CN104374042B - 空调负荷的控制方法及系统 - Google Patents
空调负荷的控制方法及系统 Download PDFInfo
- Publication number
- CN104374042B CN104374042B CN201410364474.4A CN201410364474A CN104374042B CN 104374042 B CN104374042 B CN 104374042B CN 201410364474 A CN201410364474 A CN 201410364474A CN 104374042 B CN104374042 B CN 104374042B
- Authority
- CN
- China
- Prior art keywords
- load
- air conditioner
- controlled interval
- temperature
- central air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001105 regulatory Effects 0.000 claims abstract description 95
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 75
- 230000000875 corresponding Effects 0.000 claims abstract description 55
- 238000004378 air conditioning Methods 0.000 claims abstract description 19
- 230000033228 biological regulation Effects 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 240000002853 Nelumbo nucifera Species 0.000 claims description 6
- 235000006508 Nelumbo nucifera Nutrition 0.000 claims description 6
- 235000006510 Nelumbo pentapetala Nutrition 0.000 claims description 6
- 230000000996 additive Effects 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 4
- 235000003140 Panax quinquefolius Nutrition 0.000 claims description 3
- 235000005035 ginseng Nutrition 0.000 claims description 3
- 235000008434 ginseng Nutrition 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000005057 refrigeration Methods 0.000 claims description 2
- 241000208340 Araliaceae Species 0.000 claims 2
- 238000007906 compression Methods 0.000 claims 1
- 239000000498 cooling water Substances 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 abstract 2
- 230000003750 conditioning Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 240000004678 Panax pseudoginseng Species 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
Abstract
本发明公开了一种空调负荷的控制方法及系统,所述方法包括:获取电网系统的负荷参数,并获取与所述负荷参数对应的电力负荷调节量;获取中央空调系统所调控的各个受控区间的温度参数,并根据各个受控区间的温度参数获取各个受控区间的开关信号;根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央调控系统的运行负荷率;获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵。实施本发明的方法及系统,基于受控区间的温度和电网系统的负荷,调节中央空调系统的电力负荷,进而可对电网负荷进行削峰填谷,使电网系统保持稳定运行。
Description
技术领域
本发明涉及电力技术领域,特别是涉及一种空调负荷的控制方法及系统。
背景技术
随着经济和电力技术的发展,空调的应用越来越广泛,空调负荷在整个电网负荷所占的比重也越来越大。受空调负荷影响,各电网用电负荷迅速增长,峰谷差进一步拉大。
但是,空调负荷的急剧增长会导致电网负荷特性恶化,使得电网系统难以保持稳定运行。
发明内容
基于此,有必要针对上述空调负荷的急剧增长会导致电网负荷特性恶化,使得电网系统难以保持稳定运行的问题,提供一种空调负荷的控制方法及系统。
一种空调负荷的控制方法,包括以下步骤:
获取电网系统的负荷参数,并获取与所述负荷参数对应的电力负荷调节量;
获取中央空调系统所调控的各个受控区间的温度参数,并根据各个受控区间的温度参数获取各个受控区间的开关信号,所述开关信号用于标识所述中央空调系统开启或关闭对各个受控区间的温度调控;
根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央调控系统的运行负荷率;
获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵。
一种空调负荷的控制系统,包括:
负荷获取模块,用于获取电网系统的负荷参数,并获取与所述负荷参数对应的电力负荷调节量;
温度获取模块,用于获取中央空调系统所调控的各个受控区间的温度参数,并根据各个受控区间的温度参数获取各个受控区间的开关信号,所述开关信号用于标识所述中央空调系统开启或关闭对各个受控区间的温度调控;
负荷率模块,用于根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央调控系统的运行负荷率;
调控模块,用于获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵。
上述空调负荷的控制方法及系统,基于受控区间的温度和电网系统的负荷,生成所述中央调控系统的运行负荷率,获取与所述运行负荷率对应的负荷调控信号,进而根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵,可有效调节中央空调系统的电力负荷,进而可对电网负荷进行削峰填谷,使电网系统保持稳定运行。
附图说明
图1是本发明空调负荷的控制方法第一实施方式的流程示意图;
图2是本发明空调负荷的控制方法第二实施方式的流程示意图;
图3是本发明空调负荷的控制系统第一实施方式的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1是本发明的空调负荷的控制方法第一实施方式的流程示意图。
本实施方式的所述空调负荷的控制方法包括以下步骤:
步骤S101,获取电网系统的负荷参数,并获取与所述负荷参数对应的电力负荷调节量。
步骤S102,获取中央空调系统所调控的各个受控区间的温度参数,并根据各个受控区间的温度参数获取各个受控区间的开关信号,所述开关信号用于标识所述中央空调系统开启或关闭对各个受控区间的温度调控。
步骤S103,根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央调控系统的运行负荷率。
步骤S104,获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵。
本实施方式所述的空调负荷的控制方法,基于受控区间的温度和电网系统的负荷,生成所述中央调控系统的运行负荷率,获取与所述运行负荷率对应的负荷调控信号,进而根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵,可有效调节中央空调系统的电力负荷,进而可对电网负荷进行削峰填谷,使电网系统保持稳定运行。
其中,对于步骤S101,所述电网系统为所述中央空调系统的供电电网,所述负荷参数优选地包括所述电网系统的当前功率负荷。还可包括所述电网系统的额定功率负荷。
在一个实施例中,获取电网系统的负荷参数,并获取与所述负荷参数对应的电力负荷调节量的步骤包括以下步骤:
获取所述电网系统的当前负荷和额定负荷。
若所述当前负荷大于所述额定负荷,将所述当前负荷与所述额定负荷的差值作为待削减的电力负荷调节量。
若所述当前负荷小于所述额定负荷,将所述额定负荷与所述当前负荷的差值作为待增加的电力负荷调节量。
在其他实施方式中,还可预设所述电网系统的当前负荷与电力负荷调节量间的对应关系,根据所述对应关系,获取与所述当前负荷对应的电力负荷调节量。
对于步骤S102,所述受控区间优选地为由所述中央空调系统进行温度调控的各个房间或同一房间的不同区域。
在一个实施例中,获取中央空调系统所调控的各个受控区间的温度参数,并根据各个受控区间的温度参数获取各个受控区间的开关信号的步骤包括以下步骤:
从获取的各个受控区间的温度参数中,选取处于预设的关闭温度调控的温度区间的温度参数,并获取关闭信号为选取的温度参数所对应的受控区间的开关信号。
从获取的各个受控区间的温度参数中,选取处于预设的开启温度调控的温度区间的温度参数,并获取开启信号为选取的温度参数所对应的受控区间的开关信号。
优选地,舒适区间为22度至30度,低于该舒适区间的温度区间为所述预设的关闭温度调控的温度区间,高于该舒适区间的温度区间为所述预设的开启温度调控的温度区间。
对于步骤S103,优选地,先根据所述电力负荷调节量确定是需要削减所述电网系统的当前负荷,还是需要增加所述电网系统的当前负荷。进而根据所述开关信号确定所述中央调控系统的运行负荷率。
在一个实施例中,根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央调控系统的运行负荷率的步骤包括以下步骤:
若所述电力负荷调节量为待削减的电力负荷调节量,则获取所述中央空调系统所调控的受控区间的个数N,以及开关信号为关闭信号的受控区间的个数n,将n与N的比值作为所述中央调控系统的运行负荷率。
若所述电力负荷调节量为待增加的电力负荷调节量,则获取所述中央空调系统所调控的受控区间的个数M,以及开关信号为开启信号的受控区间的个数m,将m与M的比值作为所述中央调控系统的运行负荷率。
在另一个实施例中,根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央调控系统的运行负荷率的步骤还包括以下步骤:
若所述电力负荷调节量为待削减的电力负荷调节量,则获取n与N的比值所对应的负荷降低量。
判断所述电力负荷调节量与所述负荷降低量的差值是否大于预设的差值阈值。
若是,则将所述n与N的比值与预设负荷率的差值作为所述中央空调系统的运行负荷率;若否,则将n与N的比值作为所述中央调控系统的运行负荷率。
若所述电力负荷调节量为待增加的电力负荷调节量,则获取m与M的比值所对应的负荷增加量。
判断所述电力负荷调节量与所述负荷增加量的差值是否大于预设的差值阈值,若是,则将所述m与M的比值与预设负荷率的相加值作为所述中央空调系统的运行负荷率;若否,则将m与M的比值作为所述中央调控系统的运行负荷率。
预设的差值阈值为所述电力负荷调节量的30%,预设负荷率为:(电力负荷调节量-负荷增加量)/(电网系统峰时负荷量)-30%,或,(电力负荷调节量-负荷降低量)/(电网系统谷时负荷量)-30%。若大于预设的差值阈值,则将n/N%加上预设负荷率或m/M%减去预设负荷率作为运行的负荷率,便可一次将需要电力负荷调节量和所述负荷增加量(减少量)的差值控制在预设的差值阈值之内。就既能满足室内舒适温度要求,又能在一定程度上满足对电网的调节需求。
对于步骤S104,所述负荷调控信号优选地包括调节所述冷水机组的压缩机的频率的信号和调节所述循环水泵的压缩机的频率的信号。
在一个实施例中,获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵的步骤包括以下步骤:
根据所述运行负荷率确定所述中央空调系统的冷水机组的第一压缩机频率和所述中央空调系统的循环水泵的第二压缩机频率。
分别生成与所述第一压缩机频率和所述第二压缩机频率对应的频率调节信号,使所述冷水机组的压缩机和所述循环水泵的压缩机分别以所述第一压缩机频率和所述第二压缩机频率运行。
在其他实施方式中,可预先设定所述运行负荷率与所述负荷调控信号间的对应关系,根据所述对应关系获取与所述运行负荷率对应的负荷调控信号。
请参阅图2,图2是本发明的空调负荷的控制方法第二实施方式的流程示意图。
本实施方式的所述空调负荷的控制方法与第一实施方式的区别在于:在获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵的步骤之后,还包括以下步骤:
步骤S201,通过冷水机组功耗模型、水泵模型和需求响应控制方程获取调控后的冷水机组下一时刻的运行功率、调控后的循环水泵的下一时刻的运行功率和调控后的各个受控区间的下一时刻的温度参数,其中,所述冷水机组功耗模型如以下所述公式(1)至公式(6)所示、所述水泵模型如以下所述公式(7)所示、需求响应控制方程如以下所述公式(8)至公式(14)所示:
Qmax=QeqChillerCapFT (2);
ChillerCapFT=a1+b1(Tchw,out)+c1(Tchw,out)2+d1(Tcow,out)+e1(Tcow,out)2+f1(Tchw,out)(Tcow,out) (3);
ChillerEIRFT=a2+b2(Tchw,out)+c2(Tchw,out)2+d2(Tcow,out)+e2(Tcow,out)2+f2(Tchw,out)(Tcow,out) (4);
ChillerEIRFPLR=a3+b3(Tcow,out)+c3(Tcow,out)2+d3(PLR)+e3(PLR)2+f3(Tcow,out)(PLR)+g1(PLR)3 (5);
PLR=Q/Qmax (6);
N=a4+b4V+c4V2 (7);
y=CT+DU (9);
其中,Qmax为最大制冷量,Qeq为额定制冷量,Tchw.out为冷冻水出水温度;Tcow.out为冷却水出水温度;a1,b1,c1,d1,e1,f1为拟合系数,a2,b2,c2,d2,e2,f2为拟合所得系数,a3,b3,c3,d3,e3,f3,g1为拟合所得系数,V为水流量,a4,b4,c4为拟合所得系数,A与B为相应制冷模式的系数矩阵,Tout为受控区间外的温度,Tair和Tmass分别为受控区间内的空气温度和物质温度,和则分别为Tair和Tmass对时间t的微分形式。
步骤S202,根据获取的所述冷水机组下一时刻的运行功率、所述循环水泵的下一时刻的运行功率获取所述电网系统的负荷参数。
步骤S203,根据获取的各个受控区间的下一时刻的温度,获取中央空调系统所调控的各个受控区间的温度参数。
本实施方式,将下一时刻水冷式中央空调的运行功率和各受控区间的室内温度,以便循环对所述中央空调系统进行负荷调控。
在一个实施例中,在获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵的步骤之后,还包括以下步骤:
对夏季制冷模式的需求响应控制方程中的如下公式(15)和公式(16)代入公式(8)至公式(14),获取夏季制冷模式下受控区间的温度和物质表面温度的求解方程(17)和(18):
其中,Q=Qsolar+Qrtx+Qrtq+Qzm+Qsb+Qhvac,Qrtx为人体显热得热,Qrtq为人体潜热得热,Qzm为照明得热,Qsb为设备得热,Qhvac指空调负荷,当空调开启时Qhvac=Qhvac,当空调关闭时Qhvac=0;Rair、Cair、Rmass、Cmass分别为受控区间外换热总热阻、总热容、受控区间内物质换热总热阻、总热容,下标t代表当前时刻,下标t+1代表下一时刻。
本实施例中,模型综合考虑了室外温度Tout,室内温度Tair和湿度,内部得热量Qinternal gain(人体、照明、散热设备),太阳辐射得热量Qsolar,室内外温差得热Qair,室内物质表面与室内空气换热量Qmass等因素,可全面、灵活的确定受控区间的温度参数,提高负荷调控的有效性。
在另一个实施例中,在获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵的步骤之后,还包括以下步骤:
对冬季制热模式的需求响应控制方程中的如下公式(19)和公式(20)代入公式(8)至公式(14),获取夏季制冷模式下受控区间的温度和物质表面温度的求解方程(21)和(22):
其中,Q=Qhvac-QL,QL为冬季从受控区间的开口处渗入受控区间的冷空气耗热量,当空调开启时QL=0,当空调关闭时Q=Qhvac;xcx为朝向修正系数,下标t代表当前时刻,下标t+1代表下一时刻。
本实施例,模型综合考虑了室外温度Tout,室内温度Tair和湿度,内部得热量Qinternal gain(人体、照明、散热设备),太阳辐射得热量Qsolar,室内外温差得热Qair,室内物质表面与室内空气换热量Qmass等因素,可全面、灵活的确定受控区间的温度参数,提高负荷调控的有效性。
请参阅图3,图3是本发明的空调负荷的控制系统第一实施方式的结构示意图。
本实施方式的所述空调负荷的控制系统包括负荷获取模块100、温度获取模块200、负荷率模块300和调控模块400,其中:
负荷获取模块100,用于获取电网系统的负荷参数,并获取与所述负荷参数对应的电力负荷调节量。
温度获取模块200,用于获取中央空调系统所调控的各个受控区间的温度参数,并根据各个受控区间的温度参数获取各个受控区间的开关信号,所述开关信号用于标识所述中央空调系统开启或关闭对各个受控区间的温度调控。
负荷率模块300,用于根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央调控系统的运行负荷率。
调控模块400,用于获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵。
本实施方式所述的空调负荷的控制系统,基于受控区间的温度和电网系统的负荷,生成所述中央调控系统的运行负荷率,获取与所述运行负荷率对应的负荷调控信号,进而根据所述负荷调控信号调控所述中央调控系统的冷水机组和循环水泵,可有效调节中央空调系统的电力负荷,进而可对电网负荷进行削峰填谷,使电网系统保持稳定运行。
其中,对于负荷获取模块100,所述电网系统为所述中央空调系统的供电电网,所述负荷参数优选地包括所述电网系统的当前功率负荷。还可包括所述电网系统的额定功率负荷。
在一个实施例中,负荷获取模块100可用于:
获取所述电网系统的当前负荷和额定负荷。
若所述当前负荷大于所述额定负荷,将所述当前负荷与所述额定负荷的差值作为待削减的电力负荷调节量。
若所述当前负荷小于所述额定负荷,将所述额定负荷与所述当前负荷的差值作为待增加的电力负荷调节量。
在其他实施方式中,还可预设所述电网系统的当前负荷与电力负荷调节量间的对应关系,根据所述对应关系,获取与所述当前负荷对应的电力负荷调节量。
对于温度获取模块200,所述受控区间优选地为由所述中央空调系统进行温度调控的各个房间或同一房间的不同区域。
在一个实施例中,温度获取模块200可用于:
从获取的各个受控区间的温度参数中,选取处于预设的关闭温度调控的温度区间的温度参数,并获取关闭信号为选取的温度参数所对应的受控区间的开关信号。
从获取的各个受控区间的温度参数中,选取处于预设的开启温度调控的温度区间的温度参数,并获取开启信号为选取的温度参数所对应的受控区间的开关信号。
优选地,舒适区间为22度至30度,低于该舒适区间的温度区间为所述预设的关闭温度调控的温度区间,高于该舒适区间的温度区间为所述预设的开启温度调控的温度区间。
对于负荷率模块300,优选地,先根据所述电力负荷调节量确定是需要削减所述电网系统的当前负荷,还是需要增加所述电网系统的当前负荷。进而根据所述开关信号确定所述中央调控系统的运行负荷率。
在一个实施例中,负荷率模块300可用于:
若所述电力负荷调节量为待削减的电力负荷调节量,则获取所述中央空调系统所调控的受控区间的个数N,以及开关信号为关闭信号的受控区间的个数n,将n与N的比值作为所述中央调控系统的运行负荷率。
若所述电力负荷调节量为待增加的电力负荷调节量,则获取所述中央空调系统所调控的受控区间的个数M,以及开关信号为开启信号的受控区间的个数m,将m与M的比值作为所述中央调控系统的运行负荷率。
在另一个实施例中,负荷率模块300还可用于:
在所述电力负荷调节量为待削减的电力负荷调节量时,获取n与N的比值所对应的负荷降低量。
判断所述电力负荷调节量与所述负荷降低量的差值是否大于预设的差值阈值。
若是,则将所述n与N的比值与预设负荷率的差值作为所述中央空调系统的运行负荷率;若否,则将n与N的比值作为所述中央调控系统的运行负荷率。
在所述电力负荷调节量为待增加的电力负荷调节量时,获取m与M的比值所对应的负荷增加量。
判断所述电力负荷调节量与所述负荷增加量的差值是否大于预设的差值阈值,若是,则将所述m与M的比值与预设负荷率的相加值作为所述中央空调系统的运行负荷率;若否,则将m与M的比值作为所述中央调控系统的运行负荷率。
预设的差值阈值为所述电力负荷调节量的30%,预设负荷率为:(电力负荷调节量-负荷增加量)/(电网系统峰时负荷量)-30%,或,(电力负荷调节量-负荷降低量)/(电网系统谷时负荷量)-30%。若大于预设的差值阈值,则将n/N%加上预设负荷率或m/M%减去预设负荷率作为运行的负荷率,便可一次将需要电力负荷调节量和所述负荷增加量(减少量)的差值控制在预设的差值阈值之内。就既能满足室内舒适温度要求,又能在一定程度上满足对电网的调节需求。
对于调控模块400,所述负荷调控信号优选地包括调节所述冷水机组的压缩机的频率的信号和调节所述循环水泵的压缩机的频率的信号。
在一个实施例中,调控模块400还可用于:
根据所述运行负荷率确定所述中央空调系统的冷水机组的第一压缩机频率和所述中央空调系统的循环水泵的第二压缩机频率。
分别生成与所述第一压缩机频率和所述第二压缩机频率对应的频率调节信号,使所述冷水机组的压缩机和所述循环水泵的压缩机分别以所述第一压缩机频率和所述第二压缩机频率运行。
在其他实施方式中,可预先设定所述运行负荷率与所述负荷调控信号间的对应关系,根据所述对应关系获取与所述运行负荷率对应的负荷调控信号。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (9)
1.一种空调负荷的控制方法,其特征在于,包括以下步骤:
获取电网系统的负荷参数,并获取与所述负荷参数对应的电力负荷调节量;
获取中央空调系统所调控的各个受控区间的温度参数,并根据各个受控区间的温度参数获取各个受控区间的开关信号,所述开关信号用于标识所述中央空调系统开启或关闭对各个受控区间的温度调控;
根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央空调系统的运行负荷率;其中,若所述电力负荷调节量为待削减的电力负荷调节量,则获取开关信号为关闭信号的受控区间的个数n与所述中央空调系统所调控的受控区间的个数N的比值所对应的负荷降低量;
判断所述电力负荷调节量与所述负荷降低量的差值是否大于预设的差值阈值;
若是,则将n与N的比值与预设负荷率的差值作为所述中央空调系统的运行负荷率;若否,则将n与N的比值作为所述中央空调系统的运行负荷率;
若所述电力负荷调节量为待增加的电力负荷调节量,则获取开关信号为开启信号的受控区间的个数m与所述中央空调系统所调控的受控区间的个数M的比值所对应的负荷增加量;
判断所述电力负荷调节量与所述负荷增加量的差值是否大于预设的差值阈值,若是,则将所述m与M的比值与预设负荷率的相加值作为所述中央空调系统的运行负荷率;若否,则将m与M的比值作为所述中央空调系统的运行负荷率;
获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央空调系统的冷水机组和循环水泵。
2.根据权利要求1所述的空调负荷的控制方法,其特征在于,获取电网系统的负荷参数,并获取与所述负荷参数对应的电力负荷调节量的步骤包括以下步骤:
获取所述电网系统的当前负荷和额定负荷;
若所述当前负荷大于所述额定负荷,将所述当前负荷与所述额定负荷的差值作为待削减的电力负荷调节量;
若所述当前负荷小于所述额定负荷,将所述额定负荷与所述当前负荷的差值作为待增加的电力负荷调节量。
3.根据权利要求1所述的空调负荷的控制方法,其特征在于,获取中央空调系统所调控的各个受控区间的温度参数,并根据各个受控区间的温度参数获取各个受控区间的开关信号的步骤包括以下步骤:
从获取的各个受控区间的温度参数中,选取处于预设的关闭温度调控的温度区间的温度参数,并获取关闭信号为选取的温度参数所对应的受控区间的开关信号;
从获取的各个受控区间的温度参数中,选取处于预设的开启温度调控的温度区间的温度参数,并获取开启信号为选取的温度参数所对应的受控区间的开关信号。
4.根据权利要求1所述的空调负荷的控制方法,其特征在于,根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央空调系统的运行负荷率的步骤包括以下步骤:
若所述电力负荷调节量为待削减的电力负荷调节量,则获取所述中央空调系统所调控的受控区间的个数N,以及开关信号为关闭信号的受控区间的个数n,将n与N的比值作为所述中央空调系统的运行负荷率;
若所述电力负荷调节量为待增加的电力负荷调节量,则获取所述中央空调系统所调控的受控区间的个数M,以及开关信号为开启信号的受控区间的个数m,将m与M的比值作为所述中央空调系统的运行负荷率。
5.根据权利要求1所述的空调负荷的控制方法,其特征在于,获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央空调系统的冷水机组和循环水泵的步骤包括以下步骤:
根据所述运行负荷率确定所述中央空调系统的冷水机组的第一压缩机频率和所述中央空调系统的循环水泵的第二压缩机频率;
分别生成与所述第一压缩机频率和所述第二压缩机频率对应的频率调节信号,使所述冷水机组的压缩机和所述循环水泵的压缩机分别以所述第一压缩机频率和所述第二压缩机频率运行。
6.根据权利要求1至5中任意一项所述的空调负荷的控制方法,其特征在于,在获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央空调系统的冷水机组和循环水泵的步骤之后,还包括以下步骤:
通过冷水机组功耗模型、水泵模型和需求响应控制方程获取调控后的冷水机组下一时刻的运行功率、调控后的循环水泵的下一时刻的运行功率和调控后的各个受控区间的下一时刻的温度,其中,所述冷水机组功耗模型如以下所述公式(1)至公式(6)所示、所述水泵模型如以下所述公式(7)所示、需求响应控制方程如以下所述公式(8)至公式(14)所示:
Qmax=QeqChillerCapFT (2);
ChillerCapFT=a1+b1(Tchw,out)+c1(Tchw,out)2+d1(Tcow,out)+e1(Tcow,out)2+f1(Tchw,out)(Tcow,out) (3);
ChillerEIRFT=a2+b2(Tchw,out)+c2(Tchw,out)2+d2(Tcow,out)+e2(Tcow,out)2+f2(Tchw,out)(Tcow,out) (4);
ChillerEIRFPLR=a3+b3(Tcow,out)+c3(Tcow,out)2+d3(PLR)+e3(PLR)2+f3(Tcow,out)(PLR)+g1(PLR)3 (5);
PLR=Q/Qmax (6);
N=a4+b4V+c4V2 (7);
y=CT+DU (9);
其中,Qmax为最大制冷量,Qeq为额定制冷量,Tchw.out为冷冻水出水温度;Tcow.out为冷却水出水温度;a1,b1,c1,d1,e1,f1为拟合系数,a2,b2,c2,d2,e2,f2为拟合所得系数,a3,b3,c3,d3,e3,f3,g1为拟合所得系数,V为水流量,a4,b4,c4为拟合所得系数,A与B为相应制冷模式的系数矩阵,Tout为受控区间外的温度,Tair和Tmass分别为受控区间内的空气温度和物质温度,和则分别为Tair和Tmass对时间t的微分形式;
根据获取的所述冷水机组下一时刻的运行功率、所述循环水泵的下一时刻的运行功率获取所述电网系统的负荷参数;
根据获取的各个受控区间的下一时刻的温度,获取中央空调系统所调控的各个受控区间的温度参数。
7.根据权利要求6所述的空调负荷的控制方法,其特征在于,在获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央空调系统的冷水机组和循环水泵的步骤之后,还包括以下步骤:
对夏季制冷模式的需求响应控制方程中的如下公式(15)和公式(16)代入公式(8)至公式(14),获取夏季制冷模式下受控区间的温度和物质表面温度的求解方程(17)和(18):
其中,Q=Qsolar+Qrtx+Qrtq+Qzm+Qsb+Qhvac,Qrtx为人体显热得热,Qrtq为人体潜热得热,Qzm为照明得热,Qsb为设备得热,Qhvac指空调负荷,当空调开启时Qhvac=Qhvac,当空调关闭时Qhvac=0,Rair、Cair、Rmass、Cmass分别为受控区间外换热总热阻、总热容、受控区间内物质换热总热阻、总热容,下标t代表当前时刻,下标t+1代表下一时刻。
8.根据权利要求6所述的空调负荷的控制方法,其特征在于,在获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央空调系统的冷水机组和循环水泵的步骤之后,还包括以下步骤:
对冬季制热模式的需求响应控制方程中的如下公式(19)和公式(20)代入公式(8)至公式(14),获取冬季制热模式下受控区间的温度和物质表面温度的求解方程(21)和(22):
其中,Q=Qhvac-QL,QL为冬季从受控区间的开口处渗入受控区间的冷空气耗热量,当空调开启时QL=0,当空调关闭时Q=Qhvac,xcx为朝向修正系数,下标t代表当前时刻,下标t+1代表下一时刻。
9.一种空调负荷的控制系统,其特征在于,包括:
负荷获取模块,用于获取电网系统的负荷参数,并获取与所述负荷参数对应的电力负荷调节量;
温度获取模块,用于获取中央空调系统所调控的各个受控区间的温度参数,并根据各个受控区间的温度参数获取各个受控区间的开关信号,所述开关信号用于标识所述中央空调系统开启或关闭对各个受控区间的温度调控;
负荷率模块,用于根据所述电力负荷调节量和各个受控区间的开关信号,生成所述中央空调系统的运行负荷率;其中,若所述电力负荷调节量为待削减的电力负荷调节量,则获取开关信号为关闭信号的受控区间的个数n与所述中央空调系统所调控的受控区间的个数N的比值所对应的负荷降低量;
判断所述电力负荷调节量与所述负荷降低量的差值是否大于预设的差值阈值;
若是,则将n与N的比值与预设负荷率的差值作为所述中央空调系统的运行负荷率;若否,则将n与N的比值作为所述中央空调系统的运行负荷率;
若所述电力负荷调节量为待增加的电力负荷调节量,则获取开关信号为开启信号的受控区间的个数m与所述中央空调系统所调控的受控区间的个数M的比值所对应的负荷增加量;
判断所述电力负荷调节量与所述负荷增加量的差值是否大于预设的差值阈值,若是,则将所述m与M的比值与预设负荷率的相加值作为所述中央空调系统的运行负荷率;若否,则将m与M的比值作为所述中央空调系统的运行负荷率;
调控模块,用于获取与所述运行负荷率对应的负荷调控信号,并根据所述负荷调控信号调控所述中央空调系统的冷水机组和循环水泵。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410364474.4A CN104374042B (zh) | 2014-07-28 | 2014-07-28 | 空调负荷的控制方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410364474.4A CN104374042B (zh) | 2014-07-28 | 2014-07-28 | 空调负荷的控制方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104374042A CN104374042A (zh) | 2015-02-25 |
CN104374042B true CN104374042B (zh) | 2017-02-15 |
Family
ID=52553109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410364474.4A Active CN104374042B (zh) | 2014-07-28 | 2014-07-28 | 空调负荷的控制方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104374042B (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104807143B (zh) * | 2015-05-14 | 2017-05-10 | 南通大学 | 基于电能友好空调负荷侧主动需求策略 |
CN105004015B (zh) * | 2015-08-25 | 2017-07-28 | 东南大学 | 一种基于需求响应的中央空调控制方法 |
CN105042800B (zh) * | 2015-09-01 | 2017-11-07 | 东南大学 | 基于需求响应的变频空调负荷建模与运行控制方法 |
CN105135623B (zh) * | 2015-09-17 | 2018-03-30 | 国网天津节能服务有限公司 | 一种满足电网调峰和用户舒适度的中央空调减载控制方法 |
CN105444343B (zh) * | 2015-09-30 | 2020-03-13 | 江苏省电力公司南京供电公司 | 一种基于用电舒适度的空调负荷优先级中断方法 |
CN105932683B (zh) * | 2016-04-25 | 2018-05-22 | 国网浙江省电力公司 | 一种基于需求响应的负荷调控方法及系统 |
CN106055882B (zh) * | 2016-05-24 | 2019-04-02 | 珠海格力电器股份有限公司 | 水冷螺杆热泵机组选型计算方法及装置 |
TWI604162B (zh) * | 2016-06-21 | 2017-11-01 | Chunghwa Telecom Co Ltd | Automatic air conditioner operation capacity adjustment system and method |
CN106871354B (zh) * | 2017-02-22 | 2019-08-02 | 海信(广东)空调有限公司 | 一种变频空调的功率控制方法及系统 |
CN108151132B (zh) * | 2017-11-27 | 2022-05-10 | 国网北京市电力公司 | 空气源热泵的控制方法、装置和系统及空气源热泵 |
CN108266958B (zh) * | 2017-12-08 | 2020-06-23 | 广州供电局有限公司 | 需求响应容量评估方法、装置、存储介质和计算机设备 |
CN108731203B (zh) * | 2018-06-07 | 2019-11-12 | 浙江正和监理有限公司 | 基于大数据的建筑工程实时监控平台及方法 |
CN111486573B (zh) * | 2020-04-16 | 2021-09-14 | 南方电网科学研究院有限责任公司 | 一种中央空调集群调控方法、系统以及设备 |
CN111503829A (zh) * | 2020-04-30 | 2020-08-07 | 广东美的制冷设备有限公司 | 节能控制方法、装置、电子设备及介质 |
CN111780364A (zh) * | 2020-07-16 | 2020-10-16 | 海信(山东)空调有限公司 | 一种空调器节能控制方法、装置、空调器及存储介质 |
CN113865015A (zh) * | 2021-09-22 | 2021-12-31 | 武汉奇人制冷技术有限公司 | 大型中央空调ai智能控制方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1174964A (zh) * | 1995-11-24 | 1998-03-04 | 松下电器产业株式会社 | 空调器的控制方法 |
JP2004271006A (ja) * | 2003-03-06 | 2004-09-30 | Osaka Gas Co Ltd | コージェネレーションシステム |
CN101105321A (zh) * | 2007-08-03 | 2008-01-16 | 华南理工大学 | 中央空调末端环境温度与冷源负荷远程调控方法及系统 |
KR200447172Y1 (ko) * | 2009-05-18 | 2009-12-31 | 금호이엔지 (주) | 실내외 온도습도 차에 의한 전력관리시스템 |
CN102022799A (zh) * | 2009-09-19 | 2011-04-20 | 袁恒杰 | 一种用于中央空调器系统的节能控制方法 |
-
2014
- 2014-07-28 CN CN201410364474.4A patent/CN104374042B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1174964A (zh) * | 1995-11-24 | 1998-03-04 | 松下电器产业株式会社 | 空调器的控制方法 |
JP2004271006A (ja) * | 2003-03-06 | 2004-09-30 | Osaka Gas Co Ltd | コージェネレーションシステム |
CN101105321A (zh) * | 2007-08-03 | 2008-01-16 | 华南理工大学 | 中央空调末端环境温度与冷源负荷远程调控方法及系统 |
KR200447172Y1 (ko) * | 2009-05-18 | 2009-12-31 | 금호이엔지 (주) | 실내외 온도습도 차에 의한 전력관리시스템 |
CN102022799A (zh) * | 2009-09-19 | 2011-04-20 | 袁恒杰 | 一种用于中央空调器系统的节能控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104374042A (zh) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104374042B (zh) | 空调负荷的控制方法及系统 | |
CN104214912B (zh) | 一种基于温度设定值调整的聚合空调负荷调度方法 | |
CN104778631B (zh) | 一种面向需求响应的居民用户用电模式优化方法 | |
CN105320118B (zh) | 基于云平台的空调系统电力需求响应控制方法 | |
CN105042800A (zh) | 基于需求响应的变频空调负荷建模与运行控制方法 | |
CN107525236A (zh) | 基于人体舒适度的空调器控制方法及空调器 | |
CN105444343A (zh) | 一种基于用电舒适度的空调负荷优先级中断方法 | |
CN105138847A (zh) | 变频空调负荷参与需求响应的节电潜力评估方法 | |
CN204730410U (zh) | 一种组合式空调箱的全工况自适应控制装置 | |
Zeng et al. | A regional power grid operation and planning method considering renewable energy generation and load control | |
CN109523081A (zh) | 一种地源热泵系统运行温度调节优化方法 | |
Wang et al. | A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids | |
CN108426354A (zh) | 基于辐射时间序列方法的空调负荷预测系统 | |
CN106953340B (zh) | 一种基于多类温控负荷加权状态队列控制的配网联络线功率波动平抑方法 | |
CN106765957B (zh) | 基于负荷预测与舒适度反馈的供水变温度控制系统 | |
CN106855288A (zh) | 一种利用空调负荷调控降低电网尖峰负荷的方法 | |
CN108302691A (zh) | 空调控制方法及空调器 | |
CN106230002A (zh) | 一种基于指数移动平均的空调负荷需求响应方法 | |
CN106610083A (zh) | 空调热交换风速的控制方法及装置 | |
CN107563547A (zh) | 一种新型用户侧用能纵深优化综合能源管控方法 | |
CN111928428B (zh) | 一种考虑需求响应的空调系统的控制方法及制冷系统 | |
Satake et al. | A study on suppression of photovoltaic power output fluctuation by using thermal radiative cooling/heating system | |
CN208567008U (zh) | 基于辐射时间序列方法的空调负荷预测系统 | |
Li et al. | Energy performance and controllability study of different control strategies in chilled water system | |
CN106839266B (zh) | 基于空调负荷率和舒适度反馈的供水变温度控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: 510080 water Donggang 8, Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong. Patentee after: ELECTRIC POWER RESEARCH INSTITUTE, GUANGDONG POWER GRID CO., LTD. Address before: 510080 water Donggang 8, Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong. Patentee before: Electrical Power Research Institute of Guangdong Power Grid Corporation |
|
CP01 | Change in the name or title of a patent holder |