WO2021059904A1 - バスバーアッセンブリ及びその製造方法 - Google Patents

バスバーアッセンブリ及びその製造方法 Download PDF

Info

Publication number
WO2021059904A1
WO2021059904A1 PCT/JP2020/033212 JP2020033212W WO2021059904A1 WO 2021059904 A1 WO2021059904 A1 WO 2021059904A1 JP 2020033212 W JP2020033212 W JP 2020033212W WO 2021059904 A1 WO2021059904 A1 WO 2021059904A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
gap
insulating resin
bar assembly
bus
Prior art date
Application number
PCT/JP2020/033212
Other languages
English (en)
French (fr)
Inventor
佑介 足立
Original Assignee
サンコール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社 filed Critical サンコール株式会社
Priority to US17/764,086 priority Critical patent/US12106869B2/en
Priority to CN202080066126.2A priority patent/CN114467234A/zh
Publication of WO2021059904A1 publication Critical patent/WO2021059904A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/16Rails or bus-bars provided with a plurality of discrete connecting locations for counterparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/20Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for assembling or disassembling contact members with insulating base, case or sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • B05D1/10Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/65Adding a layer before coating metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2505/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2505/00Polyamides
    • B05D2505/50Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2103/00Two poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/16Rails or bus-bars provided with a plurality of discrete connecting locations for counterparts
    • H01R25/161Details
    • H01R25/162Electrical connections between or with rails or bus-bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/16Rails or bus-bars provided with a plurality of discrete connecting locations for counterparts
    • H01R25/165Connecting locations formed by surface mounted apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/70Insulation of connections

Definitions

  • the present invention relates to a bus bar assembly in which the first and second bus bars are electrically insulated and mechanically connected, and a method for manufacturing the same.
  • a busbar assembly equipped with a plurality of busbars that are electrically insulated from each other and mechanically connected to each other has been proposed and is used in various fields.
  • the facing planes of one flat-plate bus bar and the facing planes of the other flat bus bars are arranged so as to face each other with the insulating resin layer interposed therebetween, so that the reliability of insulation is sufficient. Has the problem that it is difficult to secure. In particular, if the thickness of the insulating resin layer between the one flat bus bar and the other flat bus bar is reduced in order to reduce the size in the vertical direction, a leak current may flow between the two bus bars.
  • FIG. 21A shows a plan view of an example of the flat bus bar assembly 500. Further, FIG. 21 (b) shows a cross-sectional view taken along the line XXI (b) -XXI (b) in FIG. 21 (a).
  • the flat bus bar assembly 500 has a gap 515 between the first bus bar 510 (1) of the conductive metal flat plate and the first bus bar 510 (1).
  • the second bus bar 510 (2) which is a conductive metal flat plate arranged in the same plane as the first bus bar 510 (1), and the first and second bus bars 510 (1), 510 (2). Is provided with an insulating resin layer 520 that is electrically insulated and mechanically connected.
  • the insulating resin layer 520 is a bus bar formed by connecting a gap filling portion 525 filled in the gap 515 and the first and second bus bars 510 (1) and 510 (2) by the gap filling portion 525. It has a surface laminated portion 530 laminated on the surface of the connector.
  • the surface laminated portion 530 covers the upper surface laminated portion 530 and the lower surface laminated portion 540 that cover the upper surface of the bus bar connector on one side in the thickness direction and the lower surface of the other side in the thickness direction, respectively, and the outer surface of the bus bar connector. It has an upper surface laminated portion 530 and a side laminated portion 550 connecting the lower surface laminated portion 540.
  • the first and second exposed regions are formed by exposing predetermined portions of the upper surfaces of the first and second bus bars 510 (1) and 510 (2) to the upper surface laminated portion 530.
  • the openings 532 (1) and 532 (2) are provided.
  • FIG. 21C shows a vertical cross-sectional view of a semiconductor module 600 in which a semiconductor element 110 such as an LED is mounted on the bus bar assembly 500.
  • the first electrode layer lower electrode layer
  • the second electrode layer upper electrode layer
  • the second electrode layer is the other of the first and second exposed regions (FIG. 21 (FIG. 21).
  • it is electrically connected to the second exposed region) via wire bonding 120.
  • the flat bus bar assembly 500 is useful in that it can be miniaturized in the vertical direction, but there is room for improvement in terms of the centralized arrangement of the semiconductor elements 110 to be mounted.
  • the limit of the centralized arrangement of the semiconductor elements 110 is defined by the separation width L2 (see FIG. 21 (b)) between the opposing edges of the first and second openings 532 (1) and 532 (2).
  • L2 is equal to or greater than the width L1 of the gap between the first and second bus bars 510 (1) and 510 (2).
  • Japanese Patent No. 4432913 Japanese Patent No. 6487769 Japanese Unexamined Patent Publication No. 2019-042678 Japanese Unexamined Patent Publication No. 2019-050090
  • the present invention has been made in view of such a prior art, and is insulated by an insulating resin layer including a gap filling portion which is arranged in the same plane with a gap between them and filled in the gap.
  • a bus bar assembly having first and second bus bars connected in a state, which is attached to the first bus bar and / or the second bus bar while maintaining good insulation between the first and second bus bars.
  • the first object is to provide a bus bar assembly that enables the centralized arrangement of semiconductor elements.
  • a second object of the present invention is to provide a manufacturing method capable of efficiently manufacturing the bus bar assembly.
  • the first and second bus bars formed by conductive flat plate members and arranged in the same plane with a gap between them, and the gap.
  • An insulating resin layer including a gap filling portion filled therein and an upper surface laminated portion provided on the upper surface on one side in the thickness direction of a bus bar connecting body in which the first and second bus bars are connected by the gap filling portion.
  • the upper surface laminated portion is provided with a first bus bar side upper surface opening that exposes a predetermined region of the upper surfaces of the first bus bar and the gap filling portion that straddles the boundary between the two, and the second bus bar and the gap filling portion.
  • a second busbar-side upper surface opening that exposes a predetermined region straddling the boundary between the two is provided on the upper surface of the portion, and a portion of the upper surface laminated portion located between the first and second busbar-side upper surface openings is provided.
  • a busbar assembly forming a partition wall.
  • the first and second bus bar side upper surface openings are provided in the center of the first and second bus bars with respect to the longitudinal direction of the gap.
  • the insulating resin layer is provided on the lower surface laminated portion provided on the lower surface on the other side in the thickness direction of the bus bar connecting body, and on the side surface of the bus bar connecting body, and the upper surface laminated portion and the lower surface laminated portion are provided. It is assumed that it has a side laminated portion for connecting the portions, and the lower surface laminated portion is provided with a lower surface opening for exposing predetermined areas on the lower surfaces of the first and second bus bars.
  • the first and second bus bars include the upper surface, the lower surface on the other side in the thickness direction, the first side surface facing the gap, the second side surface facing the opposite side of the gap, the upper surface, and the lower surface.
  • Longitudinal direction of the gap in the first side surface and the second side surface A third side surface connecting one end of the gap in the longitudinal direction and the upper surface, the lower surface, the first side surface and the second side surface in the longitudinal direction of the gap. It has a fourth side surface that connects the ends on one side.
  • the first side surface is an upper surface adjacent portion extending from the upper surface to the other side in the thickness direction, and a step portion extending from the end portion of the upper surface adjacent portion on the other side in the thickness direction toward the second side surface.
  • the stepped portion has a lower surface adjacent portion extending from the end portion on the side close to the second side surface to the other side in the thickness direction and reaching the lower surface, and the second side surface has a thickness from the upper surface.
  • An upper surface adjacent portion extending to the other side in the direction, a step portion extending in a direction approaching the first side surface from the end portion of the upper surface adjacent portion on the other side in the thickness direction, and a side of the step portion approaching the first side surface.
  • the insulating resin layer is integrally formed with the upper surface laminated portion so as to cover the side surface of the bus bar connector while exposing the lower surfaces of the first and second bus bars in addition to the upper surface laminated portion. It is assumed that the side laminated portion is provided, and the lower surfaces of the first and second bus bars are opened.
  • the bus bar assembly according to the present invention further has an outer shape corresponding to the outer shape of the bus bar connector in a plan view, and is provided with a central hole surrounding the first and second bus bar side upper surface openings in the center of the plan view.
  • a frame body having a predetermined thickness and an insulating resin layer covering the outer periphery of the frame body may be provided. The frame is fixed to the peripheral edge of the upper surface of the bus bar connecting body so as to surround the first and second bus bar side upper surface openings in a plan view.
  • the present invention includes first and second bus bars formed of conductive flat plate-shaped members and arranged in the same plane with a gap between them.
  • Insulating resin including a gap filling portion filled in the gap and an upper surface laminated portion provided on the upper surface on one side in the thickness direction of the bus bar connecting portion in which the first and second bus bars are connected by the gap filling portion.
  • the upper surface laminated portion is provided with a layer, and the upper surface laminated portion includes a first bus bar side upper surface opening that exposes a predetermined region of the upper surfaces of the first bus bar and the gap filling portion that straddles the boundary between the two, and the second bus bar and the above.
  • a second busbar-side upper surface opening that exposes a predetermined region that straddles the boundary between the two is provided on the upper surface of the gap filling portion, and is located between the first and second busbar-side upper surface openings of the upper surface laminated portion.
  • a method for manufacturing a busbar assembly in which a portion forms a partition wall wherein a step of preparing a conductive metal flat plate for a busbar having a busbar assembly forming region forming the first and second busbars, and forming the busbar assembly.
  • First and second bus bars corresponding to the first and second bus bars are formed in the region so as to penetrate between the upper surface on one side in the thickness direction and the lower surface on the other side in the thickness direction and have the same width as the gap.
  • a slit forming step for defining the bus bar forming portion a step of providing an insulating resin layer material in the slit and the entire upper surface of the bus bar assembly forming region, and curing the insulating resin material to form the gap filling portion and the gap filling portion.
  • the step of forming the insulating resin layer having the upper surface laminated portion and the above-mentioned first and second upper surfaces of the upper surface laminated portion by irradiating a region corresponding to the first and second bus bar side upper surface openings with laser light.
  • the laser light irradiation step includes a laser light irradiation step of forming the upper surface opening on the second busbar side and a cutting step of cutting the busbar assembly forming region from the conductive metal flat plate for the busbar, and the laser light irradiation step is the entire corresponding region.
  • a large pulse width laser irradiation process for irradiating a large pulse width pulse laser and a small pulse width laser irradiation process for irradiating the entire corresponding region with a small pulse width pulse laser are repeated a plurality of times.
  • Provided is a method for manufacturing a busbar assembly.
  • the first and second bus bars arranged in the same plane with a gap between them are maintained in good insulation while maintaining good insulation. It is possible to efficiently manufacture a bus bar assembly that enables centralized arrangement of semiconductor elements mounted on one bus bar and / or the second bus bar.
  • the conductive metal flat plate for the bus bar has a plurality of the bus bar assembly forming regions arranged in series in the first direction along the longitudinal direction of the slit, and a connecting region connecting the adjacent bus bar assembly forming regions. It is assumed that the busbar is integrally provided.
  • the slit formed in the one bus bar assembly forming region extends into the connecting region in which one end side in the longitudinal direction is connected to one side in the first direction of the one bus bar assembly forming region and the other end side in the longitudinal direction is the one. It is assumed that the bus bar assembly forming region of the bus bar assembly extends into the connecting region connected to the other side in the first direction.
  • the method for manufacturing a bus bar assembly includes a step of preparing a conductive metal flat plate for a frame having an outer-shaped frame forming region corresponding to the bus bar assembly forming region in a plan view, and the frame forming region. , A step of forming a central hole surrounding the first and second bus bar side upper surface openings in a plan view to form a frame body main body forming portion, and a step of providing an insulating resin material on the outer peripheral surface of the frame body main body forming portion.
  • FIG. 1 is a perspective view of a bus bar assembly according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the bus bar assembly according to the embodiment.
  • FIG. 3 is a bottom view of the bus bar assembly according to the embodiment.
  • FIG. 4 is a longitudinal front view along the IV-IV line in FIG.
  • FIG. 5 is a longitudinal perspective view along the IV-IV line in FIG.
  • FIG. 6 is an enlarged view of the VI portion in FIG. 7 (a) and 7 (b) are vertical cross-sectional views of an example and another example of a semiconductor module in which a semiconductor element is mounted on the bus bar assembly according to the embodiment, respectively.
  • FIG. 8 is a vertical sectional front view of the bus bar assembly according to the modified example of the embodiment.
  • FIG. 8 is a vertical sectional front view of the bus bar assembly according to the modified example of the embodiment.
  • FIG. 9 is a vertical perspective view of the bus bar assembly according to the modified example.
  • FIG. 10 is a plan view of a conductive metal flat plate for a bus bar used in an example of the method for manufacturing a bus bar assembly according to the embodiment.
  • 11 (a) is an enlarged view of the XI (a) part in FIG. 10
  • FIG. 11 (b) is a cross-sectional view taken along the line XI (b) -XI (b) in FIG. 11 (a).
  • FIG. 12 is a plan view of the conductive metal flat plate for a bus bar in a state after the installation step of the insulating resin layer in the manufacturing method.
  • 13 (a) is an enlarged view of the XIII (a) part in FIG. 12, and FIG.
  • FIG. 13 (b) is a cross-sectional view taken along the line XIII (b) -XIII (b) in FIG. 13 (a).
  • .. 14 (a) and 14 (b) are enlarged views of the XIV portion in FIG. 13 (a), respectively, in which a large pulse width laser irradiation process and a small pulse width laser irradiation process are performed in the laser light irradiation step in the manufacturing method. It shows the state after going.
  • FIG. 15 is a plan view of the conductive metal flat plate for a bus bar in a state after the laser light irradiation step and the laser irradiation step on the lower surface side are performed.
  • 16 (a) is an enlarged view of the XVI (a) portion in FIG.
  • FIG. 16 (b) is a cross-sectional view taken along the line XVI (b) -XVI (b) in FIG. 16 (a).
  • FIG. 17 is a plan view of a conductive metal flat plate for a frame used in the frame forming process in the manufacturing method.
  • FIG. 18 (a) is an enlarged view of part XVII (a) in FIG. 17, and
  • FIG. 18 (b) is a cross-sectional view taken along the line XVIII (b) -XVIII (b) in FIG. 18 (a). .. FIG.
  • FIG. 19 is a plan view of a state in which the conductive metal flat plate for a bus bar and the conductive metal flat plate for a frame are fixed in a fixing step which is one step in the manufacturing method.
  • FIG. 20 is a cross-sectional view taken along the line XX-XX in FIG. 21 (a) is a plan view of a conventional flat bus bar assembly
  • FIG. 21 (b) is a cross-sectional view taken along the line XXI (b) -XXI (b) in FIG. 21 (a).
  • FIG. 21 (c) is a cross-sectional view of a semiconductor module in which a semiconductor element is mounted on the conventional flat bus bar assembly.
  • FIGS. 4 and 5 show a vertical sectional front view and a vertical sectional perspective view along the IV-IV line in FIG. 2, respectively.
  • FIG. 6 shows an enlarged view of the VI portion in FIG.
  • the bus bar assembly 1 is a first and second bus bars 10 (1) and 10 (2) formed of a conductive flat plate-like member, and is between side surfaces facing each other. It was fixed to the first and second bus bars 10 (1) and 10 (2) arranged in the same plane with the gap 19 present, and to the first and second bus bars 10 (1) and 10 (2). It has an insulating resin layer 30.
  • the bus bar assembly 1 has only two bus bars, the first and second bus bars 10 (1) and 10 (2), but of course, the bus bar according to the present invention.
  • the assembly can also have three or more busbars, including the first and second busbars 10 (1), 10 (2).
  • the first and second bus bars 10 (1) and 10 (2) are formed of a conductive metal such as Cu. As shown in FIGS. 4 to 6, the first and second bus bars 10 (1) and 10 (2) are formed in the upper surface 11 on one side in the thickness direction, the lower surface 12 on the other side in the thickness direction, and the gap 19.
  • the first side surface 13a facing, the second side surface 13b facing the side opposite to the gap 19, the upper surface 11, the lower surface 12, the first side surface 13a and the second side surface 13b in the longitudinal direction of the gap 19.
  • a third side surface 13c that connects the side ends, and a second end that connects the upper surface 11, the lower surface 12, the first side surface 13a, and the other end of the gap 19 in the second side surface 13b in the longitudinal direction. It has four side surfaces 13d.
  • the insulating resin layer 30 is filled in the gap 19 between the facing side surfaces 13a of the first and second bus bars 10 (1) and 10 (2) to fill the first and second bus bars 10 (1) and 10 (2).
  • the gap filling portion 31 that mechanically connects the second bus bars 10 (1) and 10 (2) in an electrically insulated state, and the first and second bus bars 10 (1) and 10 (2) are described above. It has an upper surface laminated portion 40 provided on the upper surface of the bus bar connecting body connected by the gap filling portion 31.
  • the insulating resin layer 30 is formed of an insulating resin material having heat resistance and insulating properties.
  • the insulating resin material for example, Insuled (registered trademark) is preferably used.
  • the upper surface laminated portions 40 are exposed to a part of the upper surfaces 11 of the first and second bus bars 10 (1) and 10 (2), respectively. 2) is provided.
  • the first bus bar side upper surface opening 42 (1) is among the upper surface 11 of the first bus bar 10 (1) and the upper surface of the gap filling portion 31. It is formed so as to expose a predetermined area straddling the boundary between the two.
  • the space formed by the first bus bar side upper surface opening 42 (1) is a semiconductor element for mounting the semiconductor element 110 (see FIGS. 7 (a) and 7 (b) below) on the first bus bar 10 (1). It acts as a mounting space or an electrical connection space for electrically connecting the first bus bar 10 (1) to another electrical connection member.
  • the second bus bar side upper surface opening 42 (2) of the second bus bar 10 (2) while leaving a part of the upper surface laminated portion 40 between the second bus bar side upper surface opening 42 (1) and the first bus bar side upper surface opening 42 (1).
  • a predetermined region straddling the boundary between the two is exposed.
  • the second bus bar side upper surface opening 42 (2) is a semiconductor element mounting space for mounting the semiconductor element 110 (see FIGS. 7 (a) and 7 (b) below) on the second bus bar 10 (2), or the first bus bar. 2 It acts as an electrical connection space for electrically connecting the bus bar 10 (2) to another electrical connection member.
  • FIG. 7A shows a vertical cross-sectional view of an example 100A of a semiconductor module in which a semiconductor element 110 such as an LED is mounted on the bus bar assembly 1.
  • the space formed by the first bus bar side upper surface opening 42 (1) (see FIGS. 4 and 5 and the like) is used as a semiconductor element mounting space for mounting the semiconductor element 110.
  • the space formed by the second bus bar side upper surface opening 42 (2) (see FIGS. 4 and 5 and the like) is used as the electrical connection space.
  • one of the first and second bus bars 10 (1) and 10 (2) acts as a positive electrode and the other acts as a negative electrode.
  • the semiconductor element 110 has first and second electrode layers 111 and 112 on the lower surface on one side in the thickness direction and the upper surface on the other side in the thickness direction, respectively.
  • the element body 115 is provided between the second electrode layers 111 and 112.
  • the first electrode layer 111 corresponds to the upper surface opening (illustrated example) of the upper surface 11 of the one bus bar (first bus bar 10 (1) in the illustrated example).
  • the corresponding upper surface opening in the illustrated example, the first.
  • the space formed by the bus bar side upper surface opening 42 (1) is used to be fixed to the upper surface 11 of the one bus bar (first bus bar 10 (1) in the illustrated example). Has been done.
  • the second electrode layer 112 of the semiconductor element 110 is the corresponding upper surface of the upper surface 11 of the other bus bar (second bus bar 10 (2) in the illustrated example) via an electrical connection member 120 such as wire bonding. It is electrically connected to the portion exposed by the opening (in the illustrated example, the second bus bar side upper surface opening 42 (2) (see FIGS. 4 and 5 and the like)). It should be noted that preferably, a plating layer (not shown) is provided on the upper surfaces of the first and second bus bars 10 (1) and 10 (2).
  • Reference numeral 130 in FIG. 7A is fixed to the first surface 11 of the bus bar assembly 1 in order to protect components such as the semiconductor element 110 and the electrical connection member 120 mounted on the bus bar assembly 1. It is a sealing resin layer.
  • a transparent resin such as polyimide, polyamide, or epoxy is used.
  • the sealing resin layer 130 is provided in a region defined by the frame body 60. That is, as shown in FIG. 7A, the bus bar assembly 1 according to the present embodiment is further fixed to the peripheral edge of the upper surface of the bus bar connection while opening the center of the upper surface of the bus bar connection. It has the frame body 60.
  • the frame body 60 acts as a damming structure when the sealing resin layer 130 is provided. That is, the sealing resin layer 130 is coated with a resin forming the sealing resin layer 130 so as to surround parts such as the semiconductor element 110 and the electrical connection member 120 on the upper surface of the bus bar assembly 1. It is provided by curing, but at that time, it is necessary to provide a damming structure for preventing the resin from flowing out.
  • the frame body 60 has an outer shape corresponding to the outer shape of the bus bar connecting body in a plan view, and surrounds the first and second bus bar side upper surface openings 42 (1) and 42 (2) in the center in a plan view. It has a frame body 65 having a predetermined thickness provided with a central hole 61, and an insulating resin layer 70 that covers the outer periphery of the frame body 65.
  • the frame body 60 can be formed, for example, by using a metal flat plate having a thickness corresponding to the thickness of the frame body 60 and forming the central hole 61 in the metal flat plate by press working.
  • the frame-side insulating resin layer 65 is formed by using, for example, an insulating resin material such as polyimide, polyamide, or epoxy.
  • the frame body 60 is fixed to the peripheral edge of the upper surface of the bus bar connecting body by an adhesive or the like so as to surround the first and second bus bar side upper surface openings 42 (1) and 42 (2) in a plan view.
  • FIG. 7B shows a vertical cross-sectional view of another example 100B of a semiconductor module in which a semiconductor element 110 such as an LED is mounted on the bus bar assembly 1.
  • a semiconductor element 110 such as an LED
  • first and second semiconductor elements 110 (1) and 110 (2) mounted on the first and second bus bars 10 (1) and 10 (2) are electrically connected in parallel.
  • the first bus bar 10 (1) to which the first electrode layer 111 of the first semiconductor element 110 (1) is electrically connected and the first electrode layer 111 of the second semiconductor element 110 (2) are electrically connected acts as one of the positive electrode side electrode and the negative electrode side electrode (for example, the positive electrode side electrode).
  • the second electrode layer 112 of the first and second semiconductor elements 110 (1) and 110 (2) is wire-bonded to the other of the positive electrode side electrode or the negative electrode side electrode (for example, the negative electrode side electrode, not shown). It is electrically connected via an electrical connection member (not shown) such as.
  • the bus bar assembly 1 since the first and second bus bars 10 (1) and 10 (2) are arranged in the same plane, it is possible in the vertical direction (thickness direction). It is possible to reduce the size.
  • first and second bus bars 10 (1) and 10 (2) are arranged so as to face each other on the first side surface 13a, the laminated bus bar assembly in which a plurality of bus bars are vertically laminated is formed.
  • the area where the first and second bus bars 10 (1) and 10 (2) face each other can be made as small as possible, whereby the first and second bus bars 10 (1) and the second bus bar 10 ( It is possible to effectively prevent or reduce the leakage current between 1) and 10 (2).
  • the width L1 of the gap 19 between the first and second bus bars 10 (1) and 10 (2) is possible to narrow the separation width L2 between the facing edges of the first and second bus bar side upper surface openings 42 (1) and 42 (2) without forcibly narrowing.
  • the first bus bar 10 (1) while ensuring good insulation between the first and second bus bars 10 (1) and 10 (2).
  • the semiconductor elements 110 mounted on the second bus bar 10 (2) can be arranged as centrally as possible.
  • first and second bus bar side upper surface openings 42 (1) and 42 (2) passes through the first bus bar side upper surface opening 42 (1).
  • Exposure of the second bus bar 10 (2) exposed through the exposed area of the first bus bar 10 (1) to be exposed (hereinafter, referred to as the first bus bar exposed area) and the upper surface opening 42 (2) on the second bus bar side. Since it acts as a partition wall 43 with the region (hereinafter, referred to as a second bus bar exposed region), a short circuit between the first and second bus bar exposed regions can be effectively prevented.
  • partition wall 43 can also act as an alignment member when mounting the semiconductor element 110, and the accuracy of the mounting position of the semiconductor element 110 can be improved.
  • the first and second busbar side upper surface openings 42 (1) and 42 (2) are the first and first in the longitudinal direction of the gap 19. 2 It is provided in the center of the bus bars 10 (1) and 10 (2).
  • the insulating resin layer 30 is further provided with a lower surface laminated portion 50 provided on the lower surface of the bus bar connector on the other side in the thickness direction, and the above. It is provided on the side surface of the bus bar connector, and has a side laminated portion 55 that connects the upper surface laminated portion 40 and the peripheral edge of the lower surface laminated portion 50.
  • the lower surface laminated portion 50 exposes predetermined regions of the lower surfaces 12 of the first and second bus bars 10 (1) and 10 (2), respectively.
  • the first and second bus bar side lower surface openings 52 (1) and 52 (2) are provided. Instead of the first and second bus bar side lower surface openings 52 (1) and 52 (2), both of the predetermined areas on the lower surface 12 of the first and second bus bars 10 (1) and 10 (2) are opened. It is also possible to form a single underside opening that is integrally exposed.
  • the first and second bus bars 10'(1), 10' (instead of the first and second bus bars 10 (1) and 10 (2), as compared with the present embodiment. It has 2) and has an insulating resin layer 30'instead of the insulating resin layer 30.
  • the first and second bus bars 10'(1) and 10'(2) have the upper surface 11 and the lower surface 12, the first side surface 13a'facing the gap 19, and the side opposite to the gap 19.
  • a third side surface connecting the upper surface 11, the lower surface 12, the first side surface 13a'and the end of the gap 19 on one side in the longitudinal direction of the facing second side surface 13b'(FIG. (Not shown) and the fourth side surface (not shown) connecting the other end portions of the gap 19 in the upper surface 11, the lower surface 12, the first side surface 13a'and the second side surface 13b' in the longitudinal direction. And have.
  • the first side surface 13a' is from the upper surface adjacent portion 13a'-1 extending from the upper surface 11 to the other side in the thickness direction and the end portion of the upper surface adjacent portion 13a'-1 on the other side in the thickness direction to the second side surface 13b'. Adjacent to the lower surface extending from the step portion 13a'-2 extending in the approaching direction and the end portion of the step portion 13a'-2 close to the second side surface 13b' to the other side in the thickness direction to reach the lower surface 12. It has parts 13a'-3.
  • the second side surface 13b' is the first from the upper surface adjacent portion 13b'-1 extending from the upper surface 11 to the other side in the thickness direction and the end portion of the upper surface adjacent portion 13b'-1 on the other side in the thickness direction.
  • a stepped portion 13b'-2 extending in a direction close to the side surface 13a'and an end portion of the stepped portion 13b'-2 on the side close to the first side surface 13a' extending toward the other side in the thickness direction to the lower surface 12. It has a lower surface adjacent portion 13b'-3 to reach.
  • the insulating resin layer 30' has the gap filling portion 31 and the upper surface laminated portion 40, and further exposes the lower surfaces 12 of the first and second bus bars 10'(1) and 10'(2).
  • the side laminated portion 55' is integrally formed with the upper surface laminated portion 40 so as to cover the side surface of the bus bar connecting body.
  • FIG. 10 shows a plan view of the conductive metal flat plate 200 for a bus bar used in the manufacturing method.
  • FIG. 11 (a) shows an enlarged view of the XI (a) portion in FIG. 10, and
  • FIG. 11 (b) shows a cross-sectional view taken along the line XI (b) -XI (b) in FIG. 11 (a). , Respectively.
  • a conductive metal flat plate 200 for a bus bar having a bus bar assembly forming region 210 forming the first and second bus bars 10 (1) and 10 (2) is prepared.
  • the bus bar assembly forming region 210 includes a slit forming step of forming a slit 215 penetrating between the upper surface 211 on one side in the thickness direction and the lower surface 212 on the other side in the thickness direction. 10 and 11 show a state after the slit forming step is completed.
  • the conductive metal flat plate 200 for the bus bar is assumed to have the same thickness as the first and second bus bars 10 (1) and 10 (2), and the bus bar assembly forming region 210 is viewed in plan with the bus bar connecting body. It is assumed that they have the same shape.
  • the slit 215 has the same width as the gap 19, and is the same as or longer than the gap 19, and the bus bar assembly forming region 210 is formed by the first and second bus bars 10 ( It is divided into the first and second bus bar forming sites 220 (1) and 220 (2) corresponding to 1) and 10 (2), respectively.
  • the number of bus bars is 1
  • the number of slits obtained by subtracting is formed. That is, for example, when manufacturing a bus bar assembly in which three bus bars are arranged in parallel, two slits are formed.
  • the conductive metal flat plate 200 for the bus bar is arranged in series along the X direction in the XY plane in which the conductive metal flat plate 200 is located. It has a bus bar row 205 including a plurality of the bus bar assembly forming regions 210 and a connecting region 230 connecting between the bus bar assembly forming regions 210 adjacent to each other in the X direction, and the plurality of bus bar assembly forming regions 210 have a bus bar row 205.
  • processing can be performed at the same time.
  • the conductive metal flat plate 200 for a bus bar further has a pair of gripping pieces 207 connected to one side and the other side in the longitudinal direction (X direction) of the bus bar row 205, respectively.
  • the pair of gripping pieces 207 are provided with an alignment hole 208.
  • the bus bar assembly forming region 210 has the same length in the X direction as the length of the bus bar assembly 1 along the longitudinal direction of the gap 19, and the length in the Y direction is along the width direction of the gap 19. It is the same as the length of the bus bar assembly 1.
  • the slit 215 forms the gap 19 in the bus bar assembly 1, and has the same width as the gap 19.
  • the width of the gap 19 is determined according to the specifications of the bus bar assembly 1.
  • the slit 215 formed in one bus bar assembly forming region 210 is connected to one side in the longitudinal direction (X direction) on one side in the longitudinal direction (X direction) of the one bus bar assembly forming region 210. Extends into one connecting region 230, and the other side in the longitudinal direction (X direction) extends into the other connecting region 230 connected to the other side in the longitudinal direction (X direction) of the one busbar assembly forming region 230. There is.
  • the first and second bus bar forming portions 220 (1) and 220 (2) facing each other via the slit 215 formed in the one bus bar assembly forming region 210 are It is maintained in a state of being connected to each other via the one connecting region 230 and the other connecting region 230. Therefore, the slit 215 (the gap 19) can be formed with high accuracy.
  • an insulating resin material 240 forming the insulating resin layer 30 is provided in the slit 215 and on the outer surface of the bus bar forming region 210, and the insulating resin material 240 is cured to form the insulating resin material 240. It has a step of providing the sex resin layer 30.
  • FIG. 12 shows a plan view of the conductive metal flat plate 200 for a bus bar in a state where the insulating resin layer 30 is provided.
  • FIG. 13 (a) shows an enlarged view of the XIII (a) portion in FIG. 12, and
  • FIG. 13 (b) shows a cross-sectional view taken along the line XIII (b) -XIII (b) in FIG. 13 (a). , Each is shown.
  • the insulating resin material 240 is an insulating resin having heat resistance and insulating properties such as polyimide, polyamide, and epoxy, and Insuled (registered trademark) is preferably used.
  • the insulating resin material 240 can be installed, for example, by electrodeposition coating of a paint containing the insulating resin material 240.
  • the powder of the insulating resin material 240 can be electrostatically powder coated.
  • the paint containing the insulating resin material 240 can be spray-painted.
  • Curing of the insulating resin material 240 is performed, for example, by heat-treating the insulating resin material 240 at a predetermined temperature and a predetermined time.
  • the first and second bus bar side upper surface openings 42 (1) and 42 (2) of the upper surface of the upper surface laminated portion 40 are subsequently irradiated with laser light. It also has a laser light irradiation step of forming the upper surface openings 42 (1) and 42 (2) on the second bus bar side.
  • the laser light irradiation step includes a large pulse width laser irradiation process for irradiating the entire corresponding region with a pulse laser having a large pulse width, and a small pulse width for irradiating the entire corresponding region with a pulse laser having a small pulse width.
  • the laser irradiation process is repeated a plurality of times.
  • 14 (a) and 14 (b) show an enlarged view of the XIV part in FIG. 13 (a).
  • 14 (a) and 14 (b) show the states after the large pulse width laser irradiation treatment and the small pulse width laser irradiation treatment are performed on the region corresponding to the first bus bar side upper surface opening 42 (1), respectively.
  • Reference numerals 245 and 246 in FIGS. 14 (a) and 14 (b) are irradiation spots of a pulse laser having a large pulse width and a pulse laser having a small pulse width, respectively.
  • the laser light in the laser light irradiation step has various wavelengths as long as the insulating resin layer 30 can be melted, for example, a wavelength of 1064 nm.
  • the peak output of the pulsed laser having a large pulse width is weakened, the irradiation time of the insulating resin layer 30 to be irradiated to the upper surface laminated portion 40 becomes longer, so that the degree of heat diffusion in the upper surface laminated portion 40 is long. Is strengthened, and the irradiation pitch (perforation diameter formed in the upper surface laminated portion 40) is increased.
  • the irradiation time of the insulating resin layer 30 to be irradiated to the upper surface laminated portion 40 is shortened, so that the degree of heat diffusion in the upper surface laminated portion 40 is weakened and irradiation is performed. While the pitch (the drilling diameter formed in the upper surface laminated portion 40) becomes smaller, the peak output becomes stronger, so that a sharp drilling edge can be formed.
  • the first and second bus bar side upper surface openings 42 (1) and 42 (2) are formed in a beautiful edge state. can do.
  • the first bus bar side upper surface opening 42 (1) includes a predetermined region straddling the boundary between the first bus bar 10 (1) and the gap filling portion 31 in a plan view.
  • the upper surface opening 42 (2) on the second bus bar side includes a predetermined region that straddles the boundary between the second bus bar 10 (2) and the gap filling portion 31 in a plan view.
  • the gap filling portion 31 exists directly below a part of the upper surface laminated portion 40 to be melted by the laser light irradiation step.
  • the laser parameters including the large pulse width and the small pulse width of the laser light, the repetition frequency, the pulse energy, and the peak output in the laser light irradiation step are set by the upper surface laminated portion 40 located on the gap filling portion 31.
  • the gap filling portion 31 is set so as not to be melted while being melted.
  • the set value of this laser parameter can be known based on an experiment according to the type and thickness of the insulating resin layer 30 to be the irradiated body.
  • the laser light is irradiated to a predetermined region of the lower surface laminated portion 50.
  • the lower surface side laser light irradiation step for forming the first and second bus bar side lower surface openings 52 (1) and 52 (2) is provided.
  • FIG. 15 shows a plan view of the conductive metal flat plate 200 for a bus bar after the laser light irradiation step and the lower surface side laser light irradiation step.
  • FIG. 16 (a) shows an enlarged view of the XVI (a) portion in FIG. 15, and
  • FIG. 16 (b) shows a cross-sectional view taken along the line XVI (b) -XVI (b) in FIG. 16 (a). , Each is shown.
  • the manufacturing method is an arbitrary timing between the step of preparing the conductive metal flat plate 200 for a bus bar and the laser beam irradiation step, or before the step of preparing the conductive metal flat plate 200 for a bus bar, or the above.
  • the frame body forming process for forming the frame body 60 is performed.
  • FIG. 17 shows a plan view of the conductive metal flat plate 300 for a frame body used in the frame body forming process.
  • FIG. 18 (a) shows an enlarged view of part XVII (a) in FIG. 17, and
  • FIG. 18 (b) shows a cross-sectional view taken along the line XVIII (b) -XVIII (b) in FIG. 18 (a). , Each is shown.
  • the frame body forming process has the same thickness as the frame body body 65 and has an outer shape corresponding to the bus bar assembly forming region 210 in a plan view.
  • a step of applying an insulating resin material 270 for forming an insulating resin layer 70 to the outer peripheral surface of a body body forming portion 320 and curing the insulating resin material 270 to provide the insulating resin layer 70 is provided.
  • FIG. 17 shows a state after the step of providing the insulating resin layer 70 on the outer peripheral surface of the frame body main body forming portion 320.
  • the frame body conductive metal flat plate 300 is configured so that the frame body forming region 310 is aligned with the bus bar assembly forming region 210 when polymerized on the bus bar conductive metal flat plate 200. ..
  • the conductive metal flat plate 200 for a bus bar connects a plurality of the bus bar assembly forming regions 210 arranged in series along the X direction and the bus bar assembly forming regions 210 adjacent to each other in the X direction. It has a bus bar row 205 including a connecting region 230 and a connecting region 230.
  • the frame body conductive metal flat plate 300 has a plurality of frame body forming regions 310 arranged in series in the X direction at the same pitch as the plurality of bus bar assembly forming regions 210, and X. It has a frame body row 305 including a connecting area 330 connecting between the frame body forming regions 310 adjacent to each other in the direction.
  • the conductive metal flat plate 200 for the bus bar has a pair of gripping pieces 207 connected to one side and the other side in the longitudinal direction (X direction) of the bus bar row 205, respectively, and the pair.
  • the gripping piece 207 of the above is provided with an alignment hole 208.
  • a pair of gripping pieces connected to the conductive metal flat plate 300 for the frame body on one side and the other side in the longitudinal direction (X direction) of the frame body row 305, respectively. 307 is provided, and the pair of gripping pieces 307 are provided with an alignment hole 308 corresponding to the alignment hole 208.
  • the frame body main body forming portion 320 has the first surface side first central opening 41a and the said.
  • the size is set to surround the second central opening 41b on the first surface side.
  • the insulating resin material 270 can be installed on the frame body main body forming portion 320 by, for example, electrodeposition coating with a paint containing an insulating resin having heat resistance and insulating properties such as polyimide, polyamide, and epoxy. it can.
  • a paint containing an insulating resin having heat resistance and insulating properties such as polyimide, polyamide, and epoxy.
  • the powder of the insulating resin material 270 can be electrostatically powder coated.
  • the step of providing the insulating resin material 270 at the frame body main body forming portion 320 can be performed by the same method as the step of providing the insulating resin material 240 at the bus bar forming region 210.
  • the insulating resin material 270 when the insulating resin material 240 is provided in the bus bar forming region 210 by electrodeposition coating, the insulating resin material 270 can be provided in the frame body main body forming portion 320 by electrodeposition coating, and the bus bar is formed.
  • the insulating resin material 240 is provided in the region 210 by electrostatic powder coating, the insulating resin material 270 can also be provided in the frame body main body forming portion 320 by electrostatic powder coating. According to such a configuration, the manufacturing efficiency can be improved.
  • the first and second busbar side upper surface openings 42 (1) and 42 (2) are further surrounded on the upper surface of the conductive metal flat plate 200 for a bus bar provided with the insulating resin layer 30.
  • the step of fixing the conductive metal flat plate 300 for the frame provided with the insulating resin layer 70 with an adhesive is provided.
  • FIG. 19 shows a plan view of the conductive metal flat plate 200 for the bus bar and the conductive metal flat plate 300 for the frame after the fixing step.
  • FIG. 20 shows a cross-sectional view taken along the line XX-XX in FIG.
  • the conductive metal flat plate 200 for the bus bar and the conductive metal flat plate 300 for the frame in a polymerized state are placed on one side and the other side of the bus bar assembly forming region 210 in the X direction. It has a cutting step of taking out the bus bar assembly forming region 210 and the frame body forming region 310 by cutting along the cutting lines C1 and C2 along the edges, respectively.
  • the bus bar assembly 1 according to the present embodiment can be efficiently manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Insulated Conductors (AREA)
  • Connection Or Junction Boxes (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

本発明のバスバーアッセンブリは、同一平面内において間隙を存しつつ並列配置された第1及び第2バスバーと、間隙充填部及び上面積層部を含む絶縁性樹脂層とを備え、上面積層部には、第1バスバー及び間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第1バスバー側上面開口と、第2バスバー及び間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第2バスバー側上面開口とが設けられ、上面積層部のうち第1及び第2バスバー側上面開口の間に位置する部分が仕切壁を形成している。

Description

バスバーアッセンブリ及びその製造方法
 本発明は、第1及び第2バスバーが電気的には絶縁状態で且つ機械的には連結されてなるバスバーアッセンブリ及びその製造方法に関する。
 互いに対して電気的には絶縁状態で且つ機械的には連結されている複数のバスバーを備えたバスバーアッセンブリが提案され、種々の分野において利用されている。
 例えば、一の平板状バスバーと他の平板状バスバーとが互いに対して平行状態で上下に積層されてなる積層型のバスバーアッセンブリが提案されている(下記特許文献1及び2参照)。
 前記積層型バスバーアッセンブリは、一の平板状バスバーの対向平面と他の平板状バスバーの対向平面とが絶縁性樹脂層を挟んで全面的に対向配置されている為、絶縁性に関する信頼性を十分には確保し難いという問題がある。
 特に、上下方向に関し小型化を図る為に前記一の平板状バスバーと前記他の平板状バスバーとの間の絶縁性樹脂層の厚みを薄くすると、両バスバー間にリーク電流が流れる恐れがある。
 前記積層型バスバーアッセンブリの問題点を解決する為に、本願出願人は、導電性金属平板の第1及び第2バスバーが同一平面内で並列配置されている平面型バスバーアッセンブリに関する出願を行っている(下記特許文献3及び4参照)。
 図21(a)に、前記平面型バスバーアッセンブリ500の一例の平面図を示す。
 また、図21(b)に、図21(a)におけるXXI(b)-XXI(b)線に沿った断面図を示す。
 図21(a)及び(b)に示すように、前記平面型バスバーアッセンブリ500は、導電性金属平板の第1バスバー510(1)と、前記第1バスバー510(1)との間に間隙515を存しつつ前記第1バスバー510(1)と同一平面内に配置された導電性金属平板の第2バスバー510(2)と、前記第1及び第2バスバー510(1)、510(2)を電気的には絶縁状態で且つ機械的には連結する絶縁性樹脂層520とを備えている。
 前記絶縁性樹脂層520は、前記間隙515内に充填された間隙充填部525と、前記第1及び第2バスバー510(1)、510(2)が前記間隙充填部525によって連結されてなるバスバー連結体の表面上に積層された表面積層部530とを有している。
 前記表面積層部530は、前記バスバー連結体の厚み方向一方側の上面及び厚み方向他方側の下面をそれぞれ覆う上面積層部530及び下面積層部540と、前記バスバー連結体の外側面を覆い、前記上面積層部530及び前記下面積層部540を連結する側面積層部550とを有している。
 前記上面積層部530には、前記第1及び第2バスバー510(1)、510(2)のそれぞれの上面の所定部分を露出させて第1及び第2露出領域を形成する第1及び第2開口532(1)、532(2)が設けられている。
 図21(c)に、前記バスバーアッセンブリ500にLED等の半導体素子110が装着されてなる半導体モジュール600の縦断面図を示す。
 図21(c)に示すように、前記半導体素子110は、第1電極層(下側電極層)が前記第1及び第2露出領域の一方(図21(c)においては前記第1露出領域)に、例えば、メッキ層(図示せず)を介して機械的且つ電気的に接続され、且つ、第2電極層(上側電極層)が前記第1及び第2露出領域の他方(図21(c)においては前記第2露出領域)にワイヤボンディング120を介して電気的に接続される。
 前記平面型バスバーアッセンブリ500は、上下方向に関し小型化を図り得る点において有用であるが、装着される半導体素子110の集約配置という観点においては改善の余地があった。
 即ち、前記半導体素子110の集約配置の限度は、前記第1及び第2開口532(1)、532(2)の対向エッジ同士の離間幅L2(図21(b)参照)によって画され、前記平面型バスバーアッセンブリ500においては、L2は前記第1及び第2バスバー510(1)、510(2)の間の前記間隙の幅L1以上となる。
 斯かる構成の平面型バスバーアッセンブリ500において、L2の狭小化を図る為には前記間隙L1を狭める必要があるが、前記第1及び第2バスバー510(1)、510(2)の間の絶縁性確保の観点から、前記間隙の幅L1を狭めるには限界がある。
特許第4432913号公報 特許第6487769号公報 特開2019-042678号公報 特開2019-050090号公報
 本発明は、斯かる従来技術に鑑みなされたものであり、互いの間に間隙が存する状態で同一平面内に配置され且つ前記間隙内に充填された間隙充填部を含む絶縁性樹脂層によって絶縁状態で連結された第1及び第2バスバーを有するバスバーアッセンブリであって、前記第1及び第2バスバー間の絶縁性を良好に維持しつつ、前記第1バスバー及び/又は前記第2バスバーに装着される半導体素子の集約配置を可能とするバスバーアッセンブリの提供を第1の目的とする。
 また、本発明は、前記バスバーアッセンブリを効率的に製造し得る製造方法の提供を第2の目的とする。
 本発明は、前記第1の目的を達成するために、導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された第1及び第2バスバーと、前記間隙内に充填された間隙充填部並びに前記第1及び第2バスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の上面に設けられた上面積層部を含む絶縁性樹脂層とを備え、前記上面積層部には、前記第1バスバー及び前記間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第1バスバー側上面開口と、前記第2バスバー及び前記間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第2バスバー側上面開口とが設けられ、前記上面積層部のうち前記第1及び第2バスバー側上面開口の間に位置する部分が仕切壁を形成しているバスバーアッセンブリを提供する。
 本発明に係るバスバーアッセンブリによれば、互いの間に間隙が存する状態で同一平面内に配置された第1及び第2バスバー間の絶縁性を良好に維持しつつ、前記第1バスバー及び/又は前記第2バスバーに装着される半導体素子の集約配置を可能とすることができる。
 好ましくは、前記第1及び第2バスバー側上面開口は、前記間隙の長手方向に関し前記第1及び第2バスバーの中央に設けられる。
 一形態においては、前記絶縁性樹脂層は、前記バスバー連結体の厚み方向他方側の下面に設けられた下面積層部と、前記バスバー連結体の側面に設けられ、前記上面積層部及び前記下面積層部を連結する側面積層部とを有するものとされ、前記下面積層部には、前記第1及び第2バスバーの下面の所定領域を露出させる下面開口が設けられる。
 前記第1及び第2バスバーは、前記上面と、厚み方向他方側の下面と、前記間隙に面する第1側面と、前記間隙とは反対側を向く第2側面と、前記上面、前記下面、前記第1側面及び前記第2側面における前記間隙の長手方向一方側の端部同士を連結する第3側面と、前記上面、前記下面、前記第1側面及び前記第2側面における前記間隙の長手方向一方側の端部同士を連結する第4側面とを有する。
 他形態においては、前記第1側面は、前記上面から厚み方向他方側へ延びる上面隣接部と、前記上面隣接部の厚み方向他方側の端部から前記第2側面に近接する方向へ延びる段部と、前記段部における前記第2側面に近接する側の端部から厚み方向他方側へ延びて前記下面に到達する下面隣接部とを有するものとされ、前記第2側面は、前記上面から厚み方向他方側へ延びる上面隣接部と、前記上面隣接部の厚み方向他方側の端部から前記第1側面に近接する方向へ延びる段部と、前記段部における前記第1側面に近接する側の端部から厚み方向他方側へ延びて前記下面に到達する下面隣接部とを有するものとされる。
 この場合、前記絶縁性樹脂層は、前記上面積層部に加えて、前記第1及び第2バスバーの下面を露出させつつ前記バスバー連結体の側面を覆うように、前記上面積層部に一体形成された側面積層部を有するものとされ、前記第1及び第2バスバーの下面は開放される。
 本発明に係るバスバーアッセンブリは、さらに、平面視において前記バスバー連結体の外形状に対応した外形状を有し且つ平面視中央に前記第1及び第2バスバー側上面開口を囲む中央孔が設けられた所定厚みの枠体本体並びに前記枠体本体の外周を覆う絶縁性樹脂層を有する枠体を備え得る。
 前記枠体は、平面視において前記第1及び第2バスバー側上面開口を囲むように前記バスバー連結体の上面の周縁に固着される。
 また、本発明は、前記第2の目的を達成する為に、導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された第1及び第2バスバーと、前記間隙内に充填された間隙充填部並びに前記第1及び第2バスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の上面に設けられた上面積層部を含む絶縁性樹脂層とを備え、前記上面積層部には、前記第1バスバー及び前記間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第1バスバー側上面開口と、前記第2バスバー及び前記間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第2バスバー側上面開口とが設けられ、前記上面積層部のうち前記第1及び第2バスバー側上面開口の間に位置する部分が仕切壁を形成しているバスバーアッセンブリの製造方法であって、前記第1及び第2バスバーを形成するバスバーアッセンブリ形成領域を有するバスバー用導電性金属平板を用意する工程と、前記バスバーアッセンブリ形成領域に、厚み方向一方側の上面及び厚み方向他方側の下面の間を貫通し且つ前記間隙と同一幅を有するスリットを形成して、前記第1及び第2バスバーに対応した第1及び第2バスバー形成部位を画するスリット形成工程と、前記スリット内及び前記バスバーアッセンブリ形成領域の上面の全域に絶縁性樹脂層材を設ける工程と、前記絶縁性樹脂材を硬化させて、前記間隙充填部及び前記上面積層部を有する前記絶縁性樹脂層を形成する工程と、前記上面積層部の上面のうち前記第1及び第2バスバー側上面開口に相当する領域にレーザー光を照射して前記第1及び第2バスバー側上面開口を形成するレーザー光照射工程と、前記バスバーアッセンブリ形成領域を前記バスバー用導電性金属平板から切断する切断工程とを含み、前記レーザー光照射工程は、前記対応する領域の全体に大パルス幅のパルスレーザーを照射する大パルス幅レーザー照射処理と、前記対応する領域の全体に小パルス幅のパルスレーザーを照射する小パルス幅レーザー照射処理とを、複数回繰り返し行うように構成されたバスバーアッセンブリの製造方法を提供する。
 また、本発明に係るバスバーアッセンブリの製造方法によれば、互いの間に間隙が存する状態で同一平面内に配置された第1及び第2バスバー間の絶縁性を良好に維持しつつ、前記第1バスバー及び/又は前記第2バスバーに装着される半導体素子の集約配置を可能とするバスバーアッセンブリを効率的に製造することができる。
 好ましくは、前記バスバー用導電性金属平板は、前記スリットの長手方向に沿った第1方向に直列配置された複数の前記バスバーアッセンブリ形成領域と、隣接する前記バスバーアッセンブリ形成領域を連結する連結領域とを一体的に有するものとされる。
 この場合、一のバスバーアッセンブリ形成領域に形成されたスリットは、長手方向一端側が当該一のバスバーアッセンブリ形成領域の第1方向一方側に連接された連結領域内へ延び且つ長手方向他端側が当該一のバスバーアッセンブリ形成領域の第1方向他方側に連接された連結領域内へ延びるものとされる。
 本発明に係るバスバーアッセンブリの製造方法は、平面視において前記バスバーアッセンブリ形成領域に対応した外形状の枠体形成領域を有する枠体用導電性金属平板を用意する工程と、前記枠体形成領域に、平面視において前記第1及び第2バスバー側上面開口を囲む中央孔を形成し、枠体本体形成部位を形成する工程と、前記枠体本体形成部位の外周面に絶縁性樹脂材を設ける工程と、前記絶縁性樹脂材を硬化させて、前記枠体本体形成部位の外周を覆う絶縁性樹脂層を設ける工程と、前記枠体用導電性金属平板を前記バスバー用金属平板に重合させた状態で固着させる金属平板固着工程とを備え得る。
 この場合、前記切断工程は、前記金属平板固着工程の後に行われる。
図1は、本発明の一実施の形態に係るバスバーアッセンブリの斜視図である。 図2は、前記実施の形態に係るバスバーアッセンブリの平面図である。 図3は、前記実施の形態に係るバスバーアッセンブリの底面図である。 図4は、図2におけるIV-IV線に沿った縦断正面図である。 図5は、図2におけるIV-IV線に沿った縦断斜視図である。 図6は、図4におけるVI部拡大図である。 図7(a)及び(b)は、それぞれ、前記実施の形態に係るバスバーアッセンブリに半導体素子が装着されてなる半導体モジュールの一例及び他例の縦断面図である。 図8は、前記実施の形態の変形例に係るバスバーアッセンブリの縦断正面図である。 図9は、前記変形例に係るバスバーアッセンブリの縦断斜視図である。 図10は、前記実施の形態に係るバスバーアッセンブリの製造方法の一例において用いられるバスバー用導電性金属平板の平面図である。 図11(a)は、図10におけるXI(a)部拡大図であり、図11(b)は、図11(a)におけるXI(b)-XI(b)線に沿った断面図である。 図12は、前記製造方法における絶縁性樹脂層の設置工程後の状態の前記バスバー用導電性金属平板の平面図である。 図13(a)は、図12におけるXIII(a)部拡大図であり、図13(b)は、図13(a)におけるXIII(b)-XIII(b)線に沿った断面図である。 図14(a)及び(b)は、図13(a)におけるXIV部拡大図であり、それぞれ、前記製造方法におけるレーザー光照射工程において、大パルス幅レーザー照射処理及び小パルス幅レーザー照射処理を行った後の状態を示している。 図15は、前記レーザー光照射工程及び下面側へのレーザー照射工程を行った後の状態の前記バスバー用導電性金属平板の平面図である。 図16(a)は、図15におけるXVI(a)部拡大図であり、図16(b)は、図16(a)におけるXVI(b)-XVI(b)線に沿った断面図である。 図17は、前記製造方法における枠体形成処理において用いられる枠体用導電性金属平板の平面図である。 図18(a)は、図17におけるXVII(a)部拡大図であり、図18(b)は、図18(a)におけるXVIII(b)-XVIII(b)線に沿った断面図である。 図19は、前記製造方法における一工程である固着工程において、前記バスバー用導電性金属平板及び前記枠体用導電性金属平板が固着された状態の平面図である。 図20は、図19におけるXX-XX線に沿った断面図である。 図21(a)は、従来の平面型バスバーアッセンブリの平面図であり、図21(b)は、図21(a)におけるXXI(b)-XXI(b)線に沿った断面図であり、図21(c)は、前記従来の平面型バスバーアッセンブリに半導体素子が装着されてなる半導体モジュールの断面図である。
 以下、本発明に係るバスバーアッセンブリの一実施の形態について、添付図面を参照しつつ説明する。
 図1~図3に、それぞれ、本実施の形態に係るバスバーアッセンブリ1の斜視図、平面図及び底面図を示す。
 また、図4及び図5に、それぞれ、図2におけるIV-IV線に沿った縦断正面図及び縦断斜視図を示す。
 さらに、図6に、図4におけるVI部拡大図を示す。
 図1~図6に示すように、前記バスバーアッセンブリ1は、導電性平板状部材によって形成された第1及び第2バスバー10(1)、10(2)であって、互いに対向する側面間に間隙19が存する状態で同一平面内に配置された第1及び第2バスバー10(1)、10(2)と、前記第1及び第2バスバー10(1)、10(2)に固着された絶縁性樹脂層30とを有している。
 なお、本実施の形態に係る前記バスバーアッセンブリ1は、前記第1及び第2バスバー10(1)、10(2)の2つのバスバーのみを有しているが、当然ながら、本発明に係るバスバーアッセンブリは、前記第1及び第2バスバー10(1)、10(2)を含む3つ以上のバスバーを有することも可能である。
 前記第1及び第2バスバー10(1)、10(2)は、Cu等の導電性金属によって形成される。
 図4~図6に示すように、前記第1及び第2バスバー10(1)、10(2)は、厚み方向一方側の上面11と、厚み方向他方側の下面12と、前記間隙19に面する第1側面13aと、前記間隙19とは反対側を向く第2側面13bと、前記上面11、前記下面12、前記第1側面13a及び前記第2側面13bにおける前記間隙19の長手方向一方側の端部同士を連結する第3側面13cと、前記上面11、前記下面12、前記第1側面13a及び前記第2側面13bにおける前記間隙19の長手方向他方側の端部同士を連結する第4側面13dとを有している。
 図1~図6に示すように、前記絶縁性樹脂層30は、前記第1及び第2バスバー10(1)、10(2)の対向側面13a間の前記間隙19に充填されて前記第1及び第2バスバー10(1)、10(2)を電気的には絶縁状態で機械的に連結する間隙充填部31と、前記第1及び第2バスバー10(1)、10(2)が前記間隙充填部31によって連結されてなるバスバー連結体の上面に設けられた上面積層部40とを有している。
 前記絶縁性樹脂層30は、耐熱性及び絶縁性を有する絶縁性樹脂材によって形成される。
 前記絶縁性樹脂材としては、例えば、インシュリード(登録商標)が好適に利用される。
 前記上面積層部40には、前記第1及び第2バスバー10(1)、10(2)の上面11の一部をそれぞれ露出させる第1及び第2バスバー側上面開口42(1)、42(2)が設けられている。
 図1~図2及び図4~図6に示すように、前記第1バスバー側上面開口42(1)は、前記第1バスバー10(1)の上面11及び前記間隙充填部31の上面のうち両者の境界を跨いだ所定領域を露出させるように形成されている。
 前記第1バスバー側上面開口42(1)によって形成される空間は、前記第1バスバー10(1)に半導体素子110(下記図7(a)及び(b)参照)を装着させる為の半導体素子装着空間又は前記第1バスバー10(1)を他の電気接続部材に電気的に接続する為の電気接続空間として作用する。
 前記第2バスバー側上面開口42(2)は、前記第1バスバー側上面開口42(1)との間に前記上面積層部40の一部を残存させつつ、前記第2バスバー10(2)の上面11及び前記間隙充填部31の上面のうち両者の境界を跨いだ所定領域を露出させるように形成されている。
 前記第2バスバー側上面開口42(2)は、前記第2バスバー10(2)に半導体素子110(下記図7(a)及び(b)参照)を装着させる為の半導体素子装着空間又は前記第2バスバー10(2)を他の電気接続部材に電気的に接続する為の電気接続空間として作用する。
 図7(a)に、前記バスバーアッセンブリ1にLED等の半導体素子110が装着されてなる半導体モジュールの一例100Aの縦断面図を示す。
 前記半導体モジュール100Aにおいては、前記第1バスバー側上面開口42(1)(図4及び図5等参照)によって形成される空間が半導体素子110を装着させる為の半導体素子装着空間として利用され、前記第2バスバー側上面開口42(2)(図4及び図5等参照)によって形成される空間が電気接続空間として利用されている。
 この場合、前記第1及び第2バスバー10(1)、10(2)は、一方が正極側電極として作用し、他方が負極側電極として作用する。
 即ち、図7(a)に示すように、前記半導体素子110は、厚み方向一方側の下面及び厚み方向他方側の上面にそれぞれ第1及び第2電極層111、112を有し、前記第1及び第2電極層111、112の間に素子本体115を有している。
 前記半導体モジュール100Aにおいては、前記半導体素子110は、第1電極層111が前記一方のバスバー(図示の例においては第1バスバー10(1))の上面11のうち対応する上面開口(図示の例においては第1バスバー側上面開口42(1)(図4及び図5等参照))によって露出された部分に電気的に接続された状態で、当該対応する上面開口(図示の例においては第1バスバー側上面開口42(1)(図4及び図5等参照))によって形成された空間を利用して当該一方のバスバー(図示の例においては第1バスバー10(1))の上面11に固着されている。
 そして、前記半導体素子110の第2電極層112は、ワイヤボンディング等の電気接続部材120を介して他方のバスバー(図示の例においては第2バスバー10(2))の上面11のうち対応する上面開口(図示の例においては第2バスバー側上面開口42(2)(図4及び図5等参照))によって露出された部分に電気的に接続されている。
 なお、好ましくは、前記第1及び第2バスバー10(1)、10(2)の上面にはメッキ層(図示せず)が設けられる。
 図7(a)中の符号130は、前記バスバーアッセンブリ1に装着された前記半導体素子110及び前記電気接続部材120等の部品を保護する為に、前記バスバーアッセンブリ1の第1面11に固着される封止樹脂層である。
 前記封止樹脂層130は、例えば、ポリイミド、ポリアミド、エポキシ等の透明樹脂が用いられる。
 前記封止樹脂層130は、枠体60によって画される領域に設けられる。
 即ち、図7(a)に示すように、本実施の形態に係るバスバーアッセンブリ1は、さらに、前記バスバー連結体の上面の中央を開放しつつ、当該バスバー連結体の上面の周縁に固着された前記枠体60を有している。
 前記枠体60が、前記封止樹脂層130を設ける際の堰き止め構造として作用する。
 即ち、前記封止樹脂層130は、前記半導体素子110及び前記電気接続部材120等の部品を囲繞するように当該封止樹脂層130を形成する樹脂を前記バスバーアッセンブリ1の上面に塗布して、硬化させることによって設けられるが、その際に、当該樹脂が流れ出ることを防止する堰き止め構造を備える必要がある。
 前記枠体60は、平面視において前記バスバー連結体の外形状に対応した外形状を有し且つ平面視中央に前記第1及び第2バスバー側上面開口42(1)、42(2)を囲む中央孔61が設けられた所定厚みの枠体本体65と、前記枠体本体65の外周を覆う絶縁性樹脂層70とを有している。
 前記枠体本体60は、例えば、当該枠体本体60の厚みに応じた厚みを有する金属平板を用い、前記金属平板に対してプレス加工によって前記中央孔61を形成することにより、形成され得る。
 前記枠体側絶縁性樹脂層65は、例えば、ポリイミド、ポリアミド、エポキシ等の絶縁性樹脂材を用いて形成される。
 前記枠体60は、平面視において前記第1及び第2バスバー側上面開口42(1)、42(2)を囲むように前記バスバー連結体の上面の周縁に、接着剤等によって固着される。
 図7(b)に、前記バスバーアッセンブリ1にLED等の半導体素子110が装着されてなる半導体モジュールの他の例100Bの縦断面図を示す。
 なお、図中、図7(a)におけると同一部材には同一符号を付している。
 前記半導体モジュール100Bにおいては、前記第1バスバー側上面開口42(1)(図4及び図5等参照)によって形成される空間及び前記第2バスバー側上面開口42(2)(図4及び図5等参照)によって形成される空間の双方共に、半導体素子110を装着させる為の半導体素子装着空間として利用されている。
 この場合、前記第1及び第2バスバー10(1)、10(2)にそれぞれ装着される第1及び第2半導体素子110(1)、110(2)は電気的に並列接続される。
 即ち、前記第1半導体素子110(1)の第1電極層111が電気的に接続される前記第1バスバー10(1)及び前記第2半導体素子110(2)の第1電極層111が電気的に接続される前記第2バスバー10(2)は共に正極側電極又は負極側電極の一方(例えば、正極側電極)として作用する。
 そして、前記第1及び第2半導体素子110(1)、110(2)の第2電極層112は、正極側電極又は負極側電極の他方(例えば、負極側電極。図示せず)にワイヤボンディング等の電気接続部材(図示せず)を介して電気的に接続される。
 本実施の形態に係る前記バスバーアッセンブリ1によれば、前記第1及び第2バスバー10(1)、10(2)が同一平面内に配置されているので、上下方向(厚み方向)に関し可及的に小型化を図ることができる。
 また、前記第1及び第2バスバー10(1)、10(2)は前記第1側面13aにおいて対向するように配置されているので、複数のバスバーが上下に積層されている積層型バスバーアッセンブリに比して、前記第1及び第2バスバー10(1)、10(2)が互いに対して対向する面積を可及的に小さくすることができ、これにより、前記第1及び第2バスバー10(1)、10(2)間にリーク電流が流れることを有効に防止乃至は低減することができる。
 さらに、本実施の形態に係る前記バスバーアッセンブリ1によれば、図4及び図6に示すように、前記第1及び第2バスバー10(1)、10(2)間の前記間隙19の幅L1を無理に狭めることなく、第1及び第2バスバー側上面開口42(1)、42(2)の対向エッジ同士の離間幅L2の狭小化を図ることができる。
 従って、図7(a)及び(b)に示すように、前記第1及び第2バスバー10(1)、10(2)間の絶縁性を良好に確保しつつ、前記第1バスバー10(1)及び/又は前記第2バスバー10(2)に装着される半導体素子110の可及的な集約配置を行うことができる。
 また、前記上面積層部40のうち前記第1及び第2バスバー側上面開口42(1)、42(2)の間に位置する部分が、前記第1バスバー側上面開口42(1)を介して露出する前記第1バスバー10(1)の露出領域(以下、第1バスバー露出領域という)と前記第2バスバー側上面開口42(2)を介して露出する前記第2バスバー10(2)の露出領域(以下、第2バスバー露出領域という)との間の仕切壁43として作用するので、前記第1及び第2バスバー露出領域間の短絡を有効に防止することができる。
 さらに、前記仕切壁43は、前記半導体素子110を装着させる際の位置合わせ部材としても作用させることができ、前記半導体素子110の装着位置の精度を高めることができる。
 なお、本実施の形態においては、図2等に示すように、前記第1及び第2バスバー側上面開口42(1)、42(2)は、前記間隙19の長手方向に関し前記第1及び第2バスバー10(1)、10(2)の中央に設けられている。
 図4及び図5等に示すように、本実施の形態においては、前記絶縁性樹脂層30は、さらに、前記バスバー連結体の厚み方向他方側の下面に設けられた下面積層部50と、前記バスバー連結体の側面に設けられ、前記上面積層部40及び前記下面積層部50の周縁を連結する側面積層部55とを有している。
 図3~図6に示すように、本実施の形態においては、前記下面積層部50には、前記第1及び第2バスバー10(1)、10(2)の下面12の所定領域をそれぞれ露出させる第1及び第2バスバー側下面開口52(1)、52(2)が設けられている。
 なお、前記第1及び第2バスバー側下面開口52(1)、52(2)に代えて、前記第1及び第2バスバー10(1)、10(2)の下面12の所定領域の双方を一体的に露出させる単一の下面開口を形成することも可能である。
 図8及び図9に、それぞれ、本実施の形態の変形例に係るバスバーアッセンブリ1'の縦断正面図及び縦断斜視図を示す。
 なお、図中、本実施の形態におけると同一部材には同一符号を付している。
 前記変形例1'は、本実施の形態に比して、前記第1及び第2バスバー10(1)、10(2)の代わりに第1及び第2バスバー10'(1)、10'(2)を有し、且つ、前記絶縁性樹脂層30の代わりに絶縁性樹脂層30'を有している。
 前記第1及び第2バスバー10'(1)、10'(2)は、前記上面11及び前記下面12と、前記間隙19に面する第1側面13a'と、前記間隙19とは反対側を向く第2側面13b'と、前記上面11、前記下面12、前記第1側面13a'及び前記第2側面13b'における前記間隙19の長手方向一方側の端部同士を連結する第3側面(図示せず)と、前記上面11、前記下面12、前記第1側面13a'及び前記第2側面13b'における前記間隙19の長手方向他方側の端部同士を連結する第4側面(図示せず)とを有している。
 前記第1側面13a'は、前記上面11から厚み方向他方側へ延びる上面隣接部13a'-1、前記上面隣接部13a'-1の厚み方向他方側の端部から前記第2側面13b'に近接する方向へ延びる段部13a'-2と、前記段部13a'-2における前記第2側面13b'に近接する側の端部から厚み方向他方側へ延びて前記下面12に到達する下面隣接部13a'-3とを有している。
 同様に、前記第2側面13b'は、前記上面11から厚み方向他方側へ延びる上面隣接部13b'-1と、前記上面隣接部13b'-1の厚み方向他方側の端部から前記第1側面13a'に近接する方向へ延びる段部13b'-2と、前記段部13b'-2における前記第1側面13a'に近接する側の端部から厚み方向他方側へ延びて前記下面12に到達する下面隣接部13b'-3とを有している。
 前記絶縁性樹脂層30'は、前記間隙充填部31及び前記上面積層部40を有し、さらに、前記第1及び第2バスバー10'(1)、10'(2)の下面12を露出させつつ前記バスバー連結体の側面を覆うように、前記上面積層部40に一体形成された側面積層部55'を有している。
 次に、前記バスバーアッセンブリ1の製造方法について説明する。
 図10に、前記製造方法において用いられるバスバー用導電性金属平板200の平面図を示す。
 また、図11(a)に、図10におけるXI(a)部拡大図を、図11(b)に、図11(a)におけるXI(b)-XI(b)線に沿った断面図を、それぞれ示す。
 図10及び図11に示すように、前記製造方法は、前記第1及び第2バスバー10(1)、10(2)を形成するバスバーアッセンブリ形成領域210を有するバスバー用導電性金属平板200を用意する工程と、前記バスバーアッセンブリ形成領域210に、厚み方向一方側の上面211及び厚み方向他方側の下面212の間を貫通するスリット215を形成するスリット形成工程とを有している。
 図10及び図11は、前記スリット形成工程完了後の状態を示している。
 前記バスバー用導電性金属平板200は、前記第1及び第2バスバー10(1)、10(2)と同一厚みを有するものとされ、前記バスバーアッセンブリ形成領域210は、前記バスバー連結体と平面視同一形状を有するものとされる。
 前記スリット215は、前記間隙19と同一幅を有し、且つ、前記間隙19と同一又は前記間隙19よりも長いものとされ、前記バスバーアッセンブリ形成領域210を、前記第1及び第2バスバー10(1)、10(2)にそれぞれ対応した第1及び第2バスバー形成部位220(1)、220(2)に区画する。
 なお、前記第1及び第2バスバー10(1)、10(2)に加えて他のバスバーを含む3つ以上のバスバーが並列配置されたバスバーアッセンブリを製造する場合には、バスバーの数量から1を減算した数のスリットが形成される。
 即ち、例えば、3つのバスバーが並列配置されてなるバスバーアッセンブリを製造する際には、2つのスリットが形成される。
 図10及び図11に示すように、本実施の形態においては、前記バスバー用導電性金属平板200は、当該導電性金属平板200が位置するX-Y平面内のX方向に沿って直列配列された複数の前記バスバーアッセンブリ形成領域210と、X方向に隣接するバスバーアッセンブリ形成領域210の間を連結する連結領域230とを含むバスバー列205を有しており、前記複数のバスバーアッセンブリ形成領域210に対して加工処理を同時に行えるようになっている。
 本実施においては、前記バスバー用導電性金属平板200は、さらに、前記バスバー列205の長手方向(X方向)一方側及び他方側にそれぞれ連結された一対の把持片207を有しており、前記一対の把持片207には位置合わせ孔208が設けられている。
 なお、複数の前記バスバー列205をY方向に並列配置させ、Y方向に並列配置された複数のバスバー列205を前記一対の把持片207、207によって一体的に保持することも可能である。
 かかる変形構成によれば、より多くのバスバーアッセンブリ1を同時に製造することができる。
 前記バスバーアッセンブリ形成領域210は、X方向長さが前記間隙19の長手方向に沿った前記バスバーアッセンブリ1の長さ同一とされ、且つ、Y方向長さが前記間隙19の幅方向に沿った前記バスバーアッセンブリ1の長さと同一とされている。
 前記スリット215は、前記バスバーアッセンブリ1における前記間隙19を形成するものであり、前記間隙19と同一幅とされる。
 なお、前記間隙19の幅は、前記バスバーアッセンブリ1の仕様に応じて定まる。 
 本実施の形態においては、一のバスバーアッセンブリ形成領域210に形成されたスリット215は、長手方向(X方向)一方側が当該一のバスバーアッセンブリ形成領域210の長手方向(X方向)一方側に連結された一の連結領域230内へ延び、且つ、長手方向(X方向)他方側が当該一のバスバーアッセンブリ形成領域230の長手方向(X方向)他方側に連結された他の連結領域230内へ延びている。
 この場合、前記スリット形成工程後の状態において、前記一のバスバーアッセンブリ形成領域210に形成されたスリット215を介して対向する第1及び第2バスバー形成部位220(1)、220(2)は、前記一の連結領域230及び前記他の連結領域230を介して、互いに対して繋がった状態に維持される。
 従って、前記スリット215(前記間隙19)を精度良く形成することができる。
 前記製造方法は、前記スリット形成工程後に、前記スリット215内及び前記バスバー形成領域210の外表面に、前記絶縁性樹脂層30を形成する絶縁性樹脂材240を設け、これを硬化させて前記絶縁性樹脂層30を設ける工程を有している。
 図12に、前記絶縁性樹脂層30を設けた状態の前記バスバー用導電性金属平板200の平面図を示す。
 また、図13(a)に、図12におけるXIII(a)部拡大図を、図13(b)に、図13(a)におけるXIII(b)-XIII(b)線に沿った断面図を、それぞれ示す。
 前記絶縁性樹脂材240は、ポリイミド、ポリアミド、エポキシ等の耐熱性及び絶縁性を有する絶縁性樹脂とされ、好適には、インシュリード(登録商標)が用いられる。
 前記絶縁性樹脂材240の設置は、例えば、当該絶縁性樹脂材240を含む塗料を電着塗装することによって行うことができる。
 これに代えて、前記絶縁性樹脂材240の粉体を静電粉体塗装することも可能である。
 若しくは、前記スリット215内への樹脂の充填性を十分に担保できる場合には、前記絶縁性樹脂材240を含む塗料をスプレー塗装することも可能である。
 前記絶縁性樹脂材240の硬化は、例えば、前記絶縁性樹脂材240を所定温度及び所定時間で加熱処理することによって行われる。
 前記製造方法は、その後に、前記上面積層部40の上面のうち前記第1及び第2バスバー側上面開口42(1)、42(2)に相当する領域にレーザー光を照射して前記第1及び第2バスバー側上面開口42(1)、42(2)を形成するレーザー光照射工程を有している。
 前記レーザー光照射工程は、前記対応する領域の全体に大パルス幅のパルスレーザーを照射する大パルス幅レーザー照射処理と、前記対応する領域の全体に小パルス幅のパルスレーザーを照射する小パルス幅レーザー照射処理とを、複数回繰り返し行うものとされる。
 図14(a)及び(b)に図13(a)におけるXIV部拡大図を示す。
 図14(a)及び(b)は、それぞれ、前記第1バスバー側上面開口42(1)に対応する領域に大パルス幅レーザー照射処理及び小パルス幅レーザー照射処理を行った後の状態を示している。
 図14(a)及び(b)中の符号245及び246は、それぞれ、大パルス幅のパルスレーザー及び小パルス幅のパルスレーザーの照射スポットである。
 ここで、前記レーザー光照射工程におけるレーザー光は、前記絶縁性樹脂層30を熔融させ得る限り、種々の波長とされ、例えば、波長1064nmとされる。
 前記大パルス幅のパルスレーザーは、ピーク出力は弱まる反面、被照射体となる前記絶縁性樹脂層30の上面積層部40への照射時間が長くなる為、前記上面積層部40における熱の拡散度合いが強まり、照射ピッチ(前記上面積層部40に開けられる穿孔径)は大きくなる。
 一方、前記小パルス幅のパルスレーザーは、被照射体となる前記絶縁性樹脂層30の上面積層部40への照射時間が短くなる為、前記上面積層部40における熱の拡散度合いは弱まり、照射ピッチ(前記上面積層部40に開けられる穿孔径)が小さくなる反面、ピーク出力は強まる為、鋭利な穿孔エッジを形成することが可能となる。
 従って、大パルス幅レーザー照射処理及び小パルス幅レーザー照射処理を複数回繰り返し行うことによって、前記第1及び第2バスバー側上面開口42(1)、42(2)を、綺麗なエッジ状態で形成することができる。
 なお、前述の通り、前記第1バスバー側上面開口42(1)は、平面視において前記第1バスバー10(1)及び前記間隙充填部31の境界を跨いだ所定領域を含むものとされており、前記第2バスバー側上面開口42(2)は、平面視において前記第2バスバー10(2)及び前記間隙充填部31の境界を跨いだ所定領域を含むものとされている。
 即ち、前記レーザー光照射工程によって熔融させる前記上面積層部40の一部の直下には、前記間隙充填部31が存在する。
 ここで、前記レーザー光照射工程における前記レーザー光の大パルス幅及び小パルス幅、繰返し周波数、パルスエネルギー、ピーク出力を含むレーザーパラメータは、前記間隙充填部31上に位置する前記上面積層部40は熔融させつつ、前記間隙充填部31は熔融させないように設定される。
 このレーザーパラメータの設定値は、被照射体となる前記絶縁性樹脂層30の種類や厚みに応じて、実験に基づき知ることができる。
 なお、前記製造方法は、前記第1及び第2バスバー側上面開口42(1)、42(2)を形成するレーザー光照射工程に加えて、前記下面積層部50の所定領域にレーザー光を照射して前記第1及び第2バスバー側下面開口52(1)、52(2)を形成する下面側レーザー光照射工程を備えている。
 図15に、前記レーザー光照射工程及び前記下面側レーザー光照射工程後の前記バスバー用導電性金属平板200の平面図を示す。
 また、図16(a)に、図15におけるXVI(a)部拡大図を、図16(b)に、図16(a)におけるXVI(b)-XVI(b)線に沿った断面図を、それぞれ示す。
 前記製造方法は、前記バスバー用導電性金属平板200を用意する工程から前記レーザー光照射工程までの間の任意タイミング、又は、前記バスバー用導電性金属平板200を用意する工程の前、又は、前記レーザー光照射工程の後に、前記枠体60を形成する枠体形成処理を行うように構成されている。
 図17に、前記枠体形成処理において用いられる枠体用導電性金属平板300の平面図を示す。
 さらに、図18(a)に、図17におけるXVII(a)部拡大図を、図18(b)に、図18(a)におけるXVIII(b)-XVIII(b)線に沿った断面図を、それぞれ示す。
 図17及び図18に示すように、前記枠体形成処理は、前記枠体本体65の厚みと同一厚みを有し且つ平面視において前記バスバーアッセンブリ形成領域210に対応した外形状の枠体形成領域310を有する枠体用導電性金属平板300を用意する工程と、前記枠体形成領域310における枠体本体形成部位320が残るように前記枠体形成領域310の中央を打ち抜く打ち抜き工程と、前記枠体本体形成部位320の外周面に絶縁性樹脂層70を形成する絶縁性樹脂材270を塗布し、これを硬化させて前記絶縁性樹脂層70を設ける工程とを備えている。
 図17は、前記枠体本体形成部位320の外周面に前記絶縁性樹脂層70を設ける工程後の状態を示している。
 前記枠体用導電性金属平板300は、前記バスバー用導電性金属平板200に重合させた際に、前記枠体形成領域310が前記バスバーアッセンブリ形成領域210に位置合わせされるように構成されている。
 詳しくは、前述の通り、前記バスバー用導電性金属平板200は、X方向に沿って直列配列された複数の前記バスバーアッセンブリ形成領域210と、X方向に隣接するバスバーアッセンブリ形成領域210の間を連結する連結領域230とを含むバスバー列205を有している。
 従って、前記枠体用導電性金属平板300は、図17に示すように、前記複数のバスバーアッセンブリ形成領域210と同一ピッチでX方向に直列配置された複数の前記枠体形成領域310と、X方向に隣接する枠体形成領域310の間を連結する連結領域330とを含む枠体列305を有している。
 なお、前述の通り、前記バスバー用導電性金属平板200は、前記バスバー列205の長手方向(X方向)一方側及び他方側にそれぞれ連結された一対の把持片207を有しており、前記一対の把持片207には位置合わせ孔208が設けられている。
 これに応じて、図17に示すように、前記枠体用導電性金属平板300にも、前記枠体列305の長手方向(X方向)一方側及び他方側にそれぞれ連結された一対の把持片307が設けられ、前記一対の把持片307には前記位置合わせ孔208に対応した位置合わせ孔308が設けられている。
 前記打ち抜き工程において打ち抜かれる中央領域は、前記枠体形成領域310を前記バスバーアッセンブリ形成領域210に重合させた際に、前記枠体本体形成部位320が前記第1面側第1中央開口41a及び前記第1面側第2中央開口41bを囲繞する大きさとされる。
 前記枠体本体形成部位320への絶縁性樹脂材270の設置は、例えば、ポリイミド、ポリアミド、エポキシ等の耐熱性及び絶縁性を有する絶縁性樹脂を含む塗料を電着塗装することによって行うことができる。
 これに代えて、前記絶縁性樹脂材270の粉体を静電粉体塗装することも可能である。
 若しくは、前記絶縁性樹脂材270を含む塗料をスプレー塗装することも可能である。
 好ましくは、前記枠体本体形成部位320に絶縁性樹脂材270を設ける工程は、前記バスバー形成領域210に絶縁性樹脂材240を設ける工程と同時に同一方法で行うことができる。
 即ち、前記バスバー形成領域210に電着塗装によって絶縁性樹脂材240を設ける場合には、前記枠体本体形成部位320にも電着塗装によって絶縁性樹脂材270を設けることができ、前記バスバー形成領域210に静電粉体塗装によって絶縁性樹脂材240を設ける場合には、前記枠体本体形成部位320にも静電粉体塗装によって絶縁性樹脂材270を設けることができる。
 斯かる構成によれば、製造効率の向上を図ることができる。
 前記製造方法は、さらに、前記絶縁性樹脂層30が設けられた前記バスバー用導電性金属平板200の上面に、前記第1及び第2バスバー側上面開口42(1)、42(2)を囲むように、前記絶縁性樹脂層70が設けられた前記枠体用導電性金属平板300を接着剤によって固着させる工程を備えている。
 図19に、前記固着工程後の前記バスバー用導電性金属平板200及び前記枠体用導電性金属平板300の平面図を示す。
 図20に、図19におけるXX-XX線に沿った断面図を示す。
 そして、前記製造方法は、前記固着工程の後に、重合状態の前記バスバー用導電性金属平板200及び前記枠体用導電性金属平板300を前記バスバーアッセンブリ形成領域210のX方向一方側及び他方側のエッジにそれぞれ沿った切断線C1、C2で切断して、前記バスバーアッセンブリ形成領域210及び前記枠体形成領域310を取り出す切断工程を有している。
 斯かる構成を備えた製造方法によれば、本実施の形態に係る前記バスバーアッセンブリ1を効率良く製造することができる。
1、1'           バスバーアッセンブリ
10(1)、10(2)   第1及び第2バスバー
11            上面
12            下面
13a、13a’      第1側面
13a’-1        上面隣接部
13a’-2        段部
13a’-3        下面隣接部
13b、13b’      第2側面
13b’-1        上面隣接部
13b’-2        段部
13ab-3        下面隣接部
13c           第3側面
13d           第4側面
19            間隙
30            絶縁性樹脂層
31            間隙充填部
40            上面積層部
42(1)、42(2)   第1及び第2バスバー側上面開口
43            仕切壁
50            下面積層部
52(1)、52(2)   第1及び第2バスバー側下面開口
55            側面積層部
60            枠体
61            中央孔
65            枠体本体
70            絶縁性樹脂層
200           バスバー用導電性金属平板
210           バスバーアッセンブリ形成領域
215           スリット
220(1)、220(2) 第1及び第2バスバー形成部位
230           連結領域
240、270       絶縁性樹脂材
300           枠体用導電性金属平板
310           枠体形成領域
320           枠体本体形成部位

Claims (8)

  1.  導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された第1及び第2バスバーと、前記間隙内に充填された間隙充填部並びに前記第1及び第2バスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の上面に設けられた上面積層部を含む絶縁性樹脂層とを備え、
     前記上面積層部には、前記第1バスバー及び前記間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第1バスバー側上面開口と、前記第2バスバー及び前記間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第2バスバー側上面開口とが設けられ、
     前記上面積層部のうち前記第1及び第2バスバー側上面開口の間に位置する部分が仕切壁を形成していることを特徴とするバスバーアッセンブリ。
  2.  前記第1及び第2バスバー側上面開口は、前記間隙の長手方向に関し前記第1及び第2バスバーの中央に設けられていることを特徴とする請求項1に記載のバスバーアッセンブリ。
  3.  前記絶縁性樹脂層は、前記バスバー連結体の厚み方向他方側の下面に設けられた下面積層部と、前記バスバー連結体の側面に設けられ、前記上面積層部及び前記下面積層部を連結する側面積層部とを有し、
     前記下面積層部には、前記第1及び第2バスバーの下面の所定領域を露出させる下面開口が設けられていることを特徴とする請求項1又は2に記載のバスバーアッセンブリ。
  4.  前記第1及び第2バスバーは、前記上面と、厚み方向他方側の下面と、前記間隙に面する第1側面と、前記間隙とは反対側を向く第2側面と、前記上面、前記下面、前記第1側面及び前記第2側面における前記間隙の長手方向一方側の端部同士を連結する第3側面と、前記上面、前記下面、前記第1側面及び前記第2側面における前記間隙の長手方向一方側の端部同士を連結する第4側面とを有し、
     前記第1側面は、前記上面から厚み方向他方側へ延びる上面隣接部と、前記上面隣接部の厚み方向他方側の端部から前記第2側面に近接する方向へ延びる段部と、前記段部における前記第2側面に近接する側の端部から厚み方向他方側へ延びて前記下面に到達する下面隣接部とを有し、
     前記第2側面は、前記上面から厚み方向他方側へ延びる上面隣接部と、前記上面隣接部の厚み方向他方側の端部から前記第1側面に近接する方向へ延びる段部と、前記段部における前記第1側面に近接する側の端部から厚み方向他方側へ延びて前記下面に到達する下面隣接部とを有し、
     前記絶縁性樹脂層は、前記第1及び第2バスバーの下面を露出させつつ前記バスバー連結体の側面を覆うように、前記上面積層部に一体形成された側面積層部を有していることを特徴とする請求項1又は2に記載のバスバーアッセンブリ。
  5.  平面視において前記バスバー連結体の外形状に対応した外形状を有し且つ平面視中央に前記第1及び第2バスバー側上面開口を囲む中央孔が設けられた所定厚みの枠体本体並びに前記枠体本体の外周を覆う絶縁性樹脂層を有する枠体を備え、
     前記枠体は、平面視において前記第1及び第2バスバー側上面開口を囲むように前記バスバー連結体の上面の周縁に固着されていることを特徴とする請求項1から4の何れかに記載のバスバーアッセンブリ。
  6.  導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された第1及び第2バスバーと、前記間隙内に充填された間隙充填部並びに前記第1及び第2バスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の上面に設けられた上面積層部を含む絶縁性樹脂層とを備え、前記上面積層部には、前記第1バスバー及び前記間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第1バスバー側上面開口と、前記第2バスバー及び前記間隙充填部の上面のうち両者の境界を跨いだ所定領域を露出させる第2バスバー側上面開口とが設けられ、前記上面積層部のうち前記第1及び第2バスバー側上面開口の間に位置する部分が仕切壁を形成しているバスバーアッセンブリの製造方法であって、
     前記第1及び第2バスバーを形成するバスバーアッセンブリ形成領域を有するバスバー用導電性金属平板を用意する工程と、
     前記バスバーアッセンブリ形成領域に、厚み方向一方側の上面及び厚み方向他方側の下面の間を貫通し且つ前記間隙と同一幅を有するスリットを形成して、前記第1及び第2バスバーに対応した第1及び第2バスバー形成部位を画するスリット形成工程と、
     前記スリット内及び前記バスバーアッセンブリ形成領域の上面の全域に絶縁性樹脂層材を設ける工程と、
     前記絶縁性樹脂材を硬化させて、前記間隙充填部及び前記上面積層部を有する前記絶縁性樹脂層を形成する工程と、
     前記上面積層部の上面のうち前記第1及び第2バスバー側上面開口に相当する領域にレーザー光を照射して前記第1及び第2バスバー側上面開口を形成するレーザー光照射工程と、
     前記バスバーアッセンブリ形成領域を前記バスバー用導電性金属平板から切断する切断工程とを含み、
     前記レーザー光照射工程は、前記対応する領域の全体に大パルス幅のパルスレーザーを照射する大パルス幅レーザー照射処理と、前記対応する領域の全体に小パルス幅のパルスレーザーを照射する小パルス幅レーザー照射処理とを、複数回繰り返し行うことを特徴とするバスバーアッセンブリの製造方法。
  7.  前記バスバー用導電性金属平板は、前記スリットの長手方向に沿った第1方向に直列配置された複数の前記バスバーアッセンブリ形成領域と、隣接する前記バスバーアッセンブリ形成領域を連結する連結領域とを一体的に有しており、
     一のバスバーアッセンブリ形成領域に形成されたスリットは、長手方向一端側が当該一のバスバーアッセンブリ形成領域の第1方向一方側に連接された連結領域内へ延び且つ長手方向他端側が当該一のバスバーアッセンブリ形成領域の第1方向他方側に連接された連結領域内へ延びていることを特徴とする請求項6に記載のバスバーアッセンブリの製造方法。
  8.  平面視において前記バスバーアッセンブリ形成領域に対応した外形状の枠体形成領域を有する枠体用導電性金属平板を用意する工程と、
     前記枠体形成領域に、平面視において前記第1及び第2バスバー側上面開口を囲む中央孔を形成し、枠体本体形成部位を形成する工程と、
     前記枠体本体形成部位の外周面に絶縁性樹脂材を設ける工程と、
     前記絶縁性樹脂材を硬化させて、前記枠体本体形成部位の外周を覆う絶縁性樹脂層を設ける工程と、
     前記枠体用導電性金属平板を前記バスバー用金属平板に重合させた状態で固着させる金属平板固着工程とを備え、
     前記切断工程は、前記金属平板固着工程の後に行われることを特徴とする請求項6又は7に記載のバスバーアッセンブリの製造方法。
PCT/JP2020/033212 2019-09-27 2020-09-02 バスバーアッセンブリ及びその製造方法 WO2021059904A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/764,086 US12106869B2 (en) 2019-09-27 2020-09-02 Busbar assembly and method for manufacturing the same
CN202080066126.2A CN114467234A (zh) 2019-09-27 2020-09-02 汇流条组件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-177285 2019-09-27
JP2019177285A JP6884835B2 (ja) 2019-09-27 2019-09-27 バスバーアッセンブリ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2021059904A1 true WO2021059904A1 (ja) 2021-04-01

Family

ID=75166628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033212 WO2021059904A1 (ja) 2019-09-27 2020-09-02 バスバーアッセンブリ及びその製造方法

Country Status (4)

Country Link
US (1) US12106869B2 (ja)
JP (1) JP6884835B2 (ja)
CN (1) CN114467234A (ja)
WO (1) WO2021059904A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023154457A (ja) * 2022-04-07 2023-10-20 日本パーカライジング株式会社 電子部品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241478U (ja) * 1988-09-12 1990-03-22
JPH04354398A (ja) * 1991-05-31 1992-12-08 Internatl Business Mach Corp <Ibm> 配線基板及びその製造方法
JP2010031216A (ja) * 2008-06-30 2010-02-12 Sekisui Chem Co Ltd 熱硬化性ソルダーレジスト用組成物、ソルダーレジスト形成用フィルム、ソルダーレジストの形成方法及び回路基板
JP2012096286A (ja) * 2010-10-07 2012-05-24 Sumitomo Heavy Ind Ltd レーザ照射装置、レーザ照射方法、及び絶縁膜形成装置
JP2019042678A (ja) * 2017-09-04 2019-03-22 サンコール株式会社 バスバーアッセンブリの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517406A (en) * 1984-05-14 1985-05-14 Eldre Components, Inc. Laminated bus bar containing multilayer ceramic capacitors
JP4432913B2 (ja) 2006-02-10 2010-03-17 株式会社デンソー 積層型ブスバーアセンブリ及びそのモールド装置
JP6487769B2 (ja) 2015-05-18 2019-03-20 サンコール株式会社 積層バスバーユニットの製造方法
JP6637003B2 (ja) * 2017-09-08 2020-01-29 サンコール株式会社 バスバーアッセンブリ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241478U (ja) * 1988-09-12 1990-03-22
JPH04354398A (ja) * 1991-05-31 1992-12-08 Internatl Business Mach Corp <Ibm> 配線基板及びその製造方法
JP2010031216A (ja) * 2008-06-30 2010-02-12 Sekisui Chem Co Ltd 熱硬化性ソルダーレジスト用組成物、ソルダーレジスト形成用フィルム、ソルダーレジストの形成方法及び回路基板
JP2012096286A (ja) * 2010-10-07 2012-05-24 Sumitomo Heavy Ind Ltd レーザ照射装置、レーザ照射方法、及び絶縁膜形成装置
JP2019042678A (ja) * 2017-09-04 2019-03-22 サンコール株式会社 バスバーアッセンブリの製造方法

Also Published As

Publication number Publication date
CN114467234A (zh) 2022-05-10
JP6884835B2 (ja) 2021-06-09
US20220359101A1 (en) 2022-11-10
JP2021057139A (ja) 2021-04-08
US12106869B2 (en) 2024-10-01

Similar Documents

Publication Publication Date Title
JP6637002B2 (ja) バスバーアッセンブリの製造方法
DE112006001663T5 (de) Halbleiterchip-Gehäuse und Verfahren zur Herstellung desselben
WO2021059904A1 (ja) バスバーアッセンブリ及びその製造方法
WO2020044656A1 (ja) バスバーアッセンブリ及びその製造方法
JP7465222B2 (ja) バスバーアッセンブリ
DE102012218561A1 (de) Elektronikmodul, Mehrfachmodul und Verfahren zum Herstellen eines Elektronikmoduls
JP6637003B2 (ja) バスバーアッセンブリ
KR102500681B1 (ko) 파워 모듈 및 그 제조 방법
DE102005063280A1 (de) Hermetisch dichtes Elektronik-Gehäuse sowie Trägerplatte
DE102007033288A1 (de) Elektronisches Bauelement und Vorrichtung mit hoher Isolationsfestigkeit sowie Verfahren zu deren Herstellung
WO2022009361A1 (ja) バスバーアッセンブリ及びその製造方法
WO2020262030A1 (ja) バスバーアッセンブリ及びその製造方法
WO2020085154A1 (ja) バスバーアッセンブリ及びその製造方法
US12126158B2 (en) Busbar assembly and method for manufacturing the same
JP2021007179A (ja) バスバーアッセンブリ及び半導体モジュール
WO2022080115A1 (ja) バスバーアッセンブリ及びバスバーアッセンブリの製造方法
DE102007036044A1 (de) Chipmodul und Verfahren zum Herstellen eines Chipmoduls
JP7535918B2 (ja) バスバーアッセンブリ及びその製造方法
DE102011077469A1 (de) Solarzellenmodul und Verfahren zu dessen Herstellung
CN112640095B (zh) 汇流条组件及其制造方法
JP2022065738A (ja) バスバーアッセンブリの製造方法及びバスバーアッセンブリ用平板積層構造
AT511628B1 (de) Photovoltaik-modul mit mehreren solarzellen
CN118866827A (zh) 汇流条组件及半导体模块
EP2802017A1 (de) Solarzellen-String, Verfahren und Vorrichtung zum Verbinden von Solarzellen zu einem Solarzellen-String
EP0959528A2 (de) Vorrichtung und Verfahren zur Herstellung einer Crimpverbindung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867826

Country of ref document: EP

Kind code of ref document: A1