WO2022009361A1 - バスバーアッセンブリ及びその製造方法 - Google Patents

バスバーアッセンブリ及びその製造方法 Download PDF

Info

Publication number
WO2022009361A1
WO2022009361A1 PCT/JP2020/026788 JP2020026788W WO2022009361A1 WO 2022009361 A1 WO2022009361 A1 WO 2022009361A1 JP 2020026788 W JP2020026788 W JP 2020026788W WO 2022009361 A1 WO2022009361 A1 WO 2022009361A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
bar assembly
flat plate
forming
frame body
Prior art date
Application number
PCT/JP2020/026788
Other languages
English (en)
French (fr)
Inventor
浩也 小早川
Original Assignee
サンコール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社 filed Critical サンコール株式会社
Priority to PCT/JP2020/026788 priority Critical patent/WO2022009361A1/ja
Priority to CN202080102845.5A priority patent/CN115777129A/zh
Priority to JP2020545736A priority patent/JP6788767B1/ja
Priority to EP20944347.2A priority patent/EP4170685A4/en
Publication of WO2022009361A1 publication Critical patent/WO2022009361A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10272Busbars, i.e. thick metal bars mounted on the PCB as high-current conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/049Wire bonding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/202Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a bus bar assembly in which a plurality of bus bars are electrically insulated and mechanically connected, and a method for manufacturing the same.
  • a bus bar assembly equipped with a plurality of bus bars that are electrically insulated from each other and mechanically connected to each other has been proposed and is used in various fields.
  • the facing planes of one flat plate-shaped bus bar and the facing planes of the other flat plate-shaped bus bars are arranged so as to face each other with the insulating resin layer interposed therebetween, so that the reliability of insulation is sufficient. Has the problem that it is difficult to secure. In particular, if the thickness of the insulating resin layer between the one flat plate-shaped bus bar and the other flat plate-shaped bus bar is reduced in order to reduce the size in the vertical direction, a leak current may flow between the two bus bars.
  • FIG. 16A shows a plan view of an example of the flat bus bar assembly 500. Further, FIG. 16 (b) shows a cross-sectional view taken along the line XVI (b) -XVI (b) in FIG. 16 (a).
  • the flat bus bar assembly 500 has a gap 515 between the first bus bar 510 (1) of the conductive metal flat plate and the first bus bar 510 (1).
  • the second bus bar 510 (2) which is a conductive metal flat plate arranged in the same plane as the first bus bar 510 (1), and the first and second bus bars 510 (1), 510 (2). Is provided with an insulating resin layer 520 that is electrically insulated and mechanically connected.
  • the insulating resin layer 520 is a bus bar formed by connecting a gap filling portion 525 filled in the gap 515 and the first and second bus bars 510 (1) and 510 (2) by the gap filling portion 525. It has a surface laminated portion laminated on the surface of the connecting body.
  • the surface laminated portion includes a first surface side laminated portion 530 and a second surface side laminated portion 540 that cover a first surface on one side in the thickness direction and a second surface on the other side in the thickness direction of the bus bar coupling, respectively. It covers the outer surface of the bus bar connecting body and has a side surface side laminated portion 550 that connects the first and second surface side laminated portions 530 and 540.
  • a first exposed region is formed by exposing predetermined portions of the upper surfaces of the first and second bus bars 510 (1) and 510 (2) to the first surface side laminated portion 530. And second openings 531 (1) and 531 (2) are provided.
  • FIG. 16C shows a vertical sectional view of a semiconductor module 600 in which a semiconductor element 110 such as an LED is mounted on the bus bar assembly 500.
  • the semiconductor element 110 has an element body (not shown) and an upper electrode layer and a lower electrode layer (not shown) disposed on one side and the other side in the thickness direction of the element body, respectively.
  • the lower electrode layer is placed on one of the first and second exposed regions (the first exposed region in FIG. 16 (c)), for example, a plating layer (shown).
  • the upper electrode layer is mechanically and electrically connected to the other of the first and second exposed regions (the second exposed region in FIG. 16C) via the wire bonding 120. Is electrically connected.
  • the flat bus bar assembly 500 described in Patent Documents 3 and 4 is useful in that it can solve the problems of the laminated bus bar assembly, but there is room for improvement in terms of manufacturing efficiency.
  • the opening width of the gap 515 is narrowed. This makes it difficult to fill the gap 515 with the insulating resin material.
  • Japanese Patent No. 4432913 Japanese Patent No. 6487769 Japanese Patent No. 6637002
  • Japanese Patent No. 6637003 Japanese Patent No. 4432913
  • the present invention has been made in view of such a prior art, and is a bus bar assembly in which a plurality of bus bars are arranged in the same plane while having a gap between them, and the opening width of the gap is free. It is an object of the present invention to provide a bus bar assembly capable of increasing the degree of freedom and improving the manufacturing efficiency, and a method for manufacturing such a bus bar assembly.
  • the first aspect of the present invention is a plurality of bus bars formed by a conductive flat plate-like member and arranged in the same plane with a gap between facing side surfaces, and the gap.
  • the insulating resin film is provided with an insulating resin film that is adhered to the upper surfaces of the plurality of bus bars so as to straddle the bus bars and connects the plurality of bus bars in a state where the gap is present.
  • the insulating resin film includes the upper surfaces of the plurality of bus bars.
  • a busbar assembly provided with an opening that exposes a predetermined area of.
  • a plurality of bus bars arranged in the same plane with a gap between the facing side surfaces are connected by an insulating resin film, so that the gap is connected.
  • the opening width of the can be arbitrarily set and can be efficiently manufactured.
  • the bus bar assembly according to the first aspect is preferably formed by a rigid member and includes a frame body bonded to the upper surface of the insulating resin film, and the frame body is such that the plurality of bus bars are insulated from the frame body. It is configured along the peripheral region in the plan view of the bus bar connecting body connected by the sex resin film.
  • the strength of the bus bar assembly can be improved, and when the sealing resin for sealing the semiconductor element such as an LED mounted on the bus bar is filled. It is possible to effectively prevent the sealing resin from flowing out.
  • the frame is made of the same material as the plurality of bus bars.
  • the second aspect of the present invention includes a plurality of bus bars formed by a conductive flat plate-shaped member and arranged in the same plane with a gap between facing side surfaces.
  • a bus bar assembly provided with an insulating resin film that is adhered to the lower surface of the plurality of bus bars so as to straddle the gap and connects the plurality of bus bars in a state where the gap exists.
  • a plurality of bus bars arranged in the same plane with a gap between the facing side surfaces are connected by an insulating resin film, so that the gap is connected.
  • the opening width of the can be arbitrarily set and can be efficiently manufactured.
  • the bus bar assembly according to the second aspect is preferably formed by a rigid member and includes a frame body bonded to the upper surface of the plurality of bus bars, and the frame body has the plurality of bus bars having the insulating property. It is configured to be along the peripheral region in a plan view of the bus bar connecting body connected by the resin film, and has at least an insulating property on the outer surface.
  • the strength of the bus bar assembly can be improved, and when the sealing resin for sealing the semiconductor element such as an LED mounted on the bus bar is filled. It is possible to effectively prevent the sealing resin from flowing out.
  • the third aspect of the present invention includes a plurality of bus bars formed by a conductive flat plate-shaped member and arranged in the same plane with a gap between the facing side surfaces, and the above-mentioned.
  • a bus bar provided with an insulating resin film adhered to the upper surfaces of the plurality of bus bars so as to straddle the gap, and the insulating resin film is provided with an opening for exposing a predetermined area on the upper surface of the plurality of bus bars.
  • a method for manufacturing a bus bar assembly including a step of forming an opening in the insulating resin film after the step and before the cutting step or after the cutting step.
  • the manufacturing method according to the third aspect is preferably a frame forming process performed before, after, or in parallel with the process from the step of preparing the conductive metal flat plate for the bus bar to the film bonding step.
  • the frame body forming process including the punching step for forming the body, the conductive metal flat plate for the bus bar after the film bonding step, and the frame body flat plate after the frame body forming process are overlapped to form the frame body.
  • a plate bonding step of adhering the region to the first surface of the corresponding bus bar assembly forming region can be provided.
  • the cutting step is configured to cut the bus bar assembly forming region and the frame body forming region in the bonded state from the bus bar conductive metal flat plate and the frame body flat plate after the plate bonding step. ..
  • the opening forming step is formed by punching the insulating resin film before the film bonding step to form the opening. In another embodiment, the opening forming step is to form the opening by irradiating or etching the insulating film with laser light.
  • the fourth aspect of the present invention includes a plurality of bus bars formed by a conductive flat plate-shaped member and arranged in the same plane with a gap between facing side surfaces, and the above-mentioned.
  • a method for manufacturing a bus bar assembly comprising an insulating resin film adhered to the lower surfaces of the plurality of bus bars so as to straddle the gap, wherein the conductive metal flat plate having the bus bar assembly forming region forming the plurality of bus bars is formed.
  • the step of preparing and forming one or a plurality of slits in the bus bar assembly forming region penetrating between the first surface on one side in the thickness direction and the second surface on the other side in the thickness direction and having the same width as the gap.
  • a method for manufacturing a bus bar assembly including a cutting step of cutting from the conductive metal flat plate for a bus bar.
  • the manufacturing method according to the fourth aspect is preferably a frame forming process performed before, after, or in parallel with the process from the step of preparing the conductive metal flat plate for the bus bar to the film bonding step.
  • a step of preparing a rigid flat plate for a frame including a frame forming region having an outer shape corresponding to the bus bar assembly forming region in a plan view, and punching out a central portion of the frame forming region to form a frame.
  • a frame body forming process including a punching step for forming the main body and a resin layer installing step for providing an insulating resin layer on the outer peripheral surface of the frame body, and the conductive metal flat plate for a bus bar and the bus bar after the film bonding step.
  • a plate bonding step of superimposing the frame flat plate after the frame forming treatment and adhering the frame forming region to the first surface of the corresponding bus bar assembly forming region can be provided.
  • the cutting step is configured to cut the bus bar assembly forming region and the frame body forming region in the bonded state from the bus bar conductive metal flat plate and the frame body flat plate after the plate bonding step. ..
  • the conductive metal flat plate is formed of a plurality of the bus bar assemblies arranged in series in the first direction along the longitudinal direction of the slit. It is assumed that the region and the connecting region connecting the adjacent bus bar assembly forming regions are integrally provided.
  • the slit formed in one bus bar assembly forming region extends into the connecting region in which one end side in the longitudinal direction is connected to one side in the first direction of the one bus bar assembly forming region and the other end side in the longitudinal direction is the one. It is formed so as to extend into a connecting region connected to the other side in the first direction of the bus bar assembly forming region of the above.
  • the frame body flat plate is the same as the plurality of bus bar assembly forming regions. It is assumed that the plurality of frame-forming regions arranged in series in the first first direction at a pitch and a connecting region connecting the frame-forming regions adjacent to the first direction are integrally provided.
  • FIG. 1 (a) is a plan view of the bus bar assembly according to the first embodiment of the present invention, and FIG. 1 (b) is taken along the line I (b) -I (b) in FIG. 1 (a). It is a sectional view.
  • FIG. 2 is a vertical cross-sectional view of a semiconductor module in which a semiconductor element such as an LED is mounted on the bus bar assembly according to the first embodiment.
  • FIG. 3 is a plan view of a conductive metal flat plate for a bus bar used in an example of a manufacturing method for manufacturing the bus bar assembly according to the first embodiment (hereinafter, referred to as a first manufacturing method).
  • FIG. 4 (a) is an enlarged view of part IV (a) in FIG. 3, and FIG.
  • FIG. 4 (b) is a cross-sectional view taken along the line IV (b) -VII (b) in FIG. 4 (a).
  • FIG. 5 is a plan view of the conductive metal flat plate for a bus bar after the film bonding step in the first manufacturing method.
  • FIG. 6 is a plan view of a flat plate for a frame used in the frame forming process in the first manufacturing method.
  • FIG. 7 is a plan view of the conductive metal flat plate for a bus bar and the flat plate for a frame in a state after the flat plate bonding step in the first manufacturing method.
  • FIG. 8 is a plan view of the conductive metal flat plate for a bus bar and the flat plate for a frame in a state after the opening forming step in the first manufacturing method.
  • FIG. 9 (a) is a plan view of the bus bar assembly according to the second embodiment of the present invention, and FIG. 9 (b) is taken along the line IX (b) -IX (b) in FIG. 9 (a). It is a sectional view.
  • FIG. 10 is a vertical sectional view of a semiconductor module in which a semiconductor element such as an LED is mounted on the bus bar assembly according to the second embodiment.
  • FIG. 11A is a plan view of a conductive metal flat plate for a bus bar used in an example of a manufacturing method for manufacturing the bus bar assembly according to the second embodiment (hereinafter, referred to as a second manufacturing method).
  • 11 (b) is an enlarged cross-sectional view taken along the line XI (b) -XI (b) in FIG.
  • FIG. 12 is a plan view of a flat plate for a frame used in the second manufacturing method, and shows a state after the resin layer installation step in the second manufacturing method.
  • FIG. 13 is a plan view of the conductive metal flat plate for a bus bar and the flat plate for a frame in a state after the flat plate bonding step in the second manufacturing method.
  • 14 (a) is a plan view of the bus bar assembly according to the third embodiment of the present invention, and FIG. 14 (b) is taken along the line XIV (b) -XIV (b) in FIG. 14 (a). It is a sectional view.
  • FIG. 14 (a) is a plan view of the bus bar assembly according to the third embodiment of the present invention, and FIG. 14 (b) is taken along the line XIV (b) -XIV (b) in FIG. 14 (a). It is a sectional view.
  • FIG. 14 (a) is a plan view of the bus bar assembly according to the third embodiment of the present invention, and FIG. 14
  • FIG. 15 (a) is a plan view of the bus bar assembly according to the fourth embodiment of the present invention, and FIG. 15 (b) is taken along the line XV (b) -XV (b) in FIG. 15 (a). It is a cross-sectional view. 16 (a) is a plan view of a conventional planar bus bar assembly, and FIG. 16 (b) is a cross-sectional view taken along the line XVI (b) -XVI (b) in FIG. 16 (a).
  • FIG. 16 (c) is a vertical cross-sectional view of a semiconductor module in which a semiconductor element such as an LED is mounted on the conventional bus bar assembly.
  • FIG. 1A shows a plan view of the bus bar assembly 1 according to the present embodiment. Further, FIG. 1 (b) shows a cross-sectional view taken along the line I (b) -I (b) in FIG. 1 (a).
  • the bus bar assembly 1 is a plurality of bus bars 10 formed of a conductive flat plate-like member, and a gap 19 exists between facing side surfaces thereof.
  • the plurality of bus bars 10 arranged in the same plane and the plurality of bus bars 10 are adhered to the upper surface of the plurality of bus bars 10 so as to straddle the gap 19, and the plurality of bus bars 10 are connected in the presence of the gap 19.
  • It has a resin film 20 and a frame 30 formed of a rigid member and adhered to an upper surface of the insulating resin film 20 (a surface opposite to the lower surface bonded to the plurality of bus bars 10). ..
  • the bus bar 10 is formed of a conductive metal such as Cu.
  • the bus bar assembly 1 according to the present embodiment has three bus bars of the first to third bus bars 10 (1) to 10 (3) as the plurality of bus bars 10, and the gap 19 is the first. It has 1 and 2nd gaps 19 (1) and 19 (2).
  • the bus bar assembly has the first bus bar 10 (1), the second bus bar 10 (2) adjacent to the first bus bar 10 (1) via the first gap 19 (1), and the second bus bar assembly. It has a third bus bar 10 (3) arranged adjacent to the second bus bar 10 (2) via the two gaps 19 (2).
  • Each of the bus bars 10 (1) to 10 (3) has an upper surface to which the insulating resin film 20 is adhered and a lower surface opposite to the upper surface in the vertical cross-sectional view shown in FIG. 1 (b). It has a side surface facing the other adjacent bus bars 10 (1) to 10 (3) while having the gap 19.
  • the insulating resin film 20 is formed of various materials having insulating properties and having strength capable of connecting the plurality of bus bars 10, and polyamide-imide is preferably used.
  • the frame 30 is configured to be along a peripheral region in a plan view of a bus bar connecting body in which the plurality of bus bars 10 are connected by the insulating resin film 20. That is, the frame body 30 has a central opening 35 that opens the central region of the bus bar connection body upward.
  • the frame 30 is formed of various materials such as Cu, stainless steel, and ceramic as long as it has a rigidity capable of holding the bus bar connector in cooperation with the insulating resin film 20, and preferably, the bus bar is formed. It is made of the same material as 10.
  • the insulating resin film 20 is provided with an opening that exposes a predetermined area on the upper surface of the plurality of bus bars 10.
  • the bus bar assembly has the first to third bus bars 10 (1) to 10 (3).
  • the insulating resin film 20 exposes the first bus bar opening 21 for exposing a predetermined region on the upper surface of the first bus bar 10 (1) and the predetermined region on the upper surface of the second bus bar 10 (2).
  • a second bus bar opening 22 is provided, and a third bus bar opening 23 is provided to expose a predetermined area on the upper surface of the third bus bar 10 (3).
  • FIG. 2 shows a vertical cross-sectional view of an example of a semiconductor module 101 in which a semiconductor element 110 such as an LED is mounted on the bus bar assembly 1.
  • the semiconductor module 101 has first and second semiconductor elements 110 (1) and 110 (2) as the semiconductor element 110.
  • Each of the first and second semiconductor elements 110 (1) and 110 (2) has an upper electrode layer and a lower electrode layer 111, 112 on the upper surface on one side in the thickness direction and the lower surface on the other side in the thickness direction, respectively.
  • the element main body 115 is provided between the upper electrode layer and the lower electrode layers 111 and 112.
  • the first and second bus bars 10 (1) and 10 (2) act as a first electrode which is one of a positive electrode side electrode and a negative electrode side electrode (for example, a positive electrode side electrode).
  • the third bus bar 10 (3) acts as a second electrode which is the other side of the positive electrode side electrode and the negative electrode side electrode (for example, the negative electrode side electrode).
  • the lower electrode layer 112 is exposed by the opening 21 for the first bus bar on the upper surface of the first bus bar 10 (1) acting as the first electrode.
  • the upper electrode layer 111 is electrically fixed to the region in a connected state, and the upper electrode layer 111 acts as a second electrode in the region of the upper surface of the third bus bar 10 (3) exposed by the opening 23 for the third bus bar. It is electrically connected via a first electrical connection member 120 (1) such as wire bonding.
  • the lower electrode layer 112 is exposed by the opening 22 for the second bus bar on the upper surface of the second bus bar 10 (2) acting as the first electrode.
  • the upper electrode layer 111 is electrically fixed to the region in a connected state, and the upper electrode layer 111 acts as a second electrode in the region of the upper surface of the third bus bar 10 (3) exposed by the opening 23 for the third bus bar. It is electrically connected via a second electrical connection member 120 (2) such as wire bonding.
  • a plating layer (not shown) is provided on the upper surfaces of the first to third bus bars 10 (1) to 10 (3).
  • the lower electrode layers 112 of the first and second semiconductor elements 110 (1) and 110 (2) are plated on the upper surfaces of the first and second bus bars 10 (1) and 10 (2), respectively.
  • the upper electrode layers 111 of the first and second semiconductor elements 110 (1) and 110 (2) are die-bonded so as to be electrically connected to the layers, and the upper electrode layers 111 of the first and second semiconductor elements 110 (1) and 110 (2) are respectively the third bus bar 10 (3).
  • the first and second electrical connection members 120 (1) and 120 (2) are wire-bonded to the plating layer (not shown) provided on the upper surface of the above.
  • Reference numeral 130 in FIG. 2 indicates the first and second semiconductor elements 110 (1) and 110 (2) mounted on the bus bar assembly 1, and the first and second electrical connection members 120 (1).
  • a sealing resin layer fixed to the upper surface of the bus bar assembly 1 in order to protect parts such as 120 (2).
  • the frame 30 prevents the resin material forming the sealing resin layer 130 from flowing out before curing.
  • the sealing resin layer 130 is formed of a transparent resin material such as polyimide, polyamide, or epoxy.
  • the bus bar assembly 1 having such a configuration, since the first to third bus bars 10 (1) to 10 (3) are arranged in the same plane, it is possible in the vertical direction (thickness direction) as much as possible. It is possible to reduce the size.
  • the adjacent bus bars 10 are arranged so as to face each other on the side surfaces, the adjacent bus bars are compared with each other as compared with the laminated bus bar assembly in which a plurality of bus bars are vertically stacked.
  • the facing area of the bus can be made as small as possible, whereby the leakage current can be effectively prevented or reduced from flowing between the adjacent bus bars 10.
  • the bus bar assembly 1 has a configuration in which the relative positions of a plurality of bus bars arranged in the same plane with a gap between them are maintained by the insulating resin filled in the gap (hereinafter,).
  • the degree of freedom of the opening width of the gap 19 can be increased and the manufacturing efficiency can be improved as compared with the comparative configuration.
  • the opening width of the gap is made too narrow in order to reduce the size of the entire bus bar assembly in the plane direction, the surface tension of the insulating resin material fills the gap with the insulating resin material. It can be difficult and in some cases impossible.
  • the first to third bus bars 10 (1) to 10 (3) arranged in the same plane with the gap 19 existing between them.
  • the relative positions of the above are maintained by the insulating resin film 20 adhered to the upper surfaces of the first to third bus bars 10 (1) to 10 (3) and the insulating resin film 20 adhered to the upper surface of the insulating resin film 20. It is done by the frame 30 and the frame body 30.
  • the bus bar assembly 1 it is not necessary to fill the gap 19 with the insulating resin material, and therefore, the degree of freedom in the opening width of the gap 19 is increased and the manufacturing efficiency is improved. be able to.
  • the entire lower surface of the first to third bus bars 10 (1) to 10 (3) is exposed. Therefore, when the bus bar assembly 1 is used as the semiconductor module 101, it is possible to improve the heat dissipation characteristics via the lower surfaces of the first to third bus bars 10 (1) to 10 (3).
  • FIG. 3 shows a plan view of the conductive metal flat plate 200 for a bus bar used in the first manufacturing method.
  • FIG. 4 (a) shows an enlarged view of part IV (a) in FIG. 3
  • FIG. 4 (b) shows a cross-sectional view taken along the line IV (b) -VII (b) in FIG. 4 (a). , Respectively.
  • FIG. 3 shows a state after the slit forming step is completed.
  • the bus bar assembly 1 has three bus bars of the first to third bus bars 10 (1) to 10 (3) as the plurality of bus bars 10. Therefore, the first and second slits 215 (1) and 215 (2) are formed as the slits 215 in the bus bar assembly forming region 210. For example, when manufacturing a bus bar assembly in which two bus bars are arranged in parallel, one slit is formed.
  • the conductive metal flat plate 200 for a bus bar is along the Y direction in the XY plane in which the conductive metal flat plate 200 is located. It has a bus bar row 205 including a plurality of bus bar assembly forming regions 210 arranged in series and a connecting region 230 connecting between the bus bar assembly forming regions 210 adjacent to each other in the Y direction, and the plurality of bus bar assemblies are formed. Machining processing can be performed on the region 210 at the same time.
  • the conductive metal flat plate 200 for a bus bar has a pair of gripping pieces 207 connected to one side and the other side in the longitudinal direction (Y direction) of the bus bar row 205, respectively, and the pair of gripping pieces 207.
  • the gripping piece 207 is provided with an alignment hole 208.
  • the length in the Y direction of the bus bar assembly forming region 210 is the same as the length in the direction parallel to the gap 19 of the bus bar assembly 1, and the length in the X direction of the bus bar assembly forming portion 210.
  • the lengths in the X direction and the Y direction are set so that the length is the same as the length in the direction orthogonal to the gap 19 of the bus bar assembly 1.
  • the slits 215 (1) and 215 (2) form the first and second gaps 19 (1) and 19 (2), and the corresponding first and second gaps 19 (1). It has the same width as 19 (2).
  • the widths of the first and second gaps 19 (1) and 19 (2) are determined according to the specifications of the bus bar assembly 1.
  • the first and second slits 215 (1) and 215 (2) formed in one bus bar assembly forming region 210A are in the longitudinal direction (Y direction).
  • One side extends into one connecting region 230A (1) connected to one side in the longitudinal direction (Y direction) of the one bus bar assembly forming region 210A, and the other side in the longitudinal direction (Y direction) is the one bus bar. It extends into another connecting region 230A (2) connected to the other side of the assembly forming region 230A in the longitudinal direction (Y direction).
  • first and second slits 215 (1) and 215 (2) formed in the one bus bar assembly forming region 210A.
  • the portions 220 (1) to 220 (3) are configured to be maintained connected to each other via the one connecting region 230A (1) and the other connecting region 230A (2). There is.
  • the first and second slits 215 (1) and 215 (2) (the first and second gaps 19 (1) and 19 (2)) can be formed with high accuracy. ..
  • the insulating resin film 20 is adhered to the first surface 211 (upper surface on which the semiconductor element 110 is mounted) on one side in the thickness direction of the bus bar assembly forming region 210. It has a film bonding process.
  • FIG. 5 shows a plan view of the conductive metal flat plate 200 for a bus bar after the film bonding step.
  • the insulating resin film 20 has the same shape as the bus bar forming region 210 in a plan view.
  • the insulating resin film 20 is formed of an insulating resin material having heat resistance and insulating properties such as polyamide-imide, polyimide, polyamide, and epoxy.
  • the frame body 30 is formed in parallel with the process from the step of preparing the conductive metal flat plate 200 for the bus bar to the film bonding step, or before or after the process. It is configured to perform the forming process.
  • FIG. 6 shows a plan view of the frame body flat plate 300 used in the frame body forming process.
  • a frame body flat plate 300 including a frame body forming region 310 having the same thickness as the frame body 30 and having an outer shape corresponding to the bus bar assembly forming region 210 in a plan view is prepared.
  • FIG. 6 shows the state after the punching process.
  • the frame flat plate 300 is made of various rigid materials.
  • the frame flat plate 300 is formed of the same material as the bus bar conductive metal flat plate 200.
  • the frame body flat plate 300 is configured so that the frame body forming region 310 is aligned with the bus bar assembly forming region 210 when polymerized on the bus bar conductive metal flat plate 200.
  • the conductive metal flat plate 200 for a bus bar connects a plurality of the bus bar assembly forming regions 210 arranged in series along the Y direction and the bus bar assembly forming regions 210 adjacent to each other in the Y direction. It has a bus bar row 205 including a connecting region 230.
  • the frame flat plate 300 is adjacent to the plurality of frame body forming regions 310 arranged in series in the Y direction at the same pitch as the plurality of bus bar assembly forming regions 210. It has a frame body row 305 including a connecting area 330 connecting between the frame body forming regions 310 to be formed.
  • the conductive metal flat plate 200 for the bus bar has a pair of gripping pieces 207 connected to one side and the other side in the longitudinal direction (Y direction) of the bus bar row 205, respectively, and the pair.
  • the gripping piece 207 of the above is provided with an alignment hole 208.
  • the frame body flat plate 300 is also provided with a pair of gripping pieces 307 connected to one side and the other side in the longitudinal direction (Y direction) of the frame body row 305, respectively.
  • the pair of gripping pieces 307 is provided with an alignment hole 308 corresponding to the alignment hole 208.
  • the conductive metal flat plate 200 for a bus bar and the flat plate 300 for a frame body are polymerized, and the frame body forming region 310 is adhered to the first surface 211 of the corresponding bus bar assembly forming region 210.
  • FIG. 7 shows a plan view of the conductive metal flat plate 200 for a bus bar and the flat plate 300 for a frame in a state after the flat plate bonding step.
  • the first manufacturing method further includes an opening forming step for exposing a predetermined region on the first surface of the first to third bus bars 10 (1) to 10 (3).
  • the opening forming step the insulating resin film 20 after the flat plate bonding step is irradiated with a laser beam to obtain a desired opening (in the present embodiment, the first to third). It is configured to form a bus bar opening 21-23).
  • FIG. 8 shows a plan view of the conductive metal flat plate 200 for a bus bar and the flat plate 300 for a frame in a state after the opening forming step.
  • the first manufacturing method further includes a cutting step of cutting the bus bar assembly forming region 210 and the frame body forming region 310 in an bonded state from the conductive metal flat plate 200 for the bus bar and the flat plate 300 for the frame body. There is.
  • the cutting step is configured to cut along the cutting lines C1 and C2 along the edges on one side and the other side in the Y direction of the bus bar assembly forming region 210 and the frame body forming region, respectively.
  • the opening forming step is performed after the flat plate bonding step and before the cutting step, but instead, the opening forming step is performed in the film bonding step. It is also possible to configure the insulating resin film 20 before, that is, before being adhered to the bus bar assembly forming region 210. In this case, the film bonding step is configured to bond the insulating resin film 20 in a state where the openings are formed to the bus bar assembly forming region 210.
  • the opening is formed by laser light irradiation, but instead, the opening can be formed by etching. In this case, the opening is formed by performing etching in a state where the region other than the region where the opening should be formed in the insulating resin film 20 is masked.
  • the opening forming step is performed before the film bonding step, it is also possible to form the opening by punching the insulating film 20.
  • FIG. 9A shows a plan view of the bus bar assembly 2 according to the present embodiment.
  • FIG. 9 (b) shows a cross-sectional view taken along the line IX (b) -IX (b) in FIG. 9 (a).
  • FIG. 10 shows a vertical cross-sectional view of the semiconductor module 102 in which the first and second semiconductor elements 110 (1) and 110 (2) are mounted on the bus bar assembly 2.
  • the same members as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the insulating resin film 20 is adhered to the lower surfaces of the plurality of bus bars 10 (1) to 10 (3). ing.
  • the bus bar assembly 2 has the plurality of bus bars 10 (1) to 10 (3) so as to straddle the plurality of bus bars 10 (1) to 10 (3) and the gaps 19 (1) and 19 (2). 3) is adhered to the lower surface (the surface opposite to the upper surface on which the first and second semiconductor elements 110 (1) and 110 (2) are mounted), and the gaps 19 (1) and 19 (2) are attached. Is formed by the insulating resin film 20 connecting the plurality of bus bars 10 (1) to 10 (3) and a rigid member, and is formed on the upper surface of the plurality of bus bars 10 (1) to 10 (3). It is provided with a bonded frame body 50.
  • the frame body 50 has a peripheral region in a plan view of the bus bar connecting body in which the plurality of bus bars 10 (1) to 10 (3) are connected by the insulating resin film 20. It is configured to be in line with the above, and has at least an insulating property on the outer surface.
  • the frame body 50 having at least an insulating outer surface is a form in which the entire body is made of ceramic, and the frame body body formed of a conductive member such as Cu or stainless steel and the outer surface of the frame body body.
  • a form having an insulating resin layer covering the above is included.
  • the frame body 50 is a frame body body 51 formed of a conductive member such as Cu or stainless steel, and the frame body body 51. It has an insulating resin layer 55 that covers the outer surface.
  • the insulating resin layer 55 is formed by using an insulating resin material such as polyimide, polyamide, or epoxy.
  • the insulating resin film 20 has an opening (shown) that exposes a predetermined area on the lower surface of the plurality of bus bars (the first to third bus bars 10 (1) to 10 (3)). Is provided.
  • FIG. 11A shows a plan view of the conductive metal flat plate 200 for a bus bar used in the second manufacturing method. Further, FIG. 11 (b) shows an enlarged cross-sectional view taken along the line XI (b) -XI (b) in FIG. 11 (a).
  • the second manufacturing method includes a step of preparing the conductive metal flat plate 200 for the bus bar and the slit 215 (the first and second slits 215 (1) and 215 (2)) in the bus bar assembly forming region 210.
  • the slit forming step and the second surface 212 (the lower surface opposite to the upper surface on which the semiconductor elements 110 (1) and 110 (2) are mounted) on the other side in the thickness direction of the bus bar assembly forming region 210 are described. It has a film bonding step of bonding the insulating resin film 20. 11 (a) and 11 (b) show the state after the film bonding process is completed.
  • the frame body 50 is formed in parallel with the process from the step of preparing the conductive metal flat plate 200 for the bus bar to the film bonding step, or before or after the process. It is configured to perform the forming process.
  • the frame body 50 includes the frame body body 51 formed of the conductive member and the insulating resin layer 55 covering the outer surface of the frame body body 51. Have.
  • the frame body forming process includes a step of preparing the frame body flat plate 300, a punching step of punching out the center of the frame body forming region 310 so that a portion corresponding to the frame body main body 51 remains, and the frame body main body.
  • a resin layer installation step of providing the insulating resin layer 55 on the outer peripheral surface of the portion corresponding to 51 is provided.
  • FIG. 12 shows a plan view of the frame flat plate 300 in a state after the resin layer installation step.
  • the resin layer installation step can be performed, for example, by electrodeposition coating with a paint containing an insulating resin material having heat resistance and insulating properties such as polyimide, polyamide, and epoxy. Instead of this, it is also possible to perform electrostatic powder coating on the powder of the insulating resin material. Alternatively, it is also possible to spray paint a paint containing an insulating resin material.
  • the conductive metal flat plate 200 for the bus bar and the flat plate 300 for the frame body in which the insulating resin layer 55 is installed are polymerized to form the frame body forming region 210. It has a step of adhering to the first surface 211 of the assembly forming region 210.
  • FIG. 13 shows a plan view of the conductive metal flat plate 200 for a bus bar and the flat plate 300 for a frame in a state after the flat plate bonding step.
  • the bus bar assembly forming region 200 and the frame body forming region 300 in the bonded state are further formed along the cutting lines C1 and C2 of FIG. 13 for the bus bar conductive metal flat plate 200 and the frame body. It has a cutting step of cutting from the flat plate 300.
  • a predetermined area on the lower surface of a plurality of bus bars (the first to third bus bars 10 (1) to 10 (3)) is exposed on the insulating resin film 20. It can be provided with an opening forming step of forming an opening to be made to be formed.
  • the opening forming step in the second manufacturing method is substantially the same as the opening forming step in the first manufacturing method.
  • FIG. 14A shows a plan view of the bus bar assembly 3 according to the present embodiment.
  • FIG. 14 (b) shows a cross-sectional view taken along the line XIV (b) -XIV (b) in FIG. 14 (a).
  • the same members as in the embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the bus bar assembly 3 according to the present embodiment is different from the bus bar assembly 1 according to the first embodiment only in that the frame body 30 is deleted.
  • the strength of the bus bar assembly 3 is lower than that of the bus bar assembly 1, the degree of freedom of the opening width of the gap 19 can be increased and the manufacturing efficiency can be improved as compared with the comparative configuration. ..
  • the bus bar assembly 3 is, for example, a step of preparing the conductive metal flat plate 200 for the bus bar, the slit forming step of forming the slits 215 (1) and 215 (2), and the bus bar assembly.
  • FIG. 15A shows a plan view of the bus bar assembly 4 according to the present embodiment.
  • FIG. 15 (b) shows a cross-sectional view taken along the line XV (b) -XV (b) in FIG. 15 (a).
  • the same members as in the embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the bus bar assembly 4 according to the present embodiment is different from the bus bar assembly 2 according to the second embodiment only in that the frame body 30 is deleted.
  • the strength of the bus bar assembly 4 is lower than that of the bus bar assembly 2, the degree of freedom of the opening width of the gap 19 can be increased and the manufacturing efficiency can be improved as compared with the comparative configuration. ..
  • the bus bar assembly according to the present embodiment is, for example, a step of preparing the conductive metal flat plate 200, the slit forming step of forming the slits 215 (1) and 215 (2), and the bus bar assembly forming region 210. Efficiently manufactured by a manufacturing method including the film bonding step of adhering the insulating resin film 20 to the second surface 212 of the above and a cutting step of cutting the bus bar assembly forming region 210 from the conductive metal flat plate 200 for the bus bar. can do.
  • Conductive metal flat plate for busbar 210 Busbar assembly forming region 215 (1), (2) First and Second Slits 220 (1) to (3) First to Third Busbar Forming Sites 300 Frame Flat Plate 310 Frame Forming Region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Connection Or Junction Boxes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

本発明に係るバスバーアッセンブリは、間隙を介して同一平面内に配置された導電性の複数のバスバーと、前記間隙を跨ぐように前記複数のバスバーの上面に接着された絶縁性樹脂フィルムと、前記絶縁性樹脂フィルムの上面に接着された剛性の枠体とを備える。前記枠体は、前記複数のバスバーが前記絶縁性樹脂フィルムによって連結されてなるバスバー連結体の平面視における周縁領域に沿うように構成されている。前記絶縁性樹脂フィルムには、前記複数のバスバーの上面の所定領域を露出させる開口が設けられている。

Description

バスバーアッセンブリ及びその製造方法
 本発明は、複数のバスバーが電気的には絶縁状態で且つ機械的には連結されてなるバスバーアッセンブリ及びその製造方法に関する。
 互いに対して電気的には絶縁状態で且つ機械的には連結されている複数のバスバーを備えたバスバーアッセンブリが提案され、種々の分野において利用されている。
 例えば、一の平板状バスバーと他の平板状バスバーとが互いに対して平行状態で上下に積層されてなる積層型のバスバーアッセンブリが提案されている(下記特許文献1及び2参照)。
 前記積層型バスバーアッセンブリは、一の平板状バスバーの対向平面と他の平板状バスバーの対向平面とが絶縁性樹脂層を挟んで全面的に対向配置されている為、絶縁性に関する信頼性を十分には確保し難いという問題がある。
 特に、上下方向に関し小型化を図る為に前記一の平板状バスバーと前記他の平板状バスバーとの間の絶縁性樹脂層の厚みを薄くすると、両バスバー間にリーク電流が流れる恐れがある。
 前記積層型バスバーアッセンブリの問題点を解決する為に、本願出願人は、導電性金属平板の第1及び第2バスバーが同一平面内で並列配置されている平面型バスバーアッセンブリに関する出願を行い、特許を受けている(下記特許文献3及び4参照)。
 図16(a)に、前記平面型バスバーアッセンブリ500の一例の平面図を示す。
 また、図16(b)に、図16(a)におけるXVI(b)-XVI(b)線に沿った断面図を示す。
 図16(a)及び(b)に示すように、前記平面型バスバーアッセンブリ500は、導電性金属平板の第1バスバー510(1)と、前記第1バスバー510(1)との間に間隙515を存しつつ前記第1バスバー510(1)と同一平面内に配置された導電性金属平板の第2バスバー510(2)と、前記第1及び第2バスバー510(1)、510(2)を電気的には絶縁状態で且つ機械的には連結する絶縁性樹脂層520とを備えている。
 前記絶縁性樹脂層520は、前記間隙515内に充填された間隙充填部525と、前記第1及び第2バスバー510(1)、510(2)が前記間隙充填部525によって連結されてなるバスバー連結体の表面上に積層された表面積層部とを有している。
 前記表面積層部は、前記バスバー連結体の厚み方向一方側の第1面及び厚み方向他方側の第2面をそれぞれ覆う第1面側積層部530及び第2面側積層部540と、前記前記バスバー連結体の外側面を覆い、前記第1及び第2面側積層部530、540を連結する側面側積層部550とを有している。
 前記第1面側積層部530には、前記第1及び第2バスバー510(1)、510(2)のそれぞれの上面の所定部分を露出させて第1及び第2露出領域を形成する第1及び第2開口531(1)、531(2)が設けられている。
 図16(c)に、前記バスバーアッセンブリ500にLED等の半導体素子110が装着されてなる半導体モジュール600の縦断面図を示す。
 前記半導体素子110は、素子本体(図示せず)と、前記素子本体の厚み方向一方側及び他方側にそれぞれ配設された上側電極層及び下側電極層(図示せず)とを有しており、図16(c)に示すように、下側電極層が前記第1及び第2露出領域の一方(図16(c)においては前記第1露出領域)に、例えば、メッキ層(図示せず)を介して機械的且つ電気的に接続され、且つ、上側電極層が前記第1及び第2露出領域の他方(図16(c)においては前記第2露出領域)にワイヤボンディング120を介して電気的に接続される。
 前記特許文献3及び4に記載の平面型バスバーアッセンブリ500は、前記積層型バスバーアッセンブリの前記問題点を解決し得る点において有用であるが、製造効率の観点で改善の余地がある。
 即ち、前記特許文献3及び4に記載の平面型バスバーアッセンブリ500を製造する際には、同一平面内に配置された前記第1及び第2バスバー510(1)、510(2)の間の前記間隙515に絶縁性樹脂材料を充填させて前記間隙充填部525を形成する必要がある。
 ここで、前記平面型バスバーアッセンブリ500の平面方向の小型化を図る為には、前記間隙515の開口幅を可及的に狭める必要があるが、その一方で、前記間隙515の開口幅を狭めると、絶縁性樹脂材料を前記間隙515内に充填させる作業が困難になる。
特許第4432913号公報 特許第6487769号公報 特許第6637002号公報 特許第6637003号公報
 本発明は、斯かる従来技術に鑑みなされたものであり、複数のバスバーが互いの間に間隙を存しつつ同一平面内に配置されてなるバスバーアッセンブリであって、前記間隙の開口幅の自由度を高めることができ、且つ、製造効率を向上させ得るバスバーアッセンブリ、及び、斯かるバスバーアッセンブリの製造方法の提供を目的とする。
 前記目的を達成するために、本発明の第1態様は、導電性平板状部材によって形成され、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙を跨ぐように前記複数のバスバーの上面に接着されて、前記間隙が存する状態で前記複数のバスバーを連結する絶縁性樹脂フィルムとを備え、前記絶縁性樹脂フィルムには、前記複数のバスバーの上面の所定領域を露出させる開口が設けられているバスバーアッセンブリを提供する。
 本発明の前記第1態様に係るバスバーアッセンブリによれば、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーが絶縁性樹脂フィルムによって連結されているので、前記間隙の開口幅を任意に設定することができ、且つ、効率よく製造することができる。
 前記第1態様に係るバスバーアッセンブリは、好ましくは、剛性部材によって形成され、前記絶縁性樹脂フィルムの上面に接着された枠体を備えるものとされ、前記枠体は、前記複数のバスバーが前記絶縁性樹脂フィルムによって連結されてなるバスバー連結体の平面視における周縁領域に沿うように構成される。
 前記枠体を備えた構成によれば、前記バスバーアッセンブリの強度を向上させることができると共に、前記バスバーに装着されるLED等の半導体素子を封止する為の封止樹脂を充填する際に当該封止樹脂が流れ出ることを有効に防止できる。
 より好ましくは、前記枠体は、前記複数のバスバーと同一材質とされる。
 また、前記目的を達成する為に、本発明の第2態様は、導電性平板状部材によって形成され、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙を跨ぐように前記複数のバスバーの下面に接着されて、前記間隙が存する状態で前記複数のバスバーを連結する絶縁性樹脂フィルムとを備えたバスバーアッセンブリを提供する。
 本発明の前記第2態様に係るバスバーアッセンブリによれば、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーが絶縁性樹脂フィルムによって連結されているので、前記間隙の開口幅を任意に設定することができ、且つ、効率よく製造することができる。
 前記第2態様に係るバスバーアッセンブリは、好ましくは、剛性部材によって形成され、前記複数のバスバーの上面に接着された枠体を備えるものとされ、前記枠体は、前記複数のバスバーが前記絶縁性樹脂フィルムによって連結されてなるバスバー連結体の平面視における周縁領域に沿うように構成され、且つ、少なくとも外表面には絶縁性を有するものとされる。
 前記枠体を備えた構成によれば、前記バスバーアッセンブリの強度を向上させることができると共に、前記バスバーに装着されるLED等の半導体素子を封止する為の封止樹脂を充填する際に当該封止樹脂が流れ出ることを有効に防止できる。
 また、前記目的を達する為に、本発明の第3態様は、導電性平板状部材によって形成され、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙を跨ぐように前記複数のバスバーの上面に接着された絶縁性樹脂フィルムとを備え、前記絶縁性樹脂フィルムには、前記複数のバスバーの上面の所定領域を露出させる開口が設けられているバスバーアッセンブリの製造方法であって、前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有する導電性金属平板を用意する工程と、前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅の一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を形成するスリット形成工程と、前記バスバーアッセンブリ形成領域の第1面に前記絶縁性樹脂フィルムを接着するフィルム接着工程と、前記バスバーアッセンブリ形成領域を前記バスバー用導電性金属平板から切断する切断工程と、前記フィルム接着工程の前、前記フィルム接着工程の後で且つ切断工程の前、若しくは、前記切断工程の後に、前記絶縁性樹脂フィルムに前記開口を形成する開口形成工程とを含むバスバーアッセンブリの製造方法を提供する。
 前記第3態様に係る製造方法は、好ましくは、前記バスバー用導電性金属平板を用意する工程から前記フィルム接着工程までの処理の前又は後、若しくは、並行して行う枠体形成処理であって、平面視において前記バスバーアッセンブリ形成領域に対応した外形状を有する枠体形成領域を含む剛性の枠体用平板を用意する工程と、前記枠体形成成領域のうちの中央部分を打ち抜いて、枠体を形成する打ち抜き工程とを含む枠体形成処理と、前記フィルム接着工程後の前記バスバー用導電性金属平板及び前記枠体形成処理後の前記枠体用平板を重合させて、前記枠体形成領域を対応する前記バスバーアッセンブリ形成領域の第1面に接着させる平板接着工程とをさらに備えることができる。
 この場合、前記切断工程は、前記平板接着工程後に、接着状態の前記バスバーアッセンブリ形成領域及び前記枠体形成領域を前記バスバー用導電性金属平板及び前記枠体用平板から切断するように構成される。
 前記第3態様の一形態においては、前記開口形成工程は、前記フィルム接着工程の前の前記絶縁性樹脂フィルムに対してパンチング加工を行うことで前記開口を形成するものとされる。
 他形態においては、前記開口形成工程は、前記絶縁性フィルムにレーザー光照射又はエッチングを行うことで前記開口を形成するものとされる。
 また、前記目的を達する為に、本発明の第4態様は、導電性平板状部材によって形成され、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙を跨ぐように前記複数のバスバーの下面に接着された絶縁性樹脂フィルムとを備えたバスバーアッセンブリの製造方法であって、前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有する導電性金属平板を用意する工程と、前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅の一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を形成するスリット形成工程と、前記バスバーアッセンブリ形成領域の第2面に前記絶縁性樹脂フィルムを接着するフィルム接着工程と、前記バスバーアッセンブリ形成領域を前記バスバー用導電性金属平板から切断する切断工程とを含むバスバーアッセンブリの製造方法を提供する。
 前記第4態様に係る製造方法は、好ましくは、前記バスバー用導電性金属平板を用意する工程から前記フィルム接着工程までの処理の前又は後、若しくは、並行して行う枠体形成処理であって、平面視において前記バスバーアッセンブリ形成領域に対応した外形状を有する枠体形成領域を含む剛性の枠体用平板を用意する工程と、前記枠体形成領域のうちの中央部分を打ち抜いて、枠体本体を形成する打ち抜き工程と、前記枠体本体の外周面に絶縁性樹脂層を設ける樹脂層設置工程とを含む枠体形成処理と、前記フィルム接着工程後の前記バスバー用導電性金属平板及び前記枠体形成処理後の前記枠体用平板を重合させて、前記枠体形成領域を対応する前記バスバーアッセンブリ形成領域の第1面に接着させる平板接着工程とをさらに備えることができる。
 この場合、前記切断工程は、前記平板接着工程後に、接着状態の前記バスバーアッセンブリ形成領域及び前記枠体形成領域を前記バスバー用導電性金属平板及び前記枠体用平板から切断するように構成される。
 本発明の前記第3態様及び前記第4態様に係る製造方法において、好ましくは、前記導電性金属平板は、前記スリットの長手方向に沿った第1方向に直列配置された複数の前記バスバーアッセンブリ形成領域と、隣接する前記バスバーアッセンブリ形成領域を連結する連結領域とを一体的に有するものとされる。
 この場合、一のバスバーアッセンブリ形成領域に形成されたスリットは、長手方向一端側が当該一のバスバーアッセンブリ形成領域の第1方向一方側に連接された連結領域内へ延び且つ長手方向他端側が当該一のバスバーアッセンブリ形成領域の第1方向他方側に連接された連結領域内へ延びるように形成される。
 本発明の前記第3態様及び前記第4態様に係る製造方法のうち、前記枠体形成処理を備える製造方法においては、好ましくは、前記枠体用平板は、前記複数のバスバーアッセンブリ形成領域と同一ピッチで前記第1第1方向に直列配置された複数の前記枠体形成領域と、前記第1方向に隣接する前記枠体形成領域を連結する連結領域とを一体的に有するものとされる。
図1(a)は、本発明の実施の形態1に係るバスバーアッセンブリの平面図であり、図1(b)は、図1(a)におけるI(b)-I(b)線に沿った断面図である。 図2は、前記実施の形態1に係るバスバーアッセンブリにLED等の半導体素子が装着されてなる半導体モジュールの縦断面図である。 図3は、前記実施の形態1に係るバスバーアッセンブリを製造する為の製造方法の一例(以下、第1製造方法という)において用いられるバスバー用導電性金属平板の平面図である。 図4(a)は、図3におけるIV(a)部拡大図であり、図4(b)は、図4(a)におけるIV(b)-VII(b)線に沿った断面図である。 図5は、前記第1製造方法におけるフィルム接着工程後の前記バスバー用導電性金属平板の平面図である。 図6は、前記第1製造方法における枠体形成処理において用いられる枠体用平板の平面図である。 図7は、前記第1製造方法における平板接着工程後の状態の前記バスバー用導電性金属平板及び前記枠体用平板の平面図である。 図8は、前記第1製造方法における開口形成工程後の状態の前記バスバー用導電性金属平板及び前記枠体用平板の平面図である。 図9(a)は、本発明の実施の形態2に係るバスバーアッセンブリの平面図であり、図9(b)は、図9(a)におけるIX(b)-IX(b)線に沿った断面図である。 図10は、前記実施の形態2に係るバスバーアッセンブリにLED等の半導体素子が装着されてなる半導体モジュールの縦断面図である。 図11(a)は、前記実施の形態2に係るバスバーアッセンブリを製造する為の製造方法の一例(以下、第2製造方法という)において用いられるバスバー用導電性金属平板の平面図であり、図11(b)は、図11(a)におけるXI(b)-XI(b)線に沿った拡大断面図である。図11(a)及び(b)は、前記第2製造方法におけるフィルム接着工程完了後の状態を示している。 図12は、前記第2製造方法において用いられる枠体用平板の平面図であり、前記第2製造方法における樹脂層設置工程後の状態を示している。 図13は、前記第2製造方法における平板接着工程後の状態の前記バスバー用導電性金属平板及び前記枠体用平板の平面図である。 図14(a)は、本発明の実施の形態3に係るバスバーアッセンブリの平面図であり、図14(b)は、図14(a)におけるXIV(b)-XIV(b)線に沿った断面図である。 図15(a)は、本発明の実施の形態4に係るバスバーアッセンブリの平面図であり、図15(b)は、図15(a)におけるXV(b)-XV(b)線に沿った断面図である。 図16(a)は、従来の平面型バスバーアッセンブリの平面図であり、図16(b)は、図16(a)におけるXVI(b)-XVI(b)線に沿った断面図であり、図16(c)は、前記従来のバスバーアッセンブリにLED等の半導体素子が装着されてなる半導体モジュールの縦断面図である。
実施の形態1
 以下、本発明に係るバスバーアッセンブリの一実施の形態について、添付図面を参照しつつ説明する。
 図1(a)に、本実施の形態に係るバスバーアッセンブリ1の平面図を示す。
 また、図1(b)に、図1(a)におけるI(b)-I(b)線に沿った断面図を示す。
 図1(a)及び図1(b)に示すように、前記バスバーアッセンブリ1は、導電性平板状部材によって形成された複数のバスバー10であって、対向する側面の間に間隙19が存する状態で同一平面内に配置された複数のバスバー10と、前記間隙19を跨ぐように前記複数のバスバー10の上面に接着されて、前記間隙19が存する状態で前記複数のバスバー10を連結する絶縁性樹脂フィルム20と、剛性部材によって形成され、前記絶縁性樹脂フィルム20の上面(前記複数のバスバー10に接着される下面とは反対側の面)に接着された枠体30とを有している。
 前記バスバー10は、Cu等の導電性金属によって形成される。
 本実施の形態に係る前記バスバーアッセンブリ1は、前記複数のバスバー10として、第1~第3バスバー10(1)~10(3)の3つのバスバーを有しており、前記間隙19として、第1及び第2間隙19(1)、19(2)を有している。
 即ち、前記バスバーアッセンブリは、前記第1バスバー10(1)と、第1間隙19(1)を介して前記第1バスバー10(1)に隣接配置された第2バスバー10(2)と、第2間隙19(2)を介して前記第2バスバー10(2)に隣接配置された第3バスバー10(3)とを有している。
 前記バスバー10(1)~10(3)の各々は、図1(b)に示す縦断面視において、前記絶縁性樹脂フィルム20が接着される上面と、前記上面とは反対側の下面と、前記間隙19を存しつつ隣接する他のバスバー10(1)~10(3)と対向する側面とを有している。
 前記絶縁性樹脂フィルム20は、絶縁性を有し且つ前記複数のバスバー10を連結させ得る強度を有する種々の材質によって形成され、好適には、ポリアミドイミドが用いられる。
 前記枠体30は、前記複数のバスバー10が前記絶縁性樹脂フィルム20によって連結されてなるバスバー連結体の平面視における周縁領域に沿うように構成されている。
 即ち、前記枠体30は、前記バスバー連結体の中央領域を上方に開放する中央開口35を有している。
 前記枠体30は、前記絶縁性樹脂フィルム20と共働して前記バスバー連結体を保持し得る剛性を有する限り、Cu、ステンレス、セラミック等の種々の材質によって形成され、好適には、前記バスバー10と同一材質によって形成される。
 図1(a)及び(b)に示すように、前記絶縁性樹脂フィルム20には、前記複数のバスバー10の上面の所定領域を露出させる開口が設けられている。
 前述の通り、本実施の形態に係る前記バスバーアッセンブリは、前記第1~第3バスバー10(1)~10(3)を有している。
 そして、前記絶縁性樹脂フィルム20には、前記第1バスバー10(1)の上面の所定領域を露出させる第1バスバー用開口21と、前記第2バスバー10(2)の上面の所定領域を露出させる第2バスバー用開口22と、前記第3バスバー10(3)の上面の所定領域を露出させる第3バスバー用開口23とが設けられている。
 図2に、前記バスバーアッセンブリ1にLED等の半導体素子110が装着されてなる半導体モジュール101の一例の縦断面図を示す。
 前記半導体モジュール101は、前記半導体素子110として、第1及び第2半導体素子110(1)、110(2)を有している。
 前記第1及び第2半導体素子110(1)、110(2)の各々は、厚み方向一方側の上面及び厚み方向他方側の下面にそれぞれ上側電極層及び下側電極層111、112を有し、前記上側電極層及び下側電極層111、112の間に素子本体115を有している。
 前記半導体モジュール101においては、前記第1及び第2バスバー10(1)、10(2)が正極側電極及び負極側電極の一方(例えば、正極側電極)である第1電極として作用し、前記第3バスバー10(3)が正極側電極及び負極側電極の他方(例えば、負極側電極)である第2電極として作用する。
 即ち、前記第1半導体素子110(1)は、前記下側電極層112が、第1電極として作用する前記第1バスバー10(1)の上面のうち前記第1バスバー用開口21によって露出された領域に電気的に接続状態で固着され、且つ、上側電極層111が、第2電極として作用する前記第3バスバー10(3)の上面のうち前記第3バスバー用開口23によって露出された領域にワイヤボンディング等の第1電気接続部材120(1)を介して電気的に接続される。
 そして、前記第2半導体素子110(2)は、前記下側電極層112が、第1電極として作用する前記第2バスバー10(2)の上面のうち前記第2バスバー用開口22によって露出された領域に電気的に接続状態で固着され、且つ、上側電極層111が、第2電極として作用する前記第3バスバー10(3)の上面のうち前記第3バスバー用開口23によって露出された領域にワイヤボンディング等の第2電気接続部材120(2)を介して電気的に接続される。
 好ましくは、前記第1~第3バスバー10(1)~10(3)の上面にはメッキ層(図示せず)が設けられる。
 この場合、前記第1及び第2半導体素子110(1)、110(2)の下側電極層112は、それぞれ、前記第1及び第2バスバー10(1)、10(2)の上面のメッキ層に電気的に接続されるようにダイボンディングされ、且つ、前記第1及び第2半導体素子110(1)、110(2)の上側電極層111は、それぞれ、前記第3バスバー10(3)の上面に設けられたメッキ層(図示せず)に前記第1及び第2電気接続部材120(1)、120(2)によってワイヤボンディングされる。
 なお、図2中の符号130は、前記バスバーアッセンブリ1に装着された前記第1及び第2半導体素子110(1)、110(2)並びに前記第1及び第2電気接続部材120(1)、120(2)等の部品を保護する為に、前記バスバーアッセンブリ1の上面に固着される封止樹脂層である。
 前記枠体30は、前記封止樹脂層130を設ける際に、前記封止樹脂層130を形成する樹脂材料が硬化前に流れ出ることを防止する。
 前記封止樹脂層130は、例えば、ポリイミド、ポリアミド、エポキシ等の透明樹脂材料によって形成される。
 斯かる構成の前記バスバーアッセンブリ1によれば、前記第1~第3バスバー10(1)~10(3)が同一平面内に配置されているので、上下方向(厚み方向)に関し可及的に小型化を図ることができる。
 また、前記バスバーアッセンブリ1によれば、隣接するバスバー10は側面において対向するように配置されているので、複数のバスバーが上下に積層されている積層型バスバーアッセンブリに比して、隣接するバスバー同士の対向面積を可及的に小さくすることができ、これにより、隣接するバスバー10間にリーク電流が流れることを有効に防止乃至は低減することができる。
 さらに、前記バスバーアッセンブリ1は、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーの相対位置の保持が、前記間隙内に充填された絶縁性樹脂によって行われる構成(以下、比較構成という)に比して、前記間隙19の開口幅の自由度を高めることができ、且つ、製造効率を向上させることができるという効果を奏する。
 即ち、前記比較構成においては、バスバーアッセンブリ全体の平面方向の小型化を図る為に前記間隙の開口幅を狭め過ぎると、絶縁性樹脂材料の表面張力によって前記間隙内への絶縁性樹脂材料の充填作業が困難になり、場合によっては不可能になり得る。
 これに対し、本実施の形態に係るバスバーアッセンブリ1においては、互いの間に前記間隙19が存する状態で同一平面内に配置された前記第1~第3バスバー10(1)~10(3)の相対位置の保持は、前記第1~第3バスバー10(1)~10(3)の上面に接着された前記絶縁性樹脂フィルム20と、前記絶縁性樹脂フィルム20の上面に接着された前記枠体30とによって行われている。
 即ち、本実施の形態に係るバスバーアッセンブリ1においては、前記間隙19内に絶縁性樹脂材料を充填させる必要が無く、従って、前記間隙19の開口幅の自由度を高めると共に、製造効率を向上させることができる。
 また、本実施の形態に係るバスバーアッセンブリ1においては、前記第1~第3バスバー10(1)~10(3)の下面の全面が露出されている。
 従って、前記バスバーアッセンブリ1を半導体モジュール101として使用した場合において、前記第1~第3バスバー10(1)~10(3)の下面を介した放熱特性を向上させることができる。
 以下、前記バスバーアッセンブリ1の製造方法の一例(第1製造方法)について説明する。
 図3に、前記第1製造方法において用いられるバスバー用導電性金属平板200の平面図を示す。
 また、図4(a)に、図3におけるIV(a)部拡大図を、図4(b)に、図4(a)におけるIV(b)-VII(b)線に沿った断面図を、それぞれ示す。
 図3及び図4に示すように、前記第1製造方法は、前記第1~第3バスバー10(1)~10(3)と同一厚みのバスバーアッセンブリ形成領域210を有するバスバー用導電性金属平板200を用意する工程と、前記バスバーアッセンブリ形成領域210に、厚み方向一方側の第1面211及び厚み方向他方側の第2面212の間を貫通するスリット215を形成するスリット形成工程とを有している。
 図3は、前記スリット形成工程完了後の状態を示している。
 なお、前述の通り、本実施の形態に係るバスバーアッセンブリ1は、前記複数のバスバー10として、前記第1~第3バスバー10(1)~10(3)の3つのバスバーを有している。その為、前記バスバーアッセンブリ形成領域210には、前記スリット215として、第1及び第2スリット215(1)、215(2)が形成される。
 例えば、2つのバスバーが並列配置されてなるバスバーアッセンブリを製造する際には、1つのスリットが形成される。
 図3及び図4(a)に示すように、本実施の形態においては、前記バスバー用導電性金属平板200は、当該導電性金属平板200が位置するX-Y平面内のY方向に沿って直列配列された複数の前記バスバーアッセンブリ形成領域210と、Y方向に隣接するバスバーアッセンブリ形成領域210の間を連結する連結領域230とを含むバスバー列205を有しており、前記複数のバスバーアッセンブリ形成領域210に対して加工処理を同時に行えるようになっている。
 本実施においては、前記バスバー用導電性金属平板200は、前記バスバー列205の長手方向(Y方向)一方側及び他方側にそれぞれ連結された一対の把持片207を有しており、前記一対の把持片207には位置合わせ孔208が設けられている。
 なお、複数の前記バスバー列205をX方向に並列配置させ、X方向に並列配置された複数のバスバー列205を前記一対の把持片207、207によって一体的に保持することも可能である。
 かかる変形構成によれば、より多くのバスバーアッセンブリ1を同時に製造することができる。
 本実施の形態においては、前記バスバーアッセンブリ形成領域210は、Y方向長さが前記バスバーアッセンブリ1の前記間隙19に平行な方向の長さと同一とされ、且つ、前記バスバー形成部位210のX方向長さが前記バスバーアッセンブリ1の前記間隙19とは直交する方向の長さと同一なるように、X方向及びY方向の長さが設定されている。
 前記スリット215(1)、215(2)は、前記第1及び第2間隙19(1)、19(2)を形成するものであり、対応する前記第1及び第2間隙19(1)、19(2)と同一幅とされる。
 なお、前記第1及び第2間隙19(1)、19(2)の幅は、前記バスバーアッセンブリ1の仕様に応じて定まる。 
 図4(a)に示すように、本実施の形態においては、一のバスバーアッセンブリ形成領域210Aに形成された第1及び第2スリット215(1)、215(2)は、長手方向(Y方向)一方側が当該一のバスバーアッセンブリ形成領域210Aの長手方向(Y方向)一方側に連結された一の連結領域230A(1)内へ延び、且つ、長手方向(Y方向)他方側が当該一のバスバーアッセンブリ形成領域230Aの長手方向(Y方向)他方側に連結された他の連結領域230A(2)内へ延びている。
 そして、前記スリット形成工程後の状態において、前記一のバスバーアッセンブリ形成領域210Aに形成された第1及び第2スリット215(1)、215(2)を介して隣接する第1~第3バスバー形成部位220(1)~220(3)は、前記一の連結領域230A(1)及び前記他の連結領域230A(2)を介して、互いに対して繋がった状態に維持されるように構成されている。
 斯かる構成を備えることにより、前記第1及び第2スリット215(1)、215(2)(前記第1及び第2間隙19(1)、19(2))を精度良く形成することができる。
 前記第1製造方法は、前記スリット形成工程後に、前記バスバーアッセンブリ形成領域210の厚み方向一方側の第1面211(前記半導体素子110が装着される上面)に前記絶縁性樹脂フィルム20を接着するフィルム接着工程を有している。
 図5に、前記フィルム接着工程後の前記バスバー用導電性金属平板200の平面図を示す。
 図5に示すように、本実施の形態においては、前記絶縁性樹脂フィルム20は、前記バスバー形成領域210と平面視同一外形状を有している。
 前記絶縁性樹脂フィルム20は、ポリアミドイミド、ポリイミド、ポリアミド、エポキシ等の耐熱性及び絶縁性を有する絶縁性樹脂材料によって形成される。
 前記第1製造方法は、前記バスバー用導電性金属平板200を用意する工程から前記フィルム接着工程までの処理に並行して、若しくは、前記処理の前又は後に、前記枠体30を形成する枠体形成処理を行うように構成されている。
 図6に、前記枠体形成処理において用いられる枠体用平板300の平面図を示す。
 前記枠体形成処理は、前記枠体30の厚みと同一厚みを有し且つ平面視において前記バスバーアッセンブリ形成領域210に対応した外形状を有する枠体形成領域310を含む枠体用平板300を用意する工程と、前記枠体30に相当する枠体形成部位が残るように前記枠体形成領域310の中央を打ち抜く打ち抜き工程とを備えている。
 図6は、前記打ち抜き工程後の状態を示している。
 前記枠体用平板300は、剛性を有する種々の材料によって形成される。
 好ましくは、前記枠体用平板300は、前記バスバー用導電性金属平板200と同一材料によって形成される。
 前記枠体用平板300は、前記バスバー用導電性金属平板200に重合させた際に、前記枠体形成領域310が前記バスバーアッセンブリ形成領域210に位置合わせされるように構成されている。
 詳しくは、前述の通り、前記バスバー用導電性金属平板200は、Y方向に沿って直列配列された複数の前記バスバーアッセンブリ形成領域210と、Y方向に隣接するバスバーアッセンブリ形成領域210の間を連結する連結領域230とを含むバスバー列205を有している。
 従って、前記枠体用平板300は、図6に示すように、前記複数のバスバーアッセンブリ形成領域210と同一ピッチでY方向に直列配置された複数の前記枠体形成領域310と、Y方向に隣接する枠体形成領域310の間を連結する連結領域330とを含む枠体列305を有している。
 なお、前述の通り、前記バスバー用導電性金属平板200は、前記バスバー列205の長手方向(Y方向)一方側及び他方側にそれぞれ連結された一対の把持片207を有しており、前記一対の把持片207には位置合わせ孔208が設けられている。
 これに応じて、図6に示すように、前記枠体用平板300にも、前記枠体列305の長手方向(Y方向)一方側及び他方側にそれぞれ連結された一対の把持片307が設けられ、前記一対の把持片307には前記位置合わせ孔208に対応した位置合わせ孔308が設けられている。
 前記第1製造方法は、前記バスバー用導電性金属平板200及び前記枠体用平板300を重合させて、前記枠体形成領域310を対応する前記バスバーアッセンブリ形成領域210の第1面211に接着させる平板接着工程を有している、
 図7に、前記平板接着工程後の状態の前記バスバー用導電性金属平板200及び前記枠体用平板300の平面図を示す。
 前記第1製造方法は、さらに、前記第1~第3バスバー10(1)~10(3)の第1面の所定領域を露出させる開口形成工程を有している。
 本実施の形態においては、前記開口形成工程は、前記平板接着工程後の前記絶縁性樹脂フィルム20にレーザー光を照射することで所望の開口(本実施の形態においては、前記第1~第3バスバー用開口21~23)を形成するように構成されている。
 図8に、前記開口形成工程後の状態の前記バスバー用導電性金属平板200及び前記枠体用平板300の平面図を示す。
 前記第1製造方法は、さらに、接着状態の前記バスバーアッセンブリ形成領域210及び前記枠体形成領域310を前記バスバー用導電性金属平板200及び前記枠体用平板300から切断する切断工程を有している。
 前記切断工程は、図8に示すように、前記バスバーアッセンブリ形成領域210及び前記枠体形成領域のY方向一方側及び他方側のエッジにそれぞれ沿った切断線C1、C2で切断するように構成される。
 なお、本実施の形態においては、前記開口形成工程は、前記平板接着工程の後で且つ前記切断工程の前に行われているが、これに代えて、前記開口形成工程を前記フィルム接着工程の前、即ち、前記バスバーアッセンブリ形成領域210に接着される前の前記絶縁性樹脂フィルム20に対して行うように構成することも可能である。
 この場合、前記フィルム接着工程は、前記開口が形成された状態の前記絶縁性樹脂フィルム20を前記バスバーアッセンブリ形成領域210に接着させるように構成される。
 若しくは、前記絶縁性樹脂フィルム20へのレーザー光の照射を、前記フィルム接着工程の後で且つ前記平板接着工程の前(図5に示す状態)、又は、前記切断工程の後に、行うことも可能である。
 また、本実施の形態においては、レーザー光照射によって前記開口を形成しているが、これに代えて、エッチングによって前記開口を形成することも可能である。
 この場合、前記絶縁性樹脂フィルム20のうち開口を形成すべき領域以外の領域にマスキングを行った状態でエッチングを行うことにより、前記開口が形成される。
 さらには、前記フィルム接着工程の前に前記開口形成工程が行われる場合においては、前記絶縁性フィルム20に対してパンチング加工を行うことによって、前記開口を形成することも可能である。
実施の形態2
 以下、本発明に係るバスバーアッセンブリの他の実施の形態について、添付図面を参照しつつ説明する。
 図9(a)に、本実施の形態に係るバスバーアッセンブリ2の平面図を示す。
 また、図9(b)に、図9(a)におけるIX(b)-IX(b)線に沿った断面図を示す。
 さらに、図10に、前記バスバーアッセンブリ2に前記第1及び第2半導体素子110(1)、110(2)が装着されてなる半導体モジュール102の縦断面図を示す。
 なお、図中、前記実施の形態1におけると同一部材には同一符号を付して、その説明を適宜省略する。
 図9(b)及び図10に示すように、本実施の形態に係るバスバーアッセンブリ2においては、前記絶縁性樹脂フィルム20が前記複数のバスバー10(1)~10(3)の下面に接着されている。
 詳しくは、前記バスバーアッセンブリ2は、前記複数のバスバー10(1)~10(3)と、前記間隙19(1)、19(2)を跨ぐように前記複数のバスバー10(1)~10(3)の下面(前記第1及び第2半導体素子110(1)、110(2)が装着される上面とは反対側の面)に接着されて、前記間隙19(1)、19(2)が存する状態で前記複数のバスバー10(1)~10(3)を連結する前記絶縁性樹脂フィルム20と、剛性部材によって形成され、前記複数のバスバー10(1)~10(3)の上面に接着された枠体50とを備えている。
 図9(a)に示すように、前記枠体50は、前記複数のバスバー10(1)~10(3)が前記絶縁性樹脂フィルム20によって連結されてなるバスバー連結体の平面視における周縁領域に沿うように構成され、且つ、少なくとも外表面には絶縁性を有している。
 なお、少なくとも外表面に絶縁性を有する枠体50とは、全体がセラミックによって形成される形態、並びに、Cu又はステンレス等の導電性部材によって形成された枠体本体及び前記枠体本体の外表面を被覆する絶縁性樹脂層を有する形態が含まれる。
 図9(b)及び図10に示すように、本実施の形態においては、前記枠体50は、Cu又はステンレス等の導電性部材によって形成された枠体本体51と、前記枠体本体51の外表面を被覆する絶縁性樹脂層55とを有している。
 前記絶縁性樹脂層55は、例えば、ポリイミド、ポリアミド、エポキシ等の絶縁性樹脂材料を用いて形成される。
 必要又は所望に応じて、前記絶縁性樹脂フィルム20には、前記複数のバスバー(前記第1~第3バスバー10(1)~10(3))の下面の所定領域を露出させる開口(図示せず)が設けられる。
 以下、前記バスバーアッセンブリ2の製造方法(第2製造方法)について説明する。
 図11(a)に、前記第2製造方法において用いられるバスバー用導電性金属平板200の平面図を示す。
 また、図11(b)に、図11(a)におけるXI(b)-XI(b)線に沿った拡大断面図を示す。
 前記第2製造方法は、前記バスバー用導電性金属平板200を用意する工程と、前記バスバーアッセンブリ形成領域210に前記スリット215(前記第1及び第2スリット215(1)、215(2))を形成するスリット形成工程と、前記バスバーアッセンブリ形成領域210の厚み方向他方側の第2面212(前記半導体素子110(1)、110(2)が装着される上面とは反対側の下面)に前記絶縁性樹脂フィルム20を接着するフィルム接着工程とを有している。
 図11(a)及び(b)は、前記フィルム接着工程完了後の状態を示している。
 前記第2製造方法は、前記バスバー用導電性金属平板200を用意する工程から前記フィルム接着工程までの処理に並行して、若しくは、前記処理の前又は後に、前記枠体50を形成する枠体形成処理を行うように構成されている。
 前述の通り、本実施の形態においては、前記枠体50は、導電性部材によって形成された前記枠体本体51と、前記枠体本体51の外表面を被覆する前記絶縁性樹脂層55とを有している。
 前記枠体形成処理は、前記枠体用平板300を用意する工程と、前記枠体本体51に相当する部分が残るように前記枠体形成領域310の中央を打ち抜く打ち抜き工程と、前記枠体本体51に相当する部分の外周面に前記絶縁性樹脂層55を設ける樹脂層設置工程とを備えている。
 図12に、前記樹脂層設置工程後の状態の前記枠体用平板300の平面図を示す。
 前記樹脂層設置工程は、例えば、ポリイミド、ポリアミド、エポキシ等の耐熱性及び絶縁性を有する絶縁性樹脂材料を含む塗料を電着塗装することによって行うことができる。
 これに代えて、絶縁性樹脂材料の粉体を静電粉体塗装することも可能である。
 若しくは、絶縁性樹脂材料を含む塗料をスプレー塗装することも可能である。
 前記第2製造方法は、前記バスバー用導電性金属平板200及び前記絶縁性樹脂層55が設置された状態の前記枠体用平板300を重合させて、前記枠体形成領域210を対応する前記バスバーアッセンブリ形成領域210の第1面211に接着させる工程を有している。
 図13に、前記平板接着工程後の状態の前記バスバー用導電性金属平板200及び前記枠体用平板300の平面図を示す。
 前記第2製造方法は、さらに、接着状態の前記バスバーアッセンブリ形成領域200及び前記枠体形成領域300を図13の切断線C1、C2に沿って前記バスバー用導電性金属平板200及び前記枠体用平板300から切断する切断工程を有している。
 必要又は所望に応じて、前記第2製造方法は、前記絶縁性樹脂フィルム20に、複数のバスバー(前記第1~第3バスバー10(1)~10(3))の下面の所定領域を露出させる開口を形成する開口形成工程を備えることができる。
 前記第2製造方法における前記開口形成工程は、前記第1製造方法における前記開口形成工程と実質的に同一とされる。
実施の形態3
 以下、本発明に係るバスバーアッセンブリのさらに他の実施の形態について、添付図面を参照しつつ説明する。
 図14(a)に、本実施の形態に係るバスバーアッセンブリ3の平面図を示す。
 また、図14(b)に、図14(a)におけるXIV(b)-XIV(b)線に沿った断面図を示す。
 なお、図中、前記実施の形態におけると同一部材には同一符号を付して、その説明を適宜省略する。
 本実施の形態に係るバスバーアッセンブリ3は、前記枠体30が削除されている点においてのみ、前記実施の形態1に係るバスバーアッセンブリ1と相違している。
 前記バスバーアッセンブリ3は、前記バスバーアッセンブリ1に比して、強度が低下するものの、前記比較構成に比して、前記間隙19の開口幅の自由度を高めると共に、製造効率を向上させることができる。
 本実施の形態に係るバスバーアッセンブリ3は、例えば、前記バスバー用導電性金属平板200を用意する工程と、前記スリット215(1)、215(2)を形成する前記スリット形成工程と、前記バスバーアッセンブリ形成領域210の第1面211に前記絶縁性樹脂フィルム20を接着する前記フィルム接着工程と、前記バスバーアッセンブリ形成領域210を前記バスバー用導電性金属平板200から切断する切断工程と、前記開口21~23を形成する前記開口形成工程とを含む製造方法によって効率良く製造することができる。
実施の形態4
 以下、本発明に係るバスバーアッセンブリのさらに他の実施の形態について、添付図面を参照しつつ説明する。
 図15(a)に、本実施の形態に係るバスバーアッセンブリ4の平面図を示す。
 また、図15(b)に、図15(a)におけるXV(b)-XV(b)線に沿った断面図を示す。
 なお、図中、前記実施の形態におけると同一部材には同一符号を付して、その説明を適宜省略する。
 本実施の形態に係るバスバーアッセンブリ4は、前記枠体30が削除されている点においてのみ、前記実施の形態2に係るバスバーアッセンブリ2と相違している。
 前記バスバーアッセンブリ4は、前記バスバーアッセンブリ2に比して、強度が低下するものの、前記比較構成に比して、前記間隙19の開口幅の自由度を高めると共に、製造効率を向上させることができる。
 本実施の形態に係るバスバーアッセンブリは、例えば、前記導電性金属平板200を用意する工程と、前記スリット215(1)、215(2)を形成する前記スリット形成工程と、前記バスバーアッセンブリ形成領域210の第2面212に前記絶縁性樹脂フィルム20を接着する前記フィルム接着工程と、前記バスバーアッセンブリ形成領域210を前記バスバー用導電性金属平板200から切断する切断工程とを含む製造方法によって効率良く製造することができる。
1~4       バスバーアッセンブリ
10a~10c   第1~第3バスバー
19        間隙
20        絶縁性樹脂フィルム
21~23     第1~第3バスバー用開口
30、50     枠体
200       バスバー用導電性金属平板
210       バスバーアッセンブリ形成領域
215(1)、(2)第1及び第2スリット
220(1)~(3)第1~第3バスバー形成部位
300       枠体用平板
310       枠体形成領域

Claims (13)

  1.  導電性平板状部材によって形成され、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙を跨ぐように前記複数のバスバーの上面に接着されて、前記間隙が存する状態で前記複数のバスバーを連結する絶縁性樹脂フィルムととを備え、
     前記絶縁性樹脂フィルムには、前記複数のバスバーの上面の所定領域を露出させる開口が設けられていることを特徴とするバスバーアッセンブリ。
  2.  剛性部材によって形成され、前記絶縁性樹脂フィルムの上面に接着された枠体を備え、
     前記枠体は、前記複数のバスバーが前記絶縁性樹脂フィルムによって連結されてなるバスバー連結体の平面視における周縁領域に沿うように構成されていることを特徴とする請求項1に記載のバスバーアッセンブリ。
  3.  前記枠体は、前記複数のバスバーと同一材質とされていることを特徴とする請求項2に記載のバスバーアッセンブリ。
  4.  導電性平板状部材によって形成され、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙を跨ぐように前記複数のバスバーの下面に接着されて、前記間隙が存する状態で前記複数のバスバーを連結する絶縁性樹脂フィルムとを備えていることを特徴とするバスバーアッセンブリ。
  5.  剛性部材によって形成され、前記複数のバスバーの上面に接着された枠体を備え、
     前記枠体は、前記複数のバスバーが前記絶縁性樹脂フィルムによって連結されてなるバスバー連結体の平面視における周縁領域に沿うように構成され、且つ、少なくとも外表面には絶縁性を有していることを特徴とする請求項4に記載のバスバーアッセンブリ。
  6.  導電性平板状部材によって形成され、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙を跨ぐように前記複数のバスバーの上面に接着された絶縁性樹脂フィルムとを備え、前記絶縁性樹脂フィルムには、前記複数のバスバーの上面の所定領域を露出させる開口が設けられているバスバーアッセンブリの製造方法であって、
     前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有する導電性金属平板を用意する工程と、
     前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅の一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を形成するスリット形成工程と、
     前記バスバーアッセンブリ形成領域の第1面に前記絶縁性樹脂フィルムを接着するフィルム接着工程と、
     前記バスバーアッセンブリ形成領域を前記バスバー用導電性金属平板から切断する切断工程と、
     前記フィルム接着工程の前、前記フィルム接着工程の後で且つ前記切断工程の前、若しくは、前記切断工程の後に、前記絶縁性樹脂フィルムに前記開口を形成する開口形成工程とを含むことを特徴とするバスバーアッセンブリの製造方法。
  7.  前記バスバー用導電性金属平板を用意する工程から前記フィルム接着工程までの処理の前又は後、若しくは、並行して行う枠体形成処理であって、平面視において前記バスバーアッセンブリ形成領域に対応した外形状を有する枠体形成領域を含む剛性の枠体用平板を用意する工程と、前記枠体形成成領域のうちの中央部分を打ち抜いて、枠体を形成する打ち抜き工程とを含む枠体形成処理と、
     前記フィルム接着工程後の前記バスバー用導電性金属平板及び前記枠体形成処理後の前記枠体用平板を重合させて、前記枠体形成領域を対応する前記バスバーアッセンブリ形成領域の第1面に接着させる平板接着工程とをさらに備え、
     前記切断工程は、前記平板接着工程後に、接着状態の前記バスバーアッセンブリ形成領域及び前記枠体形成領域を前記バスバー用導電性金属平板及び前記枠体用平板から切断するように構成されていることを特徴とする請求項6に記載のバスバーアッセンブリの製造方法。
  8.  前記開口形成工程は、前記フィルム接着工程の前の前記絶縁性樹脂フィルムに対してパンチング加工を行うことで前記開口を形成するものとされていることを特徴とする請求項6又は7に記載のバスバーアッセンブリの製造方法。
  9.  前記開口形成工程は、前記絶縁性フィルムにレーザー光照射又はエッチングを行うことで前記開口を形成するものとされていることを特徴とする請求項6又は7に記載のバスバーアッセンブリの製造方法。
  10.  導電性平板状部材によって形成され、対向する側面の間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙を跨ぐように前記複数のバスバーの下面に接着された絶縁性樹脂フィルムとを備えたバスバーアッセンブリの製造方法であって、
     前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有する導電性金属平板を用意する工程と、
     前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅の一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を形成するスリット形成工程と、
     前記バスバーアッセンブリ形成領域の第2面に前記絶縁性樹脂フィルムを接着するフィルム接着工程と、
     前記バスバーアッセンブリ形成領域を前記バスバー用導電性金属平板から切断する切断工程とを含むことを特徴とするバスバーアッセンブリの製造方法。
  11.  前記バスバー用導電性金属平板を用意する工程から前記フィルム接着工程までの処理の前又は後、若しくは、並行して行う枠体形成処理であって、平面視において前記バスバーアッセンブリ形成領域に対応した外形状を有する枠体形成領域を含む剛性の枠体用平板を用意する工程と、前記枠体形成領域のうちの中央部分を打ち抜いて、枠体本体を形成する打ち抜き工程と、前記枠体本体の外周面に絶縁性樹脂層を設ける樹脂層設置工程とを含む枠体形成処理と、
     前記フィルム接着工程後の前記バスバー用導電性金属平板及び前記枠体形成処理後の前記枠体用平板を重合させて、前記枠体形成領域を対応する前記バスバーアッセンブリ形成領域の第1面に接着させる平板接着工程とをさらに備え、
     前記切断工程は、前記平板接着工程後に、接着状態の前記バスバーアッセンブリ形成領域及び前記枠体形成領域を前記バスバー用導電性金属平板及び前記枠体用平板から切断するように構成されていることを特徴とする請求項10に記載のバスバーアッセンブリの製造方法。
  12.  前記導電性金属平板は、前記スリットの長手方向に沿った第1方向に直列配置された複数の前記バスバーアッセンブリ形成領域と、隣接する前記バスバーアッセンブリ形成領域を連結する連結領域とを一体的に有しており、
     一のバスバーアッセンブリ形成領域に形成されたスリットは、長手方向一端側が当該一のバスバーアッセンブリ形成領域の第1方向一方側に連接された連結領域内へ延び且つ長手方向他端側が当該一のバスバーアッセンブリ形成領域の第1方向他方側に連接された連結領域内へ延びていることを特徴とする請求項6から11の何れかに記載のバスバーアッセンブリの製造方法。
  13.  前記導電性金属平板は、前記スリットの長手方向に沿った第1方向に直列配置された複数の前記バスバーアッセンブリ形成領域と、隣接する前記バスバーアッセンブリ形成領域を連結する連結領域とを一体的に有しており、
     一のバスバーアッセンブリ形成領域に形成されたスリットは、長手方向一端側が当該一のバスバーアッセンブリ形成領域の第1方向一方側に連接された連結領域内へ延び且つ長手方向他端側が当該一のバスバーアッセンブリ形成領域の第1方向他方側に連接された連結領域内へ延びており、
     前記枠体用平板は、前記複数のバスバーアッセンブリ形成領域と同一ピッチで前記第1第1方向に直列配置された複数の前記枠体形成領域と、前記第1方向に隣接する前記枠体形成領域を連結する連結領域とを一体的に有していることを特徴とする請求項7又は11に記載のバスバーアッセンブリの製造方法。
PCT/JP2020/026788 2020-07-09 2020-07-09 バスバーアッセンブリ及びその製造方法 WO2022009361A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/026788 WO2022009361A1 (ja) 2020-07-09 2020-07-09 バスバーアッセンブリ及びその製造方法
CN202080102845.5A CN115777129A (zh) 2020-07-09 2020-07-09 汇流条组件及其制造方法
JP2020545736A JP6788767B1 (ja) 2020-07-09 2020-07-09 バスバーアッセンブリ及びその製造方法
EP20944347.2A EP4170685A4 (en) 2020-07-09 2020-07-09 BUS BAR ASSEMBLY AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026788 WO2022009361A1 (ja) 2020-07-09 2020-07-09 バスバーアッセンブリ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022009361A1 true WO2022009361A1 (ja) 2022-01-13

Family

ID=73455215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026788 WO2022009361A1 (ja) 2020-07-09 2020-07-09 バスバーアッセンブリ及びその製造方法

Country Status (4)

Country Link
EP (1) EP4170685A4 (ja)
JP (1) JP6788767B1 (ja)
CN (1) CN115777129A (ja)
WO (1) WO2022009361A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337002B2 (ja) 1986-10-28 1991-06-04 Kawasaki Heavy Ind Ltd
JPH0337003B2 (ja) 1982-03-29 1991-06-04 Tokyo Shibaura Electric Co
JPH06251637A (ja) * 1993-02-24 1994-09-09 Yazaki Corp フラット電線およびその製造方法
JP4432913B2 (ja) 2006-02-10 2010-03-17 株式会社デンソー 積層型ブスバーアセンブリ及びそのモールド装置
WO2015064549A1 (ja) * 2013-10-28 2015-05-07 住友電気工業株式会社 フラットケーブルとその製造方法
WO2019044687A1 (ja) * 2017-09-04 2019-03-07 サンコール株式会社 バスバーアッセンブリの製造方法
JP6487769B2 (ja) 2015-05-18 2019-03-20 サンコール株式会社 積層バスバーユニットの製造方法
WO2020044656A1 (ja) * 2018-08-28 2020-03-05 サンコール株式会社 バスバーアッセンブリ及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101114151B1 (ko) * 2010-08-09 2012-02-22 엘지이노텍 주식회사 발광 소자 및 이를 구비한 조명 시스템
KR101114197B1 (ko) * 2010-08-09 2012-02-22 엘지이노텍 주식회사 발광 소자 및 이를 구비한 조명 시스템
KR101824434B1 (ko) * 2011-08-25 2018-02-02 엘지이노텍 주식회사 발광소자 패키지, 이를 포함하는 조명시스템 및 영상표시장치
DE102013202551A1 (de) * 2013-02-18 2014-08-21 Heraeus Materials Technologies GmbH & Co. KG Verfahren zur Herstellung eines Substrats mit einer Kavität

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337003B2 (ja) 1982-03-29 1991-06-04 Tokyo Shibaura Electric Co
JPH0337002B2 (ja) 1986-10-28 1991-06-04 Kawasaki Heavy Ind Ltd
JPH06251637A (ja) * 1993-02-24 1994-09-09 Yazaki Corp フラット電線およびその製造方法
JP4432913B2 (ja) 2006-02-10 2010-03-17 株式会社デンソー 積層型ブスバーアセンブリ及びそのモールド装置
WO2015064549A1 (ja) * 2013-10-28 2015-05-07 住友電気工業株式会社 フラットケーブルとその製造方法
JP6487769B2 (ja) 2015-05-18 2019-03-20 サンコール株式会社 積層バスバーユニットの製造方法
WO2019044687A1 (ja) * 2017-09-04 2019-03-07 サンコール株式会社 バスバーアッセンブリの製造方法
WO2020044656A1 (ja) * 2018-08-28 2020-03-05 サンコール株式会社 バスバーアッセンブリ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170685A4

Also Published As

Publication number Publication date
EP4170685A4 (en) 2024-03-13
JPWO2022009361A1 (ja) 2022-01-13
CN115777129A (zh) 2023-03-10
JP6788767B1 (ja) 2020-11-25
EP4170685A1 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
US11600561B2 (en) Semiconductor device
KR101985056B1 (ko) 배선 기판 및 다수 개 연결 배선 기판
JP5295807B2 (ja) 配線基板多数個取り用の母基板
WO2022009361A1 (ja) バスバーアッセンブリ及びその製造方法
JP7142517B2 (ja) バスバーアッセンブリ及びその製造方法
CN109983548B (zh) 母线组件
WO2021059904A1 (ja) バスバーアッセンブリ及びその製造方法
WO2020085154A1 (ja) バスバーアッセンブリ及びその製造方法
US20230116738A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2022080115A1 (ja) バスバーアッセンブリ及びバスバーアッセンブリの製造方法
US20220239086A1 (en) Busbar assembly and method for manufacturing the same
JP7201649B2 (ja) バスバーアッセンブリ及び半導体モジュール
JP2022065738A (ja) バスバーアッセンブリの製造方法及びバスバーアッセンブリ用平板積層構造
JP7465222B2 (ja) バスバーアッセンブリ
JP2014022486A (ja) ワイヤボンディング構造、及びその製造方法
JP2022080002A (ja) バスバーアッセンブリ及びその製造方法
US7213333B2 (en) Method for manufacturing mounting substrate and method for manufacturing circuit device
JP2022061249A (ja) バスバーアッセンブリ及びその製造方法
JP4728032B2 (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020545736

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020944347

Country of ref document: EP

Effective date: 20230119

NENP Non-entry into the national phase

Ref country code: DE