WO2019035463A1 - 蒸気タービン - Google Patents

蒸気タービン Download PDF

Info

Publication number
WO2019035463A1
WO2019035463A1 PCT/JP2018/030340 JP2018030340W WO2019035463A1 WO 2019035463 A1 WO2019035463 A1 WO 2019035463A1 JP 2018030340 W JP2018030340 W JP 2018030340W WO 2019035463 A1 WO2019035463 A1 WO 2019035463A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
steam turbine
diffuser
axial direction
return
Prior art date
Application number
PCT/JP2018/030340
Other languages
English (en)
French (fr)
Inventor
椙下 秀昭
創一朗 田畑
豊治 西川
忠志 ▲高▼橋
松本 和幸
祥弘 桑村
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to DE112018004202.2T priority Critical patent/DE112018004202T5/de
Priority to CN201880049320.2A priority patent/CN110959065B/zh
Priority to KR1020207002072A priority patent/KR102389230B1/ko
Priority to US16/634,223 priority patent/US11073047B2/en
Publication of WO2019035463A1 publication Critical patent/WO2019035463A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/14Casings or housings protecting or supporting assemblies within

Definitions

  • the present invention relates to a steam turbine.
  • Priority is claimed on Japanese Patent Application No. 2017-156732, filed Aug. 15, 2017, the contents of which are incorporated herein by reference.
  • the steam turbine includes an exhaust casing that guides the steam flowing out of the final moving blade row of the turbine rotor to the outside.
  • the exhaust casing has a diffuser and an outer casing.
  • the diffuser has an annular shape with respect to the axis, and forms a diffuser space which is directed radially outward gradually toward the downstream side of the axis.
  • the diffuser has an outer diffuser (or steam guide, flow guide) defining a radially outer edge of the diffuser space, and an inner diffuser (or bearing cone) defining a radially inner edge of the diffuser space.
  • the steam flowing out of the last moving blade row of the turbine rotor flows into the diffuser space.
  • the outer casing is in communication with the diffuser, and spreads in the circumferential direction with respect to the axis along the outer periphery of the diffuser to form an exhaust space for guiding the steam flowing in from the diffuser space to the outside.
  • Patent Document 1 As a specific example of a steam turbine having such a configuration, the one described in Patent Document 1 below is known.
  • a diffuser is formed by a cone disposed radially inward and a guide disposed on the outer peripheral side of the cone.
  • An outer casing is provided downstream of the diffuser. The vapor discharged from the diffuser is turned to the direction opposite to the mainstream of the vapor by hitting the outer casing.
  • the above guides extend in a direction intersecting the flow direction of the steam to be discharged. For this reason, circulation flow is formed in the field of the perimeter side (back side) of a guide.
  • the formation of the circulating flow reduces the flow passage area effective for exhaust, and also reduces the amount of pressure recovery of steam inside the diffuser. That is, in the steam turbine described in Patent Document 1, exhaust loss may increase.
  • the present invention was made in order to solve the above-mentioned subject, and it aims at providing a steam turbine which can reduce exhaust loss.
  • the steam turbine is rotated about the axis by the supplied steam, and a rotor for exhausting the steam from one side in the axial direction, and an inner casing enclosing the rotor from the outer peripheral side And an outer casing defining an exhaust chamber between the rotor and the inner casing and defining the exhaust chamber between the inner casing and the inner casing, and a cylindrical shape enclosing an axis, the inner portion in the exhaust chamber And a flow guide provided at an end of the casing in the axial direction to guide the steam discharged from the rotor, the flow guide being separated from the inner casing in the axial direction. And an outer peripheral surface increasing in diameter as it is separated from the inner casing in the axial direction, and a fluid which is connected to the outer peripheral surface and flows along the outer peripheral surface Turn back towards the side And, with a.
  • the fluid flowing along the outer peripheral surface is diverted by the return surface, and thereby flows from one side to the other side in the axial direction. Thereby, the size of the circulating flow area in the vicinity of the return surface can be reduced.
  • the return surface may extend from one side to the other side in the axial direction as going from the radially inner side to the outer side of the axial line.
  • the fluid flowing along the outer peripheral surface is diverted by the return surface, and thereby flows from one side to the other side in the axial direction. Thereby, the size of the circulating flow area in the vicinity of the return surface can be reduced.
  • the steam turbine may be provided with a solid portion filling the area between the return surface and the inner circumferential surface.
  • the flow guide can be integrally formed including the solid part, the flow guide can be manufactured easily and inexpensively.
  • the inner circumferential surface has a radius of curvature smaller than that of the return surface, and the outer edge of the return surface is the inner It may intersect with the outer edge of the circumferential surface.
  • the steam turbine may have a plurality of first straightening fins provided on the return surface and extending in the radial direction of the axis.
  • the circumferential direction component of the axis along with the rotation of the rotor is included in the flow direction of the fluid discharged from the diffuser.
  • the circumferential component of the fluid discharged from the diffuser and the circumferential component of the circulating flow flowing along the return surface are approximately It can be the same. Therefore, the interference between the fluid discharged from the diffuser and the circulating flow can be reduced, and the mixing loss can be reduced.
  • the steam turbine may have a plurality of second straightening fins provided on the inner circumferential surface and extending in the radial direction of the axis.
  • the flow along the inner circumferential surface and the circulating flow flowing along the return surface can be further approached by providing the second straightening fins. Therefore, the interference between the fluid discharged from the diffuser and the circulating flow can be further reduced, and the mixing loss can be reduced.
  • FIG. 7 is a cross-sectional view taken along the line AA of FIG.
  • the steam turbine ST of the first embodiment is a two-split exhaust steam turbine. That is, as shown in FIG. 1, the steam turbine ST includes a first steam turbine unit 10 a and a second steam turbine unit 10 b.
  • the first steam turbine unit 10a and the second steam turbine unit 10b are both fixed to the turbine rotor 11 (rotor 11) rotating around the axis Ar, the casing 20 covering the turbine rotor 11, and the casing 20
  • a plurality of vane arrays 17 and a steam inflow pipe 19 are provided.
  • the circumferential direction about the axis Ar is simply referred to as the circumferential direction Dc, and the direction perpendicular to the axis Ar is referred to as the radial direction Dr.
  • the side of the axis Ar is referred to as a radially inner side Dri, and the opposite side is referred to as a radially outer side Dro.
  • the first steam turbine unit 10 a and the second steam turbine unit 10 b share the steam inflow pipe 19.
  • components other than the steam inflow pipe 19 are disposed on one side of the axial direction Da with reference to the steam inflow pipe 19.
  • components other than the steam inflow pipe 19 are disposed on the other side in the axial direction Da with respect to the steam inflow pipe 19.
  • the side of the steam inflow pipe 19 in the above-described axial direction Da is referred to as an axial upstream side Dau, and the opposite side thereof is an axial downstream side Dad.
  • the configuration of the first steam turbine unit 10a and the configuration of the second steam turbine unit 10b are basically the same. Therefore, the first steam turbine unit 10a will be mainly described below.
  • the turbine rotor 11 has a rotor shaft 12 extending in the axial direction Da around an axis Ar and a plurality of moving blade cascades 13 attached to the rotor shaft 12.
  • the turbine rotor 11 is supported by a bearing 18 rotatably around an axis Ar.
  • the plurality of moving blade rows 13 are arranged in the axial direction Da.
  • Each moving blade row 13 is constituted by a plurality of moving blades arranged in the circumferential direction Dc.
  • the turbine rotor 11 of the first steam turbine unit 10a and the turbine rotor 11 of the second steam turbine unit 10b are located on the same axis Ar and connected to each other, and integrally rotate around the axis Ar.
  • the casing 20 has an inner casing 21 (inner casing 21) and an exhaust casing 25.
  • the inner casing 21 forms a substantially conical space around the axis Ar.
  • the plurality of moving blade cascades 13 of the turbine rotor 11 are disposed in the conical space.
  • the plurality of vane arrays 17 are arranged in the conical space in line with the axial direction Da.
  • Each of the plurality of stationary blade arrays 17 is disposed on the upstream upstream side Dau of any one of the plurality of moving blade arrays 13.
  • the plurality of vane arrays 17 are fixed to the inner casing 21.
  • the exhaust casing 25 has a diffuser 26 and an outer casing 30 (outer casing 30).
  • the diffuser 26 has an annular shape with respect to the axis Ar, and forms a diffuser space 26s that is directed radially outward gradually toward the axial downstream side Dad.
  • the steam flowing out of the final moving blade row 13a of the turbine rotor 11 flows into the diffuser space 26s.
  • the final moving blade row 13 a is the moving blade row 13 disposed on the most downstream axial side Dad among the plurality of moving blade rows 13.
  • the diffuser 26 includes an outer diffuser 27 (flow guide 27) defining an edge of the radially outer Dro of the diffuser space 26s, and an inner diffuser 29 (bearing cone 29) defining an edge of the radially inner Dri of the diffuser space 26s.
  • the outer diffuser 27 has an annular cross section perpendicular to the axis Ar, and gradually spreads toward the radially outer side Dro toward the downstream axis Dad.
  • the inner diffuser 29 also has an annular cross section perpendicular to the axis Ar, and gradually spreads radially outward Dro toward the downstream axis Dad.
  • the inner diffuser 29 is connected to the outer casing 30.
  • the outer casing 30 has an exhaust port 31.
  • the exhaust port 31 is a radially outer side Dro from the inside and opens downward in the vertical direction.
  • a condenser (not shown) for returning steam to water is connected to the exhaust port 31. That is, the steam turbine ST of the present embodiment is a downward exhaust type condensing steam turbine.
  • the outer casing 30 forms an exhaust space 30s (exhaust chamber 30s) in communication with the diffuser 26.
  • the exhaust space 30s extends the outer periphery of the diffuser 26 in the circumferential direction Dc with respect to the axis Ar, and guides the vapor flowing from the diffuser space 26s to the exhaust port 31.
  • the surface facing the radially outer side Dro of the outer diffuser 27 is an outer peripheral surface 27A.
  • the surface facing the radially inner side Dri of the outer diffuser 27 is an inner peripheral surface 27B.
  • the dimension between the outer circumferential surface 27A and the inner circumferential surface 27B ie, the thickness of the outer diffuser 27 is constant throughout the extension area of the outer diffuser 27.
  • a return portion R is provided on the outer peripheral surface 27A of the outer diffuser 27.
  • the return portion R extends from a portion of the outer peripheral surface 27A of the outer diffuser 27 close to one side in the axial direction Da in a direction intersecting the extending direction of the outer diffuser 27. More specifically, the return portion R extends from one side to the other side in the axial direction Da from the outer peripheral surface 27A of the outer diffuser 27 toward the radially outer side Dro. That is, both sides of the return portion R are respectively directed to both sides in the axial direction Da.
  • the surface on the other side in the axial direction Da is a return surface RA.
  • the return surface RA is recessed in a curved shape toward one side in the axial direction Da.
  • the return surface RA is provided to turn the fluid (vapor) flowing along the outer peripheral surface 27A of the outer diffuser 27 toward the other axial direction Da.
  • the steam flowing out of the final moving blade row 13a of the turbine rotor 11 flows into the diffuser space 26s.
  • the steam flowing into the diffuser space 26 s recovers pressure by the action of the diffuser 26, and changes the flow direction by colliding with the inner surface of the exhaust casing 25. More specifically, the vapor that has passed through the diffuser space 26s flows from the radially inner side Dri toward the radially outer side Dro, and then from the axial direction Da one side (axial downstream side Dad) to the other side (axial upstream side Dau It flows toward).
  • Part of the steam flowing from the axial direction Da from one side to the other side forms a circulation flow F in the exhaust space 30s as shown by the solid line arrow in FIG.
  • the circulation flow F is formed in a region on the other side in the axial direction Da than the return surface RA of the return portion R.
  • the circulation flow F swirls in a direction from the outer peripheral surface 27A of the outer diffuser 27 toward the return surface RA.
  • components other than the circulation flow F are exhausted from the exhaust port 31 to the outside.
  • the outer diffuser 27 is provided with the return portion R (return surface RA), so that the area where the circulation flow F is formed is only on the other side in the axial direction Da than the return surface RA. It can be restricted. More specifically, the steam flowing along the outer circumferential surface 27A is diverted by the return surface RA, and thereby flows from one side to the other side in the axial direction Da. Thereby, the magnitude of the circulation flow F in the vicinity of the return surface RA can be reduced.
  • the circulating flow F develops toward one side in the axial direction Da than the position where the return part R is provided (broken line arrow F 'in FIG. 2). ).
  • the exhaust area is limited, and the flow of steam toward the exhaust port 31 is restricted.
  • the exhaust loss of the steam turbine ST is increased.
  • the development of the circulation flow F can be limited, and the exhaust loss of the steam turbine ST can be reduced.
  • the first embodiment of the present invention has been described above with reference to FIGS. 1 and 2.
  • the above configuration is an example, and various changes and improvements can be made to this.
  • the outer diffuser 27 can be obtained only by bending the plate material forming the outer diffuser 27 to form the return portion R. That is, the manufacturing process can be simplified, and cost reduction and quick delivery can be achieved. Furthermore, such processing can also be easily applied to the existing steam turbine ST.
  • the solid portion P filling the region in the region between the return portion R and the outer diffuser 27 (the region between the return surface RA and the inner circumferential surface 27B) It is provided. That is, the return portion R is in the form of a block integral with the outer diffuser 27.
  • the surface on the other side in the axial direction Da of the solid portion P is a return surface RA.
  • the end face on the outer peripheral side of the solid portion P has a planar shape.
  • the region where the circulation flow F is formed is only on the other side in the axial direction Da than the return surface RA. It can be restricted. More specifically, the steam flowing along the outer circumferential surface 27A is diverted by the return surface RA, and thereby flows from one side to the other side in the axial direction Da. That is, the flow direction of the steam turned by the return surface RA can be made substantially the same as the flow direction of the steam that has collided with the exhaust casing 25 after being discharged from the diffuser space 26s. Thereby, the magnitude of the circulation flow F in the vicinity of the return surface RA can be reduced.
  • the return portion R can be integrally formed with the outer diffuser 27 by one member. This can also simplify the manufacturing process.
  • the inner circumferential surface 27B has a curvature radius smaller than that of the return surface RA in a sectional view including the axis Ar.
  • the inner circumferential surface 27B bulges toward one side in the axial direction Da.
  • the inner circumferential surface 27 B extends from the end of the outer diffuser 27 in a substantially arc shape.
  • the outer peripheral edge of the inner peripheral surface 27B intersects the outer peripheral edge of the return surface RA. That is, at the end edge on the outer peripheral side, the inner peripheral surface 27B and the return surface RA extend substantially in the same direction.
  • the flow direction of the steam flowing along the inner circumferential surface 27B and the flow direction of the steam flowing along the return surface RA can be made substantially the same at the outer peripheral edge.
  • the mixing loss of the fluid flowing along the inner circumferential surface 27B and the fluid flowing along the return surface RA can be reduced. Therefore, the interference between the circulation flow F and the flow of the steam flowing along the return surface RA can be reduced, and the exhaust loss of the steam turbine ST can be further reduced.
  • rectifying fins are provided on the return surface RA and the inner circumferential surface 27B described in the third embodiment.
  • a plurality of first straightening fins F1 extending in the radial direction Dr are provided on the return surface RA at intervals in the circumferential direction Dc.
  • the first straightening fins F1 are erected perpendicularly to the return surface RA on the return surface RA.
  • the first straightening fins F ⁇ b> 1 gradually increase in rising dimension (the rising dimension of the first straightening fins F ⁇ b> 1 from the return surface RA) in the radial direction from the radially inner side Dri toward the outer side.
  • the first straightening fins F1 extend from one end of the outer diffuser 27 in the axial direction Da to the end of the outer circumferential side of the return portion R.
  • a plurality of second straightening fins F2 extending in the radial direction Dr are provided at intervals in the circumferential direction Dc in a region on one side of the axial direction Da on the inner circumferential surface 27B.
  • the second straightening fins F2 are provided vertically on the inner circumferential surface 27B with respect to the inner circumferential surface 27B.
  • the rising dimension of the second straightening fins F2 gradually increases as going from the radially inner side Dri to the radially outer side Dro.
  • the second straightening fins F2 are provided only in a partial region including the end on the outer peripheral side of the inner peripheral surface 27B.
  • the second straightening fins F2 are provided only in the region facing the radially outer side Dro in the inner circumferential surface 27B. Furthermore, in the present embodiment, the position at which the second straightening fin F2 is provided on the inner circumferential surface 27B is different from the position of the first straightening fin F1 on the return surface RA.
  • the first straightening fins F1 and the second straightening fins F2 are alternately arranged in the circumferential direction Dc.
  • Each first straightening fin F1 and each second straightening fin F2 have an inclination angle with respect to the radial direction Dr.
  • the inclination angle with respect to the radial direction Dr increases.
  • the circumferential direction component accompanying the rotation of the turbine rotor 11 is included in the flow direction of the steam discharged from the diffuser space 26s.
  • the circumferential component of the vapor discharged from the diffuser space 26s and the circumference of the circulating flow flowing along the return surface RA The directional components can be made substantially identical. Therefore, the interference between the steam discharged from the diffuser space 26s and the circulation flow can be reduced, and the mixing loss can be reduced. Thus, the exhaust loss of the steam turbine ST can be further reduced.
  • the first straightening fins F1 and the second straightening fins F2 are provided on both surfaces (the return surface RA and the inner circumferential surface 27B) of the outer diffuser 27, respectively.
  • the flow along and the circulating flow flowing along the return surface RA can be further approximated. Therefore, the interference between the steam discharged from the diffuser space 26s and the circulation flow can be further reduced.
  • the fourth embodiment of the present invention has been described above with reference to FIG.
  • the above configuration is an example, and various changes and improvements can be made to this.
  • the first straightening fins F1 and the second straightening fins F2 may be provided at the same position.
  • the extending directions of the first straightening fins F1 and the second straightening fins F2 may cross each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

蒸気タービン(ST)は、軸線(Ar)回りに回転するロータ(11)と、ロータ(11)を外周側から囲う内車室(21)と、ロータ(11)及び内車室(21)を囲うとともに内車室(21)との間に蒸気が排気される排気室(30s)を画成する外車室(30)と、筒状をなし、排気室(30s)内における内車室(21)の軸線方向(Da)の一方側の端部に設けられてロータ(11)から排出される蒸気を案内するフローガイド(27)と、を備える。フローガイド(27)は、外周面(27A)に接続されて外周面(27A)に沿って流れる流体を軸線方向(Da)の他方側に向かって転向させる返し面(RA)を有する。

Description

蒸気タービン
 本発明は、蒸気タービンに関する。
 本願は、2017年8月15日に出願された特願2017-156732号に基づき優先権を主張し、その内容をここに援用する。
 蒸気タービンは、タービンロータの最終動翼列から流出した蒸気を外部に導く排気ケーシングを備えている。この排気ケーシングは、ディフューザと、外側ケーシングと、を有する。ディフューザは、軸線に対して環状を成し、軸線下流側に向うに連れて次第に径方向外側に向かうディフューザ空間を形成する。ディフューザは、ディフューザ空間の径方向外側の縁を画定する外側ディフューザ(又は、スチームガイド、フローガイド)と、ディフューザ空間の径方向内側の縁を画定する内側ディフューザ(又はベアリングコーン)と、を有する。ディフューザ空間内には、タービンロータの最終動翼列から流出した蒸気が流入する。外側ケーシングは、ディフューザに連通し、ディフューザの外周を軸線に対する周方向に広がって、ディフューザ空間から流入した蒸気を外部に導く排気空間を形成する。
 このような構成を備える蒸気タービンの具体例として、下記特許文献1に記載されたものが知られている。特許文献1には、径方向内側に配置されるコーンと、コーンの外周側に配置されるガイドとによってディフューザが形成されている。ディフューザの下流側には外部ケーシングが設けられている。ディフューザから排出された蒸気は、外部ケーシングにぶつかることで、蒸気の主流とは反対の方向に向かうように転向される。
特開2011-220125号公報
 ここで、上記のガイドは、排出される蒸気の流れ方向に対して交差する方向に延びている。このため、ガイドの外周側(裏側)の領域で循環流が形成される。循環流が形成されることにより、排気に有効な流路面積が減少し、ディフューザ内部における蒸気の圧力回復量も減少してしまう。すなわち、特許文献1に記載された蒸気タービンでは、排気損失が増大する可能性がある。
 本発明は上記課題を解決するためになされたものであって、排気損失を低減することが可能な蒸気タービンを提供することを目的とする。
 本発明の第一の態様によれば、蒸気タービンは、供給される蒸気によって軸線回りに回転し、該軸線方向一方側から前記蒸気を排気するロータと、該ロータを外周側から囲う内車室と、前記ロータ及び前記内車室を囲うとともに該内車室との間に前記蒸気が排気される排気室を画成する外車室と、軸線を囲う筒状をなし、前記排気室内における前記内車室の前記軸線方向一方側の端部に設けられて前記ロータから排出される蒸気を案内するフローガイドと、を備え、前記フローガイドは、前記内車室から前記軸線方向一方側に離間するに従って拡径する内周面と、前記内車室から前記軸線方向一方側に離間するに従って拡径する外周面と、該外周面に接続され、該外周面に沿って流れる流体を前記軸線方向他方側に向かって転向させる返し面と、を有する。
 この構成によれば、外周面に沿って流れる流体が返し面によって転向されることで、軸線方向一方側から他方側に向かって流れる。これにより、返し面の近傍における循環流領域の大きさを低減することができる。
 本発明の第二の態様によれば、前記返し面は、前記軸線の径方向内側から外側に向かうに従って、前記軸線方向一方側から他方側に延びていてもよい。
 この構成によれば、外周面に沿って流れる流体が返し面によって転向されることで、軸線方向一方側から他方側に向かって流れる。これにより、返し面の近傍における循環流領域の大きさを低減することができる。
 本発明の第三の態様によれば、蒸気タービンには、前記返し面と前記内周面との間の領域を埋める中実部が設けられていてもよい。
 この構成によれば、中実部を含めてフローガイドを一体に成型することができるため、フローガイドを容易かつ低廉に製造することができる。
 本発明の第四の態様によれば、前記軸線を含む断面視で、前記内周面は、前記返し面よりも小さな曲率半径を有するとともに、該返し面の外周側の端縁は、前記内周面の外周側の端縁と交差していてもよい。
 この構成によれば、内周面に沿って流れる流体の流れ方向と、返し面に沿って流れる流体の流れ方向とを略同一にすることができる。これにより、内周面に沿って流れる流体と返し面に沿って流れる流体の混合損失を低減できる。
 本発明の第五の態様によれば、蒸気タービンは、前記返し面上に設けられ、前記軸線の径方向に延びる複数の第一整流フィンを有してもよい。
 ここで、ディフューザから排出される流体の流れ方向には、ロータの回転に伴う軸線の周方向成分が含まれている。上記の構成によれば、第一整流フィンが返し面上に設けられていることにより、ディフューザから排出される流体の周方向成分と、返し面に沿って流れる循環流の周方向成分とを略同一にすることができる。したがって、ディフューザから排出される流体と循環流との干渉を小さくし、混合損失を低減することができる。
 本発明の第六の態様によれば、蒸気タービンは、前記内周面上に設けられ、前記軸線の径方向に延びる複数の第二整流フィンを有してもよい。
 この構成によれば、第二整流フィンが設けられていることで、内周面に沿う流れと、返し面に沿って流れる循環流とをさらに近付けることができる。したがって、ディフューザから排出される流体と循環流との干渉をさらに小さくし、混合損失を低減することができる。
 本発明によれば、排気損失を低減することが可能な蒸気タービンを提供することができる。
本発明の第一実施形態に係る蒸気タービンの断面図である。 本発明の第一実施形態における蒸気タービンの要部拡大図である。 本発明の第一実施形態の変形例を示す蒸気タービンの要部拡大図である。 本発明の第二実施形態における蒸気タービンの要部拡大図である。 本発明の第三実施形態における蒸気タービンの要部拡大図である。 本発明の第四実施形態における蒸気タービンの要部拡大図である。 図6のA-A線における断面図である。
[第一実施形態]
 本発明に係る蒸気タービンの第一実施形態について図面を参照して説明する。第一実施形態の蒸気タービンSTは、二分流排気型の蒸気タービンである。即ち、この蒸気タービンSTは、図1に示すように、第一蒸気タービン部10aと第二蒸気タービン部10bとを備える。第一蒸気タービン部10a及び第二蒸気タービン部10bは、いずれも、軸線Arを中心として回転するタービンロータ11(ロータ11)と、タービンロータ11を覆うケーシング20と、ケーシング20に固定されている複数の静翼列17と、蒸気流入管19と、を備えている。以下では、この軸線Arを中心とした周方向を単に周方向Dcとし、軸線Arに対して垂直な方向を径方向Drとする。さらに、この径方向Drで軸線Arの側を径方向内側Dri、その反対側を径方向外側Droとする。
 第一蒸気タービン部10aと第二蒸気タービン部10bとは、蒸気流入管19を共有する。第一蒸気タービン部10aで、この蒸気流入管19を除く部品は、この蒸気流入管19を基準にして軸線方向Daの一方側に配置されている。第二蒸気タービン部10bで、この蒸気流入管19を除く部品は、この蒸気流入管19を基準にして軸線方向Daの他方側に配置されている。各蒸気タービン部10a,10bにおいて、前述した軸線方向Daで蒸気流入管19の側を軸線上流側Dau、その反対側を軸線下流側Dadとする。
 第一蒸気タービン部10aの構成と第二蒸気タービン部10bの構成とは、基本的に同一である。このため、以下では、第一蒸気タービン部10aについて主として説明する。
 タービンロータ11は、軸線Arを中心として軸線方向Daに延びるロータ軸12と、このロータ軸12に取り付けられている複数の動翼列13と、を有する。タービンロータ11は、軸線Arを中心として回転可能に軸受18で支持されている。複数の動翼列13は、軸線方向Daに並んでいる。各動翼列13は、いずれも、周方向Dcに並んでいる複数の動翼で構成される。第一蒸気タービン部10aのタービンロータ11と、第二蒸気タービン部10bのタービンロータ11は、同一の軸線Ar上に位置して互いに連結されて、軸線Arを中心として一体回転する。
 ケーシング20は、内側ケーシング21(内車室21)と、排気ケーシング25とを有する。内側ケーシング21は、軸線Arを中心としてほぼ円錐状の空間を形成する。タービンロータ11の複数の動翼列13は、この円錐状の空間内に配置されている。複数の静翼列17は、軸線方向Daに並んで、この円錐状の空間内に配置されている。複数の静翼列17のそれぞれは、複数の動翼列13のうちいずれか一の動翼列13の軸線上流側Dauに配置されている。複数の静翼列17は、内側ケーシング21に固定されている。
 排気ケーシング25は、ディフューザ26と、外側ケーシング30(外車室30)とを有する。ディフューザ26は、軸線Arに対して環状を成し、軸線下流側Dadに向うに連れて次第に径方向外側に向かうディフューザ空間26sを形成する。ディフューザ空間26s内には、タービンロータ11の最終動翼列13aから流出した蒸気が流入する。最終動翼列13aとは、複数の動翼列13のうち、最も軸線下流側Dadに配置されている動翼列13である。ディフューザ26は、ディフューザ空間26sの径方向外側Droの縁を画定する外側ディフューザ27(フローガイド27)と、ディフューザ空間26sの径方向内側Driの縁を画定する内側ディフューザ29(ベアリングコーン29)と、を有する。外側ディフューザ27は、軸線Arに対する垂直な断面が環状を成し、軸線下流側Dadに向うに連れて次第に径方向外側Droに向かって広がっている。内側ディフューザ29も、軸線Arに対する垂直な断面が環状を成し、軸線下流側Dadに向うに連れて次第に径方向外側Droに向かって広がっている。内側ディフューザ29は、外側ケーシング30に接続されている。
 外側ケーシング30は、排気口31を有する。この排気口31は、内部から径方向外側Droであって鉛直下方向に向かって開口している。この排気口31には、蒸気を水に戻す復水器(不図示)が接続されている。即ち、本実施形態の蒸気タービンSTは、下方排気型の復水蒸気タービンである。この外側ケーシング30は、ディフューザ26に連通した排気空間30s(排気室30s)を形成する。この排気空間30sは、ディフューザ26の外周を軸線Arに対する周方向Dcに広がって、ディフューザ空間26sから流入した蒸気を排気口31に導く。
 次に、図2を参照して本実施形態における外側ディフューザ27の詳細な構成について説明する。同図に示すように、外側ディフューザ27の径方向外側Droを向く面は、外周面27Aとされている。また、外側ディフューザ27の径方向内側Driを向く面は、内周面27Bとされている。外周面27Aと内周面27Bとの間の寸法(即ち、外側ディフューザ27の厚さ)は、外側ディフューザ27の延在領域の全体にわたって一定である。
 外側ディフューザ27の外周面27A上には、返し部Rが設けられている。返し部Rは、外側ディフューザ27の外周面27Aにおける軸線方向Da一方側に近い部分から、当該外側ディフューザ27の延びる方向に交差する方向に向かって延びている。より具体的には、返し部Rは、外側ディフューザ27の外周面27Aから、径方向外側Droに向かうに従って、軸線方向Daの一方側から他方側に向かうように延びている。すなわち、返し部Rの両面は、それぞれ軸線方向Da両側にそれぞれ向いている。返し部Rの両面のうち、軸線方向Da他方側の面は、返し面RAとされている。返し面RAは、軸線方向Da一方側に向かって曲面状に凹没している。詳しくは後述するが、返し面RAは、外側ディフューザ27の外周面27Aに沿って流れる流体(蒸気)を軸線方向Da他方側に向かって転向させるために設けられている。
 続いて、再び図2を参照して、ディフューザ空間26sにおける蒸気の挙動について説明する。ディフューザ空間26sには、タービンロータ11の最終動翼列13aから流出した蒸気が流入する。ディフューザ空間26sに流入した蒸気は、ディフューザ26の作用によって圧力回復が図られるとともに、排気ケーシング25の内面にぶつかることで流れの向きを変える。より具体的には、ディフューザ空間26sを通過した蒸気は、径方向内側Driから径方向外側Droに向かって流れた後、軸線方向Da一方側(軸線下流側Dad)から他方側(軸線上流側Dau)に向かって流れる。
 軸線方向Da一方側から他方側に向かって流れる蒸気の一部は、図2中の実線矢印で示すように排気空間30sで循環流Fを形成する。循環流Fは、返し部Rの返し面RAよりも軸線方向Da他方側の領域で形成される。循環流Fは、外側ディフューザ27の外周面27Aから返し面RAに向かう方向に旋回する。排気空間30sに流入した蒸気のうち、循環流Fを除く成分は、排気口31から外部に排出される。
 ここで、本実施形態では、外側ディフューザ27に返し部R(返し面RA)が設けられていることにより、循環流Fが形成される領域を、返し面RAよりも軸線方向Da他方側のみに制限することができる。より具体的には、外周面27Aに沿って流れる蒸気が返し面RAによって転向されることで、軸線方向Da一方側から他方側に向かって流れる。これにより、返し面RAの近傍における循環流Fの大きさを低減することができる。
 一方で、外側ディフューザ27に返し部Rが設けられていない場合、循環流Fは当該返し部Rが設けられる位置よりも軸線方向Da一方側に向かって発達する(図2中の破線矢印F´)。このような循環流F´が発達した場合、排気面積が限定的となり、排気口31に向かう蒸気の流れが制限されてしまう。これにより、蒸気タービンSTの排気損失が増大してしまう。しかしながら、本実施形態では、返し部R(返し面RA)が設けられていることにより、循環流Fの発達を制限し、蒸気タービンSTの排気損失を低減することができる。
 以上、本発明の第一実施形態について図1と図2を参照して説明した。上記の構成は一例であり、これに種々の変更や改良を施すことが可能である。例えば、図3に示すように、外側ディフューザ27の軸線方向Da一方側の端部に連続的に返し部Rを設ける構成を採ることも可能である。このような構成を採る場合、外側ディフューザ27を形成する板材に曲げ加工を施して返し部Rを形成するのみで当該外側ディフューザ27を得ることができる。即ち、製造工程を簡略化し、低コスト化・短納期化を図ることができる。さらに、このような加工は、既設の蒸気タービンSTに対しても容易に施すこともできる。
[第二実施形態]
 次に、本発明の第二実施形態について、図4を参照して説明する。第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、返し部Rと外側ディフューザ27との間の領域(返し面RAと内周面27Bとの間の領域)に、当該領域を埋める中実部Pが設けられている。即ち、返し部Rは、外側ディフューザ27に対して一体のブロック状をなしている。中実部Pの軸線方向Da他方側の面は返し面RAとされている。中実部Pの外周側の端面は平面状をなしている。
 このような構成によれば、上記第一実施形態と同様に、返し面RAが設けられていることにより、循環流Fが形成される領域を、返し面RAよりも軸線方向Da他方側のみに制限することができる。より具体的には、外周面27Aに沿って流れる蒸気が返し面RAによって転向されることで、軸線方向Da一方側から他方側に向かって流れる。すなわち、返し面RAによって転向された蒸気の流れ方向と、ディフューザ空間26sから排出された後、排気ケーシング25にぶつかった蒸気の流れ方向とを略同一にすることができる。これにより、返し面RAの近傍における循環流Fの大きさを低減することができる。加えて、中実部Pが設けられていることにより、返し部Rを外側ディフューザ27と一の部材によって一体に形成することができる。これにより、製造工程を簡略化することもできる。
 以上、本発明の第二実施形態について図4を参照して説明した。上記の構成は一例であり、これに種々の変更や改良を施すことが可能である。
[第三実施形態]
 次に、本発明の第三実施形態について、図5を参照して説明する。上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、内周面27Bは、軸線Arを含む断面視で、返し面RAよりも小さな曲率半径を有している。言い換えると、内周面27Bは、軸線方向Da一方側に向かって膨らんでいる。内周面27Bは、外側ディフューザ27の端部から略円弧状に延びている。内周面27Bの外周側の端縁は、返し面RAの外周側の端縁と交差している。即ち、外周側の端縁において、内周面27Bと返し面RAとは、概ね同一の方向に向かって延びている。
 この構成によれば、内周面27Bに沿って流れる蒸気の流れ方向と、返し面RAに沿って流れる蒸気の流れ方向とを、外周側の端縁において略同一にすることができる。これにより、内周面27Bに沿って流れる流体と返し面RAに沿って流れる流体の混合損失を低減することができる。したがって、循環流Fと、返し面RAに沿って流れる蒸気の流れとの干渉を低減することができ、蒸気タービンSTの排気損失をさらに低減することができる。
 以上、本発明の第三実施形態について図5を参照して説明した。上記の構成は一例であり、これに種々の変更や改良を施すことが可能である。
[第四実施形態]
 次に、本発明の第四実施形態について、図6,図7を参照して説明する。上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、上記の第三実施形態で説明した返し面RA上、及び内周面27B上にそれぞれ整流用のフィンが設けられている。
 返し面RA上には、径方向Drに延びる複数の第一整流フィンF1が、周方向Dcに間隔をあけて設けられている。第一整流フィンF1は、返し面RA上で、当該返し面RAに対して垂直に立設されている。第一整流フィンF1は、径方向内側Driから外側に向かうに従って、立ち上がり寸法(第一整流フィンF1の返し面RAからの立ち上がり寸法)が次第に大きくなっている。第一整流フィンF1は、外側ディフューザ27の軸線方向Daの一方側の端部から、返し部Rの外周側の端部にかけて延びている。
 内周面27B上における軸線方向Da一方側の領域には、径方向Drに延びる複数の第二整流フィンF2が、周方向Dcに間隔をあけて設けられている。第二整流フィンF2は、内周面27B上で、当該内周面27Bに対して垂直に立設されている。第二整流フィンF2は、径方向内側Driから径方向外側Droに向かうに従って、立ち上がり寸法が次第に大きくなっている。第二整流フィンF2は、内周面27Bの外周側の端部を含む一部の領域のみに設けられている。より具体的には、第二整流フィンF2は、内周面27Bのうち、径方向外側Droを向く領域のみに設けられている。さらに、本実施形態では、内周面27B上で第二整流フィンF2が設けられる位置は、返し面RA上における第一整流フィンF1の位置と異なっている。
 図7に示すように、軸線方向Daから見て、第一整流フィンF1と第二整流フィンF2とは、周方向Dcに交互に配列されている。各第一整流フィンF1、各第二整流フィンF2は、径方向Drに対して傾斜角度を有している。さらに、鉛直方向から離間した位置に設けられる第一整流フィンF1(又は、第二整流フィンF2)になるほど、径方向Drに対する傾斜角度が大きくなる。
 ここで、ディフューザ空間26sから排出される蒸気の流れ方向には、タービンロータ11の回転に伴う周方向成分が含まれている。上記の構成によれば、第一整流フィンF1が返し面RA上に設けられていることにより、ディフューザ空間26sから排出される蒸気の周方向成分と、返し面RAに沿って流れる循環流の周方向成分とを略同一にすることができる。したがって、ディフューザ空間26sから排出される蒸気と循環流との干渉を小さくし、混合損失を低減することができる。これにより、蒸気タービンSTの排気損失をさらに低減することができる。
 さらに、上述の構成によれば、外側ディフューザ27の両面(返し面RA,内周面27B)にそれぞれ第一整流フィンF1,第二整流フィンF2が設けられていることで、内周面27Bに沿う流れと、返し面RAに沿って流れる循環流とをさらに近付けることができる。したがって、ディフューザ空間26sから排出される蒸気と循環流との干渉をさらに小さくすることができる。
 以上、本発明の第四実施形態について図6を参照して説明した。上記の構成は一例であり、これに種々の変更や改良を施すことが可能である。例えば、周方向Dcにおいて、第一整流フィンF1と第二整流フィンF2とは同一の位置に設けられていてもよい。さらに、第一整流フィンF1と第二整流フィンF2とは、延びる方向が互いに交差していてもよい。
 上記の蒸気タービンによれば、排気損失を低減することが可能である。
10a  第一蒸気タービン部
10b  第二蒸気タービン部
11  タービンロータ
12  ロータ軸
13  動翼列
13a  最終動翼列
17  静翼列
18  軸受
19  蒸気流入管
20  ケーシング
21  内側ケーシング
25  排気ケーシング
26  ディフューザ
26s  ディフューザ空間
27  外側ディフューザ(フローガイド)
27A  外周面
27B  内周面
29  内側ディフューザ
30  外側ケーシング
30s  排気空間
31  排気口
F1  第一整流フィン
F2  第二整流フィン
R  返し部
RA  返し面
ST  蒸気タービン
Ar  軸線

Claims (6)

  1.  供給される蒸気によって軸線回りに回転し、該軸線方向一方側から前記蒸気を排気するロータと、
     該ロータを外周側から囲う内車室と、
     前記ロータ及び前記内車室を囲うとともに該内車室との間に前記蒸気が排気される排気室を画成する外車室と、
     軸線を囲う筒状をなし、前記排気室内における前記内車室の前記軸線方向一方側の端部に設けられて前記ロータから排出される蒸気を案内するフローガイドと、
    を備え、
     前記フローガイドは、
     前記内車室から前記軸線方向一方側に離間するに従って拡径する内周面と、
     前記内車室から前記軸線方向一方側に離間するに従って拡径する外周面と、
     該外周面に接続され、該外周面に沿って流れる流体を前記軸線方向他方側に向かって転向させる返し面と、
    を有する蒸気タービン。
  2.  前記返し面は、前記軸線の径方向内側から外側に向かうに従って、前記軸線方向一方側から他方側に延びている請求項1に記載の蒸気タービン。
  3.  前記返し面と前記内周面との間の領域を埋める中実部が設けられている請求項1又は2に記載の蒸気タービン。
  4.  前記軸線を含む断面視で、前記内周面は、前記返し面よりも小さな曲率半径を有するとともに、該返し面の外周側の端縁は、前記内周面の外周側の端縁と交差している請求項1から3のいずれか一項に記載の蒸気タービン。
  5.  前記返し面上に設けられ、前記軸線の径方向に延びる複数の第一整流フィンを有する請求項1から4のいずれか一項に記載の蒸気タービン。
  6.  前記内周面上に設けられ、前記軸線の径方向に延びる複数の第二整流フィンを有する請求項1から5のいずれか一項に記載の蒸気タービン。
PCT/JP2018/030340 2017-08-15 2018-08-15 蒸気タービン WO2019035463A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018004202.2T DE112018004202T5 (de) 2017-08-15 2018-08-15 Dampfturbine
CN201880049320.2A CN110959065B (zh) 2017-08-15 2018-08-15 蒸汽轮机
KR1020207002072A KR102389230B1 (ko) 2017-08-15 2018-08-15 증기 터빈
US16/634,223 US11073047B2 (en) 2017-08-15 2018-08-15 Steam turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156732 2017-08-15
JP2017156732A JP6944307B2 (ja) 2017-08-15 2017-08-15 蒸気タービン

Publications (1)

Publication Number Publication Date
WO2019035463A1 true WO2019035463A1 (ja) 2019-02-21

Family

ID=65362480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030340 WO2019035463A1 (ja) 2017-08-15 2018-08-15 蒸気タービン

Country Status (6)

Country Link
US (1) US11073047B2 (ja)
JP (1) JP6944307B2 (ja)
KR (1) KR102389230B1 (ja)
CN (1) CN110959065B (ja)
DE (1) DE112018004202T5 (ja)
WO (1) WO2019035463A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6632510B2 (ja) * 2016-10-31 2020-01-22 三菱重工業株式会社 蒸気タービンの排気室、蒸気タービン排気室用のフローガイド、及び、蒸気タービン
JP7254472B2 (ja) * 2018-09-28 2023-04-10 三菱重工業株式会社 蒸気タービンの排気室、蒸気タービン及び蒸気タービンの換装方法
JP7184638B2 (ja) * 2018-12-28 2022-12-06 三菱重工業株式会社 蒸気タービン、及びその排気室

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544013U (ja) * 1978-09-14 1980-03-22
JPS59105905A (ja) * 1982-11-23 1984-06-19 ヌオボ・ピクノネ・エス・ペ−・ア− 高出力ガスタ−ビン用デイフユ−ザ
JPS60143109U (ja) * 1984-03-02 1985-09-21 株式会社日立製作所 タ−ビンの排気部構造
JP2011137461A (ja) * 2010-01-04 2011-07-14 General Electric Co <Ge> 増大した圧力回復を有する中空蒸気ガイドディフューザ
JP2011220125A (ja) * 2010-04-05 2011-11-04 Toshiba Corp 軸流タービン
JP2012132455A (ja) * 2010-12-23 2012-07-12 General Electric Co <Ge> 排出フードを有するタービン
JP2018071445A (ja) * 2016-10-31 2018-05-10 三菱重工業株式会社 蒸気タービンの排気室、蒸気タービン排気室用のフローガイド、及び、蒸気タービン

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3120374A (en) 1962-08-03 1964-02-04 Gen Electric Exhaust scroll for turbomachine
JPS52153005A (en) * 1976-06-14 1977-12-19 Hitachi Ltd Exhaust chamber of axial turbo-machine
SU857516A1 (ru) * 1978-11-27 1981-08-23 Харьковский Ордена Ленина Политехнический Институт Им. В.И.Ленина Выхлопной патрубок осевой турбины
JPS5672206A (en) 1979-11-14 1981-06-16 Nissan Motor Co Ltd Diffuser with collector
JP3776580B2 (ja) 1998-01-19 2006-05-17 三菱重工業株式会社 軸流タービンの排気装置
US6419448B1 (en) * 2000-03-20 2002-07-16 Jerzy A. Owczarek Flow by-pass system for use in steam turbine exhaust hoods
JP2003027905A (ja) 2001-07-16 2003-01-29 Mitsubishi Heavy Ind Ltd 軸流タービンの排気装置
JP4541813B2 (ja) 2004-09-17 2010-09-08 株式会社日立製作所 蒸気タービン低圧排気室
JP4627217B2 (ja) 2005-05-30 2011-02-09 株式会社日立製作所 タービン排気装置
WO2007019336A2 (en) * 2005-08-04 2007-02-15 Rolls-Royce Corporation, Ltd. Gas turbine exhaust diffuser
JP4557845B2 (ja) 2005-09-02 2010-10-06 株式会社東芝 蒸気タービン
JP4664854B2 (ja) 2006-04-20 2011-04-06 株式会社東芝 低圧蒸気タービン
US7780403B2 (en) * 2006-09-08 2010-08-24 Siemens Energy, Inc. Adjustable turbine exhaust flow guide and bearing cone assemblies
US7731475B2 (en) * 2007-05-17 2010-06-08 Elliott Company Tilted cone diffuser for use with an exhaust system of a turbine
US8475124B2 (en) * 2007-11-13 2013-07-02 General Electric Company Exhaust hood for a turbine and methods of assembling the same
CN101476823A (zh) * 2009-01-19 2009-07-08 北京交通大学 直接空冷枝状排汽管道系统内导流装置
JP6551888B2 (ja) 2016-02-29 2019-07-31 株式会社小池スチロール のぼり旗巻き上がり防止器具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544013U (ja) * 1978-09-14 1980-03-22
JPS59105905A (ja) * 1982-11-23 1984-06-19 ヌオボ・ピクノネ・エス・ペ−・ア− 高出力ガスタ−ビン用デイフユ−ザ
JPS60143109U (ja) * 1984-03-02 1985-09-21 株式会社日立製作所 タ−ビンの排気部構造
JP2011137461A (ja) * 2010-01-04 2011-07-14 General Electric Co <Ge> 増大した圧力回復を有する中空蒸気ガイドディフューザ
JP2011220125A (ja) * 2010-04-05 2011-11-04 Toshiba Corp 軸流タービン
JP2012132455A (ja) * 2010-12-23 2012-07-12 General Electric Co <Ge> 排出フードを有するタービン
JP2018071445A (ja) * 2016-10-31 2018-05-10 三菱重工業株式会社 蒸気タービンの排気室、蒸気タービン排気室用のフローガイド、及び、蒸気タービン

Also Published As

Publication number Publication date
CN110959065B (zh) 2022-04-01
KR20200018687A (ko) 2020-02-19
DE112018004202T5 (de) 2020-04-30
CN110959065A (zh) 2020-04-03
US11073047B2 (en) 2021-07-27
KR102389230B1 (ko) 2022-04-21
JP6944307B2 (ja) 2021-10-06
US20200173309A1 (en) 2020-06-04
JP2019035364A (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2019035463A1 (ja) 蒸気タービン
JP2010216321A (ja) 蒸気タービンの動翼及びそれを用いた蒸気タービン
KR102326915B1 (ko) 배기실 및 증기 터빈
WO2012124388A1 (ja) 遠心圧縮機のスクロール構造
JP2012193716A5 (ja)
JP2018115581A (ja) タービン排気室
WO2018181855A1 (ja) 蒸気タービンの排気室、及び、蒸気タービン
WO2017170083A1 (ja) 遠心圧縮機
KR102345536B1 (ko) 배기 케이싱, 및 이것을 구비하는 증기 터빈
JP6579717B2 (ja) ターボチャージャ
WO2017170105A1 (ja) 遠心圧縮機
JP2012107619A (ja) 排気フードディフューザ
JP2014238066A (ja) 回転機械
JP6917162B2 (ja) 動翼、ロータユニット、及び、回転機械
JP2019019765A (ja) 遠心圧縮機、ターボチャージャ
JP7283972B2 (ja) 蒸気タービンの排気室
JP2014066390A (ja) 軸流排気式復水器
JP7235595B2 (ja) 回転機械
JP6685879B2 (ja) 水力機械
JP6572195B2 (ja) タービンユニット、ターボチャージャ
US20190071991A1 (en) Rotary machine
JP6099988B2 (ja) ウォータポンプ
WO2015111243A1 (ja) インペラ及び遠心圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207002072

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18845671

Country of ref document: EP

Kind code of ref document: A1