WO2020262030A1 - バスバーアッセンブリ及びその製造方法 - Google Patents

バスバーアッセンブリ及びその製造方法 Download PDF

Info

Publication number
WO2020262030A1
WO2020262030A1 PCT/JP2020/023142 JP2020023142W WO2020262030A1 WO 2020262030 A1 WO2020262030 A1 WO 2020262030A1 JP 2020023142 W JP2020023142 W JP 2020023142W WO 2020262030 A1 WO2020262030 A1 WO 2020262030A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
region
surface side
gap
insulating resin
Prior art date
Application number
PCT/JP2020/023142
Other languages
English (en)
French (fr)
Inventor
翔太 龍見
Original Assignee
サンコール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社 filed Critical サンコール株式会社
Priority to CN202080044559.8A priority Critical patent/CN114026748B/zh
Priority to US17/597,039 priority patent/US20220239086A1/en
Publication of WO2020262030A1 publication Critical patent/WO2020262030A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/16Rails or bus-bars provided with a plurality of discrete connecting locations for counterparts
    • H01R25/161Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/005Laminated bus-bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/16Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a bus bar assembly in which a plurality of bus bars are electrically insulated and mechanically connected, and a method for manufacturing the same.
  • a bus bar assembly equipped with a plurality of bus bars that are electrically insulated from each other and mechanically connected to each other has been proposed and is used in various fields.
  • the facing planes of one flat-plate bus bar and the facing planes of the other flat bus bars are arranged so as to face each other with the insulating resin layer interposed therebetween, so that the reliability of insulation is sufficient. Has the problem that it is difficult to secure. In particular, if the thickness of the insulating resin layer between the one flat bus bar and the other flat bus bar is reduced in order to reduce the size in the vertical direction, a leak current may flow between the two bus bars.
  • FIG. 19A shows a plan view of an example of the flat bus bar assembly 500. Further, FIG. 19 (b) shows a cross-sectional view taken along the line XIX (b) -XIX (b) in FIG. 19 (a).
  • the flat bus bar assembly 500 has a gap 515 between the first bus bar 510a of the conductive metal flat plate and the first bus bar 510a, and the first bus bar assembly 500 has a gap 515.
  • An insulating resin that electrically insulates and mechanically connects the second bus bar 510b of a conductive metal flat plate arranged in the same plane as the bus bar 510a and the first and second bus bars 510a and 510b. It has a layer 520 and.
  • the insulating resin layer 520 is formed on the surface of a bus bar connector in which the gap filling portion 525 filled in the gap 515 and the first and second bus bars 510a and 510b are connected by the gap filling portion 525. It has a laminated surface laminated portion.
  • the surface laminated portion includes a first surface side laminated portion 530 and a second surface side laminated portion 540 that cover a first surface on one side in the thickness direction and a second surface on the other side in the thickness direction of the bus bar coupling, respectively. It covers the outer surface of the bus bar connecting body and has a side surface side laminated portion 550 that connects the first and second surface side laminated portions 530 and 540.
  • the first and second openings in the first surface side laminated portion 530 are formed by exposing predetermined portions of the first surfaces of the first and second bus bars 10a and 10b to form first and second exposed regions. 531a and 531b are provided.
  • FIG. 19C shows a vertical cross-sectional view of a semiconductor module 600 in which a semiconductor element 110 such as an LED is mounted on the bus bar assembly 500.
  • the first electrode layer lower electrode layer
  • the second electrode layer upper electrode layer
  • the second electrode layer is the other of the first and second exposed regions (FIG. 19 (FIG. 19).
  • it is electrically connected to the second exposed region) via wire bonding 120.
  • the manufacturing method includes a step of arranging the first and second bus bars 510a and 510b in the same plane while having the gap 515 (FIG. 20A), the gap 515, and the first and second bus bars.
  • the first and second openings 531a and 531b are provided in the first surface side laminated portion 530 by laser processing (FIGS. 20 (c) and 20 (d)).
  • FIG. 20 (e) shows an enlarged view of part XX (e) in FIG. 20 (d).
  • the edges of the first and second openings 531a and 513b on the side close to the gap 515 are provided.
  • the corresponding bus bars 510a, 510b and the boundary of the gap 515 need to be as close or aligned as possible.
  • the edge on the side of the first opening 531a close to the gap 515 is the side of the first bus bar 510a close to the gap 515.
  • the edge on the side close to the gap 515 in the second opening 531b and the end on the side close to the gap 515 in the second bus bar 510b as close as possible to the end portion (inner end portion) of the second bus bar 510b. It is necessary to perform laser machining so as to be as close as possible to (inner end) (see FIGS. 21 (a) and 21 (b)).
  • FIG. 21 (c) shows an enlarged view of part XXI (c) in FIG. 21 (b).
  • a part of the gap filling portion 525 is melted by the laser light, and a pinhole 527 may be generated in the gap filling portion 525.
  • the pinhole 527 causes deterioration of the insulation performance between the first and second bus bars 510a and 510b and deterioration of the connection strength.
  • Japanese Patent No. 4432913 Japanese Patent No. 6487769 Japanese Unexamined Patent Publication No. 2019-042678 Japanese Unexamined Patent Publication No. 2019-050090
  • the present invention has been made in view of such a prior art, and a plurality of bus bars arranged in the same plane with a gap between them, a gap filling portion filled in the gap, and the plurality of bus bars.
  • the bus bar is provided with an insulating resin layer including a first surface side laminated portion provided on the first surface on one side in the thickness direction of the bus bar connector formed by connecting the bus bars of the above to the first surface side laminated portion.
  • a bus bar assembly provided with a plurality of first surface side central openings for exposing predetermined portions of the first surfaces of the plurality of bus bars, and insulating between adjacent bus bars with the gap in between.
  • Another object of the present invention is to provide a manufacturing method capable of efficiently manufacturing the bus bar assembly.
  • the first aspect of the present invention is a plurality of bus bars formed of conductive flat plate members and arranged in the same plane with a gap between them, and in the gap.
  • An insulating resin layer including a filled gap filling portion and a first surface side laminated portion provided on the first surface on one side in the thickness direction of a bus bar connecting body formed by connecting the plurality of bus bars by the gap filling portion.
  • the first surface side laminated portion is provided with a plurality of first surface side central openings for forming a plurality of exposed regions by exposing predetermined portions of the first surfaces of the plurality of bus bars.
  • the insulating resin layer provides a busbar assembly formed of an insulating resin material that is transparent in a semi-cured state and non-transparent in a fully cured state.
  • a plurality of bus bars arranged in the same plane with a gap between them, a gap filling portion filled in the gap, and the plurality of bus bars are described.
  • An insulating resin layer including a first surface side laminated portion provided on the first surface on one side in the thickness direction of the bus bar connector connected by the gap filling portion is provided, and the first surface side laminated portion includes the first surface side laminated portion.
  • a plurality of central openings on the first surface side are provided by exposing predetermined portions of the first surface of the plurality of bus bars to form a plurality of exposed regions, and the insulating resin layer is transparent in a semi-cured state. It is formed of an insulating resin material that is non-transparent in a completely cured state.
  • the insulating resin material provided over the entire first surface of the bus bar connector is put into a semi-cured state, and then corresponds to each of the plurality of first surface side central openings and the gap.
  • the gap filling portion is covered. While preventing or reducing the occurrence of pinholes as much as possible, the edge of the central opening on the first surface side close to the gap is as close as possible to or substantially close to the corresponding bus bar and the boundary of the gap. Can be matched. Therefore, the semiconductor elements mounted on the bus bar assembly can be arranged as close as possible to the gap while maintaining the insulating property and the connection strength between the adjacent bus bars.
  • the edge of each of the plurality of first surface side central openings on the side close to the gap coincides with the boundary between the corresponding bus bar and the gap.
  • the first surface side laminated portion is a partition extending from the gap filling portion to the outside on one side in the thickness direction of the bus bar connector in a region sandwiched by a plurality of adjacent first surface side central openings sandwiching the gap.
  • Can have a wall.
  • a plurality of bus bars formed of conductive flat plate-shaped members and arranged in the same plane with gaps between them, and a gap filling portion filled in the gaps.
  • the first bus bar is provided with an insulating resin layer including a first surface-side laminated portion provided on the first surface on one side in the thickness direction of the bus bar connector in which the plurality of bus bars are connected by the gap filling portion.
  • the surface-side laminated portion is provided with a plurality of first surface-side central openings for forming a plurality of exposed regions by exposing predetermined portions of the first surface on one side in the thickness direction of the plurality of bus bars.
  • the first surface side laminated portion extends outward from the gap filling portion on one side in the thickness direction of the bus bar connector in a region sandwiched by the first surface side central opening adjacent to the gap.
  • a plurality of bus bars arranged in the same plane with a gap between them, a gap filling portion filled in the gap, and the plurality of bus bars are described.
  • An insulating resin layer including a first surface side laminated portion provided on the first surface on one side in the thickness direction of the bus bar connector connected by the gap filling portion is provided, and the first surface side laminated portion includes the first surface side laminated portion.
  • a plurality of first surface side central openings are provided to form a plurality of exposed regions by exposing predetermined portions of the first surface of the plurality of bus bars, respectively, and the first surface side laminated portion sandwiches the gap. It has a partition wall portion extending from the gap filling portion to the outside on one side in the thickness direction of the bus bar connector in the region sandwiched by the central opening on the first surface side adjacent to the bus bar.
  • the partition wall portion can be used as a stopper when the semiconductor element is mounted directly or indirectly via the plating layer on the region exposed by the central opening on the first surface side. Therefore, the semiconductor element mounted on one of the adjacent bus bars should be arranged as close as possible to the gap while effectively preventing the semiconductor element mounted on one of the adjacent bus bars from unexpectedly contacting the other of the adjacent bus bars. Can be done.
  • a plurality of bus bars formed of conductive flat plate-shaped members and arranged in the same plane with gaps between them, and a gap filling portion filled in the gaps.
  • the first bus bar is provided with an insulating resin layer including a first surface-side laminated portion provided on the first surface on one side in the thickness direction of the bus bar connector in which the plurality of bus bars are connected by the gap filling portion.
  • the surface-side laminated portion is provided with a plurality of first surface-side central openings for forming a plurality of exposed regions by exposing predetermined portions of the first surface on one side in the thickness direction of the plurality of bus bars.
  • the insulating resin layer provides a bus bar assembly formed of a transparent insulating resin material in a completely cured state.
  • a plurality of bus bars arranged in the same plane with a gap between them, a gap filling portion filled in the gap, and the plurality of bus bars are described.
  • An insulating resin layer including a first surface side laminated portion provided on the first surface on one side in the thickness direction of the bus bar connector connected by the gap filling portion is provided, and the first surface side laminated portion includes the first surface side laminated portion.
  • a plurality of first surface side central openings are provided to form a plurality of exposed regions by exposing predetermined portions of the first surface of the plurality of bus bars, respectively, and the insulating resin layer becomes transparent in a completely cured state. It is made of an insulating resin material.
  • the gaps correspond to the plurality of central openings on the first surface side.
  • the gap filling portion is pinned. While preventing or reducing the formation of holes as much as possible, the edge of the central opening on the first surface side close to the gap is as close or substantially as close as possible to the corresponding bus bar and the boundary of the gap. Can be matched to. Therefore, the semiconductor elements mounted on the bus bar assembly can be arranged as close as possible to the gap while maintaining the insulating property and the connection strength between the adjacent bus bars.
  • the first surface side laminated portion is a central coating that covers the first surface of the bus bar connector in a region surrounding the plurality of first surface side central openings in a plan view.
  • the bus bar assembly may include a tubular frame body having a central hole and a frame having an insulating resin layer covering the outer peripheral surface of the frame body.
  • the frame is fixed to the peripheral region of the first surface of the bus bar connection so as to surround the plurality of central openings on the first surface side in a plan view.
  • the insulating resin layer is provided on the second surface side laminated portion provided on the second surface on the other side in the thickness direction of the bus bar connector and on the side surface of the bus bar connector. It is assumed that the first surface side laminated portion and the side surface side laminated portion connecting the first surface side laminated portion are provided, and a plurality of predetermined portions of the second surface of the plurality of bus bars are exposed to the second surface side laminated portion. A plurality of second surface side central openings forming an exposed area are provided.
  • each of the plurality of second surface side central openings on the side close to the gap coincides with the boundary between the corresponding bus bar and the gap.
  • the second surface side laminated portion extends from the gap filling portion to the outside on the other side in the thickness direction of the bus bar connector in a region sandwiched by a plurality of second surface side central openings adjacent to each other with the gap in between. It may have a partition wall.
  • a plurality of bus bars formed of conductive flat plate members and arranged in the same plane with a gap between them, a gap filling portion filled in the gap, and the plurality of bus bars.
  • the bus bar is provided with an insulating resin layer including a first surface side laminated portion provided on the first surface on one side in the thickness direction of the bus bar connector formed by connecting the bus bar by the gap filling portion, and the first surface side laminated portion is provided.
  • a first manufacturing method of a bus bar assembly including a complete curing step of completely curing the insulating resin material and a cutting step of cutting the bus bar assembly forming region from the conductive metal flat plate.
  • the first surface side laminated portion covers the first surface of the bus bar coupling in a region surrounding the plurality of first surface side central openings in a plan view, and the central coating.
  • the central coating When it has a peripheral edge opening that exposes the first surface of the bus bar coupling in the radial direction outward from the region and a peripheral covering region that covers the first surface of the bus bar coupling in a region that surrounds the peripheral opening in a plan view.
  • the laser light irradiation step is configured to irradiate the peripheral aperture forming region corresponding to the peripheral aperture with laser light to form the peripheral aperture in addition to the central laser region.
  • the conductive metal flat plate comprises a plurality of the bus bar assembly forming regions arranged in series in the first direction along the longitudinal direction of the slit, and the adjacent bus bar assembly forming regions. It is assumed that it has a connecting region to be connected integrally.
  • the slit formed in the one bus bar assembly forming region extends into the connecting region in which one end side in the longitudinal direction is connected to one side in the first direction of the one bus bar assembly forming region and the other end side in the longitudinal direction is the one. It extends into the connecting region connected to the other side in the first direction of the bus bar assembly forming region.
  • a plurality of bus bars formed of conductive flat plate members and arranged in the same plane with a gap between them, a gap filling portion filled in the gap, and the plurality of bus bars.
  • An insulating resin layer including a first surface-side laminated portion provided on the first surface on one side in the thickness direction of the bus bar connecting body in which the bus bar is connected by the gap filling portion, and the first surface of the bus bar connecting body.
  • a plurality of first surfaces are provided with a frame body fixed to a peripheral region, and a predetermined portion of the first surface of the plurality of bus bars is exposed on the first surface side laminated portion to form a plurality of exposed regions.
  • a side central opening is provided, and the frame body has a tubular frame body body having a central hole and an insulating resin layer covering the outer peripheral surface of the frame body body, and the plurality of first surfaces thereof in a plan view.
  • a second method for manufacturing a bus bar assembly which is fixed to a peripheral region of a first surface of the bus bar connecting body so as to surround a side central opening, and is conductive for a bus bar having a bus bar assembly forming region forming the plurality of bus bars.
  • One or more of the steps of preparing the bus bar assembly and the bus bar assembly forming region which penetrates between the first surface on one side in the thickness direction and the second surface on the other side in the thickness direction and has the same width as the gap.
  • a first central opening forming region corresponding to the first central opening on the first surface side that exposes a predetermined portion of the first surface of the first bus bar, which is one of the adjacent bus bars, adjacent to the first bus bar with the gap in between. Includes a second central opening forming region corresponding to the second central opening on the first surface side that exposes a predetermined portion of the first surface of the second bus bar, and an intermediate region sandwiched by the first and second central opening forming regions. From the laser light irradiation step of irradiating the central laser region with laser light to form the first and second central openings on the first surface side, and the step of preparing the conductive metal flat plate for the bus bar to the laser light irradiation step.
  • a frame body forming process performed before, after, or in parallel with the process which has the same thickness as the frame body body and has an outer peripheral shape corresponding to the bus bar assembly forming region in a plan view.
  • a step of preparing a conductive metal flat plate for a frame including a body forming region and a portion of the frame forming region corresponding to the central hole are punched out to form a frame body forming portion corresponding to the frame body.
  • the frame forming process including the punching step and the step of providing the insulating resin material at the frame body forming portion, and the remaining on the conductive metal flat plate for the bus bar after the laser light irradiation step.
  • Insulation in a semi-cured state by polymerizing both metal flat plates in a state where at least one of the insulating resin material and the insulating resin material provided on the conductive metal flat plate for a frame is semi-cured.
  • the bus bar assembly forming region and the frame body forming region in the polymerized state are formed on the bus bar conductive metal flat plate and the above.
  • a second manufacturing method of a bus bar assembly including a cutting step of cutting from a conductive metal flat plate for a frame.
  • a plurality of bus bars formed of conductive flat plate members and arranged in the same plane with a gap between them, a gap filling portion filled in the gap, and the plurality of bus bars.
  • the busbar-side insulating resin layer including the first-side laminated portion provided on the first surface on one side in the thickness direction of the busbar connector formed by connecting the busbars by the gap filling portion, and the first busbar connector.
  • a plurality of first surfaces are provided with a frame body fixed to the peripheral region of the surface, and a predetermined portion of the first surface of the plurality of bus bars is exposed on the first surface side laminated portion to form a plurality of exposed regions.
  • a central opening on one surface side is provided, and the frame body has a tubular frame body body having a central hole and a frame body side insulating resin layer covering the outer peripheral surface of the frame body body, and the plurality of the frame bodies in a plan view.
  • a third method for manufacturing a bus bar assembly which is fixed to a peripheral region of the first surface of the bus bar connecting body so as to surround the central opening on the first surface side of the bus bar assembly, wherein the bus bar assembly forming region forming the plurality of bus bars is formed.
  • the step of preparing the conductive metal flat plate for the bus bar to have, and the bus bar assembly forming region penetrate between the first surface on one side in the thickness direction and the second surface on the other side in the thickness direction and have the same width as the gap.
  • the step of providing an insulating resin material that is transparent in the state and non-transparent in the completely cured state, the semi-curing step of semi-curing the insulating resin material, and the insulating resin material in the semi-cured state A first central opening forming region corresponding to the first central opening on the first surface side that exposes a predetermined portion of the first surface of the first bus bar that is one of the adjacent bus bars with the gap in between, and the first It is sandwiched between a second central opening forming region corresponding to a second central opening on the first surface side that exposes a predetermined portion of the first surface of the second bus bar adjacent to the bus bar, and the first and second central opening forming regions.
  • the central laser region including the intermediate region is irradiated with laser light to form the first and second central openings on the first surface side, and remains on the conductive metal flat plate for the bus bar after the laser light irradiation step.
  • the busbar-side insulating resin material is completely cured.
  • a frame body forming process performed before, after, or in parallel with the process up to the step, which has the same thickness as the frame body body and has an outer peripheral shape corresponding to the bus bar assembly forming region in a plan view.
  • the conductive metal plate for the bus bar and the conductive metal plate for the frame are fixed with an adhesive so that the bus bar assembly forming region and the frame forming region are overlapped with the frame forming process including the step of forming the bus bar.
  • the assembly step is included, and after the assembly step, the bus bar assembly forming region and the frame forming region in the polymerized state are cut from the bus bar conductive metal flat plate and the frame conductive metal flat plate.
  • a third method for manufacturing a bus bar assembly is provided.
  • the conductive metal flat plate for the bus bar is adjacent to the plurality of bus bar assembly forming regions arranged in series in the first direction along the longitudinal direction of the slit.
  • a plurality of conductive metal flat plates for a frame body corresponding to the plurality of bus bar assembly forming regions in the conductive metal flat plate for a bus bar are integrally provided with a connecting region for connecting the bus bar assembly forming regions. It is assumed that the frame body forming region of the above and the connecting region connecting the adjacent frame body forming regions are integrally provided.
  • the slit formed in the one bus bar assembly forming region extends into the connecting region in which one end side in the longitudinal direction is connected to one side in the first direction of the one bus bar assembly forming region and the other end side in the longitudinal direction is the one. It extends into the connecting region connected to the other side in the first direction of the bus bar assembly forming region.
  • FIG. 1 is a plan view of the bus bar assembly according to the first embodiment of the present invention.
  • FIG. 2 is a bottom view of the bus bar assembly according to the first embodiment.
  • FIG. 3 (a) is a cross-sectional view taken along the line III (a)-III (a) in FIG. 1, and
  • FIG. 3 (b) is an enlarged view of part III (b) in FIG. 3 (a).
  • FIG. 4A is a vertical cross-sectional view of a semiconductor module in which a semiconductor element such as an LED is mounted on the bus bar assembly according to the first embodiment
  • FIG. 4B is an IV in FIG. 4A.
  • (b) is an enlarged view of part (b).
  • FIG. 4A is a vertical cross-sectional view of a semiconductor module in which a semiconductor element such as an LED is mounted on the bus bar assembly according to the first embodiment
  • FIG. 4B is an IV in FIG. 4A.
  • (b) is an enlarged view of part (b).
  • FIG. 4A
  • FIG. 5 is a plan view of the conductive metal flat plate for the bus bar used in the bus bar assembly manufacturing method (first manufacturing method) according to the first embodiment, showing the completed state of the slit forming step in the first manufacturing method. Shown.
  • FIG. 7 (a) is an enlarged view of part VII (a) in FIG. 6, and FIG.
  • FIG. 7 (b) is a cross-sectional view taken along the line VII (b) -VII (b) in FIG. 7 (a).
  • FIG. 8 is a plan view of the conductive metal flat plate for the bus bar in a state where the insulating resin material is provided.
  • 9 (a) is an enlarged view of the IX (a) part in FIG. 8, and
  • FIG. 9 (b) is a cross-sectional view taken along the line IX (b) -IX (b) in FIG. 9 (a).
  • FIG. 10 is a bottom view of the IX (a) portion in FIG. FIG.
  • FIG. 11A is a plan view of the bus bar forming region of the conductive metal flat plate for the bus bar, and shows the state after the complete curing step in the first manufacturing method.
  • FIG. 11 (b) is a cross-sectional view taken along the line XI (b) -XI (b) in FIG. 11 (a).
  • FIG. 12 is a plan view of the bus bar assembly according to the second embodiment of the present invention.
  • FIG. 13 (a) is a cross-sectional view taken along the line XIII (a)-XIII (a) in FIG. 12, and FIG. 13 (b) shows a semiconductor element mounted on the bus bar assembly according to the second embodiment. It is a vertical sectional view of the semiconductor module.
  • FIG. 11 (b) is a cross-sectional view taken along the line XI (b) -XI (b) in FIG. 11 (a).
  • FIG. 12 is a plan view of the bus bar assembly according to the second embodiment of the present invention.
  • FIG. 14 (a) is a plan view of a bus bar assembly forming region in the conductive metal flat plate for a bus bar used in the bus bar assembly manufacturing method (second manufacturing method) according to the second embodiment, and is a plan view of the bus bar assembly forming region. Shows the state after the semi-curing step in.
  • FIG. 14 (b) is a cross-sectional view taken along the line XIV (a)-XIV (a) in FIG. 14 (a).
  • FIG. 15 (a) is a plan view of the bus bar assembly forming region shown in FIG. 14 (a), and shows a state after the laser light irradiation step in the second manufacturing method.
  • FIG. 14 (b) is a cross-sectional view taken along the line XIV (a)-XIV (a) in FIG. 14 (a).
  • FIG. 15 (a) is a plan view of the bus bar assembly forming region shown in FIG. 14 (a), and shows a state after the laser light irradiation step in the second
  • FIG. 15 (b) is a cross-sectional view taken along the line XV (b) -XV (b) in FIG. 15 (a).
  • FIG. 16 is a plan view of the conductive metal flat plate for the frame used in the second manufacturing method, and shows the state after the installation step of the insulating resin material in the second manufacturing method.
  • FIG. 17 (a) is an enlarged view of part XVII (a) in FIG. 16, and FIG. 17 (b) is a cross-sectional view taken along the line XVII (b) -XVII (b) in FIG. 17 (a).
  • FIG. 18 is a plan view of the conductive metal flat plate for the bus bar and the conductive metal flat plate for the frame after the assembling step in the second manufacturing method.
  • FIG. 19 (a) is a plan view of a conventional flat bus bar assembly
  • FIG. 19 (b) is a cross-sectional view taken along the line XIX (b) -XIX (b) in FIG. 19 (a).
  • FIG. 19 (c) is a vertical cross-sectional view of a semiconductor module in which a semiconductor element is mounted on the bus bar assembly shown in FIGS. 19 (a) and 19 (b).
  • 20 (a) to 20 (d) are process diagrams of the conventional method for manufacturing a flat bus bar assembly
  • FIG. 20 (e) is an enlarged view of part XX (e) in FIG. 20 (d).
  • FIG. 21 (a) is a cross-sectional view showing a laser light irradiation step in the conventional method for manufacturing a flat bus bar assembly
  • FIG. 21 (b) is a cross-sectional view after the laser light irradiation step
  • FIG. 31 (c) is an enlarged view of part XXI (c) in FIG. 21 (b).
  • FIG. 1 and 2 show a plan view and a bottom view of the bus bar assembly 1 according to the present embodiment, respectively.
  • FIG. 3 (a) shows a cross-sectional view taken along the line III (a)-III (a) in FIG.
  • FIG. 3 (b) shows an enlarged view of part III (b) in FIG. 3 (a).
  • the bus bar assembly 1 is a plurality of bus bars 10 formed of conductive flat plate-shaped members, and is arranged in the same plane with a gap 19 between the side surfaces thereof. It has a plurality of bus bars 10 and an insulating resin layer 30 fixed to the plurality of bus bars 10.
  • the bus bar assembly 1 according to the present embodiment has two bus bars, a first bus bar and a second bus bar 10a, 10b, as the plurality of bus bars 10.
  • the first and second bus bars 10a and 10b have a first surface 11 on one side in the thickness direction and the other in the thickness direction in a vertical cross-sectional view along the thickness direction. It has a second surface 12 on the side, an opposing side surface 13 facing each other, and an outer surface 14 facing the opposite direction.
  • the first and second bus bars 10a and 10b are formed of a conductive metal such as Cu.
  • FIG. 4 (a) shows a vertical cross-sectional view of an example of a semiconductor module 101 in which a semiconductor element 110 such as an LED is mounted on the bus bar assembly 1, and FIG. 4 (b) shows IV (b) in FIG. 4 (a). ) Part enlarged view is shown respectively.
  • one of the first and second bus bars 10a and 10b acts as a positive electrode and the other acts as a negative electrode.
  • the semiconductor element 110 has first and second electrode layers 111 and 112 on the lower surface on one side in the thickness direction and the upper surface on the other side in the thickness direction, respectively, and is between the first and second electrode layers 111 and 112. It has an element body 115.
  • the first electrode layer 111 is electrically fixed to the first surface 11 of the one bus bar (for example, the first bus bar 10a) in an electrically connected state, and the second electrode layer 112 is electrically connected by wire bonding or the like. It is electrically connected to the first surface 11 of the other bus bar (for example, the second bus bar 10b) via the member 120.
  • the semiconductor element 110 is die-bonded so that the first electrode layer 111 is electrically connected to a plating layer (not shown) provided on the first surface 11 of the one bus bar.
  • the second electrode layer 112 is electrically connected to a plating layer (not shown) provided on the first surface 11 of the other bus bar via wire bonding 120.
  • Reference numerals 130 in FIGS. 4A and 4B are the first of the busbar assembly 1 in order to protect parts such as the semiconductor element 110 and the electrical connection member 120 mounted on the busbar assembly 1. It is a sealing resin layer fixed to one surface.
  • a transparent resin such as polyimide, polyamide, or epoxy is used.
  • the insulating resin layer 30 is made of an insulating resin material having heat resistance and insulating properties, which is transparent in a semi-cured state and non-transparent in a completely cured state. It is formed.
  • the insulating resin material for example, Insuled (registered trademark) is preferably used.
  • the "transparent” means having transparency to a laser beam (for example, a wavelength of 1064 nm) described later, and the “non-transparent” means heat generation and melting by irradiation with a laser beam. It means that it has absorption to laser light.
  • the insulating resin layer 30 is filled in the gap 19 between the facing side surfaces 13 of the first and second bus bars 10a and 10b, and the first and second bus bars 10a,
  • a gap filling portion 31 that mechanically connects 10b in an electrically insulated state and the first and second bus bars 10a and 10b are provided on the outer surface of a bus bar connecting body formed by connecting the gap filling portions 31. It has a surface laminated portion.
  • the bus bar assembly 1 having such a configuration, since the first and second bus bars 10a and 10b are arranged in the same plane, it is possible to reduce the size as much as possible in the vertical direction (thickness direction). it can.
  • first and second bus bars 10a and 10b are arranged so as to face each other on the facing side surfaces 13, the first bus bar assembly is compared with a laminated bus bar assembly in which a plurality of bus bars are vertically laminated.
  • the area where the second bus bars 10a and 10b face each other can be made as small as possible, thereby effectively preventing the leakage current from flowing between the first and second bus bars 10a and 10b. Can be reduced.
  • the surface laminated portion includes a first surface-side laminated portion 40 provided on the first surface of the bus bar connector on one side in the plate thickness direction and the other side of the bus bar connector in the plate thickness direction.
  • the second surface side laminated portion 50 provided on the second surface of the above, and the side surface side laminated portion 55 provided on the side surface of the bus bar connecting body and connecting the first and second surface side laminated portions 40, 50.
  • the first surface side laminated portion 40 has a predetermined portion of the first surface 11 of the first and second bus bars 10a and 10b at the center of the plan view of the bus bar connecting body, respectively.
  • the region surrounding the first and second central openings 41a and 41b on the first surface side and the first and second central openings 41a and 41b on the first surface side which are exposed to form the first and second central exposed regions. It has a central covering region 43 that covers the first surface of the bus bar connector.
  • the edge of the first central opening 41a on the first surface side close to the gap 19 is the first bus bar 10a. And substantially coincides with the boundary of the gap 19. That is, the edge of the first surface side first central opening 41a on the side close to the gap 19 and the end portion (inner end portion) of the first bus bar 10a on the side close to the gap 19 are substantially. Match.
  • the edge of the first surface side second central opening 41b on the side close to the gap 19 substantially coincides with the boundary between the second bus bar 10b and the gap 19. That is, the edge of the first surface side second central opening 41b on the side close to the gap 19 and the end portion (inner end portion) of the second bus bar 10b on the side close to the gap 19 are substantially. Match.
  • FIG. 5 shows a flat surface of the bus bar connector in a state where the insulating resin material 240 forming the insulating resin layer 30 is provided in the gap 19 and on the first surface of the bus bar connector on one side in the thickness direction. The figure is shown.
  • the first surface side first in the semi-cured state of the insulating resin material 240.
  • the first surface side first central opening forming region 241a corresponding to one central opening 41a
  • the first surface side second central opening forming region 241b corresponding to the first surface side second central opening 41b, and the first surface.
  • the first surface side central laser region 241 including the first surface side intermediate region 241c sandwiched by the side first and second central opening forming regions 241a and 241b With laser light, the first surface side central laser region Of the 241 parts, the portions where the first and second bus bars 10a and 10b exist immediately below (that is, the first and second central opening forming regions 241a and 241b on the first surface side) are the intermediate regions on the first surface side. It can be melted faster than 241c.
  • the insulating resin material can be completely cured to form the insulating resin layer 30.
  • the first bus bar is formed on the edge of the first surface side first central opening 41a on the side close to the gap 19.
  • the edge of the first surface side second central opening 41b that substantially coincides with the boundary between the 10a and the gap 19 and is close to the gap 19 is substantially aligned with the boundary between the second bus bar 10b and the gap 19.
  • the melting of the gap filling portion 31 in which the bus bar 10 does not exist directly below is substantially melted.
  • the first surface side laminated portion 40 is formed on the first surface side first and second central openings 41a, because the prevention or reduction is achieved.
  • the gap filling portion 31 is configured to have a first surface side partition wall portion 42 extending outward on one side in the thickness direction of the bus bar connector.
  • the first surface side partition wall portion 42 adheres the semiconductor element 110 to the first surface side first and second central exposed regions exposed by the first surface side first and second central openings 41a and 41b. Acts as a stopper for preventing the position of the semiconductor element 110 from being displaced when the semiconductor element 110 is fixed.
  • the corresponding exposed region in the illustrated form, the first central exposure on the first surface side. Can be fixed to the area).
  • the first surface side laminated portion 40 further exposes the first surface of the bus bar coupling in the region surrounding the central covering region 43. And, in the region surrounding the peripheral edge opening 45, the first surface side peripheral edge covering region 47 covering the first surface of the bus bar coupling body is provided.
  • the peripheral edge opening 45 forms a recess (groove portion) that opens toward the first surface in cooperation with the central covering area 43 and the first surface side peripheral covering area 47, and the peripheral edge opening 45 and the peripheral edge opening 45.
  • the step between the peripheral covering regions 47 on the first surface side forms the damming structure of the sealing resin 130.
  • the sealing resin layer 130 for protecting the semiconductor element 110 mounted on the bus bar assembly 1 and the necessary electrical connection members and other parts Is provided by applying a resin forming the sealing resin layer 130 so as to surround the component onto the first surface of the bus bar assembly 1 and curing the resin. At that time, the resin flows out. It is necessary to provide a damming structure to prevent this.
  • the recess (groove portion) formed by the central covering region 43, the peripheral edge opening 45, and the first surface side peripheral covering region 47 is the damming structure. Consists of.
  • the second surface side laminated portion 50 includes a second surface side central opening 51 that exposes the second surface 12 of the first and second bus bars 10a and 10b in the center of the bottom view, and the above. It has a second surface side peripheral covering region 53 that covers the second surface of the bus bar connector in a region surrounding the second surface side central opening 51.
  • the second surface side central opening 51 is a second surface side first and second central openings 51a and 51b that expose the second surfaces of the first and second bus bars 10a and 10b, respectively. Have.
  • the second surface side laminated portion 50 further has the gap in the region sandwiched by the first and second central openings 51a and 51b on the second surface side. It has a second surface side partition wall portion 52 extending outward from the filling portion 31 on the other side in the thickness direction of the bus bar connecting body.
  • the edge on the side of the first central opening 51a on the second surface side close to the gap 19 is substantially aligned with the boundary between the first bus bar 10a and the gap 19, and the second surface side second 2
  • the edge of the central opening 51b on the side close to the gap 19 can be substantially aligned with the boundary between the second bus bar 10b and the gap 19.
  • FIG. 6 shows a plan view of the conductive metal flat plate 200 for a bus bar used in the first manufacturing method.
  • FIG. 7 (a) shows an enlarged view of part VII (a) in FIG. 6, and
  • FIG. 7 (b) shows a cross-sectional view taken along the line VII (b) -VII (b) in FIG. , Each shown.
  • the first manufacturing method includes a step of preparing a conductive metal flat plate 200 for a bus bar having a bus bar assembly forming region 210 having the same thickness as the first and second bus bars 10a and 10b.
  • the bus bar assembly forming region 210 is provided with a slit forming step of forming a slit 215 penetrating between the first surface 211 on one side in the thickness direction and the second surface 212 on the other side in the thickness direction.
  • FIG. 6 shows a state after the slit forming step is completed.
  • the bus bar assembly 1 has two bus bars, the first and second bus bars 10a and 10b, as the plurality of bus bars 10. Therefore, one slit 215 is formed in the bus bar assembly forming region 210. For example, when manufacturing a bus bar assembly in which three bus bars are arranged in parallel, two slits are formed.
  • the conductive metal flat plate 200 for the bus bar is along the X direction in the XY plane in which the conductive metal flat plate 200 is located. It has a bus bar row 205 including a plurality of the bus bar assembly forming regions 210 arranged in series and a connecting region 230 connecting between the bus bar assembly forming regions 210 adjacent to each other in the X direction, and the plurality of bus bar assemblies. Machining processing can be performed on the formation region 210 at the same time.
  • the conductive metal flat plate 200 for a bus bar has a pair of gripping pieces 207 connected to one side and the other side in the longitudinal direction (X direction) of the bus bar row 205, respectively, and the pair of gripping pieces 207.
  • the gripping piece 207 is provided with an alignment hole 208.
  • the length of the bus bar assembly forming region 210 in the X direction is the same as the length of the bus bar assembly 1 in the direction parallel to the gap 19, and the length of the bus bar assembly forming portion 210 in the Y direction.
  • the lengths in the X direction and the Y direction are set so that the length is the same as the length in the direction orthogonal to the gap 19 of the bus bar assembly 1.
  • the slit 215 forms the gap 19 in the bus bar assembly 1, and has the same width as the gap 19.
  • the width of the gap 19 is determined according to the specifications of the bus bar assembly 1.
  • the slit 215 formed in the one bus bar assembly forming region 210a is connected to one side in the longitudinal direction (X direction) on one side in the longitudinal direction (X direction) of the one bus bar assembly forming region 210a.
  • Another connecting region 230 (1) extending into the other connecting region 230 (1) and having the other side in the longitudinal direction (X direction) connected to the other side in the longitudinal direction (X direction) of the one bus bar assembly forming region 230a (X direction). 2) It extends inward.
  • the first and second bus bar forming portions 220a and 220b facing each other via the slit 215 formed in the one bus bar assembly forming region 210a are formed by the one connecting region 230 ( It is configured to be maintained in a state of being connected to each other via 1) and the other connecting region 230 (2).
  • the slit 215 (the gap 19) can be formed with high accuracy.
  • the insulating resin material 240 forming the insulating resin layer 30 is formed in the slit 215 and on the first surface 211 on one side in the thickness direction of the bus bar forming region 210. It has a step to provide.
  • FIG. 8 shows a plan view of the conductive metal flat plate 200 for a bus bar in a state where the insulating resin material 240 is provided.
  • FIG. 9 (a) shows an enlarged view of the IX (a) portion in FIG. 8, and
  • FIG. 9 (b) shows a cross-sectional view taken along the line IX (b) -IX (b) in FIG. 9 (a). , Each shown.
  • the insulating resin material 240 is placed in the slit 215 and on the first surface 211 of the bus bar forming region 210, as well as in the bus bar forming region 210. It is also provided on the second surface 212 and the outer peripheral surface 213 of the above.
  • the insulating resin material 240 is an insulating resin having heat resistance and insulating properties such as polyimide, polyamide, and epoxy. As described above, the insulating resin material 240 is transparent and completely cured to transmit laser light in a semi-cured state. In the state, it is a non-transparent insulating resin that absorbs laser light, and Insuled (registered trademark) is preferably used.
  • the installation of the insulating resin material 240 can be performed, for example, by electrodeposition coating of a paint containing the insulating resin material 240. Instead of this, it is also possible to electrostatically coat the powder of the insulating resin material 240. Alternatively, if the filling property of the resin in the slit 215 can be sufficiently ensured, the paint containing the insulating resin material 240 can be spray-painted.
  • the first manufacturing method further includes a semi-curing step of semi-curing the insulating resin material 240 and a laser light irradiation step of irradiating the semi-cured insulating resin material 240 with a laser beam. ing.
  • the semi-curing step is performed, for example, by heat-treating the insulating resin material 240 at a predetermined temperature and a predetermined time.
  • the laser light in the laser light irradiation step has a wavelength transmitted to the insulating resin material 240 in a semi-cured state, and is, for example, a wavelength of 1064 nm.
  • the first central opening 41a on the first surface side.
  • the first surface side first central opening forming region 241a corresponding to, the first surface side second central opening forming region 241b corresponding to the first surface side second central opening 41b, and the first surface side first and Laser light is applied to the first surface side central laser region 241 including the first surface side intermediate region 241c sandwiched by the second central opening forming regions 241a and 241b.
  • the regions (that is, the first center on the first surface side) in which the first and second bus bar forming sites 220a and 220b are present immediately below the intermediate region 241c on the first surface side are substantially left. Only the opening forming region 241a and the first surface side second central opening forming region 241b) are melted to form the first surface side first central opening 41a and the first surface side second central opening 41b.
  • the edge of the first central opening 41a on the first surface side close to the slit 215 (gap 19) is substantially aligned with the boundary between the first bus bar forming portion 210a and the slit 215 (gap 19).
  • the edge of the second central opening 41b on the first surface side close to the slit 215 (gap 19) is substantially aligned with the boundary between the second bus bar forming portion 210b and the slit 215 (gap 19).
  • the first surface side partition wall portion 42 is provided (see FIG. 3A).
  • the peripheral aperture forming region 245 corresponding to the peripheral aperture 45 is also irradiated with laser light. ..
  • the laser light irradiation step is configured to irradiate the laser light on the second surface 212 of the bus bar assembly forming region 210 as well.
  • FIG. 10 shows a bottom view of the IX (a) portion in FIG. Specifically, among the insulating resin material 240 on the second surface 212 of the bus bar assembly forming region 210, the second surface side first central opening corresponding region 251a corresponding to the second surface side first central opening 51a, said. The second surface side sandwiched by the second surface side second central opening equivalent area 251b corresponding to the second surface side second central opening 51b, and the second surface side first and second central opening equivalent areas 251a and 251b.
  • the laser beam is applied to the second surface side central laser region 251 including the intermediate region 251c.
  • the regions (that is, the first center on the second surface side) in which the first and second bus bar forming sites 220a and 220b are present immediately below the intermediate region 251c on the second surface side are substantially left. Only the opening forming region 251a and the second surface side second central opening forming region 251b) are melted to form the second surface side first central opening 51a and the second surface side second central opening 51b.
  • the edge of the first central opening 51a on the second surface side close to the slit 215 (gap 19) is substantially aligned with the boundary between the first bus bar forming portion 210a and the slit 215 (gap 19).
  • the edge of the second central opening 51b on the second surface side close to the slit 215 (gap 19) is substantially aligned with the boundary between the second bus bar forming portion 210b and the slit 215 (gap 19).
  • the second surface side partition wall portion 52 is provided (see FIG. 3B).
  • the first manufacturing method further includes a complete curing step of completely curing the insulating resin material 240 provided with a predetermined opening by the laser light irradiation step to form the insulating resin layer 30. There is.
  • the complete curing step is performed, for example, by heat-treating the insulating resin material 240 in a semi-cured state at a predetermined temperature and a predetermined time.
  • FIG. 11 (a) shows a plan view of the bus bar forming region 210a after the complete curing step
  • FIG. 11 (b) shows a cross section taken along the line XI (b) -XI (b) in FIG. 11 (a). The figures are shown respectively.
  • the first manufacturing method can further include a plating step of forming a plating layer (not shown) in the exposed regions of the pair of bus bar forming portions 220a and 220b after the complete curing step.
  • the first manufacturing method further includes a cutting step of cutting the bus bar forming region 210 provided with the insulating resin layer 30 from the conductive metal flat plate 200 for the bus bar and taking out the bus bar assembly 1. There is.
  • the length in the X direction of the bus bar assembly forming region 210 is the same as the length in the direction along the gap 19 of the bus bar assembly 1, and the bus bar assembly forming portion 210
  • the lengths in the X direction and the Y direction are set so that the length in the Y direction of the bus bar assembly 1 is the same as the length in the direction orthogonal to the gap 19 of the bus bar assembly 1.
  • the slit 215 formed in the one bus bar assembly forming region 210a has one side connected to one side in the longitudinal direction (X direction) of the one bus bar assembly forming region 210a.
  • the other connecting region 230 (2) extending into the connecting region 230 (1) and having the other side in the longitudinal direction (X direction) connected to the other side in the longitudinal direction (X direction) of the one bus bar assembly forming region 210a. Extends to.
  • the cutting step is performed along the cutting lines C1 along the edges 210 (1) and 210 (2) on one side and the other side of the bus bar assembly forming region 210 in the X direction, respectively.
  • C2 is configured to cut.
  • the bus bar assembly 1 according to the present embodiment can be efficiently manufactured.
  • the slit 215 between the spaces is filled by the gap filling portion 31, and the first surface side laminated portion 40 is provided on the first surface of the pair of bus bar forming portions 220a and 220b, and then the first surface. The unnecessary portion of the side laminated portion 40 is removed.
  • the pair of bus bar forming portions 220a and 220b are cut from the conductive metal flat plate 200 for the bus bar in a state of being mechanically connected by the connecting region 230, and the bus bar assembly 1 is manufactured.
  • the efficiency of the bus bar assembly 1 in which the first and second bus bars 10a and 10b are accurately positioned at desired relative positions is achieved. It can be manufactured well and inexpensively.
  • FIG. 12 shows a plan view of the bus bar assembly 2 according to the present embodiment.
  • FIG. 13 (a) shows a cross-sectional view taken along the line XIII (a)-XIII (a) in FIG.
  • FIG. 13B shows a vertical cross-sectional view of the semiconductor module 102 in which the semiconductor element 110 is mounted on the bus bar assembly 2.
  • the same members as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the bus bar assembly 2 according to the present embodiment has a different configuration from the bus bar assembly 1 according to the first embodiment with respect to the damming structure of the sealing resin 130.
  • the peripheral opening 45 formed in the first surface side laminated portion 40 constitutes the damming structure.
  • the bus bar assembly 2 is a bus bar connecting body in which the first and second bus bars 10a and 10b are connected as shown in FIGS. 12, 13 (a) and 13 (b). It has a frame body 60 that is formed separately from the above and is fixed to the first surface of the bus bar connecting body, and the frame body 60 constitutes the damming structure.
  • the frame body 60 is a tubular frame body body 65 having a central hole 66 penetrated in the plate thickness direction of the bus bar assembly 2, and a frame body side insulating resin covering the outer peripheral surface of the frame body body 65. It has a layer 70 and so on.
  • the frame body 60 is fixed to the peripheral region of the first surface of the bus bar connecting body in a state of surrounding the first central opening 41a on the first surface side and the second central opening 41b on the first surface side in a plan view. There is.
  • the frame body 60 can be formed, for example, by using a metal flat plate having a thickness corresponding to the thickness of the frame body 60 and forming the central hole 61 in the metal flat plate by press working.
  • the frame-side insulating resin layer 65 is formed by using an insulating resin material such as polyimide, polyamide, or epoxy.
  • the bus bar assembly 2 according to the present embodiment is manufactured by, for example, the following manufacturing method (hereinafter, referred to as a second manufacturing method).
  • the second manufacturing method is the same as the first manufacturing method up to the semi-curing step.
  • the second manufacturing method is the same as the first manufacturing method in that a laser light irradiation step is performed after the semi-curing step, but is different from the first manufacturing method in terms of the laser light irradiation range.
  • FIG. 14 (a) shows an enlarged plan view of the one busbar assembly forming region 210a in the state after the semi-curing step in the second manufacturing method
  • FIG. 14 (b) shows XIV (in FIG. 14 (a)).
  • a) -A cross-sectional view along the line XIV (a) is shown.
  • the first surface side laminated portion 40 is irradiated with laser light only in the first surface side central laser region 241.
  • FIG. 15 (a) shows an enlarged plan view of the one bus bar assembly forming region 210a after the laser light irradiation step
  • FIG. 15 (b) shows XV (b) -XV (b) in FIG. 15 (a).
  • the cross-sectional views along the lines are shown respectively.
  • the second surface side laminated portion 50 is irradiated with laser light to the second surface side central laser region 251 as in the first manufacturing method.
  • the frame 60 is formed in parallel with the process from the step of preparing the conductive metal flat plate 200 for the bus bar to the process of irradiating the laser beam, or before or after the process. It is configured to perform body formation processing.
  • FIG. 16 shows a plan view of the conductive metal flat plate 300 for a frame body used in the frame body forming process. Further, FIG. 17 (a) shows an enlarged view of part XVII (a) in FIG. 16, and FIG. 17 (b) shows a cross-sectional view taken along the line XVII (b) -XVII (b) in FIG. 17 (a). , Each shown.
  • the frame body forming process has the same thickness as the frame body body 65 and has an outer peripheral shape corresponding to the bus bar assembly forming region 210 in a plan view.
  • a step of providing an insulating resin material 270 on the outer peripheral surface of the frame body main body forming portion 320 is provided.
  • FIG. 16 shows a state after the step of providing the insulating resin material 270 on the outer peripheral surface of the frame body main body forming portion 320.
  • the frame body conductive metal flat plate 300 is configured so that the frame body forming region 310 is aligned with the bus bar assembly forming region 210 when polymerized on the bus bar conductive metal flat plate 200. ..
  • the conductive metal flat plate 200 for a bus bar connects a plurality of the bus bar assembly forming regions 210 arranged in series along the X direction and the bus bar assembly forming regions 210 adjacent to each other in the X direction. It has a bus bar row 205 including a connecting region 230 to be connected.
  • the frame body conductive metal flat plate 300 has a plurality of frame body forming regions 310 arranged in series in the X direction at the same pitch as the plurality of bus bar assembly forming regions 210, and X. It has a frame body row 305 including a connecting area 330 connecting between the frame body forming regions 310 adjacent in the direction.
  • the conductive metal flat plate 200 for the bus bar has a pair of gripping pieces 207 connected to one side and the other side in the longitudinal direction (X direction) of the bus bar row 205, respectively, and the pair.
  • the gripping piece 207 of the above is provided with an alignment hole 208.
  • a pair of gripping pieces connected to the conductive metal flat plate 300 for the frame body on one side and the other side in the longitudinal direction (X direction) of the frame body row 305, respectively. 307 is provided, and the pair of gripping pieces 307 are provided with an alignment hole 308 corresponding to the alignment hole 208.
  • the frame body main body forming portion 320 is formed on the first surface side first central opening 41a and the first surface side.
  • the central hole 66 is formed so as to surround the second central opening 41b.
  • the insulating resin material 270 can be installed on the frame body main body forming portion 320 by, for example, electrodeposition coating with a paint containing an insulating resin having heat resistance and insulating properties such as polyimide, polyamide, and epoxy. it can. Instead of this, it is also possible to electrostatically coat the powder of the insulating resin material 270. Alternatively, it is also possible to spray-paint a paint containing the insulating resin material 270.
  • the step of providing the insulating resin material 270 in the frame body main body forming portion 320 can be performed by the same method as the step of providing the insulating resin material 240 in the bus bar forming region 210.
  • the insulating resin material 270 when the insulating resin material 240 is provided in the bus bar forming region 210 by electrodeposition coating, the insulating resin material 270 can be provided in the frame body main body forming portion 320 by electrodeposition coating, and the bus bar is formed.
  • the insulating resin material 240 is provided in the region 210 by electrostatic powder coating, the insulating resin material 270 can also be provided in the frame body main body forming portion 320 by electrostatic powder coating. According to such a configuration, the manufacturing efficiency can be improved.
  • An assembly step of fixing both metal flat plates 200 and 300 by polymerizing both metal flat plates 200 and 300 in a state where at least one of 270 is semi-cured and completely curing the semi-cured insulating resin material is performed. I have.
  • FIG. 18 shows a plan view of the conductive metal flat plate 200 for the bus bar and the conductive metal flat plate 300 for the frame after the assembling step.
  • both metal flat plates 200 and 300 instead of polymerizing both metal flat plates 200 and 300 in a state where at least one of the insulating resin materials 240 and 270 of the conductive metal flat plate 200 for the bus bar and the conductive metal flat plate 300 for the frame is semi-cured, a laser is used. After the insulating resin material 240 remaining on the conductive metal flat plate 200 after the light irradiation step and the insulating resin material 270 provided on the conductive metal flat plate 300 for the frame are completely cured, both metals. It is also possible to fix the flat plates 200 and 300 with an adhesive.
  • the bus bar assembly forming region 210 and the frame body forming region 310 in the polymerized state are cut along the cutting lines C1 and C2, and the bus bar is formed. It has a cutting step of taking out from the conductive metal flat plate 200 for the frame and the conductive metal flat plate 300 for the frame.
  • the insulating resin layer 30 provided on the bus bar connector is formed of an insulating resin material 240 that is transparent in the semi-cured state and non-transparent in the fully cured state.
  • the insulating resin layer 30 instead of this, it is also possible to form the insulating resin layer 30 with an insulating resin material that becomes transparent in a completely cured state.
  • the laser light irradiation step can be executed after the insulating resin material is completely cured.
  • the laser light irradiation step is executed when the insulating resin material is in a semi-cured state. It is also possible to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Or Junction Boxes (AREA)
  • Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

本発明のバスバーアッセンブリ(1)(2)は、同一平面内において間隙(19)を存しつつ並列配置された複数のバスバー(10a、10b)と、間隙充填部(31)及び第1面側積層部(40)を含む絶縁性樹脂層(30)とを備え、前記第1面側積層部(40)には、前記複数のバスバーの第1面(11)の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口(41a、41b)が設けられ、前記絶縁性樹脂層(30)は半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材(240)によって形成されている。

Description

バスバーアッセンブリ及びその製造方法
 本発明は、複数のバスバーが電気的には絶縁状態で且つ機械的には連結されてなるバスバーアッセンブリ及びその製造方法に関する。
 互いに対して電気的には絶縁状態で且つ機械的には連結されている複数のバスバーを備えたバスバーアッセンブリが提案され、種々の分野において利用されている。
 例えば、一の平板状バスバーと他の平板状バスバーとが互いに対して平行状態で上下に積層されてなる積層型のバスバーアッセンブリが提案されている(下記特許文献1及び2参照)。
 前記積層型バスバーアッセンブリは、一の平板状バスバーの対向平面と他の平板状バスバーの対向平面とが絶縁性樹脂層を挟んで全面的に対向配置されている為、絶縁性に関する信頼性を十分には確保し難いという問題がある。
 特に、上下方向に関し小型化を図る為に前記一の平板状バスバーと前記他の平板状バスバーとの間の絶縁性樹脂層の厚みを薄くすると、両バスバー間にリーク電流が流れる恐れがある。
 前記積層型バスバーアッセンブリの問題点を解決する為に、本願出願人は、導電性金属平板の第1及び第2バスバーが同一平面内で並列配置されている平面型バスバーアッセンブリに関する出願を行っている(下記特許文献3及び4参照)。
 図19(a)に、前記平面型バスバーアッセンブリ500の一例の平面図を示す。
 また、図19(b)に、図19(a)におけるXIX(b)-XIX(b)線に沿った断面図を示す。
 図19(a)及び(b)に示すように、前記平面型バスバーアッセンブリ500は、導電性金属平板の第1バスバー510aと、前記第1バスバー510aとの間に間隙515を存しつつ前記第1バスバー510aと同一平面内に配置された導電性金属平板の第2バスバー510bと、前記第1及び第2バスバー510a、510bを電気的には絶縁状態で且つ機械的には連結する絶縁性樹脂層520とを備えている。
 前記絶縁性樹脂層520は、前記間隙515内に充填された間隙充填部525と、前記第1及び第2バスバー510a、510bが前記間隙充填部525によって連結されてなるバスバー連結体の表面上に積層された表面積層部とを有している。
 前記表面積層部は、前記バスバー連結体の厚み方向一方側の第1面及び厚み方向他方側の第2面をそれぞれ覆う第1面側積層部530及び第2面側積層部540と、前記前記バスバー連結体の外側面を覆い、前記第1及び第2面側積層部530、540を連結する側面側積層部550とを有している。
 前記第1面側積層部530には、前記第1及び第2バスバー10a、10bのそれぞれの第1表面の所定部分を露出させて第1及び第2露出領域を形成する第1及び第2開口531a、531bが設けられている。
 図19(c)に、前記バスバーアッセンブリ500にLED等の半導体素子110が装着されてなる半導体モジュール600の縦断面図を示す。
 図19(c)に示すように、前記半導体素子110は、第1電極層(下側電極層)が前記第1及び第2露出領域の一方(図19(c)においては前記第1露出領域)に、例えば、メッキ層(図示せず)を介して機械的且つ電気的に接続され、且つ、第2電極層(上側電極層)が前記第1及び第2露出領域の他方(図19(c)においては前記第2露出領域)にワイヤボンディング120を介して電気的に接続される。
 図20(a)~(d)に、前記平面型バスバーアッセンブリ500の製造方法の一例の工程図を示す。
 前記製造方法は、前記第1及び第2バスバー510a、510bを前記間隙515を存しつつ同一平面内に配置させる工程(図20(a))と、前記間隙515内並びに前記第1及び第2バスバー510a、510bの表面上に絶縁性樹脂部材を塗布し、前記絶縁性樹脂部材を硬化させて前記絶縁性樹脂層520を形成する工程(図20(b))と、前記絶縁性樹脂層520の第1面側積層部530にレーザー加工によって前記第1及び第2開口531a、531bを設ける工程(図20(c)及び(d))とを有している。
 図20(e)に、図20(d)におけるXX(e)部拡大図を示す。
 ここで、前記半導体素子110を含む半導体モジュール600の板面方向(平面方向)の小型化を図る為には、前記第1及び第2開口531a、531bの前記間隙515に近接する側のエッジを、対応するバスバー510a、510b及び前記間隙515の境界に可及的に近接乃至は一致させる必要がある。
 その為には、前記第1及び第2開口531a、531bを形成する際に、前記第1開口531aにおける前記間隙515に近接する側のエッジを前記第1バスバー510aにおける前記間隙515に近接する側の端部(内端部)に可及的に近接させ、且つ、前記第2開口531bにおける前記間隙515に近接する側のエッジを前記第2バスバー510bにおける前記間隙515に近接する側の端部(内端部)に可及的に近接させるように、レーザー加工を行う必要がある(図21(a)及び(b)参照)。
 図21(c)に、図21(b)におけるXXI(c)部拡大図を示す。
 しかしながら、このようにレーザー加工を行うと、図21(c)に示すように、前記間隙充填部525の一部がレーザー光によって熔融されて、前記間隙充填部525にピンホール527が生じ得る。
 前記ピンホール527は、前記第1及び第2バスバー510a、510b間の絶縁性能の悪化及び連結強度の悪化を招く。
特許第4432913号公報 特許第6487769号公報 特開2019-042678号公報 特開2019-050090号公報
 本発明は、斯かる従来技術に鑑みなされたものであり、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させる複数の第1面側中央開口が設けられているバスバーアッセンブリであって、前記間隙を挟んで隣接するバスバー間の絶縁性及び連結強度を良好に維持しつつ、前記第1面側中央開口の前記間隙に近接する側のエッジを対応するバスバー及び前記間隙の境界に可及的に近接乃至は一致させ得るバスバーアッセンブリの提供を目的とする。
 また、本発明は、前記バスバーアッセンブリを効率的に製造し得る製造方法の提供を目的とする。
 前記目的を達成するために、本発明の第1態様は、導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられているバスバーアッセンブリであって、前記絶縁性樹脂層は、半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材によって形成されているバスバーアッセンブリを提供する。
 本発明の第1態様に係るバスバーアッセンブリは、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられており、前記絶縁性樹脂層が半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材によって形成されている。
 前記バスバーアッセンブリによれば、前記バスバー連結体の第1面の全域に設けた前記絶縁性樹脂材を半硬化状態とした上で、前記複数の第1面側中央開口にそれぞれ相当し且つ前記間隙を挟んで隣接する第1面側中央開口形成領域及び隣接する前記複数の第1面側中央開口形成領域によって挟まれる中間領域を含むレーザー領域にレーザー光を照射することで、前記間隙充填部にピンホールが生じることを可及的に防止乃至は低減しつつ、前記第1面側中央開口の前記間隙に近接する側のエッジを対応するバスバー及び間隙の境界に可及的に近接乃至は実質的に一致させることができる。従って、隣接するバスバー間の絶縁性及び連結強度を維持しつつ、前記バスバーアッセンブリに載置される半導体素子を前記間隙に可及的に近接配置することができる。
 好ましくは、前記複数の第1面側中央開口の各々における前記間隙に近接する側のエッジは、対応する前記バスバー及び前記間隙の境界に一致される。
 好ましくは、第1面側積層部は、前記間隙を挟んで隣接する複数の第1面側中央開口によって挟まれる領域において前記間隙充填部から前記バスバー連結体の厚み方向一方側外方へ延びる仕切壁部を有し得る。
 また、本発明の第2態様は、導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの厚み方向一方側の第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられているバスバーアッセンブリであって、前記第1面側積層部は、前記間隙を挟んで隣接する前記第1面側中央開口によって挟まれる領域において前記間隙充填部から前記バスバー連結体の厚み方向一方側外方へ延びる仕切壁部を有しているバスバーアッセンブリを提供する。
 本発明の第2態様に係るバスバーアッセンブリは、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられており、前記第1面側積層部は、前記間隙を挟んで隣接する前記第1面側中央開口によって挟まれる領域において前記間隙充填部から前記バスバー連結体の厚み方向一方側外方へ延びる仕切壁部を有している。
 前記バスバーアッセンブリによれば、前記第1面側中央開口によって露出された領域に直接又はメッキ層を介して間接的に半導体素子を装着する際に、前記仕切壁部をストッパーとして用いることができる。従って、隣接するバスバーの一方に装着される半導体素子が、隣接するバスバーの他方に意に反して接触することを有効に防止しつつ、前記半導体素子を前記間隙に可及的に近接配置することができる。
 また、本発明の第3態様は、導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの厚み方向一方側の第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられているバスバーアッセンブリであって、前記絶縁性樹脂層は、完全硬化状態において透明な絶縁性樹脂材によって形成されているバスバーアッセンブリを提供する。
 本発明の第3態様に係るバスバーアッセンブリは、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられており、前記絶縁性樹脂層が完全硬化状態において透明となる絶縁性樹脂材によって形成されている。
 前記バスバーアッセンブリによれば、前記バスバー連結体の第1面の全域に設けた前記絶縁性樹脂材を完全硬化させた状態で、前記複数の第1面側中央開口にそれぞれ相当し且つ前記間隙を挟んで隣接する第1面側中央開口形成領域及び隣接する前記複数の第1面側中央開口形成領域によって挟まれる中間領域を含むレーザー領域にレーザー光を照射することで、前記間隙充填部にピンホールが生じることを可及的に防止乃至は低減しつつ、前記第1面側中央開口の前記間隙に近接する側のエッジを対応するバスバー及び間隙の境界に可及的に近接乃至は実質的に一致させることができる。従って、隣接するバスバー間の絶縁性及び連結強度を維持しつつ、前記バスバーアッセンブリに載置される半導体素子を前記間隙に可及的に近接配置することができる。
 前記第1~第3態様に係るバスバーアッセンブリにおいて、前記第1面側積層部は、前記複数の第1面側中央開口を平面視において囲む領域において前記バスバー連結体の第1面を覆う中央被覆領域と、前記中央被覆領域より径方向外方において前記バスバー連結体の第1面を露出させる周縁開口と、前記周縁開口を平面視において囲む領域において前記バスバー連結体の第1面を覆う周縁被覆領域とを有するものとされる。
 これに代えて、前記第1~第3態様に係るバスバーアッセンブリは、中央孔を有する筒状の枠体本体及び前記枠体本体の外周面を覆う絶縁性樹脂層を有する枠体を備え得る。
 前記枠体は、前記複数の第1面側中央開口を平面視において囲むように前記バスバー連結体の第1面の周縁領域に固着される。
 前記種々の構成において、前記絶縁性樹脂層は、前記バスバー連結体の厚み方向他方側の第2面に設けられた第2面側積層部と、前記バスバー連結体の側面に設けられ、前記第1及び第2面側積層部を連結する側面側積層部とを有するものとされ、前記第2面側積層部には、前記複数のバスバーの第2面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第2面側中央開口が設けられる。
 好ましくは、前記複数の第2面側中央開口の各々における前記間隙に近接する側のエッジは、対応する前記バスバー及び前記間隙の境界に一致される。
 好ましくは、前記第2面側積層部は、前記間隙を挟んで隣接する複数の第2面側中央開口によって挟まれる領域において前記間隙充填部から前記バスバー連結体の厚み方向他方側外方へ延びる仕切壁部を有し得る。
 また、本発明は、導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられているバスバーアッセンブリの第1の製造方法であって、前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有する導電性金属平板を用意する工程と、前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅を有する一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を画するスリット形成工程と、前記スリット内及び前記バスバーアッセンブリ形成領域の第1面上の全域に、半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材を設ける工程と、前記絶縁性樹脂材を半硬化させる半硬化工程と、半硬化状態の前記絶縁性樹脂材に対して、前記間隙を挟んで隣接するバスバーの一方である第1バスバーの第1面の所定部分を露出させる第1面側第1中央開口に相当する第1中央開口形成領域、前記間隙を挟んで隣接するバスバーの他方である第2バスバーの第1面の所定部分を露出させる第1面側第2中央開口に相当する第2中央開口形成領域、並びに、前記第1及び第2中央開口形成領域によって挟まれる中間領域を含む中央レーザー領域にレーザー光を照射して前記第1面側第1及び第2中央開口を形成するレーザー光照射工程と、半硬化状態の前記絶縁性樹脂材を完全硬化させる完全硬化工程と、前記バスバーアッセンブリ形成領域を前記導電性金属平板から切断する切断工程とを含むバスバーアッセンブリの第1製造方法を提供する。
 前記第1製造方法において、前記第1面側積層部が、前記複数の第1面側中央開口を平面視において囲む領域において前記バスバー連結体の第1面を覆う中央被覆領域と、前記中央被覆領域より径方向外方において前記バスバー連結体の第1面を露出させる周縁開口と、前記周縁開口を平面視において囲む領域において前記バスバー連結体の第1面を覆う周縁被覆領域とを有する場合には、前記レーザー光照射工程は、前記中央レーザー領域に加えて、前記周縁開口に相当する周縁開口形成領域にもレーザー光を照射して前記周縁開口を形成するように構成される。
 前記第1製造方法において、好ましくは、前記導電性金属平板は、前記スリットの長手方向に沿った第1方向に直列配置された複数の前記バスバーアッセンブリ形成領域と、隣接する前記バスバーアッセンブリ形成領域を連結する連結領域とを一体的に有するものとされる。
 この場合、一のバスバーアッセンブリ形成領域に形成されたスリットは、長手方向一端側が当該一のバスバーアッセンブリ形成領域の第1方向一方側に連接された連結領域内へ延び且つ長手方向他端側が当該一のバスバーアッセンブリ形成領域の第1方向他方側に連接された連結領域内へ延びる。
 また、本発明は、導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層と、前記バスバー連結体の第1面の周縁領域に固着された枠体とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられ、前記枠体は、中央孔を有する筒状の枠体本体と前記枠体本体の外周面を覆う絶縁性樹脂層とを有し、平面視において前記複数の第1面側中央開口を囲むように前記バスバー連結体の第1面の周縁領域に固着されているバスバーアッセンブリの第2製造方法であって、前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有するバスバー用導電性金属平板を用意する工程と、前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅を有する一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を画するスリット形成工程と、前記スリット内及び前記バスバーアッセンブリ形成領域の第1面上の全域に、半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材を設ける工程と、前記絶縁性樹脂材を半硬化させる半硬化工程と、半硬化状態の前記絶縁性樹脂材に対して、前記間隙を挟んで隣接するバスバーの一方である第1バスバーの第1面の所定部分を露出させる第1面側第1中央開口に相当する第1中央開口形成領域、前記間隙を挟んで前記第1バスバーに隣接する第2バスバーの第1面の所定部分を露出させる第1面側第2中央開口に相当する第2中央開口形成領域、並びに、前記第1及び第2中央開口形成領域によって挟まれる中間領域を含む中央レーザー領域にレーザー光を照射して前記第1面側第1及び第2中央開口を形成するレーザー光照射工程と、前記バスバー用導電性金属平板を用意する工程から前記レーザー光照射工程までの処理の前又は後、若しくは、並行して行う枠体形成処理であって、前記枠体本体の厚みと同一厚みを有し且つ平面視において前記バスバーアッセンブリ形成領域に対応した外周形状を有する枠体形成領域を含む枠体用導電性金属平板を用意する工程と、前記枠体形成領域のうち前記中央孔に相当する部分を打ち抜いて、前記枠体本体に相当する枠体本体形成部位を形成する打ち抜き工程と、前記枠体本体形成部位に絶縁性樹脂材を設ける工程とを含む枠体形成処理とを含む枠体形成処理と、レーザー光照射工程後の前記バスバー用導電性金属平板に残っている絶縁性樹脂材、及び、前記枠体用導電性金属平板に設けられた絶縁性樹脂材の少なくとも一方が半硬化とされている状態で前記両金属平板を重合させて半硬化状態の絶縁性樹脂材を完全硬化させることで、両金属平板を固着させる組み付け工程と、前記組み付け工程の後に、重合状態の前記バスバーアッセンブリ形成領域及び前記枠体形成領域を前記バスバー用導電性金属平板及び前記枠体用導電性金属平板から切断する切断工程とを含むバスバーアッセンブリの第2製造方法を提供する。
 また、本発明は、導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含むバスバー側絶縁性樹脂層と、前記バスバー連結体の第1面の周縁領域に固着された枠体とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられ、前記枠体は、中央孔を有する筒状の枠体本体と前記枠体本体の外周面を覆う枠体側絶縁性樹脂層とを有し、平面視において前記複数の第1面側中央開口を囲むように前記バスバー連結体の第1面の周縁領域に固着されているバスバーアッセンブリの第3製造方法であって、前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有するバスバー用導電性金属平板を用意する工程と、前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅を有する一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を画するスリット形成工程と、前記スリット内及び前記バスバーアッセンブリ形成領域の第1面上の全域に、半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材を設ける工程と、前記絶縁性樹脂材を半硬化させる半硬化工程と、半硬化状態の前記絶縁性樹脂材に対して、前記間隙を挟んで隣接するバスバーの一方である第1バスバーの第1面の所定部分を露出させる第1面側第1中央開口に相当する第1中央開口形成領域、前記間隙を挟んで前記第1バスバーに隣接する第2バスバーの第1面の所定部分を露出させる第1面側第2中央開口に相当する第2中央開口形成領域、並びに、前記第1及び第2中央開口形成領域によって挟まれる中間領域を含む中央レーザー領域にレーザー光を照射して前記第1面側第1及び第2中央開口を形成するレーザー光照射工程と、前記レーザー光照射工程後に前記バスバー用導電性金属平板に残っているバスバー側絶縁性樹脂材を完全硬化させて前記バスバー側絶縁性樹脂層を形成する工程と、前記バスバー用導電性金属平板を用意する工程から前記バスバー側絶縁性樹脂材の完全硬化工程までの処理の前又は後、若しくは、並行して行う枠体形成処理であって、前記枠体本体の厚みと同一厚みを有し且つ平面視において前記バスバーアッセンブリ形成領域に対応した外周形状を有する枠体形成領域を含む枠体用導電性金属平板を用意する工程と、前記枠体形成領域のうち前記中央孔に相当する部分を打ち抜いて、前記枠体本体に相当する枠体本体形成部位を形成する打ち抜き工程と、前記枠体本体形成部位に絶縁性樹脂材を設ける工程と、前記枠体本体形成部位に設けられた前記絶縁性樹脂材を完全硬化させて前記枠体側絶縁性樹脂層を形成する工程を含む枠体形成処理と、前記バスバーアッセンブリ形成領域及び前記枠体形成領域が重合されるように前記バスバー用導電性金属平板及び前記枠体用導電性金属平板を接着剤によって固着させる組み付け工程と、前記組み付け工程の後に、重合状態の前記バスバーアッセンブリ形成領域及び前記枠体形成領域を前記バスバー用導電性金属平板及び前記枠体用導電性金属平板から切断する切断工程とを含むバスバーアッセンブリの第3製造方法を提供する。
 前記第2及び第3製造方法において、好ましくは、前記バスバー用導電性金属平板は、前記スリットの長手方向に沿った第1方向に直列配置された複数の前記バスバーアッセンブリ形成領域と、隣接する前記バスバーアッセンブリ形成領域を連結する連結領域とを一体的に有するものとされ、且つ、前記枠体用導電性金属平板は、前記バスバー用導電性金属平板における前記複数のバスバーアッセンブリ形成領域に対応した複数の前記枠体形成領域と、隣接する前記枠体形成領域を連結する連結領域とを一体的に有するものとされる。
 この場合、一のバスバーアッセンブリ形成領域に形成されたスリットは、長手方向一端側が当該一のバスバーアッセンブリ形成領域の第1方向一方側に連接された連結領域内へ延び且つ長手方向他端側が当該一のバスバーアッセンブリ形成領域の第1方向他方側に連接された連結領域内へ延びる。
図1は、本発明の実施の形態1に係るバスバーアッセンブリの平面図である。 図2は、前記実施の形態1に係るバスバーアッセンブリの底面図である。 図3(a)は、図1におけるIII(a)-III(a)線に沿った断面図であり、図3(b)は、図3(a)におけるIII(b)部拡大図である。 図4(a)は、前記実施の形態1に係るバスバーアッセンブリにLED等の半導体素子が装着されてなる半導体モジュールの縦断面図であり、図4(b)は、図4(a)におけるIV(b)部拡大図である。 図5は、同一平面内に並列配置された第1及び第2バスバーの間隙内に絶縁性樹脂材が充填され、且つ、前記第1及び第2バスバーが前記間隙内の絶縁性樹脂材によって連結されてなるバスバー連結体の厚み方向一方側の第1面の全域に絶縁性樹脂材が設けられた状態を示す平面図である。 図6は、前記実施の形態1に係るバスバーアッセンブリの製造方法(第1製造方法)において用いられるバスバー用導電性金属平板の平面図であって、前記第1製造方法におけるスリット形成工程完了状態を示している。 図7(a)は、図6におけるVII(a)部拡大図であり、図7(b)は、図7(a)におけるVII(b)-VII(b)線に沿った断面図である。 図8は、絶縁性樹脂材を設けた状態の前記バスバー用導電性金属平板の平面図である。 図9(a)は、図8におけるIX(a)部拡大図であり、図9(b)は、図9(a)におけるIX(b)-IX(b)線に沿った断面図である。 図10は、図8におけるIX(a)部の底面図である。 図11(a)は、前記バスバー用導電性金属平板のバスバー形成領域の平面図であり、前記第1製造方法における完全硬化工程後の状態を示している。図11(b)は、図11(a)におけるXI(b)-XI(b)線に沿った断面図である。 図12は、本発明の実施の形態2に係るバスバーアッセンブリの平面図である。 図13(a)は、図12におけるXIII(a)-XIII(a)線に沿った断面図であり、図13(b)は、前記実施の形態2に係るバスバーアッセンブリに半導体素子が装着されてなる半導体モジュールの縦断面図である。 図14(a)は、前記実施の形態2に係るバスバーアッセンブリの製造方法(第2製造方法)において用いられるバスバー用導電性金属平板におけるバスバーアッセンブリ形成領域の平面図であり、前記第2製造方法における半硬化工程後の状態を示している。図14(b)は、図14(a)におけるXIV(a)-XIV(a)線に沿った断面図である。 図15(a)は、図14(a)に示された前記バスバーアッセンブリ形成領域の平面図であり、前記第2製造方法におけるレーザー光照射工程後の状態を示している。図15(b)は、図15(a)におけるXV(b)-XV(b)線に沿った断面図である。 図16は、前記第2製造方法において用いる枠体用導電性金属平板の平面図であり、前記第2製造方法における絶縁性樹脂材の設置工程後の状態を示している。 図17(a)は、図16におけるXVII(a)部拡大図であり、図17(b)は、図17(a)におけるXVII(b)-XVII(b)線に沿った断面図である。 図18は、前記第2製造方法における組み付け工程後の前記バスバー用導電性金属平板及び前記枠体用導電性金属平板の平面図である。 図19(a)は、従来の平面型バスバーアッセンブリの平面図であり、図19(b)は、図19(a)におけるXIX(b)-XIX(b)線に沿った断面図である。図19(c)は、図19(a)及び(b)に示す前記バスバーアッセンブリに半導体素子が装着されてなる半導体モジュールの縦断面図である。 図20(a)~(d)は、前記従来の平面型バスバーアッセンブリの製造方法の工程図であり、図20(e)は、図20(d)におけるXX(e)部拡大図である。 図21(a)は、前記従来の平面型バスバーアッセンブリの製造方法におけるレーザー光照射工程を示す断面図であり、図21(b)は、前記レーザー光照射工程後の断面図である。図31(c)は、図21(b)におけるXXI(c)部拡大図である。
実施の形態1
 以下、本発明に係るバスバーアッセンブリの一実施の形態について、添付図面を参照しつつ説明する。
 図1及び図2に、それぞれ、本実施の形態に係るバスバーアッセンブリ1の平面図及び底面図を示す。
 また、図3(a)に、図1におけるIII(a)-III(a)線に沿った断面図を示す。
 さらに、図3(b)に、図3(a)におけるIII(b)部拡大図を示す。
 図1~図3に示すように、前記バスバーアッセンブリ1は、導電性平板状部材によって形成された複数のバスバー10であって、互いの側面間に間隙19が存する状態で同一平面内に配置された複数のバスバー10と、前記複数のバスバー10に固着された絶縁性樹脂層30とを有している。
 本実施の形態に係る前記バスバーアッセンブリ1は、前記複数のバスバー10として、第1及び第2バスバー10a、10bの2つのバスバーを有している。
 図3(a)及び(b)に示すように、前記第1及び第2バスバー10a、10bは、厚み方向に沿った縦断面視において、厚み方向一方側の第1面11と、厚み方向他方側の第2面12と、互いに対して対向する対向側面13と、互いに対して反対方向を向く外側面14とを有している。
 前記第1及び第2バスバー10a、10bは、Cu等の導電性金属によって形成される。
 図4(a)に、前記バスバーアッセンブリ1にLED等の半導体素子110が装着されてなる半導体モジュール101の一例の縦断面図を、図4(b)に、図4(a)におけるIV(b)部拡大図を、それぞれ示す。
 前記半導体モジュール101においては、前記第1及び第2バスバー10a、10bは、一方が正極側電極として作用し、他方が負極側電極として作用する。
 即ち、前記半導体素子110は、厚み方向一方側の下面及び厚み方向他方側の上面にそれぞれ第1及び第2電極層111、112を有し、前記第1及び第2電極層111、112の間に素子本体115を有している。
 前記半導体素子110は、第1電極層111が前記一方のバスバー(例えば第1バスバー10a)の第1面11に電気的に接続状態で固着され、第2電極層112がワイヤボンディング等の電気接続部材120を介して他方のバスバー(例えば第2バスバー10b)の第1面11に電気的に接続される。
 詳しくは、前記半導体素子110は、前記第1電極層111が前記一方のバスバーの第1面11に設けられたメッキ層(図示せず)に電気的に接続されるようにダイボンディングされ、且つ、前記第2電極層112が前記他方のバスバーの第1面11に設けられたメッキ層(図示せず)にワイヤボンディング120を介して電気的に接続される。
 なお、図4(a)及び(b)中の符号130は、前記バスバーアッセンブリ1に装着された前記半導体素子110及び前記電気接続部材120等の部品を保護する為に、前記バスバーアッセンブリ1の第1面に固着される封止樹脂層である。
 前記封止樹脂層130は、例えば、ポリイミド、ポリアミド、エポキシ等の透明樹脂が用いられる。
 本実施の形態においては、前記絶縁性樹脂層30は、耐熱性及び絶縁性を有する樹脂であって、半硬化状態においては透明で且つ完全硬化状態においては非透明とされる絶縁性樹脂材によって形成されている。
 前記絶縁性樹脂材としては、例えば、インシュリード(登録商標)が好適に利用される。
 なお、前記「透明」とは、後述するレーザー光(例えば波長1064nm)に対して透過性を有することを意味し、且つ、前記「非透明」とは、レーザー光の照射によって発熱・溶融されるようにレーザー光に対する吸収性を有することを意味する。
 図1~図3に示すように、前記絶縁性樹脂層30は、前記第1及び第2バスバー10a、10bの対向側面13間の前記間隙19に充填されて前記第1及び第2バスバー10a、10bを電気的には絶縁状態で機械的に連結する間隙充填部31と、前記第1及び第2バスバー10a、10bが前記間隙充填部31によって連結されてなるバスバー連結体の外表面に設けられた表面積層部とを有している。
 斯かる構成の前記バスバーアッセンブリ1によれば、前記第1及び第2バスバー10a、10bが同一平面内に配置されているので、上下方向(厚み方向)に関し可及的に小型化を図ることができる。
 また、前記第1及び第2バスバー10a、10bは前記対向側面13において対向するように配置されているので、複数のバスバーが上下に積層されている積層型バスバーアッセンブリに比して、前記第1及び第2バスバー10a、10bが互いに対して対向する面積を可及的に小さくすることができ、これにより、前記第1及び第2バスバー10a、10b間にリーク電流が流れることを有効に防止乃至は低減することができる。
 本実施の形態においては、前記表面積層部は、前記バスバー連結体の板厚方向一方側の第1面に設けられた第1面側積層部40と、前記バスバー連結体の板厚方向他方側の第2面に設けられた第2面側積層部50と、前記バスバー連結体の側面に設けられ、前記第1及び第2面側積層部40、50を連結する側面側積層部55とを有している。
 図1~図3に示すように、前記第1面側積層部40は、前記バスバー連結体の平面視中央において前記第1及び第2バスバー10a、10bの第1面11の所定部分をそれぞれの露出させて第1及び第2中央露出領域を形成する第1面側第1及び第2中央開口41a、41bと、前記第1面側第1及び第2中央開口41a、41bを囲む領域において前記バスバー連結体の第1面を覆う中央被覆領域43とを有している。
 ここで、本実施の形態においては、図1及び図3(a)に示すように、前記第1面側第1中央開口41aにおける前記間隙19に近接する側のエッジが、前記第1バスバー10a及び前記間隙19の境界に実質的に一致している。即ち、前記第1面側第1中央開口41aにおける前記間隙19に近接する側のエッジと、前記第1バスバー10aにおける前記間隙19に近接する側の端部(内端部)とが実質的に一致している。
 同様に、前記第1面側第2中央開口41bにおける前記間隙19に近接する側のエッジが、前記第2バスバー10b及び前記間隙19の境界に実質的に一致している。即ち、前記第1面側第2中央開口41bにおける前記間隙19に近接する側のエッジと、前記第2バスバー10bにおける前記間隙19に近接する側の端部(内端部)とが実質的に一致している。
 図5に、前記間隙19内及び前記バスバー連結体の厚み方向一方側の第1面に、前記絶縁性樹脂層30を形成する絶縁性樹脂材240が設けられた状態の前記バスバー連結体の平面図を示す。
 前記絶縁性樹脂材240が半硬化状態においては透明で且つ完全硬化状態においては非透明とされる場合には、前記絶縁性樹脂材240を半硬化とさせた状態において、前記第1面側第1中央開口41aに相当する第1面側第1中央開口形成領域241a、前記第1面側第2中央開口41bに相当する第1面側第2中央開口形成領域241b、並びに、前記第1面側第1及び第2中央開口形成領域241a、241bによって挟まれる第1面側中間領域241cを含む第1面側中央レーザー領域241にレーザー光を照射することによって、前記第1面側中央レーザー領域241のうち、直下に前記第1及び第2バスバー10a、10bが存在する部分(即ち、前記第1面側第1及び第2中央開口形成領域241a、241b)を、前記第1面側中間領域241cよりも早く熔融させることができる。
 そして、前記第1面側第1及び第2中央開口形成領域241a、241bを熔融除去させた後に、前記絶縁性樹脂材を完全硬化させて、前記絶縁性樹脂層30を形成することができる。
 これによれば、前記間隙充填部31にピンホールが生じることを有効に防止乃至は低減しつつ、前記第1面側第1中央開口41aにおける間隙19に近接する側のエッジを前記第1バスバー10a及び前記間隙19の境界に実質的に一致させ、且つ、前記第1面側第2中央開口41bにおける前記間隙19に近接する側のエッジを前記第2バスバー10b及び前記間隙19の境界に実質的に一致させることができる。
 さらに、前記絶縁性樹脂材240が半硬化の状態で前記第1面側中央レーザー領域241にレーザー光を照射しても、直下に前記バスバー10が存在しない前記間隙充填部31の熔融は実質的に防止乃至は低減されるので、本実施の形態においては、図3(b)に示すように、前記第1面側積層部40は、前記第1面側第1及び第2中央開口41a、41bによって挟まれる領域において前記間隙充填部31から前記バスバー連結体の厚み方向一方側外方へ延びる第1面側仕切壁部42を有するように構成される。
 前記第1面側仕切壁部42は、前記第1面側第1及び第2中央開口41a、41bによって露出される前記第1面側第1及び第2中央露出領域に半導体素子110を接着剤で固着する際に、前記半導体素子110の位置ズレを防止するストッパーとして作用する。
 従って、図4(b)に示すように、前記半導体素子110を前記間隙19に可及的に近接させた状態で、対応する露出領域(図示の形態においては前記第1面側第1中央露出領域)に固着させることができる。
 図1等に示すように、本実施の形態においては、前記第1面側積層部40は、さらに、前記中央被覆領域43を囲む領域において前記バスバー連結体の第1面を露出させる周縁開口45と、前記周縁開口45を囲む領域において前記バスバー連結体の第1面を覆う第1面側周縁被覆領域47とを有している。
 前記周縁開口45は、前記中央被覆領域43及び前記第1面側周縁被覆領域47との共働下に第1面の側へ開く凹部(溝部)を形成しており、前記周縁開口45及び前記第1面側周縁被覆領域47の間の段差が前記封止樹脂130の堰き止め構造を形成している。
 即ち、前述の通り、前記バスバーアッセンブリ1に装着された前記半導体素子110及び必要な電気接続部材等の部品を保護する為の前記封止樹脂層130(図4(a)及び(b)参照)は、前記部品を囲繞するように当該封止樹脂層130を形成する樹脂を前記バスバーアッセンブリ1の第1面上に塗布して、硬化させることによって設けられるが、その際に、当該樹脂が流れ出ることを防止する堰き止め構造を備える必要がある。
 図4(a)に示すように、本実施の形態においては、前記中央被覆領域43、前記周縁開口45及び前記第1面側周縁被覆領域47によって形成される凹部(溝部)が前記堰き止め構造を構成している。
 図2等に示すように、前記第2面側積層部50は、底面視中央において前記第1及び第2バスバー10a、10bの第2面12を露出させる第2面側中央開口51と、前記第2面側中央開口51を囲む領域において前記バスバー連結体の第2面を覆う第2面側周縁被覆領域53とを有している。
 本実施の形態においては、前記第2面側中央開口51は、前記第1及び第2バスバー10a、10bの第2面をそれぞれ露出させる第2面側第1及び第2中央開口51a、51bを有している。
 図3(b)及び図4(b)に示すように、前記第2面側積層部50は、さらに、前記第2面側第1及び第2中央開口51a、51bによって挟まれる領域において前記間隙充填部31から前記バスバー連結体の厚み方向他方側外方へ延びる第2面側仕切壁部52を有している。
 前記バスバー連結体の第2面側に対しても、前記絶縁性樹脂材240の半硬化状態でレーザー光を照射することによって、前記間隙充填部31にピンホールが生じることを有効に防止乃至は低減しつつ、前記第2面側第1中央開口51aにおける間隙19に近接する側のエッジを前記第1バスバー10a及び前記間隙19の境界に実質的に一致させ、且つ、前記第2面側第2中央開口51bにおける前記間隙19に近接する側のエッジを前記第2バスバー10b及び前記間隙19の境界に実質的に一致させることができる。
 次に、前記バスバーアッセンブリ1の製造方法(以下、第1製造方法という)について説明する。
 図6に、前記第1製造方法において用いられるバスバー用導電性金属平板200の平面図を示す。
 また、図7(a)に、図6におけるVII(a)部拡大図を、図7(b)に、図7(a)におけるVII(b)-VII(b)線に沿った断面図を、それぞれ示す。
 図6及び図7に示すように、前記第1製造方法は、前記第1及び第2バスバー10a、10bと同一厚みのバスバーアッセンブリ形成領域210を有するバスバー用導電性金属平板200を用意する工程と、前記バスバーアッセンブリ形成領域210に、厚み方向一方側の第1面211及び厚み方向他方側の第2面212の間を貫通するスリット215を形成するスリット形成工程とを有している。
 図6は、前記スリット形成工程完了後の状態を示している。
 なお、前述の通り、本実施の形態に係るバスバーアッセンブリ1は、前記複数のバスバー10として、前記第1及び第2バスバー10a、10bの2つのバスバーを有している。その為、前記バスバーアッセンブリ形成領域210に1つの前記スリット215が形成される。
 例えば、3つのバスバーが並列配置されてなるバスバーアッセンブリを製造する際には、2つのスリットが形成される。
 図7(a)及び(b)に示すように、本実施の形態においては、前記バスバー用導電性金属平板200は、当該導電性金属平板200が位置するX-Y平面内のX方向に沿って直列配列された複数の前記バスバーアッセンブリ形成領域210と、X方向に隣接するバスバーアッセンブリ形成領域210の間を連結する連結領域230とを含むバスバー列205を有しており、前記複数のバスバーアッセンブリ形成領域210に対して加工処理を同時に行えるようになっている。
 本実施においては、前記バスバー用導電性金属平板200は、前記バスバー列205の長手方向(X方向)一方側及び他方側にそれぞれ連結された一対の把持片207を有しており、前記一対の把持片207には位置合わせ孔208が設けられている。
 なお、複数の前記バスバー列205をY方向に並列配置させ、Y方向に並列配置された複数のバスバー列205を前記一対の把持片207、207によって一体的に保持することも可能である。
 かかる変形構成によれば、より多くのバスバーアッセンブリ1を同時に製造することができる。
 本実施の形態においては、前記バスバーアッセンブリ形成領域210は、X方向長さが前記バスバーアッセンブリ1の前記間隙19に平行な方向の長さと同一とされ、且つ、前記バスバー形成部位210のY方向長さが前記バスバーアッセンブリ1の前記間隙19とは直交する方向の長さと同一なるように、X方向及びY方向の長さが設定されている。
 前記スリット215は、前記バスバーアッセンブリ1における前記間隙19を形成するものであり、前記間隙19と同一幅とされる。
 なお、前記間隙19の幅は、前記バスバーアッセンブリ1の仕様に応じて定まる。 
 本実施の形態においては、一のバスバーアッセンブリ形成領域210aに形成されたスリット215は、長手方向(X方向)一方側が当該一のバスバーアッセンブリ形成領域210aの長手方向(X方向)一方側に連結された一の連結領域230(1)内へ延び、且つ、長手方向(X方向)他方側が当該一のバスバーアッセンブリ形成領域230aの長手方向(X方向)他方側に連結された他の連結領域230(2)内へ延びている。
 そして、前記スリット形成工程後の状態において、前記一のバスバーアッセンブリ形成領域210aに形成されたスリット215を介して対向する第1及び第2バスバー形成部位220a、220bは、前記一の連結領域230(1)及び前記他の連結領域230(2)を介して、互いに対して繋がった状態に維持されるように構成されている。
 斯かる構成を備えることにより、前記スリット215(前記間隙19)を精度良く形成することができる。
 前記第1製造方法は、前記スリット形成工程後に、前記スリット215内及び前記バスバー形成領域210の厚み方向一方側の第1面211に、前記絶縁性樹脂層30を形成する絶縁性樹脂材240を設ける工程を有している。
 図8に、前記絶縁性樹脂材240を設けた状態の前記バスバー用導電性金属平板200の平面図を示す。
 また、図9(a)に、図8におけるIX(a)部拡大図を、図9(b)に、図9(a)におけるIX(b)-IX(b)線に沿った断面図を、それぞれ示す。
 図9(b)に示すように、本実施の形態においては、前記絶縁性樹脂材240は、前記スリット215内及び前記バスバー形成領域210の第1面211上に加えて、前記バスバー形成領域210の第2面212及び外周面213にも設けられている。
 前記絶縁性樹脂材240は、ポリイミド、ポリアミド、エポキシ等の耐熱性及び絶縁性を有する絶縁性樹脂であって、前述の通り、半硬化状態においてはレーザー光を透過させる透明となり、且つ、完全硬化状態においてはレーザー光を吸収する非透明となる絶縁性樹脂とされ、好適には、インシュリード(登録商標)が用いられる。
 前記絶縁性樹脂材240の設置は、例えば、当該絶縁性樹脂材240を含む塗料を電着塗装することによって行うことができる。
 これに代えて、前記絶縁性樹脂材240の粉体を静電粉体塗装することも可能である。
 若しくは、前記スリット215内への樹脂の充填性を十分に担保できる場合には、前記絶縁性樹脂材240を含む塗料をスプレー塗装することも可能である。
 前記第1製造方法は、さらに、前記絶縁性樹脂材240を半硬化させる半硬化工程と、半硬化させた前記絶縁性樹脂材240に対してレーザー光を照射するレーザー光照射工程とを有している。
 前記半硬化工程は、例えば、前記絶縁性樹脂材240を所定温度及び所定時間で加熱処理することによって行われる。
 前記レーザー光照射工程におけるレーザー光は、半硬化状態の前記絶縁性樹脂材240に対して透過する波長とされ、例えば、波長1064nmとされる。
 前記レーザー光照射工程においては、図9(a)に示すように、前記バスバーアッセンブリ形成領域210の第1面211上の前記絶縁性樹脂材240のうち、前記第1面側第1中央開口41aに相当する第1面側第1中央開口形成領域241a、前記第1面側第2中央開口41bに相当する第1面側第2中央開口形成領域241b、並びに、前記第1面側第1及び第2中央開口形成領域241a、241bによって挟まれる第1面側中間領域241cを含む第1面側中央レーザー領域241に対して、レーザー光が照射される。
 これにより、実質的に前記第1面側中間領域241cは残された状態で、直下に前記第1及び第2バスバー形成部位220a、220bが存在する領域(即ち、前記第1面側第1中央開口形成領域241a及び前記第1面側第2中央開口形成領域241b)だけが熔融されて、前記第1面側第1中央開口41a及び前記第1面側第2中央開口41bが形成される。
 この際、前記第1面側第1中央開口41aにおけるスリット215(間隙19)に近接する側のエッジは前記第1バスバー形成部位210a及び前記スリット215(間隙19)の境界に実質的に一致され、且つ、前記第1面側第2中央開口41bにおけるスリット215(間隙19)に近接する側のエッジは前記第2バスバー形成部位210b及び前記スリット215(間隙19)の境界に実質的に一致され、さらに、前記第1面側仕切壁部42が設けられる(図3(a)参照)。
 本実施の形態においては、レーザー光照射工程は、前記第1面側中央レーザー領域241に加えて、前記周縁開口45に相当する周縁開口形成領域245にもレーザー光を照射するものとされている。
 さらに、本実施の形態においては、レーザー光照射工程は、前記バスバーアッセンブリ形成領域210の第2面212上にもレーザー光を照射するように構成されている。
 図10に、図8におけるIX(a)部の底面図を示す。
 詳しくは、前記バスバーアッセンブリ形成領域210の第2面212上の絶縁性樹脂材240のうち、前記第2面側第1中央開口51aに相当する第2面側第1中央開口相当領域251a、前記第2面側第2中央開口51bに相当する第2面側第2中央開口相当領域251b、並びに、前記第2面側第1及び第2中央開口相当領域251a、251bによって挟まれる第2面側中間領域251cを含む第2面側中央レーザー領域251に対して、レーザー光が照射される。
 これにより、実質的に前記第2面側中間領域251cは残された状態で、直下に前記第1及び第2バスバー形成部位220a、220bが存在する領域(即ち、前記第2面側第1中央開口形成領域251a及び前記第2面側第2中央開口形成領域251b)だけが熔融されて、前記第2面側第1中央開口51a及び前記第2面側第2中央開口51bが形成される。
 この際、前記第2面側第1中央開口51aにおけるスリット215(間隙19)に近接する側のエッジは前記第1バスバー形成部位210a及び前記スリット215(間隙19)の境界に実質的に一致され、且つ、前記第2面側第2中央開口51bにおけるスリット215(間隙19)に近接する側のエッジは前記第2バスバー形成部位210b及び前記スリット215(間隙19)の境界に実質的に一致され、さらに、前記第2面側仕切壁部52が設けられる(図3(b)参照)。
 前記第1製造方法は、さらに、前記レーザー光照射工程によって所定の開口が設けられた前記絶縁性樹脂材240を完全硬化させて、前記絶縁性樹脂層30を形成する完全硬化工程を有している。
 前記完全硬化工程は、例えば、半硬化状態の前記絶縁性樹脂材240を所定温度及び所定時間で加熱処理することによって行われる。
 図11(a)に、前記完全硬化工程後の前記バスバー形成領域210aの平面図を、図11(b)に、図11(a)におけるXI(b)-XI(b)線に沿った断面図を、それぞれ示す。
 前記第1製造方法は、さらに、前記完全硬化工程後に、前記一対のバスバー形成部位220a、220bの露出領域にメッキ層(図示せず)を形成するメッキ工程を有することができる。
 前記第1製造方法は、さらに、前記絶縁性樹脂層30が設けられた前記バスバー形成領域210を前記バスバー用導電性金属平板200から切断して、前記バスバーアッセンブリ1を取り出す切断工程を有している。
 前述の通り、本実施の形態においては、前記バスバーアッセンブリ形成領域210は、X方向長さが前記バスバーアッセンブリ1の前記間隙19に沿った方向の長さと同一とされ、且つ、前記バスバー形成部位210のY方向長さが前記バスバーアッセンブリ1の前記間隙19とは直交する方向の長さと同一なるように、X方向及びY方向の長さが設定されている。
 その上で、一のバスバーアッセンブリ形成領域210aに形成されたスリット215は、長手方向(X方向)一方側が当該一のバスバーアッセンブリ形成領域210aの長手方向(X方向)一方側に連結された一の連結領域230(1)内へ延び、且つ、長手方向(X方向)他方側が当該一のバスバーアッセンブリ形成領域210aの長手方向(X方向)他方側に連結された他の連結領域230(2)内へ延びている。
 この場合、前記切断工程は、図11(a)に示すように、前記バスバーアッセンブリ形成領域210のX方向一方側及び他方側のエッジ210(1)、210(2)にそれぞれ沿った切断線C1、C2で切断するように構成される。
 斯かる構成を備えた製造方法によれば、本実施の形態に係る前記バスバーアッセンブリ1を効率良く製造することができる。
 即ち、前記製造方法においては、前記第1及び第2バスバー10a、10bを形成する一対のバスバー形成部位220a、220bの相対位置が固定された状態のままで、前記一対のバスバー形成部位220a、220bの間の前記スリット215が前記間隙充填部31によって充填され且つ前記一対のバスバー形成部位220a、220bの第1面上に前記第1面側積層部40が設けられ、その後に、前記第1面側積層部40の不要部分が除去される。
 この状態において、前記連結領域230によって機械的に連結された状態で前記一対のバスバー形成部位220a、220bが前記バスバー用導電性金属平板200から切断されて、前記バスバーアッセンブリ1が製造される。
 従って、前記第1及び第2バスバー10a、10b間の電気的絶縁性を確実に確保しつつ、前記第1及び第2バスバー10a、10bが所望相対位置に正確に位置されたバスバーアッセンブリ1を効率良く安価に製造することができる。
実施の形態2
 以下、本発明に係るバスバーアッセンブリの他の実施の形態について、添付図面を参照しつつ説明する。
 図12に、本実施の形態に係るバスバーアッセンブリ2の平面図を示す。
 また、図13(a)に、図12におけるXIII(a)-XIII(a)線に沿った断面図を示す。
 さらに、図13(b)に、前記バスバーアッセンブリ2に半導体素子110が装着されてなる半導体モジュール102の縦断面図を示す。
 なお、図中、前記実施の形態1におけると同一部材には同一符号を付して、その説明を適宜省略する。
 本実施の形態に係る前記バスバーアッセンブリ2は、前記封止樹脂130の堰き止め構造に関し、前記実施の形態1に係る前記バスバーアッセンブリ1と異なる構成を有している。
 即ち、前記実施の形態1に係るバスバーアッセンブリ1においては、前記第1面側積層部40に形成された前記周縁開口45が前記堰き止め構造を構成している。
 これに対し、本実施の形態に係るバスバーアッセンブリ2は、図12、図13(a)及び(b)に示すように、前記第1及び第2バスバー10a、10bが連結されてなるバスバー連結体とは別体形成され且つ前記バスバー連結体の第1面に固着された枠体60を有しており、前記枠体60が前記堰き止め構造を構成している。
 詳しくは、前記枠体60は、前記バスバーアッセンブリ2の板厚方向に貫通された中央孔66を有する筒状の枠体本体65と、前記枠体本体65の外周面を覆う枠体側絶縁性樹脂層70とを有している。
 前記枠体60は、平面視において前記第1面側第1中央開口41a及び前記第1面側第2中央開口41bを囲繞する状態で前記バスバー連結体の第1面の周縁領域に固着されている。
 前記枠体本体60は、例えば、当該枠体本体60の厚みに応じた厚みを有する金属平板を用い、前記金属平板に対してプレス加工によって前記中央孔61を形成することにより、形成され得る。
 前記枠体側絶縁性樹脂層65は、例えば、ポリイミド、ポリアミド、エポキシ等の絶縁性樹脂材を用いて形成される。
 本実施の形態に係る前記バスバーアッセンブリ2は、例えば、下記製造方法(以下、第2製造方法という)によって製造される。
 前記第2製造方法は、前記半硬化工程までは、前記第1製造方法と同一とされる。
 前記第2製造方法は、前記半硬化工程の後にレーザー光照射工程を行う点は、前記第1製造方法と同じであるが、レーザー光の照射範囲に関し前記第1製造方法とは異なっている。
 図14(a)に、前記第2製造方法における前記半硬化工程後の状態の前記一のバスバーアッセンブリ形成領域210aの拡大平面図を、図14(b)に、図14(a)におけるXIV(a)-XIV(a)線に沿った断面図を、それぞれ示す。
 前記第2製造方法においては、図14(a)に示すように、前記第1面側積層部40に対しては、前記第1面側中央レーザー領域241にのみレーザー光が照射される。
 図15(a)に、前記レーザー光照射工程後の前記一のバスバーアッセンブリ形成領域210aの拡大平面図を、図15(b)に、図15(a)におけるXV(b)-XV(b)線に沿った断面図を、それぞれ示す。
 なお、前記第2面側積層部50に対しては、前記第1製造方法におけると同様、前記第2面側中央レーザー領域251にレーザー光が照射される。
 前記第2製造方法は、前記バスバー用導電性金属平板200を用意する工程から前記レーザー光照射工程までの処理に並行して、若しくは、前記処理の前又は後に、前記枠体60を形成する枠体形成処理を行うように構成されている。
 図16に、前記枠体形成処理において用いられる枠体用導電性金属平板300の平面図を示す。
 さらに、図17(a)に、図16におけるXVII(a)部拡大図を、図17(b)に、図17(a)におけるXVII(b)-XVII(b)線に沿った断面図を、それぞれ示す。
 図16及び図17に示すように、前記枠体形成処理は、前記枠体本体65の厚みと同一厚みを有し且つ平面視において前記バスバーアッセンブリ形成領域210に対応した外周形状を有する枠体形成領域310を含む枠体用導電性金属平板300を用意する工程と、前記枠体形成領域310における枠体本体形成部位320が残るように前記枠体形成領域310の中央を打ち抜く打ち抜き工程と、前記枠体本体形成部位320の外周面に絶縁性樹脂材270を設ける工程とを備えている。
 図16は、前記枠体本体形成部位320の外周面に前記絶縁性樹脂材270を設ける工程後の状態を示している。
 前記枠体用導電性金属平板300は、前記バスバー用導電性金属平板200に重合させた際に、前記枠体形成領域310が前記バスバーアッセンブリ形成領域210に位置合わせされるように構成されている。
 詳しくは、前述の通り、前記バスバー用導電性金属平板200は、X方向に沿って直列配列された複数の前記バスバーアッセンブリ形成領域210と、X方向に隣接するバスバーアッセンブリ形成領域210の間を連結する連結領域230とを含むバスバー列205を有している。
 従って、前記枠体用導電性金属平板300は、図16に示すように、前記複数のバスバーアッセンブリ形成領域210と同一ピッチでX方向に直列配置された複数の前記枠体形成領域310と、X方向に隣接する枠体形成領域310の間を連結する連結領域330とを含む枠体列305を有している。
 なお、前述の通り、前記バスバー用導電性金属平板200は、前記バスバー列205の長手方向(X方向)一方側及び他方側にそれぞれ連結された一対の把持片207を有しており、前記一対の把持片207には位置合わせ孔208が設けられている。
 これに応じて、図16に示すように、前記枠体用導電性金属平板300にも、前記枠体列305の長手方向(X方向)一方側及び他方側にそれぞれ連結された一対の把持片307が設けられ、前記一対の把持片307には前記位置合わせ孔208に対応した位置合わせ孔308が設けられている。
 前記打ち抜き工程においては、前記枠体形成領域310を前記バスバーアッセンブリ形成領域210に重合させた際に、前記枠体本体形成部位320が前記第1面側第1中央開口41a及び前記第1面側第2中央開口41bを囲繞するように、前記中央孔66が形成される。
 前記枠体本体形成部位320への絶縁性樹脂材270の設置は、例えば、ポリイミド、ポリアミド、エポキシ等の耐熱性及び絶縁性を有する絶縁性樹脂を含む塗料を電着塗装することによって行うことができる。
 これに代えて、前記絶縁性樹脂材270の粉体を静電粉体塗装することも可能である。
 若しくは、前記絶縁性樹脂材270を含む塗料をスプレー塗装することも可能である。
 好ましくは、前記枠体本体形成部位320に絶縁性樹脂材270を設ける工程は、前記バスバー形成領域210に絶縁性樹脂材240を設ける工程と同時に同一方法で行うことができる。
 即ち、前記バスバー形成領域210に電着塗装によって絶縁性樹脂材240を設ける場合には、前記枠体本体形成部位320にも電着塗装によって絶縁性樹脂材270を設けることができ、前記バスバー形成領域210に静電粉体塗装によって絶縁性樹脂材240を設ける場合には、前記枠体本体形成部位320にも静電粉体塗装によって絶縁性樹脂材270を設けることができる。
 斯かる構成によれば、製造効率の向上を図ることができる。
 前記第2製造方法は、レーザー光照射工程後の前記バスバー用導電性金属平板200に残っている絶縁性樹脂材240、及び、前記枠体用導電性金属平板300に設けられた絶縁性樹脂材270の少なくとも一方が半硬化とされている状態で両金属平板200、300を重合させて半硬化状態の絶縁性樹脂材を完全硬化させることで、両金属平板200、300を固着させる組み付け工程を備えている。
 図18に、前記組み付け工程後の前記バスバー用導電性金属平板200及び前記枠体用導電性金属平板300の平面図を示す。
 なお、前記バスバー用導電性金属平板200及び前記枠体用導電性金属平板300の絶縁性樹脂材240、270の少なくとも一方が半硬化の状態で両金属平板200、300を重合させる代わりに、レーザー光照射工程後の前記導電性金属平板200に残っている絶縁性樹脂材240、及び、前記枠体用導電性金属平板300に設けられた絶縁性樹脂材270を完全硬化させた後に、両金属平板200、300を接着剤によって固着させることも可能である。
 図18に示すように、前記第2製造方法は、前記組み付け工程の後に、重合状態の前記バスバーアッセンブリ形成領域210及び前記枠体形成領域310を前記切断線C1、C2で切断して、前記バスバー用導電性金属平板200及び前記枠体用導電性金属平板300から取り出す切断工程を有している。
 前記各実施の形態においては、前記バスバー連結体に設けられる前記絶縁性樹脂層30を、半硬化状態においては透明で且つ完全硬化状態においては非透明となる絶縁性樹脂材240によって形成しているが、これに代えて、前記絶縁性樹脂層30を完全硬化状態において透明となる絶縁性樹脂材によって形成することも可能である。
 この場合には、前記絶縁性樹脂材を完全硬化させた後に、前記レーザー光照射工程を実行することができる。
 なお、当然ながら、前記絶縁性樹脂層30を完全硬化状態において透明となる絶縁性樹脂材によって形成する場合においても、前記絶縁性樹脂材が半硬化状態の際に、前記レーザー光照射工程を実行することも可能である。
 前記各実施の形態においては、第1及び第2バスバー10a、10bの2つのバスバーが並列配置された場合を例に説明したが、本発明は斯かる構成に限定されるものでは無く、3つ以上のバスバーが並列配置された場合も含む。
1、2       バスバーアッセンブリ
10a、10b   第1及び第2バスバー
19        間隙
30        絶縁性樹脂層
31        間隙充填部
40        第1面側積層部
41a、41b   第1面側第1及び第2中央開口
42        仕切壁部
43        中央被覆領域
45        周縁開口
47        第1面側周縁被覆領域
50        第2面側積層部
51a、51b   第2面側第1及び第2中央開口
52        第2面側仕切壁部
55        側面側積層部
60        枠体
65        枠体本体
66        中央孔
70        枠体側絶縁性樹脂層
200       バスバー用導電性金属平板
210       バスバーアッセンブリ形成領域
215       スリット
230       連結領域
240       絶縁性樹脂材
241       第1面側中央レーザー領域
241a、241b 第1面側第1及び第2中央開口形成領域
241c      第1面側中間領域
245       周縁開口形成領域
270       絶縁性樹脂材
300       枠体用導電性金属平板
310       枠体形成領域
320       枠体本体形成部位

Claims (16)

  1.  導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられているバスバーアッセンブリであって、
     前記絶縁性樹脂層は、半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材によって形成されていることを特徴とするバスバーアッセンブリ。
  2.  前記複数の第1面側中央開口の各々における前記間隙に近接する側のエッジは、対応する前記バスバー及び前記間隙の境界に一致していることを特徴とする請求項1に記載のバスバーアッセンブリ。
  3.  第1面側積層部は、前記間隙を挟んで隣接する複数の第1面側中央開口によって挟まれる領域において前記間隙充填部から前記バスバー連結体の厚み方向一方側外方へ延びる仕切壁部を有していることを特徴とする請求項1又は2に記載のバスバーアッセンブリ。
  4.  導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの厚み方向一方側の第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられているバスバーアッセンブリであって、
     前記第1面側積層部は、前記間隙を挟んで隣接する前記第1面側中央開口によって挟まれる領域において前記間隙充填部から前記バスバー連結体の厚み方向一方側外方へ延びる仕切壁部を有していることを特徴とするバスバーアッセンブリ。
  5.  導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの厚み方向一方側の第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられているバスバーアッセンブリであって、
     前記絶縁性樹脂層は、完全硬化状態において透明な絶縁性樹脂材によって形成されていることを特徴とするバスバーアッセンブリ。
  6.  前記第1面側積層部は、前記複数の第1面側中央開口を平面視において囲む領域において前記バスバー連結体の第1面を覆う中央被覆領域と、前記中央被覆領域より径方向外方において前記バスバー連結体の第1面を露出させる周縁開口と、前記周縁開口を平面視において囲む領域において前記バスバー連結体の第1面を覆う周縁被覆領域とを有していることを特徴とする請求項1から5の何れかに記載のバスバーアッセンブリ。
  7.  中央孔を有する筒状の枠体本体及び前記枠体本体の外周面を覆う絶縁性樹脂層を有する枠体を備え、
     前記枠体は、前記複数の第1面側中央開口を平面視において囲むように前記バスバー連結体の第1面の周縁領域に固着されていることを特徴とする請求項1から5の何れかに記載のバスバーアッセンブリ。
  8.  前記絶縁性樹脂層は、前記バスバー連結体の厚み方向他方側の第2面に設けられた第2面側積層部と、前記バスバー連結体の側面に設けられ、前記第1及び第2面側積層部を連結する側面側積層部とを有し、
     前記第2面側積層部には、前記複数のバスバーの第2面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第2面側中央開口が設けられていることを特徴とする請求項1から7の何れかに記載のバスバーアッセンブリ。
  9.  前記複数の第2面側中央開口の各々における前記間隙に近接する側のエッジは、対応する前記バスバー及び前記間隙の境界に一致していることを特徴とする請求項8に記載のバスバーアッセンブリ。
  10.  前記第2面側積層部は、前記間隙を挟んで隣接する複数の第2面側中央開口によって挟まれる領域において前記間隙充填部から前記バスバー連結体の厚み方向他方側外方へ延びる仕切壁部を有していることを特徴とする請求項8又は9に記載のバスバーアッセンブリ。
  11.  導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられているバスバーアッセンブリの製造方法であって、
     前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有する導電性金属平板を用意する工程と、
     前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅を有する一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を画するスリット形成工程と、
     前記スリット内及び前記バスバーアッセンブリ形成領域の第1面上の全域に、半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材を設ける工程と、
     前記絶縁性樹脂材を半硬化させる半硬化工程と、
     半硬化状態の前記絶縁性樹脂材に対して、前記間隙を挟んで隣接するバスバーの一方である第1バスバーの第1面の所定部分を露出させる第1面側第1中央開口に相当する第1中央開口形成領域、前記間隙を挟んで隣接するバスバーの他方である第2バスバーの第1面の所定部分を露出させる第1面側第2中央開口に相当する第2中央開口形成領域、並びに、前記第1及び第2中央開口形成領域によって挟まれる中間領域を含む中央レーザー領域にレーザー光を照射して前記第1面側第1及び第2中央開口を形成するレーザー光照射工程と、
     半硬化状態の前記絶縁性樹脂材を完全硬化させる完全硬化工程と、
     前記バスバーアッセンブリ形成領域を前記導電性金属平板から切断する切断工程とを含むことを特徴とするバスバーアッセンブリの製造方法。
  12.  前記第1面側積層部は、前記複数の第1面側中央開口を平面視において囲む領域において前記バスバー連結体の第1面を覆う中央被覆領域と、前記中央被覆領域より径方向外方において前記バスバー連結体の第1面を露出させる周縁開口と、前記周縁開口を平面視において囲む領域において前記バスバー連結体の第1面を覆う周縁被覆領域とを有し、
     前記レーザー光照射工程は、前記中央レーザー領域に加えて、前記周縁開口に相当する周縁開口形成領域にもレーザー光を照射して前記周縁開口を形成することを特徴とする請求項11に記載のバスバーアッセンブリの製造方法。
  13.  前記導電性金属平板は、前記スリットの長手方向に沿った第1方向に直列配置された複数の前記バスバーアッセンブリ形成領域と、隣接する前記バスバーアッセンブリ形成領域を連結する連結領域とを一体的に有しており、
     一のバスバーアッセンブリ形成領域に形成されたスリットは、長手方向一端側が当該一のバスバーアッセンブリ形成領域の第1方向一方側に連接された連結領域内へ延び且つ長手方向他端側が当該一のバスバーアッセンブリ形成領域の第1方向他方側に連接された連結領域内へ延びていることを特徴とする請求項11又は12に記載のバスバーアッセンブリの製造方法。
  14.  導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含む絶縁性樹脂層と、前記バスバー連結体の第1面の周縁領域に固着された枠体とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられ、前記枠体は、中央孔を有する筒状の枠体本体と前記枠体本体の外周面を覆う絶縁性樹脂層とを有し、平面視において前記複数の第1面側中央開口を囲むように前記バスバー連結体の第1面の周縁領域に固着されているバスバーアッセンブリの製造方法であって、
     前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有するバスバー用導電性金属平板を用意する工程と、
     前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅を有する一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を画するスリット形成工程と、
     前記スリット内及び前記バスバーアッセンブリ形成領域の第1面上の全域に、半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材を設ける工程と、
     前記絶縁性樹脂材を半硬化させる半硬化工程と、
     半硬化状態の前記絶縁性樹脂材に対して、前記間隙を挟んで隣接するバスバーの一方である第1バスバーの第1面の所定部分を露出させる第1面側第1中央開口に相当する第1中央開口形成領域、前記間隙を挟んで前記第1バスバーに隣接する第2バスバーの第1面の所定部分を露出させる第1面側第2中央開口に相当する第2中央開口形成領域、並びに、前記第1及び第2中央開口形成領域によって挟まれる中間領域を含む中央レーザー領域にレーザー光を照射して前記第1面側第1及び第2中央開口を形成するレーザー光照射工程と、
     前記バスバー用導電性金属平板を用意する工程から前記レーザー光照射工程までの処理の前又は後、若しくは、並行して行う枠体形成処理であって、前記枠体本体の厚みと同一厚みを有し且つ平面視において前記バスバーアッセンブリ形成領域に対応した外周形状を有する枠体形成領域を含む枠体用導電性金属平板を用意する工程と、前記枠体形成領域のうち前記中央孔に相当する部分を打ち抜いて、前記枠体本体に相当する枠体本体形成部位を形成する打ち抜き工程と、前記枠体本体形成部位に絶縁性樹脂材を設ける工程とを含む枠体形成処理とを含む枠体形成処理と、
     レーザー光照射工程後の前記バスバー用導電性金属平板に残っている絶縁性樹脂材、及び、前記枠体用導電性金属平板に設けられた絶縁性樹脂材の少なくとも一方が半硬化とされている状態で前記両金属平板を重合させて半硬化状態の絶縁性樹脂材を完全硬化させることで、両金属平板を固着させる組み付け工程と、
     前記組み付け工程の後に、重合状態の前記バスバーアッセンブリ形成領域及び前記枠体形成領域を前記バスバー用導電性金属平板及び前記枠体用導電性金属平板から切断する切断工程とを含むことを特徴とするバスバーアッセンブリの製造方法。
  15.  導電性平板状部材によって形成され、互いの間に間隙が存する状態で同一平面内に配置された複数のバスバーと、前記間隙内に充填された間隙充填部及び前記複数のバスバーが前記間隙充填部によって連結されてなるバスバー連結体の厚み方向一方側の第1面に設けられた第1面側積層部を含むバスバー側絶縁性樹脂層と、前記バスバー連結体の第1面の周縁領域に固着された枠体とを備え、前記第1面側積層部には、前記複数のバスバーの第1面の所定部分をそれぞれ露出させて複数の露出領域を形成する複数の第1面側中央開口が設けられ、前記枠体は、中央孔を有する筒状の枠体本体と前記枠体本体の外周面を覆う枠体側絶縁性樹脂層とを有し、平面視において前記複数の第1面側中央開口を囲むように前記バスバー連結体の第1面の周縁領域に固着されているバスバーアッセンブリの製造方法であって、
     前記複数のバスバーを形成するバスバーアッセンブリ形成領域を有するバスバー用導電性金属平板を用意する工程と、
     前記バスバーアッセンブリ形成領域に、厚み方向一方側の第1面及び厚み方向他方側の第2面の間を貫通し且つ前記間隙と同一幅を有する一又は複数のスリットを形成して、前記複数のバスバーに対応した複数のバスバー形成部位を画するスリット形成工程と、
     前記スリット内及び前記バスバーアッセンブリ形成領域の第1面上の全域に、半硬化状態では透明で且つ完全硬化状態では非透明となる絶縁性樹脂材を設ける工程と、
     前記絶縁性樹脂材を半硬化させる半硬化工程と、
     半硬化状態の前記絶縁性樹脂材に対して、前記間隙を挟んで隣接するバスバーの一方である第1バスバーの第1面の所定部分を露出させる第1面側第1中央開口に相当する第1中央開口形成領域、前記間隙を挟んで前記第1バスバーに隣接する第2バスバーの第1面の所定部分を露出させる第1面側第2中央開口に相当する第2中央開口形成領域、並びに、前記第1及び第2中央開口形成領域によって挟まれる中間領域を含む中央レーザー領域にレーザー光を照射して前記第1面側第1及び第2中央開口を形成するレーザー光照射工程と、
     前記レーザー光照射工程後に前記バスバー用導電性金属平板に残っているバスバー側絶縁性樹脂材を完全硬化させて前記バスバー側絶縁性樹脂層を形成する工程と、
     前記バスバー用導電性金属平板を用意する工程から前記バスバー側絶縁性樹脂材の完全硬化工程までの処理の前又は後、若しくは、並行して行う枠体形成処理であって、前記枠体本体の厚みと同一厚みを有し且つ平面視において前記バスバーアッセンブリ形成領域に対応した外周形状を有する枠体形成領域を含む枠体用導電性金属平板を用意する工程と、前記枠体形成領域のうち前記中央孔に相当する部分を打ち抜いて、前記枠体本体に相当する枠体本体形成部位を形成する打ち抜き工程と、前記枠体本体形成部位に絶縁性樹脂材を設ける工程と、前記枠体本体形成部位に設けられた前記絶縁性樹脂材を完全硬化させて前記枠体側絶縁性樹脂層を形成する工程を含む枠体形成処理と、
     前記バスバーアッセンブリ形成領域及び前記枠体形成領域が重合されるように前記バスバー用導電性金属平板及び前記枠体用導電性金属平板を接着剤によって固着させる組み付け工程と、
     前記組み付け工程の後に、重合状態の前記バスバーアッセンブリ形成領域及び前記枠体形成領域を前記バスバー用導電性金属平板及び前記枠体用導電性金属平板から切断する切断工程とを含むことを特徴とするバスバーアッセンブリの製造方法。
  16.  前記バスバー用導電性金属平板は、前記スリットの長手方向に沿った第1方向に直列配置された複数の前記バスバーアッセンブリ形成領域と、隣接する前記バスバーアッセンブリ形成領域を連結する連結領域とを一体的に有しており、
     前記枠体用導電性金属平板は、前記バスバー用導電性金属平板における前記複数のバスバーアッセンブリ形成領域に対応した複数の前記枠体形成領域と、隣接する前記枠体形成領域を連結する連結領域とを一体的に有しており、
     一のバスバーアッセンブリ形成領域に形成されたスリットは、長手方向一端側が当該一のバスバーアッセンブリ形成領域の第1方向一方側に連接された連結領域内へ延び且つ長手方向他端側が当該一のバスバーアッセンブリ形成領域の第1方向他方側に連接された連結領域内へ延びていることを特徴とする請求項14又は15に記載のバスバーアッセンブリの製造方法。
PCT/JP2020/023142 2019-06-25 2020-06-12 バスバーアッセンブリ及びその製造方法 WO2020262030A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080044559.8A CN114026748B (zh) 2019-06-25 2020-06-12 汇流排组件及其制造方法
US17/597,039 US20220239086A1 (en) 2019-06-25 2020-06-12 Busbar assembly and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117512A JP7271333B2 (ja) 2019-06-25 2019-06-25 バスバーアッセンブリ及びその製造方法
JP2019-117512 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020262030A1 true WO2020262030A1 (ja) 2020-12-30

Family

ID=74060384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023142 WO2020262030A1 (ja) 2019-06-25 2020-06-12 バスバーアッセンブリ及びその製造方法

Country Status (3)

Country Link
US (1) US20220239086A1 (ja)
JP (1) JP7271333B2 (ja)
WO (1) WO2020262030A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251637A (ja) * 1993-02-24 1994-09-09 Yazaki Corp フラット電線およびその製造方法
JP2011159337A (ja) * 2010-01-29 2011-08-18 Panasonic Corp 光ディスク装置、及び、コンピュータ、光ディスクプレーヤ、光ディスクレコーダ
WO2019044687A1 (ja) * 2017-09-04 2019-03-07 サンコール株式会社 バスバーアッセンブリの製造方法
WO2019049537A1 (ja) * 2017-09-06 2019-03-14 日本電産コパル株式会社 撮像装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115596A (ja) * 2005-10-21 2007-05-10 Suncall Corp 絶縁被覆導線及びその製造方法
JP5587625B2 (ja) 2010-02-01 2014-09-10 アピックヤマダ株式会社 リードフレーム及びledパッケージ用基板
JP6251637B2 (ja) 2014-06-02 2017-12-20 Kddi株式会社 情報検索方法、装置およびプログラム
JP6637003B2 (ja) 2017-09-08 2020-01-29 サンコール株式会社 バスバーアッセンブリ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251637A (ja) * 1993-02-24 1994-09-09 Yazaki Corp フラット電線およびその製造方法
JP2011159337A (ja) * 2010-01-29 2011-08-18 Panasonic Corp 光ディスク装置、及び、コンピュータ、光ディスクプレーヤ、光ディスクレコーダ
WO2019044687A1 (ja) * 2017-09-04 2019-03-07 サンコール株式会社 バスバーアッセンブリの製造方法
WO2019049537A1 (ja) * 2017-09-06 2019-03-14 日本電産コパル株式会社 撮像装置

Also Published As

Publication number Publication date
CN114026748A (zh) 2022-02-08
JP7271333B2 (ja) 2023-05-11
JP2021005458A (ja) 2021-01-14
US20220239086A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
DE102011006489B4 (de) Leiterplatte mit eingebautem Halbleiterchip und Verfahren zur Herstellung derselben
US8592686B2 (en) Printed circuit board assembled panel, unit sheet for packaging a printed circuit board, rigid-flexible board and method for manufacturing the same
EP2279531B1 (de) Solarzellenmodul
JP6637002B2 (ja) バスバーアッセンブリの製造方法
DE102014109609A1 (de) Stromsensorvorrichtung
WO2020262030A1 (ja) バスバーアッセンブリ及びその製造方法
WO2021059904A1 (ja) バスバーアッセンブリ及びその製造方法
WO2020044656A1 (ja) バスバーアッセンブリ及びその製造方法
CN114026748B (zh) 汇流排组件及其制造方法
JP7465222B2 (ja) バスバーアッセンブリ
DE102009055031A1 (de) Solarzelle, diese Solarzelle umfassendes Solarmodul, Verfahren zu deren Herstellung und zur Herstellung einer Kontaktfolie
WO2020085154A1 (ja) バスバーアッセンブリ及びその製造方法
WO2022009361A1 (ja) バスバーアッセンブリ及びその製造方法
JP2022061249A (ja) バスバーアッセンブリ及びその製造方法
DE102007036044A1 (de) Chipmodul und Verfahren zum Herstellen eines Chipmoduls
JP2022065738A (ja) バスバーアッセンブリの製造方法及びバスバーアッセンブリ用平板積層構造
WO2022080115A1 (ja) バスバーアッセンブリ及びバスバーアッセンブリの製造方法
JP2021007179A (ja) バスバーアッセンブリ及び半導体モジュール
WO2019049687A1 (ja) バスバーアッセンブリ
JP2022080002A (ja) バスバーアッセンブリ及びその製造方法
AT511628B1 (de) Photovoltaik-modul mit mehreren solarzellen
DE102011003196A1 (de) Solarzellenmodul und Verfahren zu dessen Herstellung
DE202012104748U1 (de) Photovoltaik-Modul mit mehreren Solarzellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831883

Country of ref document: EP

Kind code of ref document: A1