 (b) is a cross-sectional view along the line IIIb-IIIb in FIG.
  • FIG. 4 is an enlarged plan view of the bus bar assembly formation region, and shows a state at the time when the bus bar side curing step in the manufacturing method is completed.
  • 5 (a) is a plan view of a bus bar assembly manufactured by a manufacturing method according to a modification of the first embodiment, and FIG. 5 (b) is taken along line Vb-Vb in FIG. 5 (a).
  • FIG. FIG. 6 (a) is an enlarged cross-sectional view corresponding to the VI portion in FIG. 3 and is a manufacturing method according to another modification in which the cross-sectional shape of the slit is changed with respect to the manufacturing method of the first embodiment.
  • FIG. 6 (b) is an enlarged cross-sectional view corresponding to FIG.
  • FIG. 6 (a) showing still another state in which the cross-sectional shape of the slit is changed with respect to the manufacturing method of the first embodiment.
  • the state in the middle of manufacture of the manufacturing method concerning a modification is shown.
  • FIG. 7 is a plan view of the bus bar assembly manufactured by the manufacturing method according to Embodiment 2 of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • FIG. 10 is a cross-sectional view taken along the line XX in FIG.
  • FIG. 11 is a cross-sectional view in the same cross section as FIG. 8 in a state in which the semiconductor element is mounted.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • FIG. 10 is a cross-section
  • FIG. 12 is an enlarged plan view of the bus bar assembly forming region in the first conductive metal flat plate used in the manufacturing method according to Embodiment 2, and shows a state at the time when the masking step in the manufacturing method is completed.
  • FIG. 13 (a) is an enlarged plan view of the bus bar assembly formation region, showing a state after the bus bar side curing step in the manufacturing method
  • FIG. 13 (b) is a XIIIb-XIIIb line in FIG. 13 (a) It is sectional drawing along.
  • FIG. 14 is a plan view of a second conductive metal flat plate used in the manufacturing method according to Embodiment 2, and shows a state after the punching step in the manufacturing method.
  • FIG. 14 is a plan view of a second conductive metal flat plate used in the manufacturing method according to Embodiment 2, and shows a state after the punching step in the manufacturing method.
  • FIG. 15 (a) is an enlarged plan view of the frame formation region shown by the XV portion in FIG. 14, and FIG. 15 (b) is a cross-sectional view along the line XVb-XVb in FIG. 15 (a).
  • FIG. 16 is a cross-sectional view corresponding to FIG. 15 (b) and shows the state after the frame side coating step in the manufacturing method.
  • FIG. 17 is a plan view of the first and second conductive metal flat plates in a state of being polymerized in the assembling step in the manufacturing method according to the second embodiment.
  • 18 (a) is an enlarged view of a portion XVIII in FIG. 17, and FIG. 18 (b) is a cross-sectional view along the line XVIIIb-XVIIIb in FIG. 18 (a).
  • FIG. 19 (a) is an enlarged plan view corresponding to FIG. 18 (a)
  • FIG. 19 (b) is a cross-sectional view taken along the line XIXb-XIXb in
  • FIG. 1 (a) is a plan view of the bus bar assembly 1A manufactured by the manufacturing method according to the present embodiment
  • FIG. 1 (b) is a cross-sectional view along line Ib-Ib in FIG. 1 (a). , Respectively.
  • the bus bar assembly 1A will be described. As shown in FIGS. 1 (a) and 1 (b), the bus bar assembly 1A is the conductive first and second bus bars 10a and 10b, and there is a gap 40 between the opposing side surfaces of each other.
  • the first and second bus bars 10a and 10b disposed in the same plane and the gap 40 between the opposing side surfaces of the first and second bus bars 10a and 10b are filled with the first and second bus bars 10a.
  • And 10 b electrically, and mechanically connected with each other while having a bus bar-side insulating resin layer 30.
  • the first and second bus bars 10a and 10b have a first surface 11 on one side in the thickness direction and a second surface on the other side in the thickness direction in a cross-sectional view along the thickness direction. 12, opposite side surfaces 13 facing each other, and outer side surfaces 14 facing in opposite directions to each other.
  • the first and second bus bars 10a and 10b are formed of a conductive metal flat plate such as Cu.
  • One of the first and second bus bars 10a and 10b acts as a positive electrode and the other acts as a negative electrode.
  • the bus bar side insulating resin layer 30 is formed of a resin having heat resistance and insulating properties, and for example, polyimide, polyamide, epoxy or the like is suitably used.
  • the insulating resin layer 30 fills the gap 40 between the opposing side surfaces 13 of the first and second bus bars 10a and 10b, while the insulating resin layer 30 fills the gap 40 of the first and second bus bars 10a and 10b. It covers the first surface 11, the second surface 12 and the outer surface 14.
  • FIG. 1C is a cross-sectional view of the bus bar assembly 1A with a semiconductor element 92 such as an LED mounted thereon.
  • a semiconductor element 92 such as an LED mounted thereon.
  • one of the positive electrode and the negative electrode is provided on the lower surface, and the other of the positive electrode or the negative electrode is provided on the upper surface.
  • the lower surface of the semiconductor element 92 is electrically connected to the first plating layer 90a provided on the first surface 11 of one of the first and second bus bars 10a and 10b (the first bus bar 10a in the illustrated embodiment).
  • a second plating provided on the first surface 11 of the other of the first and second bus bars 10a and 10b (in the illustrated embodiment, the second bus bar 10b) by die bonding so as to be connected in a similar manner Electrical connection is made to layer 90 b through wire bonding 95.
  • the manufacturing method according to the present embodiment includes the steps of preparing a first conductive metal flat plate 100 having a bus bar assembly forming area 120 having the same thickness as the first and second bus bars 10a and 10b; And a slit forming step of forming a slit 125 penetrating between the first surface 121 on one side in the thickness direction and the second surface 122 on the other side in the thickness direction.
  • FIG. 2 shows a plan view of the first conductive metal flat plate 100 after the slit formation process is completed. Further, FIG. 3 (a) is an enlarged view of a portion III in FIG. 2, and FIG. 3 (b) is a cross-sectional view taken along the line IIIb-IIIb in FIG. 3 (a).
  • the slits 125 form the gap 40 between the opposing side surfaces 13 of the first and second bus bars 10a and 10b in the bus bar assembly 1A.
  • the width of the gap 40 that is, the width of the slit 125 is determined according to the specification of the bus bar assembly 1A.
  • the first conductive metal flat plate 100 is opposed via the slit 125 in the state after the slit formation step.
  • a pair of bus bar forming portions 130, 130 is a connecting portion 135 positioned on one longitudinal side of the slit 125 in the first conductive metal flat plate 100 with respect to the slit 125 and the other in the longitudinal direction of the slit 125 with respect to the slit 125. It is configured to be kept in connection with each other through the connection portions 136 located on the side. By providing such a configuration, the slit 125 can be formed with high accuracy.
  • a plurality of the first conductive metal flat plates 100 are arranged along the X direction in the XY plane in which the first conductive metal flat plate 100 is located.
  • bus bar assembly forming regions 120 are arranged in series along the X direction (vertical direction in the drawing).
  • the plurality of bus bar assembly forming regions 120 arranged along the X direction and the bus bar assembly forming region 120 adjacent in the X direction are connected to each other
  • the connection area 140 forms the bus bar assembly forming piece 110, and the plurality of bus bar assembly forming pieces 110 are arranged in parallel in the Y direction orthogonal to the X direction in the XY plane.
  • the plurality of (five in the illustrated embodiment) bus bar assembly forming pieces 110 arranged in parallel in the Y direction, and the plurality of first conductive metal flat plates 100;
  • the bus bar side first connection piece 111 connecting the X direction one side end portions of the bus bar assembly forming piece 110 and the bus bar side second connection piece connecting the X direction other side end portions of the plurality of bus bar assembly forming pieces 110 And 112.
  • bus bar assemblies 1A can be manufactured at the same time.
  • the first conductive metal flat plate 100 is coated with a paint containing an insulating resin so that at least the slits 125 are filled with the insulating resin layer 30 after the slit forming step. And a bus bar side curing step of curing the paint applied in the bus bar side painting step to form the insulating resin layer 30.
  • FIG. 4 shows an enlarged plan view of the bus bar assembly formation region 120 when the bus bar side curing process is completed.
  • the said bus-bar side coating process is performed by electrodeposition coating using the electrodeposition paint containing insulating resin which has heat resistance and insulation, such as polyimide, polyamide, an epoxy, for example.
  • the bus bar side coating process can be performed by electrostatic powder coating using a powder of the insulating resin.
  • the bus bar side coating step can be performed by spray coating.
  • the bus bar side curing step is performed by heating the paint applied in the bus bar side painting step at an appropriate temperature.
  • the bus bar forming portion 130 opposed across the slit 125 is located on one side in the longitudinal direction of the slit 125 with respect to the slit 125 in the first conductive metal flat plate 100.
  • the connection portion 135 is connected to each other via a connection portion 136 located on the other side of the slit 125 in the longitudinal direction of the slit 125.
  • the first conductive metal flat plate is provided along a cutting line 126 set to straddle the slit 125 in the width direction on one side in the longitudinal direction of the slit 125.
  • the first conductive metal flat plate 100 connects the plurality of bus bar assembly forming regions 120 arranged along the X direction and the bus bar assembly forming region 120 adjacent in the X direction.
  • the slit 125 is formed so that the longitudinal direction is along the X direction.
  • the bus bar assembly 1A shown in FIG. 1, that is, the first and second bus bars 10 and 20 are electrically insulated by the insulating resin layer 30.
  • the bus bar assembly 1A insulated and mechanically connected can be efficiently manufactured.
  • the slits between the pair of bus bar forming portions 130 while the relative positions of the pair of bus bar forming portions 130 forming the first and second bus bars 10a and 10b are fixed.
  • 125 is filled with the insulating resin layer 30, and thereafter, the pair of bus bar forming portions 130 and the insulating resin layer 30 are cut from the first conductive metal flat plate 100 to form the first and second bus bars 10a.
  • 10b are electrically insulated and mechanically connected by the insulating resin layer 30, thereby producing the bus bar assembly 1A.
  • the bus bar assembly 1A in which the first and second bus bars 10a and 10b are accurately positioned at the desired relative positions is ensured while ensuring the electrical insulation between the first and second bus bars 10a and 10b with certainty. It can be manufactured well.
  • the manufacturing method according to the present embodiment increases the number of the slits 125. Thereby, it is also possible to manufacture a bus bar assembly provided with three or more bus bars.
  • FIG. 5 (a) is a plan view of the bus bar assembly 1B manufactured by setting the number of slits 125 to three
  • FIG. 5 (b) is a plan view taken along line Vb-Vb in FIG. 5 (a). Cross sections are shown respectively.
  • the bus bar assembly 1B has three gaps 40 formed by the three slits 125, and the four bus bars 10a to 10d are electrically connected by the insulating resin layer 30 filled in the three gaps 40. Are in an insulated state and mechanically connected.
  • the opening width of the slit 125 is constant in the thickness direction, but instead, the opening width changes in the thickness direction. It is also possible to form such a slit.
  • FIG. 6A is an enlarged cross-sectional view corresponding to the VI portion of FIG. 3 and is an enlarged cross-sectional view in the middle of manufacturing of the manufacturing method according to the modification of the present embodiment.
  • the opposite side surface 13 of the second bus bar 10b is a vertical surface along the thickness direction
  • the opposite end surface 13 of the first bus bar 10a is the side from the first surface 11 side.
  • a slit 125 b is formed to be an inclined surface closer to the opposing end surface 13 of the second bus bar 10 b as it goes to the second surface 12 side.
  • FIG. 6B is an enlarged cross-sectional view corresponding to the VI portion of FIG. 3 and is an enlarged cross-sectional view during manufacturing of a manufacturing method according to another modification of the present embodiment.
  • the opposing end surface 13 of the first bus bar 10a is on the opposing end surface 13 of the second bus bar 10b as it goes from the side of the first surface 11 to the side of the second surface 12.
  • the opposing end face 13 of the second bus bar 10b is an inclined face approaching the opposing end face of the first bus bar 10a as it goes from the side of the first surface 11 to the side of the second surface 12 Slits 125c are formed.
  • the shape and size of the gap 40 between the plurality of bus bars 10, that is, the gap 40 is filled by changing the shape of the slits,
  • the shapes and sizes of the insulating resin layers 30 mechanically connected can be easily made different while electrically insulating the bus bars 10.
  • Embodiment 2 hereinafter, another embodiment of a method of manufacturing a bus bar assembly according to the present invention will be described with reference to the attached drawings.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
  • FIG. 7 shows a plan view of the bus bar assembly 2A manufactured by the manufacturing method according to the present embodiment.
  • 8 to 10 show cross-sectional views taken along the lines VIII-VIII, IX-IX and XX in FIG. 7, respectively.
  • the bus bar assembly 2A As shown in FIGS. 7 to 10, the bus bar assembly 2A includes the first and second bus bars 10a and 10b and the bus bar side insulating resin layer 30 as in the bus bar assembly 1A of the first embodiment. Have.
  • the bus bar assembly 2A further includes first and second plated layers 90a and 90b provided on the first surface 11 (upper surface in the illustrated embodiment) of the first and second bus bars 10a and 10b. There is.
  • FIG. 11 is a cross-sectional view corresponding to FIG. 8 in a state where the semiconductor element 92 such as an LED is mounted on the bus bar assembly 2A.
  • the semiconductor element 92 such as an LED is mounted on the bus bar assembly 2A.
  • one of the positive electrode and the negative electrode is provided on the lower surface, and the other of the positive electrode or the negative electrode is provided on the upper surface.
  • the lower surface of the semiconductor element 92 is electrically connected to a first plating layer 90a provided on one of the first and second bus bars 10a and 10b (the first bus bar 10a in the illustrated embodiment).
  • a first plating layer 90a provided on one of the first and second bus bars 10a and 10b (the first bus bar 10a in the illustrated embodiment).
  • the second plating layer 90b provided on the other surface of the first and second bus bars 10a and 10b (the second bus bar 10b in the illustrated embodiment) and the upper surface thereof is electrically connected through wire bonding 95. Connected.
  • the bus bar assembly 2A further includes a frame 50 fixed to the first surface of the first and second bus bars 10a and 10b.
  • the frame 50 is formed in a cylindrical shape having a central hole 61 penetrated in the axial direction.
  • the frame 50 is fixed on the first surface 11 of the first and second bus bars 10a and 10b so as to be along the peripheral edges of the first and second bus bars 10a and 10b in a plan view, and the bus bar assembly 2A
  • a mount space S is defined with the upper part being open while surrounding the semiconductor element 92 mounted on the upper side.
  • the frame 50 has a cylindrical frame main body 60 having a central hole 61 penetrating in the axial direction, and a frame side insulating resin layer 65 covering the outer peripheral surface of the frame main body 60.
  • the frame main body 60 is formed, for example, by using the metal flat plate having a thickness corresponding to the axial length of the frame main body 60 and forming the central hole 61 by pressing the metal flat plate. It can be done.
  • the frame-side insulating resin layer 65 is formed using, for example, polyimide, polyamide, epoxy or the like.
  • An insulating resin (not shown) such as epoxy is injected into the mount space S after the semiconductor element 92 is mounted, and the semiconductor element 92 is sealed with the resin.
  • the manufacturing method according to the present embodiment includes the steps of preparing the first conductive metal flat plate 100 and the slit forming step (see FIGS. 2 and 3). It is the same as the manufacturing method according to.
  • the manufacturing method according to the present embodiment before the bus bar side painting step, at least the first surface of one side in the thickness direction of the bus bar forming portion 130 forming the first and second bus bars 10a and 10b. And a step of masking the part with a mask 190, and before the cutting step, the mask 190 is peeled off and a portion of the bus bar forming portion 130 which is covered by the mask 190 is removed.
  • the manufacturing method according to the first embodiment is different from the manufacturing method according to the first embodiment in that the steps of forming the first and second plated layers 90a and 90b are included.
  • FIG. 12 shows an enlarged plan view of the bus bar assembly formation area when the masking process is completed.
  • the mask 190 installed in the masking step is the first surface of the first surface on one side in the thickness direction of the bus bar forming portion 130 forming the first and second bus bars 10a and 10b.
  • the second plating layers 90a and 90b are respectively shaped and dimensioned to cover the regions (hereinafter referred to as plating layer forming regions).
  • the bus bar side painting step and the bus bar side curing step are performed in a state where the mask 190 is installed in the bus bar assembly formation region 120.
  • FIG. 13 (a) is an enlarged plan view of the bus bar assembly forming region 120 when the bus bar side curing step is completed, and FIG. 13 (b) is taken along the line XIIIb-XIIIb in FIG. 13 (a). Cross sections are shown respectively.
  • the bus bar assembly formation region 120 is not exposed in the bus bar side painting step.
  • the insulating resin layer 30 is provided on the entire surface of the second surface 122, and the insulating resin penetrates into the slit 125 from the side of the second surface 122, and the insulating resin layer 30 is also filled in the slit 125. Be done.
  • the mask 190 it is possible to use a first mask that covers the area to be provided with the first plating layer 90a and a second mask that covers only the area to be provided with the second plating layer b. is there.
  • the second conductive metal flat plate 200 different from the first conductive metal flat plate 100 has an outer peripheral shape corresponding to the bus bar assembly forming region 120 in a plan view, and the thickness of the frame 60 Preparing a second conductive metal flat plate 200 including the frame forming area 220 having the same thickness; and punching out the center 235 of the frame forming area 220 so that the peripheral portion 230 of the frame forming area 220 remains.
  • a frame side coating process of applying a coating containing an insulating resin to the peripheral portion 230 of the frame forming area 220, and the frame side coating process And a frame side cured to form the frame side insulating resin layer 65 to cure the charge.
  • FIG. 14 shows a plan view of the second conductive metal flat plate 200 when the punching process is completed. Further, FIG. 15 (a) shows an enlarged view of a portion XV in FIG. 14, and FIG. 15 (b) shows a sectional view taken along the line XVb-XVb in FIG. 15 (a).
  • the second conductive metal flat plate 200 is configured such that the frame forming area 220 is aligned with the bus bar assembly forming area 120 when the first conductive metal flat sheet 100 is polymerized.
  • the first conductive metal flat plates 100 forming the first and second bus bars 10a and 10b are a plurality of bus bar assembly forming pieces arranged in parallel in the Y direction. 110, a plurality of bus bar assembly forming pieces 110 each having a plurality of bus bar assembly forming regions 120 arranged in series in the X direction, and X side end portions of the plurality of bus bar assembly forming pieces 110
  • the bus bar side first connection piece 111 to be connected and the bus bar side second connection piece 112 to connect the X direction other side end portions of the plurality of bus bar assembly forming pieces 110 are connected (see FIG. 2).
  • the second conductive metal flat plate 200 is a plurality of frame forming pieces 210 arranged in parallel in the Y direction at the same pitch as the plurality of bus bar assembly forming pieces 110.
  • a plurality of frame forming pieces 110 having a plurality of frame forming regions 220 arranged in series in the X direction at the same pitch as the plurality of bus bar forming regions 120, and one of the plurality of frame forming pieces 110 in the X direction It has a frame side first connection piece 211 which connects side end portions, and a frame side second connection piece 212 which connects the X direction other side end portions of the plurality of frame body forming pieces 110.
  • the central portion 235 is punched out so that the peripheral edge portion 230 surrounds the plating layer formation region. That is, the size of the punched portion 235 is determined such that the central hole 61 (see FIG. 15) is larger than the plating layer formation area in plan view.
  • the frame-side coating step is performed by electrodeposition coating using an electrodeposition paint containing an insulating resin having heat resistance and insulation such as, for example, polyimide, polyamide, epoxy and the like.
  • the frame-side coating process can be performed by electrostatic powder coating using a powder of the insulating resin.
  • FIG. 16 shows a cross-sectional view corresponding to FIG. 15 (b) when the frame side coating process is completed.
  • the frame side coating process can be performed simultaneously with the bus bar side coating process in the same method as the coating method in the bus bar side coating process. That is, when the bus bar side coating process is performed by electrodeposition coating, the frame side coating process can be performed by electrodeposition coating using the same electrodeposition paint, and the bus bar side coating process is electrostatic powder When it is carried out by body coating, the powder-side coating process can be carried out by electrostatic powder coating using the same powder coating. According to such a configuration, it is possible to improve the manufacturing efficiency.
  • At least one of the bus bar side curing step and the frame side curing step is configured to make the insulating resin layers 30 and 65 to be formed in a semi-cured state.
  • the semi-cured state of the insulating resin layers 30 and 65 can be obtained by appropriately adjusting the temperature at the time of heat treatment.
  • the insulating resin in a semi-cured state in a state in which the bus bar assembly forming region 120 and the frame forming region 220 are polymerized after the bus bar side curing step and the frame side curing step.
  • An assembly process for fixing the peripheral portion 230 and the bus bar assembly formation region 120 by curing a layer (for example, the insulating resin layer 30) is provided.
  • FIG. 17 shows a plan view of the first and second conductive metal flat plates 100 and 200 when the assembling step is completed.
  • 18A shows an enlarged view of a portion XVIII in FIG. 17, and
  • FIG. 18B shows a cross-sectional view taken along the line XVIIIb-XVIIIb in FIG. 18A.
  • bus bar side alignment holes 115, 116 are provided in the bus bar side first and second connection pieces 111, 112 respectively, and in FIG.
  • frame-side alignment holes 215 and 216 are provided in the frame-side first and second connection pieces 211 and 212, respectively.
  • the first bus bar side alignment hole 115 and the frame side alignment hole 215 are aligned, and the first bus bar side alignment hole 116 and the frame side alignment hole 216 are aligned.
  • the bus bar assembly forming area 120 and the frame forming area 220 are polymerized in a state where they are aligned.
  • the bus bar assembly forming area 120 and the frame body forming area 220 joined are joined in the width direction of the slit 125 on one side in the longitudinal direction of the slit 125.
  • the first and second conductive metal flat plates 100 are provided along the cutting line 126 set to straddle and the cutting line 127 set to straddle the slit 125 in the width direction on the other side of the slit 125 in the longitudinal direction. , 200, and a cutting process.
  • FIG. 19 (a) is an enlarged plan view of the bus bar assembly forming area 120 and the frame forming area 220
  • FIG. 19 (b) is an enlarged plan view showing the cutting lines 126 and 127 by broken lines.
  • FIG. 19 shows a cross sectional view along a line XIXb-XIXb in FIG.
  • the mask 190 is peeled off after the assembling step and before the cutting step, and is covered with the mask 190 among the pair of bus bar forming portions 130.
  • a process of forming the first and second plated layers 90a and 90b in the region is provided.
  • FIGS. 19A and 19B show a state after forming the first and second plated layers 90a and 90b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Fuses (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

本発明に係るバスバーアッセンブリの製造方法は、第1導電性金属平板を用意する工程と、前記平板のバスバーアッセンブリ形成領域にスリットを形成する工程と、少なくとも前記スリットが絶縁性樹脂層で充填されるように絶縁性樹脂を含む塗料を塗装する工程と、前記塗料を硬化させて絶縁性樹脂層を形成する工程と、前記スリット内の絶縁性樹脂層及び前記第1導電性金属平板のうち前記スリットを挟んで対向するバスバー形成部位を前記第1導電性金属平板から切断する切断工程とを含む。

Description

バスバーアッセンブリの製造方法
 本発明は、複数のバスバーが電気的には絶縁状態で且つ機械的には連結されているバスバーアッセンブリの製造方法に関する。
 互いに対して電気的には絶縁状態で且つ機械的には連結されている複数のバスバーを備えたバスバーアッセンブリが提案され、種々の分野において利用されている(下記特許文献1及び2参照)。
 しかしながら、従来のバスバーアッセンブリは、一の平板状バスバーと他の平板状バスバーとが互いに対して平行状態で上下に積層されてなる積層型とされており、前記一の平板状バスバーの対向平面と前記他の平板状バスバーの対向平面とが絶縁性樹脂を挟んで全面的に対向配置されている為、絶縁性に関する信頼性を十分には確保し難い面がある。
 また、前述のような積層型バスバーアッセンブリを製造する際には、互いに別体とされた一の平板状バスバー及び他の平板状バスバーを、上下に所望距離だけ離間させた状態で係止させ、その係止状態のままで両者を絶縁性樹脂によって電気的には絶縁状態で機械的に連結させる必要があり、製造効率を向上させ難いという問題があった。
 即ち、前記特許文献1には、上下に分離可能な上側金型及び下側金型を用意する工程と、前記上側金型及び前記下側金型によって形成されるキャビティ内において第1及び第2平板状バスバーを上下に離間させつつ積層配置させて係止させる工程と、前記上側金型及び前記下側金型に形成された樹脂注入孔を介して前記キャビティ内に絶縁性樹脂を注入する工程とを備えたバスバーアッセンブリの製造方法が開示されている。
 しかしながら、前記特許文献1に記載の製造方法においては、前記第1及び第2平板状バスバーを前記キャビティ内に設置する際に、前記第1及び第2平板状バスバーの外周面と前記上側金型及び前記下側金型の内周面との間に樹脂によって充填されるべき隙間を設け、且つ、前記第1及び第2平板状バスバーの対向平面間にも樹脂によって充填されるべき隙間を設ける必要があり、このような状態で前記第1及び第2平板状バスバーを前記キャビティ内において位置固定したままで前記キャビティ内に絶縁性樹脂を注入する必要がある。
 従って、前記第1及び第2平板状バスバーの形状や寸法、及び、絶縁性樹脂の厚み等のバスバーアッセンブリの仕様毎に、前記上側金型及び前記下側金型を用意する必要があるという問題があった。
 また、前記第1及び第2平板状バスバーの対向平面間の隙間内に絶縁性樹脂を行き渡らせるのが困難になるという問題もあった。
 一方、前記特許文献2には、複数の平板状バスバーを用意する工程と、耐熱性及び絶縁性を有する塗料を用いた電着塗装によって、前記複数のバスバーのそれぞれの外周面に耐熱性及び絶縁性塗装膜を析出させる工程と、前記複数のバスバーのうちの一のバスバーの塗装膜を完全硬化させる工程と、前記複数のバスバーのうちの他のバスバーの塗装膜を半硬化させる工程と、一のバスバーと他のバスバーとを重ね合わせて加圧加熱処理を行うことで、他のバスバーの塗装膜を半硬化状態から完全硬化状態へ移行させ、この半硬化状態から完全硬化状態へ移行する塗装膜によって前記一のバスバーと前記他のバスバーとを積層状態で機械的に連結させる工程とを備えたバスバーアッセンブリの製造方法が開示されている。
 前記特許文献2に記載の製造方法は、前記特許文献1に記載の製造方法における不都合を解消できる点においては有用であるが、複数のバスバーのそれぞれに対して個別に塗装膜を析出させる必要があり、また、一のバスバー及び他のバスバーを固着させる際には、最終製品形態において要求される両者の相対位置に両者を係止する係止構造が必要となる。
特許第4432913号公報 特開2016-216766号公報
 本発明は、斯かる従来技術に鑑みなされたものであり、複数のバスバー間の電気的絶縁性を確実に確保でき且つ前記複数のバスバーが所望相対位置に位置されたバスバーアッセンブリを効率良く製造し得るバスバーアッセンブリの製造方法の提供を目的とする。
 本発明は、前記目的を達成するために、複数のバスバーが絶縁性樹脂層によって電気的には絶縁状態で且つ機械的には連結されているバスバーアッセンブリの製造方法であって、バスバーアッセンブリ形成領域を有する第1導電性金属平板を用意する工程と、前記バスバーアッセンブリ形成領域に厚み方向一方側の第1表面及び厚み方向他方側の第2表面の間を貫通するスリットを形成するスリット形成工程と、少なくとも前記スリットが前記絶縁性樹脂層で充填されるように前記第1導電性金属平板に絶縁性樹脂を含む塗料を塗装するバスバー側塗装工程と、前記バスバー側塗装工程で塗装された塗料を硬化させて前記絶縁性樹脂層を形成するバスバー側硬化工程と、前記スリット内の絶縁性樹脂層及び前記第1導電性金属平板のうち前記スリットを挟んで対向するバスバー形成部位を前記第1導電性金属平板から切断する切断工程とを含むバスバーアッセンブリの製造方法を提供する。
 本発明に係る製造方法によれば、複数のバスバー間の電気的絶縁性を確実に確保でき且つ前記複数のバスバーが所望相対位置に位置されたバスバーアッセンブリを効率良く製造することができる。
 好ましくは、前記バスバー側塗装工程は電着塗装によって行われる。
 これに代えて、前記バスバー側を静電粉体塗装によって行うことも可能である。
 一形態においては、本発明に係る製造方法は、前記バスバー側塗装工程の前に、前記バスバー形成部位の第1表面の少なくとも一部をマスクで覆うマスキングを行う工程を備え、前記切断工程の前に、前記マスクを剥離し且つ前記バスバー形成部位のうち前記マスクによって覆われていた領域にメッキ層を形成する工程を備えるものとされる。
 本発明に係る製造方法において用いられる前記第1導電性金属平板は、好ましくは、前記スリット形成工程後の状態において、前記スリットを介して対向する前記バスバー形成部位が、前記第1導電性金属平板のうち前記スリットより当該スリットの長手方向一方側に位置する連結部位及び前記スリットより当該スリットの長手方向他方側に位置する連結部位を介して、互いに対して繋がっているように構成される。
 この場合、前記切断工程は、前記スリットの長手方向一方側において当該スリットを幅方向に跨ぐように設定された切断線に沿って前記第1導電性金属平板を厚み方向に切断する処理、及び、前記スリットの長手方向他方側において当該スリットを幅方向に跨ぐように設定された切断線に沿って前記第1導電性金属平板を厚み方向に切断する処理を含むものとされる。
 より好ましくは、前記第1導電性金属平板は、当該第1導電性金属平板が位置するX-Y平面内のX方向に沿って配列された複数のバスバーアッセンブリ形成領域と、X方向に隣接するバスバーアッセンブリ形成領域を連結する連結領域とを有するものとされ、前記スリットは長手方向がX方向に沿って形成される。
 さらに好ましくは、前記第1導電性金属平板は、それぞれが、X方向に沿って配列された前記複数のバスバーアッセンブリ形成領域及びX方向に隣接する前記バスバーアッセンブリ形成領域を連結する前記連結領域を含む複数のバスバーアッセンブリ形成片であって、Y方向に並列配置された複数のバスバーアッセンブリ形成片と、前記複数のバスバーアッセンブリ形成片のX方向一方側端部同士を連結する第1連結片と、前記複数のバスバーアッセンブリ形成片のX方向他方側端部同士を連結する第2連結片とを有するように構成される。
 前記種々の構成において、前記スリットは、前記第1表面及び前記第2表面の一方から他方へ行くに従って開口幅が狭くなるように形成される。
 一形態においては、本発明に係る製造方法は、前記切断工程より前に、前記第1導電性金属平板とは異なる第2導電性金属平板であって、前記バスバーアッセンブリ形成領域に対応した枠体形成領域を有する第2導電性金属平板を用意する工程と、前記枠体形成領域の周縁部位を残し、前記周縁部位によって囲まれる内部を打ち抜く工程と、前記枠体形成領域の周縁部位の外周面に絶縁性樹脂を含む塗料を塗装する枠体側塗装工程と、前記枠体側塗装工程で塗装された塗料を硬化させて枠体側絶縁性樹脂層を形成する枠体側硬化工程とを含むものとされ、前記バスバー側硬化工程及び前記枠体側硬化工程の少なくとも一方は、形成する絶縁性樹脂層を半硬化状態とさせるように構成され、本発明に係る製造方法は、前記切断工程より前に、さらに、前記バスバーアッセンブリ形成領域及び前記枠体形成領域を重合させた状態で半硬化状態の絶縁性樹脂層を硬化させることにより、前記周縁部位と前記バスバーアッセンブリ形成領域とを固着させる組み付け工程を含むものとされる。
 この場合、前記切断工程は、前記スリット内の絶縁性樹脂層及び前記スリットを挟んで対向する前記バスバー形成部位を前記第1導電性金属平板から切断する処理に加えて、前記周縁部位を前記第2導電性金属平板から切断する処理を含むものとされる。
図1(a)は、本発明の実施の形態1に係る製造方法によって製造されたバスバーアッセンブリの平面図であり、図1(b)は、図1(a)におけるIb-Ib線に沿った断面図であり、図1(c)は、半導体素子が装着された状態の図1(b)と同一断面での断面図である。 図2は、前記実施の形態1に係る製造方法において用いる第1導電性金属平板の平面図であって、前記製造方法におけるスリット形成工程が完了した時点での状態を示している。 図3(a)は、図2におけるIII部で示すバスバーアッセンブリ形成領域の拡大平面図であり、図3(b)は、図3(a)におけるIIIb-IIIb線に沿った断面図である。 図4は、前記バスバーアッセンブリ形成領域の拡大平面図であり、前記製造方法におけるバスバー側硬化工程が完了した時点での状態を示している。 図5(a)は、前記実施の形態1の変形例に係る製造方法によって製造されたバスバーアッセンブリの平面図であり、図5(b)は、図5(a)におけるVb-Vb線に沿った断面図である。 図6(a)は、図3におけるVI部に対応した拡大断面図であって、前記実施の形態1の製造方法に対してスリットの断面形状を変更した他の変形例に係る製造方法の製造途中の状態を示し、図6(b)は、図6(a)に対応した拡大断面図であって、前記実施の形態1の製造方法に対してスリットの断面形状を変更した、さらに他の変形例に係る製造方法の製造途中の状態を示している。 図7は、本発明の実施の形態2に係る製造方法によって製造されたバスバーアッセンブリの平面図である。 図8は、図7におけるVIII-VIII線に沿った断面図である。 図9は、図7におけるIX-IX線に沿った断面図である。 図10は、図7におけるX-X線に沿った断面図である。 図11は、半導体素子が装着された状態の図8と同一断面での断面図である。 図12は、実施の形態2に係る製造方法に用いる第1導電性金属平板におけるバスバーアッセンブリ形成領域の拡大平面図であり、前記製造方法におけるマスキング工程が完了した時点での状態を示している。 図13(a)は、前記バスバーアッセンブリ形成領域の拡大平面図であり、前記製造方法におけるバスバー側硬化工程後の状態を示し、図13(b)は、図13(a)におけるXIIIb-XIIIb線に沿った断面図である。 図14は、前記実施の形態2に係る製造方法において用いる第2導電性金属平板の平面図であって、前記製造方法における打ち抜き工程後の状態を示している。 図15(a)は、図14におけるXV部で示す枠体形成領域の拡大平面図であり、図15(b)は、図15(a)におけるXVb-XVb線に沿った断面図である。 図16は、図15(b)に対応した断面図であり、前記製造方法における枠体側塗装工程後の状態を示している。 図17は、前記実施の形態2に係る製造方法における組み付け工程において重合された状態の前記第1及び第2導電性金属平板の平面図である。 図18(a)は、図17におけるXVIII部拡大図であり、図18(b)は、図18(a)におけるXVIIIb-XVIIIb線に沿った断面図である。 図19(a)は、図18(a)に対応した拡大平面図であり、図19(b)に、図19(a)におけるXIXb-XIXb線に沿った断面図である。
実施の形態1
 以下、本発明に係るバスバーアッセンブリの製造方法の一実施の形態について、添付図面を参照しつつ説明する。
 図1(a)に、本実施の形態に係る製造方法によって製造されたバスバーアッセンブリ1Aの平面図を、図1(b)に、図1(a)におけるIb-Ib線に沿った断面図を、それぞれ示す。
 まず、前記バスバーアッセンブリ1Aについて説明する。
 図1(a)及び図1(b)に示すように、前記バスバーアッセンブリ1Aは、導電性の第1及び第2バスバー10a、10bであって、互いの対向側面の間に間隙40が存する状態で同一平面内に配置された第1及び第2バスバー10a、10bと、前記第1及び第2バスバー10a、10bの対向側面の間の前記間隙40に充填され、前記第1及び第2バスバー10a、10bを電気的には絶縁しつつ機械的には連結するバスバー側絶縁性樹脂層30とを有している。
 図1(b)に示すように、前記第1及び第2バスバー10a、10bは、厚み方向に沿った断面視において、厚み方向一方側の第1表面11と、厚み方向他方側の第2表面12と、互いに対して対向する対向側面13と、互いに対して反対方向を向く外側面14とを有している。
 前記第1及び第2バスバー10a、10bは、Cu等の導電性金属平板によって形成される。
 前記第1及び第2バスバー10a、10bは、一方が正極側電極として作用し、他方が負極側電極として作用する。
 前記バスバー側絶縁性樹脂層30は、耐熱性及び絶縁性を有する樹脂によって形成され、例えば、ポリイミド、ポリアミド、エポキシ等が好適に利用される。
 前記バスバーアッセンブリ1Aにおいては、前記絶縁性樹脂層30は、前記第1及び第2バスバー10a、10bの対向側面13間の前記間隙40を充填しつつ、前記第1及び第2バスバー10a、10bの第1表面11、第2表面12並びに外側面14を覆っている。
 図1(c)に、前記バスバーアッセンブリ1AにLED等の半導体素子92を装着した状態の断面図を示す。
 図1(c)に示す形態においては、半導体素子92は、下面に正極又は負極の一方が設けられ、且つ、上面に正極又は負極の他方が設けられている。
 この場合、前記半導体素子92は、下面が前記第1及び第2バスバー10a、10bの一方(図示の形態においては第1バスバー10a)の第1表面11に設けられた第1メッキ層90aに電気的に接続されるようにダイボンディングされ、且つ、上面が前記第1及び第2バスバー10a、10bの他方(図示の形態においては第2バスバー10b)の第1表面11に設けられた第2メッキ層90bにワイヤボンディング95を介して電気的に接続される。
 次に、前記バスバーアッセンブリ1Aを製造する為の製造方法について説明する。
 本実施の形態に係る製造方法は、前記第1及び第2バスバー10a、10bと同一厚みのバスバーアッセンブリ形成領域120を有する第1導電性金属平板100を用意する工程と、前記バスバーアッセンブリ形成領域120に、厚み方向一方側の第1表面121及び厚み方向他方側の第2表面122の間を貫通するスリット125を形成するスリット形成工程とを有している。
 図2に、前記スリット形成工程が完了した後の前記第1導電性金属平板100の平面図を示す。
 また、図3(a)に、図2におけるIII部拡大図を、図3(b)に、図3(a)におけるIIIb-IIIb線に沿った断面図を、それぞれ示す。
 前記スリット125は、前記バスバーアッセンブリ1Aにおける前記第1及び第2バスバー10a、10bの対向側面13間の前記間隙40を形成するものである。前記間隙40の幅、即ち、前記スリット125の幅は、前記バスバーアッセンブリ1Aの仕様に応じて定まる。
 図3(a)及び図3(b)に示すように、本実施の形態においては、前記第1導電性金属平板100は、前記スリット形成工程後の状態において、前記スリット125を介して対向する一対のバスバー形成部位130、130が、前記第1導電性金属平板100のうち前記スリット125より当該スリット125の長手方向一方側に位置する連結部位135及び前記スリット125より当該スリット125の長手方向他方側に位置する連結部位136を介して、互いに対して繋がった状態に維持されるように構成されている。
 斯かる構成を備えることにより、前記スリット125を精度良く形成することができる。
 本実施の形態においては、図2に示すように、前記第1導電性金属平板100は、当該第1導電性金属平板100が位置するX-Y平面内のX方向に沿って配列された複数の前記バスバーアッセンブリ形成領域120と、X方向に隣接するバスバーアッセンブリ形成領域120の間を連結する連結領域140とを有しており、前記複数のバスバーアッセンブリ形成領域120に対して加工処理を同時に行えるようになっている。
 図2に示す形態においては、X方向(図面上においては上下方向)に沿って5つの前記バスバーアッセンブリ形成領域120が直列配置されている。
 さらに、本実施の形態においては、図2に示すように、X方向に沿って配列された前記複数のバスバーアッセンブリ形成領域120及びX方向に隣接する前記バスバーアッセンブリ形成領域120の間を連結する前記連結領域140がバスバーアッセンブリ形成片110を形成しており、複数のバスバーアッセンブリ形成片110が、X-Y平面内においてX方向とは直交するY方向に並列配置されている。
 詳しくは、図2に示す形態においては、前記第1導電性金属平板100は、Y方向に並列配置された複数(図示の形態においては5つ)の前記バスバーアッセンブリ形成片110と、前記複数のバスバーアッセンブリ形成片110のX方向一方側端部同士を連結するバスバー側第1連結片111と、前記複数のバスバーアッセンブリ形成片110のX方向他方側端部同士を連結するバスバー側第2連結片112とを有している。
 斯かる構成を備えた前記第1導電性金属平板100によれば、より多くのバスバーアッセンブリ1Aを同時に製造することができる。
 本実施の形態に係る製造方法は、前記スリット形成工程後に、少なくとも前記スリット125が前記絶縁性樹脂層30で充填されるように前記第1導電性金属平板100に絶縁性樹脂を含む塗料を塗装するバスバー側塗装工程と、前記バスバー側塗装工程で塗装された塗料を硬化させて前記絶縁性樹脂層30を形成するバスバー側硬化工程とを備えている。
 図4に、前記バスバー側硬化工程が完了した時点での前記バスバーアッセンブリ形成領域120の拡大平面図を示す。
 前記バスバー側塗装工程は、例えば、ポリイミド、ポリアミド、エポキシ等の耐熱性及び絶縁性を有する絶縁性樹脂を含む電着塗料を用いた電着塗装によって行われる。
 これに代えて、前記バスバー側塗装工程を、前記絶縁性樹脂の粉体を用いた静電粉体塗装によって行うことができる。
 若しくは、前記スリット125内への樹脂の充填性を十分に担保できる場合には、前記バスバー側塗装工程を、スプレー塗装によって行うことも可能である。
 前記バスバー側硬化工程は、前記バスバー側塗装工程で塗装された塗料を適宜な温度で加熱処理することによって行われる。
 本実施の形態に係る製造方法は、バスバー側硬化工程後に、前記スリット125内の絶縁性樹脂層30及び前記第1導電性金属平板120のうち前記スリット125を挟んで対向する一対のバスバー形成部位130を前記第1導電性金属平板100から切断する切断工程を有している。
 本実施の形態においては、前述の通り、前記スリット125を挟んで対向する前記バスバー形成部位130は、前記第1導電性金属平板100のうち前記スリット125より当該スリット125の長手方向一方側に位置する連結部位135及び前記スリット125より当該スリット125の長手方向他方側に位置する連結部位136を介して、互いに対して繋がっている。
 この場合、前記切断工程は、図4に示すように、前記スリット125の長手方向一方側において当該スリット125を幅方向に跨ぐように設定された切断線126に沿って前記第1導電性金属平板100を厚み方向に切断する処理、及び、前記スリット125の長手方向他方側において当該スリット125を幅方向に跨ぐように設定された切断線127に沿って前記第1導電性金属平板100を厚み方向に切断する処理を含むものとされる。
 なお、本実施の形態におけるように、前記第1導電性金属平板100が、X方向に沿って配列された複数のバスバーアッセンブリ形成領域120とX方向に隣接するバスバーアッセンブリ形成領域120を連結する連結領域140とを有している場合には、前記スリット125は長手方向がX方向に沿うように形成される。
 斯かる構成を備えた本実施の形態に係る製造方法によれば、図1に示す前記バスバーアッセンブリ1A、即ち、前記第1及び第2バスバー10、20が絶縁性樹脂層30によって電気的には絶縁状態で且つ機械的には連結されているバスバーアッセンブリ1Aを効率良く製造することができる。
 即ち、前記製造方法においては、前記第1及び第2バスバー10a、10bを形成する一対のバスバー形成部位130の相対位置が固定された状態のままで前記一対のバスバー形成部位130の間の前記スリット125に絶縁性樹脂層30が充填され、その後に、前記一対のバスバー形成部位130及び前記絶縁性樹脂層30が前記第1導電性金属平板100から切断されて、前記第1及び第2バスバー10a、10bが前記絶縁性樹脂層30によって電気的には絶縁状態で且つ機械的には連結されているバスバーアッセンブリ1Aが製造される。
 従って、前記第1及び第2バスバー10a、10b間の電気的絶縁性を確実に確保しつつ、前記第1及び第2バスバー10a、10bを所望相対位置に正確に位置させたバスバーアッセンブリ1Aを効率良く製造することができる。
 なお、前記第1及び第2バスバー10a、10bの二つのバスバーを備えたバスバーアッセンブリ1Aを製造する場合を例に説明したが、本実施の形態に係る製造方法は、前記スリット125の本数を増やすことにより、三つ以上のバスバーを備えたバスバーアッセンブリを製造することも可能である。
 図5(a)に、前記スリット125の本数を3本とすることによって製造されるバスバーアッセンブリ1Bの平面図を、図5(b)に、図5(a)におけるVb-Vb線に沿った断面図を、それぞれ示す。
 前記バスバーアッセンブリ1Bは、3本のスリット125によって形成される3つの間隙40を有しており、前記3つの間隙40に充填される絶縁性樹脂層30によって4本のバスバー10a~10dが電気的には絶縁状態とされ且つ機械的には連結状態とされている。
 また、本実施の形態に係る製造方法によって製造されたバスバーアッセンブリ1Aにおいては、前記スリット125の開口幅が厚み方向に一定とされているが、これに代えて、開口幅が厚み方向に関し変化するようなスリットを形成することも可能である。
 図6(a)に、図3のVI部に対応した拡大断面図であって、本実施の形態の変形例に係る製造方法の製造途中における拡大断面図を示す。
 図6(a)に示す変形例においては、前記第2バスバー10bの対向側面13は厚み方向に沿った垂直面となり且つ前記第1バスバー10aの対向端面13は前記第1表面11の側から前記第2表面12の側へ行くに従って前記第2バスバー10bの対向端面13に近接する傾斜面となるようなスリット125bが形成されている。
 また、図6(b)に、図3のVI部に対応した拡大断面図であって、本実施の形態の他の変形例に係る製造方法の製造途中における拡大断面図を示す。
 図6(b)に示す変形例においては、前記第1バスバー10aの対向端面13は前記第1表面11の側から前記第2表面12の側へ行くに従って前記第2バスバー10bの対向端面13に近接する傾斜面となり且つ前記第2バスバー10bの対向端面13は前記第1表面11の側から前記第2表面12の側へ行くに従って前記第1バスバー10aの対向端面に近接する傾斜面となるようなスリット125cが形成されている。
 このように、本実施の形態に係る製造方法によれば、前記スリットの形状を変更することにより、複数のバスバー10間の間隙40の形状及び寸法、即ち、前記間隙40に充填され、複数のバスバー10間を電気的には絶縁状態としつつ機械的には連結する前記絶縁性樹脂層30の形状及び寸法を容易に異ならせることができる。
実施の形態2
 以下、本発明に係るバスバーアッセンブリの製造方法の他の実施の形態について、添付図面を参照しつつ説明する。
 なお、本実施の形態の図中、前記実施の形態1におけると同一部材には同一符号を付して、その説明を適宜省略する。
 図7に、本実施の形態に係る製造方法によって製造されたバスバーアッセンブリ2Aの平面図を示す。
 また、図8~図10に、それぞれ、図7におけるVIII-VIII線、IX-IX線及びX-X線に沿った断面図を示す。
 まず、前記バスバーアッセンブリ2Aについて説明する。
 図7~図10に示すように、前記バスバーアッセンブリ2Aは、前記実施の形態1のバスバーアッセンブリ1Aと同様、前記第1及び第2バスバー10a、10bと、前記バスバー側絶縁性樹脂層30とを有している。
 前記バスバーアッセンブリ2Aは、さらに、前記第1及び第2バスバー10a、10bの第1表面11(図示の形態においては上面)にそれぞれ設けられた第1及び第2メッキ層90a、90bを有している。
 図11に、前記バスバーアッセンブリ2AにLED等の半導体素子92を装着した状態の図8に対応した断面図を示す。
 前記半導体素子92は、下面に正極又は負極の一方が設けられ、且つ、上面に正極又は負極の他方が設けられている。
 この場合、前記半導体素子92は、下面が前記第1及び第2バスバー10a、10bの一方(図示の形態においては第1バスバー10a)に設けられた第1メッキ層90aに電気的に接続されるようにダイボンディングされ、且つ、上面が前記第1及び第2バスバー10a、10bの他方(図示の形態においては第2バスバー10b)に設けられた第2メッキ層90bにワイヤボンディング95を介して電気的に接続される。
 図7~図11に示すように、前記バスバーアッセンブリ2Aは、さらに、前記第1及び第2バスバー10a、10bの第1表面に固着された枠体50を有している。
 前記枠体50は、軸線方向に貫通された中央孔61を有する筒状とされている。
 前記枠体50は、平面視において前記第1及び第2バスバー10a、10bの周縁に沿うように前記第1及び第2バスバー10a、10bの第1表面11上に固着されて、前記バスバーアッセンブリ2Aに装着される半導体素子92を囲繞しつつ上方が開放されたマウント空間Sを画している。
 前記枠体50は、軸線方向に貫通された中央孔61を有する筒状の枠体本体60と、前記枠体本体60の外周面を覆う枠体側絶縁性樹脂層65とを有している。
 前記枠体本体60は、例えば、当該枠体本体60の軸線方向長さに応じた厚みを有する金属平板を用い、前記金属平板に対してプレス加工によって前記中央孔61を形成することにより、形成され得る。
 前記枠体側絶縁性樹脂層65は、例えば、ポリイミド、ポリアミド、エポキシ等を用いて形成される。
 前記半導体素子92を装着した後の前記マウント空間Sにはエポキシ等の絶縁性樹脂(図示せず)が注入され、当該樹脂によって半導体素子92が封止される。
 次に、前記バスバーアッセンブリ2Aを製造する為の製造方法について説明する。
 本実施の形態に係る製造方法は、前記第1導電性金属平板100を用意する工程と前記スリット形成工程とを有している点(図2及び図3参照)においては、前記実施の形態1に係る製造方法と同一である。
 一方、本実施の形態に係る製造方法は、前記バスバー側塗装工程の前に、前記第1及び第2バスバー10a、10bを形成する前記バスバー形成部位130の厚み方向一方側の第1表面の少なくとも一部をマスク190で覆うマスキングを行う工程を備える点、及び、前記切断工程の前に、前記マスク190を剥離し且つ前記バスバー形成部位130のうち前記マスク190によって覆われていた領域に前記第1及び第2メッキ層90a、90bを形成する工程を備えている点において、前記実施の形態1に係る製造方法と相違している。
 図12に、前記マスキング工程が完了した時点での前記バスバーアッセンブリ形成領域の拡大平面図を示す。
 図12に示すように、前記マスキング工程で設置されるマスク190は、前記第1及び第2バスバー10a、10bを形成する前記バスバー形成部位130の厚み方向一方側の第1表面のうち前記第1及び第2メッキ層90a、90bをそれぞれ設けるべき領域(以下、メッキ層形成領域という)を覆うような形状及び寸法とされる。
 本実施の形態に係る製造方法においては、前記バスバー側塗装工程及び前記バスバー側硬化工程は、前記バスバーアッセンブリ形成領域120に前記マスク190が設置された状態で行われる。
 図13(a)に、前記バスバー側硬化工程が完了した時点での前記バスバーアッセンブリ形成領域120の拡大平面図を、図13(b)に、図13(a)におけるXIIIb-XIIIb線に沿った断面図を、それぞれ示す。
 図13(a)及び(b)に示すように、前記メッキ層形成領域がマスク190で覆われている為、前記バスバーアッセンブリ形成領域120の第1表面121のうち前記メッキ層形成領域以外の領域に絶縁性樹脂層30が設けられる。
 なお、前記バスバーアッセンブリ形成領域120の第2表面122に対してはマスキングが行われず、前記第2表面122の全体が露出している為、前記バスバー側塗装工程においては、前記バスバーアッセンブリ形成領域120の第2表面122の全面に絶縁性樹脂層30が設けられると共に、前記第2表面122の側から前記スリット125内に絶縁性樹脂が入り込み、前記スリット125内にも絶縁性樹脂層30が充填される。
 当然ながら、前記マスク190に代えて、前記第1メッキ層90aを設けるべきだけ領域を覆う第1マスクと前記第2メッキ層bを設けるべき領域だけを覆う第2マスクとを用いることも可能である。
 本実施の形態に係る製造方法は、前記第1導電性金属平板100を用意する工程から前記バスバー側硬化工程までのバスバー側絶縁性樹脂形成処理に並行して、若しくは、前記形成処理の前に又は後に、前記第1導電性金属平板100とは異なる第2導電性金属平板200であって、平面視において前記バスバーアッセンブリ形成領域120に対応した外周形状を有し且つ前記枠体60の厚みと同一厚みとされた枠体形成領域220を含む第2導電性金属平板200を用意する工程と、前記枠体形成領域220の周縁部位230が残るように前記枠体形成領域220の中央235を打ち抜く打ち抜き工程と、前記枠体形成領域220の周縁部位230に絶縁性樹脂を含む塗料を塗装する枠体側塗装工程と、前記枠体側塗装工程で塗装された塗料を硬化させて枠体側絶縁性樹脂層65を形成する枠体側硬化工程とを備えている。
 図14に、前記打ち抜き工程が完了した時点での前記第2導電性金属平板200の平面図を示す。
 また、図15(a)に、図14におけるXV部拡大図を、図15(b)に、図15(a)におけるXVb-XVb線に沿った断面図を、それぞれ示す。
 前記第2導電性金属平板200は、前記第1導電性金属平板100に重合させた際に、前記枠体形成領域220が前記バスバーアッセンブリ形成領域120に位置合わせされるように構成されている。
 詳しくは、前述の通り、本実施の形態においては、前記第1及び第2バスバー10a、10bを形成する前記第1導電性金属平板100は、Y方向に並列配置された複数のバスバーアッセンブリ形成片110であって、それぞれが、X方向に直列配置された複数のバスバーアッセンブリ形成領域120を有する複数のバスバーアッセンブリ形成片110と、前記複数のバスバーアッセンブリ形成片110のX方向一方側端部同士を連結するバスバー側第1連結片111と、前記複数のバスバーアッセンブリ形成片110のX方向他方側端部同士を連結するバスバー側第2連結片112とを有している(図2参照)。
 従って、前記第2導電性金属平板200は、図14に示すように、前記複数のバスバーアッセンブリ形成片110と同一ピッチでY方向に並列配置された複数の枠体形成片210であって、それぞれが、前記複数のバスバー形成領域120と同一ピッチでX方向に直列配置された複数の枠体形成領域220を有する複数の枠体形成片110と、前記複数の枠体形成片110のX方向一方側端部同士を連結する枠体側第1連結片211と、前記複数の枠体形成片110のX方向他方側端部同士を連結する枠体側第2連結片212とを有している。
 前記打ち抜き工程においては、前記周縁部位230が前記メッキ層形成領域を囲繞するように、中央部235が打ち抜かれる。
 即ち、前記中央孔61(図15参照)が平面視において前記メッキ層形成領域よりも大きくなるように、打ち抜き部分235の大きさが決定される。
 前記枠体側塗装工程は、例えば、ポリイミド、ポリアミド、エポキシ等の耐熱性及び絶縁性を有する絶縁性樹脂を含む電着塗料を用いた電着塗装によって行われる。
 これに代えて、前記枠体側塗装工程を、前記絶縁性樹脂の粉体を用いた静電粉体塗装によって行うことができる。
 若しくは、前記枠体側塗装工程を、スプレー塗装によって行うことも可能である。
 図16に、前記枠体側塗装工程が完了した時点での図15(b)に対応した断面図を示す。
 好ましくは、前記枠体側塗装工程は、前記バスバー側塗装工程と同時に当該バスバー側塗装工程における塗装方法と同一方法で行うことができる。
 即ち、前記バスバー側塗装工程が電着塗装によって行われる場合には、前記枠体側塗装工程を同一の電着塗料を用いた電着塗装によって行うことができ、前記バスバー側塗装工程が静電粉体塗装によって行われる場合には、前記粉体側塗装工程を同一の粉体塗料を用いた静電粉体塗装によって行うことができる。
 斯かる構成によれば、製造効率の向上を図ることができる。
 本実施の形態においては、前記バスバー側硬化工程及び前記枠体側硬化工程の少なくとも一方は、形成する絶縁性樹脂層30、65を半硬化状態とさせるように構成されている。
 絶縁性樹脂層30、65の半硬化状態は、加熱処理する際の温度を適宜調整することによって得ることができる。
 本実施の形態に係る製造方法は、前記バスバー側硬化工程及び前記枠体側硬化工程の後に、前記バスバーアッセンブリ形成領域120及び前記枠体形成領域220を重合させた状態で半硬化状態の絶縁性樹脂層(例えば、絶縁性樹脂層30)を硬化させることにより、前記周縁部位230と前記バスバーアッセンブリ形成領域120とを固着させる組み付け工程を備えている。
 図17に、前記組み付け工程が完了した時点での前記第1及び第2導電性金属平板100、200の平面図を示す。
 また、図18(a)に、図17におけるXVIII部拡大図を、図18(b)に、図18(a)におけるXVIIIb-XVIIIb線に沿った断面図を、それぞれ示す。
 図2に示すように、前記第1導電性金属平板100には、前記バスバー側第1及び第2連結片111、112にそれぞれバスバー側位置合わせ孔115、116が設けられており、図14に示すように、前記第2導電性金属平板200には、前記枠体側第1及び第2連結片211、212にそれぞれ枠体側位置合わせ孔215、216が設けられている。
 図14に示すように、前記バスバー側位置合わせ孔115及び前記枠体側位置合わせ孔215を一致させ且つ前記バスバー側位置合わせ孔116及び前記枠体側位置合わせ孔216を一致させた状態で前記第1及び第2導電性金属平板100、200を重合させることによって、前記バスバーアッセンブリ形成領域120及び前記枠体形成領域220が位置合わせされた状態で重合されるようになっている。
 本実施の形態に係る製造方法は、前記組み付け工程の後に、接合された前記バスバーアッセンブリ形成領域120及び前記枠体形成領域220を、前記スリット125の長手方向一方側において当該スリット125を幅方向に跨ぐように設定された切断線126及び前記スリット125の長手方向他方側において当該スリット125を幅方向に跨ぐように設定された切断線127に沿って、前記第1及び第2導電性金属平板100、200から切断する切断工程を備えている。
 図19(a)に、前記バスバーアッセンブリ形成領域120及び前記枠体形成領域220の拡大平面図であって、前記切断線126、127を破線で示した拡大平面図を、図19(b)に、図19(a)におけるXIXb-XIXb線に沿った断面図を示す。
 なお、本実施の形態に係る製造方法は、前記組み付け工程の後で且つ前記切断工程の前に、前記マスク190を剥離し且つ前記一対のバスバー形成部位130のうち前記マスク190によって覆われていた領域に前記第1及び第2メッキ層90a、90bを形成する工程を備えている。
 図19(a)及び(b)は、前記第1及び第2メッキ層90a、90bを形成した後の状態を示している。
1A、1B、2A  バスバーアッセンブリ
10a~10d   バスバー
30        絶縁性樹脂層
65        枠体側絶縁性樹脂層
90a、90b   メッキ層
100       第1導電性金属平板
110       バスバーアッセンブリ形成片
111、112   連結片
120       バスバーアッセンブリ形成領域
125       スリット
126、127   切断線
130       バスバー形成部位
135、136   連結部位
140       連結領域
190       マスク
200       第2導電性金属平板
230       周縁部位

Claims (9)

  1.  複数のバスバーが絶縁性樹脂層によって電気的には絶縁状態で且つ機械的には連結されているバスバーアッセンブリの製造方法であって、
     バスバーアッセンブリ形成領域を有する第1導電性金属平板を用意する工程と、
     前記バスバーアッセンブリ形成領域に厚み方向一方側の第1表面及び厚み方向他方側の第2表面の間を貫通するスリットを形成するスリット形成工程と、
     少なくとも前記スリットが前記絶縁性樹脂層で充填されるように前記第1導電性金属平板に絶縁性樹脂を含む塗料を塗装するバスバー側塗装工程と、
     前記バスバー側塗装工程で塗装された塗料を硬化させて前記絶縁性樹脂層を形成するバスバー側硬化工程と、
     前記スリット内の絶縁性樹脂層及び前記第1導電性金属平板のうち前記スリットを挟んで対向するバスバー形成部位を前記第1導電性金属平板から切断する切断工程とを含むことを特徴とするバスバーアッセンブリの製造方法。
  2.  前記バスバー側塗装工程は電着塗装によって行われることを特徴とする請求項1に記載のバスバーアッセンブリの製造方法。
  3.  前記バスバー側塗装工程は静電粉体塗装によって行われることを特徴とする請求項1に記載のバスバーアッセンブリの製造方法。
  4.  前記バスバー側塗装工程の前に、前記バスバー形成部位の第1表面の少なくとも一部をマスクで覆うマスキングを行う工程を備え、
     前記切断工程の前に、前記マスクを剥離し且つ前記バスバー形成部位のうち前記マスクによって覆われていた領域にメッキ層を形成する工程を備えていることを特徴とする請求項1から3の何れかに記載のバスバーアッセンブリの製造方法。
  5.  前記第1導電性金属平板は、前記スリット形成工程後の状態において、前記スリットを介して対向する前記バスバー形成部位が、前記第1導電性金属平板のうち前記スリットより当該スリットの長手方向一方側に位置する連結部位及び前記スリットより当該スリットの長手方向他方側に位置する連結部位を介して、互いに対して繋がっているように構成され、
     前記切断工程は、前記スリットの長手方向一方側において当該スリットを幅方向に跨ぐように設定された切断線に沿って前記第1導電性金属平板を厚み方向に切断する処理、及び、前記スリットの長手方向他方側において当該スリットを幅方向に跨ぐように設定された切断線に沿って前記第1導電性金属平板を厚み方向に切断する処理を含むことを特徴とする請求項1から4の何れかに記載のバスバーアッセンブリの製造方法。
  6.  前記第1導電性金属平板は、当該第1導電性金属平板が位置するX-Y平面内のX方向に沿って配列された複数のバスバーアッセンブリ形成領域と、X方向に隣接するバスバーアッセンブリ形成領域を連結する連結領域とを有し、
     前記スリットは長手方向がX方向に沿っていることを特徴とする請求項5に記載のバスバーアッセンブリの製造方法。
  7.  前記第1導電性金属平板は、それぞれが、X方向に沿って配列された前記複数のバスバーアッセンブリ形成領域及びX方向に隣接する前記バスバーアッセンブリ形成領域を連結する前記連結領域を含む複数のバスバーアッセンブリ形成片であって、Y方向に並列配置された複数のバスバーアッセンブリ形成片と、前記複数のバスバーアッセンブリ形成片のX方向一方側端部同士を連結する第1連結片と、前記複数のバスバーアッセンブリ形成片のX方向他方側端部同士を連結する第2連結片とを有していることを特徴とする請求項6に記載のバスバーアッセンブリの製造方法。
  8.  前記スリットは、前記第1表面及び前記第2表面の一方から他方へ行くに従って開口幅が狭くなるように形成されていることを特徴とする請求項1から7の何れかに記載のバスバーアッセンブリの製造方法。
  9.  前記切断工程より前に、
     前記第1導電性金属平板とは異なる第2導電性金属平板であって、前記バスバーアッセンブリ形成領域に対応した枠体形成領域を有する第2導電性金属平板を用意する工程と、
     前記枠体形成領域の周縁部位を残し、前記周縁部位によって囲まれる内部を打ち抜く工程と、
     前記枠体形成領域の周縁部位の外周面に絶縁性樹脂を含む塗料を塗装する枠体側塗装工程と、
     前記枠体側塗装工程で塗装された塗料を硬化させて枠体側絶縁性樹脂層を形成する枠体側硬化工程とを含み、
     前記バスバー側硬化工程及び前記枠体側硬化工程の少なくとも一方は、形成する絶縁性樹脂層を半硬化状態とさせるように構成されており、
     前記切断工程より前に、さらに、
     前記バスバーアッセンブリ形成領域及び前記枠体形成領域を重合させた状態で半硬化状態の絶縁性樹脂層を硬化させることにより、前記周縁部位と前記バスバーアッセンブリ形成領域とを固着させる組み付け工程を含み、
     前記切断工程は、前記スリット内の絶縁性樹脂層及び前記スリットを挟んで対向する前記バスバー形成部位を前記第1導電性金属平板から切断する処理に加えて、前記周縁部位を前記第2導電性金属平板から切断する処理を含むことを特徴とする請求項1から8の何れかに記載のバスバーアッセンブリの製造方法。
PCT/JP2018/031314 2017-09-04 2018-08-24 バスバーアッセンブリの製造方法 WO2019044687A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/642,783 US10784669B2 (en) 2017-09-04 2018-08-24 Method for manufacturing busbar assembly
CN201880004399.7A CN109983549B (zh) 2017-09-04 2018-08-24 母线组件的制造方法
EP18850846.9A EP3675142B1 (en) 2017-09-04 2018-08-24 Method for manufacturing bus bar assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-169347 2017-09-04
JP2017169347A JP6637002B2 (ja) 2017-09-04 2017-09-04 バスバーアッセンブリの製造方法

Publications (1)

Publication Number Publication Date
WO2019044687A1 true WO2019044687A1 (ja) 2019-03-07

Family

ID=65525686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031314 WO2019044687A1 (ja) 2017-09-04 2018-08-24 バスバーアッセンブリの製造方法

Country Status (5)

Country Link
US (1) US10784669B2 (ja)
EP (1) EP3675142B1 (ja)
JP (1) JP6637002B2 (ja)
CN (1) CN109983549B (ja)
WO (1) WO2019044687A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788767B1 (ja) * 2020-07-09 2020-11-25 サンコール株式会社 バスバーアッセンブリ及びその製造方法
WO2020262030A1 (ja) * 2019-06-25 2020-12-30 サンコール株式会社 バスバーアッセンブリ及びその製造方法
RU2749558C1 (ru) * 2020-09-29 2021-06-15 федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники» Способ изготовления линии электропередачи со спиральным поперечным сечением и устройство на его основе

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7152666B2 (ja) 2019-03-08 2022-10-13 日亜化学工業株式会社 発光装置及びその製造方法
JP6884835B2 (ja) * 2019-09-27 2021-06-09 サンコール株式会社 バスバーアッセンブリ及びその製造方法
JP7465222B2 (ja) * 2019-09-27 2024-04-10 サンコール株式会社 バスバーアッセンブリ
US20210319933A1 (en) * 2020-04-09 2021-10-14 Dana Tm4 Inc. System and method for dielectric coated busbars
KR102213623B1 (ko) * 2020-07-21 2021-02-08 대산전자(주) 접합 보강력이 향상된 버스바 및 이의 제조방법
JP2022063465A (ja) * 2020-10-12 2022-04-22 サンコール株式会社 バスバーアッセンブリ及びバスバーアッセンブリの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087300A2 (en) * 1999-09-23 2001-03-28 TVM Group, Inc. Computer bus bar assembly
JP2007215340A (ja) * 2006-02-10 2007-08-23 Denso Corp 積層型ブスバーアセンブリ及びそのモールド装置
WO2012053580A1 (ja) * 2010-10-20 2012-04-26 矢崎総業株式会社 メタルコア基板及び該メタルコア基板を用いた電気接続箱
JP2016216766A (ja) 2015-05-18 2016-12-22 サンコール株式会社 積層バスバーユニットの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH541216A (de) * 1972-06-16 1973-08-31 Alusuisse Verfahren zur Herstellung isolierter elektrischer Leiter, insbesondere bandförmiger Mehrfachleiter
JP2007066815A (ja) * 2005-09-01 2007-03-15 Suncall Corp 絶縁被覆導線及びその製造方法、並びに、絶縁被覆導線成形品及びその製造方法
WO2008047933A1 (en) * 2006-10-17 2008-04-24 C.I.Kasei Company, Limited Package assembly for upper/lower electrode light-emitting diodes and light-emitting device manufacturing method using same
US20090001404A1 (en) * 2007-06-29 2009-01-01 Ohata Takafumi Semiconductor light emitting device, process for producing the same, and led illuminating apparatus using the same
JP2011035264A (ja) * 2009-08-04 2011-02-17 Zeniya Sangyo Kk 発光素子用パッケージ及び発光素子の製造方法
CN105845816A (zh) * 2010-11-02 2016-08-10 大日本印刷株式会社 附有树脂引线框及半导体装置
US9313897B2 (en) * 2012-09-14 2016-04-12 Infineon Technologies Ag Method for electrophoretically depositing a film on an electronic assembly
JP2014107201A (ja) * 2012-11-29 2014-06-09 Yazaki Corp 導通部材及び導通部材の製造方法
DE102013202551A1 (de) * 2013-02-18 2014-08-21 Heraeus Materials Technologies GmbH & Co. KG Verfahren zur Herstellung eines Substrats mit einer Kavität
CN103490001A (zh) * 2013-07-01 2014-01-01 宁波康强电子股份有限公司 一种离散型emc封装的led引线框架
CN104701436B (zh) * 2013-12-10 2017-12-26 展晶科技(深圳)有限公司 发光二极管封装元件及其制造方法
DE112014006004B4 (de) * 2013-12-25 2023-11-02 Yazaki Corporation Verfahren zur Herstellung eines Batterieverdrahtungsmoduls
JP6314493B2 (ja) * 2014-01-20 2018-04-25 株式会社カネカ 発光素子実装用リードフレーム、発光素子実装用樹脂成型体、表面実装型発光装置、及び表面実装型発光装置の製造方法
DE102014111483A1 (de) * 2014-08-12 2016-02-18 Osram Opto Semiconductors Gmbh Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102015109953A1 (de) * 2015-06-22 2016-12-22 Osram Opto Semiconductors Gmbh Herstellung elektronischer Bauelemente

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087300A2 (en) * 1999-09-23 2001-03-28 TVM Group, Inc. Computer bus bar assembly
JP2007215340A (ja) * 2006-02-10 2007-08-23 Denso Corp 積層型ブスバーアセンブリ及びそのモールド装置
JP4432913B2 (ja) 2006-02-10 2010-03-17 株式会社デンソー 積層型ブスバーアセンブリ及びそのモールド装置
WO2012053580A1 (ja) * 2010-10-20 2012-04-26 矢崎総業株式会社 メタルコア基板及び該メタルコア基板を用いた電気接続箱
JP2016216766A (ja) 2015-05-18 2016-12-22 サンコール株式会社 積層バスバーユニットの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3675142A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262030A1 (ja) * 2019-06-25 2020-12-30 サンコール株式会社 バスバーアッセンブリ及びその製造方法
JP2021005458A (ja) * 2019-06-25 2021-01-14 サンコール株式会社 バスバーアッセンブリ及びその製造方法
CN114026748A (zh) * 2019-06-25 2022-02-08 新确有限公司 汇流排组件及其制造方法
JP7271333B2 (ja) 2019-06-25 2023-05-11 サンコール株式会社 バスバーアッセンブリ及びその製造方法
CN114026748B (zh) * 2019-06-25 2024-05-24 新确有限公司 汇流排组件及其制造方法
JP6788767B1 (ja) * 2020-07-09 2020-11-25 サンコール株式会社 バスバーアッセンブリ及びその製造方法
WO2022009361A1 (ja) * 2020-07-09 2022-01-13 サンコール株式会社 バスバーアッセンブリ及びその製造方法
RU2749558C1 (ru) * 2020-09-29 2021-06-15 федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники» Способ изготовления линии электропередачи со спиральным поперечным сечением и устройство на его основе

Also Published As

Publication number Publication date
EP3675142A1 (en) 2020-07-01
US20200194988A1 (en) 2020-06-18
CN109983549A (zh) 2019-07-05
JP6637002B2 (ja) 2020-01-29
EP3675142B1 (en) 2022-07-06
US10784669B2 (en) 2020-09-22
CN109983549B (zh) 2022-03-11
EP3675142A4 (en) 2021-04-07
JP2019042678A (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6637002B2 (ja) バスバーアッセンブリの製造方法
US10485092B2 (en) Multilayer bus board
WO2013096983A1 (de) Verfahren zum herstellen einer aus wenigstens zwei leiterplattenbereichen bestehenden leiterplatte sowie leiterplatte
US20160079194A1 (en) Semiconductor substrate and semiconductor package structure
WO2011015438A1 (de) Wellenleiter, insbesondere beim dielektrikum-wand-beschleuniger
WO2020044656A1 (ja) バスバーアッセンブリ及びその製造方法
WO2019049687A1 (ja) バスバーアッセンブリ
EP3053192B1 (de) Schaltungsvorrichtung und verfahren zu deren herstellung
US20190157001A1 (en) Multilayer coil and method for manufacturing the same
WO2021059904A1 (ja) バスバーアッセンブリ及びその製造方法
CN112956040B (zh) 汇流条组件及其制造方法
WO2022080115A1 (ja) バスバーアッセンブリ及びバスバーアッセンブリの製造方法
JP7271333B2 (ja) バスバーアッセンブリ及びその製造方法
JP6788767B1 (ja) バスバーアッセンブリ及びその製造方法
JP7201649B2 (ja) バスバーアッセンブリ及び半導体モジュール
JP7465222B2 (ja) バスバーアッセンブリ
JP2019077042A (ja) バスバユニットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850846

Country of ref document: EP

Effective date: 20200327