WO2019037322A1 - 智能家电控制方法和装置 - Google Patents

智能家电控制方法和装置 Download PDF

Info

Publication number
WO2019037322A1
WO2019037322A1 PCT/CN2017/113402 CN2017113402W WO2019037322A1 WO 2019037322 A1 WO2019037322 A1 WO 2019037322A1 CN 2017113402 W CN2017113402 W CN 2017113402W WO 2019037322 A1 WO2019037322 A1 WO 2019037322A1
Authority
WO
WIPO (PCT)
Prior art keywords
human body
sweeping
air
area
pixel point
Prior art date
Application number
PCT/CN2017/113402
Other languages
English (en)
French (fr)
Inventor
马如豹
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2019037322A1 publication Critical patent/WO2019037322A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure

Definitions

  • the present application relates to the field of smart home technology, and in particular, to a method and device for controlling an air conditioner, and an air conditioner.
  • Smart home appliances have the advantages of ease of use and intelligence, making users' lives more intelligent and convenient, and more and more concerned and loved by users.
  • the existing intelligent air conditioner can be controlled by voice.
  • the intelligent air conditioner recognizes the location of the sound source by identifying the position of the user according to the position of the sound source, so as to supply air to the user's location without manually adjusting the operating parameters such as the air supply angle. Improved user experience.
  • the existing intelligent air conditioner can only supply the air at a constant speed according to the direction of the user at a constant wind speed, which is not intelligent enough and the user experience is not good.
  • the present application aims to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present application is to provide a control method for an air conditioner, by dividing a swept area of the air conditioner, and determining an operating parameter of the air conditioner in each sweep area according to the distribution of the indoor crowd, and
  • the air-conditioning equipment is controlled to operate according to the corresponding operating parameters in each sweeping area, and the operating parameters of the air-conditioning equipment can be dynamically adjusted according to the distribution of the indoor crowd, thereby improving the intelligence and convenience of the air-conditioning, and improving the user's comfort and user experience.
  • the technical problem that the air conditioning device in the prior art has a low degree of intelligent airflow at a uniform wind speed according to the direction of the user is solved.
  • a second object of the present application is to provide a control device for an air conditioner.
  • a third object of the present application is to propose an air conditioner.
  • a fourth object of the present application is to propose a non-transitory computer readable storage medium.
  • a fifth object of the present application is to propose a computer program product.
  • the first aspect of the present application provides a method for controlling an air conditioner, including:
  • Collecting an indoor image and identifying a human body in the image acquiring position information of the human body, the position information including a first angle between the human body and the air conditioner, and a first distance between the human body and the air conditioner;
  • attribute information of each wind sweeping area includes a sweeping range of the sweeping area, a number of people in the sweeping area, and a second distance between the crowd in the sweeping area and the air conditioning device;
  • the air conditioning device is controlled to supply air in each of the sweeping regions according to the respective operating parameters.
  • the control method of the air conditioner of the embodiment of the present invention acquires the position information of the human body by collecting the indoor image and identifying the human body in the image, and divides the windswept area of the air conditioner according to the position information of the human body to acquire each sweeping area.
  • the attribute information determines the operating parameters of the air-conditioning device in the sweeping area according to the attribute information.
  • the air-conditioning device is controlled to supply air according to the respective operating parameters in each of the sweeping areas.
  • the air-conditioning device is determined according to the attribute information by acquiring attribute information such as the sweeping range of each sweeping area, the number of people in the sweeping area, and the second distance between the crowd in the sweeping area and the air-conditioning device.
  • the operating parameters and the control air-conditioning equipment are operated according to the respective operating parameters in each sweeping area, the attribute information of the sweeping area is different, and the determined operating parameters are also different, thereby realizing the dynamic adjustment of the operating parameters of the air-conditioning apparatus, thereby being able to solve
  • the air conditioning device has a technical problem of low degree of intelligentization of the air at a uniform wind speed according to the direction in which the user is located.
  • the second aspect of the present application provides a control device for an air conditioner, including:
  • An acquisition acquisition module configured to collect an indoor image and identify a human body in the image, and obtain location information of the human body, the location information including a first angle between the human body and the air conditioner, and the human body and the air conditioner First distance
  • a dividing module configured to divide a swept area of the air conditioning device according to the position information of the human body
  • An obtaining module configured to acquire attribute information of each wind sweeping area; wherein the attribute information includes a sweeping range of the sweeping area, a number of people in the sweeping area, and a relationship between the crowd in the sweeping area and the air conditioning device Second distance
  • a determining module configured to determine, according to the attribute information, an operating parameter of the air conditioning device in the windswept area
  • the control module is configured to control the air conditioning device to supply air according to the respective operating parameters in each of the sweeping regions when the next air blowing period is reached.
  • the control device of the air conditioner of the embodiment of the present invention acquires the position information of the human body by collecting the indoor image and identifying the human body in the image, and divides the windswept region of the air conditioner according to the position information of the human body to obtain each sweep region.
  • the attribute information determines the operating parameters of the air-conditioning device in the sweeping area according to the attribute information.
  • the air-conditioning device is controlled to supply air according to the respective operating parameters in each of the sweeping areas.
  • the air-conditioning device is determined according to the attribute information by acquiring attribute information such as the sweeping range of each sweeping area, the number of people in the sweeping area, and the second distance between the crowd in the sweeping area and the air-conditioning device.
  • the operating parameters and the control air-conditioning equipment are operated according to the respective operating parameters in each sweeping area, the attribute information of the sweeping area is different, and the determined operating parameters are also different, thereby realizing the dynamic adjustment of the operating parameters of the air-conditioning apparatus, thereby being able to solve
  • the air conditioning device has a technical problem of low degree of intelligentization of the air at a uniform wind speed according to the direction in which the user is located.
  • an embodiment of the third aspect of the present application provides an air conditioner including a processor and a memory; wherein the processor operates and executes the executable program code by reading the executable program stored in the memory A program corresponding to the program code for implementing the control method of the air conditioner as described in the first aspect.
  • a fourth aspect of the present application provides a non-transitory computer readable storage medium having stored thereon a computer program, which is executed by a processor to implement the method as described in the first aspect.
  • the control method of air conditioning equipment is executed by a processor to implement the method as described in the first aspect.
  • the fifth aspect of the present application provides a computer program product, where the instructions in the computer program product are executed by a processor, and the control method of the air conditioner according to the first aspect embodiment is executed.
  • FIG. 1 is a schematic flow chart of a method for controlling an air conditioner according to an embodiment of the present application
  • FIG. 2 is a schematic flow chart of a method for controlling an air conditioner according to another embodiment of the present application.
  • FIG. 3 is a schematic view showing a range of wind sweeping according to an edge human body
  • FIG. 4 is a schematic flow chart of a method for controlling an air conditioner according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for controlling an air conditioner according to still another embodiment of the present application.
  • 6(a) is a schematic diagram of determining a first angle based on a central pixel point and a reference pixel point;
  • Figure 6 (b) is a schematic view of determining the side of the sweeping range based on the boundary pixel points
  • FIG. 7 is a schematic structural diagram of a control device for an air conditioning device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a control device for an air conditioning device according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • the existing intelligent air conditioner by installing a camera and combining image processing technology, can monitor the distribution of the indoor crowd in real time, and then analyze the activity of the crowd to control the air conditioner to automatically adjust the operating state, such as adjusting the operating temperature, the swinging angle, and the blowing speed. Wait.
  • the existing intelligent air conditioning air supply function simply considers the angle information and quantity of the crowd, and supplies the air at a uniform speed according to the direction of the crowd, and sets a fixed wind speed according to the number of people.
  • the way of uniformly distributing the wind at a fixed wind speed is not intelligent enough, and it is prone to the problem of insufficient air supply in a small number of areas and insufficient air supply in a large number of areas. User experience Not good.
  • the embodiment of the present application provides a control method for an air conditioner, which can dynamically adjust operating parameters of an air conditioner according to the distribution of indoor crowds, improve the intelligence and ease of use of the air conditioner, and improve user comfort and users.
  • a control method for an air conditioner which can dynamically adjust operating parameters of an air conditioner according to the distribution of indoor crowds, improve the intelligence and ease of use of the air conditioner, and improve user comfort and users.
  • FIG. 1 is a schematic flow chart of a method for controlling an air conditioner according to an embodiment of the present application.
  • control method of the air conditioner includes the following steps:
  • step 101 the indoor image is collected and the human body in the image is recognized, and the position information of the human body is acquired.
  • the location information includes, but is not limited to, a first angle between the human body and the air conditioner, and a first distance between the human body and the air conditioner.
  • An image pickup device, an image processing unit, and an algorithm processing unit may be disposed in the air conditioner.
  • the camera device is used to monitor the movement of the indoor crowd and periodically collect indoor images.
  • the image processing unit is configured to perform an analysis process on the indoor image collected by the camera device to identify the human body in the image and acquire position information of the human body.
  • the algorithm processing unit can be used to segment the indoor area and to determine operating parameters of the air conditioning device.
  • a processor may be disposed in the air conditioner, and the processor analyzes the indoor image collected by the camera, and identifies the human body in the image, divides the indoor area, and determines the operation of the air conditioner in each divided area. parameter.
  • the embodiment of the present application will explain the present application by taking an image processing unit and an algorithm processing unit in an air conditioner as an example.
  • the image processing unit and the algorithm processing unit are only provided in the air conditioner.
  • the examples are not to be construed as limiting the application.
  • the indoor image is analyzed by the image processing unit, and the human body in the image can be identified.
  • the human body in the indoor image can be identified by using a related human detection algorithm or a face recognition algorithm.
  • the image processing unit may be used to calculate a first angle between the human body and the air conditioner, and a first distance between the human body and the air conditioner, and obtain the obtained first angle and the first distance as Location information of the human body.
  • Step 102 Divide the swept area of the air conditioner according to the position information of the human body.
  • the algorithm processing unit divides the swept area of the air conditioner according to the position information of the human body determined by the image processing unit
  • various possible influencing factors such as the shoulder width of the human body and the adjustment time of the operating parameter may be considered.
  • the average shoulder width of the human body is about 37 cm.
  • the angle of the swept area occupied by the human body is 3 to 7 degrees.
  • the wind speed of the air conditioner is adjusted, it takes a certain adjustment time to reach the steady state from the initial state, and it takes a certain time to adjust the angle of the upper and lower guide vanes.
  • the human body whose angle difference is within 10 degrees can be divided into the same wind-sweeping area, thereby obtaining multiple windswept areas. region.
  • Step 103 Acquire attribute information of each sweep area.
  • the attribute information includes, but is not limited to, a sweeping range of the sweeping area, a number of people in the sweeping area, and a second distance between the crowd in the sweeping area and the air conditioning device.
  • the number of people in the sweeping area, the second distance between the crowd in the sweeping area and the air conditioning equipment, and the sweeping range of the sweeping area may be further obtained.
  • the number of people in the swept area can be determined by identifying the human body within the swept area. According to the first distance between each person in the wind sweeping area and the air conditioning device, a second distance between the crowd in the wind sweeping area and the air conditioning device can be obtained.
  • the second distance may be obtained by weighting and summing the first distance between the human body and the air-conditioning device in the swept area, or by calculating the average distance between the human body and the air-conditioning device in the swept area. The second distance between the crowd in the sweeping area and the air conditioning unit.
  • the range of the sweeping wind can be calculated according to the first angle between the human body and the air-conditioning device at the edge of the swept area, and the most edge position on both sides of the swept area can be calculated.
  • the difference between the first angle between the human body and the air conditioner, and the difference obtained is used as the sweep range of the sweep area.
  • Step 104 Determine an operating parameter of the air-conditioning device in the sweeping area according to the attribute information.
  • the operating parameters include, but are not limited to, the left and right wind guide blade sweep speed, the wind speed, and the upper and lower guide vane air supply (wind guide) angle.
  • the operating parameter of the air-conditioning device in the windswept area may be further determined according to the attribute information.
  • the algorithm processing unit may determine the left and right wind guide vane sweep speeds of the air conditioners in each of the sweep regions according to the number of people in the attribute information. For example, the sweep speed can be divided into multiple gear positions, and the correspondence between the number of people and the sweep speed can be set to the number of people, and the sweep speed is smaller.
  • the algorithm processing unit may further determine the wind speed and the wind guide angle of the upper and lower guide vanes according to the second distance between the crowd and the air conditioner in the sweeping area and the number of people in the sweeping area, and taking into consideration the comfort of the human body.
  • the sweep speed may be divided into three gear positions v1, v2, and v3, and v1 ⁇ v2 ⁇ v3.
  • the algorithm processing unit may determine the feasible range of the wind speed and the wind guide angle of the upper and lower guide vanes according to the number of people in the sweeping area and the second distance. Since the air supply volume that can be obtained in a specific area is a function of the wind speed and the wind guide angle of the upper and lower guide vanes, the combination of the wind speed and the guide air angle that can satisfy the air supply volume requirement is not necessarily unique, and therefore, according to the sweep area
  • the number of people and the feasible range determined by the second distance may include a combination of multiple sets of wind speeds and wind guide angles. Further, a combination of optimal wind speed and wind guide angle can be selected from a plurality of combinations in consideration of factors such as human comfort and energy consumption.
  • step 105 when the next air supply cycle is reached, the air conditioning device is controlled to supply air according to respective operating parameters in each of the air sweeping regions.
  • the air conditioning equipment can be controlled in each sweeping area according to the operating parameters corresponding to the respective sweeping areas. Air is supplied to achieve adaptive air supply in different sweeping areas to enhance the user experience.
  • the control method of the air conditioner of the present embodiment acquires the position information of the human body by collecting the indoor image and identifying the human body in the image, and divides the windswept area of the air conditioner according to the position information of the human body, and acquires the windswept area of each air-swept area.
  • the attribute information determines the operating parameters of the air-conditioning device in the sweeping area according to the attribute information.
  • the air-conditioning device is controlled to supply air according to the respective operating parameters in each of the sweeping areas.
  • the air-conditioning device is determined according to the attribute information by acquiring attribute information such as the sweeping range of each sweeping area, the number of people in the sweeping area, and the second distance between the crowd in the sweeping area and the air-conditioning device.
  • the operating parameters and the control air-conditioning equipment are operated according to the respective operating parameters in each sweeping area, the attribute information of the sweeping area is different, and the determined operating parameters are also different, thereby realizing the dynamic adjustment of the operating parameters of the air-conditioning apparatus, thereby being able to solve
  • the air conditioning device is configured to transmit air at a uniform wind speed according to the direction of the user. A low degree of technical problems.
  • FIG. 2 is a method for controlling the air-conditioning apparatus according to another embodiment of the present application. Schematic diagram of the process.
  • step 103 may include the following steps:
  • step 201 the number of human bodies or human faces in the windswept area is counted, and the number of people in the windswept area is obtained.
  • a human body detection algorithm and/or a face recognition algorithm may be used to identify a human body or a human face in each wind sweeping area, and the number of recognized human or human faces may be counted to obtain the number of people in the wind sweeping area.
  • Step 202 Identify two edge human bodies at the edge of the sweeping area, and form a sweeping range of the sweeping area according to the two edge human bodies.
  • the two sides of the sweeping range respectively pass through the boundary of one of the edge human bodies.
  • FIG. 3 is a schematic view showing the range of the sweeping wind according to the edge human body.
  • the user A and the user B are two edge human bodies in the vicinity of the edge OM and ON of the swept area, respectively, and the line connecting the point O to the user A is bounded by the O.
  • the line connecting to user B is another boundary, and the area between the two boundaries is the sweeping range formed.
  • FIG. 3 illustrates the present application by taking only one sector-shaped scanning area as an example, and the scanning area in the embodiment of the present application cannot be considered to be a fan shape.
  • the scanning area may also be other shapes, and the shape of the scanning area is not limited in the present application.
  • Step 203 Acquire a first distance between each person in the crowd in the wind sweeping area and the air conditioning device.
  • the position information of the human body acquired from the acquired indoor image includes the first distance between the human body and the air conditioning device, in this embodiment, after determining different wind sweep regions, for each wind sweep region, The first distance between each person in the crowd in the sweeping area and the air conditioning unit can be directly obtained.
  • Step 204 Weighting the first distance of each person in the crowd to obtain a second distance from the crowd to the air conditioner.
  • the second distance of the crowd to the air conditioner can be calculated by weighting and summing the first distance. For example, when performing a weighting calculation, a higher weight may be assigned to a first distance of each of a larger and denser population, and a lower weight may be assigned to a first distance of a single or relatively sparse person, Then, the second distance from the crowd to the air conditioner is obtained by weighted summation.
  • the first distance of each person in the acquired windswept area may be sorted from large to small, and the largest first distance is used as the second to the air-conditioning device. distance.
  • the number of people in the wind sweeping area is obtained by counting the number of human bodies or human faces in the wind sweeping area, and the two edge human bodies at the edge of the scanning area are identified, and the human body is swept according to the two edge human bodies.
  • the sweeping range of the wind area obtaining the first distance between each person in the crowd in the sweeping area and the air conditioning equipment, and entering the first distance
  • the row weighting is used to obtain the second distance from the crowd to the air conditioning equipment, which lays a foundation for determining the corresponding operating parameters according to the attribute information of each sweeping area, and ensures the accuracy of the determined operating parameters.
  • FIG. 4 is an air conditioner according to another embodiment of the present application. Schematic diagram of the process of the device control method.
  • step 104 may include the following steps:
  • step 301 according to the number of people in the attribute information, the mapping relationship between the number of people and the speed of the sweeping wind is determined, and the target sweeping speed of the left and right wind guide blades of the air conditioner is determined.
  • the mapping relationship between the number of people and the speed of the sweep is pre-established and stored in the storage unit of the air conditioner.
  • the sweep speed corresponding to the number of people can be obtained by querying the pre-stored mapping relationship.
  • the sweep speed can be divided into three gear positions v1, v2, and v3, and v1 ⁇ v2 ⁇ v3.
  • the mapping relationship between the number of people and the speed of the sweep is as follows: when the number of people is more than 5 (excluding 5), the corresponding sweep speed is v1; when the number is 1 to 5, the corresponding sweep speed is The bit is v2; when the number of people is 0, the corresponding sweep speed is v3.
  • the left and right air guiding blades of the air conditioner corresponding to the sweeping area can be determined.
  • the target sweeps the wind.
  • Step 302 Determine, according to the second distance in the attribute information, a combination of the wind speed at the second distance and the wind guide angle of the upper and lower guide vanes.
  • a combination of the wind speed at the second distance and the wind guide angle of the upper and lower guide vanes may be determined.
  • Step 303 Determine a target wind speed and a target air guiding angle of the upper and lower air guiding blades from the combination according to an optimal running performance of the motor in the air conditioning device at the second distance.
  • the combination of the wind speed and the guide air angle that can satisfy the air supply volume requirement is not necessarily unique, and thus, according to the attribute information
  • the combination of the wind speed and the guide wind angle determined by the second distance is not necessarily unique, and there may be a combination of various wind speeds and wind guide angles.
  • the target wind speed and the target wind guide angle of the upper and lower guide vanes may be determined from various combinations according to the optimal operating energy efficiency of the motor in the air conditioner at the second distance.
  • the working curve of the motor is also determined. Therefore, the working curve of the motor corresponding to the air conditioner can be pre-stored in the storage unit of the air conditioner. After the algorithm processing unit determines the combination of various wind speeds and air guiding angles, combined with the pre-stored working curve of the motor, selects the wind speed and the guiding wind angle for operating the motor at the optimal operating efficiency, as the target wind speed and the upper and lower guide vanes. The target wind direction angle.
  • step 304 the operating parameters are formed by the target sweep speed, the target wind speed, and the target wind guide angle.
  • the target wind speed, the target wind speed, and the target wind guide angle of the upper and lower guide vanes can be utilized.
  • the operating parameters of the air conditioning equipment in the sweeping area are formed.
  • the target wind speed of the left and right air guide vanes of the air conditioner is determined according to the number of people in the attribute information, and the wind speed and the wind guide angle of the upper and lower guide vanes are determined according to the second distance in the attribute information.
  • the utility model adaptively adjusts the operating parameters of the sweeping area according to the attribute information of the sweeping area, and realizes energy-saving and efficient operation of the air-conditioning device.
  • FIG. 5 is a schematic flow chart of a method for controlling an air conditioner according to still another embodiment of the present application.
  • control method of the air conditioner may further include the following steps:
  • Step 401 Collect an indoor image and identify a human body in the image, identify a central pixel point where the human body is located, and determine a first coordinate value of the central pixel point in the indoor image.
  • an imaging device may be installed in the air conditioning device, the indoor image is collected by the imaging device, and the human body detection algorithm and/or the face recognition algorithm may be used to identify the human body from the indoor image, and through the preset The marker box is marked in the indoor image.
  • the number of the marker frames corresponds to the number of people included in the indoor image, and the size of the marker frame is not limited in the present application.
  • the entire human body may be marked with a marker frame, or the marker's head may be marked with a marker frame.
  • the central pixel point where the human body is located may be further identified, and the first coordinate value of the central pixel point in the indoor image may be determined.
  • the central pixel is a pixel located at the center of the human body.
  • the center point of the marker frame can be acquired, and the pixel point corresponding to the center point of the marker frame is taken as the central pixel point.
  • Step 402 Determine a human body and an air conditioner according to the first coordinate value and a second coordinate value of the preset reference pixel point. The first angle between.
  • the reference pixel points represent the position of the air conditioner in the indoor image.
  • the first angle between the human body and the air conditioning device may be determined.
  • FIG. 6(a) is a schematic diagram of determining a first angle based on a central pixel point and a reference pixel point.
  • the first coordinate value of the central pixel point is (x1, y1)
  • the second coordinate value of the reference pixel point is (x0, y0)
  • the angle ⁇ between the connection and the horizontal line of the value y0 is the first angle between the human body and the air conditioner.
  • Step 403 Acquire a first area occupied by a human body or a human face on the indoor image.
  • Step 404 the first area is compared with the preset second area; wherein the second area is the area occupied by the standard human body or the standard human face on the first indoor image; the first indoor image is a standard human body or a standard person. The image captured when the face is at a preset distance from the air conditioner.
  • Step 405 Determine a first distance between the human body and the air conditioning device according to the ratio and the preset distance.
  • a first indoor image collected by a standard human body or a standard human face at a preset distance from the air conditioner may be pre-stored, and a second standard image or a standard human face is stored on the first indoor image. area. After obtaining the first area occupied by the human body or the human face on the indoor image, the first area is compared with the second area, and the first distance between the human body and the air conditioning device is determined according to the obtained ratio and the preset distance.
  • the first ratio is obtained by multiplying the obtained ratio by a preset distance.
  • the ratio is proportional to the first distance, and the larger the ratio, the larger the first distance obtained.
  • the ratio is 1, the first distance is equal to the preset distance; when the ratio is less than 1, the first distance is smaller than the preset distance; when the ratio is greater than 1, the first distance is greater than the preset distance.
  • Step 406 Acquire a first boundary pixel point and a second boundary pixel point of the human body.
  • the first boundary pixel is a pixel corresponding to a lower left corner of the marker frame
  • the second boundary pixel is a pixel corresponding to a lower right corner of the marker frame.
  • Step 407 Acquire an interval value between a second boundary pixel point of the previous one of the two adjacent human bodies and a first boundary pixel point of the latter human body.
  • the pixel points corresponding to the lower left corner of the marking frame and the corresponding pixel points in the lower right corner may be further obtained as the first boundary pixel point and the second Boundary pixel points.
  • an interval value between the second boundary pixel point of the previous human body and the first boundary pixel point of the latter human body is acquired. That is to say, the interval value at which the difference between the first boundary pixel and the second boundary pixel is the smallest between the previous two persons in the adjacent two human bodies.
  • the previous human body when acquiring the interval value between the second boundary pixel point of the previous human body and the first boundary pixel point of the latter human body in the adjacent two human bodies, the previous human body may be acquired first. a third coordinate value of the second boundary pixel, and a fourth coordinate value of the first boundary pixel of the next human body; determining a second boundary pixel of the previous human body and the air conditioner according to the third coordinate value and the second coordinate value a second angle between the devices, and determining, according to the fourth coordinate value and the second coordinate value, a third angle between the first boundary pixel of the next human body and the air conditioner; and further, according to the second angle
  • the third angle is obtained by obtaining an angular difference between the second boundary pixel point of the previous human body and the first boundary pixel point of the latter human body, and taking the obtained angle difference as the interval value.
  • the previous human body when acquiring the interval value between the second boundary pixel point of the previous human body and the first boundary pixel point of the next human body in the adjacent two human bodies, the previous human body may be acquired first. a third coordinate value of the second boundary pixel, and a fourth coordinate value of the first boundary pixel of the next human body; and calculating a relationship between the previous human body and the latter human body according to the third coordinate value and the fourth coordinate value Distance, the resulting distance is used as the interval value.
  • Step 408 dividing two consecutively adjacent human bodies whose interval values do not exceed the preset interval value into one sweeping area.
  • the preset interval value is preset, and can be obtained by analyzing the statistical data.
  • the specific value of the preset interval value is not limited in this application.
  • the interval value obtained may be separated from the preset interval.
  • the values are compared to determine whether the interval value exceeds a preset interval value, and when not exceeded, the adjacent two human bodies are divided into one sweeping region.
  • the interval between the second boundary pixel of the previous human body and the first boundary pixel of the next human body of any two adjacent human bodies does not exceed the preset value.
  • the interval value, and the human body that does not exceed the preset interval value continuously appears, and there is no human body whose interval value exceeds the preset interval value.
  • Step 409 Obtain attribute information of each sweep area.
  • the attribute information includes, but is not limited to, a sweeping range of the sweeping area, a number of people in the sweeping area, and a second distance between the crowd in the sweeping area and the air conditioning device.
  • the wind is formed by the human body according to the two edges of the swept area.
  • the first boundary pixel and the second boundary pixel of the two edge human bodies may be acquired, and the first boundary pixel and the second boundary pixel are formed based on the two edge human body a side edge such that both sides of the sweeping range pass through the boundary of one of the edges of the human body; and, in turn, according to the first boundary pixel point and the second side on both sides
  • the boundary pixel is calculated and the sweep range is calculated.
  • the specific process of determining the two sides of the sweeping range is described below with a sector-shaped scanning area as an example. It should be noted that the air-swept area in the embodiment of the present application is not limited to a fan shape, and may be other shapes, such as a rectangle.
  • Fig. 6(b) is a schematic diagram of determining the side of the sweeping range based on the boundary pixel points.
  • the marker frame A in the sweeping area MON, the marker frame A is used to mark the identified edge human body A, the marker frame B is used to mark the identified edge body B, and O represents the reference pixel characterizing the position of the air conditioner. point.
  • C in the lower left corner represents the first boundary pixel point of the acquired edge human body A
  • D in the lower right corner represents the second boundary pixel point of the acquired edge human body A
  • the marker frame B the lower left corner E
  • the first boundary pixel of the acquired edge body B is represented
  • the F of the lower right corner represents the second boundary pixel of the acquired edge body B.
  • OC represents the side of the edge human body A
  • OF denotes the side of the edge body B
  • the boundary OC and its extension line the boundary OF and its extension line and the arc MN of the sweeping area MON are surrounded by Determine the range of the sweep.
  • the specific angle and position of the sweeping range can be determined by using the coordinate values of the first boundary pixel point C, the second boundary pixel point F, and the reference pixel point O.
  • Step 410 Determine an operating parameter of the air-conditioning device in the sweeping area according to the attribute information.
  • step 410 in this embodiment, reference may be made to the description of the step 104 in the foregoing embodiment, and the implementation principle is similar, and details are not described herein again.
  • Step 411 when the next air supply cycle is reached, the air conditioning device is controlled to supply air according to the respective operating parameters in each of the air sweeping regions.
  • the wind sweeping range of the sweeping area may be obtained from the attribute information of the sweeping area, and then the air conditioning device is controlled to supply air according to the operating parameter corresponding to the sweeping area in the sweeping range.
  • the control method of the air conditioner of the embodiment by collecting the indoor image and identifying the human body in the image, identifying the central pixel point where the human body is located, and determining the first coordinate value of the central pixel point in the indoor image, according to the first coordinate
  • the value and the second coordinate value of the preset reference pixel determine the first angle between the human body and the air conditioning device; and the first area and the pre-preparation by acquiring the first area occupied by the human body or the human face on the indoor image
  • the second area is set as a ratio, and the first distance between the human body and the air conditioning device is determined according to the ratio and the preset distance, and the first boundary pixel and the second boundary pixel point of the human body are acquired, and the two adjacent human bodies are obtained.
  • the interval value between the second boundary pixel point of the previous human body and the first boundary pixel point of the latter human body, and the adjacent two human bodies whose consecutive interval values do not exceed the preset interval value are divided into one sweeping wind In the area, the position information of the human body and the accuracy of the swept area can be improved, and the basis for ensuring the accuracy of the attribute information and the operation parameter determination is laid.
  • the air conditioning equipment is controlled to supply air according to the respective operating parameters in the sweeping range of each sweeping area, thereby improving the intelligence and use convenience of the air conditioner, improving the user's comfort and the user. Experience.
  • the present application also proposes a control device for an air conditioner.
  • FIG. 7 is a schematic structural diagram of a control device for an air conditioner according to an embodiment of the present application.
  • control device 70 of the air conditioner includes an acquisition acquisition module 710, a division module 720, an acquisition module 730, a determination module 740, and a control module 750. among them,
  • the acquisition and acquisition module 710 is configured to collect an indoor image and identify a human body in the image, and acquire location information of the human body.
  • the location information includes, but is not limited to, a first angle between the human body and the air conditioner, and a first distance between the human body and the air conditioner.
  • the dividing module 720 is configured to divide the swept area of the air conditioner according to the position information of the human body.
  • the obtaining module 730 is configured to obtain attribute information of each sweeping area.
  • the attribute information includes, but is not limited to, a sweeping range of the sweeping area, a number of people in the sweeping area, and a second distance between the crowd in the sweeping area and the air conditioning device.
  • the determining module 740 is configured to determine an operating parameter of the air-conditioning device in the air-swept area according to the attribute information.
  • the determining module 740 is specifically configured to determine a mapping relationship between the number of people and the sweeping speed according to the number of people in the attribute information, and determine the target of the left and right wind guide blades of the air conditioning device. Sweeping speed; according to the second distance in the attribute information, determining the combination of the wind speed at the second distance and the wind guiding angle of the upper and lower guide vanes; according to the optimal running performance of the motor at the second distance in the air conditioning device, from the combination Determine the target wind speed and the target wind guide angle of the upper and lower guide vanes; use the target sweep speed, the target wind speed, and the target guide wind angle to form the operating parameters.
  • the control module 750 is configured to control the air conditioning device to supply air according to respective operating parameters in each of the sweeping regions when the next air blowing cycle is reached.
  • control module 750 is configured to obtain a sweep range of the sweep area from the attribute information; and control the air conditioner to supply air according to the operation parameter corresponding to the sweep area in the sweep range.
  • the obtaining module 730 may include:
  • the statistics module 731 is configured to count the number of human bodies or human faces in the windswept area, and obtain the number of people in the windswept area.
  • the identification unit 732 is configured to identify two edge human bodies at the edge of the wind sweeping area, and form a sweeping range of the wind sweeping area according to the two edge human bodies; wherein the sides of the sweeping wind range respectively pass through the boundary of one of the edge human bodies .
  • the obtaining unit 733 is configured to acquire a first distance between each person in the crowd in the sweeping area and the air conditioning device.
  • the calculating unit 734 is configured to weight the first distance of each person in the crowd to obtain a second distance from the crowd to the air conditioner.
  • the acquisition and acquisition module 710 may collect an indoor image by using an imaging device, and identify the human body from the indoor image, and preset The marker box is marked in the indoor image. Further, the acquisition acquisition module 710 is located at a central pixel point where the human body is located.
  • the acquisition and acquisition module 710 can acquire the center point of the marker frame when the central pixel point of the human body is located, and use the pixel point corresponding to the center point of the marker frame as the central pixel point.
  • the dividing module 720 divides the swept area of the air conditioner according to the position information of the human body. Specifically, the dividing module 720 acquires a first boundary pixel and a second boundary pixel of the human body; wherein, the first boundary pixel is a pixel corresponding to a lower left corner of the marker frame, and the second boundary pixel is a lower right corner of the marker frame. Corresponding pixel points; obtaining an interval value between a second boundary pixel point of the previous one of the two adjacent human bodies and a first boundary pixel point of the latter human body; the interval value that appears continuously does not exceed the preset interval
  • the adjacent two human bodies of values are divided into a sweeping area.
  • the embodiment of the present application provides a possible implementation manner in which the two dividing modules 720 acquire the interval value between the second boundary pixel point of the previous human body and the first boundary pixel point of the latter human body.
  • the dividing module 720 may first acquire a third coordinate value of the second boundary pixel point of the previous human body, and a fourth coordinate value of the first boundary pixel point of the subsequent human body; according to the third coordinate a value and a second coordinate value, determining a second angle between the second boundary pixel point of the previous human body and the air conditioning device; determining the first boundary pixel point of the next human body according to the fourth coordinate value and the second coordinate value a third angle between the air conditioning devices; according to the second angle and the third angle, obtaining an angular difference between the second boundary pixel point of the previous human body and the first boundary pixel point of the latter human body, and the angle The difference is the interval value.
  • the dividing module 720 may first acquire a third coordinate value of the second boundary pixel point of the previous human body, and a fourth coordinate value of the first boundary pixel point of the subsequent human body; The coordinate value and the fourth coordinate value are used to calculate the distance between the previous human body and the latter human body, and the distance is used as the interval value.
  • the obtaining module 730 further acquires attribute information of each sweeping area.
  • the identification unit 732 in the acquisition module 730 can acquire the first boundary pixel point and the second boundary pixel point of the two edge human bodies; the first boundary pixel point and the second boundary pixel point based on the two edge human bodies form two ranges of the sweeping range
  • the side edges are such that the two sides of the sweeping range pass through the boundary of one of the edge human bodies respectively; and the sweeping range is calculated according to the first boundary pixel and the second boundary pixel on both sides.
  • the control device for the air conditioner of the present embodiment acquires by acquiring an indoor image and identifying a human body in the image
  • the position information of the human body is divided according to the position information of the human body
  • the windswept area of the air-conditioning device is divided, the attribute information of each wind-swept area is obtained, and the operating parameters of the air-conditioning device in the wind-swept area are determined according to the attribute information, and when the next air supply is reached
  • the air conditioning equipment is controlled to supply air in accordance with the respective operating parameters in each of the sweeping areas.
  • the operating parameters of the air conditioner can be dynamically adjusted according to the distribution of the indoor crowd, the intelligence of the air conditioner and the convenience of use are improved, and the user's comfort and user experience are improved.
  • the air-conditioning device is determined according to the attribute information by acquiring attribute information such as the sweeping range of each sweeping area, the number of people in the sweeping area, and the second distance between the crowd in the sweeping area and the air-conditioning device.
  • the operating parameters and the control air-conditioning equipment are operated according to the respective operating parameters in each sweeping area, the attribute information of the sweeping area is different, and the determined operating parameters are also different, thereby realizing the dynamic adjustment of the operating parameters of the air-conditioning apparatus, thereby being able to solve
  • the air conditioning device has a technical problem of low degree of intelligentization of the air at a uniform wind speed according to the direction in which the user is located.
  • FIG. 9 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • the air conditioner 90 includes a processor 901 and a memory 902; wherein the processor 901 runs a program corresponding to the executable program code by reading executable program code stored in the memory 902 for implementation.
  • the present application also provides a non-transitory computer readable storage medium having stored thereon a computer program, which when executed by the processor, implements the control method of the air conditioner as described in the foregoing embodiments.
  • the present application also proposes a computer program product, wherein when the instructions in the computer program product are executed by the processor, the control method of the air conditioner as described in the foregoing embodiments is executed.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • Any process or method description in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing the steps of a custom logic function or process.
  • the scope of the preferred embodiments of the present application includes additional implementations, in which the functions may be performed in a substantially simultaneous manner or in an inverse order depending on the functions involved, in the order shown or discussed, which should be The embodiments of the present application are understood by those skilled in the art.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or apparatus, or in conjunction with such an instruction execution system, apparatus, or apparatus.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the application can be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware and in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like. While the embodiments of the present application have been shown and described above, it is understood that the above-described embodiments are illustrative and are not to be construed as limiting the scope of the present application. The embodiments are subject to variations, modifications, substitutions and variations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调设备的控制方法、控制装置及空调,控制方法包括:采集室内图像并识别处于图像中的人体,获取人体的位置信息(101);根据人体的位置信息对空调设备的扫风区域进行划分(102);获取每个扫风区域的属性信息(103);根据属性信息确定空调设备在扫风区域的运行参数(104);当到达下一送风周期时,控制空调设备在每个扫风区域按照各自的运行参数送风(105)。该方法能够根据室内人群的分布情况动态调整空调设备的运行参数,提高空调的智能化和使用便捷性,提升了用户的舒适度和用户体验。

Description

智能家电控制方法和装置
相关申请的交叉引用
本申请要求广东美的制冷设备有限公司、美的集团股份有限公司于2017年8月23日提交的、发明名称为“空调设备的控制方法及装置、空调”的、中国专利申请号“201710731731.7”的优先权。
技术领域
本申请涉及智能家居技术领域,尤其涉及一种空调设备的控制方法及装置、空调。
背景技术
智能家电具有易用性和智能化等优点,使用户的生活更加智能、便捷,越来越受到用户的关注和喜爱。
现有的智能空调,可以通过语音进行控制,智能空调通过识别声源位置,根据声源位置确定用户所在位置,以向用户所在位置进行送风,而无需用户手动调整送风角度等运行参数,提升了用户体验。
然而,现有的智能空调仅能根据用户所在的方向以固定的风速全局匀速送风,不够智能化,用户体验不佳。
申请内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种空调设备的控制方法,通过对空调设备的扫风区域进行划分,根据室内人群的分布情况确定空调在各个扫风区域内的运行参数,并控制空调设备在各个扫风区域按照对应的运行参数运行,能够根据室内人群的分布情况动态调整空调设备的运行参数,提高了空调的智能化和使用便捷性,提升了用户的舒适度和用户体验,解决了现有技术中空调设备根据用户所在的方向以固定的风速全局匀速送风智能化程度低的技术问题。
本申请的第二个目的在于提出一种空调设备的控制装置。
本申请的第三个目的在于提出一种空调。
本申请的第四个目的在于提出一种非临时性计算机可读存储介质。
本申请的第五个目的在于提出一种计算机程序产品。
为达上述目的,本申请第一方面实施例提出了一种空调设备的控制方法,包括:
采集室内图像并识别处于图像中的人体,获取所述人体的位置信息,所述位置信息包括所述人体与空调设备之间的第一夹角以及所述人体与空调设备的第一距离;
根据所述人体的位置信息对空调设备的扫风区域进行划分;
获取每个扫风区域的属性信息;其中,所述属性信息包括扫风区域的扫风范围、扫风区域内的人数以及所述扫风区域内人群与空调设备之间的第二距离;
根据所述属性信息确定所述空调设备在所述扫风区域的运行参数;
当到达下一送风周期时,控制所述空调设备在每个扫风区域按照各自的所述运行参数送风。
本申请实施例的空调设备的控制方法,通过采集室内图像并识别处于图像中的人体,获取人体的位置信息,根据人体的位置信息对空调设备的扫风区域进行划分,获取每个扫风区域的属性信息,根据属性信息确定空调设备在扫风区域的运行参数,当到达下一送风周期时,控制空调设备在每个扫风区域按照各自的运行参数送风。由此,能够根据室内人群的分布情况动态调整空调设备的运行参数,提高了空调的智能化和使用便捷性,提升了用户的舒适度和用户体验。与现有技术相比,通过获取每个扫风区域的扫风范围、扫风区域内的人数以及扫风区域内人群与空调设备之间的第二距离等属性信息,根据属性信息确定空调设备的运行参数,并控制空调设备在各个扫风区域按照各自的运行参数运行,扫风区域的属性信息不同,确定的运行参数也不同,进而实现了空调设备的运行参数的动态调整,从而能够解决现有技术中空调设备根据用户所在的方向以固定的风速全局匀速送风智能化程度低的技术问题。
为达上述目的,本申请第二方面实施例提出了一种空调设备的控制装置,包括:
采集获取模块,用于采集室内图像并识别处于图像中的人体,获取所述人体的位置信息,所述位置信息包括所述人体与空调设备之间的第一夹角以及所述人体与空调设备的第一距离;
划分模块,用于根据所述人体的位置信息对空调设备的扫风区域进行划分;
获取模块,用于获取每个扫风区域的属性信息;其中,所述属性信息包括扫风区域的扫风范围、扫风区域内的人数以及所述扫风区域内人群与空调设备之间的第二距离;
确定模块,用于根据所述属性信息确定所述空调设备在所述扫风区域的运行参数;
控制模块,用于到达下一送风周期时,控制所述空调设备在每个扫风区域按照各自的所述运行参数送风。
本申请实施例的空调设备的控制装置,通过采集室内图像并识别处于图像中的人体,获取人体的位置信息,根据人体的位置信息对空调设备的扫风区域进行划分,获取每个扫风区域的属性信息,根据属性信息确定空调设备在扫风区域的运行参数,当到达下一送风周期时,控制空调设备在每个扫风区域按照各自的运行参数送风。由此,能够根据室内人群的分布情况动态调整空调设备的运行参数,提高了空调的智能化和使用便捷性,提升了用户的舒适度和用户体验。与现有技术相比,通过获取每个扫风区域的扫风范围、扫风区域内的人数以及扫风区域内人群与空调设备之间的第二距离等属性信息,根据属性信息确定空调设备的运行参数,并控制空调设备在各个扫风区域按照各自的运行参数运行,扫风区域的属性信息不同,确定的运行参数也不同,进而实现了空调设备的运行参数的动态调整,从而能够解决现有技术中空调设备根据用户所在的方向以固定的风速全局匀速送风智能化程度低的技术问题。
为达上述目的,本申请第三方面实施例提出了一种空调,包括处理器和存储器;其中,所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于实现如第一方面实施例所述的空调设备的控制方法。
为达上述目的,本申请第四方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面实施例所述的空调设备的控制方法。
为达上述目的,本申请第五方面实施例提出了一种计算机程序产品,该计算机程序产品中的指令由处理器执行时,执行如第一方面实施例所述的空调设备的控制方法。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请一实施例提出的空调设备的控制方法的流程示意图;
图2为本申请另一实施例提出的空调设备的控制方法的流程示意图;
图3为根据边缘人体形成扫风范围的示意图;
图4为本申请又一实施例提出的空调设备的控制方法的流程示意图;
图5为本申请再一实施例提出的空调设备的控制方法的流程示意图;
图6(a)为基于中心像素点和基准像素点确定第一夹角的示意图;
图6(b)为根据边界像素点确定扫风范围侧边的示意图;
图7为本申请一实施例提出的空调设备的控制装置的结构示意图;
图8为本申请另一实施例提出的空调设备的控制装置的结构示意图;
图9为本申请一实施例提出的空调的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的空调设备的控制方法及装置、空调。
现有的智能空调,通过安装摄像头并结合图像处理技术,能够实时监测室内人群的分布,进而通过分析人群的活动情况,控制空调自动调整运行状态,比如调整运行温度、摆风角度、送风速度等。
然而,现有的智能空调送风功能,只是简单考量了人群的角度信息和数量,根据人群所在方向全局匀速送风,并根据人数设定固定的风速。在人群分布不均匀的情况下,这种以固定风速全局匀速送风的方式显然不够智能化,容易出现人数较少区域送风量过多而人数较多区域送风量不足的问题,用户体验不佳。
针对上述问题,本申请实施例提出了一种空调设备的控制方法,能够根据室内人群的分布情况动态调整空调设备的运行参数,提高空调的智能化和使用便捷性,提升用户的舒适度和用户体验。
图1为本申请一实施例提出的空调设备的控制方法的流程示意图。
如图1所示,该空调设备的控制方法包括以下步骤:
步骤101,采集室内图像并识别处于图像中的人体,获取人体的位置信息。
其中,位置信息包括但不限于人体与空调设备之间的第一夹角以及人体与空调设备的第一距离。
空调设备中可以设置摄像装置、图像处理单元以及算法处理单元。其中,摄像装置用于监测室内人群的运动情况,并周期性地采集室内图像。图像处理单元用于对摄像装置采集的室内图像进行分析处理,以识别出图像中的人体,并获取人体的位置信息。算法处理单元可以用于对室内区域进行分割,以及用于确定空调设备的运行参数。或者,也可以在空调设备中设置处理器,由处理器对摄像装置采集的室内图像进行分析,并从中识别出图像中的人体,对室内区域进行划分,并确定各个划分区域内空调设备的运行参数。
为便于描述,本申请实施例将以在空调设备中设置图像处理单元和算法处理单元为例来解释说明本申请。但需要说明的是,在空调设备中设置图像处理单元和算法处理单元仅 作为示例,而不能作为对本申请的限制。
本实施例中,根据采集的室内图像,通过图像处理单元对室内图像进行分析,可以识别出处于图像中的人体。比如,可以采用相关人体检测算法或者人脸识别算法识别出室内图像中的人体。进一步地,针对图像中的每个人体,可以利用图像处理单元计算人体与空调设备之间的第一夹角以及人体与空调设备的第一距离,并将所得第一夹角和第一距离作为人体的位置信息。
需要说明的是,获取人体的位置信息的具体方式将在后续内容中给出,为避免赘述,此处不作详细说明。
步骤102,根据人体的位置信息对空调设备的扫风区域进行划分。
作为一种示例,算法处理单元根据图像处理单元所确定的人体的位置信息对空调设备的扫风区域进行划分时,可以考虑多种可能的影响因素,比如人体肩宽和运行参数的调整时间。通过对统计数据进行分析可知,人体的平均肩宽约为37厘米,当人体与空调设备之间的距离为3~7米时,人体所占的扫风区域角度为3~7度。此外,对空调设备的风速进行调整时,从初始状态到达稳定状态需要一定的调整时间,且上下导风叶的角度调整也需要一定的时间。因此,本实施例中,综合考虑多种因素,在对空调设备的扫风区域进行划分时,可以将角度之差在10度以内的人体划分为同一个扫风区域,进而得到多个扫风区域。
步骤103,获取每个扫风区域的属性信息。
其中,属性信息包括但不限于扫风区域的扫风范围、扫风区域内的人数以及扫风区域内人群与空调设备之间的第二距离。
针对所确定的每个扫风区域,可以进一步获取扫风区域内的人数、扫风区域内人群与空调设备之间的第二距离,以及扫风区域的扫风范围。
作为一种示例,可以通过识别扫风区域内的人体来确定扫风区域内的人数。根据扫风区域内每个人与空调设备之间的第一距离,可以获得扫风区域内人群与空调设备之间的第二距离。比如,可以采用对扫风区域内人体与空调设备的第一距离进行加权求和的方式求得第二距离,或者采用对扫风区域内人体与空调设备的第一距离求均值的方式计算获得扫风区域内人群与空调设备之间的第二距离。在获取扫风区域的扫风范围时,可以根据处于扫风区域最边缘位置的人体与空调设备之间的第一夹角来计算获得扫风范围,计算处于扫风区域两侧最边缘位置的人体与空调设备之间的第一夹角的差值,将所得差值作为该扫风区域的扫风范围。
步骤104,根据属性信息确定空调设备在扫风区域的运行参数。
其中,运行参数包括但不限于左右导风叶扫风速度、风速以及上下导风叶送风(导风)角度。
本实施例中,获取了每个扫风区域的属性信息之后,可以进一步根据属性信息确定空调设备在扫风区域的运行参数。
具体地,算法处理单元可以根据属性信息中的人数确定各扫风区域内空调设备的左右导风叶扫风速度。比如,可以将扫风速度划分为多个档位,并将人数与扫风速度的对应关系设置为人数越多,扫风速度越小。算法处理单元还可以根据扫风区域内人群与空调设备之间的第二距离以及扫风区域内的人数,并考虑到人体舒适度,确定风速和上下导风叶导风角度。
作为一种示例,算法处理单元在根据扫风区域内的人数确定左右导风叶扫风速度时,可以将扫风速度划分为v1、v2和v3三个档位,且v1<v2<v3。在人数多且密集的扫风区域,选择较慢的扫风速度v1;在人数少且稀疏的扫风区域,选择较快的扫风速度v2;而在没有人的扫风区域,则以最快的扫风速度v3快速扫过。
作为一种示例,算法处理单元根据扫风区域的人数和第二距离,可以确定风速和上下导风叶导风角度的可行域。由于特定区域可以得到的送风量是风速和上下导风叶导风角度的函数,而可以满足送风量要求的风速和导风角度的组合并不一定是唯一的,因此,根据扫风区域的人数和第二距离确定的可行域里可以包含多组风速和导风角度的组合。进一步地,可以考虑人体舒适度和能耗等因素,从多种组合中选择一个最佳的风速和导风角度的组合。
步骤105,当到达下一送风周期时,控制空调设备在每个扫风区域按照各自的运行参数送风。
本实施例中,确定了各个扫风区域内空调设备的运行参数之后,当到达下一个送风周期时,即可控制空调设备在每个扫风区域内按照各个扫风区域对应的运行参数进行送风,以实现不同扫风区域的自适应送风,提升用户体验。
本实施例的空调设备的控制方法,通过采集室内图像并识别处于图像中的人体,获取人体的位置信息,根据人体的位置信息对空调设备的扫风区域进行划分,获取每个扫风区域的属性信息,根据属性信息确定空调设备在扫风区域的运行参数,当到达下一送风周期时,控制空调设备在每个扫风区域按照各自的运行参数送风。由此,能够根据室内人群的分布情况动态调整空调设备的运行参数,提高了空调的智能化和使用便捷性,提升了用户的舒适度和用户体验。与现有技术相比,通过获取每个扫风区域的扫风范围、扫风区域内的人数以及扫风区域内人群与空调设备之间的第二距离等属性信息,根据属性信息确定空调设备的运行参数,并控制空调设备在各个扫风区域按照各自的运行参数运行,扫风区域的属性信息不同,确定的运行参数也不同,进而实现了空调设备的运行参数的动态调整,从而能够解决现有技术中空调设备根据用户所在的方向以固定的风速全局匀速送风智能化 程度低的技术问题。
为了更加清楚地说明获取每个扫风区域属性信息的具体实现过程,本申请实施例提出了另一种空调设备的控制方法,图2为本申请另一实施例提出的空调设备的控制方法的流程示意图。
如图2所示,在如图1所示实施例的基础上,步骤103可以包括以下步骤:
步骤201,统计扫风区域中人体或者人脸的个数,得到扫风区域中的人数。
比如,可以采用相关的人体检测算法和/或人脸识别算法来识别各个扫风区域内的人体或人脸,并统计识别出的人体或人脸的个数,得到扫风区域中的人数。
步骤202,识别处于扫风区域边缘的两个边缘人体,并根据两个边缘人体形成扫风区域的扫风范围。
其中,扫风范围的两侧边分别通过其中一个边缘人体的边界。
为便于理解,下面结合附图进行解释说明。图3为根据边缘人体形成扫风范围的示意图。如图3所示,在扫风区域MON内,用户A和用户B分别为处于扫风区域边缘OM和ON附近的两个边缘人体,则以O点至用户A的连线为边界,以O点至用户B的连线为另一条边界,两条边界之间的区域即为形成的扫风范围。
需要说明的是,图3仅以一个扇形的扫描区域为例进行解释说明本申请,而不能认为本申请实施例中的扫描区域只能是扇形。扫描区域还可以是其他形状,本申请对扫描区域的形状不作限定。
步骤203,获取扫风区域内人群中每个人与空调设备之间的第一距离。
由于从采集的室内图像中获取的人体的位置信息中包含人体与空调设备之间的第一距离,从而,本实施例中,在确定了不同的扫风区域之后,针对每个扫风区域,可以直接获取扫风区域内人群中每个人与空调设备之间的第一距离。
步骤204,将人群中每个人的第一距离进行加权,得到人群到空调设备的第二距离。
本实施例中,在获取了扫风区域内每个人的第一距离之间,可以通过对第一距离进行加权求和的方式计算获得人群到空调设备的第二距离。比如,在进行加权计算时,可以为人数较多且密集的人群中的每个人的第一距离分配较高的权重,而为单独的或者比较稀疏的人的第一距离分配较低的权重,进而通过加权求和得到人群到空调设备的第二距离。
在本申请实施例一种可能的实现方式中,还可以对获取的扫风区域内每个人的第一距离从大到小进行排序,并将最大的第一距离作为人群到空调设备的第二距离。
本实施例的空调设备的控制方法,通过统计扫风区域中人体或者人脸的个数得到扫风区域中的人数,识别处于扫描区域边缘的两个边缘人体,并根据两个边缘人体形成扫风区域的扫风范围,获取扫风区域内人群中每个人与空调设备之间的第一距离,将第一距离进 行加权,得到人群到空调设备的第二距离,为根据每个扫风区域的属性信息确定对应的运行参数奠定了基础,保证所确定运行参数的准确度。
为了更加清楚地说明根据属性信息确定空调设备在扫风区域的运行参数的具体实现过程,本申请实施例提出了另一种空调设备的控制方法,图4为本申请又一实施例提出的空调设备的控制方法的流程示意图。
如图4所示,在如图1所示实施例的基础上,步骤104可以包括以下步骤:
步骤301,根据属性信息中的人数,查询人数与扫风速度之间的映射关系,确定空调设备左右导风叶的目标扫风速度。
其中,人数与扫风速度之间的映射关系是预先建立的,并存储于空调设备的存储单元中。当需要确定扫风速度时,可以通过查询预先存储的映射关系,获取与人数对应的扫风速度。
作为一种示例,可以将扫风速度划分为v1、v2和v3三个档位,且v1<v2<v3。设置人数与扫风速度的映射关系如下:当人数多于5人(不包含5人)时,对应的扫风速度档位为v1;当人数为1~5人时,对应的扫风速度档位为v2;当人数为0时,对应的扫风速度档位为v3。
本实施例中,从属性信息中获取了扫风区域内的人数后,通过查询预先存储的人数与扫风速度之间的映射关系,可以确定与该扫风区域对应的空调设备左右导风叶的目标扫风速度。
步骤302,根据属性信息中的第二距离,确定第二距离下风速与上下导风叶的导风角度的组合。
本实施例中,确定了扫风区域的属性信息之后,根据属性信息中的第二距离,可以确定第二距离下风速与上下导风叶的导风角度的组合。
一般而言,上下导风叶的导风角度越大,空调设备吹出的风能够到达的距离越远;导风角度越小,空调设备吹出的风能够到达的距离越近。从而,本实施例中,当第二距离大时,此时人群距离空调设备较远,可以调大上下导风叶的导风角度,以使空调设备吹出的风呈抛物线形状吹向人群。当第二距离大时,还可以增大风速,以使人群尽快享受到空调风。当第二距离小时,此时人群距离空调设备较近,可以调小导风角度和风速。
步骤303,根据空调设备中电机在第二距离下的最佳运行效能,从组合中确定目标风速和上下导风叶的目标导风角度。
由于特定区域可以得到的送风量是风速和上下导风叶导风角度的函数,而可以满足送风量要求的风速和导风角度的组合并不一定是唯一的,从而,根据属性信息中的第二距离确定的风速和导风角度的组合也不一定是唯一的,可能存在多种风速与导风角度的组合。
为了唯一确定风速和导风角度,可以根据空调设备中电机在第二距离下的最佳运行能效,从多种组合中确定出目标风速和上下导风叶的目标导风角度。
通常,不同的电机其工作曲线也不同,对于确定的空调设备,其电机的工作曲线也是确定的,因此,可以将空调设备对应的电机的工作曲线预先存储于空调设备的存储单元中。在算法处理单元确定出多种风速与导风角度的组合之后,结合预先存储的电机的工作曲线,选择使电机工作在最佳运行效能的风速和导风角度,作为目标风速和上下导风叶的目标导风角度。
步骤304,利用目标扫风速度、目标风速以及目标导风角度形成运行参数。
本实施例中,根据属性信息分别确定了左右导风叶的目标扫风速度、目标风速以及上下导风叶的目标导风角度之后,即可利用目标扫风速度、目标风速以及目标导风角度形成该扫风区域内空调设备的运行参数。
本实施例的空调设备的控制方法,通过根据属性信息中的人数确定空调设备左右导风叶的目标扫风速度,根据属性信息中的第二距离确定风速与上下导风叶的导风角度的组合,并根据空调设备中电机在第二距离下的最佳运行效能,从组合中确定目标风速和目标导风角度,进而利用目标扫风速度、目标风速以及目标导风角度形成运行参数,能够实现根据扫风区域的属性信息自适应地调整该扫风区域的运行参数,以及实现空调设备的节能、高效运行。
图5为本申请再一实施例提出的空调设备的控制方法的流程示意图。
如图5所示,在前述实施例的基础上,该空调设备的控制方法还可以包括以下步骤:
步骤401,采集室内图像并识别处于图像中的人体,对人体所在的中心像素点进行识别,确定中心像素点在室内图像中的第一坐标值。
本实施例中,可以在空调设备中安装摄像装置,通过摄像装置采集室内图像,并可以采用相关的人体检测算法和/或人脸识别算法,从室内图像中识别出人体,并通过预设的标记框在室内图像中进行标记。
需要说明的是,标记框的个数与室内图像中包含的人数对应,且本申请对标记框的大小不作限制,可以使用标记框标记整个人体,也可以使用标记框标记人的头部。
在识别出处于图像中的人体之后,可以进一步对人体所在的中心像素点进行识别,并确定中心像素点在室内图像中的的第一坐标值。其中,中心像素点为处于人体中心位置的像素点。
具体地,在对人体所在的中心像素点进行识别时,可以获取标记框的中心点,进而将标记框的中心点对应的像素点作为中心像素点。
步骤402,根据第一坐标值与预设的基准像素点的第二坐标值,确定人体与空调设备 之间的第一夹角。
其中,基准像素点表征空调设备在室内图像中的位置。
本实施例中,确定了处于图像中的人体的中心像素点的第一坐标值之后,结合预设的基准像素点的第二坐标值,可以确定人体与空调设备之间的第一夹角。
为便于理解,下面结合附图描述确定第一夹角的具体过程。图6(a)为基于中心像素点和基准像素点确定第一夹角的示意图。如图6(a)所示,中心像素点的第一坐标值为(x1,y1),基准像素点的第二坐标值为(x0,y0),则中心像素点与基准像素点之间的连线与取值为y0的水平线的夹角θ,即为人体与空调设备之间的第一夹角。
步骤403,获取人体或者人脸在室内图像上所占的第一面积。
步骤404,将第一面积与预设的第二面积作比值;其中,第二面积为标准人体或者标准人脸在第一室内图像上所占的面积;第一室内图像为标准人体或者标准人脸在距离空调设备预设距离时所采集到的图像。
步骤405,根据比值和预设距离确定人体与空调设备之间的第一距离。
本实施例中,可以预先存储一张标准人体或者标准人脸在距离空调设备预设距离时采集的第一室内图像,并存储标准人体或者标准人脸在第一室内图像上所占的第二面积。在获取了人体或者人脸在室内图像上所占的第一面积之后,将第一面积与第二面积作比值,进而根据所得比值和预设距离确定人体与空调设备之间的第一距离。
具体地,将所得比值与预设距离相乘,即可得到第一距离。
能够理解的是,比值与第一距离成正比,比值越大,所得的第一距离也越大。当比值为1时,第一距离与预设距离相等;当比值小于1时,第一距离小于预设距离;当比值大于1时,第一距离大于预设距离。
步骤406,获取人体的第一边界像素点和第二边界像素点。
其中,第一边界像素点为标记框的左下角对应的像素点,第二边界像素点为标记框的右下角对应的像素点。
步骤407,获取相邻的两个人体中前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的间隔值。
本实施例中,在采用标记框对室内图像中的人体进行标记之后,可以进一步获取标记框的左下角对应的像素点以及右下角对应的像素点,并分别作为第一边界像素点和第二边界像素点。
进而,针对相邻的两个人体,获取前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的间隔值。也就是说,获取相邻的两个人体中前一个人与后一个人之间,第一边界像素点和第二边界像素点的差值最小的间隔值。
作为一种可能的实现方式,在获取相邻的两个人体中前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的间隔值时,可以先获取前一个人体的第二边界像素点的第三坐标值,以及后一个人体的第一边界像素点的第四坐标值;根据第三坐标值和第二坐标值,确定前一个人体的第二边界像素点与空调设备之间的第二夹角,并根据第四坐标值和第二坐标值,确定后一个人体的第一边界像素点与空调设备之间的第三夹角;进而,根据第二夹角与第三夹角,获取前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的角度差,并将所得的角度差作为间隔值。
作为另一种可能的实现方式,在获取相邻的两个人体中前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的间隔值时,可以先获取前一个人体的第二边界像素点的第三坐标值,以及后一个人体的第一边界像素点的第四坐标值;根据第三坐标值和第四坐标值,计算前一个人体与后一个人体之间的距离,将所得距离作为间隔值。
步骤408,将连续出现的间隔值未超出预设的间隔值的相邻的两个人体划分到一个扫风区域内。
其中,预设的间隔值是预先设定的,可以通过对统计数据进行分析后获得,本申请对预设的间隔值的具体取值不作限定。
本实施例中,获取了相邻的两个人体中前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的间隔值之后,可以将所得间隔值同预设的间隔值进行比较,判断间隔值是否超过预设的间隔值,并在未超过时,将该相邻的两个人体划分到一个扫风区域内。
需要说明的是,在同一个扫风区域内,任意相邻的两个人体中前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的间隔值均未超过预设的间隔值,且未超过预设的间隔值的人体是连续出现的,中间不存在间隔值超过预设的间隔值的人体。
步骤409,获取每个扫风区域的属性信息。
其中,属性信息包括但不限于扫风区域的扫风范围、扫风区域内的人数以及扫风区域内人群与空调设备之间的第二距离。
需要说明的是,前述如图2所示实施例中对获取每个扫风区域的属性信息的具体实现过程的解释说明也适用于本实施例中对获取每个扫风区域的属性信息的描述,其实现原理类似,此处不再赘述。
进一步地,为了提高确定扫风范围的精度,保证处于扫风区域边缘的两个边缘人体可以完全地感受到空调风,在本实施例中,在根据扫风区域的两个边缘人体形成扫风区域的扫风范围时,可以获取两个边缘人体的第一边界像素点和第二边界像素点,并基于两个边缘人体的第一边界像素点与第二边界像素点形成扫风范围的两侧边,以使扫风范围的两侧边分别通过其中一个边缘人体的边界;进而,根据处于两侧边上的第一边界像素点和第二 边界像素点,计算扫风范围。
为便于理解,下面仍以一个扇形的扫描区域作为示例,结合附图描述确定扫风范围的两侧边的具体过程。但需要说明的是,本申请实施例中的扫风区域并不限定为扇形,还可以为其他形状,比如矩形等。
图6(b)为根据边界像素点确定扫风范围侧边的示意图。图6(b)中,在扫风区域MON内,标记框A用于标记识别出的边缘人体A,标记框B用于标记识别出的边缘人体B,O表示表征空调设备所在位置的基准像素点。在标记框A中,左下角的C表示获取的边缘人体A的第一边界像素点,右下角的D表示获取的边缘人体A的第二边界像素点;在标记框B中,左下角的E表示获取的边缘人体B的第一边界像素点,右下角的F表示获取的边缘人体B的第二边界像素点。则OC表示通过边缘人体A的侧边,OF表示通过边缘人体B的侧边,边界OC及其延长线、边界OF及其延长线与扫风区域MON的弧线MN所围成的区域即为确定的扫风范围。利用第一边界像素点C、第二边界像素点F以及基准像素点O的坐标值,即可确定扫风范围的具体角度和位置。
步骤410,根据属性信息确定空调设备在扫风区域的运行参数。
需要说明的是,本实施例中对步骤410的描述,可以参见前述实施例中对步骤104的描述,其实现原理类似,此处不再赘述。
步骤411,当到达下一送风周期时,控制空调设备在每个扫风区域按照各自的运行参数送风。
具体地,在送风之前,可以先从扫风区域的属性信息中获取扫风区域的扫风范围,进而控制空调设备在扫风范围内按照该扫风区域对应的运行参数送风。
本实施例的空调设备的控制方法,通过采集室内图像并识别处于图像中的人体,对人体所在的中心像素点进行识别,确定中心像素点在室内图像中的第一坐标值,根据第一坐标值与预设的基准像素点的第二坐标值,确定人体与空调设备之间的第一夹角;通过获取人体或者人脸在室内图像上所占的第一面积,将第一面积与预设的第二面积作比值,根据比值和预设距离确定人体与空调设备之间的第一距离,通过获取人体的第一边界像素点和第二边界像素点,获取相邻的两个人体中前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的间隔值,将连续出现的间隔值未超出预设的间隔值的相邻的两个人体划分到一个扫风区域内,能够提高确定人体的位置信息以及扫风区域的精度,为保证属性信息以及运行参数确定的准确性奠定基础。当到达下一送风周期时,控制空调设备在每个扫风区域的扫风范围内按照各自的运行参数送风,提高了空调的智能化和使用便捷性,提升了用户的舒适度和用户体验。
为了实现上述实施例,本申请还提出一种空调设备的控制装置。
图7为本申请一实施例提出的空调设备的控制装置的结构示意图。
如图7所示,该空调设备的控制装置70包括:采集获取模块710、划分模块720、获取模块730、确定模块740,以及控制模块750。其中,
采集获取模块710,用于采集室内图像并识别处于图像中的人体,获取人体的位置信息。
其中,位置信息包括但不限于人体与空调设备之间的第一夹角以及人体与空调设备的第一距离。
划分模块720,用于根据人体的位置信息对空调设备的扫风区域进行划分。
获取模块730,用于获取每个扫风区域的属性信息。
其中,属性信息包括但不限于扫风区域的扫风范围、扫风区域内的人数以及扫风区域内人群与空调设备之间的第二距离。
确定模块740,用于根据属性信息确定空调设备在扫风区域的运行参数。
进一步地,在本申请实施例一种可能的实现方式中,确定模块740具体用于根据属性信息中的人数,查询人数与扫风速度之间的映射关系,确定空调设备左右导风叶的目标扫风速度;根据属性信息中的第二距离,确定第二距离下风速与上下导风叶的导风角度的组合;根据空调设备中电机在第二距离下的最佳运行效能,从组合中确定目标风速和上下导风叶的目标导风角度;利用目标扫风速度、目标风速以及目标导风角度形成运行参数。
控制模块750,用于到达下一送风周期时,控制空调设备在每个扫风区域按照各自的运行参数送风。
具体地,控制模块750用于从属性信息中获取扫风区域的扫风范围;控制空调设备在扫风范围内按照扫风区域对应的运行参数送风。
进一步地,在本申请实施例一种可能的实现方式中,如图8所示,在如图7所示实施例的基础上,获取模块730可以包括:
统计模块731,用于统计扫风区域中人体或者人脸的个数,得到扫风区域中的人数。
识别单元732,用于识别处于扫风区域边缘的两个边缘人体,并根据两个边缘人体形成扫风区域的扫风范围;其中,扫风范围的两侧边分别通过其中一个边缘人体的边界。
获取单元733,用于获取扫风区域内人群中每个人与空调设备之间的第一距离。
计算单元734,用于将人群中每个人的第一距离进行加权,得到人群到空调设备的第二距离。
为了提高所确定的位置信息、属性信息等的精度,在本申请实施例一种可能的实现方式中,采集获取模块710可以通过摄像装置采集室内图像,并从室内图像识别人体,通过预设的标记框在室内图像中进行标记。进而,采集获取模块710对人体所在的中心像素点 进行识别,确定中心像素点在室内图像中的第一坐标值;根据第一坐标值与预设的基准像素点的第二坐标值,确定人体与空调设备之间的第一夹角;其中,基准像素点表征空调设备在室内图像中的位置;获取人体或者人脸在室内图像上所占的第一面积;将第一面积与预设的第二面积作比值;其中,第二面积为标准人体或者标准人脸在第一室内图像上所占的面积;第一室内图像为标准人体或者标准人脸在距离空调设备预设距离时所采集到的图像;根据比值和预设距离确定人体与空调设备之间的第一距离。
具体地,采集获取模块710在对人体所在的中心像素点进行识别时,可以获取标记框的中心点,并将标记框的中心点对应的像素点作为中心像素点。
之后,划分模块720根据人体的位置信息对空调设备的扫风区域进行划分。具体地,划分模块720获取人体的第一边界像素点和第二边界像素点;其中,第一边界像素点为标记框的左下角对应的像素点,第二边界像素点为标记框的右下角对应的像素点;获取相邻的两个人体中前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的间隔值;将连续出现的间隔值未超出预设的间隔值的相邻的两个人体划分到一个扫风区域内。
本申请实施例提供了两种划分模块720获取相邻的两个人体中前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的间隔值的可能实现方式。
作为其中一种可能的实现方式,划分模块720可以先获取前一个人体的第二边界像素点的第三坐标值,以及后一个人体的第一边界像素点的第四坐标值;根据第三坐标值和第二坐标值,确定前一个人体的第二边界像素点与空调设备之间的第二夹角;根据第四坐标值和第二坐标值,确定后一个人体的第一边界像素点与空调设备之间的第三夹角;根据第二夹角与第三夹角,获取前一个人体的第二边界像素点与后一个人体的第一边界像素点之间的角度差,并将角度差作为间隔值。
作为其中另一种可能的实现方式,划分模块720可以先获取前一个人体的第二边界像素点的第三坐标值,以及后一个人体的第一边界像素点的第四坐标值;根据第三坐标值和第四坐标值,计算前一个人体与后一个人体之间的距离,将距离作为间隔值。
划分模块720划分好扫风区域之后,获取模块730进一步获取各个扫风区域的属性信息。获取模块730中的识别单元732可以获取两个边缘人体的第一边界像素点和第二边界像素点;基于两个边缘人体的第一边界像素点与第二边界像素点形成扫风范围的两侧边,以使扫风范围的两侧边分别通过其中一个边缘人体的边界;根据处于两侧边上的第一边界像素点和第二边界像素点,计算扫风范围。
需要说明的是,前述对空调设备的控制方法实施例的解释说明,也适用于本实施例的空调设备的控制装置,其实现原理类似,此处不再赘述。
本实施例的空调设备的控制装置,通过采集室内图像并识别处于图像中的人体,获取 人体的位置信息,根据人体的位置信息对空调设备的扫风区域进行划分,获取每个扫风区域的属性信息,根据属性信息确定空调设备在扫风区域的运行参数,当到达下一送风周期时,控制空调设备在每个扫风区域按照各自的运行参数送风。由此,能够根据室内人群的分布情况动态调整空调设备的运行参数,提高了空调的智能化和使用便捷性,提升了用户的舒适度和用户体验。与现有技术相比,通过获取每个扫风区域的扫风范围、扫风区域内的人数以及扫风区域内人群与空调设备之间的第二距离等属性信息,根据属性信息确定空调设备的运行参数,并控制空调设备在各个扫风区域按照各自的运行参数运行,扫风区域的属性信息不同,确定的运行参数也不同,进而实现了空调设备的运行参数的动态调整,从而能够解决现有技术中空调设备根据用户所在的方向以固定的风速全局匀速送风智能化程度低的技术问题。
为了实现上述实施例,本申请还提出一种空调。图9为本申请一实施例提出的空调的结构示意图。
如图9所示,该空调90包括:处理器901和存储器902;其中,处理器901通过读取存储器902中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于实现如前述实施例所述的空调设备的控制方法。
为了实现上述实施例,本申请还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如前述实施例所述的空调设备的控制方法。
为了实现上述实施例,本申请还提出一种计算机程序产品,该计算机程序产品中的指令由处理器执行时,执行如前述实施例所述的空调设备的控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分, 并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种空调设备的控制方法,其特征在于,包括:
    采集室内图像并识别处于图像中的人体,获取所述人体的位置信息,所述位置信息包括所述人体与空调设备之间的第一夹角以及所述人体与空调设备的第一距离;
    根据所述人体的位置信息对空调设备的扫风区域进行划分;
    获取每个扫风区域的属性信息;其中,所述属性信息包括扫风区域的扫风范围、扫风区域内的人数以及所述扫风区域内人群与空调设备之间的第二距离;
    根据所述属性信息确定所述空调设备在所述扫风区域的运行参数;
    当到达下一送风周期时,控制所述空调设备在每个扫风区域按照各自的所述运行参数送风。
  2. 根据权利要求1所述的方法,其特征在于,所述获取每个扫风区域的属性信息,包括:
    统计所述扫风区域中人体或者人脸的个数,得到所述扫风区域中的人数;
    识别处于所述扫风区域边缘的两个边缘人体,并根据两个所述边缘人体形成所述扫风区域的所述扫风范围;其中,所述扫风范围的两侧边分别通过其中一个所述边缘人体的边界;
    获取所述扫风区域内人群中每个人与所述空调设备之间的所述第一距离;
    将所述人群中每个人的所述第一距离进行加权,得到所述人群到所述空调设备的所述第二距离。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述属性信息确定所述空调设备在所述扫风区域的运行参数,包括:
    根据所述属性信息中的所述人数,查询人数与扫风速度之间的映射关系,确定所述空调设备左右导风叶的目标扫风速度;
    根据所述属性信息中的所述第二距离,确定所述第二距离下风速与上下导风叶的导风角度的组合;
    根据所述空调设备中电机在所述第二距离下的最佳运行效能,从所述组合中确定所述目标风速和所述上下导风叶的目标导风角度;
    利用所述目标扫风速度、所述目标风速以及所述目标导风角度形成所述运行参数。
  4. 根据权利要求1所述的方法,其特征在于,所述控制所述空调设备在每个扫风区域按照各自的所述运行参数送风,包括:
    从所述属性信息中获取所述扫风区域的扫风范围;
    控制所述空调设备在所述扫风范围内按照所述扫风区域对应的所述运行参数送风。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述获取所述人体的位置信息, 包括:
    对所述人体所在的中心像素点进行识别,确定所述中心像素点在所述室内图像中的第一坐标值;
    根据所述第一坐标值与预设的基准像素点的第二坐标值,确定所述人体与所述空调设备之间的第一夹角;其中,所述基准像素点表征所述空调设备在所述室内图像中的位置;
    获取所述人体或者人脸在所述室内图像上所占的第一面积;
    将所述第一面积与预设的第二面积作比值;其中,所述第二面积为标准人体或者标准人脸在第一室内图像上所占的面积;所述第一室内图像为所述标准人体或者标准人脸在距离所述空调设备预设距离时所采集到的图像;
    根据所述比值和所述预设距离确定所述人体与所述空调设备之间的所述第一距离。
  6. 根据权利要求5所述的方法,其特征在于,所述采集室内图像并识别处于图像中的人体,包括:
    通过摄像装置采集所述室内图像;
    从所述室内图像识别所述人体,并通过预设的标记框在所述室内图像中进行标记;
    所述对所述人体所在的中心像素点进行识别,包括:
    获取所述标记框的中心点,并将所述标记框的中心点对应的像素点作为所述中心像素点。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述人体的位置信息对空调设备的扫风区域进行划分,包括:
    获取所述人体的第一边界像素点和第二边界像素点;其中,所述第一边界像素点为所述标记框的左下角对应的像素点,所述第二边界像素点为所述标记框的右下角对应的像素点;
    获取相邻的两个人体中前一个人体的所述第二边界像素点与后一个人体的所述第一边界像素点之间的间隔值;
    将连续出现的所述间隔值未超出预设的间隔值的相邻的两个人体划分到一个扫风区域内。
  8. 根据权利要求7所述的方法,其特征在于,所述获取相邻的两个人体中前一个人体的所述第二边界像素点与所述后一个人体的所述第一边界像素点之间的间隔值,包括:
    获取所述前一个人体的所述第二边界像素点的第三坐标值,以及所述后一个人体的所述第一边界像素点的第四坐标值;
    根据所述第三坐标值和所述第二坐标值,确定所述前一个人体的所述第二边界像素点与所述空调设备之间的第二夹角;
    根据所述第四坐标值和所述第二坐标值,确定所述后一个人体的所述第一边界像素点与所述空调设备之间的第三夹角;
    根据所述第二夹角与所述第三夹角,获取所述前一个人体的所述第二边界像素点与所述后一个人体的所述第一边界像素点之间的角度差,并将所述角度差作为所述间隔值。
  9. 根据权利要求7所述的方法,其特征在于,所述获取相邻的两个人体中前一个人体的所述第二边界像素点与所述与后一个人体的所述第一边界像素点之间的间隔值,包括:
    获取所述前一个人体的所述第二边界像素点的第三坐标值,以及所述后一个人体的所述第一边界像素点的第四坐标值;
    根据所述第三坐标值和所述第四坐标值,计算所述前一个人体与所述后一个人体之间的距离,将所述距离作为所述间隔值。
  10. 根据权利要求2所述的方法,其特征在于,所述根据两个所述边缘人体形成所述扫风区域的所述扫风范围,包括:
    获取两个所述边缘人体的所述第一边界像素点和所述第二边界像素点;
    基于两个所述边缘人体的所述第一边界像素点与所述第二边界像素点形成所述扫风范围的两侧边,以使所述扫风范围的两侧边分别通过其中一个所述边缘人体的边界;
    根据处于所述两侧边上的所述第一边界像素点和所述第二边界像素点,计算所述扫风范围。
  11. 一种空调设备的控制装置,其特征在于,包括:
    采集获取模块,用于采集室内图像并识别处于图像中的人体,获取所述人体的位置信息,所述位置信息包括所述人体与空调设备之间的第一夹角以及所述人体与空调设备的第一距离;
    划分模块,用于根据所述人体的位置信息对空调设备的扫风区域进行划分;
    获取模块,用于获取每个扫风区域的属性信息;其中,所述属性信息包括扫风区域的扫风范围、扫风区域内的人数以及所述扫风区域内人群与空调设备之间的第二距离;
    确定模块,用于根据所述属性信息确定所述空调设备在所述扫风区域的运行参数;
    控制模块,用于到达下一送风周期时,控制所述空调设备在每个扫风区域按照各自的所述运行参数送风。
  12. 一种空调,其特征在于,包括处理器和存储器;其中,所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于实现如权利要求1-10中任一项所述的空调设备的控制方法。
  13. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1-10中任一项所述的空调设备的控制方法。
PCT/CN2017/113402 2017-08-23 2017-11-28 智能家电控制方法和装置 WO2019037322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710731731.7A CN107314511B (zh) 2017-08-23 2017-08-23 空调设备的控制方法及装置、空调
CN201710731731.7 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019037322A1 true WO2019037322A1 (zh) 2019-02-28

Family

ID=60177013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113402 WO2019037322A1 (zh) 2017-08-23 2017-11-28 智能家电控制方法和装置

Country Status (2)

Country Link
CN (1) CN107314511B (zh)
WO (1) WO2019037322A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244574A (zh) * 2019-06-28 2019-09-17 深圳市美兆环境股份有限公司 智能家居控制方法、装置、系统和存储介质

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314511B (zh) * 2017-08-23 2020-05-05 广东美的制冷设备有限公司 空调设备的控制方法及装置、空调
CN108151265A (zh) * 2017-11-17 2018-06-12 珠海格力电器股份有限公司 空调及其控制方法、存储介质和处理器
CN108458454A (zh) * 2018-03-30 2018-08-28 广东美的制冷设备有限公司 空调器及其的控制方法和计算机可读存储介质
CN108895592A (zh) * 2018-06-04 2018-11-27 镇江视程影视有限公司 影院用通风控制装置及系统
CN109405206B (zh) * 2018-10-10 2021-02-26 广东美的制冷设备有限公司 空气调节设备的送风控制方法和装置
CN111179299A (zh) * 2018-11-09 2020-05-19 珠海格力电器股份有限公司 一种图像处理方法及装置
CN111352356B (zh) * 2018-12-21 2024-05-10 阿里巴巴集团控股有限公司 设备控制方法、装置和设备
CN111380182B (zh) * 2018-12-30 2023-05-09 珠海格力电器股份有限公司 空调器送风模式的控制方法及装置
CN109907460A (zh) * 2019-04-24 2019-06-21 北京小米移动软件有限公司 吹风方法、吹风机及存储介质
CN110173862A (zh) * 2019-06-14 2019-08-27 珠海格力电器股份有限公司 基于俯视视角人体信息的空调控制方法、装置及空调系统
CN110736230B (zh) * 2019-10-29 2020-11-10 珠海格力电器股份有限公司 空调器的控制方法及装置、空调控制系统
CN112943661A (zh) * 2019-11-26 2021-06-11 佛山市云米电器科技有限公司 基于人脸识别的风扇调节方法、风扇和存储介质
CN112855594A (zh) * 2019-11-27 2021-05-28 佛山市云米电器科技有限公司 送风控制方法、风扇及计算机可读存储介质
CN112855595B (zh) * 2019-11-27 2023-05-30 佛山市云米电器科技有限公司 风扇控制方法、风扇和存储介质
CN112926357A (zh) * 2019-12-05 2021-06-08 佛山市云米电器科技有限公司 风扇倾斜角度的控制方法、风扇及计算机可读存储介质
CN111059723A (zh) * 2019-12-05 2020-04-24 广东美博制冷设备有限公司 一种混合送风的空调器控制方法及装置
CN111219844A (zh) * 2020-01-15 2020-06-02 珠海格力电器股份有限公司 一种送风控制方法、装置、存储介质及空调器
CN113494475A (zh) * 2020-03-18 2021-10-12 佛山市云米电器科技有限公司 循环扇的控制方法、终端设备、系统及存储介质
CN111412167B (zh) * 2020-03-31 2022-04-05 佛山市云米电器科技有限公司 送风方式的运行方法、系统、计算机可读存储介质
CN111425970B (zh) * 2020-03-31 2021-08-31 佛山市云米电器科技有限公司 一种送风方式的运行方法、系统及计算机可读存储介质
CN111412168B (zh) * 2020-03-31 2022-04-05 佛山市云米电器科技有限公司 一种送风方式运行方法、系统、计算机可读存储介质
CN113668201B (zh) * 2020-04-30 2023-10-03 云米互联科技(广东)有限公司 循环扇控制方法、循环扇、循环扇控制系统及存储介质
CN111780230B (zh) * 2020-06-08 2023-02-24 海信空调有限公司 一种空调器
CN111780232A (zh) * 2020-06-08 2020-10-16 海信(山东)空调有限公司 一种空调器
CN111780246A (zh) * 2020-06-08 2020-10-16 海信(山东)空调有限公司 一种双出风口的空调器
CN111780245B (zh) * 2020-06-08 2023-03-31 海信空调有限公司 一种双出风口的空调器
CN111780323A (zh) * 2020-06-12 2020-10-16 珠海格力电器股份有限公司 一种室内空调器的送风控制方法及室内空调器
CN111692698B (zh) * 2020-06-23 2022-01-11 宁波奥克斯电气股份有限公司 智能送风控制方法、装置、空调器和计算机可读存储介质
CN111731075B (zh) * 2020-06-30 2022-04-26 东风汽车有限公司 一种汽车空调定向风口调节方法及电子设备
CN114060300B (zh) * 2020-08-06 2022-11-18 珠海格力电器股份有限公司 一种风扇控制方法、装置、存储介质、电子设备以及风扇
CN112146242B (zh) * 2020-09-14 2022-06-14 海尔优家智能科技(北京)有限公司 空调的控制方法和装置及存储介质
CN112556118B (zh) * 2020-12-08 2022-03-18 珠海格力电器股份有限公司 一种温度控制系统运行控制方法、装置、系统及存储介质
CN112815470B (zh) * 2021-01-18 2022-07-29 珠海格力电器股份有限公司 空调设备控制方法、装置、空调设备和存储介质
CN112944606B (zh) * 2021-02-17 2022-04-26 珠海格力电器股份有限公司 一种空调器运行的控制方法、控制系统及具有其的空调器
CN113091230A (zh) * 2021-04-12 2021-07-09 青岛海尔空调器有限总公司 用于空调送风控制的方法、装置及空调
CN113465154A (zh) * 2021-04-26 2021-10-01 青岛海尔空调器有限总公司 一种空调导风控制方法及装置、一种空调系统
CN113107890A (zh) * 2021-05-29 2021-07-13 河北红岸基地科技有限公司 一种控制风扇送风范围的方法
CN113482955B (zh) * 2021-06-25 2022-04-01 珠海格力电器股份有限公司 扫风件控制方法、装置、终端、扫风件和存储介质
CN115597211A (zh) * 2021-06-28 2023-01-13 青岛海尔空调器有限总公司(Cn) 用于控制空调的方法、装置及空调
CN113606729B (zh) * 2021-07-29 2023-01-03 佛山市顺德区美的电子科技有限公司 一种控制方法、设备、系统及存储介质
CN113757956A (zh) * 2021-08-16 2021-12-07 佛山市顺德区美的电子科技有限公司 空调器控制方法、装置、设备、空调器和存储介质
CN114963413B (zh) * 2022-04-21 2023-07-04 日立楼宇技术(广州)有限公司 一种空调的控制方法、装置、设备及存储介质
CN114962311B (zh) * 2022-05-31 2024-06-07 深圳市君视芯科技有限公司 一种智能风扇控制方法及智能风扇
CN115218404A (zh) * 2022-06-22 2022-10-21 青岛海尔空调器有限总公司 室内机的控制方法、装置及空调
CN117870122B (zh) * 2024-02-19 2024-07-23 苏州曼凯系统集成科技有限公司 一种暖通设备控制系统、控制方法、控制装置和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035133A (ja) * 2012-08-08 2014-02-24 Mitsubishi Electric Corp 空気調和機の室内機
JP2015190666A (ja) * 2014-03-28 2015-11-02 日立アプライアンス株式会社 空気調和機の室内機及びこれを用いた空気調和機
CN105258291A (zh) * 2015-10-21 2016-01-20 广东美的制冷设备有限公司 空调送风控制方法及装置
CN106440235A (zh) * 2016-10-31 2017-02-22 邯郸美的制冷设备有限公司 一种空调及其送风控制方法和装置
CN107013978A (zh) * 2017-04-10 2017-08-04 青岛海尔空调器有限总公司 空调室内机及其送风方法
CN107036227A (zh) * 2016-02-03 2017-08-11 美的集团股份有限公司 空调器控制方法及空调器
CN107314511A (zh) * 2017-08-23 2017-11-03 广东美的制冷设备有限公司 空调设备的控制方法及装置、空调

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241728A (ja) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd 空気清浄機
JP4827798B2 (ja) * 2007-06-13 2011-11-30 三菱電機株式会社 空調用リモートコントローラおよび空気調和機並びに空気調和システム
JP5175562B2 (ja) * 2008-01-28 2013-04-03 シャープ株式会社 人物位置検出装置および空気調和機
JP5402487B2 (ja) * 2009-10-07 2014-01-29 パナソニック株式会社 空気調和機
JP6046579B2 (ja) * 2013-09-09 2016-12-21 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
CN104729001B (zh) * 2013-12-23 2019-12-13 珠海格力电器股份有限公司 一种空调控制方法、装置及系统
CN109974244B (zh) * 2014-02-17 2021-01-26 松下电器产业株式会社 空调机的控制方法
CN105444338B (zh) * 2014-08-26 2018-06-29 海信(山东)空调有限公司 一种控制空调送风的方法及装置
CN104279696B (zh) * 2014-09-22 2017-10-24 广东美的集团芜湖制冷设备有限公司 空调送风方法、装置及空调器
CN105020867B (zh) * 2015-08-10 2019-05-21 珠海格力电器股份有限公司 一种空调控制方法、空调及人体检测装置
CN106352474B (zh) * 2016-08-22 2019-07-12 珠海格力电器股份有限公司 空调器的控制方法、控制装置及空调器
CN106440245B (zh) * 2016-10-25 2021-01-08 广东美的制冷设备有限公司 一种人体位置获取方法和装置
CN106949600B (zh) * 2017-03-21 2020-02-07 深圳创维空调科技有限公司 一种空调送风方式的调节方法、系统以及空调
CN106989483B (zh) * 2017-03-29 2020-03-31 邯郸美的制冷设备有限公司 空调器的送风控制方法、系统及空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035133A (ja) * 2012-08-08 2014-02-24 Mitsubishi Electric Corp 空気調和機の室内機
JP2015190666A (ja) * 2014-03-28 2015-11-02 日立アプライアンス株式会社 空気調和機の室内機及びこれを用いた空気調和機
CN105258291A (zh) * 2015-10-21 2016-01-20 广东美的制冷设备有限公司 空调送风控制方法及装置
CN107036227A (zh) * 2016-02-03 2017-08-11 美的集团股份有限公司 空调器控制方法及空调器
CN106440235A (zh) * 2016-10-31 2017-02-22 邯郸美的制冷设备有限公司 一种空调及其送风控制方法和装置
CN107013978A (zh) * 2017-04-10 2017-08-04 青岛海尔空调器有限总公司 空调室内机及其送风方法
CN107314511A (zh) * 2017-08-23 2017-11-03 广东美的制冷设备有限公司 空调设备的控制方法及装置、空调

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244574A (zh) * 2019-06-28 2019-09-17 深圳市美兆环境股份有限公司 智能家居控制方法、装置、系统和存储介质

Also Published As

Publication number Publication date
CN107314511A (zh) 2017-11-03
CN107314511B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2019037322A1 (zh) 智能家电控制方法和装置
US11301779B2 (en) Air conditioner
CN109945422B (zh) 运行控制方法、模块、家电设备和计算机存储介质
KR20180071031A (ko) 공기조화기 및 그 제어방법
CN109945429B (zh) 运行控制方法、装置、空调器和计算机可读存储介质
CN109974230B (zh) 运行控制方法、装置、空调器和计算机可读存储介质
WO2019119470A1 (zh) 空调控制方法、系统及空调
JP6643633B2 (ja) 吸気装置および吸気方法
CN109323429A (zh) 一种空调器室内机的控制方法、装置、空调器和存储介质
WO2019165686A1 (zh) 一种空调的控制方法及空调
CN109974217A (zh) 运行控制方法、装置、空调器和计算机可读存储介质
JP2017053603A (ja) 空気調和機
CN109974216A (zh) 运行控制方法、装置、空调器和计算机可读存储介质
CN109814401A (zh) 家电设备的控制方法、家电设备及可读存储介质
CN110966734A (zh) 一种基于三维空间的空调送风控制方法、计算机可读存储介质及空调
CN212744442U (zh) 一种控制装置及送风设备
JP2015048956A (ja) 空気調和機
CN112943661A (zh) 基于人脸识别的风扇调节方法、风扇和存储介质
CN106016599B (zh) 一种基于距离实现空调制冷控制的方法及装置
CN111780232A (zh) 一种空调器
CN111425377B (zh) 风扇及其控制方法和装置
JP2018155440A (ja) 空調機システム
CN106016601B (zh) 空调频率控制方法、控制装置及空调
CN111412167B (zh) 送风方式的运行方法、系统、计算机可读存储介质
CN111425437B (zh) 一种送风方式运行方法、系统及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922636

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17922636

Country of ref document: EP

Kind code of ref document: A1