WO2019039575A1 - 両回転スクロール型圧縮機 - Google Patents

両回転スクロール型圧縮機 Download PDF

Info

Publication number
WO2019039575A1
WO2019039575A1 PCT/JP2018/031262 JP2018031262W WO2019039575A1 WO 2019039575 A1 WO2019039575 A1 WO 2019039575A1 JP 2018031262 W JP2018031262 W JP 2018031262W WO 2019039575 A1 WO2019039575 A1 WO 2019039575A1
Authority
WO
WIPO (PCT)
Prior art keywords
side plate
drive
plate
driven
scroll
Prior art date
Application number
PCT/JP2018/031262
Other languages
English (en)
French (fr)
Inventor
拓馬 山下
隆英 伊藤
恵太 北口
竹内 真実
弘文 平田
Original Assignee
三菱重工業株式会社
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工業株式会社
Priority to CN201880033774.0A priority Critical patent/CN110959072A/zh
Priority to US16/615,478 priority patent/US20200088193A1/en
Priority to JP2019537700A priority patent/JP6804655B2/ja
Priority to EP18848562.7A priority patent/EP3613985A4/en
Publication of WO2019039575A1 publication Critical patent/WO2019039575A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
    • F04C18/0238Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/063Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with only rolling movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement

Definitions

  • the present invention relates to a dual-rotation scroll compressor.
  • a twin-rotating scroll compressor has been known conventionally (see Patent Document 1).
  • This includes a drive-side scroll and a driven-side scroll that rotates in synchronization with the drive-side scroll, and the driven shaft that supports the rotation of the driven-side scroll with respect to the drive shaft that rotates the drive-side scroll
  • the drive shaft and the driven shaft are rotated at the same angular velocity in the same direction.
  • a synchronous drive mechanism In a dual-rotation scroll compressor, a synchronous drive mechanism is used that transmits driving force from the drive-side scroll member to the driven-side scroll member so that the drive-side scroll member and the driven-side scroll member rotate at the same angular velocity in the same direction.
  • a mechanism using a crank pin or a pin ring can be considered as this synchronous drive mechanism, when the compression heat is transmitted from the scroll member, the life may be reduced. In particular, in the case of using a lubricating oil, it is necessary to suppress the reduction of the life.
  • crank pin provided with a rolling bearing when used as a synchronous drive mechanism, it is necessary to provide at least two or more rolling bearings for supporting the rotation of the crank pin, which has been a factor to increase the cost.
  • crank pin provided with a rolling bearing
  • internal force may be generated in the crank pin due to the tolerance of the crank pin or the tolerance of the hole into which the rolling bearing is inserted, and the life may be reduced. is there.
  • the crank pin is integrally cut, machining errors in the crank pin are likely to occur, and the internal force generated in the crank pin may be increased.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a double-rotating scroll compressor capable of achieving longer life of a synchronous drive mechanism.
  • An object of the present invention is to provide a twin-rotating scroll compressor capable of reducing the cost of a synchronous drive mechanism.
  • An object of the present invention is to provide a double-rotating scroll compressor capable of prolonging the life of a synchronous drive mechanism having a crankpin mechanism.
  • a drive side scroll member having a spiral drive side wall body which is rotationally driven about a rotation axis by a drive portion and disposed on a drive side end plate;
  • a driven scroll member wherein a spiral driven side wall corresponding to the driving side wall is disposed on the driven side end plate, and the driven side wall is engaged with the driving side wall to form a compression space;
  • a synchronous drive mechanism for transmitting the driving force of the drive unit to the driven scroll member so that the drive scroll member and the driven scroll member rotate at the same angular velocity in the same direction, the drive scroll member, and A first side plate disposed on the rotational axis direction side with respect to the driven side scroll member, and a position in the rotational axis direction with respect to the first side plate
  • a second side plate fixed with a gap, and a center plate disposed between the first side plate and the second side plate, the first side plate being the drive side scroll member
  • the center plate is fixed to
  • a compression space is formed by the drive side wall disposed on the drive side end plate of the drive side scroll member and the driven side wall of the driven side scroll member being engaged with each other.
  • the drive-side scroll member is rotationally driven by the drive unit, and the drive-side scroll member is transmitted with the drive force via the synchronous drive mechanism.
  • the driven scroll member rotates and performs rotational motion at the same angular velocity in the same direction with respect to the drive scroll member.
  • a dual-rotation scroll compressor is provided in which both the drive-side scroll member and the driven-side scroll member rotate.
  • a first side plate and a second side plate are provided on the rotational axis direction side with respect to the drive side scroll member and the driven side scroll member, and a center plate is provided between the side plates.
  • the synchronous drive mechanism includes a crank pin having an eccentric shaft portion having an eccentric axis eccentric to a central axis of a central cylindrical portion; Between the inner ring of the crankpin end rolling bearing and the eccentric shaft portion, the crankpin end rolling bearing provided between the end portions of the portion and the first side plate and the second side plate; A biasing member is provided to bias the inner ring toward the tip of the eccentric shaft in the eccentric axial direction.
  • the synchronous drive mechanism is constituted by a crank pin end rolling bearing rotatably supporting both ends of the crank pin and the crank pin between both side plates. Then, between the inner ring of the crankpin end rolling bearing and the eccentric shaft portion of the crankpin, a biasing member is provided which biases the inner ring toward the tip of the eccentric shaft portion in the eccentric axial direction. Since the inner ring of the crankpin end rolling bearing is urged toward the tip by the biasing member, the outer ring is pressed against the side plate via the rolling element of the crankpin end rolling bearing.
  • crankpin end rolling bearing is in a state where preload is applied between the eccentric bearing of the crankpin and the side plate, so that sliding between the rolling element and the inner ring and sliding between the inner ring and the eccentric shaft can be suppressed.
  • the service life of the synchronous drive mechanism can be extended.
  • an O-ring is used as the biasing member.
  • the synchronous drive mechanism includes a crank pin having an eccentric shaft portion having an eccentric axis eccentric to a central axis of a central cylindrical portion; A crankpin end rolling bearing provided between the ends of the part and the first side plate and the second side plate, and the distance between the first side plate and the second side plate A preload is applied to the crankpin end rolling bearing in the eccentric axial direction.
  • the synchronous drive mechanism is constituted by a crank pin end rolling bearing rotatably supporting both ends of the crank pin and the crank pin between both side plates. Then, by the distance between the first side plate and the second side plate, a preload is applied to the crankpin end rolling bearing in the eccentric axial direction. As a result, the slip between the rolling element and the inner ring of the crankpin end rolling bearing and the slip between the inner ring and the eccentric shaft can be suppressed, and the life of the synchronous drive mechanism can be prolonged. Specifically, as the method of applying the preload, when the second side plate is fastened to the first side plate, the distance between the side plates is narrowed. That is, the distance determined by fastening both side plates is made smaller than the distance between the side plates determined by the crank pins and crank pin end rolling bearings of the synchronous drive mechanism.
  • the synchronous drive mechanism includes a crank pin having an eccentric shaft portion having an eccentric axis eccentric to a central axis of a central cylindrical portion; An inner circumferential surface of an inner ring of the crankpin end rolling bearing and the eccentric shaft, and a crankpin end rolling bearing provided between both end portions of the part and the first side plate and the second side plate An elastic body is provided between the outer peripheral surface of the portion.
  • the synchronous drive mechanism is constituted by a crank pin end rolling bearing rotatably supporting both ends of the crank pin and the crank pin between both side plates. Then, an elastic body is provided between the inner peripheral surface of the inner ring of the crankpin end rolling bearing and the outer peripheral surface of the eccentric shaft portion. As a result, a reaction force is generated by the deformation of the elastic body sandwiched between the inner ring and the eccentric shaft portion, so that slippage between the eccentric shaft portion and the inner ring can be suppressed, and the service life of the synchronous drive mechanism is extended.
  • the fixed portion of the first side plate fixed to one of the drive side scroll member or the driven side scroll member, the drive side scroll member or Of the fixed portion of the center plate fixed to the other of the driven scroll member, the fixed portion located radially inward of the center of the scroll member has a resin portion interposed therebetween,
  • the fixing portion located radially outside the center of the scroll member is configured to use a metal portion without interposing a resin portion.
  • the temperature tends to rise due to the heat of compression, so that the resin portion is interposed. As a result, it is possible to extend the life by suppressing the temperature rise of the synchronous drive mechanism.
  • the metal portion is used without interposing the resin portion. As a result, since the fixing portion can be assembled with high accuracy using metal, positioning of the synchronous drive mechanism can be accurately performed, and consequently phase shift between the drive side scroll member and the driven side scroll member can be reduced, and compression performance can be improved. It can be improved.
  • a drive side scroll member having a spiral drive side wall body which is rotationally driven about a rotation axis by a drive unit and disposed on a drive side end plate.
  • a driven side scroll member having a spiral driven side wall body corresponding to the drive side wall body disposed on a driven side end plate, the driven side wall body being engaged with the drive side wall body to form a compression space;
  • a synchronous drive mechanism for transmitting a driving force to the driven scroll member so that the drive scroll member and the driven scroll member rotate at the same angular velocity in the same direction, the drive scroll member, and the driven scroll member A first side plate disposed on the rotational axis direction side with respect to the side scroll member, and a predetermined distance in the rotational axis direction with respect to the first side plate
  • a second side plate fixed and having a center plate disposed between the first side plate and the second side plate, the first side plate being the drive side scroll member or the first side plate The center plate is fixed to one of the driven scroll members, the
  • a compression space is formed by the drive side wall disposed on the drive side end plate of the drive side scroll member and the driven side wall of the driven side scroll member being engaged with each other.
  • the drive-side scroll member is rotationally driven by the drive unit, and the drive-side scroll member is transmitted with the drive force via the synchronous drive mechanism.
  • the driven scroll member rotates and performs rotational motion at the same angular velocity in the same direction with respect to the drive scroll member.
  • a dual-rotation scroll compressor is provided in which both the drive-side scroll member and the driven-side scroll member rotate.
  • a first side plate and a second side plate are provided on the rotational axis direction side with respect to the drive side scroll member and the driven side scroll member, and a center plate is provided between the side plates.
  • the synchronous drive mechanism was provided between both side plates and the center plate. Furthermore, a peripheral wall portion surrounding the outer peripheral side of the center plate is provided between the first side plate and the second side plate. As a result, even if the lubricant supplied to the synchronous drive mechanism is moved to the outer peripheral side by the centrifugal force, the lubricant can be held on the inner peripheral side of the peripheral wall portion, so that the insufficient lubrication of the synchronous drive mechanism is avoided. Thus, the service life can be extended.
  • crank pin having an eccentric shaft having an eccentric axis eccentric to the central axis of the central cylindrical portion, and both ends of the eccentric shaft and the first side plate and the second side plate
  • a crank mechanism provided with a crank pin end rolling bearing provided between can be used.
  • a lubricant is supplied to the rolling bearing.
  • the center plate includes a drive shaft portion that rotates around the rotation axis connected between the drive side plate and the drive portion.
  • a first side plate hole is formed in the first side plate, the first side plate being fixed to the drive shaft, and the drive shaft passes through the second side plate.
  • a second side plate hole is formed, and between the first side plate hole and the drive shaft and / or between the second side plate hole and the drive shaft. , And a first seal member.
  • a drive shaft portion is provided between the drive side end plate and the drive portion, and the center plate is fixed to the drive shaft portion.
  • the drive side scroll member transmits the driving force from the drive unit via the center plate.
  • the first side plate and the second side plate are provided with holes through which the drive shaft passes. As a result, a gap inevitably occurs between the side plates and the drive shaft, but the first seal member is provided to seal the gap. This can prevent the lubricant from leaking between the side plates and the drive shaft.
  • the first seal member for example, a boot seal or a labyrinth seal can be employed.
  • the center plate includes a drive shaft portion that rotates around the rotation axis connected between the drive side plate and the drive portion.
  • a first side plate hole is formed in the first side plate, the first side plate being fixed to the drive shaft, and the drive shaft passes through the second side plate.
  • a second side plate hole is formed, and a second seal member is provided between the first side plate and the center plate and / or between the second side plate and the center plate.
  • a drive shaft portion is provided between the drive side end plate and the drive portion, and the center plate is fixed to the drive shaft portion.
  • the drive side scroll member transmits the driving force from the drive unit via the center plate.
  • the first side plate and the second side plate are provided with holes through which the drive shaft passes.
  • the second seal member is provided between the side plates and the center plate. This can prevent the lubricant from leaking between the side plates and the drive shaft.
  • the second seal member for example, a tip seal inserted in a circumferential groove formed in each side plate or center plate can be adopted.
  • the first side plate is fixed to the drive side wall on the outer peripheral side
  • the second side plate is fixed to the first side plate.
  • the center plate is fixed to the driven shaft portion fixed to the drive shaft connected to the rotation center of the second side plate and connected to the rotation center of the driven side plate.
  • the plate is formed with a first side plate hole through which the driven shaft passes, and the rotation center region of the second side plate is closed by a wall.
  • the drive side scroll member transmits the driving force from the drive unit via the first side plate and the second side plate.
  • the driven shaft portion is disposed to pass through a first side plate hole formed in the first side plate.
  • the driving force is transmitted from the center plate to the driven shaft through the synchronous drive mechanism, it is not necessary to form a hole for penetrating the driven shaft in the rotation center region of the second side plate. Therefore, since the rotation side area can adopt the 2nd side plate closed by the wall, lubricant can be prevented from leaking out from the rotation center of the 2nd side plate.
  • a drive side scroll member having a spiral drive side wall body which is rotationally driven about a rotation axis by a drive unit and disposed on a drive side end plate.
  • a driven side scroll member having a spiral driven side wall body corresponding to the drive side wall body disposed on a driven side end plate, the driven side wall body being engaged with the drive side wall body to form a compression space;
  • a first side plate disposed on the rotational axis side with respect to the member and the driven scroll member, and the rotational axis direction relative to the first side plate
  • a center plate disposed between the first side plate and the second side plate, and the first side plate includes the drive side scroll.
  • the center plate is fixed to the other of the drive-side scroll member or the driven-side scroll member, and the synchronous drive mechanism includes the first side plate and the second side.
  • a round bar-like pin provided between a side plate and the center plate, and a ring for guiding an inner circumferential surface of the pin in contact with the outer periphery of the pin.
  • a synchronous drive mechanism we decided to adopt a pin ring mechanism provided with a round rod-like pin and a ring. As a result, the synchronous drive mechanism can be realized without adopting the crank pin mechanism, and therefore, it is possible to reduce the cost without adopting a complicated configuration by adopting many bearings as in the crank pin mechanism.
  • the ring is a rolling bearing provided on the center plate, and the pin has the first side plate and the second side at both ends. It is pressed into the plate, and the central portion in the longitudinal direction abuts on the inner circumferential surface of the rolling bearing.
  • the pins are press-fitted and fixed to both side plates, the pins can be used as positioning pins for both side plates. Since both ends of the pin are fixed to both side plates and abut on the inner peripheral surface of the rolling bearing at the center, synchronization is prevented by preventing the inner ring of the rolling bearing from tilting and preventing skewing of the rolling member such as balls. It is possible to extend the life of the drive mechanism.
  • the ring is a rolling bearing provided on the center plate, and one end of the pin is the first side plate or the second side.
  • the plate is press-fit into one of the plates and the other end is fixed via an elastic body to the other of the first side plate or the other of the second side plate, and the central portion in the longitudinal direction is the inner circumferential surface of the rolling bearing Abut on.
  • One end of the pin is press-fitted and fixed to one of the side plates, and the other end of the pin is fixed to the other of the side plates via an elastic body.
  • the synchronous drive mechanism is provided three or more apart in the circumferential direction of the rotation axis, and two of the synchronous drive mechanisms are
  • the ring is a rolling bearing provided on the center plate, and the pins are press-fitted at both ends thereof to the first side plate and the second side plate, and a central portion in the longitudinal direction is the rolling bearing.
  • the other synchronous drive mechanism is in contact with the inner peripheral surface, and the ring is a rolling bearing provided on the center plate, and the pin has one end of the first side plate or the second side plate. The other end is fixed to one side of the first side plate or the other side of the second side plate via an elastic body, and Central portion comes into contact with the inner peripheral surface of the rolling bearing.
  • Two of the three or more synchronous drive mechanisms have a function as positioning pins as a configuration in which both ends of the pins are press-fit and fixed to both side plates.
  • the pins of the other synchronous drive mechanisms are fixed at one end by press fitting and fixed at the other end via an elastic body to absorb tolerances.
  • the positioning of both side plates can be performed by the synchronous drive mechanism, and the assemblability can be improved.
  • the ring is a rolling bearing provided on each of the first side plate and the second side plate, and the pin is in the longitudinal direction A central portion in the above is press-fit into the center plate, and both ends thereof abut on the inner circumferential surface of the rolling bearing.
  • the center portion of the pin is press-fit into the center plate, and both ends of the pin are brought into contact with the inner circumferential surface of the rolling bearing provided on both side plates. Accordingly, since both ends of the pin are not constrained by the both side plates, it is possible to avoid the situation that the pin can not be fixed at the time of assembly due to the part tolerance of the both side plates. Thereby, the assemblability can be improved.
  • the ring is a slide bearing instead of the rolling bearing.
  • the cost can be reduced. Since the moment of inertia of a rotation system such as a rolling bearing can be reduced, high response can be achieved.
  • a drive side scroll member having a spiral drive side wall body which is rotationally driven about a rotation axis by a drive unit and disposed on a drive side end plate.
  • a driven side scroll member having a spiral driven side wall body corresponding to the drive side wall body disposed on a driven side end plate, the driven side wall body being engaged with the drive side wall body to form a compression space;
  • a first side plate disposed on the rotational axis side with respect to the member and the driven scroll member, and the rotational axis direction relative to the first side plate
  • a center plate disposed between the first side plate and the second side plate, and the first side plate includes the drive side scroll.
  • the center plate is fixed to the other of the drive-side scroll member or the driven-side scroll member, and the synchronous drive mechanism includes the first side plate and the second side.
  • a crank pin having an eccentric shaft portion provided between a side plate and the center plate and having an eccentric axis eccentric to a central axis of a central cylindrical portion, one end of the eccentric shaft portion and the first side plate
  • a first crank pin end rolling bearing provided between the second crank shaft and the other end of the eccentric shaft and the second side plate
  • a second crank pin end rolling bearing provided on the second crank pin, and a cylindrical rolling bearing provided between the cylindrical portion and the center plate, and an outer ring of the first crank pin rolling bearing and the first rolling bearing
  • An elastic body is provided between the outer ring of the rolling bearing of the synchronous drive mechanism and the side plate or center plate, or between the inner ring of the rolling bearing of the synchronous drive mechanism and the crank pin.
  • the elastic body is provided between the outer ring of the cylindrical rolling bearing and the center plate, and the outer ring of the first crankpin end rolling bearing The outer ring of the second crank pin end rolling bearing is press-fitted to the second side plate.
  • crank pin end rolling bearings Since the outer ring of the first crank pin end rolling bearing and the outer ring of the second crank pin end rolling bearing are press-fitted, the centrifugal force is held by these both crank pin end rolling bearings. As described above, since the two rolling bearings bear the centrifugal force, it is possible to ease the load to be applied as compared with the case where the one cylindrical rolling bearing bears the centrifugal force. Further, since the crankpins are supported at both ends by the two crankpin end rolling bearings, the posture of the crankpins can be stabilized.
  • the cylindrical portion is formed with an insertion hole into which the eccentric shaft portion is inserted.
  • the eccentric shaft portion of the crankpin is inserted into the insertion hole formed in the cylindrical portion.
  • the crankpin can make the eccentric shaft portion and the cylindrical portion separate parts, and each can be processed separately. Therefore, as compared with the case of integrally processing the eccentric shaft portion and the cylindrical portion, the axial centers at both ends of the eccentric shaft portion can be aligned.
  • a drive-side scroll member having a spiral drive side wall body which is rotationally driven about a rotation axis by a drive unit and disposed on a drive-side end plate
  • a driven side scroll member having a spiral driven side wall body corresponding to the drive side wall body disposed on a driven side end plate, the driven side wall body being engaged with the drive side wall body to form a compression space
  • a second side plate fixed with a predetermined interval, and a center plate disposed between the first side plate and the second side plate, the first side plate being the drive side scroll member
  • the eccentric shaft portion of the crankpin is inserted into the insertion hole formed in the cylindrical portion.
  • an eccentric shaft part and a cylindrical part can be made into another parts, and each can be processed separately. Therefore, as compared with the case of integrally processing the eccentric shaft portion and the cylindrical portion, the axial centers at both ends of the eccentric shaft portion can be aligned. Therefore, the internal force applied to the crank pin can be reduced, and the life of the synchronous drive mechanism can be extended.
  • the synchronous drive mechanism is provided on the side plate and the center plate which are members other than the drive side scroll member and the driven side scroll member, heating due to compression heat from the scroll member can be reduced, and the synchronous drive mechanism Can extend the life of the
  • a peripheral wall surrounding the outer periphery of the center plate is provided between the first side plate and the second side plate to hold the lubricant on the inner peripheral side of the peripheral wall, thus prolonging the life of the synchronous drive mechanism Can be
  • the configuration of the synchronous drive mechanism can be simplified and the cost can be reduced.
  • FIG. 8 is a longitudinal sectional view showing a second embodiment of the present invention and showing the surroundings of a synchronous drive mechanism. It is the longitudinal cross-sectional view which showed the modification 1 of 2nd Embodiment. It is the longitudinal cross-sectional view which showed the modification 2 of 2nd Embodiment.
  • FIG. 10 is a longitudinal sectional view showing the third embodiment of the present invention and showing the surroundings of a synchronous drive mechanism. It is the longitudinal cross-sectional view which showed the both-rotation scroll type
  • FIG. 1 shows a dual-rotation scroll compressor 1.
  • the dual-rotating scroll compressor 1 is, for example, a supercharger that compresses combustion air (fluid) supplied to an internal combustion engine such as a vehicle engine, or a compressor for supplying compressed air to an air electrode of a fuel cell. It can be used as a compressor for supplying compressed air used for a braking device of a vehicle such as a railway.
  • the double-rotating scroll compressor 1 includes a housing 3, a motor (drive unit) 5 housed on one end side of the housing 3, and a drive-side scroll member 70 and a driven-side scroll member housed on the other end side of the housing 3. It has 90 and.
  • the housing 3 has a substantially cylindrical shape, and includes a motor accommodating portion 3 a that accommodates the motor 5 and a scroll accommodating portion 3 b that accommodates the scroll members 70 and 90. At the end of the scroll housing portion 3b, a discharge port 3d for discharging the compressed air is formed. Although not shown in FIG. 1, the housing 3 is provided with an air intake port for sucking air.
  • the motor 5 is driven by supplying power from a power supply source (not shown).
  • the rotation control of the motor 5 is performed by a command from a control unit (not shown).
  • the stator 5 a of the motor 5 is fixed to the inner peripheral side of the housing 3.
  • the rotor 5b of the motor 5 rotates around the drive side rotation axis CL1.
  • the drive shaft 6 extending on the drive side rotation axis line CL1 is connected to the rotor 5b.
  • the drive shaft 6 is connected to the shaft portion 20 a of the center plate 20 that drives the first drive side scroll portion 71 of the drive side scroll member 70.
  • a drive-side bearing 11 for rotatably supporting the drive shaft 6 is provided at the front end (left end in FIG. 1) of the drive shaft 6, a drive-side bearing 11 for rotatably supporting the drive shaft 6 is provided.
  • the drive shaft 6 is rotatably supported between the housing 3 and the rear end (right end in FIG. 1) of the drive shaft 6, that is, the end of the drive shaft 6 opposite to the drive scroll member 70.
  • a rear end bearing 17 is provided.
  • the drive side scroll member 70 includes a first drive side scroll portion 71 on the motor 5 side and a second drive side scroll portion 72 on the discharge port 3 d side.
  • the first drive side scroll portion 71 includes a first drive side end plate 71a and a first drive side wall 71b.
  • the first drive side end plate 71a extends in a direction orthogonal to the drive side rotational axis CL1.
  • the first drive side end plate 71 a is fixed to a plurality of fixing portions 20 b provided on the outer periphery of the center plate 20 using bolts 21. As shown in FIG. 2, three fixing portions 20 b of the center plate 20 are provided at substantially equal intervals in the circumferential direction. However, the number of fixing parts 20b is not limited to this.
  • the first drive side end plate 71a has a substantially disc shape in a plan view. As shown in FIG. 3, on the first drive side end plate 71a, three, ie, three, first drive side walls 71b in a spiral shape are provided. The first drive side wall 71b in the form of three strips is disposed at equal intervals around the drive side rotation axis CL1. The wound end portions 71e of the first drive side wall 71b are not fixed to the other wall portions but are independent. That is, no wall portion is provided to connect and reinforce the respective winding end portions 71e. The number of the first drive side wall 71b may be one, two, or four or more.
  • the second drive side scroll portion 72 includes a second drive side end plate 72 a and a second drive side wall 72 b.
  • the second drive side wall body 72b is formed in three lines in the same manner as the first drive side wall body 71b (see FIG. 2) described above.
  • the wound end portions of the second drive side wall 72b are not fixed to the other wall portions but are independent. That is, no wall is provided to connect and reinforce the respective winding end portions.
  • the number of the second drive side wall members 72b may be one, two, or four or more.
  • a second drive side shaft portion 72c extending in the direction of the drive side rotation axis CL1 is connected to the second drive side end plate 72a.
  • the second drive side shaft portion 72c is provided rotatably with respect to the housing 3 via a second drive side bearing 14 formed as a ball bearing.
  • a discharge port 72d is formed in the second drive side end plate 72a along the drive side rotational axis CL1.
  • Two sealing members 26 are provided between the second drive side shaft portion 72c and the housing 3 on the tip end side (left side in FIG. 1) of the second drive side shaft portion 72c than the second drive side bearing 14 ing.
  • the two seal members 26 and the second drive-side bearing 14 are disposed at predetermined intervals in the direction of the drive-side rotation axis CL1.
  • a lubricant for example, a grease which is a semisolid lubricant, is enclosed between the two seal members 26.
  • the number of seal members 26 may be one. In this case, the lubricant is enclosed between the seal member 26 and the second drive side bearing 14.
  • the first drive side scroll portion 71 and the second drive side scroll portion 72 are fixed in a state in which the tips (free ends) of the wall bodies 71 b and 72 b face each other. Fixing of the first drive side scroll portion 71 and the second drive side scroll portion 72 is performed by bolts 31 fastened to flange portions 73 provided at a plurality of places in the circumferential direction so as to protrude radially outward. .
  • the driven end plate 90a is located substantially at the center in the axial direction (horizontal direction in the drawing).
  • a through hole 90h is formed at the center of the driven end plate 90a, and compressed air flows to the discharge port 72d.
  • the driven side walls 91b and 92b are provided on both sides of the driven end plate 90a.
  • the first driven side wall body 91b installed on the motor 5 side from the driven side end plate 90a is engaged with the first drive side wall body 71b of the first drive side scroll portion 71, and on the discharge port 3d side from the driven side end plate 90a.
  • the installed second driven side wall 92 b is engaged with the second driving side wall 72 b of the second driving scroll portion 72.
  • three or three first driven side walls 91 b are provided.
  • the three driven side wall bodies 91b are arranged at equal intervals around the driven side rotation axis CL2.
  • the second driven side wall 92b has a similar configuration.
  • the number of rows of the driven side walls 91b and 92b may be one, two, or four or more.
  • a support member 33 is provided on the discharge port 3 d side (left side in FIG. 1) of the driven scroll member 90.
  • the support member 33 is fixed to the tip (free end) of the second driven side wall 92 b by a bolt 25.
  • a support member shaft portion 35a is provided on the central axis side of the support member 33.
  • the support member shaft portion 35a corresponds to the housing 3 via a second support member bearing 38 which is an angular ball bearing. It is fixed.
  • the driven scroll member 90 is configured to rotate around the second central axis CL2 via the support member 33.
  • a first side plate 27 is provided on the motor 5 side (right side in FIG. 1) of the driven scroll member 90.
  • the first side plate 27 is fixed by bolts 28 to the tip (free end) of the first driven side wall 91 b.
  • a second side plate 30 is provided on the motor 5 side of the first side plate 27 at a predetermined interval.
  • the second side plate 30 is fixed to the first side plate 27 by bolts 31.
  • a second side plate shaft portion 30a is provided on the central axis side of the second side plate 30, and the second side plate bearing 32 in which the second side plate shaft portion 30a is an angular ball bearing is provided. It is being fixed with respect to the housing 3 via.
  • the driven side scroll member 90 is configured to rotate around the second central axis CL2 via the second side plate 30 and the first side plate 27.
  • a center plate 20 is disposed between the first side plate 27 and the second side plate 30. As shown in FIG. 2, the center plate 20 is directly fixed to the drive side scroll member 70, and the first side plate 27 is directly fixed to the driven side scroll member 90.
  • a crank pin 15 is provided between the first side plate 27 and the second side plate 30 and the center plate 20.
  • the crankpin 15 has a cylindrical portion 15a at the center and an eccentric shaft portion 15b having an eccentric axis (refer to reference numeral CL3 in FIG. 5) eccentric to the central axis of the cylindrical portion 15a.
  • a cylindrical portion bearing 16 which is an angular ball bearing is provided on the outer periphery of the cylindrical portion 15a.
  • first eccentric shaft bearings (crank pin end rolling bearings) 18a and second eccentric shaft bearings (crank pin end rolling bearings) 18b which are angular ball bearings.
  • the eccentric shaft portion 15 b is rotatable relative to the first side plate 27 and the second side plate 30.
  • crank pin 15 and the bearings 16, 18a, 18b are used as a synchronous drive mechanism for transmitting the driving force of the motor 5 to the driven scroll member 90 so that the scroll members 70, 90 rotate in synchronization.
  • a plurality of synchronous drive mechanisms provided with the crank pins 15 are preferably provided, for example, three at equal angular intervals around the drive side rotation axis CL3.
  • the twin-rotating scroll compressor 1 configured as described above operates as follows.
  • the center plate 20 also rotates via the shaft portion 20a connected to the drive shaft 6.
  • the drive-side scroll member 70 connected via the fixed portion 20b rotates around the drive-side rotation axis CL1.
  • the driving force transmitted to the center plate 20 is transmitted from the first side plate 27 and the second side plate 30 to the driven scroll member 90 via the crank pin 15 as a synchronous drive mechanism, and the driven scroll member 90 It rotates around the driven side rotation axis CL2.
  • the crank pins 15 rotate relative to the center plate 20 and both side plates via the bearings 16, 18a and 18b, so that the scroll members 70 and 90 relatively revolve and move.
  • both scroll members 70, 90 When both scroll members 70, 90 perform a revolution movement, air sucked from the suction port of housing 3 is drawn from the outer peripheral side of both scroll members 70, 90, and a compression chamber formed by both scroll members 70, 90 Incorporated into The compression chamber formed by the first drive side wall 71b and the first driven side wall 91b and the compression chamber formed by the second drive side wall 72b and the second driven side wall 92b are separately compressed. Ru. The volume of each compression chamber decreases as it moves toward the center, and the air is compressed accordingly.
  • the air compressed by the first drive side wall 71b and the first driven side wall 91b passes through the through hole 90h formed in the driven side end plate 90a, and the second drive side wall 72b and the second driven side wall 92b
  • the air that has been compressed is merged with the air that has been compressed, and the merged air passes through the discharge port 72 d and is discharged from the discharge port 3 d of the housing 3 to the outside.
  • a first side plate 27 and a second side plate 30 are provided on the drive side scroll member 70 and the driven side scroll member 90 on the rotational axis direction CL1 and CL2 side, and the center plate 20 is provided between the side plates 27 and 30
  • the crank pin 15 and the bearings 16, 18a, 18b are provided between the side plates 27, 30 and the center plate 20 as a synchronous drive mechanism.
  • the synchronous drive mechanism is provided on the side plates 27 and 30 and the center plate 20 which are members separate from the scroll members 70 and 90, synchronous drive is performed on the end plates of the scroll members 70 and 90. Compared to the case where the mechanism is provided, the heating due to the compression heat from the scroll members 70. 90 can be reduced, and the service life of the synchronous drive mechanism can be prolonged.
  • a load is applied to the crank pin 15 from the center plate 20 and the side plates 27 and 30 on both sides thereof, so that the moment around the cylindrical portion 15 a of the crank pin 15 can be cancelled, and the life of the synchronous drive mechanism is extended.
  • both side plates 27 and 30 and center plate 20 are provided in the direction of rotational axes CL1 and CL2 to arrange the synchronous drive mechanism, compared to the case where the synchronous drive mechanism is provided on the radial direction side of scroll members 70 and 90. Can be reduced in diameter.
  • crank pin 15 is used as the synchronous drive mechanism
  • the present invention is not limited to this.
  • using a pin ring mechanism composed of a pin member and a ring member Also good.
  • the present embodiment relates to a synchronous drive mechanism provided with the crankpin 15 described in the first embodiment. Therefore, since the whole structure of the both-rotation scroll type compressor 1 is the same as that of 1st Embodiment, the description is abbreviate
  • the end of the crank shaft 15 on both sides of the eccentric shaft portion 15b has a diameter larger than that of the central portion 15e at the position where the inner ring of eccentric shaft bearing 18a, 18b is attached.
  • a smaller diameter portion 15d is provided.
  • An O-ring (biasing member) 19 is provided on the step 15j between the central portion 15e and the small diameter portion 15d. The O-ring 19 biases the inner rings of the eccentric shaft bearings 18a and 18b toward the tip of the crank pin 15 in the direction of the eccentric axis CL3.
  • reference numeral 41 denotes a seal plate for sealing lubricating oil
  • reference numeral 42 denotes a stopper ring for fixing the seal plate 41.
  • An O-ring 19 is provided between the inner ring of the eccentric shaft bearing 18a, 18b and the eccentric shaft 15b of the crank pin 15 to urge the inner ring toward the tip of the eccentric shaft 15b in the direction of the eccentric axis CL3. did.
  • the inner ring of the eccentric shaft bearing 18a, 18b is urged toward the tip by the O-ring 19, so that the outer ring is attached to the side plates 27, 30 via the balls (rolling elements) of the eccentric shaft bearing 18a, 18b. It is pressed.
  • the eccentric shaft portion bearings 18a and 18b receive a preload between the eccentric shaft portion 15b of the crankpin 15 and the side plates 27 and 30, causing slippage between the ball and the inner ring, and the inner ring and the eccentric shaft. Slippage with the portion 15b can be suppressed, and the service life of the synchronous drive mechanism can be extended.
  • FIG. 6 shows the state before the second side plate 30 is fixed to the first side plate 27 by the bolt 31. In this state, a gap t is formed between the tip of the fixing portion 30 b of the second side plate 30 and the first side plate 27. As described above, the distance determined by fastening the side plates 27 and 30 with the bolt 31 is made smaller than the distance between the side plates 27 and 30 determined by the crank pin 15 and the bearings 16 and 18a and 18b.
  • FIG. 7 As a means for suppressing the slip of the inner ring of the eccentric shaft portion bearings 18a and 18b, the configuration shown in FIG. 7 may be adopted instead of or together with this embodiment.
  • an O-ring (elastic body) 22 is provided between the inner peripheral surface of the inner ring of the first eccentric shaft portion bearing 18a and the outer peripheral surface of the eccentric shaft portion 15b.
  • the O-ring 22 biases the inner ring of the first eccentric shaft portion bearing 18a radially outward about the eccentric axis CL3 by a reaction force caused by the deformation. Thereby, the slip between the eccentric shaft 15b and the inner ring can be suppressed.
  • the O-ring 22 may be provided on the second eccentric shaft portion bearing 18b.
  • the present embodiment is different from the first embodiment in the fixing portion 20b for fixing the center plate 20 to the drive side scroll member 70.
  • the other points are the same as in the first embodiment, and thus the description thereof is omitted.
  • the fixed portion 20 b ′ of the center plate 20 is on the drive-side rotational axis CL 1 side with respect to the fixed portion 27 a of the first side plate 27 and the fixed portion 30 b of the second side plate 30. positioned.
  • the fixed portion 20b 'of the center plate 20 has a structure in which a resin shaft portion 40 made of resin is interposed.
  • the other part of the center plate 20 is made of metal made of aluminum alloy or iron.
  • the fixing portion 27a of the first side plate 27 and the fixing portion 30b of the second side plate 30 have a structure made of metal without interposing a resin portion.
  • the fixed portion 20b 'of the center plate 20 located radially inward of the center of the scroll members 70 and 90 has a tendency to increase in temperature due to the heat of compression, so the resin shaft portion 40 is interposed.
  • the increase in the temperature of the synchronous drive mechanism including the crankpin 15 can be suppressed, whereby the service life can be extended.
  • the fixed portion 27a of the first side plate 27 and the fixed portion 30b of the second side plate 30 located radially outward of the center of the scroll members 70 and 90 the effect of temperature rise due to compression heat is small. It is set as the structure which used the metal, without interposing a part.
  • the fixing portions 27a and 30b can be assembled with high accuracy using metal, positioning of the synchronous drive mechanism can be performed accurately, and phase shift between the drive scroll member 70 and the driven scroll member 90 can be reduced. And the compression performance can be improved.
  • FIG. 9 shows a dual-rotation scroll compressor 1.
  • the double-rotating scroll compressor 1 is, for example, a turbocharger for compressing combustion air (fluid) supplied to an internal combustion engine such as a vehicle engine, a compressor for supplying compressed air to a fuel cell electrode, railway Etc. can be used as a compressor for supplying compressed air used in a vehicle braking system.
  • the double-rotating scroll compressor 1 includes a housing 3, a motor (drive unit) 5 housed on one end side of the housing 3, and a drive-side scroll member 70 and a driven-side scroll member housed on the other end side of the housing 3. It has 90 and.
  • the housing 3 has a substantially cylindrical shape, and includes a motor accommodating portion 3 a that accommodates the motor 5 and a scroll accommodating portion 3 b that accommodates the scroll members 70 and 90. At the end of the scroll housing portion 3b, a discharge port 3d for discharging the compressed air is formed. Although not shown in FIG. 9, the housing 3 is provided with an air intake port for sucking in air.
  • the motor 5 is driven by supplying power from a power supply source (not shown).
  • the rotation control of the motor 5 is performed by a command from a control unit (not shown).
  • the stator 5 a of the motor 5 is fixed to the inner peripheral side of the housing 3.
  • the rotor 5b of the motor 5 rotates around the drive side rotation axis CL1.
  • the drive shaft 6 extending on the drive side rotation axis line CL1 is connected to the rotor 5b.
  • the drive shaft 6 is connected to a drive shaft portion 71 d fixed to the first drive side scroll portion 71 of the drive side scroll member 70.
  • a drive-side bearing 11 for rotatably supporting the drive shaft 6 is provided at the front end (left end in FIG. 9) of the drive shaft 6, a drive-side bearing 11 for rotatably supporting the drive shaft 6 is provided.
  • the drive shaft 6 is rotatably supported between the housing 3 and the rear end (right end in FIG. 9) of the drive shaft 6, that is, the end of the drive shaft 6 opposite to the drive scroll member 70.
  • a rear end bearing 17 is provided.
  • the drive side scroll member 70 includes a first drive side scroll portion 71 on the motor 5 side and a second drive side scroll portion 72 on the discharge port 3 d side.
  • the first drive side scroll portion 71 includes a first drive side end plate 71a and a first drive side wall 71b.
  • the first drive side end plate 71a extends in a direction orthogonal to the drive side rotational axis CL1.
  • a drive shaft portion 71d extending along the drive-side rotation axis CL1 is fixed to the rotation center of the first drive-side end plate 71a.
  • the center plate 20 is fixed to the drive shaft 71 d.
  • the center plate 20 extends in parallel with the first drive side end plate 71a.
  • the first drive side end plate 71a has a substantially disc shape in a plan view. As shown in FIG. 10, three, ie, three, first drive side wall bodies 71b in a spiral shape are provided on the first drive side end plate 71a. The first drive side wall 71b in the form of three strips is disposed at equal intervals around the drive side rotation axis CL1. The number of the first drive side wall 71b may be one or two, or four or more.
  • the second drive side scroll portion 72 includes a second drive side end plate 72a and a second drive side wall 72b.
  • the second drive side wall body 72b is formed in three lines in the same manner as the first drive side wall body 71b (see FIG. 10) described above.
  • the number of the second drive side wall members 72b may be one or two, or four or more.
  • a second drive side shaft portion 72c extending in the direction of the drive side rotation axis CL1 is connected to the second drive side end plate 72a.
  • the second drive side shaft portion 72c is provided rotatably with respect to the housing 3 via a second drive side bearing 14 formed as a ball bearing.
  • a discharge port 72d is formed in the second drive side end plate 72a along the drive side rotational axis CL1.
  • Two sealing members 26 are provided between the second drive side shaft portion 72c and the housing 3 on the tip end side (left side in FIG. 9) of the second drive side shaft portion 72c than the second drive side bearing 14 ing.
  • the two seal members 26 and the second drive-side bearing 14 are disposed at predetermined intervals in the direction of the drive-side rotation axis CL1.
  • a lubricant for example, a grease which is a semisolid lubricant, is enclosed between the two seal members 26.
  • the number of seal members 26 may be one. In this case, the lubricant is enclosed between the seal member 26 and the second drive side bearing 14.
  • the first drive side scroll portion 71 and the second drive side scroll portion 72 are fixed in a state in which the tips (free ends) of the wall bodies 71 b and 72 b face each other. Fixing of the first drive side scroll portion 71 and the second drive side scroll portion 72 is performed by bolts 31 fastened to flange portions 73 provided at a plurality of places in the circumferential direction so as to protrude radially outward. .
  • the driven end plate 90a is located substantially at the center in the axial direction (horizontal direction in the drawing).
  • a through hole 90h is formed at the center of the driven end plate 90a, and compressed air flows to the discharge port 72d.
  • the driven side walls 91b and 92b are provided on both sides of the driven end plate 90a.
  • the first driven side wall body 91b installed on the motor 5 side from the driven side end plate 90a is engaged with the first drive side wall body 71b of the first drive side scroll portion 71, and on the discharge port 3d side from the driven side end plate 90a.
  • the installed second driven side wall 92 b is engaged with the second driving side wall 72 b of the second driving scroll portion 72.
  • three or three first driven side walls 91b are provided.
  • the three driven side wall bodies 91b are arranged at equal intervals around the driven side rotation axis CL2.
  • the second driven side wall 92b has a similar configuration.
  • the number of the driven side walls 91b and 92b may be one, two, four or more.
  • a support member 33 is provided on the discharge port 3 d side (left side in FIG. 9) of the driven scroll member 90.
  • the support member 33 is fixed to the tip (free end) of the second driven side wall 92 b by a bolt 25.
  • a support member shaft portion 35a is provided on the central axis side of the support member 33.
  • the support member shaft portion 35a corresponds to the housing 3 via a second support member bearing 38 which is an angular ball bearing. It is fixed.
  • the driven scroll member 90 is configured to rotate around the driven rotation axis CL2 via the support member 33.
  • a first side plate 27 is provided on the motor 5 side (right side in FIG. 9) of the driven scroll member 90.
  • the first side plate 27 is fixed by bolts 28 to the tip (free end) of the first driven side wall 91 b.
  • a first side plate hole 27h for penetrating the drive shaft 71d is formed.
  • a second side plate 30 is provided on the motor 5 side of the first side plate 27 at a predetermined interval.
  • the second side plate 30 is fixed to the first side plate 27 by bolts 34.
  • a second side plate hole 30h for penetrating the drive shaft 71d is formed.
  • a second side plate shaft portion 30a is provided on the central axis side of the second side plate 30, and the second side plate bearing 32 in which the second side plate shaft portion 30a is an angular ball bearing is provided. It is being fixed with respect to the housing 3 via. Thereby, the driven side scroll member 90 is configured to rotate around the driven side rotation axis CL2 via the second side plate 30 and the first side plate 27.
  • a first protruding wall portion 27 b that protrudes toward the second side plate 30 is provided on an end face on the outer peripheral side of the first side plate 27.
  • a second protruding wall portion 30 c that protrudes toward the first side plate 27 is provided on the end face on the outer peripheral side of the second side plate 30.
  • the projecting wall portions 27b and 30c are attached and fixed in a liquid-tight state to constitute a peripheral wall portion. Thereby, as shown in FIG. 12, the center plate 20 disposed between the first side plate 27 and the second side plate 30 is accommodated in the space S surrounded by the both projecting wall portions 27b and 30c. It will be.
  • a crankpin 15 is provided between the first side plate 27 and the second side plate 30 and the center plate 20.
  • the crankpin 15 has a central cylindrical portion 15a and an eccentric shaft portion 15b having an eccentric axis eccentric to the central axis of the cylindrical portion 15a.
  • a cylindrical portion bearing 16 which is a ball bearing is provided on the outer periphery of the cylindrical portion 15a.
  • a lubricant such as grease is enclosed in the cylindrical portion bearing 16.
  • a first eccentric shaft portion bearing (crank pin end portion rolling bearing) 18a and a second eccentric shaft portion bearing (crank pin end portion rolling bearing) 18b are used as ball bearings. It is provided.
  • the eccentric shaft portion 15 b is rotatable relative to the first side plate 27 and the second side plate 30.
  • a lubricant such as grease is enclosed in each eccentric shaft portion bearing 18a, 18b.
  • crank pin 15 and the bearings 16, 18a, 18b are used as a synchronous drive mechanism for transmitting the driving force from the drive shaft 71d to the driven scroll member 90 so that the scroll members 70, 90 rotate in synchronization in a synchronous manner.
  • a plurality of synchronous drive mechanisms provided with the crank pins 15 are preferably provided, for example, three at equal angular intervals around the drive side rotational axis CL3 (see FIG. 12).
  • the twin-rotating scroll compressor 1 configured as described above operates as follows.
  • the center plate 20 As well as the drive-side scroll member 70 rotates about the drive-side axis CL1 via the drive shaft portion 71d connected to the drive shaft 6.
  • the driving force transmitted to the center plate 20 is transmitted from the first side plate 27 and the second side plate 30 to the driven scroll member 90 via the crank pin 15 as a synchronous drive mechanism.
  • the driven scroll member 90 rotates about the driven rotation axis CL2.
  • the crank pins 15 rotate relative to the center plate 20 and both side plates via the bearings 16, 18a and 18b, so that the scroll members 70 and 90 relatively revolve and move.
  • both scroll members 70, 90 When both scroll members 70, 90 perform a revolution movement, air sucked from the suction port of housing 3 is drawn from the outer peripheral side of both scroll members 70, 90, and a compression chamber formed by both scroll members 70, 90 Incorporated into The compression chamber formed by the first drive side wall 71b and the first driven side wall 91b and the compression chamber formed by the second drive side wall 72b and the second driven side wall 92b are separately compressed. Ru. The volume of each compression chamber decreases as it moves toward the center, and the air is compressed accordingly.
  • the air compressed by the first drive side wall 71b and the first driven side wall 91b passes through the through hole 90h formed in the driven side end plate 90a, and the second drive side wall 72b and the second driven side wall 92b
  • the air that has been compressed is merged with the air that has been compressed, and the merged air passes through the discharge port 72 d and is discharged from the discharge port 3 d of the housing 3 to the outside.
  • a first side plate 27 and a second side plate 30 are provided on the drive side scroll member 70 and the driven side scroll member 90 in the direction of the rotational axes CL1 and CL2, and a center plate 20 is provided between the side plates 27 and 30.
  • the crank pin 15 and the bearings 16, 18a, 18b are provided between the side plates 27, 30 and the center plate 20 as a synchronous drive mechanism.
  • the first projecting wall 27 b and the second projecting wall 30 c are provided between the first side plate 27 and the second side plate 30 as peripheral wall portions surrounding the outer peripheral side of the center plate 20.
  • the lubricant supplied to the synchronous drive mechanism (specifically, each of the bearings 16, 18a, 18b) is moved to the outer peripheral side by the centrifugal force, the lubricant is applied to the inner peripheral side of the liquid-tight peripheral wall portion. Since the lubricant can be held, the lack of lubrication of the synchronous drive mechanism can be avoided to extend the life. In addition, preventing the leakage of the lubricant can prevent the compressed air from being contaminated.
  • the peripheral wall portion is configured using the first protruding wall portion 27 b and the second protruding wall portion 30 c, but the present invention is not limited to this, and the outer periphery of the center plate 20
  • the peripheral wall may be provided so as to surround the wall.
  • the peripheral wall may be formed of only the first projecting wall 27 b or may be formed of only the second projecting wall 30 c.
  • the peripheral wall portion may be configured using a member other than the side plates 27 and 30.
  • crankpin 15 is used as the synchronous drive mechanism
  • the present invention is not limited to this, and any synchronous drive mechanism that needs to supply a lubricant may be used.
  • a pin ring mechanism composed of a pin member and a ring member may be used.
  • the present embodiment differs from the fourth embodiment in that sealing members are provided to the side plates 27 and 30. Therefore, since the whole structure of the both rotation scroll type compressor 1 is the same as that of 4th Embodiment, the description is abbreviate
  • a first seal member 43 is provided between the first side plate 27 and the drive shaft 71 d.
  • a boot seal or a labyrinth seal can be employed.
  • a second seal member 44 is provided between the end face of the second side plate 30 and the end face of the center plate 20.
  • an annular chip seal made of resin can be employed.
  • the second seal member 44 is accommodated in a circumferential groove formed on the end face of the second side plate 30. A circumferential groove may be formed in the center plate 20 and the second seal member 44 may be installed on the center plate 20 side.
  • the first seal member 43 By providing the first seal member 43, the gap between the first side plate 27 and the drive shaft 71d is sealed. Thereby, it is possible to prevent the lubricant from leaking out between the first side plate 27 and the drive shaft portion 71d.
  • the first seal member 43 may be provided between the second side plate 30 and the drive shaft 71 d.
  • the second seal member 44 is provided between the second side plate 30 and the center plate 20. Thereby, the lubricant can be prevented from leaking out between the second side plate 30 and the drive shaft 71 d.
  • the second seal member 44 may be provided between the first side plate 27 and the center plate 20.
  • the present embodiment is different from the fourth embodiment in that the side plates 27 and 30 are on the driving side and the center plate 20 is on the driven side.
  • the other points are the same as in the fourth embodiment, and thus the description thereof is omitted.
  • the drive shaft 6 (see FIG. 9) of the motor 5 is connected to a drive shaft portion 30 d that protrudes toward the motor 5 from the rotation center of the second side plate 30. Therefore, the driving force from the motor 5 is transmitted from the second side plate 30 to the drive side scroll member 50 via the first side plate 27. That is, the driven scroll member 90 of the fourth embodiment is on the driving side.
  • the driving force of the center plate 20 is transmitted from both side plates 27 and 30 via a synchronous drive mechanism having a crank pin 15.
  • the driven shaft portion 61 d is fixed to the center plate 20.
  • the driven shaft portion 61 d is provided at the rotational center of the first driven end plate 61 a of the driven scroll member 60. Therefore, the drive side scroll member 70 of the fourth embodiment is the driven side.
  • the peripheral wall is constituted by the first projecting wall 27b of the first side plate 27 and the second projecting wall 30c of the second side plate 30, as in the fourth embodiment, and therefore the configuration and operation thereof The description of the effects is omitted.
  • the hole (the second side plate hole 30h: see FIG. 9) is not formed in the rotation center region of the second side plate 30 and the wall is closed.
  • the drive shaft portion 30 d is provided to the rotation center of the second side plate 30.
  • drive force is transmitted from the motor 5 to the drive side scroll member 50 via the first side plate 27 and the second side plate 30.
  • the driven shaft portion 61 d is disposed to pass through a first side plate hole 27 h formed in the first side plate 27.
  • the drive-side bearing 11 (see FIG. 9) of the fourth embodiment can be omitted, and the number of parts can be reduced.
  • FIG. 15 shows a dual-rotation scroll compressor 1.
  • the dual-rotating scroll compressor 1 is, for example, a supercharger that compresses combustion air (fluid) supplied to an internal combustion engine such as a vehicle engine, or a compressor for supplying compressed air to an air electrode of a fuel cell. It can be used as a compressor for supplying compressed air used for a braking device of a vehicle such as a railway.
  • the double-rotating scroll compressor 1 includes a housing 3, a motor (drive unit) 5 housed on one end side of the housing 3, and a drive-side scroll member 70 and a driven-side scroll member housed on the other end side of the housing 3. It has 90 and.
  • the housing 3 has a substantially cylindrical shape, and includes a motor accommodating portion 3 a that accommodates the motor 5 and a scroll accommodating portion 3 b that accommodates the scroll members 70 and 90. At the end of the scroll housing portion 3b, a discharge port 3d for discharging the compressed air is formed. Although not shown in FIG. 15, the housing 3 is provided with an air inlet for drawing air.
  • the motor 5 is driven by supplying power from a power supply source (not shown).
  • the rotation control of the motor 5 is performed by a command from a control unit (not shown).
  • the stator 5 a of the motor 5 is fixed to the inner peripheral side of the housing 3.
  • the rotor 5b of the motor 5 rotates around the drive side rotation axis CL1.
  • the drive shaft 6 extending on the drive side rotation axis line CL1 is connected to the rotor 5b.
  • the drive shaft 6 is connected to a drive shaft portion 71 d fixed to the first drive side scroll portion 71 of the drive side scroll member 70.
  • a drive-side bearing 11 for rotatably supporting the drive shaft 6 is provided.
  • the drive shaft 6 is rotatably supported with the housing 3.
  • a rear end bearing 24 is provided.
  • the drive side scroll member 70 includes a first drive side scroll portion 71 on the motor 5 side and a second drive side scroll portion 72 on the discharge port 3 d side.
  • the first drive side scroll portion 71 includes a first drive side end plate 71a and a first drive side wall 71b.
  • the first drive side end plate 71a extends in a direction orthogonal to the drive side rotational axis CL1.
  • a drive shaft portion 71d extending along the drive-side rotation axis CL1 is fixed to the rotation center of the first drive-side end plate 71a.
  • the center plate 20 is fixed to the drive shaft 71 d.
  • the center plate 20 extends in parallel with the first drive side end plate 71a.
  • the first drive side end plate 71a has a substantially disc shape in a plan view. As shown in FIG. 16, on the first drive side plate 71a, three or three spiral first drive side walls 71b are provided. The first drive side wall 71b in the form of three strips is disposed at equal intervals around the drive side rotation axis CL1. The number of the first drive side wall 71b may be one or two, or four or more.
  • the second drive side scroll portion 72 includes a second drive side end plate 72a and a second drive side wall 72b.
  • the second drive side wall body 72b is formed in three lines in the same manner as the first drive side wall body 71b (see FIG. 16) described above.
  • the number of the second drive side wall members 72b may be one or two, or four or more.
  • a second drive side shaft portion 72c extending in the direction of the drive side rotation axis CL1 is connected to the second drive side end plate 72a.
  • the second drive side shaft portion 72c is provided rotatably with respect to the housing 3 via a second drive side bearing 14 formed as a ball bearing.
  • a discharge port 72d is formed in the second drive side end plate 72a along the drive side rotational axis CL1.
  • a sealing member 26 is provided between the second drive side shaft portion 72c and the housing 3, on the tip end side (the left side in FIG. 15) of the second drive side shaft portion 72c than the second drive side bearing 14, for two second drive shaft portions.
  • the two second drive shaft portion seal members 26 and the second drive side bearing 14 are disposed at predetermined intervals in the direction of the drive side rotation axis CL1.
  • a lubricant for example, a semisolid lubricant, is enclosed between the two second drive shaft seal members 26.
  • the second drive shaft portion seal member 26 may be one. In this case, the lubricant is enclosed between the second drive shaft seal member 26 and the second drive side bearing 14.
  • the first drive side scroll portion 71 and the second drive side scroll portion 72 are fixed in a state in which the tips (free ends) of the wall bodies 71 b and 72 b face each other. Fixing of the first drive side scroll portion 71 and the second drive side scroll portion 72 is performed by bolts 31 fastened to flange portions 73 provided at a plurality of places in the circumferential direction so as to protrude radially outward. .
  • the driven end plate 90a is located substantially at the center in the axial direction (horizontal direction in the drawing).
  • a through hole 90h is formed at the center of the driven end plate 90a, and compressed air flows to the discharge port 72d.
  • the driven side walls 91b and 92b are provided on both sides of the driven end plate 90a.
  • the first driven side wall body 91b installed on the motor 5 side from the driven side end plate 90a is engaged with the first drive side wall body 71b of the first drive side scroll portion 71, and on the discharge port 3d side from the driven side end plate 90a.
  • the installed second driven side wall 92 b is engaged with the second driving side wall 72 b of the second driving scroll portion 72.
  • the three driven side wall bodies 91b are arranged at equal intervals around the driven side rotation axis CL2.
  • the second driven side wall 92b has a similar configuration.
  • the number of the driven side walls 91b and 92b may be one, two, four or more.
  • a support member 33 is provided on the discharge port 3 d side (left side in FIG. 15) of the driven scroll member 90.
  • the support member 33 is fixed to the tip (free end) of the second driven side wall 92 b by a bolt 25.
  • a support member shaft portion 35a is provided on the central axis side of the support member 33, and the housing 3 with respect to the housing 3 via a second support member bearing 38 in which the support member shaft portion 35a is a ball bearing. It is fixed.
  • the driven scroll member 90 is configured to rotate around the driven rotation axis CL2 via the support member 33.
  • a first side plate 27 is provided on the motor 5 side (right side in FIG. 15) of the driven scroll member 90.
  • the first side plate 27 is fixed by bolts 28 to the tip (free end) of the first driven side wall 91 b.
  • a first side plate hole 27h for penetrating the drive shaft 71d is formed.
  • a second side plate 30 is provided on the motor 5 side of the first side plate 27 at a predetermined interval.
  • the second side plate 30 is fixed to the first side plate 27 by bolts 34.
  • a second side plate hole 30h for penetrating the drive shaft 71d is formed.
  • a second side plate shaft portion 30a is provided on the central axis side of the second side plate 30, and the second side plate shaft portion 30a is interposed via a second side plate bearing 32 as a ball bearing. Is fixed to the housing 3. Thereby, the driven side scroll member 90 is configured to rotate around the driven side rotation axis CL2 via the second side plate 30 and the first side plate 27.
  • a lubricant such as oil or grease is supplied to a closed space formed between the second side plate 30 and the first side plate 27 so as to lubricate the sliding portion.
  • a first protruding wall portion 27 b that protrudes toward the second side plate 30 is provided on an end face on the outer peripheral side of the first side plate 27.
  • a second protruding wall portion 30 c that protrudes toward the first side plate 27 is provided on the end face on the outer peripheral side of the second side plate 30.
  • the projecting wall portions 27b and 30c are attached and fixed in a liquid-tight state to constitute a peripheral wall portion. Thereby, as shown in FIG. 18, the center plate 20 disposed between the first side plate 27 and the second side plate 30 is accommodated in the space S surrounded by the both projecting wall portions 27b and 30c. It will be.
  • a pin ring mechanism (synchronous drive mechanism) 15 is provided between the first side plate 27 and the second side plate 30 and the center plate 20.
  • the pin ring mechanism 15 includes a round bar-like pin 45 and a rolling bearing (ring) 46 whose inner circumferential surface abuts on the outer periphery of the pin 45 and guides the pin 45.
  • Three pin ring mechanisms 15 are provided at equal angular intervals around the center of rotation of the center plate 20, as shown in FIG.
  • the number of pin ring mechanisms 15 may be four or more.
  • the pin-ring mechanism 15 is shown enlarged in FIG.
  • One end (left end) of the pin 45 is press-fit and fixed to the first side plate 27 and the other end (right end) is press-fitted and fixed to the second side plate 30.
  • the central portion in the longitudinal direction of the pin 45 is in contact with the inner peripheral surface of the inner ring 46 b of the rolling bearing 46.
  • the rolling bearing 46 is a ball bearing, and is fitted in a hole formed in the center plate 20.
  • the rolling bearing 46 includes an outer ring 46a, an inner ring 46b, a plurality of balls (rolling members) 46c, and a cage (not shown) for holding the balls 46c.
  • the rolling bearing 46 is filled with a lubricant such as grease.
  • the pin ring mechanism 15 is used as a synchronous drive mechanism for transmitting a driving force from the drive shaft 71 d to the driven scroll member 90 so that the scroll members 70 and 90 relatively revolve and swing synchronously.
  • the twin-rotating scroll compressor 1 configured as described above operates as follows.
  • the center plate 20 as well as the drive-side scroll member 70 rotates about the drive-side axis CL1 via the drive shaft portion 71d connected to the drive shaft 6.
  • the driving force transmitted to the center plate 20 by the rotation of the center plate 20 is transmitted from the first side plate 27 and the second side plate 30 to the driven scroll member 90 via the pin ring mechanism 15 as a synchronous drive mechanism.
  • the driven scroll member 90 rotates about the driven rotation axis CL2.
  • the scroll members 70 and 90 relatively rotate and revolve by the pin ring mechanism 15.
  • both scroll members 70, 90 When both scroll members 70, 90 perform a revolution movement, air sucked from the suction port of housing 3 is drawn from the outer peripheral side of both scroll members 70, 90, and a compression chamber formed by both scroll members 70, 90 Incorporated into The compression chamber formed by the first drive side wall 71b and the first driven side wall 91b and the compression chamber formed by the second drive side wall 72b and the second driven side wall 92b are separately compressed. Ru. The volume of each compression chamber decreases as it moves toward the center, and the air is compressed accordingly.
  • the air compressed by the first drive side wall 71b and the first driven side wall 91b passes through the through hole 90h formed in the driven side end plate 90a, and the second drive side wall 72b and the second driven side wall 92b
  • the air that has been compressed is merged with the air that has been compressed, and the merged air passes through the discharge port 72 d and is discharged from the discharge port 3 d of the housing 3 to the outside.
  • the synchronous drive mechanism As the synchronous drive mechanism, the pin ring mechanism 15 provided with the round rod-like pin 45 and the rolling bearing 46 is adopted. As a result, the synchronous drive mechanism can be realized without adopting the crank pin mechanism, and therefore, it is possible to reduce the cost without adopting a complicated configuration by adopting many bearings as in the crank pin mechanism.
  • the pin 45 Since the pin 45 is press-fit and fixed to the both side plates 27 and 30, the pin 45 can be used as a positioning pin for both side plates 27 and 30. Since both ends of the pin 45 are fixed to both side plates 27 and 30 and abut on the inner peripheral surface of the rolling bearing 46 at the central portion, the inclination of the inner ring 46b of the rolling bearing 46 is suppressed to prevent the ball 46c from skewing By preventing this, the service life of the synchronous drive mechanism can be extended.
  • the present embodiment can be modified as follows. That is, as shown in FIG. 20, in the pin ring mechanism 15A of this modification, one end (left end) of the pin 45 is press-fitted and fixed to the first side plate 27 as in the seventh embodiment. On the other hand, the other end (right end) of the pin 45 is fixed to the second side plate 30 via an O-ring (elastic body) 47.
  • One end of the pin 45 is press-fitted and fixed to the first side plate 27, and the other end of the pin 45 is fixed to the second side plate 30 via the O-ring 47.
  • the O-ring 47 may be provided on the second side plate 30 side, or the O-ring 47 may be provided on the first side plate 27 side.
  • the pin ring mechanism 15 of the present embodiment shown in FIG. 19 and the pin ring mechanism 15A of the first modification shown in FIG. 20 may be combined. Specifically, as shown in FIG. 18, two of the three pin ring mechanisms are the pin ring mechanism 15 shown in FIG. 19, and the other one pin ring mechanism is the pin ring shown in FIG. It is referred to as mechanism 15A.
  • Two of the three pin ring mechanisms have a function as positioning pins as a configuration in which both ends of the pin 45 are press-fitted and fixed to both side plates 27 and 30.
  • the pin 45 of the other pin ring mechanism is fixed by press-fitting at one end and fixed at the other end via the O-ring 47 to absorb tolerance.
  • the positioning of both side plates 27 and 30 can be performed by the pin ring mechanism 15, and the assemblability can be improved.
  • the present embodiment is different from the seventh embodiment in the configuration of the pin ring mechanism.
  • the other points are the same as in the seventh embodiment, and thus the description thereof is omitted.
  • rolling bearings 49, 51 are provided on the first side plate 27 and the second side plate 30, respectively.
  • the central portion in the longitudinal direction of the pin 45 is press-fitted and fixed to the center plate 20. Both ends of the pin 45 are in contact with the inner peripheral surfaces of the rolling bearings 49 and 51.
  • the central portion of the pin 45 is pressed into the center plate 20, and both ends of the pin 45 are brought into contact with the inner peripheral surfaces of rolling bearings 49, 51 provided on both side plates 27, 30. Therefore, since both ends of the pin 45 are not constrained by the side plates 27 and 30, the situation in which the pin 45 can not be fixed at the time of assembly due to the component tolerance of both side plates 27 and 30 can be avoided. it can. Thereby, the assemblability can be improved.
  • O-rings (elastic members) 23 may be provided on both ends of the pin 45. Thereby, the impact when the pin 45 abuts on the inner circumferential surface of the rolling bearings 49 and 51 can be alleviated and the noise can be reduced.
  • rolling bearing 46, 49, 51 was employ
  • a slide bearing 48 may be provided in place of the rolling bearing 46 shown in FIG.
  • cost can be reduced compared with the case where a rolling bearing is adopted.
  • high response can be achieved.
  • lubrication by a lubricant is required, so the projecting wall portions 27b and 30c of both side plates 27 and 30 as shown in FIG. It is.
  • such a liquid-tight structure does not limit the present invention, including the above embodiments.
  • FIG. 24 shows a dual-rotation scroll compressor 1.
  • the dual-rotating scroll compressor 1 is, for example, a supercharger that compresses combustion air (fluid) supplied to an internal combustion engine such as a vehicle engine, or a compressor for supplying compressed air to an air electrode of a fuel cell. It can be used as a compressor for supplying compressed air used for a braking device of a vehicle such as a railway.
  • the double-rotating scroll compressor 1 includes a housing 3, a motor (drive unit) 5 housed on one end side of the housing 3, and a drive-side scroll member 70 and a driven-side scroll member housed on the other end side of the housing 3. It has 90 and.
  • the housing 3 has a substantially cylindrical shape, and includes a motor accommodating portion 3 a that accommodates the motor 5 and a scroll accommodating portion 3 b that accommodates the scroll members 70 and 90. At the end of the scroll housing portion 3b, a discharge port 3d for discharging the compressed air is formed. Although not shown in FIG. 24, the housing 3 is provided with an air intake port for sucking in air.
  • the motor 5 is driven by supplying power from a power supply source (not shown).
  • the rotation control of the motor 5 is performed by a command from a control unit (not shown).
  • the stator 5 a of the motor 5 is fixed to the inner peripheral side of the housing 3.
  • the rotor 5b of the motor 5 rotates around the drive side rotation axis CL1.
  • the drive shaft 6 extending on the drive side rotation axis line CL1 is connected to the rotor 5b.
  • the drive shaft 6 is connected to a drive shaft portion 71 d fixed to the first drive side scroll portion 71 of the drive side scroll member 70.
  • a drive-side bearing 11 for rotatably supporting the drive shaft 6 is provided.
  • the drive shaft 6 is rotatably supported with the housing 3.
  • a rear end bearing 17 is provided.
  • the drive side scroll member 70 includes a first drive side scroll portion 71 on the motor 5 side and a second drive side scroll portion 72 on the discharge port 3 d side.
  • the first drive side scroll portion 71 includes a first drive side end plate 71a and a first drive side wall 71b.
  • the first drive side end plate 71a extends in a direction orthogonal to the drive side rotational axis CL1.
  • a drive shaft portion 71d extending along the drive-side rotation axis CL1 is fixed to the rotation center of the first drive-side end plate 71a.
  • a center plate (bearing support member) 20 is fixed to the drive shaft 71 d.
  • the center plate 20 extends in parallel with the first drive side end plate 71a.
  • the first drive side end plate 71a has a substantially disc shape in a plan view. As shown in FIG. 25, on the first drive side end plate 71a, three or three rows of first drive side walls 71b in a spiral shape are provided. The first drive side wall 71b in the form of three strips is disposed at equal intervals around the drive side rotation axis CL1. The number of the first drive side wall 71b may be one or two, or four or more.
  • the second drive side scroll portion 72 includes a second drive side end plate 72a and a second drive side wall 72b.
  • the second drive side wall body 72b is formed in three lines in the same manner as the first drive side wall body 71b (see FIG. 25) described above.
  • the number of the second drive side wall members 72b may be one or two, or four or more.
  • a second drive side shaft portion 72c extending in the direction of the drive side rotation axis CL1 is connected to the second drive side end plate 72a.
  • the second drive side shaft portion 72c is provided rotatably with respect to the housing 3 via a second drive side bearing 14 formed as a ball bearing.
  • a discharge port 72d is formed in the second drive side end plate 72a along the drive side rotational axis CL1.
  • a sealing member 26 is provided between the second drive side shaft portion 72c and the housing 3, on the tip end side (the left side in FIG. 24) of the second drive side shaft portion 72c than the second drive side bearing 14, for two second drive shaft portions.
  • the two second drive shaft portion seal members 26 and the second drive side bearing 14 are disposed at predetermined intervals in the direction of the drive side rotation axis CL1.
  • a lubricant for example, a semisolid lubricant, is enclosed between the two second drive shaft seal members 26.
  • the second drive shaft portion seal member 26 may be one. In this case, the lubricant is enclosed between the second drive shaft seal member 26 and the second drive side bearing 14.
  • the first drive side scroll portion 71 and the second drive side scroll portion 72 are fixed in a state in which the tips (free ends) of the wall bodies 71 b and 72 b face each other. Fixing of the first drive side scroll portion 71 and the second drive side scroll portion 72 is performed by bolts 31 fastened to flange portions 73 provided at a plurality of places in the circumferential direction so as to protrude radially outward. .
  • the driven end plate 90a is located substantially at the center in the axial direction (horizontal direction in the drawing).
  • a through hole 90h is formed at the center of the driven end plate 90a, and compressed air flows to the discharge port 72d.
  • the driven side walls 91b and 92b are provided on both sides of the driven end plate 90a.
  • the first driven side wall body 91b installed on the motor 5 side from the driven side end plate 90a is engaged with the first drive side wall body 71b of the first drive side scroll portion 71, and on the discharge port 3d side from the driven side end plate 90a.
  • the installed second driven side wall 92 b is engaged with the second driving side wall 72 b of the second driving scroll portion 72.
  • the three driven side wall bodies 91b are arranged at equal intervals around the driven side rotation axis CL2.
  • the second driven side wall 92b has a similar configuration.
  • the number of the driven side walls 91b and 92b may be one, two, four or more.
  • a support member 33 is provided on the discharge port 3 d side (left side in FIG. 24) of the driven scroll member 90.
  • the support member 33 is fixed to the tip (free end) of the second driven side wall 92 b by a bolt 25.
  • a support member shaft portion 35a is provided on the central axis side of the support member 33.
  • the support member shaft portion 35a corresponds to the housing 3 via a second support member bearing 38 which is an angular ball bearing. It is fixed.
  • the driven scroll member 90 is configured to rotate around the driven rotation axis CL2 via the support member 33.
  • a first side plate (bearing support member) 27 is provided on the motor 5 side (right side in FIG. 24) of the driven scroll member 90.
  • the first side plate 27 is fixed by bolts 28 to the tip (free end) of the first driven side wall 91 b.
  • a first side plate hole 27h for penetrating the drive shaft 71d is formed.
  • a second side plate (bearing support member) 30 is provided on the motor 5 side of the first side plate 27 at a predetermined interval.
  • the second side plate 30 is fixed to the first side plate 27 by bolts 34.
  • a second side plate hole 30h for penetrating the drive shaft 71d is formed.
  • a second side plate shaft portion 30a is provided on the central axis side of the second side plate 30, and the second side plate bearing 32 in which the second side plate shaft portion 30a is an angular ball bearing is provided. It is being fixed with respect to the housing 3 via. Thereby, the driven side scroll member 90 is configured to rotate around the driven side rotation axis CL2 via the second side plate 30 and the first side plate 27.
  • a first protruding wall portion 27 b that protrudes toward the second side plate 30 is provided on an end face on the outer peripheral side of the first side plate 27.
  • a second protruding wall portion 30 c that protrudes toward the first side plate 27 is provided on the end face on the outer peripheral side of the second side plate 30.
  • the projecting wall portions 27b and 30c are attached and fixed in a liquid-tight state to constitute a peripheral wall portion.
  • the center plate 20 disposed between the first side plate 27 and the second side plate 30 is accommodated in the space S surrounded by the both projecting wall portions 27b and 30b. It will be.
  • a crankpin 15 is provided between the first side plate 27 and the second side plate 30 and the center plate 20.
  • the crankpin 15 has a central cylindrical portion 15a, and a first eccentric shaft portion 15b and a second eccentric shaft portion 15f having an eccentric axis eccentric to the central axis of the cylindrical portion 15a.
  • the first eccentric shaft 15b protrudes to one side (left) of the cylindrical portion 15a
  • the second eccentric shaft 15f protrudes to the other side (right) of the cylindrical portion 15a.
  • the crankpin 15 has a symmetrical shape centering on the cylindrical portion 15a.
  • a cylindrical portion bearing (cylindrical portion rolling bearing) 16 which is an angular ball bearing is provided on the outer periphery of the cylindrical portion 15a.
  • the cylindrical portion 15 a is rotatable relative to the center plate 20.
  • a lubricant such as grease is enclosed in the cylindrical portion bearing 16.
  • the first eccentric shaft portion 15b is provided with a first eccentric shaft portion bearing (first crank pin end portion rolling bearing) 34 which is an angular ball bearing. Thereby, the first eccentric shaft portion 15 b is rotatable relative to the first side plate 27. Grease (lubricant) is enclosed in the first eccentric shaft portion bearing 34.
  • the second eccentric shaft portion 15f is provided with a second eccentric shaft portion bearing (second crank pin end portion rolling bearing) 35, which is an angular ball bearing. Thereby, the second eccentric shaft portion 15 f is rotatable relative to the second side plate 30. Grease (lubricant) is enclosed in the second eccentric shaft portion bearing 35.
  • crank pin 15 and the bearings 16, 34, 35 are used as a synchronous drive mechanism for transmitting the driving force from the drive shaft 71d to the driven scroll member 90 so that the scroll members 70, 90 rotate and orbit synchronously.
  • a plurality of synchronous drive mechanisms provided with the crank pins 15 are preferably provided, for example, three at equal angular intervals around the rotation axes CL1 and CL2 (see FIG. 27).
  • the cylindrical portion bearing 16 includes an outer ring 16a, an inner ring 16b, balls 16c arranged between the outer ring 16a and the inner ring 16b, and cages (not shown) for holding the balls 16c at equal intervals. ing.
  • the outer ring 16 a is fitted to a circular groove formed in the center plate 20 via an O-ring (elastic body) 36.
  • the O-ring 36 is disposed in a state of being deformed by a predetermined amount, and presses the outer ring 16a in the direction of the inner ring 16b.
  • the inner ring 16b is press-fit and fitted to the cylindrical portion 15a.
  • a sealing member 52 for sealing the lubricant is provided on the side of the cylindrical portion bearing 16 (right side in FIG. 28).
  • the seal member 52 has an annular shape, and the outer peripheral side is fixed to the side portion of the outer ring 16a.
  • the seal member 52 is not fixed to the inner ring 16b, and a predetermined gap is provided to the side portion of the inner ring 16b.
  • the inner peripheral end of the seal member 52 extends to the side portion of the inner ring 16b, more specifically to the inner peripheral side of the outer periphery of the inner ring 16b.
  • a snap ring 55 for fixing the seal member 52 in a fixed position is provided on the side of the seal member 52 (right side in the same figure).
  • the first eccentric shaft portion bearing 34 includes an outer ring 34a, an inner ring 34b, a plurality of balls 34c disposed between the outer ring 34a and the inner ring 34b, and a cage (shown in FIG. And).
  • the outer ring 34 a is press-fit into a circular groove formed in the first side plate 27.
  • the inner ring 34b is press-fit to the first eccentric shaft 15b.
  • a seal member 53 for sealing the lubricant is provided on the side (right side in FIG. 28) of the first eccentric shaft portion bearing 34.
  • the sealing member 53 has an annular shape, and the outer peripheral side is fixed to the side portion of the outer ring 34a.
  • the seal member 53 is not fixed to the inner ring 34b, and a predetermined gap is provided to the side portion of the inner ring 34b.
  • the inner peripheral end of the seal member 53 extends to the side portion of the inner ring 34b, more specifically to the inner peripheral side of the outer periphery of the inner ring 34b.
  • a snap ring 56 for fixing the seal member 53 in a fixed position is provided on the side of the seal member 53 (right side in the same drawing).
  • the second eccentric shaft portion bearing 35 includes an outer ring 35a, an inner ring 35b, a plurality of balls 35c disposed between the outer ring 35a and the inner ring 35b, and a cage (shown in FIG. And).
  • the outer ring 35 a is press-fit into a circular groove formed in the second side plate 30.
  • the inner ring 35b is press-fit to the second eccentric shaft 15f.
  • a sealing member 54 for sealing a lubricant is provided on the side (left in FIG. 28) of the second eccentric shaft portion bearing 35.
  • the seal member 54 has an annular shape, and the outer peripheral side is fixed to the side portion of the outer ring 35a.
  • the seal member 54 is not fixed to the inner ring 35b, and a predetermined gap is provided to the side portion of the inner ring 35b.
  • the inner peripheral end of the seal member 54 extends to the side portion of the inner ring 35b, more specifically to the inner peripheral side of the outer periphery of the inner ring 35b.
  • a snap ring 57 for fixing the seal member 54 in a fixed position is provided on the side of the seal member 54 (right side in the same figure).
  • the twin-rotating scroll compressor 1 configured as described above operates as follows.
  • the center plate 20 As well as the drive-side scroll member 70 rotates about the drive-side axis CL1 via the drive shaft portion 71d connected to the drive shaft 6.
  • the driving force transmitted to the center plate 20 is transmitted from the first side plate 27 and the second side plate 30 to the driven scroll member 90 via the crank pin 15 as a synchronous drive mechanism.
  • the driven scroll member 90 rotates about the driven rotation axis CL2.
  • the crank pin 15 rotates with respect to the center plate 20 and both side plates via the bearings 16, 34, 35, the scroll members 70, 90 relatively revolve and move.
  • both scroll members 70, 90 When both scroll members 70, 90 perform a revolution movement, air sucked from the suction port of housing 3 is drawn from the outer peripheral side of both scroll members 70, 90, and a compression chamber formed by both scroll members 70, 90 Incorporated into The compression chamber formed by the first drive side wall 71b and the first driven side wall 91b and the compression chamber formed by the second drive side wall 72b and the second driven side wall 92b are separately compressed. Ru. The volume of each compression chamber decreases as it moves toward the center, and the air is compressed accordingly.
  • the air compressed by the first drive side wall 71b and the first driven side wall 91b passes through the through hole 90h formed in the driven side end plate 90a, and the second drive side wall 72b and the second driven side wall 92b
  • the air that has been compressed is merged with the air that has been compressed, and the merged air passes through the discharge port 72 d and is discharged from the discharge port 3 d of the housing 3 to the outside.
  • an O-ring 36 is provided between the outer ring 16 a of the cylindrical portion bearing 16 and the center plate 20.
  • the tolerance of the crank pin 15, the side plates 27, 30, and the center plate 20 is absorbed by the deformation of the O-ring 36, thereby avoiding internal force from occurring in the crank pin 15 and prolonging the life of the synchronous drive mechanism. be able to.
  • the processing tolerance of the crankpin 15 can be relaxed, and the processing cost and the management cost can be reduced.
  • by pressing the outer ring 16a to the inner ring 16b side by the O-ring 36 it is possible to prevent the slip between the hole into which the outer ring 16a is fitted and the outer ring 16a.
  • the present embodiment can be modified as follows. As shown in FIG. 29, the outer ring 16a of the cylindrical portion bearing 16 may be press-fitted, and the O rings 37 may be provided on the outer rings 34a and 35a of the both eccentric shaft portion bearings 34 and 35.
  • the tolerance of the crank pin 15, the side plates 27, 30, and the center plate 20 is absorbed by the deformation of the O-ring 37, thereby avoiding internal force generation on the crank pin 15 and prolonging the life of the synchronous drive mechanism. be able to. Further, the processing tolerance of the crankpin 15 can be relaxed, and the processing cost and the management cost can be reduced. Further, by pressing the outer ring 16a to the inner ring 16b side by the O-ring 36, it is possible to prevent the slip between the hole into which the outer ring 16a is fitted and the outer ring 16a.
  • the present embodiment can be modified as follows. As shown in FIG. 30, in addition to the O ring 36 being provided on the outer ring 16a of the cylindrical portion bearing 16, the O ring 37 may be provided on the outer rings 34a and 35a of both eccentric shaft portion bearings 34 and 35. Good.
  • the tolerance of the crankpin 15, the side plates 27, 30, and the center plate 20 is absorbed by the deformation of the O-rings 36, 37, thereby avoiding internal force from occurring in the crankpin 15 and prolonging the life of the synchronous drive mechanism.
  • the processing tolerance of the crankpin 15 can be relaxed, and the processing cost and the management cost can be reduced. Further, by pressing the outer ring 16a to the inner ring 16b side by the O-ring 36, it is possible to prevent the slip between the hole into which the outer ring 16a is fitted and the outer ring 16a.
  • the present embodiment can be modified as follows. As shown in FIG. 31, the outer ring 16a of the cylindrical portion bearing 16 and the outer rings 34a and 35a of both the eccentric shaft portion bearings 34 and 35 are press-fitted, and O is formed between the inner rings 16b, 34b and 35b and the crank pin 15. A ring 38 may be provided.
  • the tolerance of the crank pin 15, the side plates 27, 30, and the center plate 20 is absorbed by the deformation of the O-ring 38, thereby preventing the internal force from being generated in the crank pin 15 and prolonging the life of the synchronous drive mechanism. be able to. Further, the processing tolerance of the crankpin 15 can be relaxed, and the processing cost and the management cost can be reduced.
  • the O ring 38 may be provided only between the inner ring 16b of the cylindrical portion bearing 16 and the crankpin 15, or between the inner rings 34b, 35b of the eccentric shaft portion bearings 34, 35 and the crankpin 15 You may provide only between.
  • the crankpin 15 ' is constituted by parts of the cylindrical portion 15a and the eccentric shaft portion 15g.
  • a first eccentric shaft 15b and a second eccentric shaft 15f are provided at both ends of the eccentric shaft 15g.
  • the cylindrical portion 15a is formed with an insertion hole 15a1 into which the eccentric shaft portion 15g is inserted.
  • the eccentric shaft portion 15g is fixed by being pressed into the insertion hole 15a1.
  • FIG. 32B shows the crankpin 15 shown in the ninth embodiment.
  • the crank pin 15 has the cylindrical portion 15a, the first eccentric shaft portion 15b and the second eccentric shaft portion 15f integrated with each other, and is formed by cutting out the same material.
  • the eccentric shaft portion 15g of the crankpin 15 ' is inserted into the insertion hole 15a1 formed in the cylindrical portion 15a.
  • the eccentric shaft 15g and the cylindrical portion 15a can be made into separate parts, and each can be processed separately. Therefore, as compared with the case where the eccentric shaft 15g and the cylindrical portion 15a are integrally processed (FIG. 32B), the axial centers of the first eccentric shaft 15b and the second eccentric shaft 15f at both ends of the eccentric shaft 15g are used. It can be adjusted. Therefore, the internal force applied to the crankpin 15 'can be reduced, and the service life of the synchronous drive mechanism can be prolonged.
  • crankpin 15 'of this embodiment may be applied instead of the crankpin 15 of the ninth embodiment, but is not limited to the configuration of the ninth embodiment and is used in a double-turn scroll compressor. It can be applied as a crankpin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

駆動側スクロール部材(70)及び従動側スクロール部材(90)に対して駆動側回転軸線方向(CL1)側に配置された第1サイドプレート(27)と、第1サイドプレート(27)に対して駆動側回転軸線(CL1)方向に所定間隔を有して固定された第2サイドプレート(30)と、第1サイドプレート(27)と第2サイドプレート(30)の間に配置されたセンタープレート(20)とを備えている。第1サイドプレート(27)は、従動側スクロール部材(90)に固定され、センタープレート(20)は、駆動側スクロール部材(70)に固定されている。クランクピン(15)を備えた同期駆動機構は、第1サイドプレート(27)及び第2サイドプレート(30)と、センタープレート(20)との間に設けられている。

Description

両回転スクロール型圧縮機
 本発明は、両回転スクロール型圧縮機に関するものである。
 従来より、両回転スクロール型圧縮機が知られている(特許文献1参照)。これは、駆動側スクロールと、駆動側スクロールと共に同期して回転する従動側スクロールとを備え、駆動側スクロールを回転させる駆動軸に対して、従動側スクロールの回転を支持する従動軸を旋回半径分だけオフセットして、駆動軸と従動軸とを同じ方向に同一角速度で回転させている。
特許第5443132号公報
 両回転スクロール型圧縮機では、駆動側スクロール部材と従動側スクロール部材とを同じ方向に同一角速度で自転運動するように駆動側スクロール部材から従動側スクロール部材に駆動力を伝達する同期駆動機構が用いられる。この同期駆動機構としては、クランクピンやピンリングを用いた機構が考えられるが、スクロール部材から圧縮熱が伝達されると、寿命が低下するおそれがある。特に、潤滑油を用いている場合には寿命低下を抑制する必要がある。
 また、駆動側スクロール部材と従動側スクロール部材の2つの部材の間で同期駆動機構を採用すると、同期駆動機構に対して2箇所で荷重が加わることとなり、同期駆動機構回りにモーメントが発生し、寿命が低下するおそれがある。
 また、同期駆動機構として転がり軸受を備えたクランクピンやピンリングを用いた場合、転がり軸受に封入された潤滑剤が遠心力によって外部へ漏出してしまうと、潤滑不足によって軸受の寿命低下を来すおそれがある。また、潤滑剤が外部へ漏出すると、圧縮後の流体に混入して流体を汚染するおそれがある。
 また、同期駆動機構として転がり軸受を備えたクランクピンを用いた場合、クランクピンの回転を支持する転がり軸受を少なくとも2つ以上設ける必要があり、コストを増大させる要因となっていた。
 また、同期駆動機構として転がり軸受を備えたクランクピンを用いた場合、クランクピンの公差や転がり軸受が挿入される穴の公差等によって、クランクピンに内力が生じ、寿命の低下を来すおそれがある。特に、クランクピンを一体として切削加工する場合には、クランクピンの加工誤差が生じやすく、クランクピンに生じる内力が大きくなるおそれがある。
 本発明は、このような事情に鑑みてなされたものであって、同期駆動機構の長寿命化を図ることができる両回転スクロール型圧縮機を提供することを目的とする。
 本発明は、同期駆動機構のコストを削減することができる両回転スクロール型圧縮機を提供することを目的とする。
 本発明は、クランクピン機構とされた同期駆動機構の長寿命化を図ることができる両回転スクロール型圧縮機を提供することを目的とする。
 本発明の一態様にかかる両回転スクロール型圧縮機は、駆動部によって回転軸線回りに回転駆動され、駆動側端板上に配置された渦巻状の駆動側壁体を有する駆動側スクロール部材と、前記駆動側壁体に対応する渦巻状の従動側壁体が従動側端板上に配置され、該従動側壁体が前記駆動側壁体に対して噛み合わされることによって圧縮空間を形成する従動側スクロール部材と、前記駆動側スクロール部材と前記従動側スクロール部材とが同じ方向に同一角速度で自転運動するように前記従動側スクロール部材に前記駆動部の駆動力を伝達する同期駆動機構と、前記駆動側スクロール部材及び前記従動側スクロール部材に対して前記回転軸線方向側に配置された第1サイドプレートと、前記第1サイドプレートに対して前記回転軸線方向に所定間隔を有して固定された第2サイドプレートと、前記第1サイドプレートと前記第2サイドプレートの間に配置されたセンタープレートと、を備え、前記第1サイドプレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の一方に固定され、前記センタープレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の他方に固定され、前記同期駆動機構は、前記第1サイドプレート及び前記第2サイドプレートと、前記センタープレートとの間に設けられている。
 駆動側スクロール部材の駆動側端板上に配置された駆動側壁体と、従動側スクロール部材の従動側壁体とが噛み合わされることによって、圧縮空間が形成される。駆動側スクロール部材は、駆動部によって回転駆動され、従動側スクロール部材は、同期駆動機構を介して駆動力が伝達される。これにより、従動側スクロール部材は、回転するとともに駆動側スクロール部材に対して同方向に同一角速度で自転運動を行う。このように、駆動側スクロール部材及び従動側スクロール部材の両方が回転する両回転式のスクロール型圧縮機が提供される。
 駆動側スクロール部材及び従動側スクロール部材に対して回転軸線方向側に第1サイドプレート及び第2サイドプレートを設け、これらサイドプレートの間にセンタープレートを設けた。そして、両サイドプレートとセンタープレートとの間に同期駆動機構を設けることとした。このように、両スクロール部材とは別の部材であるサイドプレート及びセンタープレートに同期駆動機構を設けることとしたので、スクロール部材からの圧縮熱による加熱を減少させることができ、同期駆動機構の長寿命化を図ることができる。
 また、同期駆動機構には、センタープレートとその両側のサイドプレートから荷重が加わることになり、センタープレート回りのモーメントをキャンセルすることができ、同期駆動機構の長寿命化を図ることができる。
 また、両サイドプレート及びセンタープレートを回転軸線方向側に設けて同期駆動機構を配置することとしたので、スクロール部材の径方向側に同期駆動機構を設ける場合に比べて小径化することができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記同期駆動機構は、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンと、前記偏心軸部の両端部と前記第1サイドプレート及び前記第2サイドプレートとの間に設けられたクランクピン端部転がり軸受とを備え、前記クランクピン端部転がり軸受の内輪と前記偏心軸部との間には、該内輪を該偏心軸部の先端に向けて前記偏心軸線方向に付勢する付勢部材が設けられている。
 同期駆動機構をクランクピンとクランクピンの両端部を両サイドプレートとの間で回転自在に軸支するクランクピン端部転がり軸受とで構成することとした。そして、クランクピン端部転がり軸受の内輪とクランクピンの偏心軸部との間に、内輪を偏心軸部の先端に向けて偏心軸線方向に付勢する付勢部材を設けることとした。付勢部材によってクランクピン端部転がり軸受の内輪が先端に向けて付勢されるので、クランクピン端部転がり軸受の転動体を介して外輪がサイドプレートに押し付けられる。これにより、クランクピン端部転がり軸受は、クランクピンの偏心軸受とサイドプレートの間に予圧を与えられた状態となり、転動体と内輪とのすべりや、内輪と偏心軸部とのすべりを抑制でき、同期駆動機構の長寿命化を図ることができる。
 付勢部材としては、例えば、Oリングが用いられる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記同期駆動機構は、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンと、前記偏心軸部の両端部と前記第1サイドプレート及び前記第2サイドプレートとの間に設けられたクランクピン端部転がり軸受とを備え、前記第1サイドプレートと前記第2サイドプレートとの間隔によって、前記クランクピン端部転がり軸受に対して前記偏心軸線方向に予圧が与えられている。
 同期駆動機構をクランクピンとクランクピンの両端部を両サイドプレートとの間で回転自在に軸支するクランクピン端部転がり軸受とで構成することとした。そして、第1サイドプレートと第2サイドプレートとの間隔によって、クランクピン端部転がり軸受に対して偏心軸線方向に予圧を与えることとした。これにより、クランクピン端部転がり軸受の転動体と内輪とのすべりや、内輪と偏心軸部とのすべりを抑制でき、同期駆動機構の長寿命化を図ることができる。
 予圧の与え方としては、具体的には、第1サイドプレートに対して第2サイドプレートを締結する際に、これらサイドプレートの間隔が狭まるようにする。すなわち、同期駆動機構のクランクピン及びクランクピン端部転がり軸受によって決まる両サイドプレートの間隔よりも、両サイドプレートを締結することによって決まる間隔を小さくしておく。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記同期駆動機構は、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンと、前記偏心軸部の両端部と前記第1サイドプレート及び前記第2サイドプレートとの間に設けられたクランクピン端部転がり軸受とを備え、前記クランクピン端部転がり軸受の内輪の内周面と前記偏心軸部の外周面との間には、弾性体が設けられている。
 同期駆動機構をクランクピンとクランクピンの両端部を両サイドプレートとの間で回転自在に軸支するクランクピン端部転がり軸受とで構成することとした。そして、クランクピン端部転がり軸受の内輪の内周面と偏心軸部の外周面との間に弾性体を設けることとした。これにより、内輪と偏心軸部との間に挟まれた弾性体の変形によって反力が生じ、偏心軸部と内輪との間のすべりを抑制することができ、同期駆動機構の長寿命化を図ることができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記駆動側スクロール部材又は前記従動側スクロール部材の一方に固定された前記第1サイドプレートの固定部と、前記駆動側スクロール部材又は前記従動側スクロール部材の他方に固定された前記センタープレートの固定部とのうち、前記スクロール部材の中心よりも半径方向内側に位置する前記固定部は、樹脂部を介在させた構造とされ、前記スクロール部材の中心よりも半径方向外側に位置する前記固定部には、樹脂部を介在させずに金属部を用いた構造とされている。
 スクロール部材の中心よりも半径方向内側に位置する固定部では、圧縮熱によって温度が上昇する傾向にあるので、樹脂部を介在させた構造とする。これにより、同期駆動機構の温度の上昇を抑えることで、長寿命化を図ることができる。
 一方、スクロール部材の中心よりも半径方向外側に位置する固定部では、圧縮熱による温度上昇の影響が少ないので、樹脂部を介在させずに金属を用いた構造とする。これにより、金属を用いて精度良く固定部を組み立てることができるので、同期駆動機構の位置決めが正確に行われ、ひいては駆動側スクロール部材と従動側スクロール部材との位相ズレを低減でき、圧縮性能を向上させることができる。
 また、本発明の一態様にかかる両回転スクロール型圧縮機は、駆動部によって回転軸線回りに回転駆動され、駆動側端板上に配置された渦巻状の駆動側壁体を有する駆動側スクロール部材と、前記駆動側壁体に対応する渦巻状の従動側壁体が従動側端板上に配置され、該従動側壁体が前記駆動側壁体に対して噛み合わされることによって圧縮空間を形成する従動側スクロール部材と、前記駆動側スクロール部材と前記従動側スクロール部材とが同じ方向に同一角速度で自転運動するように前記従動側スクロール部材に駆動力を伝達する同期駆動機構と、前記駆動側スクロール部材及び前記従動側スクロール部材に対して前記回転軸線方向側に配置された第1サイドプレートと、前記第1サイドプレートに対して前記回転軸線方向に所定間隔を有して固定された第2サイドプレートと、前記第1サイドプレートと前記第2サイドプレートの間に配置されたセンタープレートと、を備え、前記第1サイドプレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の一方に固定され、前記センタープレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の他方に固定され、前記同期駆動機構は、前記第1サイドプレート及び前記第2サイドプレートと、前記センタープレートとの間に設けられ、前記第1サイドプレートと前記第2サイドプレートとの間には、前記センタープレートの外周側を囲む周壁部が設けられている。
 駆動側スクロール部材の駆動側端板上に配置された駆動側壁体と、従動側スクロール部材の従動側壁体とが噛み合わされることによって、圧縮空間が形成される。駆動側スクロール部材は、駆動部によって回転駆動され、従動側スクロール部材は、同期駆動機構を介して駆動力が伝達される。これにより、従動側スクロール部材は、回転するとともに駆動側スクロール部材に対して同方向に同一角速度で自転運動を行う。このように、駆動側スクロール部材及び従動側スクロール部材の両方が回転する両回転式のスクロール型圧縮機が提供される。
 駆動側スクロール部材及び従動側スクロール部材に対して回転軸線方向側に第1サイドプレート及び第2サイドプレートを設け、これらサイドプレートの間にセンタープレートを設けた。そして、両サイドプレートとセンタープレートとの間に同期駆動機構を設けた。さらに、第1サイドプレートと第2サイドプレートとの間に、センタープレートの外周側を囲む周壁部を設けることとした。これにより、遠心力によって同期駆動機構に供給された潤滑剤が外周側に移動したとしても、周壁部の内周側に潤滑剤を保持することができるので、同期駆動機構の潤滑不足を回避して長寿命化を図ることができる。
 同期駆動機構としては、例えば、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンと、偏心軸部の両端部と第1サイドプレート及び第2サイドプレートとの間に設けられたクランクピン端部転がり軸受とを備えたクランク機構を用いることができる。潤滑剤は、転がり軸受に供給される。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記駆動側端板と前記駆動部との間に接続された前記回転軸線回りに回転する駆動軸部を備え、前記センタープレートは、前記駆動軸部に固定され、前記第1サイドプレートには、前記駆動軸部が貫通する第1サイドプレート用孔部が形成され、前記第2サイドプレートには、前記駆動軸部が貫通する第2サイドプレート用孔部が形成され、前記第1サイドプレート用孔部と前記駆動軸部との間、及び/又は、前記第2サイドプレート用孔部と前記駆動軸部との間には、第1シール部材が設けられていることを特徴とする。
 駆動側端板と駆動部との間に駆動軸部を設け、駆動軸部に対してセンタープレートを固定することとした。これにより、駆動側スクロール部材は、センタープレートを介して駆動部から駆動力が伝達される。
 第1サイドプレート及び第2サイドプレートには、駆動軸部が貫通する孔部がそれぞれ設けられている。これにより、両サイドプレートと駆動軸部との間には隙間が不可避的に生じることになるが、この隙間をシールするように第1シール部材を設けることとした。これにより、両サイドプレートと駆動軸部との間から潤滑剤が漏出することを防止することができる。
 第1シール部材としては、例えば、ブーツシールやラビリンスシールを採用することができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記駆動側端板と前記駆動部との間に接続された前記回転軸線回りに回転する駆動軸部を備え、前記センタープレートは、前記駆動軸部に固定され、前記第1サイドプレートには、前記駆動軸部が貫通する第1サイドプレート用孔部が形成され、前記第2サイドプレートには、前記駆動軸部が貫通する第2サイドプレート用孔部が形成され、前記第1サイドプレートと前記センタープレートとの間、及び/又は、前記第2サイドプレートと前記センタープレートとの間には、第2シール部材が設けられている。
 駆動側端板と駆動部との間に駆動軸部を設け、駆動軸部に対してセンタープレートを固定することとした。これにより、駆動側スクロール部材は、センタープレートを介して駆動部から駆動力が伝達される。
 第1サイドプレート及び第2サイドプレートには、駆動軸部が貫通する孔部がそれぞれ設けられている。これにより、両サイドプレートと駆動軸部との間には隙間が不可避的に生じることになるが、両サイドプレートとセンタープレートの間に第2シール部材を設けることとした。これにより、両サイドプレートと駆動軸部との間から潤滑剤が漏出することを防止することができる。
 第2シール部材としては、例えば、各サイドプレート又はセンタープレートに形成された円周溝に挿入されたチップシールを採用することができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、外周側の前記駆動側壁体に対して前記第1サイドプレートが固定され、前記第1サイドプレートに対して前記第2サイドプレートが固定され、前記第2サイドプレートの回転中心に対して前記駆動部が接続され、前記従動側端板の回転中心に接続された従動軸部に対して前記センタープレートが固定され、前記第1サイドプレートには、前記従動軸部が貫通する第1サイドプレート用孔部が形成され、前記第2サイドプレートの回転中心領域は、壁部で閉じられている。
 外周側の駆動側壁体に対して第1サイドプレートを固定し、第1サイドプレートに対して第2サイドプレートを固定し、第2サイドプレートの略回転中心に対して駆動部を接続することとした。これにより、駆動側スクロール部材は、第1サイドプレート及び第2サイドプレートを介して駆動部から駆動力が伝達される。
 従動側端板の回転中心に接続された従動軸部に対してセンタープレートを固定することで、両サイドプレートから同期駆動機構を介して伝達された駆動力をセンタープレートから従動側スクロール部材へ導くようにした。
 従動軸部は、第1サイドプレートに形成した第1サイドプレート用孔部を貫通するように配置される。従動軸部には、同期駆動機構を介してセンタープレートから駆動力が伝達されるので、第2サイドプレートの回転中心領域に従動軸部を貫通させるための孔部を形成する必要はない。したがって、回転中心領域が壁部で閉じられた第2サイドプレートを採用することができるので、潤滑剤が第2サイドプレートの回転中心から漏出することを防止することができる。
 また、本発明の一態様にかかる両回転スクロール型圧縮機は、駆動部によって回転軸線回りに回転駆動され、駆動側端板上に配置された渦巻状の駆動側壁体を有する駆動側スクロール部材と、前記駆動側壁体に対応する渦巻状の従動側壁体が従動側端板上に配置され、該従動側壁体が前記駆動側壁体に対して噛み合わされることによって圧縮空間を形成する従動側スクロール部材と、前記駆動側スクロール部材と前記従動側スクロール部材とが同じ方向に同一角速度で自転運動するように前記従動側スクロール部材に前記駆動部の駆動力を伝達する同期駆動機構と、前記駆動側スクロール部材及び前記従動側スクロール部材に対して前記回転軸線方向側に配置された第1サイドプレートと、前記第1サイドプレートに対して前記回転軸線方向に所定間隔を有して固定された第2サイドプレートと、前記第1サイドプレートと前記第2サイドプレートの間に配置されたセンタープレートとを備え、前記第1サイドプレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の一方に固定され、前記センタープレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の他方に固定され、前記同期駆動機構は、前記第1サイドプレート及び前記第2サイドプレートと前記センタープレートとの間に設けられた丸棒状のピンと、該ピンの外周に内周面が当接して該ピンをガイドするリングとを備えている。
 同期駆動機構として、丸棒状のピンとリングを備えたピンリング機構を採用することとした。これにより、クランクピン機構を採用することなく同期駆動機構を実現できるので、クランクピン機構のように多くの軸受を採用して複雑な構成とすることなくコストを低減することができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記リングは、前記センタープレートに設けられた転がり軸受とされ、前記ピンは、その両端が前記第1サイドプレート及び前記第2サイドプレートに対して圧入され、その長手方向における中央部が前記転がり軸受の内周面に当接する。
 両サイドプレートに対してピンを圧入して固定することとしたので、ピンを、両サイドプレートの位置決めピンとして兼用させることができる。
 ピンの両端が両サイドプレートに固定され、中央部で転がり軸受の内周面に当接するので、転がり軸受の内輪が傾斜することを抑制して玉等の転がり部材の斜行を防ぐことによって同期駆動機構の長寿命化を図ることができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記リングは、前記センタープレートに設けられた転がり軸受とされ、前記ピンは、その一端が前記第1サイドプレート又は前記第2サイドプレートの一方に対して圧入され、その他端が前記第1サイドプレート又は前記第2サイドプレートの他方に対して弾性体を介して固定され、その長手方向における中央部が前記転がり軸受の内周面に当接する。
 ピンの一端をサイドプレートの一方に対して圧入して固定し、ピンの他端をサイドプレートの他方に対して弾性体を介して固定することとした。これにより、部品公差によって両サイドプレートにピンの両端が圧入できないことを防止し、組み立てを容易にしてコストを低減することができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記同期駆動機構は、前記回転軸線の周方向に離間して3つ以上設けられ、前記同期駆動機構のうち2つは、前記リングが、前記センタープレートに設けられた転がり軸受とされ、前記ピンが、その両端が前記第1サイドプレート及び前記第2サイドプレートに対して圧入され、その長手方向における中央部が前記転がり軸受の内周面に当接し、他の前記同期駆動機構は、前記リングが、前記センタープレートに設けられた転がり軸受とされ、前記ピンが、その一端が前記第1サイドプレート又は前記第2サイドプレートの一方に対して圧入され、その他端が前記第1サイドプレート又は前記第2サイドプレートの他方に対して弾性体を介して固定され、その長手方向における中央部が前記転がり軸受の内周面に当接する。
 3以上ある同期駆動機構のうちの2つを、ピンの両端が両サイドプレートに圧入され固定された構成として位置決めピンとしての機能を持たせる。それ以外の同期駆動機構のピンは、一端を圧入固定とし、他端を弾性体を介した固定として公差を吸収することとした。これにより、両サイドプレートの位置決めを同期駆動機構で行うとともに、組み立て性を向上させることができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記リングは、前記第1サイドプレート及び前記第2サイドプレートのそれぞれに設けられた転がり軸受とされ、前記ピンは、その長手方向における中央部が前記センタープレートに圧入され、その両端が前記転がり軸受の内周面に当接する。
 センタープレートにピンの中央部を圧入することとし、ピンの両端を両サイドプレートに設けた転がり軸受の内周面に当接させることとした。したがって、ピンの両端が両サイドプレートによって拘束される構成とはならないので、両サイドプレートの部品公差によって組み立て時にピンを固定することができないとい事態を回避することができる。これにより、組み立て性を向上させることができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記リングは、前記転がり軸受に代えてすべり軸受とされている。
 転がり軸受に代えてすべり軸受(例えば浮動ブッシュ軸受)とすることにより、コストを低減することができる。
 転がり軸受のような回転系の慣性モーメントを削減できるので、高レスポンス化を図ることができる。
 また、本発明の一態様にかかる両回転スクロール型圧縮機は、駆動部によって回転軸線回りに回転駆動され、駆動側端板上に配置された渦巻状の駆動側壁体を有する駆動側スクロール部材と、前記駆動側壁体に対応する渦巻状の従動側壁体が従動側端板上に配置され、該従動側壁体が前記駆動側壁体に対して噛み合わされることによって圧縮空間を形成する従動側スクロール部材と、前記駆動側スクロール部材と前記従動側スクロール部材とが同じ方向に同一角速度で自転運動するように前記従動側スクロール部材に前記駆動部の駆動力を伝達する同期駆動機構と、前記駆動側スクロール部材及び前記従動側スクロール部材に対して前記回転軸線方向側に配置された第1サイドプレートと、前記第1サイドプレートに対して前記回転軸線方向に所定間隔を有して固定された第2サイドプレートと、前記第1サイドプレートと前記第2サイドプレートの間に配置されたセンタープレートとを備え、前記第1サイドプレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の一方に固定され、前記センタープレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の他方に固定され、前記同期駆動機構は、前記第1サイドプレート及び前記第2サイドプレートと、前記センタープレートとの間に設けられ、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンと、前記偏心軸部の一端と前記第1サイドプレートとの間に設けられた第1クランクピン端部転がり軸受と、前記偏心軸部の他端と前記第2サイドプレートとの間に設けられた第2クランクピン端部転がり軸受と、前記円筒部と前記センタープレートとの間に設けられた円筒部転がり軸受とを備え、前記第1クランクピン端部転がり軸受の外輪と前記第1サイドプレートとの間、前記第2クランクピン端部転がり軸受の外輪と前記第2サイドプレートとの間、若しくは、前記円筒部転がり軸受の外輪と前記センタープレートとの間の少なくともいずれかに、又は、前記第1クランクピン端部転がり軸受の内輪と前記偏心軸部の前記一端との間、前記第2クランクピン端部転がり軸受の内輪と前記偏心軸部の前記他端との間、若しくは、前記円筒部転がり軸受の内輪と前記円筒部との間の少なくともいずれかに、弾性体が設けられている。
 同期駆動機構の転がり軸受の外輪とサイドプレート若しくはセンタープレートとの間に、又は、同期駆動機構の転がり軸受の内輪とクランクピンとの間に、弾性体を設けることとした。これにより、クランクピンやサイドプレート、センタープレートの公差を弾性体の変形によって吸収することで、クランクピンに内力が生じることを回避して同期駆動機構を長寿命化することができる。
 また、クランクピンの加工公差を緩和することができ、加工費や管理費を削減することができる。
 また、弾性体によって外輪を内輪側に押圧することで、外輪が嵌められた穴と外輪との間の滑りを防止することができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記円筒部転がり軸受の外輪と前記センタープレートとの間に前記弾性体が設けられ、前記第1クランクピン端部転がり軸受の外輪は、前記第1サイドプレートに対して圧入され、前記第2クランクピン端部転がり軸受の外輪は、前記第2サイドプレートに対して圧入されている。
 第1クランクピン端部転がり軸受の外輪および第2クランクピン端部転がり軸受の外輪が圧入されているので、これら両クランクピン端部転がり軸受によって遠心力が保持される。このように2つの転がり軸受で遠心力を負担するので、1つの円筒部転がり軸受で遠心力を負担する場合に比べて負担する荷重を緩和できる。
 また、2つのクランクピン端部転がり軸受によってクランクピンを両端で支持することになるので、クランクピンの姿勢を安定化させることができる。
 さらに、本発明の一態様に係る両回転スクロール型圧縮機では、前記円筒部には、前記偏心軸部を挿入する挿入穴が形成されている。
 クランクピンの偏心軸部を円筒部に形成された挿入穴に挿入することとした。これにより、クランクピンを、偏心軸部と円筒部とを別部品とすることができ、それぞれを別に加工することができる。したがって、偏心軸部と円筒部とを一体で加工する場合に比べて、偏心軸部の両端における軸芯を合わせることができる。
 また、本発明の一態様に係る両回転スクロール型圧縮機は、駆動部によって回転軸線回りに回転駆動され、駆動側端板上に配置された渦巻状の駆動側壁体を有する駆動側スクロール部材と、前記駆動側壁体に対応する渦巻状の従動側壁体が従動側端板上に配置され、該従動側壁体が前記駆動側壁体に対して噛み合わされることによって圧縮空間を形成する従動側スクロール部材と、前記駆動側スクロール部材と前記従動側スクロール部材とが同じ方向に同一角速度で自転運動するように前記従動側スクロール部材に前記駆動部の駆動力を伝達する同期駆動機構と、前記駆動側スクロール部材及び前記従動側スクロール部材に対して前記回転軸線方向側に配置された第1サイドプレートと、前記第1サイドプレートに対して前記回転軸線方向に所定間隔を有して固定された第2サイドプレートと、前記第1サイドプレートと前記第2サイドプレートの間に配置されたセンタープレートとを備え、前記第1サイドプレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の一方に固定され、前記センタープレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の他方に固定され、前記同期駆動機構は、前記第1サイドプレート及び前記第2サイドプレートと、前記センタープレートとの間に設けられ、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンを備え、前記円筒部には、前記偏心軸部を挿入する挿入穴が形成されている。
 クランクピンの偏心軸部を円筒部に形成された挿入穴に挿入することとした。これにより、偏心軸部と円筒部とを別部品とすることができ、それぞれを別に加工することができる。したがって、偏心軸部と円筒部とを一体で加工する場合に比べて、偏心軸部の両端における軸芯を合わせることができる。したがって、クランクピンに加わる内力を低減でき、同期駆動機構の長寿命化を図ることができる。
 駆動側スクロール部材及び従動側スクロール部材とは別の部材であるサイドプレート及びセンタープレートに同期駆動機構を設けることとしたので、スクロール部材からの圧縮熱による加熱を減少させることができ、同期駆動機構の長寿命化を図ることができる。
 第1サイドプレートと第2サイドプレートとの間に、センタープレートの外周側を囲む周壁部を設けて周壁部の内周側に潤滑剤を保持することとしたので、同期駆動機構の長寿命化を図ることができる。
 ピンリング機構を採用することにより、同期駆動機構の構成を簡素化してコストを削減することができる。
 弾性体の変形によって公差を吸収することで、クランクピンに内力が生じることを回避して同期駆動機構を長寿命化することができる。
本発明の第1実施形態に係る両回転スクロール型圧縮機を示した縦断面図である。 図1の両回転スクロール型圧縮機のスクロール部材、両サイドプレート及びセンタープレートを示した斜視図である。 図1の第1駆動側スクロール部を示した平面図である。 図1の第2駆動側スクロール部を示した平面図である。 本発明の第2実施形態を示し、同期駆動機構回りを示した縦断面図である。 第2実施形態の変形例1を示した縦断面図である。 第2実施形態の変形例2を示した縦断面図である。 本発明の第3実施形態を示し、同期駆動機構回りを示した縦断面図である。 本発明の第4実施形態に係る両回転スクロール型圧縮機を示した縦断面図である。 図9の第1駆動側壁体を示した平面図である。 図9の第1従動側壁体を示した平面図である。 サイドプレートとセンタープレートを示した平面図である。 本発明の第5実施形態に係る両回転スクロール型圧縮機を示した縦断面図である。 本発明の第6実施形態に係る両回転スクロール型圧縮機を示した縦断面図である。 本発明の第7実施形態に係る両回転スクロール型圧縮機を示した縦断面図である。 図15の第1駆動側壁体を示した平面図である。 図15の第1従動側壁体を示した平面図である。 サイドプレートとセンタープレートを示した平面図である。 ピンリング機構回りを拡大して示した縦断面図である。 ピンリング機構の変形例を示した縦断面図である。 第8実施形態に係る両回転スクロール型圧縮機のピンリング機構周りを示した縦断面図である。 図21の変形例を示した縦断面図である。 変形例としてすべり軸受を設けたピンリング機構を示した縦断面図である。 本発明の第9実施形態に係る両回転スクロール型圧縮機を示した縦断面図である。 図24の第1駆動側壁体を示した平面図である。 図24の第1従動側壁体を示した平面図である。 サイドプレートとセンタープレートを示した平面図である。 クランクピンの偏心軸部回りを示した縦断面図である。 第9実施形態の変形例1を示した縦断面図である。 第9実施形態の変形例2を示した縦断面図である。 第9実施形態の変形例3を示した縦断面図である。 本発明の第10実施形態に係る両回転スクロール型圧縮機のクランクピンを示した正面図である。 図32Aの参考例としてのクランクピンを示した正面図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態について、図1等を用いて説明する。
 図1には、両回転スクロール型圧縮機1が示されている。両回転スクロール型圧縮機1は、例えば車両用エンジン等の内燃機関に供給する燃焼用空気(流体)を圧縮する過給機や、燃料電池の空気極に圧縮空気を供給するための圧縮機、鉄道等の車両の制動装置に用いる圧縮空気を供給するための圧縮機として用いることができる。
 両回転スクロール型圧縮機1は、ハウジング3と、ハウジング3の一端側に収容されたモータ(駆動部)5と、ハウジング3の他端側に収容された駆動側スクロール部材70及び従動側スクロール部材90とを備えている。
 ハウジング3は、略円筒形状とされており、モータ5を収容するモータ収容部3aと、スクロール部材70,90を収容するスクロール収容部3bとを備えている。
 スクロール収容部3bの端部には、圧縮後の空気を吐出するための吐出口3dが形成されている。なお、図1では示されていないが、ハウジング3には空気を吸入する空気吸入口が設けられている。
 モータ5は、図示しない電力供給源から電力が供給されることによって駆動される。モータ5の回転制御は、図示しない制御部からの指令によって行われる。モータ5のステータ5aはハウジング3の内周側に固定されている。モータ5のロータ5bは、駆動側回転軸線CL1回りに回転する。ロータ5bには、駆動側回転軸線CL1上に延在する駆動軸6が接続されている。駆動軸6は、駆動側スクロール部材70の第1駆動側スクロール部71を駆動するセンタープレート20の軸部20aと接続されている。
 駆動軸6の前端(図1において左端)には、駆動軸6を回転可能に支持する駆動側軸受11が設けられている。駆動軸6の後端(図1において右端)、すなわち駆動側スクロール部材70に対して反対側の駆動軸6の端部には、ハウジング3との間で駆動軸6を回動可能に支持する後端軸受17が設けられている。
 駆動側スクロール部材70は、モータ5側の第1駆動側スクロール部71と、吐出口3d側の第2駆動側スクロール部72とを備えている。
 第1駆動側スクロール部71は、第1駆動側端板71aと第1駆動側壁体71bを備えている。
 第1駆動側端板71aは、駆動側回転軸線CL1に対して直交する方向に延在している。第1駆動側端板71aは、センタープレート20の外周に複数設けられた固定部20bに対して、ボルト21を用いて固定されている。図2に示されているように、センタープレート20の固定部20bは、円周方向に略等間隔で3つ設けられている。但し、固定部20bの個数はこれに限定されるものではない。
 第1駆動側端板71aは、平面視した場合に略円板形状とされている。第1駆動側端板71a上に、図3に示すように、渦巻状とされた第1駆動側壁体71bが3つ、すなわち3条設けられている。3条とされた第1駆動側壁体71bは、駆動側回転軸線CL1回りに等間隔にて配置されている。第1駆動側壁体71bの巻き終わり部71eは、それぞれ、他の壁部に固定されておらず、独立している。すなわち、各巻き終わり部71e同士を接続して補強するような壁部は設けられていない。なお、第1駆動側壁体71bの条数は、1条でも2条でも良く、あるいは4条以上であっても良い。
 図1に示したように、第2駆動側スクロール部72は、第2駆動側端板72aと第2駆動側壁体72bを備えている。第2駆動側壁体72bは、上述した第1駆動側壁体71b(図2参照)と同様に、3条とされている。第2駆動側壁体72bの巻き終わり部は、それぞれ、他の壁部に固定されておらず、独立している。すなわち、各巻き終わり部同士を接続して補強するような壁部は設けられていない。なお、第2駆動側壁体72bの条数は、1条でも2条でも良く、あるいは4条以上であっても良い。
 第2駆動側端板72aには、駆動側回転軸線CL1方向に延在する第2駆動側軸部72cが接続されている。第2駆動側軸部72cは、玉軸受とされた第2駆動側軸受14を介して、ハウジング3に対して回転自在に設けられている。第2駆動側端板72aには、駆動側回転軸線CL1に沿って吐出ポート72dが形成されている。
 第2駆動側軸部72cとハウジング3との間には、第2駆動側軸受14よりも第2駆動側軸部72cの先端側(図1において左側)に、2つのシール部材26が設けられている。2つのシール部材26と第2駆動側軸受14とは駆動側回転軸線CL1方向に所定間隔を有して配置されている。2つのシール部材26の間には、例えば半固体潤滑剤であるグリースとされた潤滑剤が封入されている。なお、シール部材26は1つとしても良い。この場合、潤滑剤は、シール部材26と第2駆動側軸受14との間に封入される。
 第1駆動側スクロール部71と第2駆動側スクロール部72とは、壁体71b,72bの先端(自由端)同士が向かい合った状態で固定されている。第1駆動側スクロール部71と第2駆動側スクロール部72との固定は、半径方向外側に突出するように円周方向において複数箇所設けたフランジ部73に対して締結されたボルト31によって行われる。
 従動側スクロール部材90は、軸方向(図において水平方向)における略中央に、従動側端板90aが位置している。従動側端板90aの中央には貫通孔90hが形成されており、圧縮後の空気が吐出ポート72dへ流れるようになっている。
 従動側端板90aの両側には、それぞれ、従動側壁体91b,92bが設けられている。従動側端板90aからモータ5側に設置された第1従動側壁体91bは、第1駆動側スクロール部71の第1駆動側壁体71bと噛み合わされ、従動側端板90aから吐出口3d側に設置された第2従動側壁体92bは、第2駆動側スクロール部72の第2駆動側壁体72bと噛み合わされる。
 図4に示すように、第1従動側壁体91bは、3つ、すなわち3条設けられている。3条とされた従動側壁体91bは、従動側回転軸線CL2回りに等間隔にて配置されている。第2従動側壁体92bについても、同様の構成となっている。なお、各従動側壁体91b,92bの条数は、1条でも2条でも良く、あるいは4条以上であっても良い。
 従動側スクロール部材90の吐出口3d側(図1において左側)には、サポート部材33が設けられている。サポート部材33は、ボルト25によって第2従動側壁体92bの先端(自由端)に対して固定されている。
 サポート部材33の中心軸側には、サポート部材用軸部35aが設けられており、このサポート部材用軸部35aがアンギュラ玉軸受とされた第2サポート部材用軸受38を介してハウジング3に対して固定されている。これにより、サポート部材33を介して、従動側スクロール部材90が第2中心軸線CL2回りに回転するようになっている。
 従動側スクロール部材90のモータ5側(図1において右側)には、第1サイドプレート27が設けられている。第1サイドプレート27は、ボルト28によって第1従動側壁体91bの先端(自由端)に対して固定されている。
 第1サイドプレート27のモータ5側には、所定間隔を有して、第2サイドプレート30が設けられている。第2サイドプレート30は、ボルト31によって第1サイドプレート27に対して固定されている。第2サイドプレート30の中心軸側には、第2サイドプレート用軸部30aが設けられており、この第2サイドプレート用軸部30aがアンギュラ玉軸受とされた第2サイドプレート用軸受32を介してハウジング3に対して固定されている。これにより、第2サイドプレート30及び第1サイドプレート27を介して、従動側スクロール部材90が第2中心軸線CL2回りに回転するようになっている。
 第1サイドプレート27と第2サイドプレート30との間に、センタープレート20が配置されている。図2に示すように、センタープレート20が駆動側スクロール部材70に直接固定されており、第1サイドプレート27が従動側スクロール部材90に直接固定されている。
 第1サイドプレート27及び第2サイドプレート30と、センタープレート20との間には、クランクピン15が設けられている。クランクピン15は、中央の円筒部15aと、円筒部15aの中心軸線に対して偏心する偏心軸線(図5の符号CL3参照)を有する偏心軸部15bとを有する。
 円筒部15aの外周には、アンギュラ玉軸受とされた円筒部用軸受16が設けられている。これにより、円筒部15aがセンタープレート20に対して回転自在とされている。
 偏心軸部15bの両端には、それぞれ、アンギュラ玉軸受とされた第1偏心軸部用軸受(クランクピン端部転がり軸受)18a及び第2偏心軸部用軸受(クランクピン端部転がり軸受)18bが設けられている。これにより、偏心軸部15bが第1サイドプレート27及び第2サイドプレート30に対して回転自在とされている。
 クランクピン15及び各軸受16,18a,18bは、両スクロール部材70,90が同期して公転旋回運動するように従動側スクロール部材90にモータ5の駆動力を伝達する同期駆動機構として用いられる。
 クランクピン15を備えた同期駆動機構は、好ましくは複数設けられ、例えば、駆動側回転軸線CL3回りに等角度間隔で3つ設けられる。
 上記構成の両回転スクロール型圧縮機1は、以下のように動作する。
 モータ5によって駆動軸6が駆動側回転軸線CL1回りに回転させられると、駆動軸6に接続された軸部20aを介してセンタープレート20も回転する。センタープレート20の回転によって、固定部20bを介して接続された駆動側スクロール部材70が駆動側回転軸線CL1回りに回転する。センタープレート20に伝達された駆動力は、同期駆動機構としてのクランクピン15を介して第1サイドプレート27及び第2サイドプレート30から従動側スクロール部材90へと伝達され、従動側スクロール部材90が従動側回転軸線CL2回りに回転する。このとき、クランクピン15が各軸受16,18a,18bを介してセンタープレート20及び両サイドプレートに対して回転することで、両スクロール部材70,90が相対的に公転旋回運動を行う。
 両スクロール部材70,90が公転旋回運動を行うと、ハウジング3の吸入口から吸い込まれた空気が両スクロール部材70,90の外周側から吸入され、両スクロール部材70,90によって形成された圧縮室に取り込まれる。そして、第1駆動側壁体71bと第1従動側壁体91bとによって形成された圧縮室と、第2駆動側壁体72bと第2従動側壁体92bとによって形成された圧縮室とが別々に圧縮される。それぞれの圧縮室は中心側に移動するにしたがって容積が減少し、これに伴い空気が圧縮される。第1駆動側壁体71bと第1従動側壁体91bとによって圧縮された空気は、従動側端板90aに形成された貫通孔90hを通り、第2駆動側壁体72bと第2従動側壁体92bとによって圧縮された空気と合流し、合流後の空気が吐出ポート72dを通り、ハウジング3の吐出口3dから外部へと吐出される。
 本実施形態によれば、以下の作用効果を奏する。
 駆動側スクロール部材70及び従動側スクロール部材90に対して回転軸線方向CL1,CL2側に第1サイドプレート27及び第2サイドプレート30を設け、これらサイドプレート27,30の間にセンタープレート20を設けた。そして、両サイドプレート27,30とセンタープレート20との間に同期駆動機構としてクランクピン15及び各軸受16,18a,18bを設けることとした。このように、両スクロール部材70,90とは別の部材であるサイドプレート27,30及びセンタープレート20に同期駆動機構を設けることとしたので、スクロール部材70,90の端板に対して同期駆動機構を設ける場合に比べて、スクロール部材70.90からの圧縮熱による加熱を減少させることができ、同期駆動機構の長寿命化を図ることができる。
 クランクピン15には、センタープレート20とその両側のサイドプレート27,30から荷重が加わることになり、クランクピン15の円筒部15a回りのモーメントをキャンセルすることができ、同期駆動機構の長寿命化を図ることができる。
 両サイドプレート27,30及びセンタープレート20を回転軸線CL1,CL2方向側に設けて同期駆動機構を配置することとしたので、スクロール部材70,90の径方向側に同期駆動機構を設ける場合に比べて小径化することができる。
 なお、本実施形態では、同期駆動機構としてクランクピン15を用いることとしたが、本発明はこれに限定されるものではなく、例えばピン部材とリング部材とから構成されたピンリング機構を用いても良い。
[第2実施形態]
 次に、本発明の第2実施形態について説明する。本実施形態は、第1実施形態にて説明したクランクピン15を備えた同期駆動機構に関するものである。したがって、両回転スクロール型圧縮機1の全体構成は第1実施形態と同様であるので、その説明を省略する。
 図5に示されているように、クランクピン15の偏心軸部15bの両側の端部15cには、偏心軸部用軸受18a,18bの内輪が取り付けられる位置に、中央部15eよりも径が小さくされた小径部15dが設けられている。中央部15eと小径部15dとの間の段部15jには、Oリング(付勢部材)19が設けられている。
 Oリング19は、偏心軸部用軸受18a,18bの内輪をクランクピン15の先端に向けて偏心軸線CL3方向に付勢する。
 なお、図5において、符号41は潤滑油をシールするためのシール板であり、符号42はシール板41を固定するためのストッパリングである。
 本実施形態によれば、以下の作用効果を奏する。
 偏心軸部用軸受18a,18bの内輪とクランクピン15の偏心軸部15bとの間に、内輪を偏心軸部15bの先端に向けて偏心軸線CL3方向に付勢するOリング19を設けることとした。Oリング19によって偏心軸部用軸受18a,18bの内輪が先端に向けて付勢されるので、偏心軸部用軸受18a,18bの玉(転動体)を介して外輪がサイドプレート27,30に押し付けられる。これにより、偏心軸部用軸受18a,18bは、クランクピン15の偏心軸部15bとサイドプレート27,30の間に予圧を与えられた状態となり、玉と内輪とのすべりや、内輪と偏心軸部15bとのすべりを抑制でき、同期駆動機構の長寿命化を図ることができる。
<変形例1>
 なお、偏心軸部用軸受18a,18bに予圧を与える手段として、本実施形態の代わりに、あるいは本実施形態とともに、図6に示す構成を採用しても良い。
 図6には、第1サイドプレート27に対して第2サイドプレート30をボルト31によって固定する前の状態が示されている。この状態で、第2サイドプレート30の固定部30bの先端と第1サイドプレート27との間には隙間tが形成されている。このように、クランクピン15及び各軸受16,18a,18bによって決まる両サイドプレート27,30の間隔よりも、両サイドプレート27,30をボルト31で締結することによって決まる間隔を小さくしておく。これにより、第1サイドプレート27に対して第2サイドプレート30をボルト31で締結する際に、これらサイドプレート27,30の間隔が狭まるようになり、偏心軸部用軸受18a,18bに対して偏心軸線CL3方向に予圧を与えることができる。
<変形例2>
 また、偏心軸部用軸受18a,18bの内輪のすべりを抑制する手段として、本実施形態の代わりに、あるいは本実施形態とともに、図7に示す構成を採用しても良い。
 図7に示すように、第1偏心軸部用軸受18aの内輪の内周面と偏心軸部15bの外周面との間に、Oリング(弾性体)22が設けられている。Oリング22は、その変形による反力によって、第1偏心軸部用軸受18aの内輪を、偏心軸線CL3を中心とした半径方向外側に付勢する。これにより、偏心軸部15bと内輪との間のすべりを抑制することができる。
 なお、Oリング22は、第2偏心軸部用軸受18bに設けても良い。
[第3実施形態]
 次に、本発明の第3実施形態について説明する。本実施形態は、第1実施形態に対して、センタープレート20を駆動側スクロール部材70に固定する固定部20bが相違する。その他の点については第1実施形態と同様であるので、その説明を省略する。
 図8に示されているように、センタープレート20の固定部20b’は、第1サイドプレート27の固定部27a及び第2サイドプレート30の固定部30bに対して、駆動側回転軸線CL1側に位置している。センタープレート20の固定部20b’には、樹脂製とされた樹脂製軸部40を介在させた構造とされている。センタープレート20の他の部分はアルミ合金や鉄とされた金属製とされている。
 一方、第1サイドプレート27の固定部27a及び第2サイドプレート30の固定部30bは、樹脂部を介在させずに金属で構成された構造とされている。
 本実施形態によれば、以下の作用効果を奏する。
 スクロール部材70,90の中心よりも半径方向内側に位置するセンタープレート20の固定部20b’では、圧縮熱によって温度が上昇する傾向にあるので、樹脂製軸部40を介在させた構造とする。これにより、クランクピン15を備えた同期駆動機構の温度の上昇を抑えることで、長寿命化を図ることができる。
 一方、スクロール部材70,90の中心よりも半径方向外側に位置する第1サイドプレート27の固定部27a及び第2サイドプレート30の固定部30bでは、圧縮熱による温度上昇の影響が少ないので、樹脂部を介在させずに金属を用いた構造とする。これにより、金属を用いて精度良く固定部27a,30bを組み立てることができるので、同期駆動機構の位置決めが正確に行われ、ひいては駆動側スクロール部材70と従動側スクロール部材90との位相ズレを低減でき、圧縮性能を向上させることができる。
[第4実施形態]
 以下、本発明の第4実施形態について、図9等を用いて説明する。
 図9には、両回転スクロール型圧縮機1が示されている。両回転スクロール型圧縮機1は、例えば車両用エンジン等の内燃機関に供給する燃焼用空気(流体)を圧縮する過給機や、燃料電池の電極に圧縮空気を供給するための圧縮機、鉄道等の車両の制動装置に用いる圧縮空気を供給するための圧縮機として用いることができる。
 両回転スクロール型圧縮機1は、ハウジング3と、ハウジング3の一端側に収容されたモータ(駆動部)5と、ハウジング3の他端側に収容された駆動側スクロール部材70及び従動側スクロール部材90とを備えている。
 ハウジング3は、略円筒形状とされており、モータ5を収容するモータ収容部3aと、スクロール部材70,90を収容するスクロール収容部3bとを備えている。
 スクロール収容部3bの端部には、圧縮後の空気を吐出するための吐出口3dが形成されている。なお、図9では示されていないが、ハウジング3には空気を吸入する空気吸入口が設けられている。
 モータ5は、図示しない電力供給源から電力が供給されることによって駆動される。モータ5の回転制御は、図示しない制御部からの指令によって行われる。モータ5のステータ5aはハウジング3の内周側に固定されている。モータ5のロータ5bは、駆動側回転軸線CL1回りに回転する。ロータ5bには、駆動側回転軸線CL1上に延在する駆動軸6が接続されている。駆動軸6は、駆動側スクロール部材70の第1駆動側スクロール部71に固定された駆動軸部71dと接続されている。
 駆動軸6の前端(図9において左端)には、駆動軸6を回転可能に支持する駆動側軸受11が設けられている。駆動軸6の後端(図9において右端)、すなわち駆動側スクロール部材70に対して反対側の駆動軸6の端部には、ハウジング3との間で駆動軸6を回動可能に支持する後端軸受17が設けられている。
 駆動側スクロール部材70は、モータ5側の第1駆動側スクロール部71と、吐出口3d側の第2駆動側スクロール部72とを備えている。
 第1駆動側スクロール部71は、第1駆動側端板71aと第1駆動側壁体71bを備えている。
 第1駆動側端板71aは、駆動側回転軸線CL1に対して直交する方向に延在している。第1駆動側端板71aの回転中心には、駆動側回転軸線CL1上に沿って延在する駆動軸部71dが固定されている。
 駆動軸部71dには、センタープレート20が固定されている。センタープレート20は、第1駆動側端板71aと平行に延在している。
 第1駆動側端板71aは、平面視した場合に略円板形状とされている。第1駆動側端板71a上に、図10に示すように、渦巻状とされた第1駆動側壁体71bが3つ、すなわち3条設けられている。3条とされた第1駆動側壁体71bは、駆動側回転軸線CL1回りに等間隔にて配置されている。なお、第1駆動側壁体71bの条数は、1条や2条でも良く、あるいは4条以上であっても良い。
 図9に示したように、第2駆動側スクロール部72は、第2駆動側端板72aと第2駆動側壁体72bを備えている。第2駆動側壁体72bは、上述した第1駆動側壁体71b(図10参照)と同様に、3条とされている。なお、第2駆動側壁体72bの条数は、1条や2条でも良く、あるいは4条以上であっても良い。
 第2駆動側端板72aには、駆動側回転軸線CL1方向に延在する第2駆動側軸部72cが接続されている。第2駆動側軸部72cは、玉軸受とされた第2駆動側軸受14を介して、ハウジング3に対して回転自在に設けられている。第2駆動側端板72aには、駆動側回転軸線CL1に沿って吐出ポート72dが形成されている。
 第2駆動側軸部72cとハウジング3との間には、第2駆動側軸受14よりも第2駆動側軸部72cの先端側(図9において左側)に、2つのシール部材26が設けられている。2つのシール部材26と第2駆動側軸受14とは駆動側回転軸線CL1方向に所定間隔を有して配置されている。2つのシール部材26の間には、例えば半固体潤滑剤であるグリースとされた潤滑剤が封入されている。なお、シール部材26は1つとしても良い。この場合、潤滑剤は、シール部材26と第2駆動側軸受14との間に封入される。
 第1駆動側スクロール部71と第2駆動側スクロール部72とは、壁体71b,72bの先端(自由端)同士が向かい合った状態で固定されている。第1駆動側スクロール部71と第2駆動側スクロール部72との固定は、半径方向外側に突出するように円周方向において複数箇所設けたフランジ部73に対して締結されたボルト31によって行われる。
 従動側スクロール部材90は、軸方向(図において水平方向)における略中央に、従動側端板90aが位置している。従動側端板90aの中央には貫通孔90hが形成されており、圧縮後の空気が吐出ポート72dへ流れるようになっている。
 従動側端板90aの両側には、それぞれ、従動側壁体91b,92bが設けられている。従動側端板90aからモータ5側に設置された第1従動側壁体91bは、第1駆動側スクロール部71の第1駆動側壁体71bと噛み合わされ、従動側端板90aから吐出口3d側に設置された第2従動側壁体92bは、第2駆動側スクロール部72の第2駆動側壁体72bと噛み合わされる。
 図11に示すように、第1従動側壁体91bは、3つ、すなわち3条設けられている。3条とされた従動側壁体91bは、従動側回転軸線CL2回りに等間隔にて配置されている。第2従動側壁体92bについても、同様の構成となっている。なお、各従動側壁体91b,92bの条数は、1条や2条でも良く、あるいは4条以上であっても良い。
 従動側スクロール部材90の吐出口3d側(図9において左側)には、サポート部材33が設けられている。サポート部材33は、ボルト25によって第2従動側壁体92bの先端(自由端)に対して固定されている。
 サポート部材33の中心軸側には、サポート部材用軸部35aが設けられており、このサポート部材用軸部35aがアンギュラ玉軸受とされた第2サポート部材用軸受38を介してハウジング3に対して固定されている。これにより、サポート部材33を介して、従動側スクロール部材90が従動側回転軸線CL2回りに回転するようになっている。
 従動側スクロール部材90のモータ5側(図9において右側)には、第1サイドプレート27が設けられている。第1サイドプレート27は、ボルト28によって第1従動側壁体91bの先端(自由端)に対して固定されている。第1サイドプレート27の回転中心には、駆動軸部71dを貫通させるための第1サイドプレート用孔部27hが形成されている。
 第1サイドプレート27のモータ5側には、所定間隔を有して、第2サイドプレート30が設けられている。第2サイドプレート30は、ボルト34によって第1サイドプレート27に対して固定されている。第2サイドプレート30の回転中心には、駆動軸部71dを貫通させるための第2サイドプレート用孔部30hが形成されている。
 第2サイドプレート30の中心軸側には、第2サイドプレート用軸部30aが設けられており、この第2サイドプレート用軸部30aがアンギュラ玉軸受とされた第2サイドプレート用軸受32を介してハウジング3に対して固定されている。これにより、第2サイドプレート30及び第1サイドプレート27を介して、従動側スクロール部材90が従動側回転軸線CL2回りに回転するようになっている。
 第1サイドプレート27の外周側の端面には、第2サイドプレート30に向けて突出する第1突出壁部27bが設けられている。第2サイドプレート30の外周側の端面には、第1サイドプレート27に向けて突出する第2突出壁部30cが設けられている。これら突出壁部27b,30cが付き合わされて液密とされた状態で固定され、周壁部を構成している。これにより、図12に示すように、第1サイドプレート27と第2サイドプレート30との間に配置されたセンタープレート20は、両突出壁部27b,30cによって囲まれた空間Sに収納されることになる。
 図9に示すように、第1サイドプレート27及び第2サイドプレート30と、センタープレート20との間には、クランクピン15が設けられている。クランクピン15は、中央の円筒部15aと、円筒部15aの中心軸線に対して偏心する偏心軸線を有する偏心軸部15bとを有する。
 円筒部15aの外周には、玉軸受とされた円筒部用軸受16が設けられている。これにより、円筒部15aがセンタープレート20に対して回転自在とされている。円筒部用軸受16には、グリース等の潤滑剤が封入されている。
 偏心軸部15bの両端には、それぞれ、玉軸受とされた第1偏心軸部用軸受(クランクピン端部転がり軸受)18a及び第2偏心軸部用軸受(クランクピン端部転がり軸受)18bが設けられている。これにより、偏心軸部15bが第1サイドプレート27及び第2サイドプレート30に対して回転自在とされている。各偏心軸部用軸受18a,18bには、グリース等の潤滑剤が封入されている。
 クランクピン15及び各軸受16,18a,18bは、両スクロール部材70,90が同期して公転旋回運動するように駆動軸部71dから従動側スクロール部材90に駆動力を伝達する同期駆動機構として用いられる。
 クランクピン15を備えた同期駆動機構は、好ましくは複数設けられ、例えば、駆動側回転軸線CL3回りに等角度間隔で3つ設けられる(図12参照)。
 上記構成の両回転スクロール型圧縮機1は、以下のように動作する。
 モータ5によって駆動軸6が駆動側回転軸線CL1回りに回転させられると、駆動軸6に接続された駆動軸部71dを介して駆動側スクロール部材70と共にセンタープレート20も駆動側軸線CL1回りに回転する。センタープレート20の回転によって、センタープレート20に伝達された駆動力は、同期駆動機構としてのクランクピン15を介して第1サイドプレート27及び第2サイドプレート30から従動側スクロール部材90へと伝達され、従動側スクロール部材90が従動側回転軸線CL2回りに回転する。このとき、クランクピン15が各軸受16,18a,18bを介してセンタープレート20及び両サイドプレートに対して回転することで、両スクロール部材70,90が相対的に公転旋回運動を行う。
 両スクロール部材70,90が公転旋回運動を行うと、ハウジング3の吸入口から吸い込まれた空気が両スクロール部材70,90の外周側から吸入され、両スクロール部材70,90によって形成された圧縮室に取り込まれる。そして、第1駆動側壁体71bと第1従動側壁体91bとによって形成された圧縮室と、第2駆動側壁体72bと第2従動側壁体92bとによって形成された圧縮室とが別々に圧縮される。それぞれの圧縮室は中心側に移動するにしたがって容積が減少し、これに伴い空気が圧縮される。第1駆動側壁体71bと第1従動側壁体91bとによって圧縮された空気は、従動側端板90aに形成された貫通孔90hを通り、第2駆動側壁体72bと第2従動側壁体92bとによって圧縮された空気と合流し、合流後の空気が吐出ポート72dを通り、ハウジング3の吐出口3dから外部へと吐出される。
 本実施形態によれば、以下の作用効果を奏する。
 駆動側スクロール部材70及び従動側スクロール部材90に対して回転軸線CL1,CL2方向側に第1サイドプレート27及び第2サイドプレート30を設け、これらサイドプレート27,30の間にセンタープレート20を設けた。そして、両サイドプレート27,30とセンタープレート20との間に同期駆動機構としてクランクピン15及び各軸受16,18a,18bを設けることとした。さらに、第1サイドプレート27と第2サイドプレート30との間に、センタープレート20の外周側を囲む周壁部として第1突出壁部27b及び第2突出壁部30cを設けることとした。これにより、遠心力によって同期駆動機構(具体的には各軸受16,18a,18b)に供給された潤滑剤が外周側に移動したとしても、液密に構成された周壁部の内周側に潤滑剤を保持することができるので、同期駆動機構の潤滑不足を回避して長寿命化を図ることができる。
 また、潤滑剤の漏出を防ぐことにより、圧縮空気が汚染されることを防止することができる。
 なお、本実施形態では、第1突出壁部27b及び第2突出壁部30cを用いて周壁部を構成することとしたが、本発明はこれに限定されるものではなく、センタープレート20の外周を囲むように周壁部が設けられれば良く、例えば第1突出壁部27bのみで周壁部を構成しても良いし、第2突出壁部30cのみで周壁部を構成しても良い。また、サイドプレート27,30とは別の部材を用いて周壁部を構成しても良い。
 また、本実施形態では、同期駆動機構としてクランクピン15を用いることとしたが、本発明はこれに限定されるものではなく、潤滑剤を供給する必要がある同期駆動機構であれば良い。例えば、ピン部材とリング部材とから構成されたピンリング機構を用いても良い。
[第5実施形態]
 次に、本発明の第5実施形態について説明する。本実施形態は、第4実施形態に対して、サイドプレート27,30に対してシール部材を設けた点で異なる。したがって、両回転スクロール型圧縮機1の全体構成は第4実施形態と同様であるので、その説明を省略する。
 図13に示されているように、第1サイドプレート27と駆動軸部71dとの間には、第1シール部材43が設けられる。第1シール部材43としては、ブーツシールやラビリンスシールを採用することができる。
 第2サイドプレート30の端面とセンタープレート20の端面との間には、第2シール部材44が設けられている。第2シール部材44としては、樹脂製とされた円環状のチップシールを採用することができる。第2シール部材44は、第2サイドプレート30の端面に形成した円周溝内に収容されている。なお、円周溝をセンタープレート20に形成してセンタープレート20側に第2シール部材44を設置しても良い。
 本実施形態によれば、以下の作用効果を奏する。
 第1シール部材43を設けることにより、第1サイドプレート27と駆動軸部71dとの間をシールすることとした。これにより、第1サイドプレート27と駆動軸部71dとの間から潤滑剤が漏出することを防止することができる。なお、第1シール部材43を第2サイドプレート30と駆動軸部71dとの間に設けることとしても良い。
 第2サイドプレート30とセンタープレート20の間に第2シール部材44を設けることとした。これにより、第2サイドプレート30と駆動軸部71dとの間から潤滑剤が漏出することを防止することができる。なお、第2シール部材44を第1サイドプレート27とセンタープレート20との間に設けることとしても良い。
[第6実施形態]
 次に、本発明の第6実施形態について説明する。本実施形態は、第4実施形態に対して、サイドプレート27,30が駆動側となり、センタープレート20が従動側となる点で相違する。その他の点については第4実施形態と同様であるので、その説明を省略する。
 図14に示されているように、第2サイドプレート30の回転中心からモータ5側に突出する駆動軸部30dに対して、モータ5の駆動軸6(図9参照)が接続されている。したがって、モータ5からの駆動力は、第2サイドプレート30から第1サイドプレート27を介して駆動側スクロール部材50に伝達される。すなわち、第4実施形態の従動側スクロール部材90が駆動側になっている。
 センタープレート20は、クランクピン15を備えた同期駆動機構を介して両サイドプレート27,30から駆動力が伝達される。センタープレート20には、従動軸部61dが固定されている。従動軸部61dは、従動側スクロール部材60の第1従動側端板61aの回転中心に設けられている。したがって、第4実施形態の駆動側スクロール部材70が従動側になっている。
 第1サイドプレート27の第1突出壁部27bと第2サイドプレート30の第2突出壁部30cによって周壁部を構成している点は、第4実施形態と同様であるので、その構成及び作用効果の説明は省略する。
 第2サイドプレート30の回転中心領域には、第4実施形態のように孔部(第2サイドプレート用孔部30h:図9参照)が形成されておらず壁部で閉じられている。
 本実施形態によれば、以下の作用効果を奏する。
 第2サイドプレート30の回転中心に対して駆動軸部30dを設けることとした。これにより、駆動側スクロール部材50は、第1サイドプレート27及び第2サイドプレート30を介してモータ5から駆動力が伝達される。
 従動側スクロール部材60の第1従動側端板61aの回転中心に接続された従動軸部61dに対してセンタープレート20を固定することで、両サイドプレート27,30から同期駆動機構を介して伝達された駆動力をセンタープレート20から従動側スクロール部材60へ導くようにした。従動軸部61dは、第1サイドプレート27に形成した第1サイドプレート用孔部27hを貫通するように配置される。従動軸部61dには、同期駆動機構を介してセンタープレート20から駆動力が伝達されるので、第2サイドプレート30の回転中心領域に従動軸部61dを貫通させるための孔部を形成する必要はない。したがって、回転中心領域が壁部で閉じられた第2サイドプレート30を採用することができるので、潤滑剤が第2サイドプレート30の回転中心から漏出することを防止することができる。
 また、従動軸部61dを回転自在に支持する軸受を設ける必要がない。したがって、第4実施形態の駆動側軸受11(図9参照)を省略することができ、部品点数を削減することができる。
[第7実施形態]
 以下、本発明の第7実施形態について、図15等を用いて説明する。
 図15には、両回転スクロール型圧縮機1が示されている。両回転スクロール型圧縮機1は、例えば車両用エンジン等の内燃機関に供給する燃焼用空気(流体)を圧縮する過給機や、燃料電池の空気極に圧縮空気を供給するための圧縮機、鉄道等の車両の制動装置に用いる圧縮空気を供給するための圧縮機として用いることができる。
 両回転スクロール型圧縮機1は、ハウジング3と、ハウジング3の一端側に収容されたモータ(駆動部)5と、ハウジング3の他端側に収容された駆動側スクロール部材70及び従動側スクロール部材90とを備えている。
 ハウジング3は、略円筒形状とされており、モータ5を収容するモータ収容部3aと、スクロール部材70,90を収容するスクロール収容部3bとを備えている。
 スクロール収容部3bの端部には、圧縮後の空気を吐出するための吐出口3dが形成されている。なお、図15では示されていないが、ハウジング3には空気を吸入する空気吸入口が設けられている。
 モータ5は、図示しない電力供給源から電力が供給されることによって駆動される。モータ5の回転制御は、図示しない制御部からの指令によって行われる。モータ5のステータ5aはハウジング3の内周側に固定されている。モータ5のロータ5bは、駆動側回転軸線CL1回りに回転する。ロータ5bには、駆動側回転軸線CL1上に延在する駆動軸6が接続されている。駆動軸6は、駆動側スクロール部材70の第1駆動側スクロール部71に固定された駆動軸部71dと接続されている。
 駆動軸6の前端(図15において左端)には、駆動軸6を回転可能に支持する駆動側軸受11が設けられている。駆動軸6の後端(図15において右端)、すなわち駆動側スクロール部材70に対して反対側の駆動軸6の端部には、ハウジング3との間で駆動軸6を回動可能に支持する後端軸受24が設けられている。
 駆動側スクロール部材70は、モータ5側の第1駆動側スクロール部71と、吐出口3d側の第2駆動側スクロール部72とを備えている。
 第1駆動側スクロール部71は、第1駆動側端板71aと第1駆動側壁体71bを備えている。
 第1駆動側端板71aは、駆動側回転軸線CL1に対して直交する方向に延在している。第1駆動側端板71aの回転中心には、駆動側回転軸線CL1上に沿って延在する駆動軸部71dが固定されている。
 駆動軸部71dには、センタープレート20が固定されている。センタープレート20は、第1駆動側端板71aと平行に延在している。
 第1駆動側端板71aは、平面視した場合に略円板形状とされている。第1駆動側端板71a上に、図16に示すように、渦巻状とされた第1駆動側壁体71bが3つ、すなわち3条設けられている。3条とされた第1駆動側壁体71bは、駆動側回転軸線CL1回りに等間隔にて配置されている。なお、第1駆動側壁体71bの条数は、1条や2条でも良く、あるいは4条以上であっても良い。
 図15に示したように、第2駆動側スクロール部72は、第2駆動側端板72aと第2駆動側壁体72bを備えている。第2駆動側壁体72bは、上述した第1駆動側壁体71b(図16参照)と同様に、3条とされている。なお、第2駆動側壁体72bの条数は、1条や2条でも良く、あるいは4条以上であっても良い。
 第2駆動側端板72aには、駆動側回転軸線CL1方向に延在する第2駆動側軸部72cが接続されている。第2駆動側軸部72cは、玉軸受とされた第2駆動側軸受14を介して、ハウジング3に対して回転自在に設けられている。第2駆動側端板72aには、駆動側回転軸線CL1に沿って吐出ポート72dが形成されている。
 第2駆動側軸部72cとハウジング3との間には、第2駆動側軸受14よりも第2駆動側軸部72cの先端側(図15において左側)に、2つの第2駆動軸部用シール部材26が設けられている。2つの第2駆動軸部用シール部材26と第2駆動側軸受14とは駆動側回転軸線CL1方向に所定間隔を有して配置されている。2つの第2駆動軸部用シール部材26の間には、例えば半固体潤滑剤であるグリースとされた潤滑剤が封入されている。なお、第2駆動軸部用シール部材26は1つとしても良い。この場合、潤滑剤は、第2駆動軸部用シール部材26と第2駆動側軸受14との間に封入される。
 第1駆動側スクロール部71と第2駆動側スクロール部72とは、壁体71b,72bの先端(自由端)同士が向かい合った状態で固定されている。第1駆動側スクロール部71と第2駆動側スクロール部72との固定は、半径方向外側に突出するように円周方向において複数箇所設けたフランジ部73に対して締結されたボルト31によって行われる。
 従動側スクロール部材90は、軸方向(図において水平方向)における略中央に、従動側端板90aが位置している。従動側端板90aの中央には貫通孔90hが形成されており、圧縮後の空気が吐出ポート72dへ流れるようになっている。
 従動側端板90aの両側には、それぞれ、従動側壁体91b,92bが設けられている。従動側端板90aからモータ5側に設置された第1従動側壁体91bは、第1駆動側スクロール部71の第1駆動側壁体71bと噛み合わされ、従動側端板90aから吐出口3d側に設置された第2従動側壁体92bは、第2駆動側スクロール部72の第2駆動側壁体72bと噛み合わされる。
 図17に示すように、第1従動側壁体91bは、3つ、すなわち3条設けられている。3条とされた従動側壁体91bは、従動側回転軸線CL2回りに等間隔にて配置されている。第2従動側壁体92bについても、同様の構成となっている。なお、各従動側壁体91b,92bの条数は、1条や2条でも良く、あるいは4条以上であっても良い。
 従動側スクロール部材90の吐出口3d側(図15において左側)には、サポート部材33が設けられている。サポート部材33は、ボルト25によって第2従動側壁体92bの先端(自由端)に対して固定されている。
 サポート部材33の中心軸側には、サポート部材用軸部35aが設けられており、このサポート部材用軸部35aが玉軸受とされた第2サポート部材用軸受38を介してハウジング3に対して固定されている。これにより、サポート部材33を介して、従動側スクロール部材90が従動側回転軸線CL2回りに回転するようになっている。
 従動側スクロール部材90のモータ5側(図15において右側)には、第1サイドプレート27が設けられている。第1サイドプレート27は、ボルト28によって第1従動側壁体91bの先端(自由端)に対して固定されている。第1サイドプレート27の回転中心には、駆動軸部71dを貫通させるための第1サイドプレート用孔部27hが形成されている。
 第1サイドプレート27のモータ5側には、所定間隔を有して、第2サイドプレート30が設けられている。第2サイドプレート30は、ボルト34によって第1サイドプレート27に対して固定されている。第2サイドプレート30の回転中心には、駆動軸部71dを貫通させるための第2サイドプレート用孔部30hが形成されている。
 第2サイドプレート30の中心軸側には、第2サイドプレート用軸部30aが設けられており、この第2サイドプレート用軸部30aが玉軸受とされた第2サイドプレート用軸受32を介してハウジング3に対して固定されている。これにより、第2サイドプレート30及び第1サイドプレート27を介して、従動側スクロール部材90が従動側回転軸線CL2回りに回転するようになっている。第2サイドプレート30と第1サイドプレート27との間に形成される閉空間には、油、グリース等の潤滑剤が供給され、摺動部が潤滑されるようになっている。
 第1サイドプレート27の外周側の端面には、第2サイドプレート30に向けて突出する第1突出壁部27bが設けられている。第2サイドプレート30の外周側の端面には、第1サイドプレート27に向けて突出する第2突出壁部30cが設けられている。これら突出壁部27b,30cが付き合わされて液密とされた状態で固定され、周壁部を構成している。これにより、図18に示すように、第1サイドプレート27と第2サイドプレート30との間に配置されたセンタープレート20は、両突出壁部27b,30cによって囲まれた空間Sに収納されることになる。
 図15に示すように、第1サイドプレート27及び第2サイドプレート30と、センタープレート20との間には、ピンリング機構(同期駆動機構)15が設けられている。ピンリング機構15は、丸棒状のピン45と、ピン45の外周に内周面が当接してピン45をガイドする転がり軸受(リング)46とを備えている。
 ピンリング機構15は、図18に示すように、センタープレート20の回転中心回りに等角度間隔で3つ設けられている。なお、ピンリング機構15の個数は、4つ以上としても良い。
 図19には、ピンリング機構15周りが拡大されて示されている。
 ピン45は、一端(左端)が第1サイドプレート27に対して圧入されて固定されるとともに、他端(右端)が第2サイドプレート30に対して圧入されて固定されている。ピン45の長手方向における中央部は、転がり軸受46の内輪46bの内周面に当接するようになっている。
 転がり軸受46は、玉軸受とされており、センタープレート20に形成された孔部に嵌合されている。転がり軸受46は、外輪46aと、内輪46bと、複数の玉(転がり部材)46cと、各玉46cを保持する保持器(図示せず)とを備えている。転がり軸受46には、グリース等の潤滑剤が封入されている。
 ピンリング機構15は、両スクロール部材70,90が同期して相対的に公転旋回運動するように駆動軸部71dから従動側スクロール部材90に駆動力を伝達する同期駆動機構として用いられる。
 上記構成の両回転スクロール型圧縮機1は、以下のように動作する。
 モータ5によって駆動軸6が駆動側回転軸線CL1回りに回転させられると、駆動軸6に接続された駆動軸部71dを介して駆動側スクロール部材70と共にセンタープレート20も駆動側軸線CL1回りに回転する。センタープレート20の回転によって、センタープレート20に伝達された駆動力は、同期駆動機構としてのピンリング機構15を介して第1サイドプレート27及び第2サイドプレート30から従動側スクロール部材90へと伝達され、従動側スクロール部材90が従動側回転軸線CL2回りに回転する。このとき、ピンリング機構15によって、両スクロール部材70,90が相対的に公転旋回運動を行う。
 両スクロール部材70,90が公転旋回運動を行うと、ハウジング3の吸入口から吸い込まれた空気が両スクロール部材70,90の外周側から吸入され、両スクロール部材70,90によって形成された圧縮室に取り込まれる。そして、第1駆動側壁体71bと第1従動側壁体91bとによって形成された圧縮室と、第2駆動側壁体72bと第2従動側壁体92bとによって形成された圧縮室とが別々に圧縮される。それぞれの圧縮室は中心側に移動するにしたがって容積が減少し、これに伴い空気が圧縮される。第1駆動側壁体71bと第1従動側壁体91bとによって圧縮された空気は、従動側端板90aに形成された貫通孔90hを通り、第2駆動側壁体72bと第2従動側壁体92bとによって圧縮された空気と合流し、合流後の空気が吐出ポート72dを通り、ハウジング3の吐出口3dから外部へと吐出される。
 本実施形態によれば、以下の作用効果を奏する。
 同期駆動機構として、丸棒状のピン45と転がり軸受46を備えたピンリング機構15を採用することとした。これにより、クランクピン機構を採用することなく同期駆動機構を実現できるので、クランクピン機構のように多くの軸受を採用して複雑な構成とすることなくコストを低減することができる。
 両サイドプレート27,30に対してピン45を圧入して固定することとしたので、ピン45を、両サイドプレート27,30の位置決めピンとして兼用させることができる。
 ピン45の両端が両サイドプレート27,30に固定され、中央部で転がり軸受46の内周面に当接するので、転がり軸受46の内輪46bが傾斜することを抑制して玉46cの斜行を防ぐことによって同期駆動機構の長寿命化を図ることができる。
[変形例1]
 本実施形態は以下のように変形することができる。すなわち、図20に示すように、本変形例のピンリング機構15Aでは、ピン45の一端(左端)は、第7実施形態と同様に第1サイドプレート27に対して圧入されて固定されている一方で、ピン45の他端(右端)は、第2サイドプレート30に対してOリング(弾性体)47を介して固定されている。
 本変形例によれば、以下の作用効果を奏する。
 ピン45の一端を第1サイドプレート27に対して圧入して固定し、ピン45の他端を第2サイドプレート30に対してOリング47を介して固定することとした。これにより、部品公差によって両サイドプレート27,30にピン45の両端が圧入できないことを防止し、組み立てを容易にしてコストを低減することができる。
 なお、本変形例では、第2サイドプレート30側にOリング47を設けることとした、第1サイドプレート27側にOリング47を設けることとしても良い。
[変形例2]
 さらに、図19に示した本実施形態のピンリング機構15と、図20に示した変形例1のピンリング機構15Aとを組み合わせてもよい。
 具体的には、図18に示すように、3つあるピンリング機構のうちの2つを図19に示したピンリング機構15とし、残りの1つのピンリング機構を図20に示したピンリング機構15Aとする。
 本変形例によれば、以下の作用効果を奏する。
 3つあるピンリング機構のうちの2つを、ピン45の両端が両サイドプレート27,30に圧入され固定された構成として位置決めピンとしての機能を持たせる。それ以外のピンリング機構のピン45は、一端を圧入固定とし、他端をOリング47を介した固定として公差を吸収することとした。これにより、両サイドプレート27,30の位置決めをピンリング機構15で行うとともに、組み立て性を向上させることができる。
[第8実施形態]
 次に、本発明の第8実施形態について説明する。本実施形態は、第7実施形態に対してピンリング機構の構成が異なる。その他の点については第7実施形態と同様なのでその説明を省略する。
 図21に示すように、本実施形態のピンリング機構15Bでは、第1サイドプレート27及び第2サイドプレート30のそれぞれに転がり軸受49,51が設けられている。ピン45の長手方向における中央部は、センタープレート20に圧入されて固定されている。ピン45の両端は、転がり軸受49,51の内周面に当接するようになっている。
 本実施形態によれば、以下の作用効果を奏する。
 センタープレート20にピン45の中央部を圧入することとし、ピン45の両端を両サイドプレート27,30に設けた転がり軸受49,51の内周面に当接させることとした。したがって、ピン45の両端が両サイドプレート27,30によって拘束される構成とはならないので、両サイドプレート27,30の部品公差によって組み立て時にピン45を固定することができないとい事態を回避することができる。これにより、組み立て性を向上させることができる。
 なお、図22に示すように、ピン45の両端のそれぞれにOリング(弾性体)23を設けても良い。これにより、転がり軸受49,51の内周面にピン45が当接する際の衝撃を緩和して騒音を減少させることができる。
 また、上述した各実施形態では、ピン45を受ける部材として転がり軸受46,49,51を採用したが、これに代えて浮動ブッシュ軸受等のすべり軸受を採用しても良い。例えば、図23に示すように、図19に示した転がり軸受46に代えて、すべり軸受48を設けることとしても良い。これにより、転がり軸受を採用する場合に比べてコストを低減することができる。また、転がり軸受のような回転系の慣性モーメントを削減できるので、高レスポンス化を図ることができる。特に、すべり軸受を採用する場合には潤滑剤による潤滑が必要となるので、図15に示したような両サイドプレート27,30の突出壁部27b,30cが付き合わされて液密構造がより好適である。ただし、このような液密構造は、上記の各実施形態を含め、本発明を限定するものではない。
[第9実施形態]
 以下、本発明の第9実施形態について、図24等を用いて説明する。
 図24には、両回転スクロール型圧縮機1が示されている。両回転スクロール型圧縮機1は、例えば車両用エンジン等の内燃機関に供給する燃焼用空気(流体)を圧縮する過給機や、燃料電池の空気極に圧縮空気を供給するための圧縮機、鉄道等の車両の制動装置に用いる圧縮空気を供給するための圧縮機として用いることができる。
 両回転スクロール型圧縮機1は、ハウジング3と、ハウジング3の一端側に収容されたモータ(駆動部)5と、ハウジング3の他端側に収容された駆動側スクロール部材70及び従動側スクロール部材90とを備えている。
 ハウジング3は、略円筒形状とされており、モータ5を収容するモータ収容部3aと、スクロール部材70,90を収容するスクロール収容部3bとを備えている。
 スクロール収容部3bの端部には、圧縮後の空気を吐出するための吐出口3dが形成されている。なお、図24では示されていないが、ハウジング3には空気を吸入する空気吸入口が設けられている。
 モータ5は、図示しない電力供給源から電力が供給されることによって駆動される。モータ5の回転制御は、図示しない制御部からの指令によって行われる。モータ5のステータ5aはハウジング3の内周側に固定されている。モータ5のロータ5bは、駆動側回転軸線CL1回りに回転する。ロータ5bには、駆動側回転軸線CL1上に延在する駆動軸6が接続されている。駆動軸6は、駆動側スクロール部材70の第1駆動側スクロール部71に固定された駆動軸部71dと接続されている。
 駆動軸6の前端(図24において左端)には、駆動軸6を回転可能に支持する駆動側軸受11が設けられている。駆動軸6の後端(図24において右端)、すなわち駆動側スクロール部材70に対して反対側の駆動軸6の端部には、ハウジング3との間で駆動軸6を回動可能に支持する後端軸受17が設けられている。
 駆動側スクロール部材70は、モータ5側の第1駆動側スクロール部71と、吐出口3d側の第2駆動側スクロール部72とを備えている。
 第1駆動側スクロール部71は、第1駆動側端板71aと第1駆動側壁体71bを備えている。
 第1駆動側端板71aは、駆動側回転軸線CL1に対して直交する方向に延在している。第1駆動側端板71aの回転中心には、駆動側回転軸線CL1上に沿って延在する駆動軸部71dが固定されている。
 駆動軸部71dには、センタープレート(軸受支持部材)20が固定されている。センタープレート20は、第1駆動側端板71aと平行に延在している。
 第1駆動側端板71aは、平面視した場合に略円板形状とされている。第1駆動側端板71a上に、図25に示すように、渦巻状とされた第1駆動側壁体71bが3つ、すなわち3条設けられている。3条とされた第1駆動側壁体71bは、駆動側回転軸線CL1回りに等間隔にて配置されている。なお、第1駆動側壁体71bの条数は、1条や2条でも良く、あるいは4条以上であっても良い。
 図24に示したように、第2駆動側スクロール部72は、第2駆動側端板72aと第2駆動側壁体72bを備えている。第2駆動側壁体72bは、上述した第1駆動側壁体71b(図25参照)と同様に、3条とされている。なお、第2駆動側壁体72bの条数は、1条や2条でも良く、あるいは4条以上であっても良い。
 第2駆動側端板72aには、駆動側回転軸線CL1方向に延在する第2駆動側軸部72cが接続されている。第2駆動側軸部72cは、玉軸受とされた第2駆動側軸受14を介して、ハウジング3に対して回転自在に設けられている。第2駆動側端板72aには、駆動側回転軸線CL1に沿って吐出ポート72dが形成されている。
 第2駆動側軸部72cとハウジング3との間には、第2駆動側軸受14よりも第2駆動側軸部72cの先端側(図24において左側)に、2つの第2駆動軸部用シール部材26が設けられている。2つの第2駆動軸部用シール部材26と第2駆動側軸受14とは駆動側回転軸線CL1方向に所定間隔を有して配置されている。2つの第2駆動軸部用シール部材26の間には、例えば半固体潤滑剤であるグリースとされた潤滑剤が封入されている。なお、第2駆動軸部用シール部材26は1つとしても良い。この場合、潤滑剤は、第2駆動軸部用シール部材26と第2駆動側軸受14との間に封入される。
 第1駆動側スクロール部71と第2駆動側スクロール部72とは、壁体71b,72bの先端(自由端)同士が向かい合った状態で固定されている。第1駆動側スクロール部71と第2駆動側スクロール部72との固定は、半径方向外側に突出するように円周方向において複数箇所設けたフランジ部73に対して締結されたボルト31によって行われる。
 従動側スクロール部材90は、軸方向(図において水平方向)における略中央に、従動側端板90aが位置している。従動側端板90aの中央には貫通孔90hが形成されており、圧縮後の空気が吐出ポート72dへ流れるようになっている。
 従動側端板90aの両側には、それぞれ、従動側壁体91b,92bが設けられている。従動側端板90aからモータ5側に設置された第1従動側壁体91bは、第1駆動側スクロール部71の第1駆動側壁体71bと噛み合わされ、従動側端板90aから吐出口3d側に設置された第2従動側壁体92bは、第2駆動側スクロール部72の第2駆動側壁体72bと噛み合わされる。
 図26に示すように、第1従動側壁体91bは、3つ、すなわち3条設けられている。3条とされた従動側壁体91bは、従動側回転軸線CL2回りに等間隔にて配置されている。第2従動側壁体92bについても、同様の構成となっている。なお、各従動側壁体91b,92bの条数は、1条や2条でも良く、あるいは4条以上であっても良い。
 従動側スクロール部材90の吐出口3d側(図24において左側)には、サポート部材33が設けられている。サポート部材33は、ボルト25によって第2従動側壁体92bの先端(自由端)に対して固定されている。
 サポート部材33の中心軸側には、サポート部材用軸部35aが設けられており、このサポート部材用軸部35aがアンギュラ玉軸受とされた第2サポート部材用軸受38を介してハウジング3に対して固定されている。これにより、サポート部材33を介して、従動側スクロール部材90が従動側回転軸線CL2回りに回転するようになっている。
 従動側スクロール部材90のモータ5側(図24において右側)には、第1サイドプレート(軸受支持部材)27が設けられている。第1サイドプレート27は、ボルト28によって第1従動側壁体91bの先端(自由端)に対して固定されている。第1サイドプレート27の回転中心には、駆動軸部71dを貫通させるための第1サイドプレート用孔部27hが形成されている。
 第1サイドプレート27のモータ5側には、所定間隔を有して、第2サイドプレート(軸受支持部材)30が設けられている。第2サイドプレート30は、ボルト34によって第1サイドプレート27に対して固定されている。第2サイドプレート30の回転中心には、駆動軸部71dを貫通させるための第2サイドプレート用孔部30hが形成されている。
 第2サイドプレート30の中心軸側には、第2サイドプレート用軸部30aが設けられており、この第2サイドプレート用軸部30aがアンギュラ玉軸受とされた第2サイドプレート用軸受32を介してハウジング3に対して固定されている。これにより、第2サイドプレート30及び第1サイドプレート27を介して、従動側スクロール部材90が従動側回転軸線CL2回りに回転するようになっている。
 第1サイドプレート27の外周側の端面には、第2サイドプレート30に向けて突出する第1突出壁部27bが設けられている。第2サイドプレート30の外周側の端面には、第1サイドプレート27に向けて突出する第2突出壁部30cが設けられている。これら突出壁部27b,30cが付き合わされて液密とされた状態で固定され、周壁部を構成している。これにより、図27に示すように、第1サイドプレート27と第2サイドプレート30との間に配置されたセンタープレート20は、両突出壁部27b,30bによって囲まれた空間Sに収納されることになる。
 図24に示すように、第1サイドプレート27及び第2サイドプレート30と、センタープレート20との間には、クランクピン15が設けられている。クランクピン15は、中央の円筒部15aと、円筒部15aの中心軸線に対して偏心する偏心軸線を有する第1偏心軸部15b及び第2偏心軸部15fとを有する。第1偏心軸部15bは、円筒部15aの一方(左方)に突出しており、第2偏心軸部15fは円筒部15aの他方(右方)に突出している。これにより、クランクピン15は、円筒部15aを中心とした対称形状となっている。
 円筒部15aの外周には、アンギュラ玉軸受とされた円筒部用軸受(円筒部転がり軸受)16が設けられている。これにより、円筒部15aがセンタープレート20に対して回転自在とされている。円筒部用軸受16には、グリース等の潤滑剤が封入されている。
 第1偏心軸部15bには、アンギュラ玉軸受とされた第1偏心軸部用軸受(第1クランクピン端部転がり軸受)34が設けられている。これにより、第1偏心軸部15bが第1サイドプレート27に対して回転自在とされている。第1偏心軸部用軸受34には、グリース(潤滑剤)が封入されている。
 第2偏心軸部15fには、アンギュラ玉軸受とされた第2偏心軸部用軸受(第2クランクピン端部転がり軸受)35が設けられている。これにより、第2偏心軸部15fが第2サイドプレート30に対して回転自在とされている。第2偏心軸部用軸受35には、グリース(潤滑剤)が封入されている。
 クランクピン15及び各軸受16,34,35は、両スクロール部材70,90が同期して公転旋回運動するように駆動軸部71dから従動側スクロール部材90に駆動力を伝達する同期駆動機構として用いられる。
 クランクピン15を備えた同期駆動機構は、好ましくは複数設けられ、例えば、回転軸線CL1,CL2回りに等角度間隔で3つ設けられる(図27参照)。
 図28には、クランクピン15周りが拡大されて示されている。
 円筒部用軸受16は、外輪16aと、内輪16bと、外輪16aと内輪16bとの間に配置された玉16cと、各玉16cを等間隔で保持する保持器(図示せず)とを備えている。
 外輪16aは、センタープレート20に形成された円形溝に対して、Oリング(弾性体)36を介して嵌合されている。Oリング36は、所定量変形された状態で配置されており、外輪16aを内輪16b方向へ押圧するようになっている。
 内輪16bは、円筒部15aに対して圧入されて嵌合されている。
 円筒部用軸受16の側方(図28において右方)には、潤滑剤をシールするためのシール部材52が設けられている。シール部材52は、円環形状とされており、外周側が外輪16aの側部に固定されている。シール部材52は、内輪16bに対しては固定されておらず、内輪16bの側部に対して所定の隙間が設けられている。シール部材52の内周端は、内輪16bの側部まで延在しており、より具体的には内輪16bの外周よりも内周側まで延在している。
 シール部材52の側方(同図において右方)には、シール部材52を定位置に固定するためのスナップリング55が設けられている。
 第1偏心軸部用軸受34は、外輪34aと、内輪34bと、外輪34aと内輪34bとの間に配置された複数の玉34cと、各玉34cを等間隔で保持する保持器(図示せず)とを備えている。
 外輪34aは、第1サイドプレート27に形成された円形溝に対して圧入により嵌合されている。内輪34bは、第1偏心軸部15bに対して圧入により嵌合されている。
 第1偏心軸部用軸受34の側方(図28において右方)には、潤滑剤をシールするためのシール部材53が設けられている。シール部材53は、円環形状とされており、外周側が外輪34aの側部に固定されている。シール部材53は、内輪34bに対しては固定されておらず、内輪34bの側部に対して所定の隙間が設けられている。シール部材53の内周端は、内輪34bの側部まで延在しており、より具体的には内輪34bの外周よりも内周側まで延在している。
 シール部材53の側方(同図において右方)には、シール部材53を定位置に固定するためのスナップリング56が設けられている。
 第2偏心軸部用軸受35は、外輪35aと、内輪35bと、外輪35aと内輪35bとの間に配置された複数の玉35cと、各玉35cを等間隔で保持する保持器(図示せず)とを備えている。
 外輪35aは、第2サイドプレート30に形成された円形溝に対して圧入により嵌合されている。内輪35bは、第2偏心軸部15fに対して圧入により嵌合されている。
 第2偏心軸部用軸受35の側方(図28において左方)には、潤滑剤をシールするためのシール部材54が設けられている。シール部材54は、円環形状とされており、外周側が外輪35aの側部に固定されている。シール部材54は、内輪35bに対しては固定されておらず、内輪35bの側部に対して所定の隙間が設けられている。シール部材54の内周端は、内輪35bの側部まで延在しており、より具体的には内輪35bの外周よりも内周側まで延在している。
 シール部材54の側方(同図において右方)には、シール部材54を定位置に固定するためのスナップリング57が設けられている。
 上記構成の両回転スクロール型圧縮機1は、以下のように動作する。
 モータ5によって駆動軸6が駆動側回転軸線CL1回りに回転させられると、駆動軸6に接続された駆動軸部71dを介して駆動側スクロール部材70と共にセンタープレート20も駆動側軸線CL1回りに回転する。センタープレート20の回転によって、センタープレート20に伝達された駆動力は、同期駆動機構としてのクランクピン15を介して第1サイドプレート27及び第2サイドプレート30から従動側スクロール部材90へと伝達され、従動側スクロール部材90が従動側回転軸線CL2回りに回転する。このとき、クランクピン15が各軸受16,34,35を介してセンタープレート20及び両サイドプレートに対して回転することで、両スクロール部材70,90が相対的に公転旋回運動を行う。
 両スクロール部材70,90が公転旋回運動を行うと、ハウジング3の吸入口から吸い込まれた空気が両スクロール部材70,90の外周側から吸入され、両スクロール部材70,90によって形成された圧縮室に取り込まれる。そして、第1駆動側壁体71bと第1従動側壁体91bとによって形成された圧縮室と、第2駆動側壁体72bと第2従動側壁体92bとによって形成された圧縮室とが別々に圧縮される。それぞれの圧縮室は中心側に移動するにしたがって容積が減少し、これに伴い空気が圧縮される。第1駆動側壁体71bと第1従動側壁体91bとによって圧縮された空気は、従動側端板90aに形成された貫通孔90hを通り、第2駆動側壁体72bと第2従動側壁体92bとによって圧縮された空気と合流し、合流後の空気が吐出ポート72dを通り、ハウジング3の吐出口3dから外部へと吐出される。
 本実施形態によれば、以下の作用効果を奏する。
 図28に示したように、円筒部用軸受16の外輪16aとセンタープレート20との間にOリング36を設けることとした。これにより、クランクピン15やサイドプレート27,30、センタープレート20の公差をOリング36の変形によって吸収することで、クランクピン15に内力が生じることを回避して同期駆動機構を長寿命化することができる。
 また、クランクピン15の加工公差を緩和することができ、加工費や管理費を削減することができる。
 また、Oリング36によって外輪16aを内輪16b側に押圧することで、外輪16aが嵌められた穴と外輪16aとの間の滑りを防止することができる。
 第1偏心軸部用軸受34の外輪34aおよび第2偏心軸部用軸受35の外輪35aが圧入されているので、これら偏心軸部用軸受34,35によって回転軸線CL1,CL2回りの遠心力が保持される。このように2つの軸受34,35で遠心力を負担するので、1つの円筒部用軸受16で遠心力を負担する場合に比べて負担する荷重を緩和できる。
 また、2つの偏心軸部用軸受34,35によってクランクピン15を両端で支持することになるので、クランクピン15の姿勢を安定化させることができる。
[変形例1]
 本実施形態は、以下のように変形することができる。
 図29に示すように、円筒部用軸受16の外輪16aを圧入することとし、両偏心軸部用軸受34,35の外輪34a,35aにOリング37を設けることとしてもよい。
 これにより、クランクピン15やサイドプレート27,30、センタープレート20の公差をOリング37の変形によって吸収することで、クランクピン15に内力が生じることを回避して同期駆動機構を長寿命化することができる。
 また、クランクピン15の加工公差を緩和することができ、加工費や管理費を削減することができる。
 また、Oリング36によって外輪16aを内輪16b側に押圧することで、外輪16aが嵌められた穴と外輪16aとの間の滑りを防止することができる。
[変形例2]
 また、本実施形態は、以下のように変形することができる。
 図30に示すように、円筒部用軸受16の外輪16aにOリング36を設けることに加えて、両偏心軸部用軸受34,35の外輪34a,35aにもOリング37を設けることとしてもよい。
 これにより、クランクピン15やサイドプレート27,30、センタープレート20の公差をOリング36,37の変形によって吸収することで、クランクピン15に内力が生じることを回避して同期駆動機構を長寿命化することができる。
 また、クランクピン15の加工公差を緩和することができ、加工費や管理費を削減することができる。
 また、Oリング36によって外輪16aを内輪16b側に押圧することで、外輪16aが嵌められた穴と外輪16aとの間の滑りを防止することができる。
[変形例3]
 また、本実施形態は、以下のように変形することができる。
 図31に示すように、円筒部用軸受16の外輪16a及び両偏心軸部用軸受34,35の外輪34a,35aを圧入し、各内輪16b,34b,35bとクランクピン15との間にOリング38を設けることとしてもよい。
 これにより、クランクピン15やサイドプレート27,30、センタープレート20の公差をOリング38の変形によって吸収することで、クランクピン15に内力が生じることを回避して同期駆動機構を長寿命化することができる。
 また、クランクピン15の加工公差を緩和することができ、加工費や管理費を削減することができる。
 なお、Oリング38を、円筒部用軸受16の内輪16bとクランクピン15との間のみに設けても良いし、両偏心軸部用軸受34,35の内輪34b,35bとクランクピン15との間のみに設けても良い。
[第10実施形態]
 次に、本発明の第10実施形態について説明する。本実施形態は、第9実施形態に対してクランクピン15の構成が異なる。その他の点については第9実施形態と同様なのでその説明を省略する。
 図32Aに示すように、クランクピン15’は、円筒部15aと、偏心軸部15gとのに部品で構成されている。偏心軸部15gの両端には、第1偏心軸部15b及び第2偏心軸部15fがそれぞれ設けられている。
 円筒部15aには、偏心軸部15gを挿入する挿入穴15a1が形成されている。偏心軸部15gは、挿入穴15a1内に圧入されることによって固定されている。
 図32Bには、第9実施形態に示したクランクピン15が示されている。クランクピン15は、円筒部15aと第1偏心軸部15b及び第2偏心軸部15fとが一体とされており、同一素材から削り出すことによって形成されている。
 本実施形態によれば、以下の作用効果を奏する。
 クランクピン15’の偏心軸部15gを円筒部15aに形成された挿入穴15a1に挿入することとした。これにより、偏心軸部15gと円筒部15aとを別部品とすることができ、それぞれを別に加工することができる。したがって、偏心軸部15gと円筒部15aとを一体で加工する場合(図32B)に比べて、偏心軸部15gの両端における第1偏心軸部15bと第2偏心軸部15fとの軸芯を合わせることができる。したがって、クランクピン15’に加わる内力を低減でき、同期駆動機構の長寿命化を図ることができる。
 なお、本実施形態のクランクピン15’は、第9実施形態のクランクピン15に代えて適用できるものであれが、第9実施形態の構成に限定されずに両回転スクロール型圧縮機に用いられるクランクピンとして適用できるものである。
1 両回転スクロール型圧縮機
3 ハウジング
3a モータ収容部
3b スクロール収容部
3d 吐出口
5 モータ(駆動部)
5a ステータ
5b ロータ
6 駆動軸
11 駆動側軸受
15 クランクピン(同期駆動機構)
15a 円筒部
15a1 挿入穴
15b 偏心軸部,第1偏心軸部
15c 端部
15d 小径部
15e 中央部
15f 第2偏心軸部
15g 偏心軸部
16 円筒部用軸受
17 後端軸受
18a 第1偏心軸部用軸受(クランクピン端部転がり軸受)
18b 第2偏心軸部用軸受(クランクピン端部転がり軸受)
19 Oリング(付勢部材)
20 センタープレート
20a 軸部
20b 固定部
21 ボルト
22 Oリング(弾性体)
23 Oリング(弾性体)
25 ボルト
26 シール部材
27 第1サイドプレート
27a 固定部
27b 第1突出壁部
27h 第1サイドプレート用孔部
28 ボルト
30 第2サイドプレート
30a 第2サイドプレート用軸部
30b 固定部
30c 第2突出壁部
30d 駆動軸部
30h 第2サイドプレート用孔部
31 ボルト
32 第2サイドプレート用軸受
33 サポート部材
34 第1偏心軸部用軸受(第1クランクピン端部転がり軸受)
34a 外輪
34b 内輪
34c 玉
35 第2偏心軸部用軸受(第2クランクピン端部転がり軸受)
35a 外輪
35b 内輪
35c 玉
36,37,38 Oリング(弾性体)
40 樹脂製軸部(樹脂部)
41 シール板
42 ストッパリング
43 第1シール部材
44 第2シール部材
45 ピン
46 転がり軸受(リング)
46a 外輪
46b 内輪
46c 玉(転がり部材)
47 Oリング(弾性体)
48 すべり軸受
49 転がり軸受
50 駆動側スクロール部材
51 転がり軸受
52,53,54 シール部材
55,56,57 スナップリング
60 従動側スクロール部材
61a 第1従動側端板
61d 従動軸部
70 駆動側スクロール部材
71 第1駆動側スクロール部
71a 第1駆動側端板
71b 第1駆動側壁体
71d 駆動軸部
72 第2駆動側スクロール部
72a 第2駆動側端板
72b 第2駆動側壁体
72c 第2駆動側軸部
72d 吐出ポート
73 フランジ部
90 従動側スクロール部材
90h 貫通孔
91 第1従動側スクロール部
91b 第1従動側壁体
92b 第2従動側壁体
CL1 駆動側回転軸線
CL2 従動側回転軸線
CL3 偏心軸線
t 隙間
S 空間

Claims (19)

  1.  駆動部によって回転軸線回りに回転駆動され、駆動側端板上に配置された渦巻状の駆動側壁体を有する駆動側スクロール部材と、
     前記駆動側壁体に対応する渦巻状の従動側壁体が従動側端板上に配置され、該従動側壁体が前記駆動側壁体に対して噛み合わされることによって圧縮空間を形成する従動側スクロール部材と、
     前記駆動側スクロール部材と前記従動側スクロール部材とが同じ方向に同一角速度で自転運動するように前記従動側スクロール部材に前記駆動部の駆動力を伝達する同期駆動機構と、
     前記駆動側スクロール部材及び前記従動側スクロール部材に対して前記回転軸線方向側に配置された第1サイドプレートと、
     前記第1サイドプレートに対して前記回転軸線方向に所定間隔を有して固定された第2サイドプレートと、
     前記第1サイドプレートと前記第2サイドプレートの間に配置されたセンタープレートと、
    を備え、
     前記第1サイドプレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の一方に固定され、
     前記センタープレートは、前記駆動側スクロール部材又は前記従動側スクロール部材の他方に固定され、
     前記同期駆動機構は、前記第1サイドプレート及び前記第2サイドプレートと、前記センタープレートとの間に設けられている両回転スクロール型圧縮機。
  2.  前記同期駆動機構は、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンと、前記偏心軸部の両端部と前記第1サイドプレート及び前記第2サイドプレートとの間に設けられたクランクピン端部転がり軸受とを備え、
     前記クランクピン端部転がり軸受の内輪と前記偏心軸部との間には、該内輪を該偏心軸部の先端に向けて前記偏心軸線方向に付勢する付勢部材が設けられている請求項1に記載の両回転スクロール型圧縮機。
  3.  前記同期駆動機構は、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンと、前記偏心軸部の両端部と前記第1サイドプレート及び前記第2サイドプレートとの間に設けられたクランクピン端部転がり軸受とを備え、
     前記第1サイドプレートと前記第2サイドプレートとの間隔によって、前記クランクピン端部転がり軸受に対して前記偏心軸線方向に予圧が与えられている請求項1に記載の両回転スクロール型圧縮機。
  4.  前記同期駆動機構は、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンと、前記偏心軸部の両端部と前記第1サイドプレート及び前記第2サイドプレートとの間に設けられたクランクピン端部転がり軸受とを備え、
     前記クランクピン端部転がり軸受の内輪の内周面と前記偏心軸部の外周面との間には、弾性体が設けられている請求項1に記載の両回転スクロール型圧縮機。
  5.  前記駆動側スクロール部材又は前記従動側スクロール部材の一方に固定された前記第1サイドプレートの固定部と、前記駆動側スクロール部材又は前記従動側スクロール部材の他方に固定された前記センタープレートの固定部とのうち、前記スクロール部材の中心よりも半径方向内側に位置する前記固定部は、樹脂部を介在させた構造とされ、前記スクロール部材の中心よりも半径方向外側に位置する前記固定部には、樹脂部を介在させずに金属部を用いた構造とされている請求項1から4のいずれかに記載の両回転スクロール型圧縮機。
  6.  前記第1サイドプレートと前記第2サイドプレートとの間には、前記センタープレートの外周側を囲む周壁部が設けられている請求項1に記載の両回転スクロール型圧縮機。
  7.  前記駆動側端板と前記駆動部との間に接続された前記回転軸線回りに回転する駆動軸部を備え、
     前記センタープレートは、前記駆動軸部に固定され、
     前記第1サイドプレートには、前記駆動軸部が貫通する第1サイドプレート用孔部が形成され、
     前記第2サイドプレートには、前記駆動軸部が貫通する第2サイドプレート用孔部が形成され、
     前記第1サイドプレート用孔部と前記駆動軸部との間、及び/又は、前記第2サイドプレート用孔部と前記駆動軸部との間には、第1シール部材が設けられている請求項6に記載の両回転スクロール型圧縮機。
  8.  前記駆動側端板と前記駆動部との間に接続された前記回転軸線回りに回転する駆動軸部を備え、
     前記センタープレートは、前記駆動軸部に固定され、
     前記第1サイドプレートには、前記駆動軸部が貫通する第1サイドプレート用孔部が形成され、
     前記第2サイドプレートには、前記駆動軸部が貫通する第2サイドプレート用孔部が形成され、
     前記第1サイドプレートと前記センタープレートとの間、及び/又は、前記第2サイドプレートと前記センタープレートとの間には、第2シール部材が設けられている請求項6又は7に記載の両回転スクロール型圧縮機。
  9.  外周側の前記駆動側壁体に対して前記第1サイドプレートが固定され、
     前記第1サイドプレートに対して前記第2サイドプレートが固定され、
     前記第2サイドプレートの回転中心に対して前記駆動部が接続され、
     前記従動側端板の回転中心に接続された従動軸部に対して前記センタープレートが固定され、
     前記第1サイドプレートには、前記従動軸部が貫通する第1サイドプレート用孔部が形成され、
     前記第2サイドプレートの回転中心領域は、壁部で閉じられている請求項6に記載の両回転スクロール型圧縮機。
  10.  前記同期駆動機構は、前記第1サイドプレート及び前記第2サイドプレートと前記センタープレートとの間に設けられた丸棒状のピンと、該ピンの外周に内周面が当接して該ピンをガイドするリングとを備えている請求項1に記載の両回転スクロール型圧縮機。
  11.  前記リングは、前記センタープレートに設けられた転がり軸受とされ、
     前記ピンは、その両端が前記第1サイドプレート及び前記第2サイドプレートに対して圧入され、その長手方向における中央部が前記転がり軸受の内周面に当接する請求項10に記載の両回転スクロール型圧縮機。
  12.  前記リングは、前記センタープレートに設けられた転がり軸受とされ、
     前記ピンは、その一端が前記第1サイドプレート又は前記第2サイドプレートの一方に対して圧入され、その他端が前記第1サイドプレート又は前記第2サイドプレートの他方に対して弾性体を介して固定され、その長手方向における中央部が前記転がり軸受の内周面に当接する請求項10に記載の両回転スクロール型圧縮機。
  13.  前記同期駆動機構は、前記回転軸線の周方向に離間して3つ以上設けられ、
     前記同期駆動機構のうち2つは、前記リングが、前記センタープレートに設けられた転がり軸受とされ、前記ピンが、その両端が前記第1サイドプレート及び前記第2サイドプレートに対して圧入され、その長手方向における中央部が前記転がり軸受の内周面に当接し、
     他の前記同期駆動機構は、前記リングが、前記センタープレートに設けられた転がり軸受とされ、前記ピンが、その一端が前記第1サイドプレート又は前記第2サイドプレートの一方に対して圧入され、その他端が前記第1サイドプレート又は前記第2サイドプレートの他方に対して弾性体を介して固定され、その長手方向における中央部が前記転がり軸受の内周面に当接する請求項10に記載の両回転スクロール型圧縮機。
  14.  前記リングは、前記第1サイドプレート及び前記第2サイドプレートのそれぞれに設けられた転がり軸受とされ、
     前記ピンは、その長手方向における中央部が前記センタープレートに圧入され、その両端が前記転がり軸受の内周面に当接する請求項10に記載の両回転スクロール型圧縮機。
  15.  前記リングは、前記転がり軸受に代えてすべり軸受とされている請求項11から14のいずれかに記載の両回転スクロール型圧縮機。
  16.  前記同期駆動機構は、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンと、前記偏心軸部の一端と前記第1サイドプレートとの間に設けられた第1クランクピン端部転がり軸受と、前記偏心軸部の他端と前記第2サイドプレートとの間に設けられた第2クランクピン端部転がり軸受と、前記円筒部と前記センタープレートとの間に設けられた円筒部転がり軸受とを備え、
     前記第1クランクピン端部転がり軸受の外輪と前記第1サイドプレートとの間、前記第2クランクピン端部転がり軸受の外輪と前記第2サイドプレートとの間、若しくは、前記円筒部転がり軸受の外輪と前記センタープレートとの間の少なくともいずれかに、又は、前記第1クランクピン端部転がり軸受の内輪と前記偏心軸部の前記一端との間、前記第2クランクピン端部転がり軸受の内輪と前記偏心軸部の前記他端との間、若しくは、前記円筒部転がり軸受の内輪と前記円筒部との間の少なくともいずれかに、弾性体が設けられている請求項1に記載の両回転スクロール型圧縮機。
  17.  前記円筒部転がり軸受の外輪と前記センタープレートとの間に前記弾性体が設けられ、
     前記第1クランクピン端部転がり軸受の外輪は、前記第1サイドプレートに対して圧入され、
     前記第2クランクピン端部転がり軸受の外輪は、前記第2サイドプレートに対して圧入されている請求項16に記載の両回転スクロール型圧縮機。
  18.  前記円筒部には、前記偏心軸部を挿入する挿入穴が形成されていることを特徴とする請求項16又は17に記載の両回転スクロール型圧縮機。
  19.  前記同期駆動機構は、中央の円筒部の中心軸線に対して偏心する偏心軸線を有する偏心軸部を有するクランクピンを備え、
     前記円筒部には、前記偏心軸部を挿入する挿入穴が形成されている請求項1に記載の両回転スクロール型圧縮機。
     
PCT/JP2018/031262 2017-08-25 2018-08-24 両回転スクロール型圧縮機 WO2019039575A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880033774.0A CN110959072A (zh) 2017-08-25 2018-08-24 双旋转涡旋型压缩机
US16/615,478 US20200088193A1 (en) 2017-08-25 2018-08-24 Co-rotating scroll compressor
JP2019537700A JP6804655B2 (ja) 2017-08-25 2018-08-24 両回転スクロール型圧縮機
EP18848562.7A EP3613985A4 (en) 2017-08-25 2018-08-24 ROTARY DOUBLE SPIRAL TYPE COMPRESSOR

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017162663 2017-08-25
JP2017-162663 2017-08-25
JP2017-173038 2017-09-08
JP2017173038 2017-09-08
JP2017192774 2017-10-02
JP2017-192774 2017-10-02
JP2017203804 2017-10-20
JP2017-203804 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019039575A1 true WO2019039575A1 (ja) 2019-02-28

Family

ID=65439440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031262 WO2019039575A1 (ja) 2017-08-25 2018-08-24 両回転スクロール型圧縮機

Country Status (5)

Country Link
US (1) US20200088193A1 (ja)
EP (1) EP3613985A4 (ja)
JP (1) JP6804655B2 (ja)
CN (1) CN110959072A (ja)
WO (1) WO2019039575A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11199189B2 (en) 2018-02-05 2021-12-14 Mitsubishi Heavy Industries, Ltd. Co-rotating scroll compressor and assembly method therefor
KR20240017262A (ko) 2022-07-29 2024-02-07 엘지전자 주식회사 스크롤 압축기

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020117373A1 (de) 2020-07-01 2022-01-05 Hanon Systems Spiralverdichter zur Verdichtung eines Kältemittels und Verfahren zur Ölanreicherung und -verteilung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443132B2 (ja) 1976-11-10 1979-12-18
JPH0472487A (ja) * 1990-07-10 1992-03-06 Sanyo Electric Co Ltd スクロール圧縮機
JPH05157076A (ja) * 1991-11-29 1993-06-22 Mitsubishi Heavy Ind Ltd スクロール型流体機械

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343688A (ja) * 1989-07-06 1991-02-25 Daikin Ind Ltd スクロール型流体装置
DE59206958D1 (de) * 1992-07-20 1996-09-26 Aginfor Ag Rotierende Spiralpumpe
WO2008023417A1 (fr) * 2006-08-24 2008-02-28 Shinji Kawazoe Structure d'accouplement oldham de machine hydraulique à vis
JP5443132B2 (ja) * 2009-11-05 2014-03-19 有限会社スクロール技研 スクロール流体機械
JP5562263B2 (ja) * 2011-01-11 2014-07-30 アネスト岩田株式会社 スクロール流体機械
CN102817840B (zh) * 2011-06-07 2014-08-27 思科涡旋科技(杭州)有限公司 一种带有绕动式推力轴承的涡卷式容积位移装置
JP5925578B2 (ja) * 2012-04-25 2016-05-25 アネスト岩田株式会社 スクロール膨張機
JP5998012B2 (ja) * 2012-10-31 2016-09-28 株式会社日立産機システム スクロール式流体機械
CN105756935A (zh) * 2016-04-25 2016-07-13 徐道敏 一种无油涡旋空气压缩机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443132B2 (ja) 1976-11-10 1979-12-18
JPH0472487A (ja) * 1990-07-10 1992-03-06 Sanyo Electric Co Ltd スクロール圧縮機
JPH05157076A (ja) * 1991-11-29 1993-06-22 Mitsubishi Heavy Ind Ltd スクロール型流体機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3613985A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11199189B2 (en) 2018-02-05 2021-12-14 Mitsubishi Heavy Industries, Ltd. Co-rotating scroll compressor and assembly method therefor
KR20240017262A (ko) 2022-07-29 2024-02-07 엘지전자 주식회사 스크롤 압축기

Also Published As

Publication number Publication date
EP3613985A1 (en) 2020-02-26
JP6804655B2 (ja) 2020-12-23
CN110959072A (zh) 2020-04-03
JPWO2019039575A1 (ja) 2020-02-27
US20200088193A1 (en) 2020-03-19
EP3613985A4 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP5075810B2 (ja) スクロール式流体機械
JP5418173B2 (ja) 乾式クラッチ
JP6804655B2 (ja) 両回転スクロール型圧縮機
WO2019069886A1 (ja) 両回転スクロール型圧縮機
US7547185B2 (en) Output shaft air/oil separator to redundantly protect against output shaft o-ring leakage
EP3232087B1 (en) Friction roller speed increaser
US20210404468A1 (en) Scroll compressor and assembly method thereof
JP4647489B2 (ja) 空気供給装置
JP4643199B2 (ja) スクロール式流体機械
JP4142383B2 (ja) 全系回転式スクロール圧縮機
JPH0988849A (ja) スクロール式流体機械
WO2018151014A1 (ja) 両回転スクロール型圧縮機
JP2019157729A (ja) 両回転スクロール型圧縮機
JPH10252853A (ja) 摩擦ローラ式変速機
JP2009085102A (ja) スクロール式流体機械
JP2006207406A (ja) スクロール流体機械
JPH0953575A (ja) スクロール式流体機械
JP5037995B2 (ja) スクロール式流体機械
JP2006308004A (ja) スラスト軸受け及び圧縮機並びにスラスト軸受けの組付け方法
JP2018119522A (ja) スクロール型圧縮機
CN109964036B (zh) 双旋转涡旋型压缩机
JP2005233042A (ja) スクロールコンプレッサ
JP6004667B2 (ja) 圧縮機
JPH10252852A (ja) 摩擦ローラ式変速機
JP2010031794A (ja) スクロール式流体機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537700

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018848562

Country of ref document: EP

Effective date: 20191122

NENP Non-entry into the national phase

Ref country code: DE