WO2019033781A1 - 像素界定层及其制造方法、显示基板、显示面板 - Google Patents

像素界定层及其制造方法、显示基板、显示面板 Download PDF

Info

Publication number
WO2019033781A1
WO2019033781A1 PCT/CN2018/084428 CN2018084428W WO2019033781A1 WO 2019033781 A1 WO2019033781 A1 WO 2019033781A1 CN 2018084428 W CN2018084428 W CN 2018084428W WO 2019033781 A1 WO2019033781 A1 WO 2019033781A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
layer
substrate
defining
layers
Prior art date
Application number
PCT/CN2018/084428
Other languages
English (en)
French (fr)
Inventor
胡春静
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/322,927 priority Critical patent/US10957751B2/en
Priority to EP18836593.6A priority patent/EP3671845A4/en
Publication of WO2019033781A1 publication Critical patent/WO2019033781A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel defining layer and a manufacturing method thereof, a display substrate, and a display panel.
  • An organic light-emitting diode (English: Organic Light-Emitting Diode; OLED for short) display panel includes an anode, an organic light-emitting layer, a cathode, and the like.
  • the organic light-emitting layer includes a hole injection layer, a hole transport layer, an organic light-emitting material layer, an electron transport layer, an electron injection layer, and the like, and the organic light-emitting layer can be manufactured using an inkjet printing technique.
  • the organic light-emitting layer is manufactured by using inkjet printing technology, it is necessary to form a pixel defining layer on the glass substrate, and then spray a solution of the material of the organic light-emitting layer onto the glass substrate on which the pixel defining layer is formed to form an organic light-emitting layer. .
  • a pixel defining layer comprising:
  • a first orthographic projection of the sub-defining layer away from the substrate substrate on the substrate substrate is located adjacent to the sub-delimiting layer of the substrate substrate in the lining
  • each of the sub-defining layers being parallel to the surface of the substrate substrate is a lyophobic surface
  • the side of each sub-defining layer is a lyophilic surface.
  • a lyophilic sub-layer is further disposed between the substrate and the at least two sub-defining layers, and an orthographic projection of the lyophilic sub-layer on the substrate covers the at least two The sub-deposits define an orthographic projection of the layer on the substrate, the surface of the lyophilic sub-layer being a lyophilic surface.
  • the at least two sub-defining layers are made of the same material.
  • the at least two sub-defining layers are each made of a fluorine-containing photosensitive material.
  • the lyophobic surface has a fluorine content that is higher than the fluorine content of the lyophilic surface.
  • the at least two sub-definition layers are a unitary structure.
  • a method of fabricating a pixel defining layer including:
  • a first orthographic projection of the sub-defining layer away from the substrate substrate on the substrate substrate is located adjacent to the sub-delimiting layer of the substrate substrate in the lining
  • each of the sub-defining layers being parallel to the surface of the substrate substrate is a lyophobic surface
  • the side of each sub-defining layer is a lyophilic surface.
  • the method further includes:
  • a lyophilic sub-layer on the base substrate Forming a lyophilic sub-layer on the base substrate, an orthographic projection of the lyophilic sub-layer on the base substrate covering an orthographic projection of the at least two sub-deline layers on the substrate
  • the surface of the lyophilic definitive layer is a lyophilic surface.
  • the forming at least two sub-defining layers on the substrate substrate comprises:
  • the sub-defining film layer after development is subjected to heat treatment to obtain the at least two sub-defining layers.
  • the sub-defining film layer is made of a fluorine-containing photosensitive material.
  • the lyophobic surface has a fluorine content that is higher than the fluorine content of the lyophilic surface.
  • the halftone mask comprises at least two light transmissive regions, and the at least two light transmissive regions have different degrees of light transmission, and the sub-defining film layer is exposed by using a halftone mask.
  • the thickness after development is different.
  • a display substrate comprising: a substrate substrate and a pixel defining layer disposed on the substrate substrate, the pixel defining layer being defined by any of the pixels of the first aspect Floor.
  • the display substrate further includes: an anode disposed between the substrate substrate and the pixel defining layer, and an organic light emitting layer disposed on a side of the anode away from the substrate substrate.
  • the organic light emitting layer comprises: at least two sub-layers disposed in a stack, the at least two sub-layers comprising: a first sub-layer and a second sub-layer, the pixel-defining layer comprising: at least two sub-definition layers,
  • the pixel defining layer includes the same number of sub-defining layers as the number of sub-layers included in the organic light-emitting layer, and the at least two sub-defining layers include: a first sub-layer disposed on the substrate Defining a layer and a second sub-defining layer, the first sub-defining layer upper surface being substantially coplanar with an upper surface of the first sub-layer, the second sub-defining layer upper surface and the second sub-layer The upper surface is substantially coplanar.
  • an edge portion of the first sub-layer extends onto an upper surface of the first sub-defining layer and covers at least a portion of an upper surface of the first sub-defining layer and the second sub-defining layer At least a portion of the side surface.
  • a thickness of a portion of the first sub-layer extending to an upper surface of the first sub-defining layer is much smaller than a thickness of the first sub-layer.
  • a display panel comprising: the display substrate of any of the third aspects.
  • 1-1 is a schematic view showing a film layer forming a coffee ring in the related art
  • 1-2 is a schematic structural diagram of a pixel defining layer in the related art
  • FIG. 1-3 are schematic structural diagrams of another pixel defining layer in the related art
  • FIG. 2 is a schematic structural diagram of a pixel defining layer according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another pixel defining layer according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for fabricating a pixel defining layer according to an embodiment of the present disclosure
  • 5-1 is a schematic structural view of a lyophilic sub-layer formed on a substrate after being provided in an embodiment of the present disclosure
  • 5-2 is a flow chart of a method for forming at least two sub-defining layers on a substrate formed with a lyophilic sub-defining layer according to an embodiment of the present disclosure
  • FIG. 5-3 is a schematic structural diagram of forming a sub-defining film layer on a substrate formed with a lyophilic sub-defining layer according to an embodiment of the present disclosure
  • 5-4 is a schematic diagram of exposing a sub-defining film layer using a halftone mask according to an embodiment of the present disclosure
  • 5-5 are schematic structural diagrams of still another pixel defining layer according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • the OLED display has the advantages of self-luminescence, fast response, wide viewing angle, high brightness, colorful and light and thin, and the methods for manufacturing the film layer in the organic electroluminescent device mainly include vacuum evaporation and solution processes.
  • Vacuum evaporation is suitable for film formation of organic small molecular materials, and has the advantages of good film formation uniformity and relatively mature technology, and has been applied in mass production.
  • the solution process includes spin coating, inkjet printing, and nozzle coating methods.
  • inkjet printing technology is considered to be an important method for mass production of large-sized OLEDs due to its high material utilization rate and large size.
  • Inkjet printing technology requires the formation of a pixel defining layer on a substrate substrate on which an anode is formed in advance to define that the inkjet printed solution can accurately flow into a designated R/G/B sub-pixel region.
  • the cross section of the pixel defining layer in the thickness direction is a "positive" trapezoid
  • the pixel defining layer is made of a lyophobic material, because of the difference in surface energy between the solution of the inkjet printing and the pixel defining layer
  • the side of the pixel defining layer has a certain inclination angle and the solution has a certain drying characteristic, and the solution has a certain degree of climbing on the pixel defining layer, so that the organic light emitting layer formed after the solution is dried tends to have a thin intermediate edge (ie, The phenomenon of the coffee ring effect shown in the dotted line 1-1, which causes leakage of the edge of the pixel due to the occurrence of small holes on the one hand, and uniform brightness in the pixel due to uneven film thickness of the organic light-emitting layer. Sex will also be affected.
  • the pixel defining layer shown in Figures 1-2 and 1-3 can inhibit the solution from climbing on the pixel defining layer to some extent relative to the pixel defining
  • the pixel defining layer 00 shown in FIG. 1-2 includes a lyophilic layer 002 (usually made of silicon oxide or silicon nitride) and a lyophobic layer 003, which are sequentially stacked on the base substrate 001, a lyophilic layer.
  • the attraction of 002 to the solution can ensure that the solution flows into the pixel region, and it can reduce the difference in material properties from the anode and the height difference between the layers.
  • the repellency of the lyophobic layer 003 to the solution can inhibit the solution from defining in the pixel. Climbing on the layer to avoid small holes in the edges of the pixels and to improve the uniformity of brightness within the pixels.
  • the pixel defining layer is made of a fluorine-containing material, and the fluorine-containing component in the material after heating the material is moved up to the surface of the pixel defining layer (the portion filled in dots in FIG. 1-3).
  • the side of the pixel defining layer is rendered lyophilic, and the surface of the pixel defining layer exhibits lyophobicity, and thus, the pixel defining layer can inhibit the climbing of the solution on the pixel defining layer to some extent.
  • the organic light-emitting layer includes a plurality of film layers, the pixel defining layer shown in FIGS.
  • 1-2 and 1-3 can only suppress the climbing of the film layer close to the lyophobic layer to some extent, and therefore, When a solution of other film layers in the organic light-emitting layer is ink-jet printed, the solution still has a certain degree of climbing on the pixel defining layer, that is, the film formation uniformity of the solution in the pixel region is still affected.
  • the embodiment of the present disclosure provides a pixel defining layer 02.
  • the pixel defining layer 02 may include: at least two sub-defining layers disposed on the substrate substrate 021 in sequence. 022 (The embodiment of the present disclosure is described by taking a pixel defining layer including four sub-definition layers 0221, 0222, 0223, and 0224 as an example).
  • the first orthographic projection of the sub-defining layer away from the substrate 021 on the substrate 021 is located on the sub-substrate 021 adjacent to the sub-substrate layer of the substrate 021
  • the four sub-definition layers 0221, 0222, 0223, and 0224 have a orthographic projections A1, A2, A3, and A4 on the substrate substrate sequentially decreasing), and each sub-definition layer is parallel.
  • the surface of each sub-definition layer in the horizontal direction is parallel to the substrate, but in practical applications, the sub-definition layer is horizontal in the presence of factors such as process errors.
  • the surface may have a slight angle with the substrate, and in this case, the surface of the sub-defining layer may be considered to be parallel to the substrate as lyophobic (ie, formed as a lyophobic surface), each sub- The sides of the defined layer behave as lyophilic (ie, formed as a lyophilic surface).
  • the edge of the first orthographic projection and the edge of the second orthographic projection (more specifically, the edge of the first orthographic projection adjacent to the open area of the pixel defining layer and the first positive
  • the edges of the projected adjacent regions of the pixel defining layer may not coincide, that is, the edges of the two are staggered by a certain distance, and by adjusting the distance between the two, and adjusting the thickness of the sub-defining layer, and combining each
  • the lyophilicity of the surface of the sub-defining layer and the lyophobicity of the side of each sub-defining layer can correspondingly adjust the degree of climbing of the solution on the pixel defining layer, thereby improving the film uniformity of the solution in the pixel region.
  • FIG. 2 wherein the complete structure of the pixel defining layer on the left side is shown, only the pixel definition on the right side is shown.
  • the structure of the layer ie, the side of the pixel defining layer has a structure similar to a step).
  • the pixel defining layer provided by the embodiment of the present disclosure includes at least two sub-defining layers which are sequentially stacked on the substrate, and each of the sub-defining layers is liquefied parallel to the surface of the substrate.
  • the side of the defined layer is lyophilic, and the lyophilic side attracts the solution to ensure that the solution flows into the pixel region, and the lyophobic surface repels the solution to inhibit the solution on the pixel defining layer.
  • the pixel defining layer suppresses climbing of a corresponding one of the organic light emitting layers on the pixel defining layer by each of the sub-defining layers, so that the plurality of film layers included in the organic light emitting layer climb on the pixel defining layer It is suppressed, effectively improving the film formation uniformity of the solution in the pixel region, thereby improving the uniformity of brightness in the pixel.
  • the centers of the first orthographic projections and the second orthographic projections may coincide, as shown in FIG. 2, the centers of the orthographic projections A1, A2, A3, and A4 coincide.
  • the left side and the right side of each pixel defining layer can be symmetrical, so that the degree of climbing of the film layer in the pixel area on the left side and the right side of the pixel defining layer is almost the same, further improving the solution in the pixel area. Film formation uniformity.
  • a lyophilic sub-layer 023 may be disposed between the substrate 021 and the at least two sub-definition layers 022, and the orthographic projection of the lyophilic sub-layer 023 on the substrate 021 covers at least The two sub-deposits layer 022 are orthographically projected on the base substrate 021.
  • the lyophilic definitive layer 023 appears to be lyophilic, and can further ensure that the solution during inkjet printing enters the pixel region.
  • At least two of the sub-definition layers in the pixel defining layer may be made of the same material.
  • the at least two sub-defining layers can be formed by one patterning process, thereby simplifying the manufacturing process of the pixel defining layer.
  • the at least two sub-defining layers may each be made of a fluorine-containing photosensitive material, for example, the at least two sub-defining layers may each be made of Asahi Glass AGC glue.
  • the material of the sub-defining layer is fluorine-containing such that when the sub-defining film layer forming the sub-defining layer is subjected to heat treatment (for example, baking), the fluorine-containing component in the material can be moved up to the surface of the sub-defining layer to be formed after the heat treatment.
  • heat treatment for example, baking
  • the surface of the sub-defining layer behaves as lyophobic, and the side of the sub-defining layer appears to be lyophilic.
  • the at least two sub-defining layers may be of a unitary structure.
  • the at least two sub-defining layers can be formed by one sub-defining film layer after multiple patterning processes, or the at least two sub-defining layers can be separated by a sub-defining film layer
  • the masks having different rates are formed after one patterning process, and when at least two sub-defining layers are formed by one sub-defining film layer after one patterning process, the manufacturing process of manufacturing the pixel defining layer can be simplified.
  • the pixel defining layer provided by the embodiment of the present disclosure includes at least two sub-defining layers which are sequentially stacked on the substrate, and each of the sub-defining layers is liquefied parallel to the surface of the substrate.
  • the side of the defined layer is lyophilic, and the lyophilic side attracts the solution to ensure that the solution flows into the pixel region, and the lyophobic surface repels the solution to inhibit the solution on the pixel defining layer.
  • the pixel defining layer suppresses climbing of a corresponding one of the organic light emitting layers on the pixel defining layer by each of the sub-defining layers, so that the plurality of film layers included in the organic light emitting layer climb on the pixel defining layer It is suppressed, effectively improving the film formation uniformity of the solution in the pixel region, thereby improving the uniformity of brightness in the pixel.
  • the pixel defining layer provided by the embodiment of the present disclosure can also simplify the manufacturing process of the pixel defining layer, thereby reducing the probability of occurrence of poor pixel defining layer formation and reducing the manufacturing cost of the pixel defining layer. .
  • An embodiment of the present disclosure provides a method for fabricating a pixel defining layer. As shown in FIG. 4, the method may include:
  • Step 401 providing a substrate.
  • the base substrate may be a transparent substrate, and may be a substrate made of a light guide material having a certain hardness such as glass, quartz, or a transparent resin and made of a non-metal material.
  • Step 402 forming a lyophilic sub-layer on the substrate.
  • the lyophilic defined layer appears to be lyophilic.
  • a lyophilic material having a certain thickness may be deposited on the substrate by magnetron sputtering, thermal evaporation or plasma enhanced chemical vapor deposition (PECVD) to obtain a lyophilic material.
  • PECVD plasma enhanced chemical vapor deposition
  • the film layer is then processed by a patterning process to obtain a lyophilic material defining layer having a certain pattern.
  • the patterning process includes: photoresist coating, exposure, development, etching, and photoresist stripping.
  • the lyophilic material may be any one of lyophilic materials such as silicon dioxide and silicon nitride.
  • FIG. 5-1 is a schematic structural view of a liquid crystal sub-defining layer 023 formed on a substrate 021 according to an embodiment of the present disclosure.
  • a thin film transistor (English: Thin Film Transistor; TFT) array, a flat layer, and an anode may be formed on the substrate.
  • TFT Thin Film Transistor
  • Step 403 forming at least two sub-defining layers on the substrate formed with the lyophilic sub-defining layer.
  • the orthographic projection of the lyophilic sub-layer on the substrate substrate covers an orthographic projection of at least two sub-defining layers on the substrate, and in each of the two sub-defining layers that are in contact with each other, the sub-defining layer away from the substrate is
  • a first orthographic projection on the substrate substrate is located within a second orthographic projection on the substrate substrate adjacent to the sub-deline layer of the substrate substrate, and an edge of the first orthographic projection does not coincide with an edge of the second orthographic projection, and each sub-
  • the surface defining the layer parallel to the substrate substrate exhibits lyophobicity, and the sides of each of the sub-defining layers behave as lyophilic.
  • the centers of the first orthographic projection and the second orthographic projection may coincide.
  • FIG. 1 a schematic diagram of a structure after forming at least two sub-defining layers 022 on a substrate substrate on which a lyophilic sub-defined layer is formed is shown in FIG.
  • a method for fabricating a pixel defining layer includes at least two sub-defining layers sequentially stacked on a substrate, and each sub-defining layer is parallel to the lining
  • the surface of the base substrate is lyophobic, and the side of each sub-defining layer is lyophilic, and the lyophilic side attracts the solution to ensure that the solution flows into the pixel region, and the lyophobic surface repels the solution.
  • the pixel defining layer inhibiting the climbing of the corresponding one of the organic light emitting layers on the pixel defining layer by each of the sub-defining layers, so that the organic light emitting layer includes multiple
  • the climbing of the film layer on the pixel defining layer is suppressed, which effectively improves the film uniformity of the solution in the pixel region, thereby improving the uniformity of brightness in the pixel.
  • the process of forming at least two sub-defining layers on the substrate formed with the lyophilic sub-defining layer in step 403, as shown in FIG. 5-2 may include:
  • Step 4031 forming a sub-defining film layer on the base substrate on which the lyophilic sub-defining layer is formed.
  • a fluorine-containing photosensitive material having a certain thickness may be coated on the base substrate on which the lyophilic sub-defining layer is formed to obtain a sub-defining film layer.
  • the fluorine-containing photosensitive material may be Asahi Glass AGC adhesive.
  • the material defining the fluorine layer of the film layer is such that the surface of at least two of the sub-defining layers formed according to the sub-defining film layer exhibits lyophobicity, and the side surface of the sub-defining layer exhibits lyophilicity.
  • FIG. 5-3 illustrates a structural schematic diagram of forming a sub-defining film layer Z on a substrate 021 on which a lyophilic sub-defining layer 023 is formed, according to an embodiment of the present disclosure.
  • Step 4032 Exposing the sub-defining film layer with a halftone mask from a side of the sub-defining film layer away from the substrate.
  • the halftone mask includes at least two light transmissive regions, and the at least two light transmissive regions have different degrees of light transmission.
  • the halftone mask Y shown in FIG. 5-4 the halftone mask.
  • the film Y includes five light-transmissive regions (the portion having the same gray scale is a light-transmitting region).
  • the degree of light transmission in the light-transmitting region is different in the halftone mask, after the sub-defining film layer is exposed through the at least two light-transmitting regions, at least two exposure regions having different exposure degrees can be formed, and after the exposure The sub-defines define different thicknesses of the exposed regions of the film layer after development.
  • the sub-defining film layer is exposed through the halftone mask Y to obtain five exposed regions having different exposure degrees, and the five exposed regions are developed to obtain five regions as shown in FIG. 5-5.
  • the regions B1, B2, B3, B4, and B5 are respectively different in thickness in the direction perpendicular to the substrate substrate (wherein the thickness of the region B5 is 0), and the thickness of each region is as shown in FIG. 5-5. The thickness shown. It should be noted that, in an ideal state, the five regions should be planar on a surface parallel to the substrate, but in the actual exposure and development process, the joints of the five regions are affected by factors such as materials. It will produce an inclination as shown in Figure 5-5.
  • the exposure process will be described below by taking a sub-definition film layer made of a positive photoresist and a negative photoresist as an example.
  • the sub-defining film layer Z is made of a positive photoresist (for example, Asahi Glass AGC adhesive)
  • a schematic diagram of sub-defining the thin film layer Z using the halftone mask Y is shown in FIG. 5-4.
  • the shade of the halftone mask gradation indicates the transmittance, and the darker the gradation, the greater the transmittance, that is, the shade of the halftone mask corresponds to the sub-definition layer.
  • the sub-projection covers the sub-definition to define the strength of the film layer portion to be exposed. The darker the gray level indicates that the sub-definition layer portion needs to be exposed to a greater extent. After the exposure, 5 exposures can be obtained.
  • the sub-definite regions of the regions of different degrees define the regions of different exposure degrees including: a fully exposed region corresponding to the region B5 shown in FIG. 5-5, and a portion corresponding to the region B4 shown in FIG. 5-5.
  • the exposure area, another partial exposure area corresponding to the area B3 shown in FIG. 5-5, another partial exposure area corresponding to the area B2 shown in FIG. 5-5, and the area B1 shown in FIG. 5-5 Corresponding non-exposed areas.
  • a schematic diagram of exposing the sub-defining film layer Z using the halftone mask Y is continued with reference to FIG. 5-4, wherein the halftone mask
  • the depth of the gradation indicates the size of the light transmittance, and the darker the gradation, the smaller the light transmittance, that is, the depth of the halftone gradation corresponds to the orthographic projection on the sub-defining film layer.
  • the sub-definition defines the degree of weakness of the portion of the film layer that needs to be exposed. The darker the gray level indicates that the portion of the film layer that needs to be exposed is weaker. After the exposure, the sub-region including five regions with different exposure degrees can be obtained.
  • the five regions having different exposure degrees include: a fully exposed region corresponding to the region B5 shown in FIG. 5-5, a partial exposed region corresponding to the region B4 shown in FIG. 5-5, and FIG. Another partial exposure area corresponding to the area B3 indicated by -5, another partial exposure area corresponding to the area B2 shown in FIG. 5-5, and a non-exposed area corresponding to the area B1 shown in FIG. 5-5.
  • Step 4033 developing the exposed sub-defining film layer.
  • the sub-definition of the predetermined shape defines the film layer, and the shape of the sub-defining film layer after the development is determined by referring to the overall shape of the at least two sub-defining layers 022 in FIG. 2, and the at least two sub-definition layers 022 are respectively stacked on the layer.
  • Sub-layers on the base substrate 021 define layers 0221, 0022, 0223, and 0224.
  • the sub-defining film layer obtained after development can be rendered in this shape because the sub-defining film layer has different degrees of exposure at the time of exposure, and accordingly, the degree of reaction of each portion with the developing solution is different during development.
  • the portions from which the portions are removed after development are different.
  • Step 4034 heat-treating the developed sub-defining film layer to obtain at least two sub-defining layers.
  • the fluorine-containing component in the sub-defining film layer is moved up to the surface of the sub-defining film layer, so that the surface of the sub-defining layer formed after the heat treatment exhibits lyophobicity, and the side of the sub-defining layer behaves as lyophilic. Sex. Please refer to FIG. 2 or FIG. 3 for the structure of at least two sub-definition layers 022 formed after the heat treatment.
  • At least two sub-defining layers are formed by a sub-defining film layer formed on the substrate substrate after one patterning process, which simplifies the manufacturing process of the pixel defining layer.
  • each sub-defining layer is sequentially formed on the substrate, and the process of forming each sub-defining layer may include: coating material, exposure, and development And heat treatment; or, at least two material layers may be sequentially coated on the base substrate, and then the at least two material layers are exposed, developed, and heat treated with a halftone mask to obtain at least two sub-defining layers; Alternatively, a sub-defining film layer may be formed on the base substrate, and then the sub-defining film layer may be exposed multiple times by using a plurality of masks having different opening areas, and then the exposed sub-defining film layer may be developed and heat-treated. In order to obtain at least two sub-definition layers, the embodiment of the present disclosure does not limit this.
  • a method for fabricating a pixel defining layer includes at least two sub-defining layers sequentially stacked on a substrate, and each sub-defining layer is parallel to the lining
  • the surface of the base substrate is lyophobic, and the side of each sub-defining layer is lyophilic, and the lyophilic side attracts the solution to ensure that the solution flows into the pixel region, and the lyophobic surface repels the solution.
  • the pixel defining layer inhibiting the climbing of the corresponding one of the organic light emitting layers on the pixel defining layer by each of the sub-defining layers, so that the organic light emitting layer includes multiple
  • the climbing of the film layer on the pixel defining layer is suppressed, which effectively improves the film uniformity of the solution in the pixel region, thereby improving the uniformity of brightness in the pixel.
  • the pixel defining layer provided by the embodiment of the present disclosure can also simplify the manufacturing process of the pixel defining layer, thereby reducing the probability of occurrence of poor pixel defining layer formation and reducing the manufacturing cost of the pixel defining layer. .
  • step 402 may not be performed. Any method that can be easily conceived by those skilled in the art within the scope of the technology disclosed in the present disclosure is intended to be included in the scope of the present disclosure, and therefore will not be described again.
  • the embodiment of the present disclosure further provides a display substrate, which may include: a substrate substrate and a pixel defining layer disposed on the substrate substrate, the pixel defining layer being the pixel defining layer shown in FIG. 2 or FIG.
  • the display substrate may further include: an anode 03 disposed between the base substrate 021 and the pixel defining layer 02, and an organic light emitting layer 04 disposed on a side of the anode 03 away from the substrate 021 .
  • the anode can be made of indium tin oxide (English: Indium tin oxide; ITO for short).
  • the organic light-emitting layer may include at least two sub-layers disposed in a stack, and the number of sub-layers included in the organic light-emitting layer may be equal to the number of sub-definition layers included in the pixel-defining layer, and the stack included in the organic light-emitting layer
  • Each of the sub-layers disposed in the pixel-defining layer is equal in thickness to each sub-pixel layer disposed on the substrate substrate, for example, the thickness of each sub-layer and each sub-pixel layer may be on the order of several tens of nanometers.
  • Thickness for example, when at least two sub-layers include a first sub-layer and a second sub-layer, the at least two sub-definition layers including the first sub-defining layer and the second sub-defining layer stacked on the substrate substrate, first The upper surface of the sub-defining layer is substantially coplanar with the upper surface of the first sub-layer, and the upper surface of the second sub-defining layer is substantially coplanar with the upper surface of the second sub-layer such that the thickness of the first sub-delimited layer and the first sub- The thickness of the layers is substantially the same, and the thickness of the second sub-defining layer is substantially the same as the thickness of the second sub-layer.
  • the "upper surface” means the upper surface of the layer or structure in the direction shown in the drawing, that is, as shown in FIG. 6, the "upper surface” indicates that each layer is away from the base substrate. s surface.
  • the organic light-emitting layer 04 may include a hole injection layer 041, a hole transport layer 042, and an organic light-emitting material layer 043.
  • the layer may include four sub-definition layers, wherein the thickness of the first sub-definition layer is substantially the same as the thickness of the hole injection layer 041, the thickness of the second sub-definition layer is substantially the same as the thickness of the hole transport layer 042, and the third sub-definition The thickness of the layer is substantially the same as the thickness of the organic luminescent material layer 043.
  • the thickness of the first sub-defining layer is the same as the thickness of the hole injecting layer, such that the first sub-defining layer can suppress the climbing of the solution for forming the hole injecting layer on the first sub-defining layer, the second sub-definition
  • the thickness of the layer is the same as the thickness of the hole transport layer, such that the second sub-defining layer is capable of inhibiting the climbing of the solution for forming the hole transport layer on the second sub-defining layer, the thickness of the third sub-defining layer and the organic
  • the luminescent material layers are of the same thickness such that the third defining layer is capable of inhibiting the climbing of the solution for forming the organic luminescent material layer on the third sub-defining layer.
  • the edge portion of the first sub-layer extends onto the upper surface of the first sub-defining layer and covers at least a portion of the upper surface of the first sub-defining layer and the second sub-defining layer At least a portion of the side surface.
  • the edge portion of the hole injection layer 041 extends to the upper surface of the first sub-definition layer, and the extension portion covers the upper surface of the first sub-definition layer and the second sub-definition layer At least a portion of the side surface.
  • the upper surface of the first sub-defining layer is a lyophobic surface
  • the side surfaces of the first sub-defining layer and the second sub-defining layer are both lyophilic surfaces, extending to the first sub-defining layer
  • This portion of the first sub-layer on the upper surface is repelled by the lyophobic surface and attracted by the lyophilic surface such that the thickness of the portion is much smaller than the thickness of the first sub-layer and thus negligible.
  • the organic light emitting layer may further be provided with a cathode away from the side of the substrate.
  • the organic light-emitting layer may further include a film layer such as a hole blocking layer, an electron blocking layer, an electron transport layer, and an electron injecting layer, which is not specifically limited in the embodiment of the present disclosure.
  • the display substrate provided by the embodiment of the present disclosure, includes at least two sub-defining layers sequentially stacked on the substrate, and each sub-defining layer is liquefied parallel to the surface of the substrate.
  • the side of each sub-defined layer is lyophilic, and the lyophilic side has a attracting effect on the solution to ensure that the solution flows into the pixel region, and the lyophobic surface has a repulsive effect on the solution to inhibit the solution in the pixel defining layer.
  • the pixel defining layer suppresses climbing of a corresponding one of the organic light emitting layers on the pixel defining layer by each of the sub-defining layers, so that the plurality of film layers included in the organic light emitting layer are on the pixel defining layer
  • the climbing is suppressed, the film uniformity of the solution in the pixel region is effectively improved, and the uniformity of brightness in the pixel is improved, so that the display quality of the display substrate is improved.
  • the embodiment of the present disclosure further provides a display panel, which may include the display substrate provided by the embodiment of the present disclosure.
  • the display panel can be any product or component having a display function such as a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display panel can be an OLED display panel.
  • the pixel defining layer and the manufacturing method thereof, the display substrate, and the display panel, the pixel defining layer includes at least two sub-defining layers sequentially stacked on the substrate substrate, and each sub-defining layer is parallel to the substrate
  • the surface is lyophobic, and the side of each sub-defined layer is lyophilic.
  • the lyophilic side has a attracting effect on the solution to ensure that the solution flows into the pixel area, and the lyophobic surface has a repulsive effect on the solution.
  • the pixel defining layer suppresses climbing of the corresponding one of the organic light emitting layers on the pixel defining layer by each of the sub-defining layers, so that the organic light emitting layer comprises a plurality of layers
  • the climbing on the pixel defining layer is suppressed, thereby effectively improving the film uniformity of the solution in the pixel region, thereby improving the uniformity of brightness in the pixel.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素界定层及其制造方法、显示基板、显示面板,属于显示技术领域。像素界定层包括:依次层叠设置在衬底基板(021)上的至少两个子界定层(022);其中,每两个相互接触的子界定层中,远离衬底基板(021)的子界定层在衬底基板(021)上的第一正投影位于靠近衬底基板(021)的子界定层在衬底基板(021)上的第二正投影内,且每个子界定层平行于衬底基板(021)的表面为疏液性表面,每个子界定层的侧面为亲液性表面。

Description

像素界定层及其制造方法、显示基板、显示面板
相关申请的交叉引用
本申请要求于2017年08月17日递交的中国专利申请第201710706873.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及显示技术领域,特别涉及一种像素界定层及其制造方法、显示基板、显示面板。
背景技术
有机发光二极管(英文:Organic Light-Emitting Diode;简称:OLED)显示面板包括阳极、有机发光层和阴极等。其中,有机发光层包括空穴注入层、空穴传输层、有机发光材料层、电子传输层和电子注入层等,有机发光层可以使用喷墨打印技术制造而成。在使用喷墨打印技术制造有机发光层时,需要先在玻璃基板上形成像素界定层,然后将溶解有机发光层的材料的溶液喷到形成有像素界定层的玻璃基板上,以形成有机发光层。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
第一方面,提供了一种像素界定层,包括:
依次层叠设置在衬底基板上的至少两个子界定层;
其中,每两个相互接触的子界定层中,远离所述衬底基板的子界定层在所述衬底基板上的第一正投影位于靠近所述衬底基板的子界定层在所述衬底基板上的第二正投影内,且每个子界定层平行于衬底基板的表面为疏液性表面,每个子界定层的侧面为亲液性表面。
可选地,所述衬底基板与所述至少两个子界定层之间还设置有亲液子界定层,所述亲液子界定层在所述衬底基板上的正投影覆盖所述至少两个子界定层在所述衬底基板上的正投影,所述亲液子界定层的表面为亲液性表面。
可选地,所述至少两个子界定层由同一种材料制成。
可选地,所述至少两个子界定层均由含氟感光材料制成。
可选地,所述疏液性表面的氟含量高于所述亲液性表面的氟含量。
可选地,所述至少两个子界定层为一体结构。
第二方面,提供了一种像素界定层的制造方法,包括:
提供衬底基板;
在所述衬底基板上形成至少两个子界定层;
其中,每两个相互接触的子界定层中,远离所述衬底基板的子界定层在所述衬底基板上的第一正投影位于靠近所述衬底基板的子界定层在所述衬底基板上的第二正投影内,且每个子界定层平行于衬底基板的表面为疏液性表面,每个子界定层的侧面为亲液性表面。
可选地,在所述衬底基板上形成至少两个子界定层之前,所述方法还包括:
在所述衬底基板上形成亲液子界定层,所述亲液子界定层在所述衬底基板上的正投影覆盖所述至少两个子界定层在所述衬底基板上的正投影,所述亲液子界定层的表面为亲液性表面。
可选地,所述在所述衬底基板上形成至少两个子界定层,包括:
在所述衬底基板上形成子界定薄膜层;
从所述子界定薄膜层远离所述衬底基板的一侧,采用半色调掩膜版对所述子界定薄膜层进行曝光;
对曝光后的所述子界定薄膜层进行显影;
对显影后的所述子界定薄膜层进行热处理,以得到所述至少两个子界定层。
可选地,所述子界定薄膜层由含氟感光材料制成。
可选地,所述疏液性表面的氟含量高于所述亲液性表面的氟含 量。
可选地,所述半色调掩膜版包括至少两个透光区域,所述至少两个透光区域的透光程度不同,所述采用半色调掩膜版对所述子界定薄膜层进行曝光,包括:
透过所述至少两个透光区域对所述子界定薄膜层进行曝光,使曝光后的子界定薄膜层形成至少两个曝光区域,其中,所述曝光后的子界定薄膜层的各个曝光区域在显影后的厚度不同。
第三方面,提供了一种显示基板,所述显示基板包括:衬底基板以及设置在所述衬底基板上的像素界定层,所述像素界定层为第一方面任一所述的像素界定层。
可选地,所述显示基板还包括:设置在所述衬底基板和所述像素界定层之间的阳极,以及设置在所述阳极远离所述衬底基板一侧的有机发光层。
可选地,所述有机发光层包括:层叠设置的至少两个子层,所述至少两个子层包括:第一子层和第二子层,所述像素界定层包括:至少两个子界定层,所述像素界定层包括的子界定层的个数与所述有机发光层包括的子层的个数相同,所述至少两个子界定层包括:层叠设置在所述衬底基板上的第一子界定层和第二子界定层,所述第一子界定层上表面与所述第一子层的上表面基本共面,所述第二子界定层的上表面与所述第二子层的上表面基本共面。
可选地,所述第一子层的边缘部分延伸至所述第一子界定层的上表面上并且覆盖所述第一子界定层的上表面的至少一部分以及所述第二子界定层的侧表面的至少一部分。
可选地,所述第一子层的延伸至所述第一子界定层的上表面上的部分的厚度远小于第一子层的厚度。
第四方面,提供了一种显示面板,所述显示面板包括:第三方面任一所述的显示基板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
本节提供本公开中描述的技术的各种实现或示例的概述,并不 是所公开技术的全部范围或所有特征的全面公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1是相关技术中膜层形成咖啡环的示意图;
图1-2是相关技术中一种像素界定层的结构示意图;
图1-3是相关技术中另一种像素界定层的结构示意图;
图2是本公开实施例提供的一种像素界定层的结构示意图;
图3是本公开实施例提供的另一种像素界定层的结构示意图;
图4是本公开实施例提供的一种像素界定层的制造方法的流程图;
图5-1是本公开实施例提供的一种在衬底基板上形成亲液子界定层后的结构示意图;
图5-2是本公开实施例提供的一种在形成有亲液子界定层的衬底基板上形成至少两个子界定层的方法流程图;
图5-3是本公开实施例提供的一种在形成有亲液子界定层的衬底基板上形成子界定薄膜层后的结构示意图;
图5-4是本公开实施例提供的一种使用半色调掩膜版对子界定薄膜层进行曝光的示意图;
图5-5是本公开实施例提供的又一种像素界定层的结构示意图;
图6是本公开实施例提供的一种显示基板的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
OLED显示器相对于液晶显示器具有自发光、反应快、视角广、 亮度高、色彩艳和轻薄等优点,制造有机电致发光器件中的膜层的方法主要有真空蒸镀和溶液制程两种。真空蒸镀适用于有机小分子材料的成膜,具有成膜均匀性好和技术相对成熟的优点,已应用于量产中。溶液制程包括旋涂、喷墨打印和喷嘴涂覆法等方法,其中,喷墨打印技术由于其材料利用率较高、可以实现大尺寸化,被认为是大尺寸OLED实现量产的重要方式。喷墨打印技术需要预先在形成有阳极的衬底基板上形成像素界定层,以限定喷墨打印的溶液能够精确地流入指定的R/G/B亚像素区。
相关技术中,像素界定层在厚度方向上的截面呈“正置”的梯形,且像素界定层由疏液材料制成,由于喷墨打印的溶液与像素界定层接触处存在表面能差异、以及像素界定层的侧面具有一定的倾斜角度且溶液具有一定的干燥特性,溶液在像素界定层上会有一定程度的攀爬,导致溶液干燥后形成的有机发光层容易出现边缘厚中间薄(即图1-1虚线方框中所示的咖啡环效应)的现象,其一方面会导致像素边缘因出现小孔而漏电,另一方面,由于有机发光层的膜厚不均,像素内亮度的均匀性也会受到影响。相对于该像素界定层,图1-2和图1-3所示的像素界定层能够在一定程度上抑制溶液在像素界定层上的攀爬。
具体地,图1-2所示的像素界定层00包括依次层叠设置在衬底基板001上的亲液层002(通常由氧化硅或氮化硅制成)和疏液层003,亲液层002对溶液的吸引作用能够保证溶液流入像素区域内,且其能够减小其与阳极的材料性质差异和膜层之间的高度段差,疏液层003对溶液的排斥作用能够抑制溶液在像素界定层上的攀爬,以避免像素边缘出现小孔和提高像素内亮度的均匀性。图1-3所示的像素界定层01由含氟材料制成,对该材料加热后材料中的含氟成分会上移至像素界定层的表面(图1-3中点填充的部分),使得像素界定层的侧面表现为亲液性,像素界定层的表面表现为疏液性,因此,该像素界定层能够在一定程度抑制溶液在像素界定层上的攀爬。但是,当有机发光层包括多个膜层时,图1-2和图1-3所示的像素界定层只能在一定程度上对靠近疏液层的膜层的攀爬进行抑制,因此,在喷墨打印有机 发光层中的其他膜层的溶液时,该溶液在像素界定层上还是会有一定程度的攀爬,即溶液在像素区域内的成膜均一性还是会受到影响。
针对相关技术存在的以上问题,本公开实施例提供了一种像素界定层02,如图2所示,该像素界定层02可以包括:依次层叠设置在衬底基板021上的至少两个子界定层022(本公开实施例以像素界定层包括四个子界定层0221、0222、0223和0224为例进行说明)。
其中,每两个相互接触的子界定层中,远离衬底基板021的子界定层在衬底基板021上的第一正投影位于靠近衬底基板021的子界定层在衬底基板021上的第二正投影内,(如图2所示,四个子界定层0221、0222、0223和0224在衬底基板上的正投影A1、A2、A3和A4依次减小),且每个子界定层平行于衬底基板021的表面(理想状态下,每个子界定层在水平方向上的表面与衬底基板是平行的,但是实际应用中,由于工艺误差等因素的存在,子界定层在水平方向上的表面与衬底基板可能存在微小的夹角,此时,也可以将该子界定层的表面与衬底基板视为平行)表现为疏液性(即形成为疏液性表面),每个子界定层的侧面表现为亲液性(即形成为亲液性表面)。
需要说明的是,在本实施例中,第一正投影的边缘与第二正投影的边缘(更具体地说,第一正投影的与像素限定层的开口区相邻的边缘与第一正投影的与像素限定层的该开口区相邻的边缘)可以不重合,即,两者的边缘错开一定的距离,且通过调节两者错开的距离,以及调节子界定层的厚度,并结合每个子界定层表面的亲液性和每个子界定层侧面疏液性,能够相应地调节溶液在像素界定层上的攀爬程度,进而提高溶液在像素区域内的成膜均一性。
还需要说明的是,图2中仅示出了一个像素区域两侧的两个像素界定层,其中,示出了左侧的像素界定层的完整的结构,仅示出了右侧的像素界定层左侧的结构,该右侧的像素界定层右侧的结构请参考左侧的像素界定层的结构,且其他像素区域两侧的两个像素界定层的结构也请参考左侧的像素界定层的结构(即像素界定层的侧面具有类似于台阶的结构)。
综上所述,本公开实施例提供的像素界定层,包括依次层叠设 置在衬底基板上的至少两个子界定层,且每个子界定层平行于衬底基板的表面表现为疏液性,每个子界定层的侧面表现为亲液性,亲液性的侧面对溶液有吸引作用,以保证溶液流入像素区域内,疏液性的表面对溶液有排斥作用,以抑制溶液在像素界定层上的攀爬,该像素界定层通过每个子界定层抑制有机发光层中对应的一个膜层在像素界定层上的攀爬,使得有机发光层包括的多个膜层在像素界定层上的攀爬均被抑制,有效地提高了溶液在像素区域内的成膜均一性,进而提高了像素内亮度的均匀性。
可选地,第一正投影与第二正投影的中心可以重合,如图2所示,正投影A1、A2、A3和A4的中心重合。这样可以使每个像素界定层的左侧与右侧对称,使得两者对像素界定层左侧和右侧的像素区域内的膜层的攀爬程度几乎相同,进一步提高了溶液在像素区域内的成膜均一性。
进一步地,如图3所示,衬底基板021与至少两个子界定层022之间还可以设置有亲液子界定层023,亲液子界定层023在衬底基板021上的正投影覆盖至少两个子界定层022在衬底基板021上的正投影。该亲液子界定层023表现为亲液性,能够进一步地保证喷墨打印时的溶液进入像素区域内。
可选地,像素界定层中的至少两个子界定层可以由同一种材料制成。当其由同一种材料制成,该至少两个子界定层能够通过一次构图工艺形成,进而简化像素界定层的制造工艺。示例地,至少两个子界定层可以均由含氟感光材料制成,例如:该至少两个子界定层可以均由旭硝子AGC胶制成。子界定层的材料含氟,使得在对形成子界定层的子界定薄膜层进行热处理(例如烘烤)时,材料中的含氟成分能够上移至子界定层的表面,使得热处理后形成的子界定层的表面表现为疏液性,子界定层的侧面表现为亲液性。
并且,至少两个子界定层可以为一体结构。该至少两个子界定层为一体结构时,该至少两个子界定层能够由一个子界定薄膜层经过多次构图工艺后形成,或者,该至少两个子界定层能够由一个子界定薄膜层通过透光率不同的掩膜版、经过一次构图工艺后形成,且当至 少两个子界定层由一个子界定薄膜层经过一次构图工艺后形成时,能够简化制造像素界定层的制造工艺。
综上所述,本公开实施例提供的像素界定层,包括依次层叠设置在衬底基板上的至少两个子界定层,且每个子界定层平行于衬底基板的表面表现为疏液性,每个子界定层的侧面表现为亲液性,亲液性的侧面对溶液有吸引作用,以保证溶液流入像素区域内,疏液性的表面对溶液有排斥作用,以抑制溶液在像素界定层上的攀爬,该像素界定层通过每个子界定层抑制有机发光层中对应的一个膜层在像素界定层上的攀爬,使得有机发光层包括的多个膜层在像素界定层上的攀爬均被抑制,有效地提高了溶液在像素区域内的成膜均一性,进而提高了像素内亮度的均匀性。并且,相对于相关技术中的像素界定层,本公开实施例提供的像素界定层还能够简化像素界定层的制造工艺,进而降低出现像素界定层制作不良的几率,且降低像素界定层的制造成本。
本公开实施例提供了一种像素界定层的制造方法,如图4所示,该方法可以包括:
步骤401、提供衬底基板。
衬底基板可以为透明基板,其具体可以是采用玻璃、石英、透明树脂等具有一定硬度的导光且非金属材料制成的基板。
步骤402、在衬底基板上形成亲液子界定层。
其中,亲液子界定层表现为亲液性。
可以采用磁控溅射、热蒸发或者等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition;简称:PECVD)等方法在衬底基板上沉积一层具有一定厚度的亲液材料,得到亲液材料膜层,然后通过构图工艺对亲液材料膜层进行处理得到具有一定图形的亲液子界定层。其中,构图工艺包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。可选地,亲液材料可以为二氧化硅和氮化硅等亲液材料中的任意一种。示例地,请参考图5-1,其示出了本公开实施例提供的一种在衬底基板021上形成亲液子界定层023后的结构示意 图。
需要说明的是,在基板上形成亲液子界定层之前,该基板上还可以形成有薄膜晶体管(英文:Thin Film Transistor;简称:TFT)阵列、平坦层以及阳极等结构。
步骤403、在形成有亲液子界定层的衬底基板上形成至少两个子界定层。
其中,亲液子界定层在衬底基板上的正投影覆盖至少两个子界定层在衬底基板上的正投影,每两个相互接触的子界定层中,远离衬底基板的子界定层在衬底基板上的第一正投影位于靠近衬底基板的子界定层在衬底基板上的第二正投影内,且第一正投影的边缘与第二正投影的边缘不重合,且每个子界定层平行于衬底基板的表面表现为疏液性,每个子界定层的侧面表现为亲液性。可选地,该第一正投影与第二正投影的中心可以重合。示例地,在形成有亲液子界定层的衬底基板上形成至少两个子界定层022后的结构示意图请参考图3。
综上所述,本公开实施例提供的像素界定层的制造方法,通过该方法制造的像素界定层包括依次层叠设置在衬底基板上的至少两个子界定层,且每个子界定层平行于衬底基板的表面表现为疏液性,每个子界定层的侧面表现为亲液性,亲液性的侧面对溶液有吸引作用,以保证溶液流入像素区域内,疏液性的表面对溶液有排斥作用,以抑制溶液在像素界定层上的攀爬,该像素界定层通过每个子界定层抑制有机发光层中对应的一个膜层在像素界定层上的攀爬,使得有机发光层包括的多个膜层在像素界定层上的攀爬均被抑制,有效地提高了溶液在像素区域内的成膜均一性,进而提高了像素内亮度的均匀性。
在一种可实现方式中,步骤403中在形成有亲液子界定层的衬底基板上形成至少两个子界定层的过程,如图5-2所示,可以包括:
步骤4031、在形成有亲液子界定层的衬底基板上形成子界定薄膜层。
可选地,可以在形成有亲液子界定层的衬底基板上涂覆一层具有一定厚度的含氟感光材料,得到子界定薄膜层。可选地,含氟感光 材料可以为旭硝子AGC胶。子界定薄膜层的材料含氟,能够使根据该子界定薄膜层形成的至少两个子界定层的表面表现为疏液性,子界定层的侧面表现为亲液性。
示例地,请参考图5-3,其示出了本公开实施例提供的一种在形成有亲液子界定层023的衬底基板021上形成子界定薄膜层Z后的结构示意图。
步骤4032、从子界定薄膜层远离衬底基板的一侧,采用半色调掩膜版对子界定薄膜层进行曝光。
该半色调掩膜版包括至少两个透光区域,该至少两个透光区域的透光程度不同,例如:请参考图5-4中所示的半色调掩膜版Y,该半色调掩膜版Y包括5个透光区域(灰度相同的部分为一个透光区域)。当半色调掩膜版中透光区域的透光程度不同时,透过该至少两个透光区域对子界定薄膜层进行曝光后就能够形成至少两个曝光程度不同的曝光区域,且曝光后的子界定薄膜层的各个曝光区域在显影后的厚度不同。示例地,透过半色调掩膜版Y对子界定薄膜层进行曝光后得到5个曝光程度不同的曝光区域,对该5个曝光区域进行显影后得到图5-5所示的5个区域,其分别为区域B1、B2、B3、B4和B5,该5个区域在垂直于衬底基板方向上的厚度不同(其中,区域B5的厚度为0),各个区域的厚度请参考图5-5中所示厚度。需要说明的是,在理想状态下,该5个区域在平行于衬底基板的表面应为平面,但是,在实际曝光和显影过程中,由于材料等因素的影响,该5个区域的连接处会产生如图5-5所示的倾角。
下面分别以子界定薄膜层由正性光刻胶和负性光刻胶制成为例,对该曝光过程进行说明。
示例地,当子界定薄膜层Z由正性光刻胶(例如:旭硝子AGC胶)制成时,使用半色调掩膜版Y对子界定薄膜层Z进行曝光的示意图请参考图5-4,其中,半色调掩膜版灰度的深浅表示透光率的大小,且灰度越深表明透光率越大,也即是,半色调掩膜版灰度的深浅对应其在子界定薄膜层上正投影所覆盖的子界定薄膜层部分需要被曝光的强弱程度,其灰度越深表明子界定薄膜层部分需要被曝光的程 度越强,经过该曝光后就能够得到包括有5个曝光程度不同的区域的子界定薄膜层,该5个曝光程度不同的区域包括:与图5-5所示的区域B5对应的完全曝光区域、与图5-5所示的区域B4对应的一个部分曝光区域、与图5-5所示的区域B3对应的另一个部分曝光区域、与图5-5所示的区域B2对应的再一个部分曝光区域,以及与图5-5所示的区域B1对应的非曝光区域。
示例地,当子界定薄膜层Z由负性光刻胶制成时,使用半色调掩膜版Y对子界定薄膜层Z进行曝光的示意图请继续参考图5-4,其中,半色调掩膜版灰度的深浅表示透光率的大小,且灰度越深表明透光率越小,也即是,半色调掩膜版灰度的深浅对应其在子界定薄膜层上正投影所覆盖的子界定薄膜层部分需要被曝光的强弱程度,其灰度越深表明子界定薄膜层部分需要被曝光的程度越弱,经过该曝光后就能够得到包括有5个曝光程度不同的区域的子界定薄膜层,该5个曝光程度不同的区域包括:与图5-5所示的区域B5对应的完全曝光区域、与图5-5所示的区域B4对应的一个部分曝光区域、与图5-5所示的区域B3对应的另一个部分曝光区域、与图5-5所示的区域B2对应的再一个部分曝光区域,以及与图5-5所示的区域B1对应的非曝光区域。
步骤4033、对曝光后的子界定薄膜层进行显影。
对包括有多个不同曝光程度的区域的子界定薄膜层进行显影,能够去除完全曝光区域的含氟感光材料,保留部分曝光区域和非曝光区域的含氟感光材料,经过显影处理后能够得到具有预设形状的子界定薄膜层,该显影后得到的子界定薄膜层的形状请参考图2中至少两个子界定层022的整体呈现的形状,且该至少两个子界定层022分别为层叠设置在衬底基板021上的子界定层0221、0222、0223和0224。显影后得到的子界定薄膜层之所以能够呈现为该形状,是因为子界定薄膜层在曝光时各部分的曝光程度不同,相应的,各部分在显影过程中与显影液的反应程度不同,因此显影后各部分被去除的部分不同。
步骤4034、对显影后的子界定薄膜层进行热处理,以得到至少两个子界定层。
在热处理过程中,子界定薄膜层中的含氟成分会上移至子界定薄膜层的表面,使得热处理后形成的子界定层的表面表现为疏液性,子界定层的侧面表现为亲液性。热处理后形成的至少两个子界定层022的结构请参考图2或图3。
在该实现方式中,至少两个子界定层是形成在衬底基板上的一个子界定薄膜层经过一次构图工艺后形成的,简化了像素界定层的制造工艺。
实际应用中,还可以通过其他可实现方式形成至少两个子界定层,例如:在衬底基板上依次形成每个子界定层,形成每个子界定层的过程均可以包括:涂覆材料、曝光、显影和热处理;或者,也可以在衬底基板上依次涂覆至少两个材料层,然后采用半色调掩膜版对该至少两个材料层进行曝光、显影和热处理,以得到至少两个子界定层;或者,还可以在衬底基板上形成一个子界定薄膜层,然后采用多个开口区域不同的掩膜版对子界定薄膜层进行多次曝光,然后对曝光后的子界定薄膜层进行显影和热处理,以得到至少两个子界定层,本公开实施例对此不做限定。
综上所述,本公开实施例提供的像素界定层的制造方法,通过该方法制造的像素界定层包括依次层叠设置在衬底基板上的至少两个子界定层,且每个子界定层平行于衬底基板的表面表现为疏液性,每个子界定层的侧面表现为亲液性,亲液性的侧面对溶液有吸引作用,以保证溶液流入像素区域内,疏液性的表面对溶液有排斥作用,以抑制溶液在像素界定层上的攀爬,该像素界定层通过每个子界定层抑制有机发光层中对应的一个膜层在像素界定层上的攀爬,使得有机发光层包括的多个膜层在像素界定层上的攀爬均被抑制,有效地提高了溶液在像素区域内的成膜均一性,进而提高了像素内亮度的均匀性。并且,相对于相关技术中的像素界定层,本公开实施例提供的像素界定层还能够简化像素界定层的制造工艺,进而降低出现像素界定层制作不良的几率,且降低像素界定层的制造成本。
需要说明的是,本公开实施例提供的像素界定层的制造方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增 减,例如:当像素界定层中不包括亲液子界定层时,可以不执行步骤402。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
本公开实施例还提供了一种显示基板,该显示基板可以包括:衬底基板以及设置在衬底基板上的像素界定层,像素界定层为图2或图3所示的像素界定层。
可选地,如图6所示,显示基板还可以包括:设置在衬底基板021和像素界定层02之间的阳极03,以及设置在阳极03远离衬底基板021一侧的有机发光层04。其中,阳极可以由氧化铟锡(英文:Indium tin oxide;简称:ITO)制成。
其中,有机发光层可以包括:层叠设置的至少两个子层,且有机发光层包括的子层的个数与像素界定层包括的子界定层的个数可以相等,该有机发光层中包括的层叠设置的各个子层与像素界定层中包括的层叠设置在衬底基板上的各个子像素层的厚度对应相等,例如:各个子层和各个子像素层的厚度可以均为约几十纳米量级的厚度,例如,当至少两个子层包括第一子层和第二子层,至少两个子界定层包括层叠设置在衬底基板上的第一子界定层和第二子界定层时,第一子界定层的上表面与第一子层的上表面基本共面,第二子界定层的上表面与第二子层的上表面基本共面,使得第一子界定层的厚度与第一子层的厚度基本相同,第二子界定层的厚度与第二子层的厚度基本相同。在本公开的实施例中,“上表面”表示层或结构的在附图中所示的方向中的位于上部的表面,即如图6所示,“上表面”表示各层远离衬底基板的表面。
实际应用中,制造出的显示基板的结构示意图请参考图6,如图6所示,有机发光层04可以包括:空穴注入层041、空穴传输层042和有机发光材料层043,像素界定层可以包括四个子界定层,其中,第一子界定层的厚度与空穴注入层041的厚度基本相同,第二子界定层的厚度与空穴传输层042的厚度基本相同,第三子界定层的厚度与 有机发光材料层043的厚度基本相同。该第一子界定层的厚度与空穴注入层的厚度相同,使得第一子界定层能够抑制用于形成空穴注入层的溶液在第一子界定层上的攀爬,该第二子界定层的厚度与空穴传输层的厚度相同,使得第二子界定层能够抑制用于形成空穴传输层的溶液在第二子界定层上的攀爬,该第三子界定层的厚度与有机发光材料层的厚度相同,使得第三界定层能够抑制用于形成有机发光材料层的溶液在第三子界定层上的攀爬。
在本实施例中,如图6所示,第一子层的边缘部分延伸至第一子界定层的上表面上并且覆盖第一子界定层的上表面的至少一部分以及第二子界定层的侧表面的至少一部分。例如,以空穴注入层041为例,空穴注入层041的边缘部分延伸至第一子界定层的上表面上,并且该延伸部分覆盖第一子界定层的上表面以及第二子界定层的侧表面的至少一部分。
根据本发明,由于第一子界定层的上表面是疏液性表面,且第一子界定层和第二子界定层的侧表面均为亲液性表面,因此延伸至第一子界定层的上表面上的第一子层的该部分受到疏液性表面的排斥以及亲液性表面的吸引,使得该部分的厚度远小于第一子层的厚度,因而可以忽略不计。
需要说明的是,有机发光层远离衬底基板一侧还可以设置有阴极。有机发光层还可以包括:空穴阻挡层、电子阻挡层、电子传输层和电子注入层等膜层,本公开实施例对其不做具体限定。
综上所述,本公开实施例提供的显示基板,像素界定层包括依次层叠设置在衬底基板上的至少两个子界定层,且每个子界定层平行于衬底基板的表面表现为疏液性,每个子界定层的侧面表现为亲液性,亲液性的侧面对溶液有吸引作用,以保证溶液流入像素区域内,疏液性的表面对溶液有排斥作用,以抑制溶液在像素界定层上的攀爬,该像素界定层通过每个子界定层抑制有机发光层中对应的一个膜层在像素界定层上的攀爬,使得有机发光层包括的多个膜层在像素界定层上的攀爬均被抑制,有效地提高了溶液在像素区域内的成膜均一性,进而提高了像素内亮度的均匀性,使得显示基板的显示品质得到 提高。
本公开实施例还提供了一种显示面板,该显示面板可以包括:本公开实施例提供的显示基板。
该显示面板可以为液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。示例地,该显示面板可以为OLED显示面板。
本公开实施例提供的技术方案带来的有益效果是:
本公开实施例提供的像素界定层及其制造方法、显示基板、显示面板,像素界定层包括依次层叠设置在衬底基板上的至少两个子界定层,且每个子界定层平行于衬底基板的表面表现为疏液性,每个子界定层的侧面表现为亲液性,亲液性的侧面对溶液有吸引作用,以保证溶液流入像素区域内,疏液性的表面对溶液有排斥作用,以抑制溶液在像素界定层上的攀爬,该像素界定层通过每个子界定层抑制有机发光层中对应的一个膜层在像素界定层上的攀爬,使得有机发光层包括的多个膜层在像素界定层上的攀爬均被抑制,进而有效地提高了溶液在像素区域内的成膜均一性,进而提高了像素内亮度的均匀性。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种像素界定层,包括:
    依次层叠设置在衬底基板上的至少两个子界定层;
    其中,每两个相互接触的子界定层中,远离所述衬底基板的子界定层在所述衬底基板上的第一正投影位于靠近所述衬底基板的子界定层在所述衬底基板上的第二正投影内,且每个子界定层平行于衬底基板的表面为疏液性表面,每个子界定层的侧面为亲液性表面。
  2. 根据权利要求1所述的像素界定层,其中,所述衬底基板与所述至少两个子界定层之间还设置有亲液子界定层,所述亲液子界定层在所述衬底基板上的正投影覆盖所述至少两个子界定层在所述衬底基板上的正投影,所述亲液子界定层的表面为亲液性表面。
  3. 根据权利要求1或2所述的像素界定层,其中,所述至少两个子界定层由同一种材料制成。
  4. 根据权利要求1或2所述的像素界定层,其中,所述至少两个子界定层均由含氟感光材料制成。
  5. 根据权利要求4所述的像素界定层,其中,所述疏液性表面的氟含量高于所述亲液性表面的氟含量。
  6. 根据权利要求1所述的像素界定层,其中,所述至少两个子界定层为一体结构。
  7. 一种像素界定层的制造方法,包括:
    提供衬底基板;
    在所述衬底基板上形成至少两个子界定层;
    其中,每两个相互接触的子界定层中,远离所述衬底基板的子界定层在所述衬底基板上的第一正投影位于靠近所述衬底基板的子 界定层在所述衬底基板上的第二正投影内,且每个子界定层平行于衬底基板的表面为疏液性表面,每个子界定层的侧面为亲液性表面。
  8. 根据权利要求7所述的制造方法,其中,在所述衬底基板上形成至少两个子界定层之前,所述方法还包括:
    在所述衬底基板上形成亲液子界定层,所述亲液子界定层在所述衬底基板上的正投影覆盖所述至少两个子界定层在所述衬底基板上的正投影,所述亲液子界定层的表面为亲液性表面。
  9. 根据权利要求7或8所述的制造方法,其中,所述在所述衬底基板上形成至少两个子界定层,包括:
    在所述衬底基板上形成子界定薄膜层;
    从所述子界定薄膜层远离所述衬底基板的一侧,采用半色调掩膜版对所述子界定薄膜层进行曝光;
    对曝光后的所述子界定薄膜层进行显影;
    对显影后的所述子界定薄膜层进行热处理,以得到所述至少两个子界定层。
  10. 根据权利要求9所述的制造方法,其中,
    所述子界定薄膜层由含氟感光材料制成。
  11. 根据权利要求10所述的制造方法,其中,
    所述疏液性表面的氟含量高于所述亲液性表面的氟含量。
  12. 根据权利要求10所述的制造方法,其中,所述半色调掩膜版包括至少两个透光区域,所述至少两个透光区域的透光程度不同,所述采用半色调掩膜版对所述子界定薄膜层进行曝光,包括:
    透过所述至少两个透光区域对所述子界定薄膜层进行曝光,使曝光后的子界定薄膜层形成至少两个曝光区域,其中,所述曝光后的子界定薄膜层的各个曝光区域在显影后的厚度不同。
  13. 一种显示基板,所述显示基板包括:衬底基板以及设置在所述衬底基板上的像素界定层,所述像素界定层为所述权利要求1至6任一所述的像素界定层。
  14. 根据权利要求13所述的显示基板,其中,所述显示基板还包括:设置在所述衬底基板和所述像素界定层之间的阳极,以及设置在所述阳极远离所述衬底基板一侧的有机发光层。
  15. 根据权利要求14所述的显示基板,其中,所述有机发光层包括:层叠设置的至少两个子层,所述至少两个子层包括:第一子层和第二子层,所述像素界定层包括:至少两个子界定层,所述像素界定层包括的子界定层的个数与所述有机发光层包括的子层的个数相同,所述至少两个子界定层包括:层叠设置在所述衬底基板上的第一子界定层和第二子界定层,所述第一子界定层上表面与所述第一子层的上表面基本共面,所述第二子界定层的上表面与所述第二子层的上表面基本共面。
  16. 根据权利要求15所述的显示基板,其中,所述第一子层的边缘部分延伸至所述第一子界定层的上表面上并且覆盖所述第一子界定层的上表面的至少一部分以及所述第二子界定层的侧表面的至少一部分。
  17. 根据权利要求16所述的显示基板,其中,所述第一子层的延伸至所述第一子界定层的上表面上的部分的厚度远小于第一子层的厚度。
  18. 一种显示面板,所述显示面板包括:权利要求13至17任一所述的显示基板。
PCT/CN2018/084428 2017-08-17 2018-04-25 像素界定层及其制造方法、显示基板、显示面板 WO2019033781A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/322,927 US10957751B2 (en) 2017-08-17 2018-04-25 Pixel defining layer and manufacturing method thereof, display substrate, display panel
EP18836593.6A EP3671845A4 (en) 2017-08-17 2018-04-25 PIXEL DEFINING LAYER, METHOD OF MANUFACTURING THEREOF, DISPLAY SUBSTRATE AND DISPLAY BOARD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710706873.8 2017-08-17
CN201710706873.8A CN107527939B (zh) 2017-08-17 2017-08-17 像素界定层及其制造方法、显示基板、显示面板

Publications (1)

Publication Number Publication Date
WO2019033781A1 true WO2019033781A1 (zh) 2019-02-21

Family

ID=60681309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084428 WO2019033781A1 (zh) 2017-08-17 2018-04-25 像素界定层及其制造方法、显示基板、显示面板

Country Status (4)

Country Link
US (1) US10957751B2 (zh)
EP (1) EP3671845A4 (zh)
CN (1) CN107527939B (zh)
WO (1) WO2019033781A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10153333B1 (en) 2017-07-24 2018-12-11 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for manufacturing an OLED backplate and method for manufacturing an OLED panel
CN107565063B (zh) * 2017-07-24 2019-04-30 武汉华星光电半导体显示技术有限公司 Oled背板的制作方法与oled面板的制作方法
CN107527939B (zh) * 2017-08-17 2020-07-07 京东方科技集团股份有限公司 像素界定层及其制造方法、显示基板、显示面板
CN108538886B (zh) 2018-03-28 2020-08-25 京东方科技集团股份有限公司 像素界定层及制造方法、显示基板、显示装置
CN108598110B (zh) * 2018-04-23 2020-11-24 深圳市华星光电半导体显示技术有限公司 Oled器件
CN110875357B (zh) * 2018-08-31 2022-05-24 京东方科技集团股份有限公司 像素界定结构和显示面板及其制备方法、显示装置
CN109192875B (zh) * 2018-09-04 2021-01-29 京东方科技集团股份有限公司 背板及制造方法、显示基板及制造方法和显示装置
CN109411411A (zh) * 2018-12-07 2019-03-01 深圳市华星光电半导体显示技术有限公司 Goa阵列基板的制作方法及液晶显示器
CN110416279B (zh) * 2019-08-07 2022-09-09 京东方科技集团股份有限公司 显示基板及其制备方法
CN110534552B (zh) 2019-09-09 2022-06-21 合肥京东方卓印科技有限公司 一种显示基板及其制备方法、显示面板及掩模板
CN110828521B (zh) * 2019-11-18 2023-06-02 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板及显示装置
CN111710709A (zh) * 2020-07-02 2020-09-25 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制作方法
CN112420795A (zh) * 2020-11-18 2021-02-26 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN112885885A (zh) * 2021-02-01 2021-06-01 武汉华星光电半导体显示技术有限公司 显示面板、显示装置及显示面板的制作方法
CN113437125B (zh) * 2021-06-24 2023-07-28 合肥京东方卓印科技有限公司 一种像素界定层、显示基板及显示装置
CN113299867A (zh) * 2021-06-30 2021-08-24 京东方科技集团股份有限公司 显示面板、显示基板及其制备方法
CN117795692A (zh) * 2022-07-29 2024-03-29 京东方科技集团股份有限公司 显示面板及显示装置
CN118542096A (zh) * 2022-12-16 2024-08-23 京东方科技集团股份有限公司 显示基板、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191334A1 (en) * 2008-01-29 2009-07-30 Motorola, Inc. Forming an electrowetting module having a hydrophilic grid
CN102623399A (zh) * 2012-03-25 2012-08-01 昆山工研院新型平板显示技术中心有限公司 有源矩阵有机发光显示器阵列基板制作方法
CN104241329A (zh) * 2014-08-22 2014-12-24 京东方科技集团股份有限公司 具有像素界定层的显示面板及像素界定层的制造方法
CN104538351A (zh) * 2014-12-31 2015-04-22 京东方科技集团股份有限公司 有机发光二极管阵列基板及其制造方法、显示装置
CN104733505A (zh) * 2015-03-19 2015-06-24 京东方科技集团股份有限公司 发光显示器的像素界定层及其制作方法
CN105774279A (zh) * 2016-03-23 2016-07-20 京东方科技集团股份有限公司 一种喷墨打印方法及oled显示装置的制作方法
CN107527939A (zh) * 2017-08-17 2017-12-29 京东方科技集团股份有限公司 像素界定层及其制造方法、显示基板、显示面板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197956A (ja) * 2014-03-31 2015-11-09 セイコーエプソン株式会社 電気光学装置及び電子機器
KR102365911B1 (ko) * 2014-10-17 2022-02-22 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN107591432B (zh) * 2017-09-27 2020-05-26 京东方科技集团股份有限公司 像素界定层、显示基板及制造方法、显示装置
CN107887423B (zh) * 2017-11-14 2019-08-13 合肥鑫晟光电科技有限公司 一种显示面板、其制备方法及显示装置
CN108470752A (zh) * 2018-03-27 2018-08-31 京东方科技集团股份有限公司 像素界定层及其制造方法和显示基板
CN109148727B (zh) * 2018-08-31 2021-01-29 京东方科技集团股份有限公司 Oled显示基板及制备方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191334A1 (en) * 2008-01-29 2009-07-30 Motorola, Inc. Forming an electrowetting module having a hydrophilic grid
CN102623399A (zh) * 2012-03-25 2012-08-01 昆山工研院新型平板显示技术中心有限公司 有源矩阵有机发光显示器阵列基板制作方法
CN104241329A (zh) * 2014-08-22 2014-12-24 京东方科技集团股份有限公司 具有像素界定层的显示面板及像素界定层的制造方法
CN104538351A (zh) * 2014-12-31 2015-04-22 京东方科技集团股份有限公司 有机发光二极管阵列基板及其制造方法、显示装置
CN104733505A (zh) * 2015-03-19 2015-06-24 京东方科技集团股份有限公司 发光显示器的像素界定层及其制作方法
CN105774279A (zh) * 2016-03-23 2016-07-20 京东方科技集团股份有限公司 一种喷墨打印方法及oled显示装置的制作方法
CN107527939A (zh) * 2017-08-17 2017-12-29 京东方科技集团股份有限公司 像素界定层及其制造方法、显示基板、显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3671845A4 *

Also Published As

Publication number Publication date
US20210020711A1 (en) 2021-01-21
CN107527939B (zh) 2020-07-07
CN107527939A (zh) 2017-12-29
US10957751B2 (en) 2021-03-23
EP3671845A1 (en) 2020-06-24
EP3671845A4 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
US10957751B2 (en) Pixel defining layer and manufacturing method thereof, display substrate, display panel
US10886343B2 (en) Pixel defining layer and method for manufacturing the same, display panel and method for manufacturing the same, and display device
CN108538886B (zh) 像素界定层及制造方法、显示基板、显示装置
US11114514B2 (en) Organic electroluminescent display panel, manufacturing method thereof, and display device
US10804344B2 (en) Display substrate and method for fabricating the same, and display apparatus
US9935287B2 (en) Array substrate and manufacturing method therefor, and display device
US10886481B2 (en) Display substrate with angle-adjusting portion, manufacturing method thereof, and display device
WO2016165233A1 (zh) 有机发光二极管显示面板及其制作方法、显示装置
US10559635B2 (en) Pixel defining layer, production method thereof, and display substrate
KR101871227B1 (ko) 유기 발광 소자 및 그 제조 방법
CN106941112B (zh) 像素界定层及其制造方法、显示基板
WO2021227205A1 (zh) Oled的面板及其制造方法
US20190115402A1 (en) Pixel definition layer and manufacturing method thereof, display substrate, and display panel
US11495779B2 (en) Pixel defining layer and manufacturing method thereof, array substrate and display device
WO2018205793A1 (zh) 像素界定层及其制造方法、显示基板、显示装置
US11800744B2 (en) Display panel and display apparatus
JP7091257B2 (ja) 発光層の製造方法、電界発光デバイス及び表示装置
CN109119437A (zh) 像素界定层及制造方法、显示基板及制造方法、显示面板
US20190333974A1 (en) Array substrate and method of manufacturing the same, display panel, and display device
WO2019201104A1 (zh) 像素单元、显示面板、显示设备及制造像素单元的方法
CN110048024A (zh) 显示基板及其制造方法、显示装置
WO2021077500A1 (zh) 有机发光显示面板及其制作方法、有机发光显示装置
US7635947B2 (en) Organic electro-luminescence device comprising uniform thickness light-emitting layer
JP2011216388A (ja) 有機el表示装置及びその製造方法
CN113937142A (zh) 一种显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018836593

Country of ref document: EP

Effective date: 20190115

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18836593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018836593

Country of ref document: EP

Effective date: 20200317