WO2019039121A1 - エレクトロクロミック素子およびそれを用いた表示システム - Google Patents

エレクトロクロミック素子およびそれを用いた表示システム Download PDF

Info

Publication number
WO2019039121A1
WO2019039121A1 PCT/JP2018/026141 JP2018026141W WO2019039121A1 WO 2019039121 A1 WO2019039121 A1 WO 2019039121A1 JP 2018026141 W JP2018026141 W JP 2018026141W WO 2019039121 A1 WO2019039121 A1 WO 2019039121A1
Authority
WO
WIPO (PCT)
Prior art keywords
regions
electrode
group
electrochromic
condition
Prior art date
Application number
PCT/JP2018/026141
Other languages
English (en)
French (fr)
Inventor
昌芳 樋口
雄基 清野
大橋 啓之
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2019537979A priority Critical patent/JP6818375B2/ja
Priority to US16/639,980 priority patent/US20200192171A1/en
Priority to CN201880054100.9A priority patent/CN111133374B/zh
Priority to EP18847686.5A priority patent/EP3674791B1/en
Publication of WO2019039121A1 publication Critical patent/WO2019039121A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F2001/1517Cyano complex compounds, e.g. Prussian blue
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F2001/1518Ferrocene compounds

Definitions

  • the present invention relates to an electrochromic (EC) device using an electrochromic material and a display system using the same.
  • the present invention relates to an electrochromic (EC) element which is complexly decolorized in a single element, and a display system using the same.
  • Patent Documents 1 and 2 disclose an organic / metal hybrid polymer in which an organic ligand is a terpyridine group or a phenanthroline group, to which a metal ion is coordinated, and an electrochromic device thereof.
  • Such an electrochromic device is applied to a display device, a light control device, electronic paper and the like.
  • a single element is designed to be colored according to the type of electrochromic material contained in the element, but complex colored or colored such as gradation or nonuniformity. It is not possible. If such complex coloration / discoloring is possible in a single element, it is desirable because the functionality of the existing display system is enhanced.
  • Patent Document 3 For such a demand, a display device using an electrochromic layer that enables gradation has been developed (see, for example, Patent Document 3).
  • Patent Document 3 a voltage gradient is generated in the planar direction of the resistance layer by the electrodes provided at both ends of the resistance layer, thereby enabling color display such as gradation display other than single color display.
  • the display device of Patent Document 3 only gradation display in a single direction can be performed, and complicated coloration and decolorization such as two-dimensional and random display is difficult.
  • JP 2007-112957 A JP, 2012-188517, A JP, 2012-063657, A JP, 2016-109853, A
  • An object of the present invention is to provide an electrochromic (EC) element and a display system using the same, which enables complex coloring and decoloring such as gradation and random.
  • EC electrochromic
  • a first electrode An electrochromic layer formed of an electrochromic material located on the first electrode; An electrolyte layer located on the electrochromic layer; A second electrode located on the electrolyte layer; Electrochromic (EC) device satisfying at least one of the following conditions (1) and (2): (1) Each of the first electrode and / or the second electrode includes a plurality of regions having different resistance values from an external power source; (2) The electrolyte layer is composed of a plurality of regions formed of different electrolyte materials. [2]. In the condition (1), the EC device according to the above [1], wherein each of the plurality of regions is an electrode having a block shape and / or a linear shape.
  • the plurality of regions are arranged such that the resistance value of each of the plurality of regions sequentially increases from the region at one end to the region at the other end. 1) or EC element as described in item [2]. [4].
  • the EC region according to the above [1] or [2] wherein the plurality of regions are arranged such that resistance values of the plurality of regions are random.
  • EC element as described in. [7].
  • EC element as described in the section. [8].
  • each of the plurality of regions has different ion conductivity, [1] to [9], wherein the plurality of regions are arranged such that the ion conductivity of each of the plurality of regions increases in order from the one end region to the other end region.
  • each of the plurality of regions has different ion conductivity
  • each of the plurality of regions has different ion conductivity in the range of 0.01 S / m or more and 0.5 S / m or less according to any one of the items [1] to [11] EC element as described in the section. [13].
  • the electrochromic material according to any one of the above [1] to [12], containing an organic / metal hybrid polymer containing an organic ligand and a metal ion coordinated to the organic ligand.
  • EC element as described in. [14].
  • the metal ion is at least one metal ion selected from the group consisting of Pt, Cu, Ni, Pd, Ag, Mo, Fe, Co, Ru, Rh, Eu, Zn and Mn. Or the EC element described in [14].
  • the organic / metal hybrid polymer is at least one organic / metal hybrid polymer represented by a general formula selected from the group consisting of general formulas (I), (II) and (III), [13]
  • the EC device according to any one of the following [15]:
  • M represents a metal ion
  • X represents a counter anion
  • S represents a spacer containing a carbon atom and a hydrogen atom or a spacer directly connecting two terpyridine groups
  • R 1 to R 4 Each independently represents a hydrogen atom or a substituent
  • n is an integer of 2 or more indicating the degree of polymerization
  • M 1 to M N (N is an integer of 2 or more) independently indicate metal ions having different redox potentials
  • X 1 to X n are Each independently represents a counter anion
  • S 1 to S N each independently represent a spacer containing a carbon
  • An electrochromic (EC) display system comprising a power supply and an electrochromic (EC) display, comprising:
  • the EC display unit includes a plurality of electrochromic (EC) elements,
  • An EC display system wherein each of the plurality of EC elements is the EC element according to any one of the above [1] to [16].
  • the electrochromic (EC) device of the present invention When a voltage is applied to the electrochromic layer by satisfying at least one of the above conditions (1) and (2), the electrochromic (EC) device of the present invention satisfies the condition (1) and / or the electrochromic layer. According to (2), a voltage distribution (non-uniform potential difference) occurs, and the amount of charge accumulated and the time until the amount of charge is accumulated become non-uniform. As a result, the EC device of the present invention is said to be gradation or color unevenness according to the non-uniformity of charge amount, non-uniformity of coloration / discoloring speed according to non-uniformity of time required for charge accumulation Enables various color changes.
  • the potential difference generated in the electrochromic layer can be changed only by setting the conditions (1) and / or (2) to a desired pattern or shape, so that only one direction can be obtained. Not only gradations, but also complex coloring and decoloring such as two-dimensional gradations and randomization are possible. Further, by changing the magnitude of the external voltage, it is possible to change the time required for accumulation of the charge amount, so it is also possible to change the time until the coloration / discoloring.
  • FIG. 1A is a view schematically showing an EC element according to an embodiment of the present invention.
  • FIG. 1B shows an exemplary connection between the first electrode and an external power supply.
  • FIG. 1C is a diagram showing another exemplary connection of the first electrode and the external power supply.
  • FIG. 2A is a view schematically showing an exemplary first electrode / second electrode consisting of a plurality of regions having different resistance values from the external power supply in the condition (1).
  • FIG. 2B is a view schematically showing another exemplary first electrode / second electrode consisting of a plurality of regions having different resistance values from the external power supply in the condition (1).
  • FIG. 3 is a diagram showing an approximate equivalent circuit corresponding to the EC element shown in FIG. 2A.
  • FIG. 4 is a schematic view showing time dependency of charge amount density with respect to various applied voltages in a general EC element.
  • FIG. 5 is a view schematically showing the state of gradation when a voltage is applied to the EC element shown in FIG. 2A.
  • FIG. 6 is a view schematically showing another exemplary first electrode / second electrode consisting of a plurality of regions having different resistance values from the external power supply in the condition (1).
  • FIG. 7 is a view schematically showing the state of gradation when a voltage is applied to the EC element shown in FIG.
  • FIG. 8 is a view schematically showing an example of still another first electrode / second electrode consisting of a plurality of regions having different resistance values from the external power supply under the condition (1).
  • FIG. 9 is a diagram showing an approximate equivalent circuit corresponding to the EC element shown in FIG.
  • FIG. 10 is a view schematically showing an exemplary EC element consisting of two regions in which the electrolyte layer in the condition (2) is formed of different electrolyte materials.
  • FIG. 11 is a view schematically showing a state of gradation when a voltage is applied to the EC element shown in FIG.
  • FIG. 12 schematically illustrates an exemplary EC display system of the present invention.
  • FIG. 13 is a view showing time dependency of charge density when different voltages are applied to the EC element of Reference Example 1.
  • FIG. 14 is a schematic view showing an ITO substrate in Example 2.
  • FIG. 15 is a schematic view showing an ITO substrate in Example 3.
  • FIG. 16 is a schematic view showing an ITO substrate in Example 4.
  • FIG. 17 is a figure which shows the mode of the color-discoloring after the voltage application of the EC element of Example 2 and Example 3, respectively.
  • FIG. 18 is a diagram showing how the color of the EC element of Example 5 is changed after applying a voltage.
  • FIG. 1A is a view schematically showing an EC element according to the present embodiment.
  • the EC device 100 of the present invention comprises a first electrode 110, an electrochromic (EC) layer 120 formed of an electrochromic material located on the first electrode 110, and an electrolyte layer 130 located on the EC layer 120. And a second electrode 140 located on the electrolyte layer 130.
  • the EC element 100 is connected to an external power supply 150 via an electrical wiring 111.
  • the first electrode 110 and the second electrode 140 may be provided on a transparent substrate (not shown) such as glass, resin such as plastic, and the like.
  • the first electrode 110 or the second electrode 140 may be a transparent conductive substrate such as fluorine-doped tin (FTO) or tin-doped indium oxide (ITO).
  • FIG. 1B shows an exemplary connection between the first electrode and an external power supply.
  • FIG. 1C is a diagram showing another exemplary connection of the first electrode and the external power supply.
  • the connection mode between the first electrode 110 and the external power supply 150 is omitted, but mechanical connection and electrical connection are performed in the experimental apparatus and the actual device.
  • the first electrode 110 is located on the substrate 112, and is represented by an alligator clip or a pin coated with a hard-to-oxidize metal such as gold (Au) on the surface. It is connected to the external power supply 150 through the electrical wiring 111 by the mechanical connection 113.
  • the first electrode 110 may be located on the substrate 112, and the metal pattern 114 and the electrical wiring 111 may be electrically connected on the first electrode 110.
  • the metal pattern 114 can be selected from Cu / Ti, Cr deposition, and electroless Au plating, depending on the type of electrical wiring.
  • the electrical connection between the metal pattern 114 and the electrical wiring 111 may be a normal electrical connection such as soldering, silver paste, wire bonding and the like. Such a connection mode is the same for the second electrode 140 as well.
  • the voltage is simply controlled without specially controlling the external power supply 150.
  • the voltage distribution can be generated in the EC layer 120 only by applying the voltage. Since the charge amount accumulated in the EC layer 120 and the time until the charge amount is accumulated differ according to the voltage distribution, the EC element 100 has gradation or color unevenness according to the charge amount, and further, wear / discoloration It enables various color changes such as speed non-uniformity (the manner in which the color changes slowly; the feeling of color change).
  • the EC element 100 of the present invention at least one of the following conditions (1) and (2) is satisfied.
  • the first electrode 110 and / or the second electrode 140 are each formed of a plurality of regions having different resistance values from the external power supply 150.
  • the electrolyte layer is composed of a plurality of regions formed of different electrolyte materials.
  • the plurality of regions (1) and / or (2) form a pattern of voltage distribution generated in the EC layer 120.
  • FIG. 2A is a view schematically showing an exemplary first electrode / second electrode consisting of a plurality of regions having different resistance values from the external power supply in the condition (1).
  • FIG. 2A shows an EC element including a plurality of regions in which both the first electrode 110 and the second electrode 140 have a block shape.
  • the plurality of regions constituting the second electrode 140 are connected in series to the external power supply 150, and the regions 1 to 6 are numbered from the external power supply 150 side.
  • a plurality of regions constituting the corresponding first electrode 110 are also connected in series to the external power supply 150, and are numbered as the regions 1 'to 6' from the external power supply 150 side.
  • the regions 1 to 6 are arranged in order of increasing resistance value from the external power supply 150 side.
  • Such a plurality of regions be set to have a resistance value in the range of 5 ⁇ to 500 ⁇ . Within this range, a voltage distribution to be described later can be generated.
  • the resistance value can be determined by the four-terminal method.
  • FIG. 2B is a view schematically showing another exemplary first electrode / second electrode consisting of a plurality of regions having different resistance values from the external power supply in the condition (1).
  • FIG. 2B shows an EC element including a plurality of regions in which both the first electrode 110 and the second electrode 140 have a linear shape.
  • the plurality of regions are numbered from region 1 to region 6 from the external power supply 150 side.
  • the regions 1 to 6 are arranged in order of increasing resistance value from the external power supply 150 side.
  • both the first electrode 110 and the second electrode 140 are formed on the transparent substrate 112, and are connected to the external power supply 150 by the electrical connection shown in FIG. 1C. (Not shown).
  • region which has a block-like shape is shown the example comprised from the linear electrode made rectangular, it is not necessarily limited to a rectangle. Moreover, it is not necessary to be a linear electrode, and the whole in the area
  • FIG. 3 is a diagram showing an approximate equivalent circuit corresponding to the EC element shown in FIG. 2A.
  • C I denotes the interfacial electrical double layer capacitance between the EC layer 120 and the electrolyte layer 130
  • C EC represents the capacity of the EC layer 120
  • V 1 ⁇ V 6 are between the electrodes, i.e. , Voltage applied to the EC layer. If C I and C EC are both becomes a constant value, V 1 to V 6 is the regions 1 to 6 are arranged such that the resistance value from the external power source 150 side in this order is increased, V 1 > V 2 > V 3 > V 4 > V 5 > V 6 is satisfied. As a result, a voltage distribution is generated in each region of EC layer 120 corresponding to regions 1 to 6 (region 1 ′ to region 6 ′). A similar voltage gradient is formed in the EC element shown in FIG. 2B.
  • FIG. 2A describes the case where each of the first electrode 110 and the second electrode 140 includes a plurality of regions having a block shape. A similar voltage gradient is formed even if either the first electrode 110 or the second electrode 140 is a full surface electrode, but the voltage gradient is reduced.
  • each of the plurality of regions may be composed of smaller regions having the same resistance value from the external power supply 150. As a result, since it is possible to lengthen the time until the decoloring or coloring, it is possible to cause a more distinct feeling.
  • FIG. 4 is a schematic view showing time dependency of charge amount density with respect to various applied voltages in a general EC element.
  • the voltages V x and V y (where V x > V y ) are applied to a general EC element in which the first electrode 110 and the second electrode 140 are all-surface electrodes and the electrolyte layer 130 is uniform.
  • the time dependency of the charge amount density accumulated in the EC layer when the voltage is applied is shown.
  • V x When a voltage equal to or higher than the redox potential of the electrochromic material constituting the EC layer, for example, V x is applied, charges are accumulated instantaneously (time t) as shown by the solid line, and the color is in the decolored state.
  • FIG. 5 is a view schematically showing the state of gradation when a voltage is applied to the EC element shown in FIG. 2A.
  • FIG. 5A schematically shows changes in voltage in a plurality of regions when V x and V y (FIG. 4) are respectively applied to the EC element.
  • the horizontal axis indicates the distance on the EC layer 120 corresponding to each area from the external power supply 150, and the vertical axis indicates the magnitude of the voltage applied to each area.
  • FIG. 5B schematically shows a colored state (gradation) of the EC layer 120 after a predetermined time (time t) when V x and V y are respectively applied to the EC element.
  • FIG. 5C shows the same as the plan view of FIG. 2A for easy understanding.
  • the EC layers of the regions 1 to 6 correspond to the order of the resistance values of the regions 1 to 6 of the electrodes, as shown in FIG. voltage applied to 120, respectively, a V 1x> V 2x> V 3x > V 4x> V 5x> V 6x.
  • V 1x> V 2x> V 3x > V 4x> V 5x> V 6x a V 1x> V 2x> V 3x > V 4x> V 5x> V 6x.
  • V 2x to V 6x which have a voltage lower than V 1x , do not accumulate charges sufficient for decoloring, and gradually change from near decolorizing to not completely decoloring (initial colored state) Change.
  • the voltage applied to each region of the EC layer 120 corresponding to the regions 1 to 6 becomes smaller in order.
  • the amount of charge accumulated in each region of the EC layer 120 corresponding to the regions 1 to 6 sequentially decreases, and gradation occurs in the order of the regions 1 to 6.
  • V 0 V y ( ⁇ V x ) to the EC element 100, as shown in FIG. 5A corresponding to the order of the resistance values of the regions 1 to 6 of the electrodes
  • the voltages applied to the EC layers 120 in the 1 to 6 regions are V 1y > V 2y > V 3y > V 4y > V 5y > V 6y , respectively.
  • V y is smaller than V x , referring to the time dependency of the charge density in FIG. 4, the voltage V 1 y applied to region 1 is the closest to V y , but the time t Then, as shown in the lower part of FIG. 5B, the charge is not sufficiently accumulated, and the state is close to coloring.
  • V 2 y to V 6 y whose voltage is smaller than V 1 y , charge is not further accumulated at time t, and changes gradually from a state close to coloring to a state not completely decoloring (initial coloring state) . In this way, different gradations can be generated depending on the magnitude of the voltage of the external power supply 150.
  • FIG. 5 is described based on time t in FIG. 4, when the charge accumulation is not completed completely at time t, the charge is slowly accumulated over time thereafter. As a result, since the speed of coloration and decoloring varies depending on the area, it is possible for the observer to have a faint feeling in addition to the color change of gradation.
  • FIG. 2B As in the case of FIG. 2A, it goes without saying that the same effect can be obtained because the resistance value gradually increases from the external power supply 150 side to the regions 1 to 6.
  • the first electrode 110 is a full surface electrode, when the voltage applied by the external power supply 150 is constant, the potential difference generated in the EC element of FIG. 2B is smaller than that of FIG. 2A. From this, as shown in FIG. 2A, when using a large potential difference, the plurality of regions of the first electrode 110 and the plurality of regions of the second electrode 140 may be arranged to face each other. preferable.
  • the respective resistance values increase in one direction from one to the other (in FIGS. 2A and 2B, in a direction away from external power supply 150) Achieve one-way gradation by arranging in.
  • the arrangement of the plurality of regions is not limited to this. By arranging a plurality of regions in two or more directions, two-dimensional gradation is possible.
  • time t it can be secured to either or zero lowering the voltage V 0 which external power supply 150 (switching off) that delays the time variation of the gradient or by gradation of the state of time t.
  • FIG. 6 is a view schematically showing another exemplary first electrode / second electrode consisting of a plurality of regions having different resistance values from the external power supply in the condition (1).
  • FIG. 6 shows an EC element including a plurality of regions in which both the first electrode 110 and the second electrode 140 have a block-like shape. The difference is that the magnitudes of the values are arrayed so as to change at random with region 1, region 3, region 2, region 4, region 6, and region 5. The corresponding regions 1 'to 6' are similarly arranged such that the resistance value changes randomly.
  • FIG. 7 is a view schematically showing the state of gradation when a voltage is applied to the EC element shown in FIG.
  • FIG. 7A schematically shows changes in voltage in a plurality of regions when V x and V y (see FIG. 4) are respectively applied to the EC element.
  • the horizontal axis indicates the distance on the EC layer 120 corresponding to each area from the external power supply 150, and the vertical axis indicates the magnitude of the voltage applied to each area.
  • FIG. 7B schematically shows a coloring state of the EC layer 120 after a predetermined time (time t) when V x and V y are respectively applied to the EC element.
  • FIG. 7C shows the same one as the plan view of FIG. 6 for easy understanding.
  • regions 1 to 6 correspond to the order of resistance values of regions 1 to 6 of the electrodes.
  • the voltage applied to the EC layer 120 changes.
  • the amount of charge accumulated in each region of the EC layer 120 corresponding to the regions 1 to 6 also changes, so that coloration / discoloring occurs randomly corresponding to the regions 1 to 6.
  • random coloring and decoloring can be performed only by arranging the plurality of regions so that their resistance values are random.
  • FIG. 7 has been described based on time t in FIG. 4, charge is slowly accumulated over time if charge accumulation is not completed completely at time t. As a result, since the coloring and decoloring speed is different for each area, it is possible for the observer to have a feeling of faintness in addition to the random color change.
  • FIG. 8 is a view schematically showing an example of still another first electrode / second electrode consisting of a plurality of regions having different resistance values from the external power supply under the condition (1).
  • FIG. 8 shows an EC element in which the first electrode 110 is a full surface electrode and the second electrode 140 is a plurality of regions having a block shape.
  • the plurality of regions constituting the second electrode 140 are connected in parallel to the external power supply 150, and the regions 1 to 6 are numbered from the external power supply 150 side.
  • the regions 1 to 6 are arranged in order of increasing resistance value from the external power supply 150 side.
  • FIG. 9 is a diagram showing an approximate equivalent circuit corresponding to the EC element shown in FIG.
  • C I indicates the interfacial electric double layer capacitance between EC layer 120 and electrolyte layer 130
  • C EC indicates the capacitance of EC layer 120
  • V 1 to V 6 indicate between the electrodes, ie, , Voltage applied to the EC layer. If C I and C EC are both becomes a constant value, V 1 to V 6 is the regions 1 to 6 are arranged such that the resistance value from the external power source 150 side in this order is increased, V 1 > V 2 > V 3 > V 4 > V 5 > V 6 is satisfied. As a result, a voltage distribution is generated in each region of the EC layer 120 corresponding to the regions 1 to 6. Therefore, in the EC element of FIG. 8 as well, it is possible to achieve the coloration / discoloration gradation similarly to the EC element of FIGS. 2A and 2B.
  • the material of the first electrode 110 and the second electrode 140 is not particularly limited, but is a transparent electrode. Thereby, even if it is an arbitrary pattern, the color change of EC layer 120 can be visually recognized.
  • the material of the transparent electrode is not particularly limited, and may be, for example, ITO, which is SnO 2 , In 2 O 3 or a mixture of In 2 O 3 and SnO 2 . Note that as shown in FIG. 8, electrodes (gray areas in the drawing) that connect the block-shaped electrodes in parallel may be provided.
  • an electrode material with small resistance such as gold, copper, aluminum or silver, or an electrode material with large resistance such as NiCr, Ta, TaN or TaSiO 2 can be used.
  • first electrode 110 and / or the second electrode 140 is composed of a plurality of regions having different resistance values using the shape of the electrode
  • a plurality of resistors having different resistance values between the first electrode 110 and the EC layer 120 and / or between the electrolyte layer 130 and the second electrode 140
  • a plurality of regions are formed.
  • Such a plurality of resistors may be semiconductor elements (varistors) or variable resistance elements.
  • FIG. 10 is a view schematically showing an exemplary EC element consisting of two regions in which the electrolyte layer in the condition (2) is formed of different electrolyte materials.
  • FIG. 11 is a view schematically showing a state of gradation when a voltage is applied to the EC element shown in FIG.
  • FIG. 10 shows an EC device 100 in which the electrolyte layer 130 is composed of a region 1010 with high ion conductivity and a region 1020 with low ion conductivity.
  • FIG. 11A schematically shows changes in voltage in two regions when V x (see FIG. 4) is applied to the EC element.
  • the horizontal axis indicates the distance on the EC layer 120 corresponding to each area from the external power supply 150, and the vertical axis indicates the magnitude of the voltage applied to each area.
  • FIG. 11B schematically shows a coloring state of the EC layer 120 after a predetermined time (time t) when V x is applied to the EC element.
  • V 1010 V 1020
  • V 1010 V 1020
  • the voltage V 1010 applied to the region 1010 is the value closest to V x , and therefore, as shown in FIG. Charge accumulates and fades quickly.
  • V1020 which has a voltage lower than V1010 , charges sufficient for decoloring are not accumulated, and are maintained in a non-decoloring state.
  • the regions 1010 and 1020 formed of electrolyte materials different in ion conductivity a voltage distribution can be generated in each of the regions 1010 and the EC layer 120 corresponding to the regions 1020.
  • the amount of charge accumulated in each region of the EC layer 120 corresponding to the region 1010 and the region 1020 is different, and gradation occurs.
  • the electrolyte material used for the electrolyte layer 130 is not particularly limited, but preferably has an ion conductivity in the range of 0.01 S / m to 0.5 S / m. Accordingly, when a voltage is applied to the EC element 100 by the external power supply 150, a voltage distribution can be generated in the EC layer 120 according to the ion conductivity. The ion conductivity of the electrolyte material is calculated by the impedance method.
  • FIG. 10 shows the case where the electrolyte layer 130 is formed of two different regions for the sake of simplicity, the number and arrangement of the plurality of regions of the electrolyte layer 130 are not limited thereto.
  • One-dimensional gradation can be achieved by arranging a plurality of regions in one direction so that the ion conductivity of each region increases from the region at one end toward the region at the other end. By arranging a plurality of regions in two or more directions, two-dimensional gradation is possible. In addition, if a plurality of regions are arranged such that their ion conductivities are random, random coloring and decoloring is possible.
  • the EC layer 120 is not particularly limited as long as it is formed of an electrochromic material that consumes low power.
  • the electrochromic material may preferably be an electrochromic material containing the above-mentioned organic / metal hybrid polymer.
  • the electrochromic material contains an organic / metal hybrid polymer containing an organic ligand and a metal ion coordinated to the organic ligand. Such an organic / metallic hybrid polymer is easily colored and decolorized by an electrical signal converted from an electromagnetic wave signal because power consumption is small.
  • the organic ligand is not particularly limited as long as it is an organic compound which can coordinate a metal ion and can be polymerized by polymerization.
  • the organic ligand is preferably selected from the group consisting of terpyridine, phenanthroline, bipyridine, imino and derivatives thereof.
  • the organic ligand constituting the organic / metal hybrid polymer may be single or plural. These organic ligands coordinate with and complex with metal ions, whereby the organic ligands and metal ions are alternately connected to form an organic / metallic hybrid polymer.
  • the terpyridine group is typically 2,2 ′: 6 ′, 2 ′ ′-terpyridine, but may be a derivative having various substituents.
  • An exemplary substituent is halogen Atom, hydrocarbon group, hydroxyl group, alkoxy group (for example, C 1 to C 10 ), carbonyl group, carboxylic acid ester group (for example, C 1 to C 10 ), amino group, substituted amino group, amido group, substituted amido group, Examples of the hydrocarbon group include linear or branched alkyl groups such as C 1 to C 10 , specifically, methyl group, ethyl group, n-propyl group, and the like. -Propyl group, n-butyl group, t-butyl group, etc.
  • substituents which these substituents may have include C 1 to C 10 such as methyl group, ethyl group, hexyl group and the like.
  • Alkyl groups, methoxy examples thereof include, but are not limited to, substituents such as C 1 to C 10 alkoxy groups such as aliphatic and butoxy groups, and halogen atoms such as chlorine and bromine.
  • bipyridine group examples include 2,2'-bipyridine, 3,3'-bipyridine, 4,4'-bipyridine, 2,3'-bipyridine, 2,4'-bipyridine and 3,4'-bipyridine.
  • derivatives having various substituents are as described above.
  • Exemplary substituents which the derivative may have are as described above.
  • the phenanthroline group is obtained by substituting any two carbon atoms of phenanthrene with nitrogen atoms, but may be a derivative having various substituents.
  • substituents which the derivative may have are, but not limited to, methyl group, t-butyl group, phenyl group, thienyl group, bithienyl group, terthienyl group, phenylacetyl group and the like.
  • the metal ion may be any metal ion that changes its valence by redox reaction, but preferably Pt, Cu, Ni, Pd, Ag, Mo, Fe, Co, Ru, Rh, Eu, Zn and Mn. And at least one metal ion selected from the group consisting of These metal ions coordinate with the above-mentioned organic ligands. More preferably, when the organic ligand is a terpyridine group or a derivative thereof, a hexacoordinated metal ion is selected, and the organic ligand is a phenanthroline group, a bipyridine group, an imino group or a derivative thereof In the case, tetracoordinated metal ions are selected.
  • the organic / metal hybrid polymer is preferably represented by a general formula selected from the group consisting of general formulas (I), (II) and (III). In one embodiment, the organic / metal hybrid polymer may be a mixture thereof.
  • Each of the organic / metal hybrid polymers represented by the formulas (I) and (II) contains a terpyridine group or a derivative thereof and a metal ion coordinated thereto as an organic ligand.
  • the organic / metal hybrid polymer represented by the formula (III) contains a phenanthroline group or a derivative thereof and a metal ion coordinated thereto as an organic ligand.
  • M represents a metal ion
  • X represents a counter anion
  • S represents a spacer containing a carbon atom and a hydrogen atom or a spacer directly connecting two terpyridine groups
  • R 1 to R 4 represent And each independently represents a hydrogen atom or a substituent
  • n is an integer of 2 or more indicating the degree of polymerization.
  • M 1 to M N independently denote metal ions having different redox potentials
  • X 1 to X n are each S 1 to S N (N is an integer of 2 or more) independently represent a counter anion, and each independently represent a spacer containing a carbon atom and a hydrogen atom or a spacer directly connecting two terpyridine groups
  • R 1 1 to R 1 N , R 2 1 to R 2 N , R 3 1 to R 3 N and R 4 1 to R 4 N each independently represent a hydrogen atom or a substituent
  • n to N is an integer of 2 or more independently showing the degree of polymerization.
  • the metal ion in Formula (I) and Formula (II) may be preferably at least one metal ion selected from the group consisting of Fe, Co, Ni, Zn and Rh. Since these metal ions can take a six-coordinated form, complex formation with the organic ligand is possible.
  • the counter anion in formula (I) and formula (II) may be selected from the group consisting of acetate ion, phosphate ion, chloride ion, phosphorus hexafluoride ion, boron tetrafluoride ion, and polyoxometalate. These counter anions make the organic / metal hybrid polymer electrically neutral and stabilize.
  • such a spacer may be a divalent organic group containing a carbon atom and a hydrogen atom.
  • examples thereof include aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, aromatic hydrocarbon groups, heterocyclic groups and the like.
  • arylene groups such as phenylene group and biphenylene group are preferable.
  • these hydrocarbon groups may have a substituent such as an alkyl group such as methyl group, ethyl group or hexyl group, an alkoxy group such as methoxy group or butoxy group, or a halogen atom such as chlorine or bromine.
  • such a spacer may further contain an oxygen atom or a sulfur atom. Since oxygen atoms and sulfur atoms have modifying ability, they are advantageous for material design of organic / metal hybrid polymers.
  • arylene groups shown below are preferable. In these cases, the organic / metal hybrid polymer is stabilized.
  • the aliphatic hydrocarbon group constituting the spacer is, for example, an alkylene group such as C 1 to C 6 , specifically, a methylene group, an ethylene group, an n-propylene group, an i-propylene group, an n-butylene group, A t-butylene group etc. can be illustrated. Further, as divalent organic groups constituting the spacer, C 1 to C 6 alkyl groups such as methyl, ethyl and hexyl groups, and C 1 to C 6 alkoxy groups such as methoxy and butoxy groups may be mentioned. Those having a substituent such as a halogen atom such as chlorine and bromine may be used.
  • R 1 to R 4 of the formula (I) and R 1 1 to R 1 N , R 2 1 to R 2 N , R 3 N to R 3 N and R 4 1 to R 4 N of the formula (II) are respectively Independently represent a hydrogen atom or a substituent, and examples of the substituent include a halogen atom, a hydrocarbon group, a hydroxyl group, an alkoxy group (eg, C 1 to C 10 ), a carbonyl group, and a carboxylic acid ester group (eg, C 1 to C 10 ), amino group, substituted amino group, amido group, substituted amido group, cyano group, nitro group and the like.
  • substituent include a halogen atom, a hydrocarbon group, a hydroxyl group, an alkoxy group (eg, C 1 to C 10 ), a carbonyl group, and a carboxylic acid ester group (eg, C 1 to C 10 ), amino group, substituted amino group, amido group, substituted
  • the hydrocarbon group is, for example, a linear or branched alkyl group such as C 1 to C 10 , specifically, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t -Butyl group etc. can be illustrated. Further, as examples of the substituent which these substituents may have, C 1 to C 10 alkyl groups such as methyl group, ethyl group and hexyl group, C groups such as methoxy group and butoxy group may be mentioned as these hydrocarbon groups. Although those having a substituent such as a 1 to C 10 alkoxy group and a halogen atom such as chlorine and bromine may be used, the present invention is not limited thereto.
  • n is an integer of 2 or more indicating the degree of polymerization, and is, for example, 2 to 5,000, preferably 10 to 1,000.
  • n 1 to n N each independently represent an integer of 2 or more indicating the degree of polymerization, and the total n 1 + n 2 ... + n N is, for example, 2 to 5000, preferably 10 to 1000. It is.
  • M represents a metal ion
  • X represents a counter anion
  • A represents a spacer containing a carbon atom and a hydrogen atom, or a spacer directly connecting two phenanthroline groups
  • R 1 to R 4 represent And each independently represents a hydrogen atom or a substituent
  • n is an integer of 2 or more indicating the degree of polymerization.
  • the metal ion in formula (III) may be at least one metal ion selected from the group consisting of Pt, Cu, Ni, Ag and Pd. These metal ions can take a tetra-coordinated form, which enables complex formation with the organic ligand.
  • the counter anion in formula (III) may be selected from the group consisting of perchlorate ion, triflate ion, boron tetrafluoride ion, chloride ion and hexafluorophosphate ion. These counter anions make the organic / metal hybrid polymer electrically neutral and stabilize.
  • the spacer in the formula (III) is a spacer containing a carbon atom and a hydrogen atom
  • the spacer is typically a phenyl group, a biphenyl group, a terphenyl group, a thienyl group, a bithienyl group or a terthienyl group as shown below. It can be mentioned.
  • a spacer in which phenyl groups are connected by a dioxoalkyl group (having 2 to 16 carbon atoms) can also be used.
  • R 1 and R 2 in the formula (III) include hydrogen, methyl group, t-butyl group, phenyl group, thienyl group, bithienyl group and tarthienyl group.
  • R 3 and R 4 in the formula (III) include hydrogen, a phenyl group and a phenylacetyl group.
  • n is an integer of 2 or more indicating the degree of polymerization, and is, for example, 2 to 5000, preferably 10 to 1000.
  • the organic / metal hybrid polymer exhibits a color based on charge transfer absorption from metal ions to organic ligands. That is, the organic / metal hybrid polymer is in a decolored state in which the coloring is lost when it is electrochemically oxidized, and in a colored state when it is electrochemically reduced. This phenomenon can occur repeatedly. Thus, such organic / metal hybrid polymers function as low power consumption electrochromic materials.
  • the organic / metal hybrid polymer mentioned above can be manufactured with reference to patent document 1 and patent document 2, for example.
  • the EC layer 120 may also contain an ionic liquid.
  • the ionic liquid can form an ionic bond with the above-mentioned organic / metal hybrid polymer to form a complex.
  • any ionic liquid in which the organic / metal hybrid polymer forms an ionic bond can be adopted.
  • Specific examples thereof include at least one anion selected from the group consisting of tetrafluoroborate, hexafluorophosphate, bis (trifluoromethanesulfonyl) imide, and bis (pentafluoroethylsulfonyl) imide, imidazolium, pyrrolidinium, and the like.
  • the ionic liquid has a melting point below room temperature. This can promote the gelation of the polymer in the production of the electrochromic device. More preferably, the ionic liquid has a melting point of 0 ° C. or less. This is advantageous in the manufacture of electrochromic devices as the ionic liquid will surely be liquid at room temperature.
  • room temperature intends a temperature range of more than 0 ° C and 50 ° C or less.
  • the ionic liquid has a potential window ranging from a negative potential of at least -1 V vs Ag / Ag + or less to a positive potential of +2 V vs Ag / Ag + or more. More preferably, the ionic liquid has a -3V vs Ag / Ag + from the negative potential + 3V vs Ag / Ag + or more ranges of potential window of up to a positive potential.
  • the electrochemical stability of the ionic liquid is further enhanced, and the durability of the electrochromic device can be further enhanced.
  • the electrolyte layer 130 has a function of compensating the charge for the change in valence associated with the redox reaction of metal ions in the EC layer 120.
  • the electrolyte layer 130 is not particularly limited as long as it is formed of a material having such a function, but specifically, preferably contains at least a polymer and a support salt. The above-mentioned charge compensation function can be achieved by the polymer and the support salt.
  • the polymer is preferably polymethyl methacrylate (PMMA), polyethylene oxide (PEO), poly (vinylidene fluoride-co-hexafluoroisopropyl) (PVdF-co-PHFP), polypropylene carbonate (PPC), polycarbonate, and It may be at least one selected from the group consisting of polyacrylonitrile. These polymers are advantageous for the construction of the gel electrolyte layer.
  • the supporting salt is preferably LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 COO, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), LiCH 3 COO, tetrabutylammonium perchlorate It may be at least one selected from the group consisting of tetraethylammonium perchlorate, KCl, NaClO 3 , NaCl, NaBF 4 , NaSCN, KBF 4 , Mg (ClO 4 ) 2 and Mg (BF 4 ) 2 .
  • These support salts effectively function as counter anions of the organic / metal hybrid polymer.
  • the electrolyte layer 130 contains at least one plasticizer selected from the group consisting of propylene carbonate (PC), ethylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, succinonitrile, and an ionic liquid.
  • PC propylene carbonate
  • ethylene carbonate dimethyl carbonate
  • diethyl carbonate diethyl carbonate
  • ⁇ -butyrolactone succinonitrile
  • an ionic liquid ionic liquid
  • the same ionic liquid as that described above can be adopted as the ionic liquid as the plasticizer, and therefore the description thereof is omitted.
  • the polymer, plasticizer and support salt become uniform. Since the gel electrolyte layer which was dispersed and existed can be comprised, it leads to the improvement and stabilization of the electrochromic device characteristic.
  • the electrolyte layer 130 may further contain at least one ion storage material selected from the group consisting of viologen, N, N, N ', N'-tetramethyl-p-phenylenediamine and an organic metal complex. .
  • ion storage material selected from the group consisting of viologen, N, N, N ', N'-tetramethyl-p-phenylenediamine and an organic metal complex.
  • exemplary organometallic complexes are ferrocene, Prussian blue, porphyrins and the like.
  • the organic / metal hybrid polymer contained in the EC layer 120 can also suppress the charge accumulation, but if the above-mentioned ion storage material is further contained, the first electrode 110 and the substrate provided with the same are more effective. Can be prevented.
  • fills condition (2) it is preferable that ion conductivity is controlled as mentioned above.
  • the viscosity of the electrolyte material can be changed, but usually by lowering the viscosity, the ion conductivity is increased, and by increasing the viscosity, the ion conductivity is increased. It becomes smaller.
  • An EC element 100 satisfying the condition (1) is manufactured, for example, as follows.
  • the first electrode 110 is formed on a resin substrate such as plastic or a transparent substrate such as a glass substrate by any physical vapor deposition method or chemical vapor deposition method. For example, it is formed using a mask having a predetermined pattern so as to be shaped as shown in FIG. 2A. Thus, the first electrode 110 is configured of a plurality of regions having different resistance values from the external power supply 150.
  • a material containing the above-described organic / metal hybrid polymer is applied onto the first electrode 110 to form the EC layer 120.
  • the application may be by any means as long as the EC layer 120 is formed on the first electrode 110, but when the material is liquid, it may be a means such as application, immersion, or spray.
  • the application is performed, for example, such that the thickness of the EC layer 120 is 10 nm or more and 10 ⁇ m or less.
  • the above-mentioned organic / metal hybrid polymer may be dissolved in a solvent such as methanol, ethanol or 2-propanol.
  • an electrolyte material is applied onto the EC layer 120 to form the electrolyte layer 130.
  • the formation of the electrolyte layer 130 can be performed by applying on the electrochromic layer 120 the electrolyte material (optionally containing a polymer, a support salt, an ionic liquid, etc.) constituting the above-described electrolyte layer 130.
  • Application can be carried out by means of coating, dipping, spraying, electrolytic polymerization and the like. The application is performed so that the thickness of the electrolyte layer 130 is 10 nm or more and 10 mm or less, for example.
  • the electrolyte material preferably contains a dehydrated solvent (dehydrated solvent).
  • a dehydrated solvent dehydrated solvent
  • the dehydrating solvent may preferably be at least one solvent selected from the group consisting of acetonitrile, acetone and tetrahydrofuran.
  • a mask is used to form a second electrode 140 on the substrate.
  • the second electrode 140 is attached so that the patterns of the first electrode 110 and the second electrode 140 overlap, and a structure including the first electrode 110, the EC layer 120, the electrolyte layer 130, and the second electrode 140 Form To bond, it is only necessary to touch and simply press.
  • the first electrode 110 and the second electrode 140 have the same pattern, but either one may be the entire electrode.
  • the structure can then be heat treated to remove unwanted solvent in the structure (eg, acetonitrile used in the examples). Thereby, the response speed, the contrast, and the repeated driving stability (durability) can be improved.
  • unwanted solvent in the structure eg, acetonitrile used in the examples.
  • An EC element 100 that satisfies the condition (2) is exemplarily manufactured as follows.
  • the conditions are the same as in the same method except that a predetermined pattern is not used to form the first electrode 110 and the second electrode 140, and the method of forming the electrolyte layer 130 is different.
  • the EC device 100 satisfying (2) can be manufactured.
  • An EC layer 120 is formed on a first electrode 110 formed on the entire surface of a substrate such as a transparent substrate. Then, different electrolyte materials whose ion conductivity is controlled are applied to a plurality of predetermined locations, to form an electrolyte layer 130 composed of a plurality of regions.
  • a second electrode 140 formed on the entire surface of the substrate is bonded to form a structure including the first electrode 110, the EC layer 120, the electrolyte layer 130, and the second electrode 140, and heat treatment is performed. Good. Partitions or masks may be used to provide a plurality of predetermined locations. Alternatively, if the amount of the solvent of the electrolyte material to be the electrolyte layer 130 is controlled to adjust the viscosity, different electrolyte materials in which the ionic conductivity is controlled in a plurality of predetermined places without using a partition or a mask The electrolyte layer 130 can be obtained. At this time, the amount of solvent used to adjust the viscosity does not affect the ion conductivity.
  • an EC element satisfying both the condition (1) and the condition (2) may be manufactured.
  • the conditions (1) and (2) are the same (by forming the electrolyte layer from different electrolyte materials) except that the method of forming the electrolyte layer 130 is different. Can be manufactured. It goes without saying that this can provide an EC device that enables more complicated coloration and decoloring.
  • FIG. 12 schematically illustrates an exemplary EC display system of the present invention.
  • the EC display system 1200 includes an EC display unit 1210 provided with at least a plurality of electrochromic (EC) elements 100.
  • EC electrochromic
  • the EC display system 1200 further includes a control unit 1220 that controls the operation of the EC display unit 1210.
  • the control unit 1220 includes an external power supply, and as necessary, a polarity inversion switch and a selection switch.
  • the control unit 1220 simply applies a voltage to each EC element 100 of the EC display unit 1210 to form a more complicated gradation or pattern, etc. Can represent the uneven color of
  • Such an EC display system 1200 is applied to a window capable of partially providing a light shielding function, a light control element such as sunglasses, a display element expressing an uneven color such as gradation or a pattern, and the like.
  • Methanol (MeOH), acetonitrile (ACN) and propylene carbonate were purchased from Wako Pure Chemical Industries, Ltd.
  • Lithium perchlorate (LiClO 4 ) was purchased from Kanto Chemical Co., Ltd.
  • the polymeric material shown by Formula (A) was used as an organic / metal hybrid polymer.
  • the polymer material is disclosed in Patent Document 1 or F.I. S. Han et al. Am. Chem. Soc. , 2008, 130 (6), pp 2073-2081, manufactured by Naard Research Institute, Inc.
  • this organic / metallic hybrid polymer is referred to as polyFe.
  • the EC element was manufactured as follows. PolyFe was applied on an ITO substrate (a glass substrate of 1 to 3 mm in thickness having an ITO film of 0.1 ⁇ m in thickness) to form an EC layer 120.
  • a solution containing polyFe was prepared by dissolving polyFe (4 mg) in MeOH (1 mL) and filtering through a syringe filter (polyvinylidene fluoride (PVDF), 0.45 ⁇ m) to remove insoluble residue.
  • PVDF polyvinylidene fluoride
  • the obtained polyFe-containing solution (40 mL) was applied onto an ITO substrate (10 ⁇ 10 cm) by a spray coating method.
  • the thickness of the EC layer 120 was 0.3 to 0.5 ⁇ m.
  • an electrolyte material was applied onto the EC layer 120 to form an electrolyte layer 130.
  • LiClO 4 as a supporting salt was dissolved in propylene carbonate as a plasticizer and a solvent, and PMMA as a polymer was added to PMMA, and the mixture was stirred under reduced pressure for 1 hour to obtain a clouded electrolyte material.
  • the weight ratio of PMMA, LiClO 4 and propylene carbonate was 5: 1: 6.
  • the obtained electrolyte material was dropped onto the EC layer 120 by drop casting to form an electrolyte layer 130.
  • the thickness of the electrolyte layer 130 was in the range of 0.1 to 1.0 mm.
  • the second electrode 140 was combined with the electrolyte layer 130 to obtain a structure including an ITO substrate, a polyFe film, an electrolyte layer, and an ITO substrate.
  • the structure was placed in a drier (ESPEC, SH-242) and dried at 100 ° C. for 10 minutes to solidify the electrolyte material.
  • ESPEC, SH-242 a drier
  • the obtained EC element was provided with an electrical connection, connected to an external power supply to apply various voltages, and charge / discharge characteristics were evaluated by an electrochemical analyzer (BAS Inc., ALS / CH Instruments Electrochemical Analyzer model 612B). . The results are shown in FIG.
  • FIG. 13 is a view showing time dependency of charge density when different voltages are applied to the EC element of Reference Example 1.
  • the EC device Before applying a voltage to the EC device of Reference Example 1, the EC device exhibited a purple color. From this, it was found that, in the EC element, polyFe of the EC layer is in a reduced state and Fe ions of polyFe are divalent before the voltage application. Although shown in gray scale in FIG. 13, the region shown in dark shows purple coloration. When a voltage of +3.0 V was applied to the EC element, the charge density changed as shown by the solid line, and the color disappeared in about 5 seconds. On the other hand, when a voltage of +2.5 V was applied to the EC element, the charge density changed as shown by the dotted line, and the color disappeared in about 15 seconds. From this, it is suggested that the EC element can change the time required for decoloring depending on the magnitude of the applied voltage, and can give the above-mentioned feeling of faintness.
  • Example 2 an ITO substrate (10 cm ⁇ 11 cm) comprising block-like regions having different resistance values as the first electrode 110 and the second electrode 140, polyFe as the EC layer 120, and propylene carbonate as the electrolyte layer 130 and LiClO 4 electrolyte material containing the PMMA (weight ratio as in reference example 1) was prepared EC device using.
  • the ITO substrate is shown in FIG. 14 and will be described later.
  • the EC layer 120 and the electrolyte layer 130 are the same as in the first embodiment, and thus the description thereof is omitted.
  • a voltage of +3.0 V and -3.0 V was respectively applied to the EC device of Example 2 obtained in this manner, and a change in coloration was observed. The results are shown in FIG. 17 (A).
  • Example 3 The example 3 is the same as the example 2 except that an ITO substrate different from the example 2 is used, and therefore the description is omitted.
  • the ITO substrate is shown in FIG. 15 and will be described later.
  • Voltages of +3.0 V and -3.0 V were respectively applied to the EC element of Example 3, and the change in coloration was observed. The results are shown in FIG. 17 (B).
  • Example 4 differs from Example 2 and is the same as Example 2 except that an ITO substrate consisting of linear regions having a plurality of different resistance values is used, and therefore the description thereof is omitted.
  • the ITO substrate is shown in FIG. 16 and will be described later. Voltages of +3.0 V and -3.0 V were respectively applied to the EC element of Example 4, and the change in coloration was observed.
  • FIG. 14 is a schematic view showing an ITO substrate in Example 2.
  • FIG. 15 is a schematic view showing an ITO substrate in Example 3.
  • FIG. 16 is a schematic view showing an ITO substrate in Example 4.
  • the ITO substrate consists of three rows of electrodes.
  • the electrodes in each column further have three regions of the first stage, the second stage, and the third stage as regions having different resistance values from the external power supply.
  • the resistance value increases in the order of the first stage, the second stage, and the third stage from the external power supply side, and the total resistance value decreases in the order of the first column, the second column, and the third column .
  • the block-like regions in the first to third stages have the same number.
  • the ITO substrate is composed of three rows of electrodes, and each row of electrodes further has one step as a region having a different resistance value from the external power supply.
  • the resistance value increases in the order of the first stage, the second stage, and the third stage from the external power supply side, and the overall resistance value decreases in the order of the first column, the second column, and the third column.
  • their values are different from Example 2.
  • the number of block-like regions in the first to third stages decreases as the first to third columns are reached.
  • the ITO substrate consists of three rows of electrodes.
  • the electrodes of each column further have six regions of the first to sixth stages in which the resistance value is sequentially increased from the external power supply side, as regions having different resistance values from the external power supply.
  • the overall resistance value decreases in the order of the first column, the second column, and the third column.
  • FIG. 17 is a figure which shows the mode of the color-discoloring after the voltage application of the EC element of Example 2 and Example 3, respectively.
  • FIG. 17A shows, from the left, before applying a voltage to the EC element of Example 2, 5 seconds after +3.0 V is applied and 10 seconds after +3.0 V is applied.
  • the EC elements of Example 2 exhibited the same purple color in all three rows (left). After applying +3.0 V, the color tends to be discolored sequentially from the external power source side in 5 seconds (middle). After another 5 seconds, the color faded further (right). It should be particularly noted that as the resistance value increases from the external power source side, gradation is shown, and it is confirmed that as the overall resistance value of the electrode is larger, it changes more gradually.
  • FIG. 17B also shows a state from the left before applying a voltage to the EC element of Example 3, 5 seconds after applying +3.0 V, and 10 seconds after applying +3.0 V. Also in the EC element of Example 3, the tendency similar to that of Example 2 was exhibited, but the decoloring (or coloring) becomes slower and finer gradation can be achieved by reducing the block-like plural regions. I understand.
  • Example 4 Although not shown, the EC element of Example 4 also showed the same tendency as that of Example 2 and Example 3. Further, in any of the EC elements of Examples 2 to 4, when a voltage of -3.0 V was applied, the gradation was reverse to that of FIG.
  • Example 5 In Example 5, an ITO substrate (full surface electrode) as the first electrode 110, polyFe as the EC layer 120, an electrolyte material containing propylene carbonate, LiClO 4 and PMMA as the electrolyte layer 130, an ITO substrate as the second electrode 140 ( A common EC device (active surface: 19.5 cm 2 ) was manufactured using a full surface electrode). However, the electrolyte layer 130 is formed of two regions using two types of electrolyte materials having different viscosities.
  • An EC layer 120 was formed on the ITO substrate in the same manner as in Reference Example 1 except that an ITO substrate (1.5 cm ⁇ 13 cm) was used and 15 mL of a solution having polyFe was applied, and the surface was treated.
  • the electrolyte material is dissolved in LiClO 4 as a supporting salt, propylene carbonate as a plasticizer, ACN as a solvent, and PMMA as a polymer and Tokyo Chemical Industry Co., Ltd. and PMMA-Aldrich PMMA, respectively, for 2 to 3 hours.
  • the mixture was stirred to prepare two colorless and transparent electrolyte materials.
  • the weight ratio of PMMA and LiClO 4 propylene carbonate and ACN are 7: 3: 20: was 70.
  • the electrolyte material using PMMA manufactured by Tokyo Chemical Industry Co., Ltd. was a high viscosity electrolyte material
  • the electrolyte material using PMMA manufactured by Sigma-Aldrich was a low viscosity electrolyte material.
  • the ion conductivity of the high viscosity electrolyte material was lower than that of the low viscosity electrolyte material.
  • a highly viscous electrolyte material was dropped by drop casting in one region on the EC layer 120, and dried for 2 to 3 hours.
  • a low viscosity electrolyte material was similarly dropped to the other region and dried.
  • This formed the electrolyte layer 130 which consists of two area
  • the thickness of the electrolyte layer 130 was in the range of 0.1 to 1.0 mm.
  • the second electrode 140 was combined with the electrolyte layer 130 to obtain a structure including an ITO substrate, a polyFe film, an electrolyte layer, and an ITO substrate.
  • the construct was left at room temperature for 24 hours to remove unwanted solvent.
  • this structure was placed in a vacuum oven (EYELA, VOS-201SD) and heated at 100 ° C. for 3 hours under the condition of 40% relative humidity. Voltages of +3.0 V and -3.0 V were respectively applied to the EC device of Example 5 obtained in this manner, and changes in coloration and decolorization were observed. The results are shown in FIG.
  • FIG. 18 is a diagram showing how the color of the EC element of Example 5 is changed after applying a voltage.
  • FIG. 18 shows a state of (A) before applying a voltage and 5 seconds after applying (B) +3.0 V and 10 seconds after applying (C) +3.0 V.
  • the EC element of Example 5 had a uniform purple color before voltage application.
  • the low viscosity electrolyte material (upper half of the drawing) tends to be discolored first in 5 seconds.
  • the color erasure further advanced after 5 seconds.
  • a voltage of -3.0 V was applied, a gradation opposite to that of FIG. 18 was exhibited.
  • the EC element of the present invention can be applied to a window capable of partially providing a light shielding function, a light control element such as sunglasses, a display device expressing non-uniform color such as gradation or pattern, and the like.
  • electrochromic (EC) element 110 first electrode 120: electrochromic (EC) layer 130: electrolyte layer 140: second electrode 150: external power source 111: electrical wiring 112: substrate 113: mechanical connection 114: Metal pattern 1200: EC display system 1210: EC display unit 1220: Control unit

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本発明は、第1の電極と、前記第1の電極上に位置するエレクトロクロミック材料から形成されたエレクトロクロミック層と、前記エレクトロクロミック層上に位置する電解質層と、前記電解質層上に位置する第2の電極とを備え、以下の条件(1)および(2)の少なくとも1つを満たす、エレクトロクロミック(EC)素子である:(1)前記第1の電極および/または前記第2の電極は、それぞれ、外部電源からの抵抗値が異なる複数の領域からなる;(2)前記電解質層は、異なる電解質材料から形成された複数の領域からなる。前記条件(1)において、前記複数の領域のそれぞれは、ブロック状および/または線状の形状を有する電極であってよい。前記条件(1)において、前記複数の領域は、前記複数の領域のそれぞれの抵抗値が、一方の端の領域から他方の端の領域に向けて順次大きくなるように配列されていてよい。

Description

エレクトロクロミック素子およびそれを用いた表示システム
 本発明は、エレクトロクロミック材料を用いたエレクトロクロミック(EC)素子およびそれを用いた表示システムに関する。詳細には、本発明は、単一の素子において複雑に着消色するエレクトロクロミック(EC)素子、および、それを用いた表示システムに関する。
 近年、ディスプレイ材料としてエレクトロクロミック材料が注目されている。このようなエレクトロクロミック材料として、種々の有機/金属ハイブリッドポリマーが開発され、それを用いたエレクトロクロミックデバイスが知られている(例えば、特許文献1および2を参照)。特許文献1および2では、有機配位子がターピリジン基あるいはフェナントロリン基であり、これに金属イオンが配位した有機/金属ハイブリッドポリマーおよびそのエレクトロクロミック素子が開示されている。
 このようなエレクトロクロミック素子は、表示素子、調光素子、電子ペーパ等に適用される。このようなエレクトロクロミックデバイスでは、単一の素子では素子に含有されるエレクトロクロミック材料の種類に応じた着消色をするように設計されるが、グラデーションや不均一といった複雑な着消色をすることはできない。単一の素子において、このような複雑な着消色が可能となれば、既存の表示システムの機能性が高まるため望ましい。
 このような要望に対して、グラデーションを可能にするエレクトロクロミック層を用いた表示装置が開発されている(例えば、特許文献3を参照)。特許文献3によれば、抵抗層の両端に設けた電極により抵抗層の平面方向に電圧勾配を生じさせ、これにより単色表示以外のグラデーション表示等の色彩表示を可能にする。しかしながら、特許文献3の表示装置によれば、単一方向のグラデーション表示しかできず、二次元やランダムな表示といった複雑な着消色は困難である。
 一方、従来より、エレクトロクロミック素子では、エレクトロクロミック層や電解質層の厚みの不均一あるいは電極抵抗値の不均一により、エレクトロクロミックの変色速度に違いが生じ、濃淡ムラが見えることが欠点であり、このような欠点をなくすことに注力されている(例えば、特許文献4を参照)。しかしながら、欠点を生かし、より複雑な着消色を可能にするエレクトロクロミック素子が開発されることが望ましい。
特開2007-112957号公報 特開2012-188517号公報 特開2012-063657号公報 特開2016-109853号公報
 本発明の課題は、グラデーション、ランダムなど複雑な着消色を可能にするエレクトロクロミック(EC)素子およびそれを用いた表示システムを提供することである。
 上記課題を解決するための本発明の諸態様は、以下のとおりである。
[1].
 第1の電極と、
 前記第1の電極上に位置するエレクトロクロミック材料から形成されたエレクトロクロミック層と、
 前記エレクトロクロミック層上に位置する電解質層と、
 前記電解質層上に位置する第2の電極と
 を備え、
 以下の条件(1)および(2)の少なくとも1つを満たす、エレクトロクロミック(EC)素子:
 (1)前記第1の電極および/または前記第2の電極は、それぞれ、外部電源からの抵抗値が異なる複数の領域からなる;
 (2)前記電解質層は、異なる電解質材料から形成された複数の領域からなる。
[2].
 前記条件(1)において、前記複数の領域のそれぞれが、ブロック状および/または線状の形状を有する電極である、上記[1]項に記載のEC素子。
[3].
 前記条件(1)において、前記複数の領域は、前記複数の領域のそれぞれの抵抗値が、一方の端の領域から他方の端の領域に向けて順次大きくなるように配列されている、上記[1]または[2]項に記載のEC素子。
[4].
 前記条件(1)において、前記複数の領域は、前記複数の領域の抵抗値がランダムとなるように配列されている、上記[1]または[2]項に記載のEC素子。
[5].
 前記条件(1)において、前記複数の領域のそれぞれが、5Ω以上500Ω以下の範囲の異なる抵抗値を有する、上記[1]~[4]項のいずれか1項に記載のEC素子。
[6].
 前記条件(1)において、前記第1の電極における前記複数の領域と、前記第2の電極における前記複数の領域とが、それぞれ対向する、上記[1]~[5]項のいずれか1項に記載のEC素子。
[7].
 前記条件(1)において、前記複数の領域のそれぞれは、前記外部電源に直列接続されているか、または、前記外部電源に並列接続されている、上記[1]~[6]項のいずれか1項に記載のEC素子。
[8].
 前記条件(1)において、前記第1の電極と前記エレクトロクロミック層との間に抵抗値が異なる複数の抵抗体、および/または、前記電解質層と前記第2の電極との間に抵抗値が異なる複数の抵抗体をさらに備える、上記[1]~[7]項のいずれか1項に記載のEC素子。
[9].
 前記複数の抵抗体のそれぞれは、可変抵抗素子である、上記[8]項に記載のEC素子。
[10].
 前記条件(2)において、前記複数の領域のそれぞれは、異なるイオン伝導度を有し、
 前記複数の領域は、前記複数の領域のそれぞれのイオン伝導度が一方の端の領域から他方の端の領域に向けて順次大きくなるように配列されている、上記[1]~[9]項のいずれか1項に記載のEC素子。
[11].
 前記条件(2)において、前記複数の領域のそれぞれは、異なるイオン伝導度を有し、
 前記複数の領域は、前記複数の領域のそれぞれのイオン伝導度がランダムとなるように配列されている、上記[1]~[9]項のいずれか1項に記載のEC素子。
[12].
 前記条件(2)において、前記複数の領域のそれぞれは、0.01S/m以上0.5S/m以下の範囲の異なるイオン伝導度を有する、上記[1]~[11]項のいずれか1項に記載のEC素子。
[13].
 前記エレクトロクロミック材料は、有機配位子と、前記有機配位子に配位された金属イオンとを含む有機/金属ハイブリッドポリマーを含有する、上記[1]~[12]項のいずれか1項に記載のEC素子。
[14].
 前記有機配位子は、ターピリジン基、フェナントロリン基、ビピリジン基、イミノ基およびこれらの誘導体からなる群から選択される少なくとも1種である、上記[13]項に記載のEC素子。
[15].
 前記金属イオンは、Pt、Cu、Ni、Pd、Ag、Mo、Fe、Co、Ru、Rh、Eu、ZnおよびMnからなる群から選択される少なくとも1種の金属イオンである、上記[13]または[14]項に記載のEC素子。
[16].
 前記有機/金属ハイブリッドポリマーは、一般式(I)、(II)および(III)からなる群から選択される一般式で表される少なくとも1種の有機/金属ハイブリッドポリマーである、上記[13]~[15]のいずれか1項に記載のEC素子:
Figure JPOXMLDOC01-appb-C000002

 前記式(I)において、Mは金属イオンを示し、Xはカウンターアニオンを示し、Sは、炭素原子および水素原子を含むスペーサまたは2つのターピリジン基を直接接続するスペーサを示し、R~Rは、それぞれ独立に水素原子または置換基を示し、nは重合度を示す2以上の整数であり、
 前記式(II)において、M~M(Nは2以上の整数)は、それぞれ独立に酸化還元電位の異なる金属イオンを示し、X~X(nは2以上の整数)は、それぞれ独立にカウンターアニオンを示し、S~S(Nは2以上の整数)は、それぞれ独立に炭素原子および水素原子を含むスペーサまたは2つのターピリジン基を直接接続するスペーサを示し、R ~R 、R ~R 、R ~R 、R ~R (Nは2以上の整数)は、それぞれ独立に水素原子または置換基を示し、n~nは、それぞれ独立に重合度を示す2以上の整数であり、
 前記式(III)において、Mは金属イオンを示し、Xはカウンターアニオンを示し、Aは、炭素原子および水素原子を含むスペーサまたは2つのフェナントロリン基を直接接続するスペーサを示し、R~Rは、それぞれ独立に水素原子または置換基を示し、nは重合度を示す2以上の整数である。
[17].
 電源と、エレクトロクロミック(EC)表示部とを備えたエレクトロクロミック(EC)表示システムであって、
 前記EC表示部は、複数のエレクトロクロミック(EC)素子を備え、
 前記複数のEC素子のそれぞれは、上記[1]~[16]項のいずれか1項に記載のEC素子である、EC表示システム。
 本発明のエレクトロクロミック(EC)素子は、上記条件(1)および(2)の少なくとも1つを満たすことにより、エレクトロクロミック層に電圧を印加すると、エレクトロクロミック層には条件(1)および/または(2)に応じて電圧分布(不均一な電位差)が生じ、蓄積される電荷量、さらに電荷量が蓄積されるまでの時間が不均一となる。その結果、本発明のEC素子は、電荷量の不均一さに応じたグラデーションや色むら、電荷量蓄積に要する時間の不均一さに応じた着消色速度の不均一さ(じわじわ感)といった種々の着消色を可能にする。
 本発明のEC素子によれば、条件(1)および/または(2)を所望のパターンや形状に設定するだけで、エレクトロクロミック層に発生する電位差を変化させることができるので、一方向のみのグラデーションのみならず二次元のグラデーションやランダムといった複雑な着消色も可能となる。また、外部電圧の大きさを変化させることにより、電荷量の蓄積に要する時間を変化させることができるので、着消色までの時間を変化させることもできる。
 このような本発明のEC素子を複数組み合わせることで、さらに複雑なグラデーションやデザインを表示するエレクトロクロミック(EC)表示システムを提供できる。
図1Aは、本発明の一実施形態に係るEC素子を模式的に示す図である。 図1Bは、第1の電極と外部電源との例示的な接続態様を示す図である。 図1Cは、第1の電極と外部電源との別の例示的な接続態様を示す図である。 図2Aは、条件(1)における外部電源からの抵抗値が異なる複数の領域からなる例示的な第1の電極/第2の電極を模式的に示す図である。 図2Bは、条件(1)における外部電源からの抵抗値が異なる複数の領域からなる別の例示的な第1の電極/第2の電極を模式的に示す図である。 図3は、図2Aに示すEC素子に対応する近似等価回路を示す図である。 図4は、一般的なEC素子における種々の印加電圧に対する電荷量密度の時間依存性を示す模式図である。 図5は、図2Aに示すEC素子に電圧を印加した際のグラデーションの様子を模式的に示す図である。 図6は、条件(1)における外部電源からの抵抗値が異なる複数の領域からなる別の例示的な第1の電極/第2の電極を模式的に示す図である。 図7は、図6に示すEC素子に電圧を印加した際のグラデーションの様子を模式的に示す図である。 図8は、条件(1)における外部電源からの抵抗値が異なる複数の領域からなる例示的なさらに別の第1の電極/第2の電極を模式的に示す図である。 図9は、図8に示すEC素子に対応する近似等価回路を示す図である。 図10は、条件(2)における電解質層が異なる電解質材料から形成された2つの領域からなる例示的なEC素子を模式的に示す図である。 図11は、図10に示すEC素子に電圧を印加した際のグラデーションの様子を模式的に示す図である。 図12は、本発明の例示的なEC表示システムを模式的に示す図である。 図13は、参考例1のEC素子に異なる電圧を印加した際の電荷量密度の時間依存性を示す図である。 図14は、例2におけるITO基板を示す模式図である。 図15は、例3におけるITO基板を示す模式図である。 図16は、例4におけるITO基板を示す模式図である。 図17の(A)および(B)は、それぞれ、例2および例3のEC素子の電圧印加後の着消色の様子を示す図である。 図18は、例5のEC素子の電圧印加後の着消色の様子を示す図である。
 以下、図面を参照しながら本発明の典型的な実施の形態を説明する。本発明は、これらの実施形態に限定されない。なお、同様の要素には同様の参照番号を付し、その説明を省略する。
(実施の形態1)
 実施の形態1では、本発明のエレクトロクロミック(EC)素子100の構成および動作について説明する。
 図1Aは、本実施形態に係るEC素子を模式的に示す図である。
 本発明のEC素子100は、第1の電極110と、第1の電極110上に位置するエレクトロクロミック材料から形成されたエレクトロクロミック(EC)層120と、EC層120上に位置する電解質層130と、電解質層130上に位置する第2の電極140とを備える。図1Aでは、EC素子100が電気配線111を介して外部電源150に接続されている。
 なお、第1の電極110および第2の電極140は、ガラス、プラスチック等の樹脂などの透明基板(図示せず)上に設けられてもよい。あるいは、第1の電極110または第2の電極140が、フッ素ドープスズ(FTO)、スズドープ酸化インジウム(ITO)等の透明導電性基板であってもよい。
 図1Bは、第1の電極と外部電源との例示的な接続態様を示す図である。
 図1Cは、第1の電極と外部電源との別の例示的な接続態様を示す図である。
 図1Aでは、第1の電極110と外部電源150との接続態様を省略したが、実験装置や実際のデバイスでは、機械的接続や電気的接続を行う。詳細には、図1Bに示されるように、第1の電極110が基板112上に位置しており、ワニ口クリップや表面に金(Au)などの酸化しにくい金属をコーティングしたピン等に代表される機械的接続113によって電気配線111を介して外部電源150に接続されている。
 あるいは、図1Cに示されるように、第1の電極110が基板112上に位置しており、第1の電極110上に金属パターン114と電気配線111とを電気的に接続してもよい。金属パターン114は、電気配線の種類に応じて、Cu/TiまたはCr蒸着、無電解Auめっきを選択できる。金属パターン114と電気配線111との電気的接続は、はんだ付け、銀ペースト、ワイヤボンディングなど通常の電気的接続であり得る。なお、このような接続態様は、第2の電極140についても同様である。
 本発明のEC素子100においては、第1の電極110および/もしくは第2の電極140、ならびに/または、電解質層130を調整することにより、外部電源150を特別に制御することなく、単に電圧を印加するだけで、EC層120に電圧分布を生じさせることができる。電圧分布に応じてEC層120に蓄積される電荷量、さらには電荷量が蓄積されるまでの時間が異なるため、EC素子100は、電荷量に応じたグラデーションや色むら、さらには着消色速度の不均一さ(じわじわと色が変化する様態;じわじわ感)といった種々の着消色を可能にする。
 詳細には、本発明のEC素子100においては、以下の条件(1)および(2)の少なくとも1つを満たす。
 (1)第1の電極110および/または第2の電極140は、それぞれ、外部電源150からの抵抗値が異なる複数の領域からなる。
 (2)電解質層は、異なる電解質材料から形成された複数の領域からなる。
 ここで、(1)および/または(2)の複数の領域が、EC層120に生じる電圧分布のパターンとなる。
 まず、条件(1)について具体的に説明する。
 図2Aは、条件(1)における外部電源からの抵抗値が異なる複数の領域からなる例示的な第1の電極/第2の電極を模式的に示す図である。
 図2Aでは、第1の電極110および第2の電極140がいずれも透明基板112上に形成され、図1Cに示す電気的接続によって外部電源150と接続されているものとする。図2Aには、第1の電極110および第2の電極140がいずれもブロック状の形状を有する複数の領域からなるEC素子が示される。第2の電極140を構成する複数の領域は、外部電源150に対して直列に接続されており、外部電源150側から、領域1~領域6と番号が付与されている。対応する第1の電極110を構成する複数の領域もまた、外部電源150に対して直列に接続されており、外部電源150側から、領域1’~領域6’と番号が付与されている。ここで、領域1~領域6は、外部電源150側から、順に抵抗値が大きくなるように配列されている。対応する領域1’~領域6’も同様である。このような複数の領域は、5Ω以上500Ω以下の範囲の抵抗値を有するように設定されることが好ましい。この範囲であれば、後述する電圧分布を生じさせることができる。なお、抵抗値は、四端子法によって求めることができる。
 図2Bは、条件(1)における外部電源からの抵抗値が異なる複数の領域からなる別の例示的な第1の電極/第2の電極を模式的に示す図である。
 図2Bには、第1の電極110および第2の電極140がいずれも線状の形状を有する複数の領域からなるEC素子が示される。複数の領域は、外部電源150側から、領域1~領域6と番号が付与されている。ここで、領域1~領域6は、外部電源150側から、順に抵抗値が大きくなるように配列されている。なお、図2Bにおいても、図2Aと同様に、第1の電極110および第2の電極140がいずれも透明基板112上に形成され、図1Cに示す電気的接続によって外部電源150と接続されているものとする(図示せず)。後述する図5(C)、図6、図7(C)、図8も同様に電気的接続を省略して示す。
 図2Aおよび図2Bでは、ブロック状の形状を有する領域は、矩形にされた線状の電極から構成された例が示されているが、矩形に限定されるわけではない。また、線状の電極である必要はなく、ブロック状の形状を有する領域内全体が電極であってもよい。
 図3は、図2Aに示すEC素子に対応する近似等価回路を示す図である。
 図3において、Cは、EC層120と電解質層130との間の界面電気二重層容量を示し、CECは、EC層120の容量を示し、V~Vは、電極間、すなわち、EC層に印加される電圧を示す。CおよびCECは、いずれも、一定の値となるが、V~Vは、領域1~領域6が、外部電源150側から順に抵抗値が大きくなるように配列されている場合、V>V>V>V>V>Vを満たす。これにより、領域1~6(領域1’~領域6’)に対応するEC層120の各領域に電圧分布が生じる。図2Bに示すEC素子においても、同様の電圧勾配が形成される。
 なお、図2Aでは第1の電極110および第2の電極140がいずれもブロック状の形状を有する複数の領域からなる場合を説明した。第1の電極110または第2の電極140のいずれか一方が全面電極であっても同様の電圧勾配が形成されるが、その電圧勾配は小さくなる。
 さらに、複数の領域のそれぞれが、外部電源150から同じ抵抗値を有するさらに細かい領域からなっていてもよい。これにより、消色あるいは着色までの時間を長くすることができるので、よりじわじわ感を明確に生じさせることができる。
 図4は、一般的なEC素子における種々の印加電圧に対する電荷量密度の時間依存性を示す模式図である。
 図4には、第1の電極110および第2の電極140が全面電極であり、電解質層130が均一である一般的なEC素子に、電圧VおよびV(ただし、V>V)を印加した際にEC層に蓄積される電荷量密度の時間依存性が示される。
 EC層を構成するエレクトロクロミック材料の酸化還元電位以上の電圧、例えばVを印加すれば、実線に示すように、瞬時(時間t)に電荷が蓄積され、消色状態となる。一方、エレクトロクロミック材料の酸化還元電位未満の電圧、例えばVを印加すれば、点線に示すように、なだらかに電荷が蓄積され、やがて(時間t’>t)消色状態となる。このように、着消色の速さは、印加電圧の大きさによって変化することがわかる。この印加電圧の大きさの変化(すなわち外部電源150による電圧制御)と、図2A、図2Bおよび図3で説明した電極の抵抗変化によって生じる電圧分布とを利用すれば、電荷量に応じたグラデーションや色むらに加えて、着消色速度の不均一さ(じわじわ感)を生じさせることができる。図5を参照して詳細に説明する。
 図5は、図2Aに示すEC素子に電圧を印加した際のグラデーションの様子を模式的に示す図である。
 図5(A)は、EC素子にVおよびV(図4)をそれぞれ印加した際の複数の領域における電圧の変化を模式的に示す。横軸は、外部電源150からの各領域に対応するEC層120上の距離を示し、縦軸は、各領域に印加される電圧の大きさを示す。図5(B)は、EC素子にVおよびVをそれぞれ印加した際のEC層120の一定時間(時間t)後の着色状態(グラデーション)を模式的に示す。図5(C)には、理解容易のため、図2Aの平面図と同じものを示す。
 外部電源150がV=VをEC素子100に印加すると、電極の領域1~6の抵抗値の順に対応して、図5(A)に示すように、領域1~領域6のEC層120に印加される電圧は、それぞれ、V1x>V2x>V3x>V4x>V5x>V6xとなる。ここで、図4の電荷量密度の時間依存性を参照すると、領域1に印加される電圧V1xは、もっともVに近い値であるため、図5(B)の上段に示すように、比較的早く電荷が蓄積し消色する。しかしながら、V1xよりも電圧の小さいV2x~V6xでは、消色するだけの電荷が蓄積されず、消色に近い状態から完全に消色しない状態(初期の着色状態)へと段階的に変化する。このようにして、抵抗値が外部電源150から順に大きくなる領域1~6からなる電極を用いることにより、領域1~6に対応するEC層120の各領域に印加される電圧が順に小さくなる。その結果、領域1~6に対応するEC層120の各領域に蓄積される電荷量が順に小さくなり、領域1~6の順でグラデーションが生じる。
 一方、外部電源150がV=V(<V)をEC素子100に印加すると、電極の領域1~6の抵抗値の順に対応して、図5(A)に示すように、領域1~領域6のEC層120に印加される電圧は、それぞれ、V1y>V2y>V3y>V4y>V5y>V6yとなる。ここで、VはVよりも小さいため、図4の電荷量密度の時間依存性を参照すると、領域1に印加される電圧V1yは、もっともVに近い値であるが、時間tでは、図5(B)の下段に示すように、電荷が十分に蓄積せず、着色に近い状態となる。また、V1yよりも電圧の小さいV2y~V6yでは、時間tでは、さらに電荷が蓄積されず、着色に近い状態から完全に消色しない状態(初期の着色状態)と段階的に変化する。このようにして、外部電源150の電圧の大きさに応じて、異なるグラデーションを生じることができる。
 ここで、図5では、図4の時間tを基準に説明したが、時間tで完全に電荷の蓄積が終了しない場合には、その後、時間をかけてゆっくりと電荷が蓄積される。その結果、領域ごとに異なる着消色の速度となるため、観察者にとって、グラデーションの色変化に加えて、じわじわ感を得ることができる。
 図2Bについても、図2Aと同様に、外部電源150側から領域1~領域6に抵抗値が順次大きくなるため、同様の効果が得られることは言うまでもない。なお、図2Bでは、第1の電極110が全面電極であるため、外部電源150による印加電圧が一定である場合には、図2BのEC素子に生じる電位差は、図2Aのそれに比べて小さい。このことから、図2Aのように、大きな電位差を利用する場合には、第1の電極110の複数の領域と、第2の電極140の複数の領域とは、対向するように配置することが好ましい。
 また、図2Aおよび図2Bでは、複数の領域は、それぞれの抵抗値が一方から他方に向けて(図2Aおよび図2Bでは、外部電源150から遠ざかる方向に向けて)順次大きくなるように一方向に配列することで、一方向のグラデーションを達成する。しかし、複数の領域の配列はこれに限らない。二方向以上に複数の領域を配列すれば、二次元のグラデーションを可能にする。
 なお、時間tにおいて、外部電源150の電圧Vを下げるかまたはゼロにする(スイッチを切る)ことによりグラデーションの時間変化を遅らせるあるいはグラデーションを時間tの状態に固定することができる。
 図6は、条件(1)における外部電源からの抵抗値が異なる複数の領域からなる別の例示的な第1の電極/第2の電極を模式的に示す図である。
 図6には、図2Aと同様に、第1の電極110および第2の電極140がいずれもブロック状の形状を有する複数の領域からなるEC素子が示されるが、外部電源150側から、抵抗値の大きさが、領域1、領域3、領域2、領域4、領域6および領域5とランダムに変化するように配列されている点が異なる。対応する領域1’~領域6’も同様に抵抗値がランダムに変化するように配列されている。
 図7は、図6に示すEC素子に電圧を印加した際のグラデーションの様子を模式的に示す図である。
 図7(A)は、EC素子にVおよびV(図4参照)をそれぞれ印加した際の複数の領域における電圧の変化を模式的に示す。横軸は、外部電源150からの各領域に対応するEC層120上の距離を示し、縦軸は、各領域に印加される電圧の大きさを示す。図7(B)は、EC素子にVおよびVをそれぞれ印加した際のEC層120の一定時間(時間t)後の着色状態を模式的に示す。図7(C)には、理解容易のため、図6の平面図と同じものを示す。
 外部電源150がV=VあるいはVをEC素子100に印加すると、電極の領域1~6の抵抗値の順に対応して、図7(A)に示すように、領域1~領域6のEC層120に印加される電圧は、変化する。その結果、領域1~6に対応するEC層120の各領域に蓄積される電荷量も変化するので、領域1~6に対応してランダムに着消色が生じる。このように、複数の領域を、それぞれの抵抗値がランダムとなるように配列するだけで、ランダムな着消色ができる。
 ここでもやはり、図7では、図4の時間tを基準に説明したが、時間tで完全に電荷の蓄積が終了しない場合には、その後、時間をかけてゆっくりと電荷が蓄積される。その結果、領域ごとに異なる着消色の速度となるため、観察者にとって、ランダムな色変化に加えて、じわじわ感を得ることができる。
 図8は、条件(1)における外部電源からの抵抗値が異なる複数の領域からなる例示的なさらに別の第1の電極/第2の電極を模式的に示す図である。
 図8には、第1の電極110が全面電極であり、第2の電極140がブロック状の形状を有する複数の領域からなるEC素子が示される。第2の電極140を構成する複数の領域は、外部電源150に対して並列に接続されており、外部電源150側から、領域1~領域6と番号が付与されている。ここで、領域1~領域6は、外部電源150側から、順に抵抗値が大きくなるように配列されている。
 図9は、図8に示すEC素子に対応する近似等価回路を示す図である。
 図9において、Cは、EC層120と電解質層130との間の界面電気二重層容量を示し、CECは、EC層120の容量を示し、V~Vは、電極間、すなわち、EC層に印加される電圧を示す。CおよびCECは、いずれも、一定の値となるが、V~Vは、領域1~領域6が、外部電源150側から順に抵抗値が大きくなるように配列されている場合、V>V>V>V>V>Vを満たす。これにより、領域1~6に対応するEC層120の各領域に電圧分布が生じる。したがって、図8のEC素子においても、図2Aおよび図2BのEC素子と同様に、着消色のグラデーションを達成できる。
 ここでも、時間tにおいて、外部電源150の電圧Vを下げるかまたはゼロにする(スイッチを切る)ことにより、グラデーションの時間変化を遅らせるあるいはグラデーションを時間tの状態に固定することができることは上述したとおりである。
 第1の電極110および第2の電極140の材料は、特に制限はないが、透明電極である。これにより、任意のパターンであってもEC層120の着消色を視認できる。透明電極の材料は、特に限定されないが、例えば、SnO、InまたはInとSnOとの混合物であるITO等であり得る。
 なお、図8に示したように、各ブロック状の電極を並列でつなぐ電極(図中の灰色の領域)を設けてもよい。このような電極によって抵抗値を制御する場合、金、銅、アルミニウム、銀等の抵抗の小さい電極材料や、NiCr、Ta、TaN、TaSiO等の抵抗の大きい電極材料を用いることができる。
 図2~図9を参照して、第1の電極110および/または第2の電極140が、電極の形状を利用した抵抗値が異なる複数の領域からなる例を説明してきたが、複数の領域はこれに限らない。例えば、第1の電極110とEC層120との間、および/または、電解質層130と第2の電極140との間に抵抗値が異なる複数の抵抗体を設けることで、複数の領域を形成してもよい。このような複数の抵抗体は、半導体素子(バリスタ)や可変抵抗素子であり得る。
 次に、条件(2)について具体的に説明する。
 図10は、条件(2)における電解質層が異なる電解質材料から形成された2つの領域からなる例示的なEC素子を模式的に示す図である。
 図11は、図10に示すEC素子に電圧を印加した際のグラデーションの様子を模式的に示す図である。
 図10には、電解質層130が、イオン伝導度の大きな領域1010およびイオン伝導度の小さな領域1020からなるEC素子100を示す。
 図11(A)は、EC素子にV(図4参照)を印加した際の2つの領域における電圧の変化を模式的に示す。横軸は、外部電源150からの各領域に対応するEC層120上の距離を示し、縦軸は、各領域に印加される電圧の大きさを示す。図11(B)は、EC素子にVを印加した際のEC層120の一定時間(時間t)後の着色状態を模式的に示す。
 図11(A)に示すように、外部電源150がV=VをEC素子100に印加すると、電解質層130の領域1010および領域1020のイオン伝導度の順に対応してEC層120に印加される電圧は、それぞれ、V1010>V1020となる。ここで、図4の電荷量密度の時間依存性を参照すると、領域1010に印加される電圧V1010は、もっともVに近い値であるため、図11(B)に示すように、比較的早く電荷が蓄積し消色する。しかしながら、V1010よりも電圧の小さいV1020では、消色するだけの電荷が蓄積されず、消色しない状態で維持される。このように、イオン伝導度の異なる電解質材料から形成された領域1010および領域1020を用いることにより、領域1010および領域1020に対応するEC層120の各領域に電圧分布を発生できる。その結果、領域1010および領域1020に対応するEC層120の各領域に蓄積される電荷量が異なり、グラデーションが生じる。
 電解質層130に用いる電解質材料に特に制限はないが、イオン伝導度が0.01S/m以上0.5S/m以下の範囲を有することが好ましい。これにより、外部電源150によりEC素子100に電圧を印加すれば、イオン伝導度に応じて、EC層120に電圧分布を生じさせることができる。なお、電解質材料のイオン伝導度は、インピーダンス法によって算出される。
 図10では、簡単のため、電解質層130が2つの異なる領域からなる場合を示すが、電解質層130の複数の領域の個数および配列はこれに限らない。複数の領域を、それぞれのイオン伝導度が一方の端の領域から他方の端の領域に向けて順次大きくなるように一方向に配列すれば、一次元のグラデーションを達成できる。二方向以上に複数の領域を配列すれば、二次元のグラデーションを可能にする。また、複数の領域を、それぞれのイオン伝導度がランダムになるように配列すれば、ランダムな着消色を可能にする。
 次に、EC素子100を構成する各要素の材料について説明する。
 第1の電極110および第2の電極140は、上述したとおりであるため説明を省略する。
 EC層120は、低消費電力であるエレクトロクロミック材料から形成されたものである限り特に制限はない。エレクトロクロミック材料は、好ましくは、上述した有機/金属ハイブリッドポリマーを含有するエレクトロクロミック材料であってよい。具体的には、有機配位子と、有機配位子に配位された金属イオンとを含む有機/金属ハイブリッドポリマーを含有するエレクトロクロミック材料である。このような有機/金属ハイブリッドポリマーは、消費電力が小さため、電磁波信号から変換された電気信号によって容易に着色・消色する。
 ここで、有機/金属ハイブリッドポリマーについて詳述する。有機配位子とは、金属イオンを配位でき、重合によって高分子化可能である有機化合物であれば、特に制限はない。有機配位子は、好ましくは、ターピリジン基、フェナントロリン基、ビピリジン基、イミノ基およびこれらの誘導体からなる群から選択される。有機/金属ハイブリッドポリマーを構成する有機配位子は、単数種であっても複数種であってもよい。これらの有機配位子が金属イオンと配位し、錯形成することによって、有機配位子と金属イオンとが交互に連結した状態となり有機/金属ハイブリッドポリマーを構成する。
 ターピリジン基は、代表的には、2,2’:6’,2”-ターピリジンであるが、これに、種々の置換基を有した誘導体であってもよい。例示的な置換基は、ハロゲン原子、炭化水素基、ヒドロキシル基、アルコキシ基(例えばC~C10)、カルボニル基、カルボン酸エステル基(例えばC~C10)、アミノ基、置換アミノ基、アミド基、置換アミド基、シアノ基、ニトロ基などが挙げられる。炭化水素基としては、例えば、C~C10等の直鎖または分岐のアルキル基、具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基等が例示できる。さらにこれらの置換基が有していてよい置換基の例として、メチル基、エチル基、ヘキシル基等のC~C10のアルキル基、メトキシ基、ブトキシ基等のC~C10のアルコキシ基、塩素、臭素等のハロゲン原子等の置換基が挙げられるが、これに限らない。
 ビピリジン基は、2,2’-ビピリジン、3,3’-ビピリジン、4,4’-ビピリジン、2,3’-ビピリジン、2,4’-ビピリジン、3,4’-ビピリジンであるが、これに種々の置換基を有した誘導体であってもよい。ここでも例示的な置換基は、上述したとおりである。
 イミノ基は、C=Nを有し、これに種々の置換基を有した誘導体であり得る。誘導体が有し得る例示的な置換基は、上述したとおりである。
 フェナントロリン基は、フェナントレンのうちの任意の2つの炭素原子が窒素原子で置換されたものであるが、これに種々の置換基を有した誘導体であってもよい。誘導体が有し得る例示的な置換基は、メチル基、t-ブチル基、フェニル基、チエニル基、ビチエニル基、ターチエニル基、フェニルアセチル基等であるが、これに限らない。
 金属イオンは、酸化還元反応によって価数を変化させる任意の金属イオンであり得るが、好ましくは、Pt、Cu、Ni、Pd、Ag、Mo、Fe、Co、Ru、Rh、Eu、ZnおよびMnからなる群から選択される少なくとも1種の金属イオンである。これらの金属イオンは、上述の有機配位子と配位する。より好ましくは、有機配位子が、ターピリジン基またはその誘導体である場合には、6配位の金属イオンが選択され、有機配位子がフェナントロリン基、ビピリジン基、イミノ基またはこれらの誘導体である場合には、4配位の金属イオンが選択される。
 有機/金属ハイブリッドポリマーは、好ましくは、一般式(I)、(II)および(III)からなる群から選択される一般式で表される。一実施形態で、有機/金属ハイブリッドポリマーは、これらの混合物であってもよい。
Figure JPOXMLDOC01-appb-C000003
 式(I)および式(II)で表される有機/金属ハイブリッドポリマーは、いずれも、有機配位子としてターピリジン基またはその誘導体とそれに配位された金属イオンとを含む。式(III)で表される有機/金属ハイブリッドポリマーは、有機配位子としてフェナントロリン基またはその誘導体とそれに配位された金属イオンとを含む。
 式(I)において、Mは金属イオンを示し、Xはカウンターアニオンを示し、Sは、炭素原子および水素原子を含むスペーサまたは2つのターピリジン基を直接接続するスペーサを示し、R~Rは、それぞれ独立に水素原子または置換基を示し、nは重合度を示す2以上の整数である。
 式(II)において、M~M(Nは2以上の整数)は、それぞれ独立に酸化還元電位の異なる金属イオンを示し、X~X(nは2以上の整数)は、それぞれ独立にカウンターアニオンを示し、S~S(Nは2以上の整数)は、それぞれ独立に炭素原子および水素原子を含むスペーサまたは2つのターピリジン基を直接接続するスペーサを示し、R ~R 、R ~R 、R ~R 、R ~R (Nは2以上の整数)は、それぞれ独立に水素原子または置換基を示し、n~nは、それぞれ独立に重合度を示す2以上の整数である。
 ここで、式(I)および式(II)における金属イオンは、好ましくは、Fe、Co、Ni、ZnおよびRhからなる群から選択される少なくとも1種の金属イオンであり得る。これらの金属イオンは6配位形態をとりうるので、上記有機配位子との錯形成が可能になる。
 式(I)および式(II)におけるカウンターアニオンは、酢酸イオン、リン酸イオン、塩素イオン、六フッ化リンイオン、四フッ化ホウ素イオン、および、ポリオキソメタレートからなる群から選択され得る。これらのカウンターアニオンによって、有機/金属ハイブリッドポリマーは電気的に中性となり安定化する。
 式(I)および式(II)におけるスペーサが炭素原子および水素原子を含むスペーサである場合、このようなスペーサは炭素原子および水素原子を含む二価の有機基であり得る。例示的には、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、複素環基等が挙げられる。中でも、フェニレン基、ビフェニレン基などのアリーレン基が好ましい。また、これらの炭化水素基はメチル基、エチル基、ヘキシル基等のアルキル基、メトキシ基、ブトキシ基等のアルコキシ基、塩素、臭素等のハロゲン原子等の置換基を有していてもよい。また、このようなスペーサは、酸素原子や硫黄原子をさらに含んでいてもよい。酸素原子や硫黄原子は修飾能を有するので、有機/金属ハイブリッドポリマーの材料設計に有利である。
 二価のアリーレン基の中でも以下に示すアリーレン基が好ましい。これらであれば、有機/金属ハイブリッドポリマーが安定化する。
Figure JPOXMLDOC01-appb-C000004
 スペーサを構成する脂肪族炭化水素基としては、例えば、C~C等のアルキレン基、具体的には、メチレン基、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、t-ブチレン基等が例示できる。
 さらにスペーサを構成する二価の有機基として、これらの基にメチル基、エチル基、ヘキシル基等のC~Cのアルキル基、メトキシ基、ブトキシ基等のC~Cのアルコキシ基、塩素、臭素等のハロゲン原子等の置換基を有するものを用いてもよい。
 式(I)のR~Rおよび式(II)のR ~R 、R ~R 、R ~R 、R ~R は、それぞれ独立に水素原子または置換基を示し、置換基としては、例えば、ハロゲン原子、炭化水素基、ヒドロキシル基、アルコキシ基(例えばC~C10)、カルボニル基、カルボン酸エステル基(例えばC~C10)、アミノ基、置換アミノ基、アミド基、置換アミド基、シアノ基、ニトロ基などが挙げられる。炭化水素基としては、例えば、C~C10等の直鎖または分岐のアルキル基、具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基等が例示できる。さらにこれらの置換基が有していてよい置換基の例として、これらの炭化水素基にメチル基、エチル基、ヘキシル基等のC~C10のアルキル基、メトキシ基、ブトキシ基等のC~C10のアルコキシ基、塩素、臭素等のハロゲン原子等の置換基を有するものを用いてもよいが、これらに限らない。
 式(I)において、nは重合度を示す2以上の整数であり、例えば2~5000、好ましくは10~1000である。式(II)において、n~nは、それぞれ独立に重合度を示す2以上の整数であり、その合計n+n・・・+nは、例えば2~5000、好ましくは10~1000である。
 式(III)において、Mは金属イオンを示し、Xはカウンターアニオンを示し、Aは、炭素原子および水素原子を含むスペーサまたは2つのフェナントロリン基を直接接続するスペーサを示し、R~Rは、それぞれ独立に水素原子または置換基を示し、nは重合度を示す2以上の整数である。
 ここで、式(III)における金属イオンは、Pt、Cu、Ni、AgおよびPdからなる群から選択される少なくとも1種の金属イオンであり得る。これらの金属イオンは4配位形態をとり得るので、上記有機配位子との錯形成が可能になる。式(III)におけるカウンターアニオンは、過塩素酸イオン、トリフラートイオン、四フッ化ホウ素イオン、塩化物イオンおよび六フッ化リン酸イオンからなる群から選択され得る。これらのカウンターアニオンによって、有機/金属ハイブリッドポリマーは電気的に中性となり安定化する。
 式(III)におけるスペーサが炭素原子および水素原子を含むスペーサである場合、スペーサは、以下に示すように、フェニル基、ビフェニル基、ターフェニル基、チエニル基、ビチエニル基、ターチエニル基が代表例として挙げられる。また、ビス(フェナントロリン)誘導体の溶解性を高めるために、アルキル基(炭素数1から16)やアルコキシ基(炭素数1から16)で修飾したスペーサを用いることも望ましい。さらに、ジオキソアルキル基(炭素数2から16)でフェニル基間が連結されたスペーサを用いることもできる。
Figure JPOXMLDOC01-appb-C000005
 式(III)におけるRおよびRは、以下に示すように、水素、メチル基、t-ブチル基、フェニル基、チエニル基、ビチエニル基、ターチエニル基が挙げられる。式(III)におけるRおよびRは、水素、フェニル基、フェニルアセチル基が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 式(III)において、nは重合度を示す2以上の整数であり、例えば2~5000、好ましくは10~1000である。
 有機/金属ハイブリッドポリマーは、金属イオンから有機配位子への電荷移動吸収に基づき呈色を示す。すなわち、有機/金属ハイブリッドポリマーは、電気化学的に酸化されると発色が消えた消色状態となり、電気化学的に還元されると発色状態となる。この現象は繰り返し起こすことが可能である。したがって、このような有機/金属ハイブリッドポリマーは、低消費電力のエレクトロクロミック材料として機能する。なお、上述した有機/金属ハイブリッドポリマーは、例えば、特許文献1および特許文献2を参照して製造できる。
 また、EC層120は、イオン液体を含有してもよい。ここで、イオン液体は、上述の有機/金属ハイブリッドポリマーとイオン結合を形成し、複合体となり得る。複合体とすることにより、隣り合う電解質層130からのカウンターアニオンを複合体内に保持できるので、早い応答特性を達成できる。
 このようなイオン液体として、有機/金属ハイブリッドポリマーがイオン結合を形成する任意のイオン液体が採用されるうる。具体例としては、テトラフルオロボレート、ヘキサフルオロフォスフェート、ビス(トリフルオロメタンスルフォニル)イミド、および、ビス(ペンタフルオロエチルスルフォニル)イミドからなる群から選択される少なくとも1種のアニオンと、イミダゾリウム、ピロリジニウム、および、テトラアルキルアンモニウムからなる群から選択される少なくとも1種のカチオンとの組み合わせが挙げられるが、これらに限定されない。
 より好ましくは、イオン液体は、室温以下の融点を有する。これにより、エレクトロクロミックデバイスの製造における、高分子のゲル化を促進することができる。さらに好ましくは、イオン液体は、0℃以下の融点を有する。これにより、イオン液体は確実に室温で液体となるので、エレクトロクロミックデバイスの製造において、有利となる。なお、本明細書では、用語「室温」により、0℃より高く50℃以下の温度範囲を意図する。
 より好ましくは、イオン液体は、少なくとも-1V vs Ag/Ag以下の負電位から+2V vs Ag/Ag以上の正電位までの範囲の電位窓を有する。さらに好ましくは、イオン液体は、-3V vs Ag/Ag以下の負電位から+3V vs Ag/Ag以上の正電位までの範囲の電位窓を有する。これにより、イオン液体の電気化学的な安定性がさらに高まるため、エレクトロクロミックデバイスの耐久性をさらに向上できる。
 電解質層130は、EC層120における金属イオンの酸化還元反応に伴う価数の変化に対し、その電荷を補償する機能を有する。電解質層130は、そのような機能を有する材料から形成されている限り特に制限はないが、具体的には、少なくとも、高分子および支持塩を含有することが好ましい。高分子および支持塩によって上記の電荷補償の機能を達成することができる。
 高分子は、好ましくは、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリ(ビニリデンフルオライド-co-ヘキサフルオロイソプロピル)(PVdF-co-PHFP)、ポリプロピレンカーボネート(PPC)、ポリカーボネート、および、ポリアクリロニトリルからなる群から選択される少なくとも1種であってよい。これらの高分子はゲル電解質層の構成に有利である。
 支持塩は、好ましくは、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiCFCOO、リチウムビス(トリフルオロメタンスルフォニル)イミド(LiTFSI)、LiCHCOO、過塩素酸テトラブチルアンモニウム、過塩素酸テトラエチルアンモニウム、KCl、NaClO、NaCl、NaBF、NaSCN、KBF、Mg(ClOおよびMg(BFからなる群から選択される少なくとも1種であってよい。これらの支持塩は、有機/金属ハイブリッドポリマーのカウンターアニオンとして効果的に機能する。
 好ましくは、電解質層130は、炭酸プロピレン(PC)、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、γ-ブチロラクトン、スクシノニトリル、および、イオン液体からなる群から選択される少なくとも1種の可塑剤を含有する。可塑剤としてのイオン液体は、上述したものと同様のイオン液体を採用できるため、説明を省略する。例えば、このような可塑剤に加えて上述の高分子および支持塩を脱水溶媒(後述する)に溶解させ、キャストしたのちに溶媒を除去すれば、高分子、可塑剤、および、支持塩が均一に分散して存在したゲル電解質層を構成できるので、エレクトロクロミックデバイス特性の向上と安定化につながる。
 また電解質層130は、ビオロゲン、N,N,N’,N’-テトラメチル-p-フェニレンジアミンおよび有機金属錯体からなる群から選択される少なくとも1種のイオン蓄積材料をさらに含有してもよい。これにより、第1の電極110とEC層120との間に電荷が蓄積することを抑制できるので、電荷の蓄積によって生じる第1の電極110の物理的な損傷を抑制することができる。例示的な有機金属錯体は、フェロセン、プルシアンブルー、ポルフィリン等である。なお、EC層120に含有される有機/金属ハイブリッドポリマーも電荷の蓄積を抑制できるが、上述のイオン蓄積材料をさらに含有すれば、第1の電極110およびそれを備えた基板の損傷をより効果的に防ぐことができる。
 なお、条件(2)を満たすEC素子100に使用される電解質材料としては、上述したようにイオン伝導度が制御されていることが好ましい。例えば、高分子の種類や濃度を変えることにより、電解質材料の粘性が変化し得るが、通常、粘性を低くすることにより、イオン伝導度が大きくなり、粘性を高くすることにより、イオン伝導度が小さくなる。
 条件(1)を満たすEC素子100は、例示的には次のようにして製造される。
 任意の物理的気相成長法または化学的気相成長法によって、プラスチック等の樹脂基板、ガラス基板等の透明基板上に第1の電極110を形成する。例えば、図2Aに示すような形状となるよう所定のパターンを有するマスクを使用して形成される。これにより、第1の電極110は、外部電源150からの抵抗値が異なる複数の領域から構成されることになる。次いで、第1の電極110上に上述した有機/金属ハイブリッドポリマーを含有する材料を付与し、EC層120を形成する。付与は、第1の電極110上にEC層120が形成される限り手段は問わないが、材料が液状である場合には、塗布、浸漬、スプレー等の手段であってよい。付与は、例示的には、EC層120の厚みが10nm以上10μm以下となるように行われる。なお、上述の有機/金属ハイブリッドポリマーは、メタノール、エタノール、2-プロパノール等の溶媒に溶解させてもよい。
 次いで、EC層120上に電解質材料を付与し、電解質層130を形成する。電解質層130の形成は、上述した電解質層130を構成する電解質材料(高分子、支持塩、イオン液体等を任意に含有する)をエレクトロクロミック層120上に付与することによって行うことができる。付与は、塗布、浸漬、スプレー、電解重合等の手段を用いることができる。付与は、例示的には、電解質層130の厚みが10nm以上10mm以下となるように行われる。
 この付与プロセスにおいて、電解質材料は、好ましくは、脱水溶媒(脱水処理された溶媒)を含有する。これにより、電解質材料の塗布を容易にするだけでなく、電解質層130を構成する上述の高分子(ポリマーマトリクス)の結晶化が抑制され、応答速度の低下を防ぐことができる。脱水溶媒は、好ましくは、アセトニトリル、アセトン、および、テトラヒドロフランからなる群から選択される少なくとも1種の溶媒であってよい。
 第1の電極110と同様に、マスクを使用して基板上に第2の電極140を形成する。第1の電極110および第2の電極140のパターンが重なるように、第2の電極140を貼り合わせ、第1の電極110、EC層120、電解質層130および第2の電極140からなる構造体を形成する。貼り合わせは、接触させ、単に押し付けるだけでよい。ここでは、第1の電極110と第2の電極140とが同一のパターンを有するが、いずれか一方が全面電極であってもよい。
 次いで、構造体を熱処理し、構造体中の不要な溶媒(例えば、実施例で使用するアセトニトリル)を除去することができる。これにより、応答速度、コントラスト、繰り返し駆動安定性(耐久性)を向上できる。
 条件(2)を満たすEC素子100は、例示的には次のようにして製造される。
 条件(1)を満たすEC素子100の製造において、第1の電極110および第2の電極140の形成に所定のパターンを用いず、電解質層130の形成方法が異なる以外は同様の方法により、条件(2)を満たすEC素子100を製造することができる。透明基板等の基板の全面に形成された第1の電極110上に、EC層120を形成する。次いで、所定の複数の場所にイオン伝導度を制御した異なる電解質材料を付与し、複数の領域からなる電解質層130を形成する。この上に、基板の全面に形成された第2の電極140を貼り合わせ、第1の電極110、EC層120、電解質層130および第2の電極140からなる構造体を形成し、熱処理すればよい。
 所定の複数の場所を設けるために、仕切りやマスクを用いてよい。代替的には、電解質層130となる電解質材料の溶媒の量を制御して粘性を調整すれば、仕切りやマスクを用いることなく、所定の複数の場所に、イオン伝導度を制御した異なる電解質材料から形成された電解質層130を得ることができる。このとき、粘性の調整に用いる溶媒の量は、イオン伝導度に影響を与えない。
 当然ながら、条件(1)および条件(2)の両方を満たすEC素子を製造してもよい。例えば、条件(1)を満たすEC素子100の製造において、電解質層130の形成方法が異なる以外は同様の方法により(異なる電解質材料から電解質層を形成することにより)、条件(1)および(2)を満たすEC素子100を製造することができる。これにより、さらなる複雑な着消色を可能にするEC素子を提供できることはいうまでもない。
 (実施の形態2)
 実施の形態2では、実施の形態1で説明した本発明のEC素子100を用いたEC表示システム1200の構成および動作について説明する。
 図12は、本発明の例示的なEC表示システムを模式的に示す図である。
 EC表示システム1200は、少なくとも、複数のエレクトロクロミック(EC)素子100を備えたEC表示部1210を備える。ここで、複数のEC素子100は、実施の形態1で説明したEC素子100と同様であるため、説明を省略する。EC表示システム1200は、EC表示部1210の動作を制御する制御部1220をさらに備える。制御部1220は、外部電源、必要に応じて極性反転スイッチや選択スイッチを含む。
 仮にEC表示システムのEC素子が単一であったとしても、本発明に従うEC素子を用いることによって、印加電圧の大きさに応じて、グラデーションや色むらあるいはじわじわ感を示し得る。しかし、このような複数のEC素子100を備えたEC表示システム1200では、単に、制御部1220が、EC表示部1210の各EC素子100に電圧を印加するだけで、より複雑なグラデーションや模様などの不均一な色彩を表現することができる。
 このようなEC表示システム1200は、遮光機能を部分的に付与できる窓やサングラスなどの調光素子、グラデーションや模様などの不均一な色彩を表現する表示素子等に適用される。
 次に具体的な実施例を用いて本発明を詳述するが、本発明がこれら実施例に限定されないことに留意されたい。
[材料]
 以降の例で用いた材料について説明する。なお、すべての材料は特級試薬であり、精製することなく用いた。ポリ(メチルメタクリレート)(PMMA、重量平均分子量(ポリスチレン換算GPC測定、移動相溶媒THF)=350kg/mol)を東京化成工業株式会社およびSigma-Aldrich Co.LLC.から購入した。種々のパターンを有するインジウムスズ酸化物(ITO)でコートされたガラス基板(ITOの厚みは、0.1μmであった。以降では簡単のため、ITO基板と称する。抵抗値=5~492Ω)を、テクノプリント株式会社から購入した。全面にITOでコートされたガラス基板(膜厚=0.2μm、シート抵抗=10Ω/sq)を、ジオマテック株式会社から購入した。
 メタノール(MeOH)、アセトニトリル(ACN)および炭酸プロピレンを、和光純薬工業株式会社より購入した。
 過塩素酸リチウム(LiClO)を関東化学株式会社から購入した。
 有機/金属ハイブリッドポリマーとして式(A)で示される高分子材料を用いた。高分子材料は、特許文献1あるいはF.S.HanらのJ.Am.Chem.Soc.,2008,130(6),pp2073-2081を参照し、株式会社ナード研究所が製造した。以降では、簡単のため、この有機/金属ハイブリッドポリマーをpolyFeと称する。
Figure JPOXMLDOC01-appb-C000007
[参考例1]
 参考例1では、第1の電極110としてITO基板(全面電極)、EC層120としてpolyFe、電解質層130として炭酸プロピレンとLiClOとPMMAとを含有する電解質材料、第2の電極140としてITO基板(全面電極)を用いた一般的なEC素子(アクティブ面:100cm)を製造した。
 EC素子は次のようにして製造した。ITO基板(厚み0.1μmのITO膜を有する厚み1~3mmのガラス基板)上に、polyFeを付与し、EC層120を形成した。polyFeを含有する溶液は、polyFe(4mg)をMeOH(1mL)に溶解し、シリンジフィルタ(ポリビニリデンフルオライド(PVDF)、0.45μm)でろ過し、不溶残渣を除去することによって調製した。得られたpolyFeを含有する溶液(40mL)は、スプレーコート法によりITO基板(10×10cm)上に付与された。EC層120の厚みは、0.3~0.5μmであった。
 次いで、EC層120の表面に、PMMAおよびLiClOを炭酸プロピレンおよびアセトニトリルに溶解させた溶液を塗布し、乾燥後、剥離した。この処理を3回繰り返した。これにより、EC層120の表面にある低分子量のpolyFeを溶出、除去した。
 次いで、EC層120上に電解質材料を付与し、電解質層130を形成した。支持塩としてLiClOを、可塑剤兼溶媒として炭酸プロピレンに溶解し、高分子として東京化成工業製PMMAを添加して、減圧下1時間攪拌し、白濁した電解質材料を得た。なお、PMMAとLiClOと炭酸プロピレンとの重量比は、5:1:6であった。得られた電解質材料をEC層120上にドロップキャスト法により滴下し、電解質層130を形成した。電解質層130の厚みは、0.1~1.0mmの範囲であった。
 電解質層130に第2の電極140を合わせて、ITO基板、polyFe膜、電解質層およびITO基板からなる構造体を得た。構造体を乾燥器(ESPEC、SH-242)に設置し、100℃で10分間乾燥させ、電解質材料を固化させた。このようにして無色透明な固体電解質層を有するEC素子を製造した。
 得られたEC素子に電気的接続部を設け、外部電源に接続して種々の電圧を印加し、充放電特性を電気化学アナライザ(BAS Inc.、ALS/CH Instruments Electrochemical Analyzer model 612B)により評価した。結果を図13に示す。
 図13は、参考例1のEC素子に異なる電圧を印加した際の電荷量密度の時間依存性を示す図である。
 参考例1のEC素子に電圧を印加する前、EC素子は、紫色の発色を示した。このことから、電圧印加前、EC素子において、EC層のpolyFeは還元状態にあり、polyFeのFeイオンは2価であることが分かった。図13ではグレースケールで示すが、濃く示される領域が紫色の発色を示す。このEC素子に+3.0Vの電圧を印加したところ、実線に示すように電荷量密度は変化し、約5秒で消色状態となった。一方、EC素子に+2.5Vの電圧を印加したところ、点線に示すように電荷量密度は変化し、約15秒で消色状態となった。このことから、EC素子は、印加電圧の大きさによって、消色に要する時間が変化し、上述したじわじわ感をせしめることができることが示唆される。
[例2]
 例2は、第1の電極110および第2の電極140として、複数の異なる抵抗値を有するブロック状の領域からなるITO基板(10cm×11cm)、EC層120としてpolyFe、電解質層130として炭酸プロピレンとLiClOとPMMAとを含有する電解質材料(重量比は参考例1と同様)を用いたEC素子を製造した。ITO基板を図14に示し、後述する。EC層120および電解質層130は、参考例1と同様であるため説明を省略する。このようにして得られた例2のEC素子に+3.0V、-3.0Vの電圧をそれぞれ印加し、着消色の変化を観察した。結果を図17(A)に示す。
[例3]
 例3は、例2と異なるITO基板を用いた以外は、例2と同様であるため説明を省略する。ITO基板を図15に示し、後述する。例3のEC素子に+3.0V、-3.0Vの電圧をそれぞれ印加し、着消色の変化を観察した。結果を図17(B)に示す。
[例4]
 例4は、例2と異なり、複数の異なる抵抗値を有する線状の領域からなるITO基板を用いた以外は、例2と同様であるため説明を省略する。ITO基板を図16に示し、後述する。例4のEC素子に+3.0V、-3.0Vの電圧をそれぞれ印加し、着消色の変化を観察した。
 図14は、例2におけるITO基板を示す模式図である。
 図15は、例3におけるITO基板を示す模式図である。
 図16は、例4におけるITO基板を示す模式図である。
 図14によれば、例2においては、ITO基板は、3列の電極からなる。各列の電極は、さらに、外部電源からの異なる抵抗値を有する領域として、1段目、2段目および3段目の3つの領域を有する。外部電源側から1段目、2段目、3段目の順で抵抗値が大きくなっており、1列目、2列目、3列目の順で、全体の抵抗値が小さくなっている。なお、1段目~3段目におけるブロック状の領域は同じ数である。
 図15によれば、例3においても、例2と同様に、ITO基板は、3列の電極からなり、各列の電極は、さらに、外部電源からの異なる抵抗値を有する領域として、1段目、2段目および3段目の3つの領域を有する。外部電源側から1段目、2段目、3段目の順で、抵抗値が大きくなっており、1列目、2列目、3列目の順で、全体の抵抗値が小さくなっているが、その値は、例2と異なる。また、1段目~3段目におけるブロック状の領域の数は、1列目から3列目となるにつれて減少している。
 図16によれば、例4においては、ITO基板は、3列の電極からなる。各列の電極は、さらに、外部電源からの異なる抵抗値を有する領域として、外部電源側から抵抗値が順次大きくなる1段目~6段目の6つの領域を有する。また、1列目、2列目、3列目の順で、全体の抵抗値が小さくなっている。
 図17の(A)および(B)は、それぞれ、例2および例3のEC素子の電圧印加後の着消色の様子を示す図である。
 図17(A)は、左から、例2のEC素子に電圧を印加する前、+3.0Vを印加後5秒後、+3.0Vを印加後10秒後の様子を示す。電圧印加前、例2のEC素子は、3列とも同じ紫色を呈した(左)。+3.0Vを印加後、5秒で外部電源側から順に消色する傾向を示した(中)。さらに5秒経過すると、より消色が進んだ(右)。特に注目すべきは、外部電源側から抵抗値が高くなるにつれて、グラデーションを示すとともに、電極の全体の抵抗値が大きいほど、じわじわと変化することが確認された。
 図17(B)も、左から、例3のEC素子に電圧を印加する前、+3.0Vを印加後5秒後、+3.0Vを印加後10秒後の様子を示す。例3のEC素子においても、例2のそれと同様の傾向を示したが、ブロック状の複数の領域を細かくすることにより、より消色(または着色)が遅くなり、より細かなグラデーションを達成できることが分かった。
 図示しないが、例4のEC素子においても、例2および例3のそれと同様の傾向を示した。また、例2~4のEC素子のいずれにおいても、-3.0Vの電圧を印加すると、図17とは逆のグラデーションを示した。
 以上の結果から、条件(1)を満たすことにより、電圧の印加によって、EC層に電圧分布(不均一な電位差)が生じ、蓄積される電荷量、さらに電荷量が蓄積されるまでの時間が不均一となり、グラデーションや色むら、電荷量蓄積に要する時間の不均一さに応じた着消色速度の不均一さ(じわじわ感)を達成できることが示された。
[例5]
 例5では、第1の電極110としてITO基板(全面電極)、EC層120としてpolyFe、電解質層130として炭酸プロピレンとLiClOとPMMAとを含有する電解質材料、第2の電極140としてITO基板(全面電極)を用いた一般的なEC素子(アクティブ面:19.5cm)を製造した。ただし、電解質層130は、粘度を変えた2種類の電解質材料を用い、2つの領域からなる。
 ITO基板(1.5cm×13cm)を用い、polyFeを有する溶液を15mL付与した以外は、参考例1と同様にして、ITO基板上にEC層120を形成し、表面を処理した。
 電解質材料は、支持塩としてLiClO、可塑剤として炭酸プロピレンを、溶媒としてACNに溶解し、高分子として東京化成工業製PMMA、および、Sigma-Aldrich製PMMAをそれぞれ添加して、2~3時間攪拌し、無色透明な2種類の電解質材料を用意した。なお、PMMAとLiClOと炭酸プロピレンとACNとの重量比は、7:3:20:70であった。東京化成工業製PMMAを用いた電解質材料は、高粘性の電解質材料であり、Sigma-Aldrich製PMMAを用いた電解質材料は、低粘性の電解質材料であった。これらのイオン伝導度は、0.01S/m以上0.5S/m以下の範囲であったが、高粘性の電解質材料のイオン伝導度は、低い粘性の電解質材料のそれよりも低かった。
 図10に示すように、EC層120上の一方の領域に高粘性の電解質材料をドロップキャスト法により滴下し、2~3時間乾燥させた。次いで、もう一方の領域に低粘性の電解質材料を同様に滴下し、乾燥させた。これにより、2つの異なる電解質材料から形成された2つの領域からなる電解質層130を形成した。電解質層130の厚みは、0.1~1.0mmの範囲であった。
 電解質層130に第2の電極140を合わせて、ITO基板、polyFe膜、電解質層およびITO基板からなる構造体を得た。構造体を室温で24時間放置し、不要な溶媒を除去した。次いで、この構造体を真空オーブン(EYELA、VOS-201SD)に設置し、100℃、3時間、相対湿度40%の条件下で加熱した。このようにして得られた例5のEC素子に+3.0V、-3.0Vの電圧をそれぞれ印加し、着消色の変化を観察した。結果を図18に示す。
 図18は、例5のEC素子の電圧印加後の着消色の様子を示す図である。
 図18は、(A)電圧を印加する前、(B)+3.0Vを印加後5秒後、(C)+3.0Vを印加後10秒後の様子を示す。図18(A)によれば、電圧印加前、例5のEC素子は均一な紫色を呈した。図18(B)によれば、3.0Vを印加後、5秒で低粘性の電解質材料(図の上半分)が先に消色する傾向を示した。図18(C)によれば、さらに5秒経過すると、より消色が進んだ。-3.0Vの電圧を印加すると、図18とは逆のグラデーションを示した。
 以上の結果から、条件(2)を満たすことにより、電圧の印加によって、EC層に電圧分布(不均一な電位差)が生じ、蓄積される電荷量、さらに電荷量が蓄積されるまでの時間が不均一となり、グラデーションや色むら、電荷量蓄積に要する時間の不均一さに応じた着消色速度の不均一さ(じわじわ感)を達成できることが示された。
 本発明のEC素子は、遮光機能を部分的に付与できる窓やサングラスなどの調光素子、グラデーションや模様などの不均一な色彩を表現する表示装置等に適用できる。
 100:エレクトロクロミック(EC)素子
 110:第1の電極
 120:エレクトロクロミック(EC)層
 130:電解質層
 140:第2の電極
 150:外部電源
 111:電気配線
 112:基板
 113:機械的接続
 114:金属パターン
 1200:EC表示システム
 1210:EC表示部
 1220:制御部
 
 

Claims (17)

  1.  第1の電極と、
     前記第1の電極上に位置するエレクトロクロミック材料から形成されたエレクトロクロミック層と、
     前記エレクトロクロミック層上に位置する電解質層と、
     前記電解質層上に位置する第2の電極と
     を備え、
     以下の条件(1)および(2)の少なくとも1つを満たす、エレクトロクロミック(EC)素子:
     (1)前記第1の電極および/または前記第2の電極は、それぞれ、外部電源からの抵抗値が異なる複数の領域からなる;
     (2)前記電解質層は、異なる電解質材料から形成された複数の領域からなる。
  2.  前記条件(1)において、前記複数の領域のそれぞれが、ブロック状および/または線状の形状を有する電極である、請求項1に記載のEC素子。
  3.  前記条件(1)において、前記複数の領域は、前記複数の領域のそれぞれの抵抗値が、一方の端の領域から他方の端の領域に向けて順次大きくなるように配列されている、請求項1または2に記載のEC素子。
  4.  前記条件(1)において、前記複数の領域は、前記複数の領域の抵抗値がランダムとなるように配列されている、請求項1または2に記載のEC素子。
  5.  前記条件(1)において、前記複数の領域のそれぞれが、5Ω以上500Ω以下の範囲の異なる抵抗値を有する、請求項1~4のいずれか1項に記載のEC素子。
  6.  前記条件(1)において、前記第1の電極における前記複数の領域と、前記第2の電極における前記複数の領域とが、それぞれ対向する、請求項1~5のいずれか1項に記載のEC素子。
  7.  前記条件(1)において、前記複数の領域のそれぞれは、前記外部電源に直列接続されているか、または、前記外部電源に並列接続されている、請求項1~6のいずれか1項に記載のEC素子。
  8.  前記条件(1)において、前記第1の電極と前記エレクトロクロミック層との間に抵抗値が異なる複数の抵抗体、および/または、前記電解質層と前記第2の電極との間に抵抗値が異なる複数の抵抗体をさらに備える、請求項1~7のいずれか1項に記載のEC素子。
  9.  前記複数の抵抗体のそれぞれは、可変抵抗素子である、請求項8に記載のEC素子。
  10.  前記条件(2)において、前記複数の領域のそれぞれは、異なるイオン伝導度を有し、
     前記複数の領域は、前記複数の領域のそれぞれのイオン伝導度が一方の端の領域から他方の端の領域に向けて順次大きくなるように配列されている、請求項1~9のいずれか1項に記載のEC素子。
  11.  前記条件(2)において、前記複数の領域のそれぞれは、異なるイオン伝導度を有し、
     前記複数の領域は、前記複数の領域のそれぞれのイオン伝導度がランダムとなるように配列されている、請求項1~9のいずれか1項に記載のEC素子。
  12.  前記条件(2)において、前記複数の領域のそれぞれは、0.01S/m以上0.5S/m以下の範囲の異なるイオン伝導度を有する、請求項1~11のいずれか1項に記載のEC素子。
  13.  前記エレクトロクロミック材料は、有機配位子と、前記有機配位子に配位された金属イオンとを含む有機/金属ハイブリッドポリマーを含有する、請求項1~12のいずれか1項に記載のEC素子。
  14.  前記有機配位子は、ターピリジン基、フェナントロリン基、ビピリジン基、イミノ基およびこれらの誘導体からなる群から選択される少なくとも1種である、請求項13に記載のEC素子。
  15.  前記金属イオンは、Pt、Cu、Ni、Pd、Ag、Mo、Fe、Co、Ru、Rh、Eu、ZnおよびMnからなる群から選択される少なくとも1種の金属イオンである、請求項13または14に記載のEC素子。
  16.  前記有機/金属ハイブリッドポリマーは、一般式(I)、(II)および(III)からなる群から選択される一般式で表される少なくとも1種の有機/金属ハイブリッドポリマーである、請求項13~15のいずれか1項に記載のEC素子:
    Figure JPOXMLDOC01-appb-C000001

     前記式(I)において、Mは金属イオンを示し、Xはカウンターアニオンを示し、Sは、炭素原子および水素原子を含むスペーサまたは2つのターピリジン基を直接接続するスペーサを示し、R~Rは、それぞれ独立に水素原子または置換基を示し、nは重合度を示す2以上の整数であり、
     前記式(II)において、M~M(Nは2以上の整数)は、それぞれ独立に酸化還元電位の異なる金属イオンを示し、X~X(nは2以上の整数)は、それぞれ独立にカウンターアニオンを示し、S~S(Nは2以上の整数)は、それぞれ独立に炭素原子および水素原子を含むスペーサまたは2つのターピリジン基を直接接続するスペーサを示し、R ~R 、R ~R 、R ~R 、R ~R (Nは2以上の整数)は、それぞれ独立に水素原子または置換基を示し、n~nは、それぞれ独立に重合度を示す2以上の整数であり、
     前記式(III)において、Mは金属イオンを示し、Xはカウンターアニオンを示し、Aは、炭素原子および水素原子を含むスペーサまたは2つのフェナントロリン基を直接接続するスペーサを示し、R~Rは、それぞれ独立に水素原子または置換基を示し、nは重合度を示す2以上の整数である。
  17.  電源と、エレクトロクロミック(EC)表示部とを備えたエレクトロクロミック(EC)表示システムであって、
     前記EC表示部は、複数のエレクトロクロミック(EC)素子を備え、
     前記複数のEC素子のそれぞれは、請求項1~16のいずれか1項に記載のEC素子である、EC表示システム。
     
PCT/JP2018/026141 2017-08-23 2018-07-11 エレクトロクロミック素子およびそれを用いた表示システム WO2019039121A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019537979A JP6818375B2 (ja) 2017-08-23 2018-07-11 エレクトロクロミック素子およびそれを用いた表示システム
US16/639,980 US20200192171A1 (en) 2017-08-23 2018-07-11 Electrochromic element and display system using same
CN201880054100.9A CN111133374B (zh) 2017-08-23 2018-07-11 电致变色元件及使用该电致变色元件的显示系统
EP18847686.5A EP3674791B1 (en) 2017-08-23 2018-07-11 Electrochromic element and display system using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017159905 2017-08-23
JP2017-159905 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019039121A1 true WO2019039121A1 (ja) 2019-02-28

Family

ID=65438822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026141 WO2019039121A1 (ja) 2017-08-23 2018-07-11 エレクトロクロミック素子およびそれを用いた表示システム

Country Status (5)

Country Link
US (1) US20200192171A1 (ja)
EP (1) EP3674791B1 (ja)
JP (1) JP6818375B2 (ja)
CN (1) CN111133374B (ja)
WO (1) WO2019039121A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346996A (zh) * 2019-06-14 2019-10-18 上海集成电路研发中心有限公司 一种局部抗强光的电致变色玻璃
WO2020239075A1 (en) * 2019-05-30 2020-12-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic apparatus and electrochromic device
JP2021124703A (ja) * 2020-02-10 2021-08-30 国立研究開発法人物質・材料研究機構 エレクトロクロミック素子
US11604393B2 (en) 2019-05-30 2023-03-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic apparatus and electrochromic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112957A (ja) 2005-10-24 2007-05-10 National Institute For Materials Science 高分子材料、その製造方法およびエレクトロクロミック素子
JP2012063657A (ja) 2010-09-17 2012-03-29 Alps Electric Co Ltd 表示装置
JP2012188517A (ja) 2011-03-10 2012-10-04 National Institute For Materials Science 配位数4の金属及びビスフェナントロリン誘導体を含む有機/金属ハイブリッドポリマー、その配位子、及びその製造方法
JP2012531940A (ja) * 2009-07-03 2012-12-13 ロレアル 電気発色性多層構造を含む化粧品
JP2016109853A (ja) 2014-12-05 2016-06-20 凸版印刷株式会社 エレクトロクロミック表示装置及びその駆動方法
US20160232835A1 (en) * 2015-01-05 2016-08-11 E Ink Corporation Electro-optic displays, and methods for driving same
JP2017522592A (ja) * 2014-06-17 2017-08-10 セイジ・エレクトロクロミクス,インコーポレイテッド 耐湿性エレクトロクロミックデバイス

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035060A (en) * 1973-09-21 1977-07-12 Dainippon Printing Co., Ltd Electro-optic device
JPH06289435A (ja) * 1993-04-05 1994-10-18 Nikon Corp エレクトロクロミック素子
DE60226221T2 (de) * 2001-03-07 2009-05-14 Acreo Ab Elektrochemische pixel-einrichtung
JP4133336B2 (ja) * 2001-03-07 2008-08-13 アクレオ アーベー エレクトロクロミックデバイス
AU2003212753A1 (en) * 2002-03-07 2003-09-16 Acreo Ab Electrochemical device
US7923530B2 (en) * 2005-10-24 2011-04-12 National Institute For Materials Science Electrochromic polymer material
FR2942665B1 (fr) * 2009-03-02 2011-11-04 Saint Gobain Dispositif electrocommandable a coloration/decoloration homogene sur toute la surface
WO2012109494A2 (en) * 2011-02-09 2012-08-16 Kinestral Technologies, Inc. Electrochromic multi-layer devices with spatially coordinated switching
US9507233B2 (en) * 2012-08-08 2016-11-29 Kinestral Technologies, Inc. Electrochromic multi-layer devices with current modulating structure
WO2015195716A1 (en) * 2014-06-17 2015-12-23 Sage Electrochromics, Inc. Controlled switching for electrochromic devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112957A (ja) 2005-10-24 2007-05-10 National Institute For Materials Science 高分子材料、その製造方法およびエレクトロクロミック素子
JP2012531940A (ja) * 2009-07-03 2012-12-13 ロレアル 電気発色性多層構造を含む化粧品
JP2012063657A (ja) 2010-09-17 2012-03-29 Alps Electric Co Ltd 表示装置
JP2012188517A (ja) 2011-03-10 2012-10-04 National Institute For Materials Science 配位数4の金属及びビスフェナントロリン誘導体を含む有機/金属ハイブリッドポリマー、その配位子、及びその製造方法
JP2017522592A (ja) * 2014-06-17 2017-08-10 セイジ・エレクトロクロミクス,インコーポレイテッド 耐湿性エレクトロクロミックデバイス
JP2016109853A (ja) 2014-12-05 2016-06-20 凸版印刷株式会社 エレクトロクロミック表示装置及びその駆動方法
US20160232835A1 (en) * 2015-01-05 2016-08-11 E Ink Corporation Electro-optic displays, and methods for driving same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F. S. HAN ET AL., J. AM. CHEM. SOC., vol. 130, no. 6, 2008, pages 2073 - 2081
See also references of EP3674791A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020239075A1 (en) * 2019-05-30 2020-12-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic apparatus and electrochromic device
US11604393B2 (en) 2019-05-30 2023-03-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic apparatus and electrochromic device
CN110346996A (zh) * 2019-06-14 2019-10-18 上海集成电路研发中心有限公司 一种局部抗强光的电致变色玻璃
CN110346996B (zh) * 2019-06-14 2022-06-28 上海集成电路研发中心有限公司 一种局部抗强光的电致变色玻璃
JP2021124703A (ja) * 2020-02-10 2021-08-30 国立研究開発法人物質・材料研究機構 エレクトロクロミック素子
JP7359441B2 (ja) 2020-02-10 2023-10-11 国立研究開発法人物質・材料研究機構 エレクトロクロミック素子

Also Published As

Publication number Publication date
EP3674791A4 (en) 2021-04-21
CN111133374A (zh) 2020-05-08
JP6818375B2 (ja) 2021-01-20
US20200192171A1 (en) 2020-06-18
EP3674791B1 (en) 2022-07-20
JPWO2019039121A1 (ja) 2020-05-28
CN111133374B (zh) 2022-09-13
EP3674791A1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6818375B2 (ja) エレクトロクロミック素子およびそれを用いた表示システム
JP6713175B2 (ja) 有機/金属ハイブリッドポリマーとイオン液体とを含有する複合体、それを用いたエレクトロクロミックデバイス、および、それらの製造方法
US9164345B2 (en) Stable electrochromic module
EP2914608B1 (en) Electrochromic compound, electrochromic composition, and display element
JP4929995B2 (ja) エレクトロクロミック装置
JP6758729B2 (ja) 有機/金属ハイブリッドポリマーを用いたエレクトロクロミックデバイスおよびその製造方法
EP3045968A1 (en) Electrochromic apparatus, electrochromic element, and method of manufacturing electrochromic element
US20150378234A1 (en) Stable electrochromic module
JP5900813B2 (ja) エレクトロクロミック化合物、エレクトロクロミック組成物、及び表示素子
JP6399535B2 (ja) エレクトロクロミック化合物、エレクトロクロミック組成物、およびこれを用いた表示素子並びに調光素子
US9753347B2 (en) Electrochromic gel, method for producing the gel, method for controlling electronic printing and erasing on electrochromic gel, and stretchable display
JP5949012B2 (ja) エレクトロクロミック化合物、エレクトロクロミック組成物及び表示素子
Neo et al. Fundamentals of electrochromic materials and devices
JP4857804B2 (ja) エレクトロクロミック装置
JP4946222B2 (ja) エレクトロクロミック装置
JP4765547B2 (ja) エレクトロクロミック装置
JP6755038B2 (ja) 有機/金属ハイブリッドポリマーと層状ケイ酸塩とからなる複合体、それを用いたエレクトロクロミックデバイス、および、それらの製造方法
JPS6337119A (ja) 新規な電解重合体およびそれを用いたエレクトロミツク表示素子
JPS6356592A (ja) 新規な電解重合体およびそれを用いたエレクトロクロミツク表示素子
JPS6224034B2 (ja)
JP2012242474A (ja) エレクトロクロミック化合物、エレクトロクロミック組成物、及び表示素子
JPH01150119A (ja) エレクトロクロミック表示装置
JP2010275132A (ja) 金属酸化物多孔質膜、及びそれを用いた表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537979

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018847686

Country of ref document: EP

Effective date: 20200323