WO2019165686A1 - 一种空调的控制方法及空调 - Google Patents

一种空调的控制方法及空调 Download PDF

Info

Publication number
WO2019165686A1
WO2019165686A1 PCT/CN2018/083289 CN2018083289W WO2019165686A1 WO 2019165686 A1 WO2019165686 A1 WO 2019165686A1 CN 2018083289 W CN2018083289 W CN 2018083289W WO 2019165686 A1 WO2019165686 A1 WO 2019165686A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
electrode plates
current number
output power
time
Prior art date
Application number
PCT/CN2018/083289
Other languages
English (en)
French (fr)
Inventor
陈颖聪
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2019165686A1 publication Critical patent/WO2019165686A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/57Remote control using telephone networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants

Definitions

  • the invention belongs to the technical field of air conditioners, and in particular relates to a method for controlling an air conditioner and an air conditioner.
  • Air conditioning as the main equipment for adjusting indoor temperature, has become one of the indispensable electrical equipment in the public life. Therefore, whether the air conditioning control is convenient and intelligent is more and more concerned by users.
  • the existing air conditioning control technology needs to manually adjust the operating parameters of the air conditioner, thereby increasing the operation steps of the user, and when the number of indoor users changes, the air conditioner still maintains the original operating mode to work, which is easy to cause power waste. In the case of energy saving, the energy saving effect is poor.
  • the embodiment of the present invention provides an air conditioner control method and an air conditioner to solve the existing air conditioner control method, which requires manual adjustment by the user, and is easy to cause a waste of power and a poor energy saving effect.
  • the air conditioner control method provided by the application includes:
  • an environmental parameter of a working space of the air conditioner includes: an outdoor temperature, a current number of users in the working space, an average body surface temperature of the user in the working space, and each formed by the air conditioning outlet a user density in a sector region; wherein each of the fan regions is specifically an air outlet region formed when the swinging blades of the air conditioner are located at respective preset swing angles;
  • the air conditioner is controlled to operate with the output power and the dwell time.
  • the embodiment of the invention automatically obtains the environmental parameters of the room where the air conditioner is located, and determines the output power of the air conditioner and the dwell time of the pendulum in each of the sector regions based on the environmental parameters, and controls the air conditioning operation based on the above parameters, without manual adjustment by the user. It is possible to configure appropriate operating parameters according to the current environment, reduce unnecessary energy consumption, and achieve energy saving.
  • FIG. 1 is a flow chart showing an implementation of a method for controlling an air conditioner according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of an air outlet area of an air conditioner according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a specific implementation of a method S101 for controlling an air conditioner according to a second embodiment of the present invention
  • FIG. 4 is a schematic view showing the placement of four electrode plates on a door frame according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a specific implementation of a method S1012 for controlling an air conditioner according to a third embodiment of the present invention.
  • FIG. 6 is a flowchart of a specific implementation of a method for controlling an air conditioner according to a fourth embodiment of the present invention.
  • FIG. 7 is a structural block diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an air conditioner according to another embodiment of the present invention.
  • the execution body of the process is an air conditioner.
  • the air conditioner has an intelligent processing module and an acquisition module, and processes and calculates the operating parameters of the current air conditioner by controlling the environmental parameters acquired by the acquisition module to control the operation of the air conditioner.
  • FIG. 1 is a flowchart showing an implementation of a method for controlling an air conditioner according to a first embodiment of the present invention, which is described in detail as follows:
  • an environmental parameter of an air space of the air conditioner is obtained;
  • the environment parameter includes: an outdoor temperature, a current number of users in the working space, an average body surface temperature of the user in the working space, and the air conditioning The user density in each of the sector regions formed by the wind; wherein each of the fan-shaped regions is specifically an air outlet region formed when the swinging blades of the air conditioner are located at respective preset swing angles.
  • the environment of the air conditioning working space includes two parts: an indoor environment and an outdoor environment.
  • the indoor environmental parameters include the number of users in the working space, the average body surface temperature of the user in the working space, and the user density in each sector of the air conditioning outlet. Since the air conditioner forms a coverable area during the wind sweeping through the pendulum, and the air outlet area of the air conditioner at a certain moment is a sector area smaller than the coverable area, the coverage area is determined by the air conditioner.
  • the center the area formed by the pendulum when the air is blown at each preset swing angle.
  • the coverable area can be divided into a plurality of fan-shaped areas that are adjacent to each other but overlap each other, that is, an air outlet area formed when the swinging leaves of the air conditioner are located at respective preset swing angles, and the area based on the area of the sector and the area
  • the number of users included can determine the user density of the sector.
  • the working space of the air conditioner is specifically: a space formed by an area where the ambient temperature is regulated by the air conditioner, and a space that can be affected by the air conditioner.
  • the environmental parameters collected by the air conditioner include the outdoor temperature, and optionally, the outdoor humidity and the light intensity. Since the humidity and the light intensity also have a certain influence on the temperature regulation of the air conditioner, for example, the greater the light intensity, the greater the influence of the heat radiation of the solar light. If it is necessary to maintain the room at a certain temperature, the light intensity is relatively high. In a weak environment, the output power of the air conditioner will be higher; similarly, the outdoor humidity will have a certain influence on the user's temperature perception. If the humidity is large, the higher the water content in the air, and the specific heat capacity of the water. Large, so if you need to cool the room, the required cooling time is longer, you can properly increase the output power of the air conditioner.
  • the air conditioner can collect the plurality of environmental parameters described above by using different types of sensors built in.
  • the air conditioner can obtain the outdoor temperature through the temperature sensor; in particular, the temperature sensor can be placed at the outdoor unit of the air conditioner, and then the air conditioner communicates with the temperature sensor through Bluetooth communication, wireless local area network communication or serial communication, and obtains the outdoor feedback of the temperature sensor. temperature.
  • the air conditioner can transmit ultrasonic waves to a plurality of preset angles in the working space through an ultrasonic transmitting module and receive an echo signal of the ultrasonic feedback to determine the number of users included in the room.
  • the air conditioner can also obtain a thermal radiation image in the room through the thermal radiation sensor, and determine the number of users in the room and the surface temperature of each user based on the thermal radiation image, and then determine the average body surface temperature of the indoor user, and Based on the thermal radiation image, the user density of each sector area is determined.
  • the air conditioner performs the related operations of S101 at preset time intervals, thereby achieving the purpose of automatically adjusting the operating parameters of the air conditioner as the environmental parameters change.
  • the time interval can be adaptively varied depending on the operating state of the air conditioner. For example, if the air conditioner is in a shutdown or standby state, the time interval may be longer, for example, 10 minutes or 30 minutes; and when the air conditioner is in an operating state, the time interval may be shorter, such as 1 minute or 30 seconds.
  • the outdoor temperature, the average body surface temperature, and the current number are imported into a conversion model of the air conditioner output power, and the output power of the air conditioner is determined.
  • the environmental parameters are divided into two categories, and the output power of the air conditioner and the residence time of the air conditioner in each sector region are respectively calculated.
  • the environmental parameters used to calculate the output power of the air conditioner include: outdoor temperature, average body surface temperature of the indoor user, and number of users.
  • the air conditioner introduces the outdoor temperature, the average body surface temperature, and the number of users in the active space into a conversion model of the preset air conditioner output power, and calculates how much the output power corresponding to the room where the air conditioner is located at the current time. Specifically, the higher the outdoor temperature, the larger the output power of the air conditioner; the higher the average body surface temperature of the user, the larger the output power of the air conditioner; the more the current number, the more heat is dissipated, so the output of the air conditioner The power is also greater. Therefore, based on the relationship between the above three environmental parameters and the output power, it can be determined that the conversion model can be:
  • P is the output power of the air conditioner; outside of the outdoor temperature T, T is the average surface temperature of the table, Q is the number of the current.
  • ⁇ , ⁇ , and ⁇ are adjustment coefficients. The above three parameters are all positively related to the output power of the air conditioner.
  • the air conditioner can also determine the output temperature of the air conditioner according to the outdoor temperature and the body surface temperature of the user.
  • the user can set a target temperature in the air conditioner, that is, the air conditioner will maintain the covered room at the target temperature.
  • the operating temperature of the air conditioner is lower; if the outdoor temperature and the difference between the user's body surface temperature and the target temperature are smaller, The operating temperature of the air conditioner will be higher but still lower than the target temperature, so that based on the above two parameters, the operating temperature of the air conditioner can be determined.
  • the air conditioner can also obtain the indoor humidity, and compare the indoor humidity with the preset humidity range to determine whether the humidification mode needs to be turned on or the dehumidification mode is turned on.
  • the conversion model of the output power of the air conditioner is specifically:
  • the P is actually an output power of the air conditioner
  • the N is the current number
  • the T 1 is an outdoor temperature
  • the T 2 is the average body surface temperature
  • the ⁇ is a preset adjustment a coefficient
  • the P reference is a reference output power of the air conditioner.
  • the air conditioner determines the difference between the outdoor temperature and the average body surface temperature of the user. If the difference is larger, the user's comfort is lower. In this case, the indoor temperature needs to be adjusted by increasing the power. Adjust the user's comfort as soon as possible; if the difference is smaller, the user's comfort is higher. At this time, the power can be appropriately reduced to achieve energy saving.
  • the air conditioner further determines a weighting coefficient according to the current number, and the weighting coefficient is Since the characteristic of the tanh ( ⁇ N) function is less than 1 when the number is low, the air conditioner is in the state of just opening when the number of people is small, and the indoor temperature and the ambient temperature are basically kept at the same time. The output power of the air conditioner should not be too low, and the time to adjust the temperature is too long. Therefore, the characteristics of the tanh ( ⁇ N) function can just make up for the above problem. When the number of people is small, the tanh ( ⁇ N) value is less than 1, the output is guaranteed. The power is not too low, and when the number is large, the value of tanh( ⁇ N) will be approximately 1, thus ensuring that the output power will increase proportionally with the increase of the number of people, satisfying the adjustment requirements of the actual air conditioner.
  • the air conditioner can determine a weighting coefficient by using the outdoor temperature, the average body surface temperature, and the number of users, and perform weighting operation on the reference output power based on the weighting coefficient to determine a current suitable output power to implement an air conditioner output.
  • the purpose of power dynamic adjustment is to improve the efficiency of air conditioning parameter adjustment.
  • a ratio between each of the user densities is calculated, and a dwell time of the pendulum at each of the swing angles is determined based on the ratio.
  • the pendulum leaves of the air conditioner do not oscillate at a constant speed, but the dwell time of the preset angle of the pendulum leaves in each sector region is determined according to the user density contained in the different sector regions.
  • the manner in which the air conditioner obtains the user density of each sector area may be: the air conditioner acquires a user distribution map in the room by, for example, an ultrasonic transmission module or an infrared sensing module, and is covered based on the user profile and each sector area. The area determines the number of users in the sector, thereby determining the user density.
  • the time required for the swinging blade of the air conditioner to swing back and forth once in the swingable range is one swing period, so the staying time of the swinging blade of the air conditioner at the preset swing angle can be calculated according to the user density and the swing period.
  • the specific calculation process is as follows:
  • FIG. 2 is a schematic diagram of an air conditioning airflow coverage area according to an embodiment of the present invention.
  • S is always the total coverage area of the air-conditioning outlet;
  • S 1 - S 4 are the fan-shaped areas formed by the wind when the swinging leaves are at four preset swing angles.
  • the number of users of S 1 to S 4 is 2, 1, 3, and 1, respectively. Based on the number of users of each of the sector regions and the coverage area of the sector, the user density of each sector can be determined, thereby obtaining the dwell time of each preset swing angle.
  • each sector is 1 square meter
  • the user density chalk of the above four sector areas is: 2 persons/m 2 , 1 person/m 2 , 3 persons/m 2 , and 1 person/m 2 . If the swing period is 14s, then
  • the air conditioner is controlled to operate with the output power and the dwell time.
  • the air conditioner controls the air conditioner operation based on the values of the two parameters.
  • the output power of the air conditioner is determined in S103, it is determined.
  • the output temperature and whether the dehumidification and humidification function is enabled, the number of control operation parameters is four.
  • control method of the air conditioner provided by the embodiment of the present invention automatically obtains the environmental parameters of the room where the air conditioner is located, and determines the output power of the air conditioner and the residence time of the pendulum leaves in each of the sector regions based on the environmental parameters. And based on the above parameters to control the operation of the air conditioner, without manual adjustment by the user, the appropriate operating parameters can be configured according to the current environment, unnecessary energy consumption is reduced, and energy saving is achieved.
  • FIG. 3 is a flowchart showing a specific implementation of a method S101 for controlling an air conditioner according to a second embodiment of the present invention.
  • S101 includes S1011 to S1012, and the details are as follows:
  • each group of electrode plates is correspondingly obtained. Jump time; wherein each set of electrode plates are independent and isolated from each other, each set of electrode plates includes two oppositely disposed electrode plates, and the distance between each set of electrode plates and the air conditioner is different .
  • the working space may be provided with an electrode plate group for detecting the user's access to the working space, that is, the user may walk between each group of the electrode plates in the electrode plate group, by changing each group of electrodes
  • the dielectric constant between the boards is used to detect whether there is a user entering or leaving the working space.
  • the electrode plate group may be disposed on the door frame of the entrance and exit of the active space.
  • the electrode plate set includes at least two sets of electrode plates, which are named in the present embodiment by the first set of electrode plates and the second set of electrode plates. Each set of electrode plates includes two oppositely disposed electrode plates.
  • the two electrode plates of the set of electrode plates may be respectively disposed on opposite sides of the door frame to form a capacitor-like structure.
  • each set of electrode plates is in a separate DC circuit. When the switch of the DC circuit is turned on, each electrode plate on the set of electrode plates will accumulate a certain amount of charge.
  • the two electrode plates included on the first group of electrode plates are the first electrode plate and the second electrode plate, respectively, and the two electrode plates included on the second group electrode plate are respectively the third electrode plate and the third electrode plate.
  • Four electrode plates Since the medium between the first electrode plate and the second electrode plate is air when no one passes, the amount of charge is kept stable.
  • the human body has certain conductive properties, and the dielectric constant of the air is different. If the user passes between the first electrode plate and the second electrode plate when entering or exiting the door frame, the first electrode plate and the second electrode plate are changed. The dielectric constant of the dielectric between the electrode plates, which causes the two electrode plates to charge or discharge, changing the amount of charge on the two electrode plates. By the same token, the above characteristics can also occur for the third electrode plate and the fourth electrode plate. Based on the above principle, the air conditioner can determine whether the number of people in the air-conditioning function space has changed by detecting whether the amount of charge of the first group of electrode plates and the amount of charge on the second group of electrodes are hopping.
  • each set of electrode plates and the air conditioner since the distance between each set of electrode plates and the air conditioner is not the same, that is, one set of electrode plates is closer to the outside, and the other set of electrode plates are closer to the room, so that different groups are based on different groups.
  • the jumping time of the electrode plate can determine whether the user enters the room from the outside, or walks out of the room to the outside, thereby determining whether to increase or decrease the number of users.
  • FIG. 4 is a schematic view showing the placement of four electrode plates on a door frame according to an embodiment of the invention.
  • the plate faces of the first electrode plate and the second electrode plate are opposite to each other, and may be regarded as a capacitor to constitute a first group of electrode plates, and opposite to the second group of electrode plates, that is, by the third electrode plate.
  • the other set of electrode plates formed with the fourth electrode plate is relatively close to the room; and the plate faces of the third electrode plate and the fourth electrode plate are also opposed to each other with respect to the first electrode plate and the second electrode plate It is relatively close to the outside.
  • the four electrode plates are placed on the left and right sides of the door frame, but the first electrode plate and the second electrode plate can be placed on the upper and lower sides of the door frame.
  • the third electrode plate and the fourth electrode plate may be placed on the left and right sides of the door frame, or may be placed on the upper and lower sides, as long as the third electrode plate and the fourth electrode plate are opposite to the first electrode plate and the second electrode plate.
  • the electrode plate is close to the outdoor, that is, the distance from the air conditioner is far.
  • a DC sensing circuit is disposed on the DC circuit of the first electrode plate and the second electrode plate, and the charge sensing module is configured to detect the amount of charge of the first electrode plate and/or the second electrode plate.
  • the sensing module detects that the amount of charge of the first electrode plate and/or the second electrode plate changes, that is, sends a charge jump instruction to the air conditioner, and after the air conditioner receives the charge jump command, identifies the first electrode plate.
  • the amount of charge changes and the time of receipt of the charge jump command is recorded with the first transition time.
  • the manner of detecting whether there is a jump in the charge amount of the third electrode plate and obtaining the second transition time is the same as the case discussed above, and details are not described herein again.
  • the air conditioner can be directly connected to the DC circuit where the first electrode plate is located and another DC circuit where the third electrode plate is located, through the pins respectively connected to the two DC circuits.
  • the signal input waveform determines whether there is an input waveform similar to the pulse signal to determine whether there is a charge amount jump.
  • the current number of users in the active space is counted based on the hop time of each set of electrode plates.
  • the air conditioner when the air conditioner detects that the first hop time is earlier than the second hop time, it indicates that there is a user moving from indoor to outdoor, that is, the number of people in the room is reduced, so the number of indoor users needs to be adjusted.
  • the air conditioner when the air conditioner detects that the first hopping time is later than the second hopping time, it indicates that the user moves from the outdoor to the indoor, that is, the number of people in the room increases, and the number of users in the working space needs to be adjusted. .
  • two sets of electrode plates are disposed on the door frame of the working space, and based on the change in the amount of charge on the electrode plate, it is determined whether there is a user entering or leaving the air conditioning function space, thereby increasing the number of indoor users.
  • the manufacturing cost is lower, and the modification is more convenient, and four electrode plates can be added, which reduces the cost of the air conditioner provided by the present invention.
  • FIG. 5 is a flowchart showing a specific implementation of a method S1012 for controlling an air conditioner according to a third embodiment of the present invention.
  • S1012 includes the following steps, which are specifically described as follows:
  • the air conditioner receives a change graph of the amount of charge of the first electrode plate.
  • the air conditioner acquires a peak value of the amount of charge of the first electrode plate at the first transition time.
  • the value corresponding to the peak is taken as the first amount of charge. Since the degree of charge and discharge caused by the difference in the number of people is different when passing through the region between the first electrode plate and the second electrode plate, the value of the first charge amount is different depending on the amount of charge, that is, the time of the jump. Therefore, the air conditioner can determine the time of the jump by acquiring the magnitude of the first amount of charge, and the number of people leaving the room at the same time.
  • the air conditioner uses the method of directly connecting the pin to the DC circuit to detect whether the first electrode plate has a jump, the pulse signal generated when the first electrode plate is hopped may be used.
  • the signal amplitude is converted to the amount of charge as the first amount of charge.
  • the number of reductions reduced by the user is determined based on the first amount of charge, and the current number of users in the active space is adjusted according to the reduced number; the first set of electrode plates and the air conditioner The first distance value is less than the second distance value of the second set of electrode plates.
  • the air conditioner is pre-configured with a correspondence table between the amount of hopping charge and the number of people passing through. After the first amount of charge is obtained, the number of the number of people in the pass can be queried through the correspondence table. The number of users is reduced as the number of users reduced, and the number of users in the space is reduced accordingly, thereby realizing the purpose of adjusting the number of users in real time.
  • the implementation of the S504 is the same as that of the S502.
  • the implementation of the S504 is the same as that of the S502.
  • the number of increases increased by the user is determined based on the second amount of charge, and the current number of users in the active space is adjusted according to the increased number.
  • the correspondence table between the amount of the jumped charge and the number of passers can still be used, in particular, if the first electrode plate and the second electrode are The capacitance value of the capacitor structure formed by the electrode plate and the capacitance value of the capacitor structure formed by the third electrode plate and the fourth electrode plate are the same, and the correspondence table for determining the number of additions is identical to the correspondence table for determining the number of reductions. Therefore, in this case, the air conditioner can simply save a correspondence table.
  • the air conditioner needs to obtain two correspondence tables matching the capacitance values of the two pairs of electrode plates, thereby determining the number of additions and the number of reductions.
  • the air conditioner can determine the number of people corresponding to the second amount of charge by querying the correspondence table, and correspondingly increase the number of users in the space to realize real-time adjustment of the user. The purpose of the number.
  • the number of people passing through is determined, and the purpose of accurately adjusting the number of users in the working space is achieved, and the accuracy of the control is improved.
  • FIG. 6 is a flowchart showing a specific implementation of a method for controlling an air conditioner according to a fourth embodiment of the present invention.
  • the method for controlling an air conditioner provided by the embodiment further includes: S601 to S603 before the obtaining the environmental parameter of the air conditioning working space. Said as follows:
  • the indoor temperature of the current working space is acquired at a preset time interval.
  • the air conditioner acquires the indoor temperature of the current working space at a preset time interval, and compares the indoor temperature with a preset starting temperature to determine whether the current temperature is Meet the starting conditions of the air conditioner. If the current indoor temperature is less than or equal to the preset starting temperature, the power is kept off or in the standby state.
  • the current indoor temperature can be obtained and compared with the preset starting temperature to determine whether It is necessary to turn off the air conditioning operation and reduce the energy consumption; on the contrary, if the indoor temperature is greater than the preset starting temperature, it is necessary to further determine whether there is a user in the active space of the current air conditioner, and therefore the related operation of S602 is performed.
  • the air conditioner determines the number of users in the active space, and compares the number of the users with the preset number of starts to determine whether the number of start conditions is met. If the number of the users is less than or equal to the preset number of startups, the air conditioner is kept in the standby or power-off state; otherwise, if the number of users is greater than the preset number of startups, the related operations of S603 are performed.
  • the preset number of startups is 0.
  • the air conditioner is started; if there is no user in the working space, the air conditioner is kept in the air even if the indoor temperature is high. Shut down or standby to avoid unnecessary waste of resources.
  • the air conditioner when it is detected that the number of users in the indoor space is greater than the preset number of startups, and the current indoor temperature is also higher than the startup temperature, the air conditioner is activated, and other environmental parameters are acquired, thereby automatically adjusting the air conditioner.
  • the purpose of running the parameters when it is detected that the number of users in the indoor space is greater than the preset number of startups, and the current indoor temperature is also higher than the startup temperature, the air conditioner is activated, and other environmental parameters are acquired, thereby automatically adjusting the air conditioner. The purpose of running the parameters.
  • the air conditioner by setting the temperature starting condition and the number of people starting conditions, the air conditioner is automatically started, and no waste of resources is caused, and the energy saving efficiency of the air conditioner is improved.
  • FIG. 7 is a structural block diagram of an air conditioner according to an embodiment of the present invention.
  • the air conditioner includes units for performing the steps in the embodiment corresponding to FIG. 1.
  • please refer to the related description in the embodiment corresponding to FIG. 1 and FIG. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the air conditioner includes:
  • the environment parameter obtaining unit 71 is configured to acquire an environmental parameter of the working space of the air conditioner, where the environmental parameter includes: an outdoor temperature, a current number of users in the working space, an average body surface temperature of the user in the working space, and a user density in each of the fan-shaped regions formed by the air-conditioning outlets; wherein each of the fan-shaped regions is specifically an air-out region formed when the swinging blades of the air conditioner are located at respective preset swing angles;
  • the output power calculation unit 72 is configured to import the outdoor temperature, the average body surface temperature, and the current number into a conversion model of the air conditioner output power, and determine an output power of the air conditioner;
  • a dwell time calculation unit 73 configured to calculate a ratio between each of the user densities, and determine a dwell time of the pendulum at each of the swing angles based on the ratio;
  • the air conditioning control unit 74 is configured to control the air conditioner to operate with the output power and the dwell time.
  • the environment parameter obtaining unit 71 includes:
  • a hopping time acquisition unit configured to acquire each group of electric charge when at least two sets of electrode plates in the electrode plate group for detecting a user entering and leaving the working space are detected to be hopped
  • Each of the electrode plates has a corresponding transition time; wherein each of the electrode plates is independent and isolated from each other, and each set of electrode plates includes two oppositely disposed electrode plates, and each set of electrode plates is electrically connected to the air conditioner The distance values are different;
  • the current number statistics unit is configured to count the current number based on the hop time of each group of electrode plates.
  • the current number of statistical units includes:
  • a first charge amount acquiring unit configured to acquire the first group of electrodes if a first hop time of the first group of electrode plates in the electrode plate group is earlier than a second hop time of the second group of electrode plates a first amount of charge of the board at the first transition time;
  • a reduced number determining unit configured to determine a reduced number of user reductions based on the first amount of charge, and adjust the current number according to the reduced number; the first set of electrode plates and the air conditioner a distance value is less than a second distance value of the second set of electrode plates;
  • a second charge amount acquisition unit configured to acquire a second amount of charge of the second group of electrode plates at the second hopping time if the first hop time is later than the second hop time
  • And increasing a number determining unit configured to determine, according to the second amount of charge, an increased number of users, and adjust the current number according to the increased number.
  • the conversion model of the output power of the air conditioner is specifically:
  • the P is actually an output power of the air conditioner
  • the N is the current number
  • the T 1 is an outdoor temperature
  • the T 2 is the average body surface temperature
  • the ⁇ is a preset adjustment a coefficient
  • the P reference is a reference output power of the air conditioner.
  • the air conditioner further includes:
  • An indoor temperature acquiring unit configured to acquire an indoor temperature of the current working space at a preset time interval
  • a current number determining unit configured to acquire a current number of users in the working space if the indoor temperature is outside a preset temperature range
  • the air conditioning starting unit is configured to start the air conditioner if the current number is greater than a preset number of startups, and perform an operation of acquiring an environmental parameter of the air conditioning working space.
  • the air conditioner provided by the embodiment of the invention can also be manually adjusted without the user, and can configure appropriate operating parameters according to the current environment, reduce unnecessary energy consumption, and achieve energy saving.
  • FIG. 8 is a schematic diagram of an air conditioner according to another embodiment of the present invention.
  • the air conditioner 8 of this embodiment includes a processor 80, a memory 81, and a computer program 82 stored in the memory 81 and operable on the processor 80, such as a control program of an air conditioner.
  • the processor 80 executes the computer program 82, the steps in the embodiment of the control method of each of the above air conditioners are implemented, such as S101 to S104 shown in FIG. 1.
  • the processor 80 executes the computer program 82
  • the functions of the units in the above various device embodiments are implemented, such as the functions of the modules 71 to 74 shown in FIG.
  • the computer program 82 can be partitioned into one or more units that are stored in the memory 81 and executed by the processor 80 to complete the present invention.
  • the one or more units may be a series of computer program instruction segments capable of performing a particular function for describing the execution of the computer program 82 in the air conditioner 8.
  • the computer program 82 can be divided into an environmental parameter acquisition unit, an output power calculation unit, a dwell time calculation unit, and an air conditioning control unit, each of which has a specific function as described above.
  • the air conditioner may include, but is not limited to, a processor 80, a memory 81. It will be understood by those skilled in the art that FIG. 8 is merely an example of the air conditioner 8, does not constitute a limitation of the air conditioner 8, may include more or less components than those illustrated, or combine some components, or different components, such as
  • the air conditioner may also include an input and output device, a network access device, a bus, and the like.
  • the processor 80 may be a central processing unit (CPU), or may be other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 81 may be an internal storage unit of the air conditioner 8, such as a hard disk or a memory of the air conditioner 8.
  • the memory 81 may also be an external storage device of the air conditioner 8, such as a plug-in hard disk provided on the air conditioner 8, a smart memory card (SMC), and a Secure Digital (SD) card. Flash card, etc.
  • the memory 81 may also include both an internal storage unit of the air conditioner 8 and an external storage device.
  • the memory 81 is used to store the computer program and other programs and data required by the air conditioner.
  • the memory 81 can also be used to temporarily store data that has been output or is about to be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请适用于空调技术领域,提供了一种空调的控制方法及空调,包括:获取空调的作用空间的环境参数;将室外温度、平均体表温度以及当前个数导入到空调输出功率的转换模型,确定空调的输出功率;计算各个用户密度之间比值,并基于比值确定摆叶在各个摆动角度的停留时间;控制空调以输出功率以及停留时间运行。

Description

一种空调的控制方法及空调
本申请申明享有2018年02月08日递交的申请号为201810167293.0、名称为“一种空调的控制方法及空调”中国专利申请的优先权,该中国专利申请的整体内容以参考的方式结合在本申请中。
技术领域
本发明属于空调技术领域,尤其涉及一种空调的控制方法及空调。
背景技术
空调,作为现今调节室内温度的主要设备,已成为大众生活上必不可少的电器设备之一,因而空调控制是否便利智能,越来越备受用户关注。然而现有的空调控制技术,需要手动对空调的运行参数进行调整,从而增加了用户的操作步骤,并且当室内用户数量发生变化时,空调依然保持原有的运行模式进行工作,容易造成电量浪费的情况,节能效果较差。
技术问题
有鉴于此,本发明实施例提供了一种空调的控制方法及空调,以解决现有的空调的控制方法,需要用户手动调节,并且容易造成电量浪费的情况,节能效果较差的问题。
技术解决方案
本申请提供的一种空调的控制方法,包括:
获取空调的作用空间的环境参数;所述环境参数包括:室外温度、所述作用空间内用户的当前个数、所述作用空间内用户的平均体表温度,以及所述空调出风形成的各个扇形区域内的用户密度;其中,各个所述扇形区域具体为:所述空调的摆叶位于各个预设的摆动角度时形成的出风区域;
将所述室外温度、所述平均体表温度以及所述当前个数导入到空调输出功率的转换模型,确定所述空调的输出功率;
计算各个所述用户密度之间比值,并基于所述比值确定所述摆叶在各个所述摆动角度的停留时间;
控制所述空调以所述输出功率以及所述停留时间运行。
有益效果
本发明实施例通过自动获取空调所在房间的环境参数,并基于环境参数确定该空调的输出功率以及摆叶在各个所述扇形区域的停留时间,并基于上述参数控制空调运行,无需用户手动调节,可以根据当前的环境配置合适的运行参数,减少不必要的能源消耗,实现节能的 目的。
附图说明
图1是本发明第一实施例提供的一种空调的控制方法的实现流程图;
图2是本发明一实施例提供的空调出风覆盖区域的示意图;
图3是本发明第二实施例提供的一种空调的控制方法S101的具体实现流程图;
图4是本发明一实施例提供的一种门框上四个电极板的放置示意图;
图5是本发明第三实施例提供的一种空调的控制方法S1012的具体实现流程图;
图6是本发明第四实施例提供的一种空调的控制方法的具体实现流程图;
图7是本发明一实施例提供的一种空调的结构框图;
图8是本发明另一实施例提供的一种空调的示意图。
本发明的实施方式
在本发明实施例中,流程的执行主体为空调。该空调内设有智能处理模块以及采集模块,通过对采集模块获取的环境参数进行处理运算,确定当前空调的运行参数,控制空调运行。图1示出了本发明第一实施例提供的空调的控制方法的实现流程图,详述如下:
在S101中,获取空调的作用空间的环境参数;所述环境参数包括:室外温度、所述作用空间内用户的当前个数、所述作用空间内用户的平均体表温度,以及所述空调出风形成的各个扇形区域内的用户密度;其中,各个所述扇形区域具体为:所述空调的摆叶位于各个预设的摆动角度时形成的出风区域。
在本实施例中,空调作用空间的环境包括室内环境以及室外环境两部分。其中,室内环境参数包括作用空间内用户的个数、作用空间内用户的平均体表温度以及空调出风形式的各个扇形区域内的用户密度。由于空调在通过摆叶进行扫风的过程中会形成一个可覆盖区域,而空调某一时刻的出风区域是小于可覆盖区域的一个扇形区域,即可覆盖区域是由该扇形区域以空调为中心、以摆叶在各个预设的摆动角度进行送风时所形成的区域。因此,可以将可覆盖区域划分为多个边界相邻但互补重叠的扇形区域,即空调的摆叶位于各个预设的摆动角度时形成的出风区域,而基于该扇形区域的面积以及该面积包含的用户人数,则可以确定该扇形区域的用户密度。
在本实施例中,空调的作用空间具体为:环境温度受空调调控的区域所构成的空间,即可被空调影响的空间。
除上述室内环境参数外,空调采集的环境参数还包括室外温度,可选地,还可以包括室 外湿度以及光照强度。由于湿度以及光照强度对于空调的温度调节也存在一定的影响,例如光照强度越大,则表示太阳光线的热辐射影响越大,此时若需要维持室内处于稳定某一温度,相对于光照强度较弱的环境而言,空调的输出功率会较高;同样地,室外湿度也会对用户的温度感知有一定的影响,湿度较大,则表示空气中水的含量越高,而水的比热容较大,因此若需要对室内进行降温,则所需的降温时间较长,可以适当提高空调的输出功率。
在本实施例中,空调可通过内置不同类型的传感器,采集上述多项环境参数。空调可通过温度传感器获取室外温度;特别地,该温度传感器可放置于空调室外机处,然后空调通过蓝牙通信、无线局域网通信或串口通信等方式与温度传感器进行通信连接,获取温度传感器反馈的室外温度。空调可以通过超声波接发模块,向作用空间内的多个预设的角度发射超声波并接收超声波反馈的回波信号,确定该房间内包含的用户个数。空调还可以通过热辐射传感器,获取房间内的热辐射图像,并基于该热辐射图像确定该房间内的用户个数以及各个用户的表面温度,继而求出该室内用户的平均体表温度,并基于该热辐射图像,确定各个扇形区域的用户密度。
优选地,空调会以预设的时间间隔执行S101的相关操作,从而实现随着环境参数的变化自动调整空调的运行参数的目的。特别地,该时间间隔根据空调的运行状态的不同可以适应性地变化。例如,空调处于关机或待机状态,则该时间间隔可以较长,例如10分钟或30分钟;而空调处于运行状态下,则该时间间隔可以较短,例如1分钟或30秒。
在S102中,将所述室外温度、所述平均体表温度以及所述当前个数导入到空调输出功率的转换模型,确定所述空调的输出功率。
在本实施例中,空调在获取了上述环境参数后,则将环境参数分为两类,分别计算空调的输出功率以及空调在各个扇形区域的停留时间。其中,用于计算空调的输出功率的环境参数包括:室外温度、室内用户的平均体表温度以及用户个数。
在本实施例中,空调将室外温度、平均体表温度以及作用空间内用户的个数导入到预设的空调输出功率的转换模型内,计算当前时刻空调所在房间所对应的输出功率是多大。具体地,室外温度越高,则空调的输出功率越大;用户的平均体表温度越高,则空调的输出功率越大;当前个数越多,则散发的热量越多,因此空调的输出功率也越大。因此,基于上述三个环境参数与输出功率之间的关系,可以确定该转换模型可为:
P=αT 室外·βT ·γQ;P∝T 室外,P∝T ,P∝Q;
其中,P为空调的输出功率;T 室外为室外温度,T 为平均体表温度,Q为当前个数。α、β以及γ为调整系数。上述三项参数均与空调的输出功率成正相关。
可选地,空调还可以根据室外温度以及用户的体表温度,确定空调的输出温度。用户可以在空调内设置一个目标温度,即空调会维持所覆盖的房间在该目标温度。其中,若室外温度以及用户的体表温度与该目标温度的差值越大,则空调的运行温度则会越低;若室外温度以及用户的体表温度与该目标温度的差值越小,则空调的运行温度会越高但依然会低于目标温度,从而基于上述两个参数,可以确定该空调的运行温度。
可选地,空调还可以获取室内湿度,并将该室内湿度与预设的湿度范围进行比对,确定是否需要开启增湿模式,或是开启除湿模式。
进一步地,作为本发明另一实施例,所述空调输出功率的转换模型具体为:
Figure PCTCN2018083289-appb-000001
其中,所述P 实际为空调的输出功率;所述N为所述当前个数;所述T 1为室外温度;所述T 2为所述平均体表温度;所述δ为预设的调整系数;所述P 基准所述空调的基准输出功率。
在本实施例中,空调会确定室外温度与用户的平均体表温度之差,若上述差值越大,则表示用户的舒适度较低,此时需要通过加大功率来调整室内温度,以尽快调整用户的舒适度;若上述差值越小,则表示用户的舒适度较高,此时可以适当减少功率,实现节能的效果。
在本实施例中,空调还会根据当前个数确定一个加权系数,该加权系数即为
Figure PCTCN2018083289-appb-000002
由于tanh(δN)函数的特性是在个数较低时,其数值会小于1,而人数较少的情况下一般是空调处于刚刚开启的阶段,此时室内温度与外界温度基本保持持平,因此空调的输出功率不能过低,避免调整温度的时间过长,因此通过tanh(δN)函数的特性刚好可以弥补上述情况的问题,在人数较少时,tanh(δN)值小于1,会保证输出功率不至于过低,而当人数较多时,tanh(δN)的数值会近似1,从而保证输出功率会随着人数的增大而呈现正比例增大的关系,满足实际空调的调整需求。
在本发明实施例中,空调可通过室外温度、平均体表温度以及用户的个数确定一个加权系数,并基于该加权系数对基准输出功率进行加权运算,确定当前合适的输出功率,实现空调输出功率动态调整的目的,提高了空调参数调整的效率。
在S103中,计算各个所述用户密度之间比值,并基于所述比值确定所述摆叶在各个所述摆动角度的停留时间。
在本实施例中,空调的摆叶并非匀速摆动的,而是会根据不同扇形区域中包含的用户密度,确定摆叶在各个扇形区域对应的预设角度的停留时间。具体地,空调获取各个扇形区域的用户密度的方式可以为:空调通过例如超声波接发模块或红外感应模块,获取该房间内的 用户分布图,并基于该用户分布图以及每个扇形区域所覆盖的面积,确定该扇形区域内用户的个数,从而确定该用户密度。
在本实施例中,定义空调的摆叶在可摆动范围内摆动往返一次所需的时间为一个摆动周期,因此空调的摆叶在预设摆动角度的停留时间可根据该用户密度与摆动周期计算得到,具体的计算过程如下:
Figure PCTCN2018083289-appb-000003
其中,T(i)为摆叶在第i个扇形区域对应的摆动角度的停留时间;ρ i为第i个扇形区域的用户密度;T为摆动周期;n为扇形区域的个数。
举例性地,图2为本发明一实施例提供的空调出风覆盖区域的示意图。参见图2所示,S 为空调出风总的覆盖区域;S 1~S 4为摆叶在四个预设摆动角度时所出风形成的扇形区域。其中,S 1~S 4的用户的个数分别为2个、1个、3个以及1个。基于上述各个扇形区域的用户个数以及扇形区域的覆盖面积,可以确定各个扇形区域的用户密度,从而得到各个预设的摆动角度的停留时间。例如各个扇形区域的面积均为1平方米,则上述四个扇形区域的用户密度粉笔为:2人/m 2、1人/m 2、3人/m 2以及1人/m 2。若摆动周期为14s,则
Figure PCTCN2018083289-appb-000004
Figure PCTCN2018083289-appb-000005
在S104中,控制所述空调以所述输出功率以及所述停留时间运行。
在本实施例中,空调在确定了输出功率以及在各个扇形区域的停留时间后,则基于上述两个参数的值控制空调运行,当然若在S103中除了确定空调的输出功率外,还确定了输出温度以及是否开启除湿增湿功能,则本次控制运行参数的个数为四个。
以上可以看出,本发明实施例提供的一种空调的控制方法通过自动获取空调所在房间的环境参数,并基于环境参数确定该空调的输出功率以及摆叶在各个所述扇形区域的停留时间,并基于上述参数控制空调运行,无需用户手动调节,可以根据当前的环境配置合适的运行参数,减少不必要的能源消耗,实现节能的目的。
图3示出了本发明第二实施例提供的一种空调的控制方法S101的具体实现流程图。参见图3所示,相对于图1所述实施例,本实施例提供的一种空调的控制方法中S101包括S1011~S1012,具体详述如下:
在S1011中,若检测到设置于所述作用空间内用于检测用户进出所述作用空间的电极板组中的至少两组电极板的电荷量均发生跳变,则获取每组电极板各自对应的跳变时间;其中,所述每组电极板之间相互独立且隔离,所述每组电极板包括两个相对设置的电极板,且每组电极板与所述空调之间的距离值不同。
在本实施例中,作用空间可以设置有电极板组,该电极板组用于检测用户进出作用空间,即用户可在电极板组中的每一组电极板间进行同行,通过改变各组电极板间的介电常数,检测是否有用户进出作用空间。具体地,该电极板组可设置于所作用空间的出入口的门框上。该电极板组中包含至少两组电极板,在本实施例中用第一组电极板以及第二组电极板进行命名。每组电极板包括两个相对设置的电极板,若该组电极板设置于门框上,则该组电极板的两个电极板可以分别设置于门框的对边上,构成一个类似电容的结构,需要说明的是,每组电极板处于独立的直流电路中,当接通该直流电路的开关时,该组电极板上的每个电极板会聚集一定的电荷量。为了便于描述,现限定第一组电极板上包含的两个电极板分别为第一电极板以及第二电极板,第二组电极板上包含的两个电极板分别为第三电极板以及第四电极板。由于在没有人经过时,第一电极板与第二电极板之间的介质为空气,该电荷量是保持稳定的。然而人体是具有一定的导电性质的,与空气的介电常数不相同,若用户在进出门框时,从第一电极板与第二电极板间穿过,则会改变第一电极板与第二电极板之间绝缘介质的介电常数,从而导致两个电极板会进行充电或放电的过程,改变两个电极板上的电荷量。同样道理,对于第三电极板与第四电极板也可以同样会出现上述特征。基于上述原理,空调可通过检测第一组电极板的电荷量以及第二组电极板上的电荷量是否发生跳变,从而确定是否有人经过门框,判断空调作用空间的人数是否发生了变化。
在本实施例中,由于每组电极板之间与空调之间的距离并不相同,即有一组电极板会距离室外较近,而另一组电极板距离室内较近,从而基于不同组的电极板的跳变时间,则可以确定用户是从室外进入室内,抑或是从室内走出到室外,从而判定是对用户人数进行增加操作或是减少操作。
图4示出了本发明实施例提供的一种门框上四个电极板的放置示意图。参见图4所示,第一电极板与第二电极板的板面是彼此相对的,可看似一个电容,构成第一组电极板,并且相对第二组电极板,即由第三电极板与第四电极板构成的另一组电极板,是较为靠近室内的;而第三电极板与第四电极板的板面也是彼此相对的,相对于第一电极板与第二电极板而言是较为靠近室外的。当然,在图4中上述4个电极板均放置于门框的左右两侧,但不限于此,第一电极板与第二电极板可放置于门框的上下两条对边上,此时,第三电极板与第四电极板既可以放置于门框的左右两对边上,也可以放置于上下两对边上,只要保证第三电极板与第四电极板相对于第一电极板与第二电极板而言是靠近室外即可,即距离空调的距离较远。
在本实施例中,第一电极板与第二电极板的直流电路上设有一电荷感应模块,该电荷感应模块用于检测第一电极板和/或第二电极板的电荷量的大小,当电荷感应模块检测到第一电极板和/或第二电极板的电荷量发生变化时,即向空调发送一个电荷跳变指令,当空调接 收到该电荷跳变指令后,则识别该第一电极板的电荷量发生变化,并将接收到电荷跳变指令的时刻记录有第一跳变时间。同理,检测第三电极板电荷量是否存在跳变以及获取第二跳变时间的方式与上述论述的情况相同,在此不再赘述。当然,若空调是安置于门框附近,则空调还可以直接与第一电极板所在的直流电路以及第三电极板所在的另一直流电路直接相连,通过分别与两个直流电路连接的管脚的信号输入波形,判定是否有类似于脉冲信号的输入波形,从而确定是否存在电荷量跳变的情况。
在S1012中,基于各组电极板的所述跳变时间统计所述作用空间内用户的当前个数。
在本实施例中,空调检测到第一跳变时间早于第二跳变时间,则表示存在用户从室内移动到室外,即室内的人数减少了,因此需要对室内用户的个数进行调整。
在本实施例中,空调检测到第一跳变时间晚于第二跳变时间,则表示存在用户从室外移动到室内,即室内的人数增加了,需要对作用空间内用户的个数进行调整。
在本发明实施例中,通过在作用空间的门框上设置两组电极板,并基于电极板上的电荷量变化,判定是否存在用户进入或离开空调作用空间,从而实现对室内用户的人数进行增加调整,与现有的室内人数识别的技术相比,制作成本较低,并且改造较为方便,添加4个电极板即可,降低了本发明提供的空调的造价。
图5示出了本发明第三实施例提供的一种空调的控制方法S1012的具体实现流程图。参见图5所示,相对于图3所述实施例,本实施例提供的一种空调的控制方法中S1012包括以下步骤,具体详述如下:
在S501中,检测第一跳变时间是否早于第二跳变时间。
在S502中,若所述电极板组中的第一组电极板的第一跳变时间早于第二组电极板的第二跳变时间,则获取所述第一组电极板在所述第一跳变时刻的第一电荷量。
在本实施例中,空调接收到的可以为第一电极板的电荷量的变化曲线图,在该情况下,空调会获取在第一跳变时刻该第一电极板的电荷量的峰值,将该峰值对应的数值作为第一电荷量。由于经过第一电极板与第二电极板之间的区域时,人数不同所引起的充放电的程度也不同,反映在电荷量上即跳变时刻该第一电荷量的数值会不同。因此,空调可以通过获取第一电荷量的大小,确定该跳变时刻,同时离开室内的人数具体为多少。
当然,除了该变化曲线图外,空调若采用的是将管脚直接接入直流电路上的方式检测第一电极板是否存在跳变,则可以基于第一电极板发生跳变时出现的类脉冲信号的信号幅值转换为电荷量,作为第一电荷量。
在S503中,基于所述第一电荷量确定用户减少的减少个数,并根据所述减少个数调整所述作用空间内用户的当前个数;所述第一组电极板与所述空调的第一距离值小于所述第二 组电极板的第二距离值。
在本实施例中,空调预设有跳变电荷量与通行人数的对应关系表,在获取了第一电荷量后,可以通过该对应关系表查询本次通行人数的个数,将该通行人数的个数作为用户减少的减少个数,并相应地减少作用空间内用户的个数,实现实时调整用户的个数的目的。
在S504中,若所述第一跳变时间晚于所述第二跳变时间,则获取所述第二组电极板在所述第二跳变时刻的第二电荷量。
在本实施例中,由于S504的实现方式与S502的实现方式完全相同,具体参数可参见S502的相关描述,在此不再赘述。
在S505中,基于所述第二电荷量确定用户增加的增加个数,并根据所述增加个数调整所述作用空间内用户的当前个数。
在本实施例中,需要说明的是,S505查询第二电荷量对应的增加个数时,依然可以采用跳变电荷量与通行人数的对应关系表,特别地,若第一电极板与第二电极板构成的电容结构的电容值,以及第三电极板与第四电极板构成的电容结构的电容值相同,则确定增加个数的对应关系表与确定减少个数的对应关系表是完全相同的,因此该情况下,空调可以只是保存一个对应关系表即可。当然,若上述两对电极板构成的电容结构的电容值不相同,则空调需要获取两个与两对电极板的电容值相匹配的对应关系表,从而确定增加个数以及减少个数。
在本实施例中,空调在确定了第二电荷量后,可以通过查询对应关系表,确定第二电荷量所对应的增加人数,并相应地增加作用空间内用户的个数,实现实时调整用户的个数的目的。
在本发明实施例中,通过获取跳变时刻的电荷量,确定通行的人数,实现准确调整作用空间内用户的个数的目的,提高控制的准确率。
图6示出了本发明第四实施例提供的一种空调的控制方法的具体实现流程图。参见图6所示,相对于图1至图5所述实施例,本实施例提供的一种空调的控制方法在所述获取空调作用空间的环境参数之前,还包括:S601~S603,具体详述如下:
在S601中,以预设的时间间隔获取当前所述作用空间的室内温度。
在本实施例中,若空调处于待机或关机状态,则空调会以预设的时间间隔获取当前作用空间的室内温度,并将该室内温度与预设的启动温度进行比较,判定是否当前温度是否满足空调的启动条件。若当前的室内温度小于或等于预设的启动温度,则保持关机状态或待机状态,当然,在空调处于启动时,也可以通过获取当前的室内温度,与预设的启动温度进行比较,判定是否需要关闭空调运作,减少能量的消耗;反之,若室内温度大于预设的启动温度,则需要进一步判断当前空调的作用空间内是否存在用户,因此执行S602的相关操作。
在S602中,若所述室内温度在预设的温度范围外,则获取所述作用空间内用户的当前个数。
在本实施例中,空调若检测到室内的温度大于预设的启动温度,则表示当前室内的温度较高,可能需要通过空调进行降温。在该情况下,空调会确定该作用空间内用户的个数,并将该用户的个数与预设的启动个数进行比对,确定是否满足人数启动条件。若用户的个数小于或等于预设的启动个数,则保持空调处于待机或关机状态;反之,若用户的个数大于预设的启动个数,则执行S603的相关操作。
优选地,该预设的启动个数为0,当作用空间内的有至少一个用户且室内温度较高时,则启动空调;若作用空间内不存在用户,即便室内温度较高也保持空调处于关机或待机状态,避免不必要的资源浪费。
在S603中,若所述当前个数大于预设的启动个数,则启动所述空调,并执行获取空调作用空间的环境参数的操作。
在本实施例中,当检测到室内空间的用户个数大于预设的启动个数后,并且当前的室内温度也高于启动温度,则启动该空调,并获取其他环境参数,实现自动调整空调运行参数的目的。
在本发明实施例中,通过设置温度启动条件以及人数启动条件,实现空调自动启动,并且不会造成资源浪费,提高了空调的节能效率。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
图7示出了本发明一实施例提供的一种空调的结构框图,该空调包括的各单元用于执行图1对应的实施例中的各步骤。具体请参阅图1与图1所对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。
参见图7,所述空调包括:
环境参数获取单元71,用于获取空调的作用空间的环境参数;所述环境参数包括:室外温度、所述作用空间内用户的当前个数、所述作用空间内用户的平均体表温度,以及所述空调出风形成的各个扇形区域内的用户密度;其中,各个所述扇形区域具体为:所述空调的摆叶位于各个预设的摆动角度时形成的出风区域;
输出功率计算单元72,用于将所述室外温度、所述平均体表温度以及所述当前个数导入到空调输出功率的转换模型,确定所述空调的输出功率;
停留时间计算单元73,用于计算各个所述用户密度之间比值,并基于所述比值确定所述摆叶在各个所述摆动角度的停留时间;
空调控制单元74,用于控制所述空调以所述输出功率以及所述停留时间运行。
可选地,环境参数获取单元71包括:
跳变时间获取单元,用于若检测到设置于所述作用空间内用于检测用户进出所述作用空间的电极板组中的至少两组电极板的电荷量均发生跳变,则获取每组电极板各自对应的跳变时间;其中,所述每组电极板之间相互独立且隔离,所述每组电极板包括两个相对设置的电极板,且每组电极板与所述空调之间的距离值不同;
当前个数统计单元,用于基于各组电极板的所述跳变时间统计所述当前个数。
可选地,当前个数统计单元,包括:
第一电荷量获取单元,用于若所述电极板组中的第一组电极板的第一跳变时间早于第二组电极板的第二跳变时间,则获取所述第一组电极板在所述第一跳变时刻的第一电荷量;
减少个数确定单元,用于基于所述第一电荷量确定用户减少的减少个数,并根据所述减少个数调整所述当前个数;所述第一组电极板与所述空调的第一距离值小于所述第二组电极板的第二距离值;
第二电荷量获取单元,用于若所述第一跳变时间晚于所述第二跳变时间,则获取所述第二组电极板在所述第二跳变时刻的第二电荷量;
增加个数确定单元,用于基于所述第二电荷量确定用户增加的增加个数,并根据所述增加个数调整所述当前个数。
可选地,所述空调输出功率的转换模型具体为:
Figure PCTCN2018083289-appb-000006
其中,所述P 实际为空调的输出功率;所述N为所述当前个数;所述T 1为室外温度;所述T 2为所述平均体表温度;所述δ为预设的调整系数;所述P 基准所述空调的基准输出功率。
可选地,所述空调还包括:
室内温度获取单元,用于以预设的时间间隔获取当前所述作用空间的室内温度;
当前个数确定单元,用于若所述室内温度在预设的温度范围外,则获取所述作用空间内用户的当前个数;
空调启动单元,用于若所述当前个数大于预设的启动个数,则启动所述空调,并执行获取空调作用空间的环境参数的操作。
因此,本发明实施例提供的空调同样可以无需用户手动调节,可以根据当前的环境配置合适的运行参数,减少不必要的能源消耗,实现节能的目的。
图8是本发明另一实施例提供的一种空调的示意图。如图8所示,该实施例的空调8 包括:处理器80、存储器81以及存储在所述存储器81中并可在所述处理器80上运行的计算机程序82,例如空调的控制程序。所述处理器80执行所述计算机程序82时实现上述各个空调的控制方法实施例中的步骤,例如图1所示的S101至S104。或者,所述处理器80执行所述计算机程序82时实现上述各装置实施例中各单元的功能,例如图7所示模块71至74功能。
示例性的,所述计算机程序82可以被分割成一个或多个单元,所述一个或者多个单元被存储在所述存储器81中,并由所述处理器80执行,以完成本发明。所述一个或多个单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序82在所述空调8中的执行过程。例如,所述计算机程序82可以被分割成环境参数获取单元、输出功率计算单元、停留时间计算单元以及空调控制单元,各单元具体功能如上所述。
所述空调可包括,但不仅限于,处理器80、存储器81。本领域技术人员可以理解,图8仅仅是空调8的示例,并不构成对空调8的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述空调还可以包括输入输出设备、网络接入设备、总线等。
所称处理器80可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器81可以是所述空调8的内部存储单元,例如空调8的硬盘或内存。所述存储器81也可以是所述空调8的外部存储设备,例如所述空调8上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器81还可以既包括所述空调8的内部存储单元也包括外部存储设备。所述存储器81用于存储所述计算机程序以及所述空调所需的其他程序和数据。所述存储器81还可以用于暂时地存储已经输出或者将要输出的数据。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种空调的控制方法,其特征在于,包括:
    获取空调的作用空间的环境参数;所述环境参数包括:室外温度、所述作用空间内用户的当前个数、所述作用空间内用户的平均体表温度,以及所述空调出风形成的各个扇形区域内的用户密度;其中,各个所述扇形区域具体为:所述空调的摆叶位于各个预设的摆动角度时形成的出风区域;
    将所述室外温度、所述平均体表温度以及所述当前个数导入到空调输出功率的转换模型,确定所述空调的输出功率;
    计算各个所述用户密度之间比值,并基于所述比值确定所述摆叶在各个所述摆动角度的停留时间;
    控制所述空调以所述输出功率以及所述停留时间运行。
  2. 根据权利要求1所述的控制方法,其特征在于,所述获取空调作用空间的环境参数,包括:
    若检测到设置于所述作用空间内用于检测用户进出所述作用空间的电极板组中的至少两组电极板的电荷量均发生跳变,则获取每组电极板各自对应的跳变时间;其中,所述每组电极板之间相互独立且隔离,所述每组电极板包括两个相对设置的电极板,且每组电极板与所述空调之间的距离值不同;
    基于各组电极板的所述跳变时间统计所述作用空间内用户的当前个数。
  3. 根据权利要求2所述的控制方法,其特征在于,所述基于所述各组电极板的跳变时间统计所述当前个数,包括:
    若所述电极板组中的第一组电极板的第一跳变时间早于第二组电极板的第二跳变时间,则获取所述第一组电极板在所述第一跳变时刻的第一电荷量;
    基于所述第一电荷量确定用户减少的减少个数,并根据所述减少个数调整所述作用空间内用户的当前个数;所述第一组电极板与所述空调的第一距离值小于所述第二组电极板的第二距离值;
    若所述第一跳变时间晚于所述第二跳变时间,则获取所述第二组电极板在所述第二跳变时刻的第二电荷量;
    基于所述第二电荷量确定用户增加的增加个数,并根据所述增加个数调整所述作用空间内用户的当前个数。
  4. 根据权利要求1所述的控制方法,其特征在于,所述空调输出功率的转换模型具体 为:
    Figure PCTCN2018083289-appb-100001
    其中,所述P 实际为空调的输出功率;所述N为所述当前个数;所述T 1为室外温度;所述T 2为所述平均体表温度;所述δ为预设的调整系数;所述P 基准所述空调的基准输出功率。
  5. 根据权利要求1-4任一项所述的控制方法,其特征在于,在所述获取空调作用空间的环境参数之前,包括:
    以预设的时间间隔获取当前所述作用空间的室内温度;
    若所述室内温度在预设的温度范围外,则获取所述作用空间内用户的当前个数;
    若所述当前个数大于预设的启动个数,则启动所述空调,并执行获取空调作用空间的环境参数的操作。
  6. 一种空调,其特征在于,包括:
    环境参数获取单元,用于获取空调的作用空间的环境参数;所述环境参数包括:室外温度、所述作用空间内用户的当前个数、所述作用空间内用户的平均体表温度,以及所述空调出风形成的各个扇形区域内的用户密度;其中,各个所述扇形区域具体为:所述空调的摆叶位于各个预设的摆动角度时形成的出风区域;
    输出功率计算单元,用于将所述室外温度、所述平均体表温度以及所述当前个数导入到空调输出功率的转换模型,确定所述空调的输出功率;
    停留时间计算单元,用于计算各个所述用户密度之间比值,并基于所述比值确定所述摆叶在各个所述摆动角度的停留时间;
    空调控制单元,用于控制所述空调以所述输出功率以及所述停留时间运行。
  7. 根据权利要求6所述的空调,其特征在于,所述环境参数获取单元包括:
    跳变时间获取单元,用于若检测到设置于所述作用空间内用于检测用户进出所述作用空间的电极板组中的至少两组电极板的电荷量均发生跳变,则获取每组电极板各自对应的跳变时间;其中,所述每组电极板之间相互独立且隔离,所述每组电极板包括两个相对设置的电极板,且每组电极板与所述空调之间的距离值不同;
    当前个数统计单元,用于基于各组电极板的所述跳变时间统计所述当前个数。
  8. 根据权利要求7所述的空调,其特征在于,所述当前个数统计单元,包括:
    第一电荷量获取单元,用于若所述电极板组中的第一组电极板的第一跳变时间早于第二组电极板的第二跳变时间,则获取所述第一组电极板在所述第一跳变时刻的第一电荷量;
    减少个数确定单元,用于基于所述第一电荷量确定用户减少的减少个数,并根据所述 减少个数调整所述当前个数;所述第一组电极板与所述空调的第一距离值小于所述第二组电极板的第二距离值;
    第二电荷量获取单元,用于若所述第一跳变时间晚于所述第二跳变时间,则获取所述第二组电极板在所述第二跳变时刻的第二电荷量;
    增加个数确定单元,用于基于所述第二电荷量确定用户增加的增加个数,并根据所述增加个数调整所述当前个数。
  9. 根据权利要求6所述的空调,其特征在于,所述空调输出功率的转换模型具体为:
    Figure PCTCN2018083289-appb-100002
    其中,所述P 实际为空调的输出功率;所述N为所述当前个数;所述T 1为室外温度;所述T 2为所述平均体表温度;所述δ为预设的调整系数;所述P 基准所述空调的基准输出功率。
  10. 根据权利要求6-9任一项所述的空调,其特征在于,所述空调还包括:
    室内温度获取单元,用于以预设的时间间隔获取当前所述作用空间的室内温度;
    当前个数确定单元,用于若所述室内温度在预设的温度范围外,则获取所述作用空间内用户的当前个数;
    空调启动单元,用于若所述当前个数大于预设的启动个数,则启动所述空调,并执行获取空调作用空间的环境参数的操作。
  11. 一种空调,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机可读指令,其特征在于,所述处理器执行所述计算机可读指令时实现如下步骤:
    获取空调的作用空间的环境参数;所述环境参数包括:室外温度、所述作用空间内用户的当前个数、所述作用空间内用户的平均体表温度,以及所述空调出风形成的各个扇形区域内的用户密度;其中,各个所述扇形区域具体为:所述空调的摆叶位于各个预设的摆动角度时形成的出风区域;
    将所述室外温度、所述平均体表温度以及所述当前个数导入到空调输出功率的转换模型,确定所述空调的输出功率;
    计算各个所述用户密度之间比值,并基于所述比值确定所述摆叶在各个所述摆动角度的停留时间;
    控制所述空调以所述输出功率以及所述停留时间运行。
  12. 根据权利要求11所述的空调,其特征在于,所述获取空调作用空间的环境参数,包括:
    若检测到设置于所述作用空间内用于检测用户进出所述作用空间的电极板组中的至少 两组电极板的电荷量均发生跳变,则获取每组电极板各自对应的跳变时间;其中,所述每组电极板之间相互独立且隔离,所述每组电极板包括两个相对设置的电极板,且每组电极板与所述空调之间的距离值不同;
    基于各组电极板的所述跳变时间统计所述作用空间内用户的当前个数。
  13. 根据权利要求12所述的空调,其特征在于,所述基于所述各组电极板的跳变时间统计所述当前个数,包括:
    若所述电极板组中的第一组电极板的第一跳变时间早于第二组电极板的第二跳变时间,则获取所述第一组电极板在所述第一跳变时刻的第一电荷量;
    基于所述第一电荷量确定用户减少的减少个数,并根据所述减少个数调整所述作用空间内用户的当前个数;所述第一组电极板与所述空调的第一距离值小于所述第二组电极板的第二距离值;
    若所述第一跳变时间晚于所述第二跳变时间,则获取所述第二组电极板在所述第二跳变时刻的第二电荷量;
    基于所述第二电荷量确定用户增加的增加个数,并根据所述增加个数调整所述作用空间内用户的当前个数。
  14. 根据权利要求11所述的空调,其特征在于,所述空调输出功率的转换模型具体为:
    Figure PCTCN2018083289-appb-100003
    其中,所述P 实际为空调的输出功率;所述N为所述当前个数;所述T 1为室外温度;所述T 2为所述平均体表温度;所述δ为预设的调整系数;所述P 基准所述空调的基准输出功率。
  15. 根据权利要求11-14任一项所述的空调,其特征在于,在所述获取空调作用空间的环境参数之前,所述处理器执行所述计算机可读指令时还实现如下步骤:
    以预设的时间间隔获取当前所述作用空间的室内温度;
    若所述室内温度在预设的温度范围外,则获取所述作用空间内用户的当前个数;
    若所述当前个数大于预设的启动个数,则启动所述空调,并执行获取空调作用空间的环境参数的操作。
  16. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可读指令,其特征在于,所述计算机可读指令被处理器执行时实现如下步骤:
    获取空调的作用空间的环境参数;所述环境参数包括:室外温度、所述作用空间内用户的当前个数、所述作用空间内用户的平均体表温度,以及所述空调出风形成的各个扇形区域内的用户密度;其中,各个所述扇形区域具体为:所述空调的摆叶位于各个预设的摆 动角度时形成的出风区域;
    将所述室外温度、所述平均体表温度以及所述当前个数导入到空调输出功率的转换模型,确定所述空调的输出功率;
    计算各个所述用户密度之间比值,并基于所述比值确定所述摆叶在各个所述摆动角度的停留时间;
    控制所述空调以所述输出功率以及所述停留时间运行。
  17. 根据权利要求16所述的计算机可读存储介质,其特征在于,所述获取空调作用空间的环境参数,包括:
    若检测到设置于所述作用空间内用于检测用户进出所述作用空间的电极板组中的至少两组电极板的电荷量均发生跳变,则获取每组电极板各自对应的跳变时间;其中,所述每组电极板之间相互独立且隔离,所述每组电极板包括两个相对设置的电极板,且每组电极板与所述空调之间的距离值不同;
    基于各组电极板的所述跳变时间统计所述作用空间内用户的当前个数。
  18. 根据权利要求17所述的计算机可读存储介质,其特征在于,所述基于所述各组电极板的跳变时间统计所述当前个数,包括:
    若所述电极板组中的第一组电极板的第一跳变时间早于第二组电极板的第二跳变时间,则获取所述第一组电极板在所述第一跳变时刻的第一电荷量;
    基于所述第一电荷量确定用户减少的减少个数,并根据所述减少个数调整所述作用空间内用户的当前个数;所述第一组电极板与所述空调的第一距离值小于所述第二组电极板的第二距离值;
    若所述第一跳变时间晚于所述第二跳变时间,则获取所述第二组电极板在所述第二跳变时刻的第二电荷量;
    基于所述第二电荷量确定用户增加的增加个数,并根据所述增加个数调整所述作用空间内用户的当前个数。
  19. 根据权利要求16所述的计算机可读存储介质,其特征在于,所述空调输出功率的转换模型具体为:
    Figure PCTCN2018083289-appb-100004
    其中,所述P 实际为空调的输出功率;所述N为所述当前个数;所述T 1为室外温度;所述T 2为所述平均体表温度;所述δ为预设的调整系数;所述P 基准所述空调的基准输出功率。
  20. 根据权利要求16-19任一项所述的计算机可读存储介质,其特征在于,在所述获 取空调作用空间的环境参数之前,所述处理器执行所述计算机可读指令时还实现如下步骤:
    以预设的时间间隔获取当前所述作用空间的室内温度;
    若所述室内温度在预设的温度范围外,则获取所述作用空间内用户的当前个数;
    若所述当前个数大于预设的启动个数,则启动所述空调,并执行获取空调作用空间的环境参数的操作。
PCT/CN2018/083289 2018-02-28 2018-04-17 一种空调的控制方法及空调 WO2019165686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810167293.0 2018-02-28
CN201810167293.0A CN108444052B (zh) 2018-02-28 2018-02-28 一种空调的控制方法及空调

Publications (1)

Publication Number Publication Date
WO2019165686A1 true WO2019165686A1 (zh) 2019-09-06

Family

ID=63192790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083289 WO2019165686A1 (zh) 2018-02-28 2018-04-17 一种空调的控制方法及空调

Country Status (2)

Country Link
CN (1) CN108444052B (zh)
WO (1) WO2019165686A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648712A (zh) * 2020-10-28 2021-04-13 青岛海尔空调器有限总公司 空调器室内机及其送风区域的配置方法
CN113375300A (zh) * 2020-03-09 2021-09-10 青岛海尔空调器有限总公司 空调器的智能控制方法与空调器的智能控制设备
CN114484804A (zh) * 2022-02-09 2022-05-13 珠海格力电器股份有限公司 空调器控制方法、空调器、电子设备及存储介质
CN114963413A (zh) * 2022-04-21 2022-08-30 日立楼宇技术(广州)有限公司 一种空调的控制方法、装置、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556253B (zh) * 2018-10-18 2020-01-17 珠海格力电器股份有限公司 一种天井机控制方法、装置及设备
CN110658380B (zh) * 2019-10-09 2021-09-28 广东美的制冷设备有限公司 功率检测方法、装置、空调器以及存储介质
CN115218407A (zh) * 2022-06-22 2022-10-21 青岛海尔空调器有限总公司 室内机的控制方法、装置及空调
CN115789885B (zh) * 2023-02-08 2023-04-25 南通联恒新材料有限公司 一种用于大范围的空气处理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910738A (zh) * 2008-02-08 2010-12-08 松下电器产业株式会社 空气调节机
CN105890121A (zh) * 2016-05-09 2016-08-24 珠海格力电器股份有限公司 一种空调的控制方法、装置及空调
CN106440193A (zh) * 2016-09-19 2017-02-22 广东美的制冷设备有限公司 空调及其采集组件、控制结构、调控系统和调控方法
CN106482287A (zh) * 2015-08-31 2017-03-08 青岛海尔空调电子有限公司 一种采用红外信号对热源定位的方法及空调风向控制方法
CN107255307A (zh) * 2017-05-24 2017-10-17 青岛海尔空调器有限总公司 空调
CN107300242A (zh) * 2017-06-14 2017-10-27 珠海格力电器股份有限公司 空调控制方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153431A (ja) * 1999-12-01 2001-06-08 Matsushita Electric Ind Co Ltd 空気調和機の風向制御方法
CN106545976B (zh) * 2016-12-08 2020-06-23 美的集团武汉制冷设备有限公司 空调器及其风速控制方法
CN106931601B (zh) * 2017-03-23 2019-09-17 中国联合网络通信集团有限公司 空调控温方法及空调控温系统
CN107367016B (zh) * 2017-06-21 2019-10-11 珠海格力电器股份有限公司 一种空调智能控制方法及其装置、空调
CN107631423B (zh) * 2017-08-18 2019-12-03 青岛海尔空调器有限总公司 一种基于人体位置的空调器控制方法及空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910738A (zh) * 2008-02-08 2010-12-08 松下电器产业株式会社 空气调节机
CN106482287A (zh) * 2015-08-31 2017-03-08 青岛海尔空调电子有限公司 一种采用红外信号对热源定位的方法及空调风向控制方法
CN105890121A (zh) * 2016-05-09 2016-08-24 珠海格力电器股份有限公司 一种空调的控制方法、装置及空调
CN106440193A (zh) * 2016-09-19 2017-02-22 广东美的制冷设备有限公司 空调及其采集组件、控制结构、调控系统和调控方法
CN107255307A (zh) * 2017-05-24 2017-10-17 青岛海尔空调器有限总公司 空调
CN107300242A (zh) * 2017-06-14 2017-10-27 珠海格力电器股份有限公司 空调控制方法和装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375300A (zh) * 2020-03-09 2021-09-10 青岛海尔空调器有限总公司 空调器的智能控制方法与空调器的智能控制设备
CN112648712A (zh) * 2020-10-28 2021-04-13 青岛海尔空调器有限总公司 空调器室内机及其送风区域的配置方法
CN114484804A (zh) * 2022-02-09 2022-05-13 珠海格力电器股份有限公司 空调器控制方法、空调器、电子设备及存储介质
CN114484804B (zh) * 2022-02-09 2023-02-17 珠海格力电器股份有限公司 空调器控制方法、空调器、电子设备及存储介质
CN114963413A (zh) * 2022-04-21 2022-08-30 日立楼宇技术(广州)有限公司 一种空调的控制方法、装置、设备及存储介质
CN114963413B (zh) * 2022-04-21 2023-07-04 日立楼宇技术(广州)有限公司 一种空调的控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN108444052A (zh) 2018-08-24
CN108444052B (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2019165686A1 (zh) 一种空调的控制方法及空调
WO2018076767A1 (zh) 风扇和风扇的控制方法
CN104374042B (zh) 空调负荷的控制方法及系统
CN107165848A (zh) 基于感应的风扇及其控制方法及计算机存储介质
WO2019037322A1 (zh) 智能家电控制方法和装置
CN110186170B (zh) 热舒适度指标pmv控制方法及设备
WO2020181589A1 (zh) 运行控制方法、装置、空调器和计算机可读存储介质
CN109974230B (zh) 运行控制方法、装置、空调器和计算机可读存储介质
WO2018214704A1 (zh) 用于空调控制的方法及装置
CN105716201B (zh) 一种空调自学交互方法
CN110440385A (zh) 一种舒适仿自然风的机械营造装置及方法
WO2023197696A1 (zh) 基于体感温度的变频控制方法、装置、空调器及存储介质
CN103836770A (zh) 基于室内相对湿度调节温度的空调及其控制方法
CN109668279A (zh) 空调器的控制方法、空调器及存储介质
CN113934152A (zh) 一种设备控制方法和装置、电子设备和存储介质
CN112346348A (zh) 一种室内环境调整系统
CN109489219A (zh) 光伏家用电器控制方法、装置、控制器及光伏空调
CN111637598A (zh) 测温遥控器及空调房温度现场自动校准与精准控制的方法
WO2021159654A1 (zh) 空调扇及其控制方法、控制装置
WO2022127108A1 (zh) 空调器及其温湿度调控方法、计算机可读存储介质
CN109084425A (zh) 空调器及其的控制方法和计算机可读存储介质
CN105241001A (zh) 一种参数调整方法及空调
CN111780232A (zh) 一种空调器
CN110454927B (zh) 一种空调器的控制方法及空调器
CA3012877C (en) Fan driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18907905

Country of ref document: EP

Kind code of ref document: A1