WO2019035187A1 - 車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置 - Google Patents

車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置 Download PDF

Info

Publication number
WO2019035187A1
WO2019035187A1 PCT/JP2017/029454 JP2017029454W WO2019035187A1 WO 2019035187 A1 WO2019035187 A1 WO 2019035187A1 JP 2017029454 W JP2017029454 W JP 2017029454W WO 2019035187 A1 WO2019035187 A1 WO 2019035187A1
Authority
WO
WIPO (PCT)
Prior art keywords
lockup clutch
vehicle
downshift
control method
rotational speed
Prior art date
Application number
PCT/JP2017/029454
Other languages
English (en)
French (fr)
Inventor
譲 遠田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US16/633,629 priority Critical patent/US10801614B2/en
Priority to PCT/JP2017/029454 priority patent/WO2019035187A1/ja
Priority to JP2019536382A priority patent/JP6708309B2/ja
Priority to EP17922010.8A priority patent/EP3670971B1/en
Priority to CN201780093693.5A priority patent/CN111033093B/zh
Publication of WO2019035187A1 publication Critical patent/WO2019035187A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • F16H2061/145Control of torque converter lock-up clutches using electric control means for controlling slip, e.g. approaching target slip value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/34Inputs being a function of torque or torque demand dependent on fuel feed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Definitions

  • the present invention relates to a lockup clutch control method for a vehicle and a lockup clutch control device for a vehicle.
  • Patent Document 1 discloses a technology in which, when an accelerator pedal is depressed during fuel cut of an engine, the lockup clutch is temporarily released and reengaged after a predetermined time has elapsed.
  • An object of the present invention is to provide a lock-up clutch control method for a vehicle and a lock-up clutch control device for a vehicle that can suppress deterioration in acceleration feeling.
  • the lockup clutch when the automatic transmission is downshifted to slip-control the lockup clutch from the non-engagement state to the engaged state during accelerator operation, the lockup clutch
  • the transmission torque capacity of the lockup clutch is controlled so that the slip rotational speed becomes zero.
  • the deterioration of the acceleration feeling can be suppressed.
  • FIG. 1 is a system diagram showing a lockup clutch control device of a vehicle in a first embodiment.
  • 5 is a flowchart showing a flow of slip control executed by the transmission controller 7 according to the first embodiment. It is a setting map of the target slip rotation speed according to the speed change ratio difference.
  • FIG. 13 is a time chart showing an operation of slip control of the first embodiment in the case where the downshift of the automatic transmission 4 is not performed when reengaging after releasing the lockup clutch 5 by accelerator ON from the coast lockup state.
  • FIG. 7 is a time chart showing an operation of slip control of Embodiment 1 when downshifting of the automatic transmission 4 is performed when reengaging after releasing the lockup clutch 5 by accelerator ON from the coast lockup state.
  • FIG. 1 is a system diagram showing a lockup clutch control device of a vehicle in a first embodiment.
  • 5 is a flowchart showing a flow of slip control executed by the transmission controller 7 according to the first embodiment. It is a setting map of the target slip
  • FIG. 1 is a system diagram showing a lockup clutch control device for a vehicle in the first embodiment.
  • the vehicle of the first embodiment has an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, and an automatic transmission 4 as a powertrain.
  • the rotation of the engine 1 is transmitted to drive wheels (not shown) via the torque converter 2, the forward / reverse switching mechanism 3 and the automatic transmission 4.
  • the torque converter 2 has a pump impeller 2a, a turbine runner 2b, and a stator 2c.
  • the pump impeller 2 a is connected to the crankshaft 1 a of the engine 1.
  • the turbine runner 2 b is connected to the input shaft 4 a of the automatic transmission 4.
  • the stator 2c is disposed between the pump impeller 2a and the turbine runner 2b.
  • the torque converter 2 has a lockup clutch 5 that engages (mechanically directly connects) the pump impeller 2a and the turbine runner 2b.
  • the lockup clutch 5 responds to the differential pressure PA-PR between the torque converter apply pressure PA and the torque converter release pressure PR on both sides (input side, output side).
  • the differential pressure PA-PR is negative, the transfer torque capacity of the lockup clutch 5 is 0 [Nm], and the lockup clutch 5 is released.
  • the differential pressure PA-PR is positive, the transfer torque capacity of the lockup clutch 5 increases as the differential pressure PA-PR increases.
  • the forward / reverse switching mechanism 3 has a planetary gear mechanism and a plurality of clutches 3a, and switches between forward and reverse according to the engagement state of the clutch 3a.
  • the automatic transmission 4 is a belt type continuously variable transmission capable of changing a gear ratio between the input shaft 4a and the output shaft 4b.
  • the automatic transmission 4 includes a pair of pulleys whose groove width can be changed and a belt stretched between the pair of pulleys.
  • the hydraulic pressure supplied to the change of the engagement state of the torque converter 2 and the shift of the automatic transmission 4 is supplied from the hydraulic control circuit 6.
  • the hydraulic control circuit 6 has a plurality of valves and a plurality of oil passages. The hydraulic control circuit 6 adjusts the hydraulic pressure supplied to the torque converter 2 and the automatic transmission 4 based on the signal from the transmission controller (controller) 7, using the hydraulic pressure generated by the hydraulic pump (not shown) as the original pressure.
  • Signals from a vehicle speed sensor 8, an accelerator opening degree sensor 9, a brake switch 10, an engine speed sensor 11, and a turbine speed sensor 12 are input to the transmission controller 7.
  • the vehicle speed sensor 8 detects the vehicle speed (the number of rotations of the output shaft 4 b of the automatic transmission 4).
  • the accelerator opening sensor 9 detects the opening of the accelerator pedal (accelerator opening).
  • the brake switch 10 detects the presence or absence of the operation of the brake pedal.
  • the engine speed sensor 11 detects the speed of the engine 1.
  • the turbine rotational speed sensor 12 detects the rotational speed of the turbine runner 2b.
  • the transmission controller 7 determines the engagement state of the lockup clutch 5 required according to the operation state and the transmission gear ratio of the automatic transmission 4 based on each input signal, and the hydraulic control circuit is implemented to realize these. Output a signal to 6.
  • the transmission controller 7 starts from the vehicle stop state, releases the lockup clutch 5 until it reaches the predetermined vehicle speed, and secures the starting torque using the torque amplification action of the torque converter 2.
  • the transmission controller 7 engages the lockup clutch 5 for the purpose of improving fuel consumption.
  • the transmission controller 7 aims to suppress the engagement shock, and performs slip control from the released state to the engaged state of the lockup clutch 5.
  • the coasting state is entered.
  • the transmission controller 7 maintains the engagement state of the lockup clutch 5 during coasting, releases the lockup clutch 5 when the vehicle speed decreases and the engine rotational speed approaches the idle rotational speed, thereby preventing an engine stall. Do.
  • the transmission controller 7 engages the lockup clutch 5 when fuel cut of the engine 1 is being performed by the engine controller (not shown) during coasting.
  • the engine controller By maintaining the engine rotational speed higher than the idle rotational speed by the drive wheels, the driving force of the engine 1 can be restored instantly without driving the starter motor at the time of fuel injection resumption.
  • the engine controller ends the fuel cut of the engine 1.
  • the transmission controller 7 releases the lockup clutch 5. As a result, it is possible to avoid the occurrence of an engine stall as the engine rotational speed is pushed below the idle rotational speed by the drive wheel.
  • the engine 1 is in an idling state by resumption of fuel injection.
  • the engine controller When the driver depresses the accelerator pedal (accelerator on) from the fuel cut state (coast lock up state) during coasting, the engine controller ends the fuel cut of the engine 1 and restarts the fuel injection.
  • the transmission controller 7 releases the lockup clutch 5 when the accelerator pedal is depressed. As a result, it is possible to suppress the occurrence of a shock accompanying an increase in engine torque due to resumption of fuel injection.
  • the transmission controller 7 engages the lock-up clutch 5 for the purpose of improving fuel consumption after a predetermined time or when the change of the accelerator opening stops. At this time, the transmission controller 7 aims to suppress the engagement shock, and performs slip control from the released state to the engaged state of the lockup clutch 5.
  • the transmission controller 7 calculates the target slip rotational speed of the lockup clutch 5 during slip control, and the target value of the differential pressure PA-PR of the lockup clutch 5 so that the actual slip rotational speed follows the target slip rotational speed.
  • the lock-up instruction pressure which is is calculated and output to the hydraulic control circuit 6.
  • the lockup instruction value is a command value of the transmission torque capacity of the lockup clutch 5.
  • the slip rotational speed is a difference between the input and output rotational speeds of the lockup clutch 5, and is a value obtained by subtracting the rotational speed of the turbine runner 2b from the rotational speed of the pump impeller 2a.
  • the transmission controller 7 determines the lockup command pressure in accordance with the target slip rotational speed, the actual slip rotational speed and the engine torque.
  • the transmission controller 7 aims to suppress the deterioration of the acceleration feeling, and when the downshift of the automatic transmission 4 is performed during the slip control, the lockup clutch is finished after the downshift is completed.
  • FIG. 2 is a flowchart showing the flow of slip control executed by the transmission controller 7 according to the first embodiment.
  • This control is started by the accelerator on from the coast lockup state.
  • step S1 it is determined whether a downshift of the automatic transmission 4 is performed. In the case of YES, the process proceeds to step S2, and in the case of NO, the process proceeds to step S5. Since the shift of the automatic transmission 4 is determined by the vehicle speed and the accelerator opening degree, the presence or absence of the downshift can be determined from the vehicle speed and the accelerator opening degree.
  • step S2 second slip control that is slip control corresponding to the downshift is performed.
  • a target slip rotational speed that increases with a constant gradient is calculated, and a lockup command pressure that achieves the target slip rotational speed is calculated.
  • the target slip rotational speed is calculated with reference to the map shown in FIG. 3 based on the gear ratio difference (target gear ratio-actual gear ratio).
  • the predetermined rotation speed is set to a higher value as the engine torque is larger.
  • FIG. 3 is a setting map of the target slip rotational speed according to the gear ratio difference. In the map of FIG. 3, the target slip rotational speed is proportional to the speed ratio difference, and has a characteristic of becoming 0 when the speed ratio difference is 0.
  • the lockup command pressure is set to a value such that the slope of the engine speed does not become smaller than a predetermined slope (negative) while making the actual slip speed follow the target slip speed.
  • the predetermined gradient is, for example, the maximum value of the decrease gradient of the engine speed that does not cause the driver to feel deterioration in the acceleration feeling.
  • step S3 it is determined whether the slip rotational speed is 0 [rpm]. In the case of YES, the process proceeds to step S4, and in the case of NO, the process returns to step S2.
  • step S4 the lockup instruction pressure is set to a lockup instruction pressure corresponding to the accelerator opening degree.
  • step S5 the first slip control, which is slip control corresponding to non-downshift, is executed. In the first slip control, first, a target slip rotational speed that increases with a constant gradient is calculated, and a lockup command pressure that achieves the target slip rotational speed is calculated. After the target slip rotation number reaches the predetermined rotation number, the target slip rotation number is decreased with a constant gradient so that the target slip rotation number becomes 0 [rpm] after a predetermined time.
  • the predetermined rotation speed is set to a higher value as the engine torque is larger.
  • the decrease slope of the target slip speed is larger than the decrease slope of the target slip speed after the target slip speed reaches the predetermined speed in the second slip control.
  • step S6 it is determined whether the slip rotational speed is 0 [rpm]. In the case of YES, this control is ended, and in the case of NO, the process returns to step S5.
  • FIGS. 4 and 5 are time charts showing the slip control operation of the embodiment 1 when the lockup clutch 5 is released and reengaged after the lockup clutch 5 is released by the accelerator on from the coast lockup state.
  • FIG. 4 shows the case where the downshift of the automatic transmission 4 is not performed
  • FIG. 5 shows the case where the downshift of the automatic transmission 4 is performed.
  • the time chart of FIG. 4 will be described. At time t1, since the driver starts depressing the accelerator pedal, the lockup instruction pressure becomes 0 [Mpa], and the lockup clutch 5 is released. Thereby, it is possible to suppress the occurrence of a shock accompanying the increase of the engine torque.
  • the slip control for reengaging the lockup clutch 5 is started. Since downshifting of the automatic transmission 4 is not performed, in slip control, first slip control is performed. In the section from time t2 to t3, the target slip rotational speed increases with a constant slope. At time t3, since the target slip rotational speed has reached the predetermined rotational speed, the target slip rotational speed starts to decrease. In a section from time t3 to t4, the target slip rotational speed decreases with a constant gradient such that it becomes 0 [rpm] after a predetermined time from time t3. At time t4, the target slip rotational speed becomes 0 [rpm], and immediately after the actual slip rotational speed is 0 [rpm], that is, the lockup clutch 5 is engaged, the first slip control ends.
  • the target slip rotational speed starts to decrease.
  • the target slip rotational speed decreases with a constant gradient such that it becomes 0 [rpm] after a predetermined time from time t3. Therefore, the lockup command pressure increases in accordance with the decrease in the target slip rotational speed, and the lockup clutch 5 is engaged immediately after time t4.
  • the lockup instruction pressure is increased before the end of the downshift, and the lockup clutch 5 is engaged, whereby the automatic transmission 4 is raised according to the depression of the accelerator pedal.
  • the engine speed is dragged down by the turbine speed.
  • the behavior of the engine immediately after the accelerator is turned on and the phenomenon resulting therefrom are a behavior and a phenomenon contrary to the driver's intention, so the acceleration feeling is aggravated.
  • the target slip rotational speed is reduced according to the progress of the shift (reduction of the gear ratio difference). Therefore, at the same time when the downshift ends at time t5, the target slip rotational speed becomes 0 [rpm], and the lockup clutch 5 is engaged. That is, in the second slip control, the transmission torque capacity of the lockup clutch 5 is controlled such that the actual slip rotational speed of the lockup clutch 5 is 0 [rpm] after the downshift is completed, that is, the lockup clutch 5 is engaged. Be done. Thus, the lock-up clutch 5 is engaged after the turbine rotational speed has increased to the rotational speed according to the target gear ratio. As a result, since a reduction in the engine speed at the time of reengagement of the lockup clutch 5 accompanied by the downshift of the automatic transmission 4 is suppressed, it is possible to suppress the deterioration of the acceleration feeling.
  • the lockup command pressure is set to a value such that the slope of the engine speed does not become smaller than the predetermined slope, and the increase slope thereof becomes smaller than in the comparative example.
  • the decrease gradient of the engine speed when the lockup clutch 5 is shifted from the non-engagement state to the engagement state is limited, so that the deterioration of the acceleration feeling can be suppressed.
  • the target slip rotational speed becomes 0 [rpm]
  • the actual slip rotational speed is 0 [rpm]
  • the slip rotational speed of the lockup clutch 5 becomes 0 [rpm] after the downshift is completed.
  • the transfer torque capacity of the lockup clutch 5 is controlled. As a result, a reduction in engine speed at the time of engagement of the lockup clutch 5 accompanied by a downshift of the automatic transmission 4 can be suppressed, so that deterioration of the acceleration feeling can be suppressed.
  • the transmission torque capacity in the engaged state of the lockup clutch 5 is changed according to the presence or absence of the downshift. Specifically, when there is a downshift, the transfer torque capacity in the engaged state of the lockup clutch 5 is made larger than when there is no downshift. As a result, it is possible to suppress the deterioration of the speedup and acceleration of the engine 1 caused by the slip of the lockup clutch 5 with respect to the increase of the engine torque after the downshift.
  • the transmission torque capacity during slip control is calculated according to the target slip rotational speed of the lockup clutch 5, and the target slip rotational speed is changed according to the presence or absence of the downshift. Specifically, when there is a downshift, the increase gradient of the transfer torque capacity is made smaller than when there is no downshift. This makes it possible to suppress the deterioration of the acceleration feeling regardless of the presence or absence of the downshift.
  • the target slip rotational speed of the lockup clutch 5 is set to 0 [rpm] at the end timing of the downshift. This can prevent the lockup clutch 5 from being engaged before the end of the downshift.
  • a torque converter 2 having a lockup clutch 5 for transmitting the output of the engine 1 to the automatic transmission 4 and a transmission controller 7 for controlling the transmission torque capacity of the lockup clutch 5
  • the controller 7 performs the slip control of the lockup clutch 5 from the non-engagement state to the engagement state during accelerator operation, and when the downshift of the automatic transmission 4 is performed, the lockup is performed after the end of the downshift.
  • the transmission torque capacity is controlled so that the slip rotational speed of the clutch 5 becomes 0 [rpm].
  • the second embodiment differs from the first embodiment in that the lockup instruction pressure is calculated according to the accelerator opening.
  • the other configuration is the same as that of the first embodiment, so only different parts will be described.
  • a second slip control that is slip control corresponding to the downshift is performed.
  • the actual slip rotational speed is reduced with the passage of time, and a lop-up command pressure is set such that it becomes 0 [rpm] when the speed ratio difference of the automatic transmission 4 (target speed ratio-actual speed ratio).
  • the lockup command pressure is set to a value such that the gradient of the engine speed does not become smaller than a predetermined gradient (negative).
  • the predetermined gradient is, for example, the maximum value of the decrease gradient of the engine speed that does not cause the driver to feel deterioration in the acceleration feeling.
  • step S5 the first slip control, which is slip control corresponding to non-downshift, is executed.
  • the lockup instruction pressure is increased so that the actual slip rotational speed decreases with the passage of time and becomes 0 [rpm] after a predetermined time.
  • the lockup command pressure is increased as the accelerator opening degree is higher. Also, the increase slope of the lockup command pressure is larger than the increase slope of the lockup command pressure in the second slip control.
  • the transfer torque capacity of the lockup clutch 5 is controlled so that the lockup clutch 5 is engaged after the end of the downshift.
  • a reduction in engine speed at the time of reengagement of the lockup clutch 5 accompanied by a downshift of the automatic transmission 4 is suppressed, so that deterioration in acceleration feeling can be suppressed.
  • the second slip control since the decrease gradient of the engine speed is limited, the decrease gradient of the engine speed when the lockup clutch 5 is shifted from the non-engaged state to the engaged state is limited. The deterioration of acceleration feeling can be suppressed.
  • the transmission torque capacity during slip control is calculated according to the accelerator opening degree, and the transmission torque capacity is changed according to the presence or absence of the downshift. Specifically, when there is a downshift, the increase gradient of the transfer torque capacity is made smaller than when there is no downshift. This makes it possible to suppress the deterioration of the acceleration feeling regardless of the presence or absence of the downshift.
  • the slip control of the present invention is also applicable to slip control when the vehicle is started, and slip control when the accelerator pedal is depressed from a state where the road load and the driving force of the vehicle are balanced (such as constant speed traveling). The same effects as those of the embodiment can be obtained.
  • the method of calculating the lockup command pressure in slip control is arbitrary, as long as the slip rotational speed of the lockup clutch becomes zero at least after the end of the downshift.
  • the target engine speed may be used instead of the target slip speed. In this case, the target engine speed is set to 0 [rpm] at the end timing of the downshift.

Abstract

本発明は、エンジン(1)の出力がロックアップクラッチ(5)を有するトルクコンバータ(2)を介して自動変速機(4)へ伝達される、車両のロックアップクラッチ制御方法であって、アクセル操作中にロックアップクラッチ(5)を非係合状態から係合状態へ向けてスリップ制御するにあたり、自動変速機(4)のダウンシフトが行われる場合には、ダウンシフトの終了後にロックアップクラッチ(5)のスリップ回転数が0[rpm]となるようにロックアップクラッチ(5)の伝達トルク容量を制御する、車両のロックアップクラッチ制御方法に関する。

Description

車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置
 本発明は、車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置に関する。
 特許文献1には、エンジンのフューエルカット中にアクセルペダルが踏み込まれた場合、ロックアップクラッチを一旦解放し、所定時間経過後に再係合する技術が開示されている。
特開平05-231530号公報
 しかしながら、上記従来技術にあっては、アクセルペダルの踏み込みに伴い自動変速機のダウンシフトが行われる場合、ダウンシフト終了前にロックアップクラッチが係合すると、エンジン回転数がタービン回転数に引きずられて低下する。つまり、上記従来技術では、アクセルペダルが踏み込まれた直後にエンジン回転数がドライバの意図に反して低下するため、加速フィーリングが悪化するという問題があった。
  本発明の目的は、加速フィーリングの悪化を抑制できる車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置を提供することにある。
 本発明では、アクセル操作中にロックアップクラッチを非係合状態から係合状態へ向けてスリップ制御するにあたり、自動変速機のダウンシフトが行われる場合には、ダウンシフトの終了後にロックアップクラッチのスリップ回転数が0となるようにロックアップクラッチの伝達トルク容量を制御する。
 よって、本発明にあっては、加速フィーリングの悪化を抑制できる。
実施形態1における車両のロックアップクラッチ制御装置を示すシステム図である。 実施形態1の変速機コントローラ7が実行するスリップ制御の流れを示すフローチャートである。 変速比差に応じた目標スリップ回転数の設定マップである。 コーストロックアップ状態からのアクセルオンによりロックアップクラッチ5を解除後に再係合する際、自動変速機4のダウンシフトが行われない場合における実施形態1のスリップ制御の動作を示すタイムチャートである。 コーストロックアップ状態からのアクセルオンによりロックアップクラッチ5を解除後に再係合する際、自動変速機4のダウンシフトが行われる場合における実施形態1のスリップ制御の動作を示すタイムチャートである。
1 エンジン
2 トルクコンバータ
4 自動変速機
5 ロックアップクラッチ
7 変速機コントローラ(コントローラ)
 〔実施形態1〕
  図1は、実施形態1における車両のロックアップクラッチ制御装置を示すシステム図である。実施形態1の車両は、パワートレインとして、エンジン1、トルクコンバータ2、前後進切り替え機構3、自動変速機4を有する。エンジン1の回転はトルクコンバータ2、前後進切り替え機構3および自動変速機4を介して図外の駆動輪へ伝達される。
 トルクコンバータ2は、ポンプインペラ2a、タービンランナ2b、ステータ2cを有する。ポンプインペラ2aは、エンジン1のクランクシャフト1aに接続されている。タービンランナ2bは、自動変速機4の入力軸4aに接続されている。ステータ2cは、ポンプインペラ2aおよびタービンランナ2b間に配置されている。ポンプインペラ2aが回転すると、ポンプインペラ2aからタービンランナ2bへ向かう作動油の流れが生じ、この流れをタービンランナ2bで受けることでタービンランナ2bが回転する。タービンランナ2bを出た作動油は、ステータ2cにより整流されて再びポンプインペラ2aへと戻され、これによってトルク増幅作用が実現される。
 トルクコンバータ2は、ポンプインペラ2aおよびタービンランナ2b間を係合(機械的に直結)するロックアップクラッチ5を有する。ロックアップクラッチ5は、その両側(入力側、出力側)におけるトルクコンバータアプライ圧PAとトルクコンバータレリーズ圧PRとの差圧PA-PRに応動する。差圧PA-PRが負の場合、ロックアップクラッチ5の伝達トルク容量は0[Nm]であり、ロックアップクラッチ5は解放される。差圧PA-PRが正の場合、差圧PA-PRが大きいほどロックアップクラッチ5の伝達トルク容量は増大する。
  前後進切り替え機構3は、遊星歯車機構および複数のクラッチ3aを有し、クラッチ3aの係合状態に応じて前進と後進とを切り替える。
 自動変速機4は、入力軸4aおよび出力軸4b間の変速比を変更可能なベルト式無段変速機である。自動変速機4は、溝幅を変更可能な一対のプーリおよび一対のプーリ間に架け渡されたベルトを備える。油圧によってプーリの溝幅を変更すると、ベルトおよびプーリ間の接触半径が変化し、変速比が変更される。
  トルクコンバータ2の係合状態の変更および自動変速機4の変速に供される油圧は、油圧制御回路6から供給される。油圧制御回路6は、複数の弁および複数の油路を有する。油圧制御回路6は、変速機コントローラ(コントローラ)7からの信号に基づき、図外の油圧ポンプで生成された油圧を元圧として、トルクコンバータ2および自動変速機4に供給する油圧を調圧する。
 変速機コントローラ7には、車速センサ8、アクセル開度センサ9、ブレーキスイッチ10、エンジン回転数センサ11、タービン回転数センサ12からの信号が入力される。車速センサ8は、車速(自動変速機4の出力軸4bの回転数)を検出する。アクセル開度センサ9は、アクセルペダルの開度(アクセル開度)を検出する。ブレーキスイッチ10は、ブレーキペダルの操作の有無を検出する。エンジン回転数センサ11は、エンジン1の回転数を検出する。タービン回転数センサ12は、タービンランナ2bの回転数を検出する。変速機コントローラ7は、各入力信号に基づき、運転状態に応じて要求されるロックアップクラッチ5の係合状態および自動変速機4の変速比を判断し、これらが実現されるように油圧制御回路6に信号を出力する。
 以下、変速機コントローラ7によるロックアップクラッチ5の制御を説明する。
  変速機コントローラ7は、車両停止状態から発進し、所定車速に到達するまでの間は、ロックアップクラッチ5を解放し、トルクコンバータ2によるトルク増幅作用を利用して発進トルクを確保する。変速機コントローラ7は、発進後、所定車速に到達すると、燃費向上を目的としてロックアップクラッチ5を係合する。このとき、変速機コントローラ7は、係合ショックの抑制を狙いとし、ロックアップクラッチ5を解放状態から係合状態へ向けてスリップ制御する。
  ロックアップクラッチ5を係合しているドライブ状態から、ドライバがアクセルペダルを解放すると、コースト走行状態に移行する。変速機コントローラ7は、コースト走行時、ロックアップクラッチ5の係合状態を維持し、車速が低下してエンジン回転数がアイドル回転数に近づくと、ロックアップクラッチ5を解放し、エンジンストールを防止する。
 変速機コントローラ7は、コースト走行時、図外のエンジンコントローラによりエンジン1のフューエルカットが行われている場合には、ロックアップクラッチ5を係合する。駆動輪によってエンジン回転数をアイドル回転数よりも高い状態に維持することで、燃料噴射再開時にスタータモータを駆動することなく即座にエンジン1の駆動力を回復可能とする。次に、車速が低下してエンジン回転数がアイドル回転数に近づくと、エンジンコントローラは、エンジン1のフューエルカットを終了する。変速機コントローラ7は、ロックアップクラッチ5を解放する。これにより、駆動輪によってエンジン回転数がアイドル回転数以下に押し下げられることでエンジンストールが発生するのを回避できる。エンジン1は、燃料噴射の再開によりアイドリング状態となる。
 コースト走行時にフューエルカットが行われている状態(コーストロックアップ状態)から、ドライバがアクセルペダルを踏み込む(アクセルオン)と、エンジンコントローラは、エンジン1のフューエルカットを終了し、燃料噴射を再開する。変速機コントローラ7は、アクセルペダルが踏み込まれると、ロックアップクラッチ5を解放する。これにより、燃料噴射の再開によるエンジントルク上昇に伴うショックの発生を抑制できる。変速機コントローラ7は、ロックアップクラッチ5を解放した後、所定時間後またはアクセル開度の変化が止まると、燃費向上を目的としてロックアップクラッチ5を係合する。このとき、変速機コントローラ7は、係合ショックの抑制を狙いとし、ロックアップクラッチ5を解放状態から係合状態へ向けてスリップ制御する。
 変速機コントローラ7は、スリップ制御中、ロックアップクラッチ5の目標スリップ回転数を演算し、実スリップ回転数が目標スリップ回転数に追従するようにロックアップクラッチ5の差圧PA-PRの目標値であるロックアップ指示圧を演算し、油圧制御回路6へ出力する。ロックアップ指示値は、ロックアップクラッチ5の伝達トルク容量の指令値である。なお、スリップ回転数は、ロックアップクラッチ5の入出力回転数差であり、ポンプインペラ2aの回転数からタービンランナ2bの回転数を減じた値である。変速機コントローラ7は、目標スリップ回転数、実スリップ回転数およびエンジントルクに応じてロックアップ指示圧を決定する。
  ここで、上記コーストロックアップ状態からのアクセルオンによりロックアップクラッチ5を解放し、スリップ制御により再係合するにあたり、アクセル開度によってはスリップ制御中に自動変速機4のダウンシフトが行われる。この場合、ダウンシフト終了前にロックアップクラッチ5が係合すると、エンジン回転数がタービン回転数に引きずられて低下することで加速フィーリングが悪化を招くおそれがある。そこで、実施形態1の変速機コントローラ7では、加速フィーリングの悪化を抑制することを狙いとし、スリップ制御中に自動変速機4のダウンシフトが行われる場合には、ダウンシフト終了後にロックアップクラッチ5を係合させる。
 図2は、実施形態1の変速機コントローラ7が実行するスリップ制御の流れを示すフローチャートである。この制御は、コーストロックアップ状態からのアクセルオンにより開始される。
  ステップS1では、自動変速機4のダウンシフトが行われるか否かを判定する。YESの場合はステップS2へ進み、NOの場合はステップS5へ進む。自動変速機4の変速は車速とアクセル開度で決まるため、ダウンシフトの有無は車速とアクセル開度から判定できる。
  ステップS2では、ダウンシフトに対応するスリップ制御である第2スリップ制御を実行する。第2スリップ制御では、まず、一定の勾配で増加する目標スリップ回転数を演算すると共に、目標スリップ回転数を実現するロックアップ指示圧を演算する。目標スリップ回転数が所定回転数に達した後は、変速比差(目標変速比-実変速比)に基づき、図3に示すマップを参照して目標スリップ回転数を算出する。所定回転数は、エンジントルクが大きいほど高い値とする。図3は変速比差に応じた目標スリップ回転数の設定マップである。図3のマップにおいて、目標スリップ回転数は、変速比差に比例し、変速比差が0のとき0となる特性を持つ。ロックアップ指示圧は、実スリップ回転数を目標スリップ回転数に追従させつつ、エンジン回転数の勾配が所定の勾配(負)よりも小さくならないような値とする。所定の勾配は、例えば、ドライバに加速フィーリングの悪化を感じさせないエンジン回転数の減少勾配の最大値とする。
 ステップS3では、スリップ回転数が0[rpm]であるか否かを判定する。YESの場合はステップS4へ進み、NOの場合はステップS2へ戻る。
  ステップS4では、ロックアップ指示圧をアクセル開度に応じたロックアップ指示圧とする。
  ステップS5では、非ダウンシフトに対応するスリップ制御である第1スリップ制御を実行する。第1スリップ制御では、まず、一定の勾配で増加する目標スリップ回転数を演算すると共に、目標スリップ回転数を実現するロックアップ指示圧を演算する。目標スリップ回転数が所定回転数に達した後は、所定時間後に目標スリップ回転数が0[rpm]となるように、目標スリップ回転数を一定の勾配で減少させる。所定回転数は、エンジントルクが大きいほど高い値とする。目標スリップ回転数の減少勾配は、第2スリップ制御において目標スリップ回転数が所定回転数に達した後の目標スリップ回転数の減少勾配よりも大きくなる。
  ステップS6では、スリップ回転数が0[rpm]であるか否かを判定する。YESの場合は本制御を終了し、NOの場合はステップS5へ戻る。
 図4および図5は、コーストロックアップ状態からのアクセルオンによりロックアップクラッチ5を解除後に再係合する際の、実施形態1のスリップ制御の動作を示すタイムチャートである。図4は自動変速機4のダウンシフトが行われない場合、図5は自動変速機4のダウンシフトが行われる場合である。
  まず、図4のタイムチャートについて説明する。
  時刻t1では、ドライバがアクセルペダルの踏み込みを開始するため、ロックアップ指示圧は0[Mpa]となり、ロックアップクラッチ5が解放される。これにより、エンジントルクの上昇に伴うショックの発生を抑制できる。
 時刻t2では、アクセル開度の変化が停止したため、ロックアップクラッチ5を再係合するためのスリップ制御が開始される。自動変速機4のダウンシフトは行われないため、スリップ制御では、第1スリップ制御が実行される。時刻t2からt3までの区間において、目標スリップ回転数は、一定の勾配で増加する。
  時刻t3では、目標スリップ回転数が所定回転数に達したため、目標スリップ回転数は減少に転じる。時刻t3からt4までの区間において、目標スリップ回転数は、時刻t3から所定時間後に0[rpm]となるような一定の勾配で減少する。
  時刻t4では、目標スリップ回転数が0[rpm]となり、直後に実スリップ回転数が0[rpm]、すなわちロックアップクラッチ5が係合されたため、第1スリップ制御が終了する。
 次に、図5のタイムチャートについて説明する。比較例として、自動変速機4のダウンシフトが行われる場合に、第1スリップ制御を実行した場合を比較例として破線で示す。
  時刻t1からt2までの区間は図4の場合と同じであるが、アクセル開度は図4の場合よりも大きい。
  時刻t2では、アクセル開度の変化が停止したため、ロックアップクラッチ5を再係合するためのスリップ制御が開始される。また、図4の場合と比べてアクセル開度が大きく変化したことにより、自動変速機4のダウンシフトが行われるため、スリップ制御では、第2スリップ制御が実行される。時刻t2からt3までの区間において、目標スリップ回転数は、一定の勾配で増加する。
 時刻t3では、目標スリップ回転数が所定回転数に達したため、目標スリップ回転数は減少に転じる。比較例では、図4の場合と同様に、時刻t3からt4までの区間において、目標スリップ回転数が時刻t3から所定時間後に0[rpm]となるような一定の勾配で減少する。このため、ロックアップ指示圧は、目標スリップ回転数の減少に応じて増大し、時刻t4の直後にロックアップクラッチ5が係合する。このとき、自動変速機4は変速中であるため、ダウンシフトの終了前にロックアップ指示圧が高められ、かつロックアップクラッチ5が係合することにより、アクセルペダルの踏み込みに応じて上昇していたエンジン回転数は、タービン回転数に引きずられて低下する。このアクセルオン直後のエンジン挙動およびこれに起因する現象(タコメータ挙動、エンジン音変化等)は、ドライバの意図に反する挙動および現象となるため、加速フィーリングの悪化を伴う。
 これに対し、実施形態1の第2スリップ制御では、時刻t3からt5までの区間において、目標スリップ回転数は、変速の進行(変速比差の減少)に応じて?少する。このため、時刻t5でダウンシフトが終了すると同時に、目標スリップ回転数は0[rpm]となり、ロックアップクラッチ5が係合する。つまり、第2スリップ制御では、ダウンシフトの終了後にロックアップクラッチ5の実スリップ回転数が0[rpm]、すなわち、ロックアップクラッチ5が係合するようにロックアップクラッチ5の伝達トルク容量が制御される。これにより、タービン回転数が目標変速比に応じた回転数まで上昇してからロックアップクラッチ5が係合する。この結果、自動変速機4のダウンシフトを伴うロックアップクラッチ5の再係合時におけるエンジン回転数の低下が抑えられるため、加速フィーリングの悪化を抑制できる。
 また、第2スリップ制御において、ロックアップ指示圧は、エンジン回転数の勾配が所定の勾配よりも小さくならないような値とされ、その増加勾配は、比較例の場合よりも小さくなる。これにより、ロックアップクラッチ5を非係合状態から係合状態へ移行させるときのエンジン回転数の低下勾配が制限されるため、加速フィーリングの悪化を抑制できる。
  時刻t5では、目標スリップ回転数が0[rpm]となり、直後に実スリップ回転数が0[rpm]、すなわちロックアップクラッチ5が係合されたため、第1スリップ制御が終了する。ロックアップ指示圧は、アクセル開度に応じた値まで上昇される。これにより、ダウンシフトによるエンジントルクの増大に対し、ロックアップクラッチ5の伝達トルク容量が不足することでロックアップクラッチ5がスリップするのを防げる。この結果、ロックアップクラッチ5の再係合後におけるエンジン1の吹け上がりおよび加速性の悪化を抑制できる。
 実施形態1にあっては以下の効果を奏する。
  (1) エンジン1の出力がロックアップクラッチ5を有するトルクコンバータ2を介して自動変速機4へ伝達される車両のロックアップクラッチ制御方法であって、アクセル操作中にロックアップクラッチ5を非係合状態から係合状態へ向けてスリップ制御するにあたり、自動変速機4のダウンシフトが行われる場合には、ダウンシフトの終了後にロックアップクラッチ5のスリップ回転数が0[rpm]となるようにロックアップクラッチ5の伝達トルク容量を制御する。
  これにより、自動変速機4のダウンシフトを伴うロックアップクラッチ5の係合時におけるエンジン回転数の低下が抑えられるため、加速フィーリングの悪化を抑制できる。
 (2) スリップ制御中はエンジン回転数変化の傾きが所定の傾きよりも大きくなるようにロックアップクラッチ5の伝達トルク容量を制御する。
  これにより、ロックアップクラッチ5を再係合する際のエンジン回転数の低下勾配が制限されるため、加速フィーリングの悪化を抑制できる。
 (3) エンジン1のフューエルカット中にアクセル操作が行われた場合、ロックアップクラッチ5を非係合状態とした後にスリップ制御を実行する。
  これにより、再加速時におけるロックアップクラッチ5の係合ショックを抑制しつつ、ロックアップクラッチ5の再係合に伴う加速フィーリングの悪化を抑制できる。
 (4) ダウンシフトの有無に応じてロックアップクラッチ5の係合状態における伝達トルク容量を変更する。具体的には、ダウンシフトが有る場合にはダウンシフトが無い場合よりもロックアップクラッチ5の係合状態における伝達トルク容量を大きくする。
  これにより、ダウンシフト後のエンジントルクの増大に対し、ロックアップクラッチ5のスリップに伴うエンジン1の吹け上がりおよび加速性の悪化を抑制できる。
 (5) スリップ制御中の伝達トルク容量をロックアップクラッチ5の目標スリップ回転数に応じて演算し、ダウンシフトの有無に応じて目標スリップ回転数を変更する。具体的には、ダウンシフトが有る場合にはダウンシフトが無い場合よりも伝達トルク容量の増加勾配を小さくする。
  これにより、ダウンシフトの有無にかかわらず、加速フィーリングの悪化を抑制できる。
 (6) 自動変速機4のダウンシフトが行われる場合、ダウンシフトの終了タイミングでロックアップクラッチ5の目標スリップ回転数を0[rpm]とする。
  これにより、ダウンシフトの終了前にロックアップクラッチ5が係合するのを回避できる。
 (7) ロックアップクラッチ5を有し、エンジン1の出力を自動変速機4へ伝達するトルクコンバータ2と、ロックアップクラッチ5の伝達トルク容量を制御する変速機コントローラ7と、を備え、変速機コントローラ7は、アクセル操作中にロックアップクラッチ5を非係合状態から係合状態へ向けてスリップ制御するにあたり、自動変速機4のダウンシフトが行われる場合には、ダウンシフトの終了後にロックアップクラッチ5のスリップ回転数が0[rpm]となるように伝達トルク容量を制御する。
  これにより、自動変速機4のダウンシフトを伴うロックアップクラッチ5の係合時におけるエンジン回転数の低下が抑えられるため、加速フィーリングの悪化を抑制できる。
 〔実施形態2〕
  実施形態2では、ロックアップ指示圧をアクセル開度に応じて演算する点で実施形態1と相違する。他の構成は実施形態1と同じであるため、相違する部分のみ説明する。
  図2のフローチャートにおいて、ステップS2では、ダウンシフトに対応するスリップ制御である第2スリップ制御を実行する。第2スリップ制御では、実スリップ回転数が時間の経過と共に縮小し、自動変速機4の変速比差(目標変速比-実変速比)のとき0[rpm]となるようなロップアップ指示圧を演算する。なお、ロックアップ指示圧は、エンジン回転数の勾配が所定の勾配(負)よりも小さくならないような値とする。所定の勾配は、例えば、ドライバに加速フィーリングの悪化を感じさせないエンジン回転数の減少勾配の最大値とする。
 ステップS5では、非ダウンシフトに対応するスリップ制御である第1スリップ制御を実行する。第1スリップ制御では、実スリップ回転数が時間の経過と共に縮小し、所定時間後に0[rpm]となるように、ロックアップ指示圧を増加させる。ロックアップ指示圧は、アクセル開度が高いほど大きくする。また、ロックアップ指示圧の増加勾配は、第2スリップ制御におけるロックアップ指示圧の増加勾配よりも大きくなる。
 実施形態2の第2スリップ制御においても、実施形態1と同様、ダウンシフトの終了後にロックアップクラッチ5が係合するようにロックアップクラッチ5の伝達トルク容量が制御される。これにより、自動変速機4のダウンシフトを伴うロックアップクラッチ5の再係合時におけるエンジン回転数の低下が抑えられるため、加速フィーリングの悪化を抑制できる。また、第2スリップ制御では、エンジン回転数の低下勾配が制限されるため、ロックアップクラッチ5を非係合状態から係合状態へ移行させるときの、エンジン回転数の低下勾配が制限されるため、加速フィーリングの悪化を抑制できる。
 実施形態2にあっては以下の効果を奏する。
  (8) スリップ制御中の伝達トルク容量をアクセル開度に応じて演算し、ダウンシフトの有無に応じて伝達トルク容量を変更する。具体的には、ダウンシフトが有る場合にはダウンシフトが無い場合よりも伝達トルク容量の増加勾配を小さくする。
  これにより、ダウンシフトの有無にかかわらず、加速フィーリングの悪化を抑制できる。
 (9) 自動変速機4のダウンシフトが行われる場合、ダウンシフトの終了タイミングでロックアップクラッチ5のスリップ回転数が0[rpm]となるように伝達トルク容量の指令値であるロックアップ指示圧を設定する。
  これにより、ダウンシフトの終了前にロックアップクラッチ5が係合するのを回避できる。
 (他の実施形態)
  以上、本発明を実施するための形態を、実施形態に基づいて説明したが、本発明の具体的な構成は、実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
  本発明のスリップ制御は、車両発進時のスリップ制御や、ロードロードと車両の駆動力とが釣り合った状態(一定速走行等)からアクセルペダルが踏み込まれたときのスリップ制御にも適用可能であり、実施形態と同様の作用効果を奏する。
  スリップ制御におけるロックアップ指示圧の演算方法は任意であり、少なくともダウンシフトの終了後にロックアップクラッチのスリップ回転数がゼロとなればよい。例えば、実施形態1において、ロックアップ指示圧を演算する際、目標スリップ回転数に代えて目標エンジン回転数を用いてもよい。この場合、ダウンシフトの終了タイミングで目標エンジン回転数を0[rpm]とする。

Claims (9)

  1.  エンジンの出力がロックアップクラッチを有するトルクコンバータを介して自動変速機へ伝達される車両のロックアップクラッチ制御方法であって、
     アクセル操作中に前記ロックアップクラッチを非係合状態から係合状態へ向けてスリップ制御するにあたり、前記自動変速機のダウンシフトが行われる場合には、前記ダウンシフトの終了後に前記ロックアップクラッチのスリップ回転数がゼロとなるように前記ロックアップクラッチの伝達トルク容量を制御する車両のロックアップクラッチ制御方法。
  2.  請求項1に記載の車両のロックアップクラッチ制御方法において、
     前記スリップ制御中はエンジン回転数変化の傾きが所定の傾きよりも大きくなるように前記伝達トルク容量を制御する車両のロックアップクラッチ制御方法。
  3.  請求項1または2に記載の車両のロックアップクラッチ制御方法において、
     前記エンジンのフューエルカット中またはロードロードと車両の駆動力とが釣り合った状態でアクセル操作が行われた場合、前記ロックアップクラッチを非係合状態とした後に前記スリップ制御を実行する車両のロックアップクラッチ制御方法。
  4.  請求項1ないし3のいずれかに記載の車両のロックアップクラッチ制御方法において、
     前記ダウンシフトの有無に応じて前記ロックアップクラッチの係合状態における前記伝達トルク容量を変更する車両のロックアップクラッチ制御方法。
  5.  請求項1ないし4のいずれかに記載の車両のロックアップクラッチ制御方法において、
     前記スリップ制御中の前記伝達トルク容量をロックアップクラッチの目標スリップ回転数または目標エンジン回転数に応じて演算し、前記ダウンシフトの有無に応じて前記目標スリップ回転数または前記目標エンジン回転数を変更する車両のロックアップクラッチ制御方法。
  6.  請求項5に記載の車両のロックアップクラッチ制御方法において、
     前記自動変速機のダウンシフトが行われる場合、前記ダウンシフトの終了タイミングで前記目標スリップ回転数または前記目標エンジン回転数をゼロとする車両のロックアップクラッチ制御方法。
  7.  請求項1ないし4のいずれかに記載の車両のロックアップクラッチ制御方法において、
     前記スリップ制御中の前記伝達トルク容量をアクセル開度に応じて演算し、前記ダウンシフトの有無に応じて前記伝達トルク容量を変更する車両のロックアップクラッチ制御方法。
  8.  請求項7に記載の車両のロックアップクラッチ制御方法において、
     前記自動変速機のダウンシフトが行われる場合、前記ダウンシフトの終了タイミングで前記ロックアップクラッチのスリップ回転数がゼロとなるように前記伝達トルク容量の指令値を設定する車両のロックアップクラッチ制御方法。
  9.  ロックアップクラッチを有し、エンジンの出力を自動変速機へ伝達するトルクコンバータと、
     前記ロックアップクラッチの伝達トルク容量を制御するコントローラと、
     を備え、
     前記コントローラは、アクセル操作中に前記ロックアップクラッチを非係合状態から係合状態へ向けてスリップ制御するにあたり、前記自動変速機のダウンシフトが行われる場合には、前記ダウンシフトの終了後に前記ロックアップクラッチのスリップ回転数がゼロとなるように前記伝達トルク容量を制御する車両のロックアップクラッチ制御装置。
PCT/JP2017/029454 2017-08-16 2017-08-16 車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置 WO2019035187A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/633,629 US10801614B2 (en) 2017-08-16 2017-08-16 Lock-up clutch control method for vehicle, and lock-up clutch control device for vehicle
PCT/JP2017/029454 WO2019035187A1 (ja) 2017-08-16 2017-08-16 車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置
JP2019536382A JP6708309B2 (ja) 2017-08-16 2017-08-16 車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置
EP17922010.8A EP3670971B1 (en) 2017-08-16 2017-08-16 Lock-up clutch control method for vehicle, and lock-up clutch control device for vehicle
CN201780093693.5A CN111033093B (zh) 2017-08-16 2017-08-16 车辆的锁止离合器控制方法及车辆的锁止离合器控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029454 WO2019035187A1 (ja) 2017-08-16 2017-08-16 車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置

Publications (1)

Publication Number Publication Date
WO2019035187A1 true WO2019035187A1 (ja) 2019-02-21

Family

ID=65362501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029454 WO2019035187A1 (ja) 2017-08-16 2017-08-16 車両のロックアップクラッチ制御方法および車両のロックアップクラッチ制御装置

Country Status (5)

Country Link
US (1) US10801614B2 (ja)
EP (1) EP3670971B1 (ja)
JP (1) JP6708309B2 (ja)
CN (1) CN111033093B (ja)
WO (1) WO2019035187A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172666A (ja) * 1989-11-30 1991-07-26 Fuji Heavy Ind Ltd ロックアップトルコン付無段変速機の制御装置
JPH05231530A (ja) 1992-02-20 1993-09-07 Toyota Motor Corp 車両用ロックアップクラッチの制御装置
JP2004162749A (ja) * 2002-11-11 2004-06-10 Toyota Motor Corp ロックアップクラッチの制御装置および制御方法
JP2015218891A (ja) * 2014-05-21 2015-12-07 マツダ株式会社 自動変速機の制御方法及び制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078789B2 (ja) * 2000-04-21 2008-04-23 アイシン・エィ・ダブリュ株式会社 自動変速機におけるロックアップ制御装置
JP3622689B2 (ja) * 2001-04-24 2005-02-23 トヨタ自動車株式会社 動力伝達装置用作動油温の制御装置
JP3453132B2 (ja) * 2001-12-10 2003-10-06 本田技研工業株式会社 車両用動力伝達制御装置
JP3685149B2 (ja) 2002-04-25 2005-08-17 トヨタ自動車株式会社 車両用駆動制御装置
US8550958B2 (en) * 2009-03-31 2013-10-08 GM Global Technology Operations LLC Shift control method for a multi-mode hybrid transmission
US8690720B2 (en) * 2009-06-29 2014-04-08 Honda Motor Co., Ltd. Hydraulic control device for automatic transmission
JP5548599B2 (ja) * 2010-12-02 2014-07-16 ジヤトコ株式会社 コーストストップ車両およびその制御方法
US9518654B2 (en) * 2011-08-10 2016-12-13 Toyota Jidosha Kabushiki Kaisha Vehicle controller
US9031752B2 (en) * 2011-11-18 2015-05-12 Jatco Ltd Device for controlling automatic transmission
US20150246670A1 (en) * 2012-09-21 2015-09-03 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
CN104514876B (zh) * 2013-09-27 2017-03-29 本田技研工业株式会社 锁止离合器的控制装置及锁止离合器的控制方法
EP3190019B1 (en) * 2014-09-03 2018-11-28 Nissan Motor Co., Ltd Lock-up clutch control device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172666A (ja) * 1989-11-30 1991-07-26 Fuji Heavy Ind Ltd ロックアップトルコン付無段変速機の制御装置
JPH05231530A (ja) 1992-02-20 1993-09-07 Toyota Motor Corp 車両用ロックアップクラッチの制御装置
JP2004162749A (ja) * 2002-11-11 2004-06-10 Toyota Motor Corp ロックアップクラッチの制御装置および制御方法
JP2015218891A (ja) * 2014-05-21 2015-12-07 マツダ株式会社 自動変速機の制御方法及び制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3670971A4

Also Published As

Publication number Publication date
CN111033093A (zh) 2020-04-17
EP3670971B1 (en) 2021-12-22
JP6708309B2 (ja) 2020-06-10
EP3670971A4 (en) 2020-08-26
CN111033093B (zh) 2021-05-18
EP3670971A1 (en) 2020-06-24
US20200208740A1 (en) 2020-07-02
US10801614B2 (en) 2020-10-13
JPWO2019035187A1 (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
US8682552B2 (en) Control apparatus of automatic transmission
US7769516B2 (en) Automatic gear control device
US8340878B2 (en) Torque converter control device and control method thereof
KR101775296B1 (ko) 로크 업 클러치의 제어 장치
JP4119613B2 (ja) 自動変速機のロックアップ制御装置
JP4971967B2 (ja) 自動変速機のロックアップクラッチ制御装置
US8725373B2 (en) Control device of automatic transmission
JP6418187B2 (ja) 車両の変速制御装置
US10443717B2 (en) Control method and control device for transmission mechanism
WO2005075239A1 (ja) 車両用動力伝達装置のエンジン制御装置
WO2018074564A1 (ja) 車両用無段変速機の制御装置および制御方法
JP6717986B2 (ja) ロックアップクラッチの制御装置および制御方法
CN111033093B (zh) 车辆的锁止离合器控制方法及车辆的锁止离合器控制装置
JP2017137945A (ja) 車両の制御装置、及び車両の制御方法
JP2016047677A (ja) 車両のロックアップクラッチ制御装置
JP6065578B2 (ja) 無段変速機の制御装置および制御方法
JP5068280B2 (ja) 自動変速機のロックアップ制御装置及びロックアップ制御方法
JP2021099149A (ja) 車両用変速機の制御装置
JP2018118708A (ja) 車両の制御装置
JP2018096409A (ja) 発進装置の制御装置および制御方法
JP2005155783A (ja) 車両の制御装置
JP2016001003A (ja) 自動変速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017922010

Country of ref document: EP

Effective date: 20200316