WO2019039166A1 - 誘導加熱調理器 - Google Patents
誘導加熱調理器 Download PDFInfo
- Publication number
- WO2019039166A1 WO2019039166A1 PCT/JP2018/027581 JP2018027581W WO2019039166A1 WO 2019039166 A1 WO2019039166 A1 WO 2019039166A1 JP 2018027581 W JP2018027581 W JP 2018027581W WO 2019039166 A1 WO2019039166 A1 WO 2019039166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching element
- induction heating
- heating cooker
- control unit
- series
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2213/00—Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
- H05B2213/05—Heating plates with pan detection means
Definitions
- the present disclosure relates to an induction heating cooker provided with a function of switching the resonance frequency of an inverter circuit to heat objects to be heated of various materials.
- this type of induction heating cooker includes a main body forming an outer shell, a top plate provided on the upper surface of the main body, and at least one inverter unit.
- the inverter unit has four switching elements, one heating coil, and at least one switching relay (see, for example, Patent Document 1).
- the resonant frequency of the inverter circuit can be switched by operating the switching relay. This makes it possible to heat pots of various materials such as aluminum pots, multilayer pots containing aluminum and stainless steel, iron pots and the like.
- the present disclosure is to solve the above-mentioned conventional problems, and to provide an induction heating cooker capable of switching the resonance frequency of an inverter circuit without using a switching relay in order to heat pans of various materials. To aim.
- an induction heating cooker includes: a DC power supply; first to fourth switching elements; a first resonant circuit including a first heating coil and a first resonant capacitor; A second resonant circuit including a coil and a second resonant capacitor, a third resonant capacitor, and a control unit.
- the first and second switching elements are connected in series between the output terminals of the DC power supply.
- the third and fourth switching elements are connected in series between the output terminals of the DC power supply.
- One end of the first resonant circuit is connected to a connection point of the first and second switching elements.
- one end is connected to the connection point of the third and fourth switching elements, and the other end is connected to the other end of the first resonant circuit.
- the third resonant capacitor is connected between a connection point of the first and second resonant circuits and an output terminal on the positive electrode side or an output terminal on the negative electrode side of the DC power supply.
- the control unit controls the first to fourth switching elements.
- the resonance capacitor in which the current flows can be switched, and the combined capacitance of the resonance capacitor in the inverter unit can be switched. That is, the resonant frequency of the inverter unit can be switched without using the switching relay.
- the inverter unit 5 can be easily miniaturized. Since the switching relay switching time and the switching relay switching noise are eliminated, the user's comfort can be improved.
- FIG. 1 is a block diagram of an induction heating cooker according to a first embodiment of the present disclosure.
- FIG. 2A is a diagram showing a control sequence performed in the first embodiment.
- FIG. 2B is a diagram showing a control sequence performed in the first embodiment.
- FIG. 3 is a block diagram of an induction heating cooker according to a second embodiment of the present disclosure.
- FIG. 4A is a diagram showing a control sequence performed in the second embodiment.
- FIG. 4B is a diagram showing a control sequence performed in the second embodiment.
- FIG. 5 is a block diagram of an induction heating cooker according to a fourth embodiment of the present disclosure.
- FIG. 6 is a flowchart showing the operation of the induction heating cooker according to the fourth embodiment.
- FIG. 1 is a block diagram of an induction heating cooker according to a first embodiment of the present disclosure.
- FIG. 2A is a diagram showing a control sequence performed in the first embodiment.
- FIG. 2B is a diagram showing a control sequence performed in
- FIG. 7 is a block diagram of an induction heating cooker according to a fifth embodiment of the present disclosure.
- FIG. 8 is a block diagram of an induction heating cooker according to a sixth embodiment of the present disclosure.
- FIG. 9 is a block diagram of an induction heating cooker according to a seventh embodiment of the present disclosure.
- FIG. 10 is a block diagram of an induction heating cooker according to an eighth embodiment of the present disclosure.
- FIG. 11 is a block diagram of an induction heating cooker according to a ninth embodiment of the present disclosure.
- an induction heating cooker includes: a DC power supply; first to fourth switching elements; a first resonant circuit including a first heating coil and a first resonant capacitor; A second resonance circuit including the heating coil and the second resonance capacitor, a third resonance capacitor, and a control unit.
- the first and second switching elements are connected in series between the output terminals of the DC power supply.
- the third and fourth switching elements are connected in series between the output terminals of the DC power supply.
- One end of the first resonant circuit is connected to a connection point of the first and second switching elements.
- one end is connected to the connection point of the third and fourth switching elements, and the other end is connected to the other end of the first resonant circuit.
- the third resonant capacitor is connected between a connection point of the first and second resonant circuits and an output terminal on the positive electrode side or an output terminal on the negative electrode side of the DC power supply.
- the control unit controls the first to fourth switching elements.
- the induction heating cooker according to the second aspect in addition to the first aspect, is connected between the connection point of the first and second resonant circuits and the output terminal on the positive electrode side of the DC power supply. It further comprises four resonant capacitors. The third resonant capacitor is connected between the connection point of the first and second resonant circuits and the negative output terminal of the DC power supply.
- the induction heating cooker according to the third aspect of the present disclosure further includes a switch in addition to the first aspect.
- the control unit outputs a first control signal to the first switching element, and outputs a second control signal to the second switching element.
- the switching unit outputs the first control signal to the third switching element and the second control signal to the fourth switching element, and the first control signal indicates the fourth switching element. , And switches the state in which the second control signal is also output to the third switching element.
- a current detection unit or a voltage detection unit connected in series to the first resonance circuit and a second resonance circuit in series And a current detection unit or a voltage detection unit connected thereto.
- the induction heating cooker according to the fifth aspect of the present disclosure further includes, in addition to the fourth aspect, a current detection unit or a voltage detection unit connected in series to the third resonance capacitor.
- control unit alternately turns on and off the first and second switching elements while providing a dead time.
- fourth switching elements are alternately turned on and off.
- the control unit executes a first heating mode in which the first and third switching elements are simultaneously turned on and the second and fourth switching elements are simultaneously turned on when the object to be heated is made of a nonmagnetic material.
- the control unit executes the second heating mode in which the first and fourth switching elements are simultaneously turned on and the second and third switching elements are simultaneously turned on when the object to be heated is made of a magnetic material.
- control unit alternately turns on and off the first and second switching elements while providing a dead time.
- fourth switching elements are alternately turned on and off.
- the control unit executes a first heating mode in which the first and third switching elements are simultaneously turned on and the second and fourth switching elements are simultaneously turned on.
- the control unit executes a second heating mode in which the first and fourth switching elements are simultaneously turned on and the second and third switching elements are simultaneously turned on.
- the control unit alternately executes the first heating mode and the second heating mode.
- the induction heating cooker according to the eighth aspect of the present disclosure further includes first and second coils in addition to the second aspect.
- the first coil is provided between the connection point of the first and second resonant circuits and the output terminal on the negative electrode side of the DC power supply, and is connected in series with the third resonant capacitor.
- the second coil is provided between the connection point of the first and second resonant circuits and the output terminal on the positive electrode side of the DC power supply, and is connected in series to the fourth resonant capacitor.
- the first coil is a third heating coil
- the second coil is a fourth heating coil
- FIG. 1 is a block diagram of an induction heating cooker 1a according to a first embodiment of the present disclosure.
- the induction heating cooker 1 a includes a top plate 2 provided on the upper surface of the main body forming the outer shell, and an inverter unit 5 provided below the top plate 2.
- the top plate 2 is made of an electrical insulator such as glass.
- the inverter unit 5 includes a heating coil unit 3, a smoothing circuit 6, switching elements 7 a, 7 b, 7 c and 7 d, resonant capacitors 8 a, 8 b, 8 c and 8 d, and a control unit 10.
- the heating coil unit 3 has two adjacent heating coils (heating coils 3a and 3b).
- the heating coil 3a is disposed on the front side, and the heating coil 3b is disposed on the rear side.
- the heating coils 3a and 3b correspond to first and second heating coils, respectively.
- the heating coil 3a, 3b has an inner terminal located inside the coil and an outer terminal located outside the coil.
- the inner terminal is the winding start of the coil and the outer terminal is the winding end of the coil.
- the heating coil 3a is wound counterclockwise, and the heating coil 3b is wound clockwise.
- the smoothing circuit 6 has a diode bridge which is a full wave rectification circuit, a capacitor and a coil.
- the smoothing circuit 6 rectifies the AC voltage supplied by the commercial power supply 4 and smoothes the rectified DC voltage.
- the smoothing circuit 6 corresponds to a DC power supply.
- the switching elements 7a and 7b are connected in series between the output terminals of the DC power supply.
- the switching element 7a is disposed on the high potential side, and the switching element 7b is disposed on the low potential side.
- the switching elements 7c and 7d are connected in series between the output terminals of the DC power supply.
- the switching element 7c is disposed on the high potential side, and the switching element 7d is disposed on the low potential side.
- the switching elements 7a, 7b, 7c, and 7d are each formed of an IGBT or the like, and incorporate a diode connected in the reverse direction.
- the resonant capacitors 8c and 8d are connected in series between the output terminals of the DC power supply.
- the resonant capacitor 8d is disposed on the high potential side, and the resonant capacitor 8c is disposed on the low potential side.
- the inner terminal of the heating coil 3a is connected to the connection point of the resonant capacitors 8c and 8d.
- the outer terminal of the heating coil 3a is connected to one end of the resonant capacitor 8a.
- the other end of the resonant capacitor 8a is connected to the connection point of the switching elements 7a and 7b.
- the heating coil 3a and the resonant capacitor 8a constitute a resonant circuit 9a.
- the inner terminal of the heating coil 3b is connected to the connection point of the resonant capacitors 8c and 8d.
- the outer terminal of the heating coil 3b is connected to one end of the resonant capacitor 8b.
- the other end of the resonant capacitor 8b is connected to the connection point of the switching elements 7c and 7d.
- the heating coil 3b and the resonant capacitor 8b constitute a resonant circuit 9b.
- the resonant circuits 9a and 9b correspond to first and second resonant circuits, respectively.
- the inner terminals of the heating coils 3a and 3b are connected to each other, and the outer terminals of the heating coils 3a and 3b are connected to the resonant capacitors 8a and 8b, respectively.
- the control unit 10 outputs control signals SGa, SGb, SGc, and SGd to the switching elements 7a, 7b, 7c, and 7d, respectively, to control the switching elements 7a, 7b, 7c, and 7d.
- the control unit 10 controls the heating output by controlling the frequency and the duty ratio of the control signals SGa, SGb, SGc, and SGd.
- the control signals SGa, SGb, SGc, and SGd correspond to first, second, third, and fourth control signals, respectively.
- the inverter unit 5 generates a high frequency current from the AC voltage supplied by the commercial power supply 4 and outputs the generated high frequency current to the heating coil unit 3 to drive the heating coil unit 3.
- the heating coil unit 3 inductively heats a pan, which is an object to be heated, placed on the top plate 2 with a high frequency current.
- the switching elements 7a, 7b, 7c and 7d correspond to first, second, third and fourth switching elements, respectively.
- the resonant capacitors 8a, 8b, 8c and 8d correspond to first, second, third and fourth resonant capacitors, respectively.
- the smoothing circuit 6 has a booster circuit including a switching element and a diode, the rectified DC voltage is boosted and the smoothed DC voltage becomes large. Thereby, the heating output can be increased.
- FIGS. 2A and 2B respectively show a control sequence SQa and a control sequence SQb.
- the operation mode of the inverter unit 5 is set to the first heating mode.
- the control sequence SQa is executed.
- the operation mode of the inverter unit 5 is set to the second heating mode.
- a control sequence SQa is executed.
- the control signal SGb is a signal obtained by shifting the phase of the control signal SGa by 180 degrees.
- the control signal SGc is the same as the control signal SGa, and the control signal SGd is the same as the control signal SGb.
- the control unit 10 alternately turns on and off the switching elements 7a and 7b while alternately providing the switching elements 7c and 7d while providing a dead time for preventing shorting between the output terminals of the DC power supply. On, off.
- the control unit 10 turns on the switching elements 7a and 7c simultaneously, and turns on the switching elements 7b and 7d simultaneously.
- the control signal SGb is a signal in which the phase of the control signal SGa is shifted by half a wavelength.
- the control signal SGd is the same as the control signal SGa, and the control signal SGc is the same as the control signal SGd.
- control unit 10 alternately turns on and off the switching elements 7a and 7b while alternately providing dead time and turns on and off the switching elements 7c and 7d alternately.
- the control unit 10 simultaneously turns on the switching elements 7a and 7d and simultaneously turns on the switching elements 7b and 7c.
- the resonance capacitor in which the current flows can be switched, and the combined capacitance of the resonance capacitor in the inverter unit 5 can be switched. That is, the resonant frequency of the inverter unit 5 can be switched without using the switching relay.
- the inverter unit 5 can be easily miniaturized. Since the switching relay switching time and the switching relay switching noise are eliminated, the user's comfort can be improved.
- the voltage applied to the heating coils 3a and 3b can be switched. Therefore, in the case of an aluminum pot or a copper pot, when the switching elements 7a to 7d are operated in the control sequence SQa, the maximum resonance voltage, the maximum resonance current, and the maximum output power can be reduced.
- the withstand voltage performance and the withstand current performance of the inverter unit 5 can be improved.
- the inverter unit 5 can be easily miniaturized. Regardless of the material of the pot, the pot can be heated with high output.
- the pot with a large load can be heated with high output.
- the switching elements 7a to 7d when the losses in the switching elements 7a to 7d are large, the switching elements 7a to 7d are operated in the control sequence SQa. Thereby, the current flowing to the switching elements 7a to 7d can be reduced. As a result, the loss in switching elements 7a to 7d can be reduced.
- the resonant capacitors 8c and 8d are connected in series between the output terminals of the DC power supply.
- the ripple current of the inverter unit 5 can be reduced.
- the noise of the inverter unit 5 can be reduced, the loss of the inverter unit 5 can be smoothed, and the capacity of the smoothing circuit 6 can be reduced.
- the resonant circuits 9a and 9b have the same resonant frequency, Q value, and attenuation.
- the resonance current, the resonance voltage, and the loss of the inverter unit 5 can be smoothed.
- the resonant capacitors 8c, 8d may have the same constant.
- the buoyancy of the pan can be biased by controlling the current flowing through the heating coils 3a and 3b. Thereby, the pan is hard to fall down and can be made hard to slip.
- the direction of the current flowing through the heating coils 3a and 3b can be controlled.
- the strength of the magnetic flux between the heating coils 3a and 3b can be controlled. Therefore, in the case of a pan requiring a large resonance current for heating, the current flowing through the heating coils 3a and 3b is controlled so as to strengthen the magnetic flux between the heating coils 3a and 3b. As a result, resonance current can be reduced.
- the current flowing through the heating coils 3a and 3b is controlled so as to weaken the magnetic flux between the heating coils 3a and 3b. Thereby, the pot can be heated with high heat power.
- the inner terminals of the heating coils 3a and 3b are connected to each other, and the outer terminals of the heating coils 3a and 3b are connected to the resonant capacitors 8a and 8b, respectively.
- heating coils 3a and 3b may be connected to each other, and the inner terminals of heating coils 3a and 3b may be connected to resonant capacitors 8a and 8b, respectively.
- the inner terminal of one heating coil and the outer terminal of the other heating coil may be connected.
- the position of the heating coil 3a and the position of the resonant capacitor 8a may be reversed.
- the position of the heating coil 3b and the position of the resonant capacitor 8b may be reversed.
- the heating coils 3a and 3b may be disposed not in the front-rear direction but in the left-right direction.
- the heating coils 3a, 3b may have the same number of turns or may have different numbers of turns.
- the heating coils 3a, 3b may have the same shape or may have different shapes.
- FIG. 3 is a block diagram of the induction heating cooker 1b according to the present embodiment. As shown in FIG. 3, the present embodiment is different from the first embodiment in that the induction heating cooker 1 b includes the switching unit 11. The other configuration of the induction heating cooker 1 b is the same as that of the induction heating cooker 1 a according to the first embodiment.
- the control unit 10 outputs control signals SGa and SGb.
- Switching elements 7a and 7b receive control signals SGa and SGb, respectively.
- the switching unit 11 receives the control signals SGa and SGb.
- control unit 10 controls the switching unit 11 such that the switching elements 7c and 7d receive the control signals SGa and SGb, respectively.
- control unit 10 controls the switching unit 11 such that the switching elements 7c and 7d receive the control signals SGb and SGa, respectively.
- the switching unit 11 also receives the control signal SGa in the switching element 7c, and receives the control signal SGb in the switching element 7d.
- the control signal SGa is also received by the switching element 7 d
- the control signal SGb is also received by the switching element 7 c.
- FIG. 4A is a diagram showing a control sequence SQa when the pan placed on the top plate 2 is an aluminum pan.
- FIG. 4B is a diagram showing a control sequence SQb in a case where the pan placed on the top plate 2 is a multilayer pan or an iron pan.
- control signal SGa is output to the switching elements 7a and 7c, and the control signal SGb is output to the switching elements 7b and 7d.
- control signal SGa is output to the switching elements 7a and 7d, and the control signal SGb is output to the switching elements 7b and 7c.
- control unit 10 outputs control signals SGa and SGb, and controls switching unit 11 to control switching elements 7a, 7b, 7c and 7d.
- control signal SGc in the first embodiment is configured by control signal SGa or control signal SGb
- control signal SGd in the first embodiment is configured by control signal SGb or control signal SGa.
- the control unit 10 need not output four signals, and the control unit 10 can be simplified.
- control unit 10 executes the third heating mode in which the first heating mode and the second heating mode are alternately executed regardless of the material of the pan. That is, in the third heating mode, control sequences SQa and SQb are alternately executed.
- the pan can be heated more uniformly by changing the bias of the heat distribution. As a result, heating unevenness can be improved.
- FIG. 5 is a block diagram of an induction heating cooker 1c according to the present embodiment. As shown in FIG. 5, the present embodiment is different from the second embodiment in that the induction heating cooker 1 c includes the current detectors 12 a and 12 b. The other configuration of the induction heating cooker 1c is the same as that of the induction heating cooker 1b according to the second embodiment.
- the current detection unit 12a is provided between the heating coil 3a and the resonant capacitor 8a, and is connected in series to the resonant circuit 9a.
- the current detection unit 12a detects the current flowing through the resonance circuit 9a, and transmits the detected current value to the control unit 10.
- the current detection unit 12b is provided between the heating coil 3b and the resonant capacitor 8b, and connected in series to the resonant circuit 9b.
- the current detection unit 12 b detects the current flowing through the resonance circuit 9 b and transmits the detected current value to the control unit 10.
- FIG. 6 is a flowchart showing the operation of the induction heating cooker 1c.
- the operation mode of the inverter unit 5 is an initial mode (step S2) Migrate to
- the operation mode of the inverter unit 5 shifts to a load determination mode (step S3) for determining the material of the pan. Depending on the result of the load determination mode (step S3), the operation mode of the inverter unit 5 shifts to the first heating mode (step S4) or the second heating mode (step S5).
- step S3 when it is determined that the pan placed on the top plate 2 is a non-magnetic pan such as an aluminum pan, the operation mode of the inverter unit 5 is the first heating It shifts to the mode (step S4).
- step S4 the control unit 10 controls the switching elements 7a to 7d such that the switching elements 7a to 7d operate in the control sequence SQa shown in FIG. 4A.
- step S3 when it is determined that the pan placed on the top plate 2 is a multilayer pan or a pan made of a magnetic material such as an iron pan, the operation mode of the inverter unit 5 is the second In the heating mode (step S5).
- step S5 the control unit 10 controls the switching elements 7a to 7d such that the switching elements 7a to 7d operate in the control sequence SQb shown in FIG. 4B.
- control unit 10 can determine the material of the pan placed on the top plate 2 by detecting the current flowing through the resonance circuits 9a and 9b.
- the control unit 10 can automatically select and execute either the first or second heating mode depending on the material of the pan.
- a voltage detection unit may be provided instead of the current detection units 12a and 12b. It is only necessary to detect changes in the characteristics of at least one or more resonance circuits 9a and 9b.
- FIG. 7 is a block diagram of an induction heating cooker 1 d according to the present embodiment. As shown in FIG. 7, the present embodiment is different from the fourth embodiment in that the induction heating cooker 1 d has a current detection unit 12 c. The other configuration of the induction heating cooker 1 d is the same as that of the induction heating cooker 1 c according to the fourth embodiment.
- the current detection unit 12c is provided between the resonant capacitor 8c and the negative output terminal of the DC power supply, and is connected in series to the resonant capacitor 8c.
- the current detection unit 12 c detects the current flowing through the resonant capacitor 8 c and transmits the detected current value to the control unit 10.
- control unit 10 can determine the material of the pan placed on the top plate 2 by detecting the current or the like flowing through the resonance circuits 9 a and 9 b.
- the control unit 10 can automatically select and execute either the first or second heating mode depending on the material of the pan.
- the current detection unit 12c may be provided between the resonant capacitor 8d and the output terminal on the positive electrode side of the DC power supply, or between the resonant capacitors 8c and 8d.
- a voltage detection unit may be provided instead of the current detection units 12a, 12b, and 12c.
- FIG. 8 is a block diagram of an induction heating cooker 1e according to the present embodiment. As shown in FIG. 8, the present embodiment is different from the first embodiment in that the induction heating cooker 1 e does not have a resonant capacitor 8 d. The other configuration of the induction heating cooker 1 e is the same as that of the induction heating cooker 1 a according to the first embodiment.
- the resonance capacitor 8c connected between the connection point of the heating coils 3a and 3b and the output terminal on the negative electrode side of the DC power supply corresponds to a third capacitor.
- the same effect as that of the first embodiment can be obtained with a simpler configuration.
- FIG. 9 is a block diagram of an induction heating cooker 1 f according to the present embodiment.
- the sixth embodiment is different from the sixth embodiment in that the resonance capacitor 8c is provided between the output terminal on the positive electrode side of the DC power supply and the connection point of the heating coils 3a and 3b. It is different.
- the other configuration of the induction heating cooker 1 f is the same as that of the induction heating cooker 1 a according to the first embodiment.
- the resonance capacitor 8c connected between the connection point of the heating coils 3a and 3b and the output terminal on the positive electrode side of the DC power supply corresponds to a third capacitor.
- the same effect as that of the first embodiment can be obtained with a simpler configuration.
- FIG. 10 is a block diagram of an induction heating cooker 1g according to the present embodiment. As shown in FIG. 10, the present embodiment differs from the first embodiment in that the induction heating cooker 1g has coils 13a and 13b. The other configuration of the induction heating cooker 1 g is the same as that of the induction heating cooker 1 a according to the first embodiment.
- the coil 13a is provided between the connection point of the heating coils 3a and 3b and the output terminal on the negative electrode side of the DC power supply, and is connected in series to the resonant capacitor 8c.
- the coil 13b is provided between the connection point of the heating coils 3a and 3b and the output terminal on the positive electrode side of the DC power supply, and is connected in series with the resonant capacitor 8d.
- the coils 13a and 13b correspond to first and second coils.
- the impedance of the inverter unit 5 can be changed, and the loss of the semiconductor element can be reduced. Pots of various loads can be heated with higher heating power.
- FIG. 11 is a block diagram of an induction heating cooker 1 h according to the present embodiment. As shown in FIG. 11, the present embodiment is different from the first embodiment in that heating coil unit 3 further includes heating coils 3c and 3d. The other configuration of the induction heating cooker 1 h is the same as that of the induction heating cooker 1 a according to the first embodiment.
- the heating coil 3c is provided between the connection point of the heating coils 3a and 3b and the output terminal on the negative electrode side of the DC power supply, and is connected in series with the resonant capacitor 8c.
- the heating coil 3d is provided between the connection point of the heating coils 3a and 3b and the output terminal on the positive electrode side of the DC power supply, and is connected in series with the resonant capacitor 8d.
- the heating coils 3c, 3d are disposed between the heating coils 3a, 3b adjacent to the heating coils 3a, 3b.
- the heating coils 3c and 3d correspond to the third and fourth heating coils.
- the loss in coils 13a and 13b can be utilized for heating, and the heating efficiency can be increased. Can.
- the present disclosure is applicable to induction heating cookers for home or business use.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Induction Heating Cooking Devices (AREA)
Abstract
誘導加熱調理器は、直流電源と、第1~第4のスイッチング素子と、第1の加熱コイルおよび第1の共振コンデンサを含む第1の共振回路と、第2の加熱コイルおよび第2の共振コンデンサを含む第2の共振回路と、第3の共振コンデンサと、制御部とを備える。第1、第2のスイッチング素子は、直流電源の出力端子の間に直列に接続される。第3、第4のスイッチング素子は、直流電源の出力端子の間に直列に接続される。第1の共振回路の一端は、第1、第2のスイッチング素子の接続点に接続される。第2の共振回路では、一端が第3、第4のスイッチング素子の接続点に接続され、他端が第1の共振回路の他端に接続される。第3の共振コンデンサは、第1、第2の共振回路の接続点と直流電源の正極側の出力端子または負極側の出力端子との間に接続される。制御部は、第1~第4のスイッチング素子を制御する。
Description
本開示は、様々な材質の被加熱物を加熱するために、インバータ回路の共振周波数を切り替える機能を備えた誘導加熱調理器に関する。
従来、この種の誘導加熱調理器は、外郭を構成する本体と、本体の上面に設けられたトッププレートと、少なくとも一つのインバータ部とを備える。インバータ部は、四つのスイッチング素子と一つの加熱コイルと少なくとも一つの切り替えリレーとを有する(例えば、特許文献1参照)。
上記従来技術によれば、切り替えリレーを作動させることにより、インバータ回路の共振周波数を切り替えることができる。これにより、アルミ鍋、アルミとステンレスとを含む多層鍋、鉄鍋などの様々な材質の鍋を加熱することができる。
しかしながら、上記従来技術では、様々な材質の鍋を加熱するために、インバータ部において、共振コンデンサの高耐圧化、スイッチング素子の高損失化、切り替えリレーの使用が必要となる。従って、インバータ部のコストアップ、インバータ部の大型化という問題が生じる。
切り替えリレーが作動するまでの時間、切り替えリレーの作動音により、使用者が不快感を覚えるという問題もある。
本開示は、上記従来の問題を解決するもので、様々な材質の鍋を加熱するために、切り替えリレーを用いずにインバータ回路の共振周波数を切り替えることができる誘導加熱調理器を提供することを目的とする。
本開示の一態様の誘導加熱調理器は、直流電源と、第1~第4のスイッチング素子と、第1の加熱コイルおよび第1の共振コンデンサを含む第1の共振回路と、第2の加熱コイルおよび第2の共振コンデンサを含む第2の共振回路と、第3の共振コンデンサと、制御部とを備える。
第1、第2のスイッチング素子は、直流電源の出力端子の間に直列に接続される。第3、第4のスイッチング素子は、直流電源の出力端子の間に直列に接続される。
第1の共振回路の一端は、第1、第2のスイッチング素子の接続点に接続される。第2の共振回路では、一端が第3、第4のスイッチング素子の接続点に接続され、他端が第1の共振回路の他端に接続される。
第3の共振コンデンサは、第1、第2の共振回路の接続点と直流電源の正極側の出力端子または負極側の出力端子との間に接続される。制御部は、第1~第4のスイッチング素子を制御する。
本態様によれば、スイッチング素子の動作により、電流の流れる経路を切り替えることができる。これにより、電流の流れる共振コンデンサが切り替わり、インバータ部における共振コンデンサの合成容量を切り替えることができる。すなわち、切り替えリレーを用いずに、インバータ部の共振周波数を切り替えることができる。
切り替えリレーを必要としないので、インバータ部5を容易に小型化することができる。切り替えリレーの切り替え時間や、切り替えリレーの切り替え音がなくなるので、使用者の快適性を向上させることができる。
本開示の第1の態様の誘導加熱調理器は、直流電源と、第1~第4のスイッチング素子と、第1の加熱コイルおよび第1の共振コンデンサを含む第1の共振回路と、第2の加熱コイルおよび第2の共振コンデンサを含む第2の共振回路と、第3の共振コンデンサと、制御部とを備える。
第1、第2のスイッチング素子は、直流電源の出力端子の間に直列に接続される。第3、第4のスイッチング素子は、直流電源の出力端子の間に直列に接続される。
第1の共振回路の一端は、第1、第2のスイッチング素子の接続点に接続される。第2の共振回路では、一端が第3、第4のスイッチング素子の接続点に接続され、他端が第1の共振回路の他端に接続される。
第3の共振コンデンサは、第1、第2の共振回路の接続点と直流電源の正極側の出力端子または負極側の出力端子との間に接続される。制御部は、第1~第4のスイッチング素子を制御する。
本開示の第2の態様の誘導加熱調理器は、第1の態様に加えて、第1、第2の共振回路の接続点と直流電源の正極側の出力端子との間に接続された第4の共振コンデンサをさらに備える。第3の共振コンデンサは、第1、第2の共振回路の接続点と直流電源の負極側の出力端子との間に接続される。
本開示の第3の態様の誘導加熱調理器は、第1の態様に加えて、切替部をさらに有する。制御部は、第1のスイッチング素子に第1の制御信号を出力し、第2のスイッチング素子に第2の制御信号を出力する。切替部は、第1の制御信号が第3のスイッチング素子にも出力され、第2の制御信号が第4のスイッチング素子にも出力される状態と、第1の制御信号が第4のスイッチング素子にも出力され、第2の制御信号が第3のスイッチング素子にも出力される状態とを切り替える。
本開示の第4の態様の誘導加熱調理器は、第1の態様に加えて、第1の共振回路に直列に接続された電流検知部または電圧検知部と、第2の共振回路に直列に接続された電流検知部または電圧検知部とをさらに備える。
本開示の第5の態様の誘導加熱調理器は、第4の態様に加えて、第3の共振コンデンサに直列に接続された電流検知部または電圧検知部をさらに備える。
本開示の第6の態様の誘導加熱調理器では、第1の態様に加えて、制御部は、デッドタイムを設けながら、第1、第2のスイッチング素子を交互にオン、オフし、第3、第4のスイッチング素子を交互にオン、オフする。
制御部は、被加熱物が非磁性材質製である場合、第1、第3のスイッチング素子を同時にオンし、第2、第4のスイッチング素子を同時にオンする第1の加熱モードを実行する。制御部は、被加熱物が磁性材質製である場合、第1、第4のスイッチング素子を同時にオンし、第2、第3のスイッチング素子を同時にオンする第2の加熱モードを実行する。
本開示の第7の態様の誘導加熱調理器では、第1の態様に加えて、制御部は、デッドタイムを設けながら、第1、第2のスイッチング素子を交互にオン、オフし、第3、第4のスイッチング素子を交互にオン、オフする。
制御部は、第1、第3のスイッチング素子を同時にオンし、第2、第4のスイッチング素子を同時にオンする第1の加熱モードを実行する。制御部は、第1、第4のスイッチング素子を同時にオンし、第2、第3のスイッチング素子を同時にオンする第2の加熱モードを実行する。制御部は、第1の加熱モードと第2の加熱モードとを交互に実行する。
本開示の第8の態様の誘導加熱調理器は、第2の態様に加えて、第1、第2のコイルをさらに備える。第1のコイルは、第1、第2の共振回路の接続点と直流電源の負極側の出力端子との間に設けられ、第3の共振コンデンサと直列に接続される。第2のコイルは、第1、第2の共振回路の接続点と直流電源の正極側の出力端子との間に設けられ、第4の共振コンデンサと直列に接続される。
本開示の第9の態様の誘導加熱調理器は、第8の態様に加えて、第1のコイルが第3の加熱コイルであり、第2のコイルが第4の加熱コイルである。
以下、本開示の実施の形態について、図面を参照しながら説明する。以下の説明において、同一または相当部分には同一符号を付し、重複する説明を省略する。
(実施の形態1)
図1は、本開示の実施の形態1に係る誘導加熱調理器1aのブロック図である。図1に示すように、誘導加熱調理器1aは、外郭を構成する本体の上面に設けられたトッププレート2と、トッププレート2の下方に設けられたインバータ部5とを備える。
図1は、本開示の実施の形態1に係る誘導加熱調理器1aのブロック図である。図1に示すように、誘導加熱調理器1aは、外郭を構成する本体の上面に設けられたトッププレート2と、トッププレート2の下方に設けられたインバータ部5とを備える。
トッププレート2は、ガラスなどの電気絶縁物で構成される。インバータ部5は、加熱コイル部3、平滑回路6、スイッチング素子7a、7b、7c、7d、共振コンデンサ8a、8b、8c、8d、制御部10を備える。
加熱コイル部3は、隣接する二つの加熱コイル(加熱コイル3a、3b)を有する。加熱コイル3aは前側に配置され、加熱コイル3bは後ろ側に配置される。加熱コイル3a、3bは第1、第2の加熱コイルにそれぞれ相当する。
加熱コイル3a、3bは、コイルの内側に位置する内側端子とコイルの外側に位置する外側端子とを有する。内側端子はコイルの巻き始めであり、外側端子はコイルの巻き終わりである。加熱コイル3aは反時計回りに巻かれており、加熱コイル3bは時計回りに巻かれている。
平滑回路6は、全波整流回路であるダイオードブリッジ、コンデンサ、コイルを有する。平滑回路6は、商用電源4により供給される交流電圧を整流し、整流された直流電圧を平滑化する。平滑回路6は直流電源に相当する。
スイッチング素子7a、7bは、直流電源の出力端子間に直列に接続される。スイッチング素子7aは高電位側に配置され、スイッチング素子7bは低電位側に配置される。スイッチング素子7c、7dは、直流電源の出力端子間に直列に接続される。スイッチング素子7cは高電位側に配置され、スイッチング素子7dは低電位側に配置される。
スイッチング素子7a、7b、7c、7dは、IGBTなどで構成され、逆方向に接続されたダイオードを内蔵する。
共振コンデンサ8c、8dは、直流電源の出力端子間に直列に接続される。共振コンデンサ8dは高電位側に配置され、共振コンデンサ8cは低電位側に配置される。
加熱コイル3aの内側端子は、共振コンデンサ8c、8dの接続点に接続される。加熱コイル3aの外側端子は、共振コンデンサ8aの一端に接続される。共振コンデンサ8aの他端は、スイッチング素子7a、7bの接続点に接続される。加熱コイル3aと共振コンデンサ8aとが共振回路9aを構成する。
加熱コイル3bの内側端子は、共振コンデンサ8c、8dの接続点に接続される。加熱コイル3bの外側端子は、共振コンデンサ8bの一端に接続される。共振コンデンサ8bの他端は、スイッチング素子7c、7dの接続点に接続される。加熱コイル3bと共振コンデンサ8bとが共振回路9bを構成する。共振回路9a、9bは、第1、第2の共振回路にそれぞれ相当する。
本実施の形態では、加熱コイル3a、3bの内側端子が互いに接続され、加熱コイル3a、3bの外側端子が共振コンデンサ8a、8bにそれぞれ接続される。
制御部10は、スイッチング素子7a、7b、7c、7dに、制御信号SGa、SGb、SGc、SGdをそれぞれ出力して、スイッチング素子7a、7b、7c、7dを制御する。制御部10は、制御信号SGa、SGb、SGc、SGdの周波数およびデューティ比を制御することで、加熱出力を制御する。制御信号SGa、SGb、SGc、SGdは、第1、第2、第3、第4の制御信号にそれぞれ相当する。
インバータ部5は、商用電源4により供給される交流電圧から高周波電流を生成し、生成した高周波電流を加熱コイル部3に出力して、加熱コイル部3を駆動する。加熱コイル部3は、トッププレート2に載置された被加熱物である鍋を高周波電流により誘導加熱する。
スイッチング素子7a、7b、7c、7dは、第1、第2、第3、第4のスイッチング素子にそれぞれ相当する。共振コンデンサ8a、8b、8c、8dは、第1、第2、第3、第4の共振コンデンサにそれぞれ相当する。
図示しないが、平滑回路6が、スイッチング素子とダイオードとを含む昇圧回路を有すると、整流された直流電圧が昇圧されて、平滑された直流電圧が大きくなる。これにより、加熱出力を高めることができる。
図2A、図2Bは、制御シーケンスSQa、制御シーケンスSQbをそれぞれ示す。トッププレート2に載置された鍋がアルミ鍋などの非磁性材質製の鍋である場合、インバータ部5の動作モードは、第1の加熱モードに設定される。第1の加熱モードでは、制御シーケンスSQaが実行される。
トッププレート2に載置された鍋が多層鍋または鉄鍋などの磁性材質製の鍋である場合、インバータ部5の動作モードは、第2の加熱モードに設定される。第2の加熱モードでは、制御シーケンスSQaが実行される。
図2Aに示すように、制御シーケンスSQaにおいて、制御信号SGbは、制御信号SGaの位相を180度ずらした信号である。制御信号SGcは制御信号SGaと同じ信号であり、制御信号SGdは制御信号SGbと同じ信号である。
これらの信号を用いて、制御部10は、直流電源の出力端子間を短絡させないためのデッドタイムを設けながら、スイッチング素子7a、7bを交互にオン、オフし、スイッチング素子7c、7dを交互にオン、オフする。制御部10は、スイッチング素子7a、7cを同時にオンし、スイッチング素子7b、7dを同時にオンする。
第1の加熱モードにおいて、加熱コイル3a、3bの両方で、あるときは、内側端子から外側端子に電流が流れ、またあるときは、外側端子から内側端子に電流が流れる。すなわち、加熱コイル3a、3bの互いに向かい合う部分において、同一方向に電流が流れる(図1参照)。その結果、加熱コイル3a、3bの間の領域の磁束が強められる。
図2Bに示すように、制御シーケンスSQbにおいて、制御信号SGbは、制御信号SGaの位相を半波長ずらした信号である。制御信号SGdは制御信号SGaと同じ信号であり、制御信号SGcは制御信号SGdと同じ信号である。
これらの信号を用いて、制御部10は、デッドタイムを設けながら、スイッチング素子7a、7bを交互にオン、オフし、スイッチング素子7c、7dを交互にオン、オフする。制御部10は、スイッチング素子7a、7dを同時にオンし、スイッチング素子7b、7cを同時にオンする。
第2の加熱モードにおいて、あるときは、加熱コイル3aでは外側端子から内側端子に電流が流れ、加熱コイル3bでは内側端子から外側端子に電流が流れる。またあるときは、加熱コイル3aでは内側端子から外側端子に電流が流れ、加熱コイル3bでは外側端子から内側端子に電流が流れる。
すなわち、加熱コイル3a、3bの互いに向かい合う部分において、逆方向に電流が流れる(図1参照)。その結果、加熱コイル3a、3bの間の領域の磁束が弱められる。
本実施の形態によれば、制御シーケンスSQa、SQbを切り替えることで、電流の流れる経路を切り替えることができる。これにより、電流の流れる共振コンデンサが切り替わり、インバータ部5における共振コンデンサの合成容量を切り替えることができる。すなわち、切り替えリレーを用いずに、インバータ部5の共振周波数を切り替えることができる。
切り替えリレーを必要としないので、インバータ部5を容易に小型化することができる。切り替えリレーの切り替え時間や、切り替えリレーの切り替え音がなくなるので、使用者の快適性を向上させることができる。
本実施の形態によれば、制御シーケンスSQaと制御シーケンスSQbとを切り替えることで、加熱コイル3a、3bへの印加電圧を切り替えることができる。このため、アルミ鍋や銅鍋の場合、制御シーケンスSQaでスイッチング素子7a~7dを動作させると、最大共振電圧、最大共振電流、最大出力電力を低減することができる。
その結果、インバータ部5の耐電圧性能、耐電流性能を向上させることができる。インバータ部5を容易に小型化することができる。鍋の材質に関わらず、鍋を高出力で加熱することができる。
本実施の形態によれば、鉄鍋やステンレス鍋の場合、制御シーケンスSQbでスイッチング素子7a~7dを動作させると、負荷が大きい鍋を高出力で加熱することができる。
本実施の形態によれば、スイッチング素子7a~7dにおける損失が多い場合、制御シーケンスSQaでスイッチング素子7a~7dを動作させる。これにより、スイッチング素子7a~7dに流れる電流を低減することができる。その結果、スイッチング素子7a~7dにおける損失を低減することができる。
本実施の形態によれば、共振コンデンサ8c、8dが、直流電源の出力端子間に直列に接続される。これにより、インバータ部5のリップル電流を低減することができる。その結果、インバータ部5のノイズを低減し、インバータ部5の損失を平滑化し、平滑回路6の容量を削減することができる。
本実施の形態において、加熱コイル3a、3bが同じ定数を有し、共振コンデンサ8a、8bが同じ定数を有すると、共振回路9a、9bが、同じ共振周波数、Q値、減衰を有する。これにより、インバータ部5の共振電流、共振電圧、損失を平滑化することができる。その結果、加熱ムラを改善することができる。さらに、共振コンデンサ8c、8dが同じ定数を有してもよい。
本実施の形態において、加熱コイル3a、3bに流れる電流を制御することにより、鍋の浮力を偏らせることができる。これにより、鍋が倒れにくく、滑りにくくすることができる。
本実施の形態によれば、加熱コイル3a、3bに流れる電流の向きを制御することができる。これにより、加熱コイル3a、3bの間の磁束の強さを制御することができる。このため、加熱のために大きな共振電流が必要な鍋の場合、加熱コイル3a、3bの間の磁束を強めるように、加熱コイル3a、3bに流れる電流を制御する。その結果、共振電流を低減することができる。
インピーダンスが大きくて高火力を得るのが困難な鍋の場合、加熱コイル3a、3bの間の磁束を弱めるように、加熱コイル3a、3bに流れる電流を制御する。これにより、鍋を高火力で加熱することができる。
上述の通り、本実施の形態では、加熱コイル3a、3bの内側端子が互いに接続され、加熱コイル3a、3bの外側端子が共振コンデンサ8a、8bにそれぞれ接続される。
しかし、加熱コイル3a、3bの外側端子が互いに接続され、加熱コイル3a、3bの内側端子が共振コンデンサ8a、8bにそれぞれ接続されてもよい。一方の加熱コイルの内側端子と他方の加熱コイルの外側端子とが接続されてもよい。
加熱コイル3aの位置と共振コンデンサ8aの位置とを逆にしてもよい。加熱コイル3bの位置と共振コンデンサ8bの位置とを逆にしてもよい。
加熱コイル3a、3bは前後方向ではなく、左右方向に配置されてもよい。加熱コイル3a、3bは同じ巻数を有してもよく、異なる巻数を有してもよい。加熱コイル3a、3bは、同じ形を有してもよく、異なる形を有してもよい。
(実施の形態2)
以下、本開示の実施の形態2について説明する。図3は、本実施の形態に係る誘導加熱調理器1bのブロック図である。図3に示すように、本実施の形態は、誘導加熱調理器1bが切替部11を有するという点において、実施の形態1と異なる。誘導加熱調理器1bのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
以下、本開示の実施の形態2について説明する。図3は、本実施の形態に係る誘導加熱調理器1bのブロック図である。図3に示すように、本実施の形態は、誘導加熱調理器1bが切替部11を有するという点において、実施の形態1と異なる。誘導加熱調理器1bのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
制御部10は、制御信号SGa、SGbを出力する。スイッチング素子7a、7bは、制御信号SGa、SGbをそれぞれ受信する。切替部11は、制御信号SGa、SGbを受信する。
制御部10は、制御シーケンスSQaでは、スイッチング素子7c、7dが制御信号SGa、SGbをそれぞれ受信するように、切替部11を制御する。制御部10は、制御シーケンスSQbでは、スイッチング素子7c、7dが制御信号SGb、SGaをそれぞれ受信するように、切替部11を制御する。
すなわち、あるときは、切替部11により、制御信号SGaがスイッチング素子7cにも受信され、制御信号SGbがスイッチング素子7dにも受信される。またあるときは、切替部11により、制御信号SGaがスイッチング素子7dにも受信され、制御信号SGbがスイッチング素子7cにも受信される。
図4Aは、トッププレート2に載置された鍋がアルミ鍋である場合の制御シーケンスSQaを示す図である。図4Bは、トッププレート2に載置された鍋が多層鍋または鉄鍋である場合の制御シーケンスSQbを示す図である。
図4Aに示すように、制御シーケンスSQaでは、制御信号SGaがスイッチング素子7a、7cに出力され、制御信号SGbがスイッチング素子7b、7dに出力される。図4Bに示すように、制御シーケンスSQbでは、制御信号SGaがスイッチング素子7a、7dに出力され、制御信号SGbがスイッチング素子7b、7cに出力される。
本実施の形態では、制御部10は、制御信号SGa、SGbを出力し、切替部11を制御することにより、スイッチング素子7a、7b、7c、7dを制御する。
本実施の形態では、実施の形態1における制御信号SGcが制御信号SGaまたは制御信号SGbにより構成され、実施の形態1における制御信号SGdが制御信号SGbまたは制御信号SGaにより構成される。
本実施の形態によれば、切替部11を設けることで、制御部10が四つの信号を出力する必要がなくなり、制御部10の簡素化を図ることができる。
(実施の形態3)
以下、本開示の実施の形態3について説明する。本実施の形態は、実施の形態1または2と同じ構成を備える。本実施の形態では、制御部10は、鍋の材質に関わらず、第1の加熱モードと第2の加熱モードとが交互に実行される第3の加熱モードを実行する。すなわち、第3の加熱モードでは、制御シーケンスSQa、SQbが交互に実行される。
以下、本開示の実施の形態3について説明する。本実施の形態は、実施の形態1または2と同じ構成を備える。本実施の形態では、制御部10は、鍋の材質に関わらず、第1の加熱モードと第2の加熱モードとが交互に実行される第3の加熱モードを実行する。すなわち、第3の加熱モードでは、制御シーケンスSQa、SQbが交互に実行される。
本実施の形態によれば、熱分布の偏り方を変更することにより、鍋をより均一に加熱することができる。その結果、加熱ムラを改善することができる。
(実施の形態4)
以下、本開示の実施の形態4について説明する。図5は、本実施の形態に係る誘導加熱調理器1cのブロック図である。図5に示すように、本実施の形態は、誘導加熱調理器1cが電流検知部12a、12bを有するという点において、実施の形態2と異なる。誘導加熱調理器1cのそれ以外の構成は、実施の形態2に係る誘導加熱調理器1bと同じである。
以下、本開示の実施の形態4について説明する。図5は、本実施の形態に係る誘導加熱調理器1cのブロック図である。図5に示すように、本実施の形態は、誘導加熱調理器1cが電流検知部12a、12bを有するという点において、実施の形態2と異なる。誘導加熱調理器1cのそれ以外の構成は、実施の形態2に係る誘導加熱調理器1bと同じである。
電流検知部12aは、加熱コイル3aと共振コンデンサ8aとの間に設けられ、共振回路9aに直列に接続される。電流検知部12aは、共振回路9aに流れる電流を検知し、検知した電流値を制御部10に送信する。
電流検知部12bは、加熱コイル3bと共振コンデンサ8bとの間に設けられ、共振回路9bに直列に接続される。電流検知部12bは、共振回路9bに流れる電流を検知し、検知した電流値を制御部10に送信する。
以上のように構成された誘導加熱調理器1cについて、以下、その動作を説明する。
図6は、誘導加熱調理器1cの動作を示すフローチャートである。図6に示すように、インバータ部5に電源が供給されない電源オフモード(ステップS1)において、電源がオンされると、インバータ部5の動作モードは、加熱動作を開始しない初期モード(ステップS2)に移行する。
加熱開始が指示されると、インバータ部5の動作モードは、鍋の材質を判別する負荷判定モード(ステップS3)に移行する。負荷判定モード(ステップS3)の結果に応じて、インバータ部5の動作モードは、第1の加熱モード(ステップS4)または第2の加熱モード(ステップS5)に移行する。
負荷判定モード(ステップS3)において、トッププレート2に載置された鍋が、アルミ鍋などの非磁性材質製の鍋であると判定されると、インバータ部5の動作モードは、第1の加熱モード(ステップS4)に移行する。
第1の加熱モード(ステップS4)において、制御部10は、スイッチング素子7a~7dが、図4Aに示す制御シーケンスSQaで動作するように、スイッチング素子7a~7dを制御する。
負荷判定モード(ステップS3)において、トッププレート2に載置された鍋が、多層鍋または鉄鍋などの磁性材質製の鍋であると判定されると、インバータ部5の動作モードは、第2の加熱モード(ステップS5)に移行する。
第2の加熱モード(ステップS5)において、制御部10は、スイッチング素子7a~7dが、図4Bに示す制御シーケンスSQbで動作するように、スイッチング素子7a~7dを制御する。
本実施の形態によれば、共振回路9a、9bに流れる電流を検知することにより、制御部10が、トッププレート2に載置された鍋の材質を判別することができる。制御部10は、鍋の材質に応じて、自動的に第1、第2の加熱モードのいずれかを選択し実行することができる。
電流検知部12a、12bの代わりに、電圧検知部を設けてもよい。少なくとも一つ以上の共振回路9a、9bの特性の変化が検知できればよい。
(実施の形態5)
以下、本開示の実施の形態5について説明する。図7は、本実施の形態に係る誘導加熱調理器1dのブロック図である。図7に示すように、本実施の形態は、誘導加熱調理器1dが電流検知部12cを有するという点において、実施の形態4と異なる。誘導加熱調理器1dのそれ以外の構成は、実施の形態4に係る誘導加熱調理器1cと同じである。
以下、本開示の実施の形態5について説明する。図7は、本実施の形態に係る誘導加熱調理器1dのブロック図である。図7に示すように、本実施の形態は、誘導加熱調理器1dが電流検知部12cを有するという点において、実施の形態4と異なる。誘導加熱調理器1dのそれ以外の構成は、実施の形態4に係る誘導加熱調理器1cと同じである。
電流検知部12cは、共振コンデンサ8cと直流電源の負極側の出力端子との間に設けられ、共振コンデンサ8cに直列に接続される。電流検知部12cは、共振コンデンサ8cに流れる電流を検知し、検知した電流値を制御部10に送信する。
本実施の形態によれば、共振回路9a、9bに流れる電流などを検知することにより、制御部10が、トッププレート2に載置された鍋の材質を判別することができる。制御部10は、鍋の材質に応じて、自動的に第1、第2の加熱モードのいずれかを選択し実行することができる。
電流検知部12cは、共振コンデンサ8dと直流電源の正極側の出力端子との間、または、共振コンデンサ8c、8dの間に設けられてもよい。電流検知部12a、12b、12cの代わりに、電圧検知部を設けてもよい。
(実施の形態6)
以下、本開示の実施の形態6について説明する。図8は、本実施の形態に係る誘導加熱調理器1eのブロック図である。図8に示すように、本実施の形態は、誘導加熱調理器1eが共振コンデンサ8dを有しないという点において、実施の形態1と異なる。誘導加熱調理器1eのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
以下、本開示の実施の形態6について説明する。図8は、本実施の形態に係る誘導加熱調理器1eのブロック図である。図8に示すように、本実施の形態は、誘導加熱調理器1eが共振コンデンサ8dを有しないという点において、実施の形態1と異なる。誘導加熱調理器1eのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
本実施の形態では、加熱コイル3a、3bの接続点と、直流電源の負極側の出力端子との間に接続される共振コンデンサ8cが、第3のコンデンサに相当する。
本実施の形態によれば、より簡単な構成で、実施の形態1と同様の効果を得ることができる。
(実施の形態7)
以下、本開示の実施の形態7について説明する。図9は、本実施の形態に係る誘導加熱調理器1fのブロック図である。図9に示すように、本実施の形態は、共振コンデンサ8cが直流電源の正極側の出力端子と、加熱コイル3a、3bの接続点との間に設けられるという点において、実施の形態6と異なる。誘導加熱調理器1fのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
以下、本開示の実施の形態7について説明する。図9は、本実施の形態に係る誘導加熱調理器1fのブロック図である。図9に示すように、本実施の形態は、共振コンデンサ8cが直流電源の正極側の出力端子と、加熱コイル3a、3bの接続点との間に設けられるという点において、実施の形態6と異なる。誘導加熱調理器1fのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
本実施の形態では、加熱コイル3a、3bの接続点と、直流電源の正極側の出力端子との間に接続される共振コンデンサ8cが、第3のコンデンサに相当する。
本実施の形態によれば、より簡単な構成で、実施の形態1と同様の効果を得ることができる。
(実施の形態8)
以下、本開示の実施の形態8について説明する。図10は、本実施の形態に係る誘導加熱調理器1gのブロック図である。図10に示すように、本実施の形態は、誘導加熱調理器1gがコイル13a、13bを有するという点において、実施の形態1と異なる。誘導加熱調理器1gのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
以下、本開示の実施の形態8について説明する。図10は、本実施の形態に係る誘導加熱調理器1gのブロック図である。図10に示すように、本実施の形態は、誘導加熱調理器1gがコイル13a、13bを有するという点において、実施の形態1と異なる。誘導加熱調理器1gのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
コイル13aは、加熱コイル3a、3bの接続点と直流電源の負極側の出力端子との間に設けられ、共振コンデンサ8cと直列に接続される。コイル13bは、加熱コイル3a、3bの接続点と直流電源の正極側の出力端子との間に設けられ、共振コンデンサ8dと直列に接続される。コイル13a、13bは第1、第2のコイルに相当する。
本実施の形態によれば、インバータ部5のインピーダンスを変えることができ、半導体素子のロスを低減することができる。様々な負荷の鍋をより高火力で加熱することができる。
(実施の形態9)
以下、本開示の実施の形態9について説明する。図11は、本実施の形態に係る誘導加熱調理器1hのブロック図である。図11に示すように、本実施の形態は、加熱コイル部3が加熱コイル3c、3dをさらに有するという点において、実施の形態1と異なる。誘導加熱調理器1hのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
以下、本開示の実施の形態9について説明する。図11は、本実施の形態に係る誘導加熱調理器1hのブロック図である。図11に示すように、本実施の形態は、加熱コイル部3が加熱コイル3c、3dをさらに有するという点において、実施の形態1と異なる。誘導加熱調理器1hのそれ以外の構成は、実施の形態1に係る誘導加熱調理器1aと同じである。
加熱コイル3cは、加熱コイル3a、3bの接続点と直流電源の負極側の出力端子との間に設けられ、共振コンデンサ8cと直列に接続される。加熱コイル3dは、加熱コイル3a、3bの接続点と直流電源の正極側の出力端子との間に設けられ、共振コンデンサ8dと直列に接続される。
加熱コイル3c、3dは、加熱コイル3a、3bの間に加熱コイル3a、3bと隣接して配置される。加熱コイル3c、3dは第3、第4の加熱コイルに相当する。
本実施の形態によれば、実施の形態8におけるコイル13a、13bを加熱コイル3c、3dにそれぞれ置き換えることで、コイル13a、13bでのロスを加熱に利用することができ、加熱効率を上げることができる。
加熱コイルの数を増加させることで、様々な形状の鍋をより均一に加熱することができる。加熱コイル3c、3dを設けることで、加熱コイル3c、3dを用いて負荷を検知することができる。これにより、鍋のずれを検知しやすくなる。加熱コイル3c、3dを設けることで、ロスを分散させることができる。
本開示は、家庭用または業務用の誘導加熱調理器に適用可能である。
1a、1b、1c、1d、1e、1f、1g、1h 誘導加熱調理器
2 トッププレート
3 加熱コイル部
3a、3b、3c、3d 加熱コイル
4 商用電源
5 インバータ部
6 平滑回路
7a、7b、7c、7d スイッチング素子
8a、8b、8c、8d 共振コンデンサ
9a、9b 共振回路
10 制御部
11 切替部
12a、12b、12c 電流検知部
13a、13b コイル
2 トッププレート
3 加熱コイル部
3a、3b、3c、3d 加熱コイル
4 商用電源
5 インバータ部
6 平滑回路
7a、7b、7c、7d スイッチング素子
8a、8b、8c、8d 共振コンデンサ
9a、9b 共振回路
10 制御部
11 切替部
12a、12b、12c 電流検知部
13a、13b コイル
Claims (9)
- 直流電源と、
前記直流電源の出力端子の間に直列に接続された第1のスイッチング素子および第2のスイッチング素子と、
前記直流電源の前記出力端子の間に直列に接続された第3のスイッチング素子および第4のスイッチング素子と、
直列に接続された第1の加熱コイルおよび第1の共振コンデンサを含み、一端が前記第1のスイッチング素子および前記第2のスイッチング素子の接続点に接続された第1の共振回路と、
直列に接続された第2の加熱コイルおよび第2の共振コンデンサを含み、一端が前記第3のスイッチング素子および前記第4のスイッチング素子の接続点に接続され、他端が前記第1の共振回路の他端に接続された第2の共振回路と、
前記第1の共振回路および前記第2の共振回路の接続点と、前記直流電源の正極側の出力端子または負極側の出力端子との間に接続された第3の共振コンデンサと、
前記第1のスイッチング素子と前記第2のスイッチング素子と前記第3のスイッチング素子と前記第4のスイッチング素子とを制御するように構成された制御部と、を備えた誘導加熱調理器。 - 前記第1の共振回路および前記第2の共振回路の接続点と前記直流電源の正極側の出力端子との間に接続された第4の共振コンデンサをさらに備え、前記第3の共振コンデンサが、前記第1の共振回路および前記第2の共振回路の接続点と前記直流電源の負極側の出力端子との間に接続された、請求項1に記載の誘導加熱調理器。
- 切替部をさらに有し、
前記制御部が、前記第1のスイッチング素子に第1の制御信号を出力し、前記第2のスイッチング素子に第2の制御信号を出力し、
前記切替部が、前記第1の制御信号が前記第3のスイッチング素子にも出力され、前記第2の制御信号が前記第4のスイッチング素子にも出力される状態と、前記第1の制御信号が前記第4のスイッチング素子にも出力され、前記第2の制御信号が前記第3のスイッチング素子にも出力される状態とを切り替えるように構成された、請求項1に記載の誘導加熱調理器。 - 前記第1の共振回路に直列に接続された電流検知部または電圧検知部と、前記第2の共振回路に直列に接続された電流検知部または電圧検知部と、をさらに備えた、請求項1に記載の誘導加熱調理器。
- 前記第3の共振コンデンサに直列に接続された電流検知部または電圧検知部をさらに備えた、請求項4に記載の誘導加熱調理器。
- 前記制御部が、デッドタイムを設けながら、前記第1のスイッチング素子と前記第2のスイッチング素子とを交互にオン、オフし、前記第3のスイッチング素子と前記第4のスイッチング素子とを交互にオン、オフするように構成され、
前記制御部が、被加熱物が非磁性材質製である場合、前記第1のスイッチング素子と前記第3のスイッチング素子とを同時にオンし、前記第2のスイッチング素子と前記第4のスイッチング素子とを同時にオンする第1の加熱モードを実行するように構成され、
前記制御部が、被加熱物が磁性材質製である場合、前記第1のスイッチング素子と前記第4のスイッチング素子とを同時にオンし、前記第2のスイッチング素子と前記第3のスイッチング素子とを同時にオンする第2の加熱モードを実行するように構成された、請求項1に記載の誘導加熱調理器。 - 前記制御部が、デッドタイムを設けながら、前記第1のスイッチング素子と前記第2のスイッチング素子とを交互にオン、オフし、前記第3のスイッチング素子と前記第4のスイッチング素子とを交互にオン、オフするように構成され、
前記制御部が、前記第1のスイッチング素子と前記第3のスイッチング素子とを同時にオンし、前記第2のスイッチング素子と前記第4のスイッチング素子とを同時にオンする第1の加熱モードを実行するように構成され、
前記制御部が、前記第1のスイッチング素子と前記第4のスイッチング素子とを同時にオンし、前記第2のスイッチング素子と前記第3のスイッチング素子とを同時にオンする第2の加熱モードを実行するように構成され、
前記制御部が、前記第1の加熱モードと前記第2の加熱モードとを交互に実行するように構成された、請求項1に記載の誘導加熱調理器。 - 前記第1の共振回路および前記第2の共振回路の接続点と前記直流電源の負極側の出力端子との間に設けられ、前記第3の共振コンデンサと直列に接続された第1のコイルと、
前記第1の共振回路および前記第2の共振回路の接続点と前記直流電源の正極側の出力端子との間に設けられ、前記第4の共振コンデンサと直列に接続された第2のコイルと、をさらに備えた、請求項2に記載の誘導加熱調理器。 - 前記第1のコイルが第3の加熱コイルであり、前記第2のコイルが第4の加熱コイルである、請求項8に記載の誘導加熱調理器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18849140.1A EP3675599B1 (en) | 2017-08-24 | 2018-07-24 | Induction-heating cooker |
JP2019538005A JP7001892B2 (ja) | 2017-08-24 | 2018-07-24 | 誘導加熱調理器 |
CN201880050962.4A CN111034354B (zh) | 2017-08-24 | 2018-07-24 | 感应加热烹调器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017160711 | 2017-08-24 | ||
JP2017-160711 | 2017-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019039166A1 true WO2019039166A1 (ja) | 2019-02-28 |
Family
ID=65438871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/027581 WO2019039166A1 (ja) | 2017-08-24 | 2018-07-24 | 誘導加熱調理器 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3675599B1 (ja) |
JP (1) | JP7001892B2 (ja) |
CN (1) | CN111034354B (ja) |
WO (1) | WO2019039166A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020187854A (ja) * | 2019-05-10 | 2020-11-19 | 日立グローバルライフソリューションズ株式会社 | 電磁誘導加熱装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2597762A (en) * | 2020-08-04 | 2022-02-09 | Njori Ltd | Induction cooker |
US20240172336A1 (en) * | 2022-11-22 | 2024-05-23 | Ghsp, Inc. | Driver topolgy and operation for an inductive cooktop |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007012482A (ja) * | 2005-06-30 | 2007-01-18 | Mitsubishi Electric Corp | 誘導加熱調理器 |
JP2008010165A (ja) | 2006-06-27 | 2008-01-17 | Matsushita Electric Ind Co Ltd | 誘導加熱装置 |
JP2013149470A (ja) * | 2012-01-19 | 2013-08-01 | Panasonic Corp | 誘導加熱装置 |
JP2013229346A (ja) * | 2013-07-11 | 2013-11-07 | Panasonic Corp | 誘導加熱調理器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602007007434D1 (de) * | 2006-02-02 | 2010-08-12 | Panasonic Corp | Induktionserwärmungsvorrichtung |
JP5086043B2 (ja) * | 2007-11-30 | 2012-11-28 | 日立アプライアンス株式会社 | 電力変換装置および電力変換装置の制御方法 |
JP4909968B2 (ja) * | 2008-09-29 | 2012-04-04 | 日立アプライアンス株式会社 | 電磁誘導加熱装置 |
JP5309148B2 (ja) * | 2008-10-08 | 2013-10-09 | パナソニック株式会社 | 誘導加熱装置 |
WO2010140283A1 (ja) * | 2009-06-01 | 2010-12-09 | パナソニック株式会社 | 誘導加熱調理器 |
ES2536432T3 (es) * | 2010-01-20 | 2015-05-25 | Panasonic Corporation | Aparato de calentamiento por inducción |
JP5361757B2 (ja) * | 2010-02-10 | 2013-12-04 | 三菱電機株式会社 | 誘導加熱装置 |
JP5979467B2 (ja) * | 2011-08-31 | 2016-08-24 | 株式会社吉野工業所 | 積層ブロー成形容器及び吸気孔の形成方法 |
JPWO2014064932A1 (ja) * | 2012-10-24 | 2016-09-08 | パナソニックIpマネジメント株式会社 | 誘導加熱装置 |
CN105191494B (zh) * | 2013-04-10 | 2018-04-10 | 松下知识产权经营株式会社 | 感应加热装置 |
JP6168454B2 (ja) * | 2013-05-24 | 2017-07-26 | パナソニックIpマネジメント株式会社 | 誘導加熱装置 |
JP6225407B2 (ja) * | 2014-02-28 | 2017-11-08 | 国立大学法人神戸大学 | 誘導加熱用高周波インバータ |
JP2016143568A (ja) * | 2015-02-03 | 2016-08-08 | 日立アプライアンス株式会社 | 電磁誘導加熱装置 |
-
2018
- 2018-07-24 CN CN201880050962.4A patent/CN111034354B/zh active Active
- 2018-07-24 WO PCT/JP2018/027581 patent/WO2019039166A1/ja unknown
- 2018-07-24 JP JP2019538005A patent/JP7001892B2/ja active Active
- 2018-07-24 EP EP18849140.1A patent/EP3675599B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007012482A (ja) * | 2005-06-30 | 2007-01-18 | Mitsubishi Electric Corp | 誘導加熱調理器 |
JP2008010165A (ja) | 2006-06-27 | 2008-01-17 | Matsushita Electric Ind Co Ltd | 誘導加熱装置 |
JP2013149470A (ja) * | 2012-01-19 | 2013-08-01 | Panasonic Corp | 誘導加熱装置 |
JP2013229346A (ja) * | 2013-07-11 | 2013-11-07 | Panasonic Corp | 誘導加熱調理器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3675599A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020187854A (ja) * | 2019-05-10 | 2020-11-19 | 日立グローバルライフソリューションズ株式会社 | 電磁誘導加熱装置 |
JP7222806B2 (ja) | 2019-05-10 | 2023-02-15 | 日立グローバルライフソリューションズ株式会社 | 電磁誘導加熱装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3675599A4 (en) | 2020-08-26 |
JPWO2019039166A1 (ja) | 2020-08-20 |
CN111034354A (zh) | 2020-04-17 |
EP3675599A1 (en) | 2020-07-01 |
EP3675599B1 (en) | 2021-09-01 |
CN111034354B (zh) | 2021-08-03 |
JP7001892B2 (ja) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5658692B2 (ja) | 誘導加熱装置 | |
US9433037B2 (en) | Induction heating cooker | |
CN111034354B (zh) | 感应加热烹调器 | |
JP4193095B2 (ja) | 誘導加熱調理器 | |
JP4794533B2 (ja) | 誘導加熱装置 | |
JP2009099350A (ja) | 誘導加熱装置 | |
JP2006351301A (ja) | 誘導加熱調理器 | |
JP2001196156A (ja) | 誘導加熱調理器 | |
JP4512525B2 (ja) | 誘導加熱調理器 | |
JP4978059B2 (ja) | 誘導加熱装置 | |
JP4494336B2 (ja) | 誘導加熱調理器 | |
JP5003602B2 (ja) | 誘導加熱装置 | |
JP4450813B2 (ja) | 誘導加熱調理器 | |
JP2014123539A (ja) | 誘導加熱装置およびそれを用いた炊飯器 | |
JP2000340352A (ja) | 電磁誘導加熱装置 | |
JP4193154B2 (ja) | 誘導加熱調理器 | |
JP2004006331A (ja) | 誘導加熱装置 | |
JP4992818B2 (ja) | 誘導加熱装置 | |
JP6076040B2 (ja) | 誘導加熱調理器 | |
JP2010055760A (ja) | 誘導加熱装置 | |
JP7050227B2 (ja) | 誘導加熱調理器 | |
JP3931831B2 (ja) | 誘導加熱調理器とその制御プログラム | |
JP2005093089A (ja) | 誘導加熱調理器 | |
JP2019176631A (ja) | インバータ装置およびその制御方法 | |
JP2005093088A (ja) | 誘導加熱調理器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18849140 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019538005 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018849140 Country of ref document: EP Effective date: 20200324 |