WO2019031804A9 - 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터 - Google Patents

목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터 Download PDF

Info

Publication number
WO2019031804A9
WO2019031804A9 PCT/KR2018/008944 KR2018008944W WO2019031804A9 WO 2019031804 A9 WO2019031804 A9 WO 2019031804A9 KR 2018008944 W KR2018008944 W KR 2018008944W WO 2019031804 A9 WO2019031804 A9 WO 2019031804A9
Authority
WO
WIPO (PCT)
Prior art keywords
shuttle vector
corynebacterium glutamicum
dcas9
gene
coli
Prior art date
Application number
PCT/KR2018/008944
Other languages
English (en)
French (fr)
Other versions
WO2019031804A3 (ko
WO2019031804A2 (ko
Inventor
우한민
윤진경
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2019031804A2 publication Critical patent/WO2019031804A2/ko
Publication of WO2019031804A3 publication Critical patent/WO2019031804A3/ko
Publication of WO2019031804A9 publication Critical patent/WO2019031804A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Definitions

  • the present invention relates to an Escherichia coli and a Corynebacterium shuttle vector for controlling expression of a target gene, and Escherichia coli and Corynebacterium into which the shuttle vector is introduced.
  • Corynebacterium glutamicum is easy to grow, can grow at a concentration as high as four times that of E. coli, and has a low dielectric constant and low probability of mutation.
  • it is a non-pathogenic strain and has advantages as industrial strains such as not producing spores and not harmful to the environment.
  • the cloning vector is a loop-like DNA that can be replicated independently of the main chromosome in bacteria.
  • a cloning vector includes an origin of replication for maintaining the plasmid in the strain, a selectable marker gene for selecting a strain having the vector, and a multi-cloning site for cloning of the foreign gene -cloning site, MCS).
  • the shuttle vector generally contains a vector that is sustainable in a plurality of strains.
  • the E. coli-Corynebacterium glutamicum shuttle vector contains both the origin of replication of Escherichia coli and the origin of replication of Corynebacterium glutamicum.
  • a desired trait can be easily introduced into a target strain. For example, a gene encoding a foreign gene or a mutation in E. coli can be cloned into a shuttle vector, and the shuttle vector can be introduced into Corynebacterium glutamicum Can also be introduced into humans to induce desired traits.
  • CRISPRi CRISPR interference
  • dCas9 inactivated Cas9
  • sgRNA guide RNA of the target gene
  • the present invention aims to overcome the limitations of the CRISPRi technology consisting of two existing plasmids and to develop an E. coli and Corynebacterium glutamicum shuttle vector consisting of one plasmid that operates in both E. coli and Corynebacterium glutamicum .
  • a first aspect of the invention provides a DNA sequence encoding a guide RNA (sgRNA) of a target gene and a promoter operably linked thereto; A DNA sequence encoding inactivated Cas9 (dCas9) and a promoter operably linked thereto; Replication origin from Corynebacterium glutamicum; And E. coli and a Corynebacterium glutamicum shuttle vector, including a cloning start point derived from Escherichia coli.
  • sgRNA guide RNA
  • dCas9 inactivated Cas9
  • Replication origin from Corynebacterium glutamicum
  • E. coli and a Corynebacterium glutamicum shuttle vector including a cloning start point derived from Escherichia coli.
  • the second aspect of the present invention can provide Escherichia coli into which a shuttle vector according to the first aspect of the present application is introduced.
  • a third aspect of the invention provides a Corynebacterium glutamicum with introduced shuttle vector according to the first aspect of the present disclosure.
  • a fourth aspect of the invention provides a method for producing E. coli and a Corynebacterium glutamicum shuttle vector of the first aspect of the present invention.
  • a target gene can be suppressed to various expression levels without causing genetic transformation using one CRIPSRi plasmid.
  • Using the shuttle vector of the present invention can easily suppress the expression amount of the gene regardless of the kind of the gene, It is possible to efficiently search the optimal gene expression inhibition degree for production.
  • FIG. 1 is a cross-sectional view of an xyla Lt; / RTI > is a schematic illustration of a shuttle vector for gene targeting purposes.
  • 2 is pyc Lt; / RTI > is a schematic illustration of a shuttle vector for gene targeting purposes.
  • FIGS. 3-7 are schematic diagrams of vectors produced during the fabrication of a shuttle vector according to one embodiment of the present invention.
  • FIG. 8 is a graph showing the growth of Escherichia coli introduced with the shuttle vector pCoryne-sgRNA-xylA-r-dCas9 prepared according to one embodiment of the present invention.
  • FIG. 9 shows RT-PCT results for the E. coli into which the shuttle vector pCoryne-sgRNA-xylA-r-dCas9 of the present invention is introduced.
  • FIG. 10 is a graph showing a phenotype of Corynebacterium glutamicum to which the shuttle vector pCoryne-sgRNA-pyc-r-dCas9 prepared according to one embodiment of the present invention is introduced.
  • step (or step) or step “used to the extent that it is used throughout the specification does not mean” step for.
  • the term "combination thereof" included in the expression of the machine form means one or more combinations or combinations selected from the group consisting of the constituents described in the expression of the machine form, And the like.
  • a first aspect of the invention provides a DNA sequence encoding a guide RNA (sgRNA) of a target gene and a promoter operably linked thereto; A DNA sequence encoding inactivated Cas9 (dCas9) and a promoter operably linked thereto; Replication origin from Corynebacterium glutamicum; And E. coli and a Corynebacterium glutamicum shuttle vector including a cloning start point derived from E. coli.
  • sgRNA guide RNA
  • dCas9 inactivated Cas9
  • the shuttle vector of the present invention has both a sequence encoding a guide RNA and a sequence encoding dCas9 in one plasmid, it is easier and more economical to perform co-transformation of two plasmids,
  • the expression of the gene of interest can be regulated in four bacterial glutamicum.
  • a plasmid capable of inducing overexpression of a specific gene or expressing a foreign gene can be additionally transformed.
  • the shuttle vector of the present invention is a CRIPSRi plasmid.
  • This technique of CRIPSRi expression of dCas9-based gene expression inhibiting technology
  • Cas9 a nucleolytic enzyme
  • It can also be used as a gene regulator that does not cause mutation. This can be achieved by using dacas9 inactivating Cas9, which does not cut DNA but binds to a specific DNA guided by the guide RNA to inhibit transcription and thereby inhibit the expression of the gene, or to promote transcription By inducing proteins, expression of the gene can be promoted.
  • operably linked means that one nucleic acid fragment is associated with another nucleic acid fragment so that its function or expression is affected by other nucleic acid fragments.
  • guide RNA generally refers to RNA molecules capable of binding Cas proteins (including dCas proteins) and helping to target Cas proteins to specific positions within a target polynucleotide (e.g., DNA) A group of RNA molecules).
  • the guide RNA may comprise a crRNA segment and a tracrRNA segment.
  • crRNA “or” crRNA segment refers to an RNA molecule or portion thereof comprising a polynucleotide-targeting guide sequence, a stem sequence and optionally a 5'-overhang sequence.
  • tracrRNA “or” tracrRNA segment includes protein-binding segments (e.g., the protein-binding segments may interact with a cis- Lt; / RTI > molecule or portion thereof.
  • guide RNA includes a single guide RNA (sgRNA), wherein the crRNA segment and the tracrRNA segment are located in the same RNA molecule.
  • guide RNA also collectively includes a group of two or more RNA molecules, wherein the crRNA and the tracRNA segment are located in separate RNA molecules.
  • nucleic acid refers to DNA molecules, RNA molecules or analogs thereof.
  • nucleic acid refers to DNA molecules, RNA molecules or analogs thereof.
  • nucleic acid refers to DNA molecules, RNA molecules or analogs thereof.
  • nucleic acid refers to DNA molecules, RNA molecules or analogs thereof.
  • nucleic acid refers to DNA molecules, RNA molecules or analogs thereof.
  • polynucleotide refers to DNA molecules, RNA molecules or analogs thereof.
  • oligonucleotide include, but are not limited to, DNA molecules such as cDNA, genomic DNA or synthetic DNA and RNA molecules such as guide RNA, It contains synthetic RNA.
  • nucleic acid and polynucleotide include single-stranded and double-stranded forms.
  • modified in connection with oligonucleotides or polynucleotides includes, but is not limited to: (a) a nucleotide base (including, for example, a 5'terminal or 3'terminal modification, Quot; base ") modifications, (c) sugar modifications including modifications of the 2 ', 3' and / or 4 'positions, and (d) modification of the phosphodiester bond.
  • modified nucleotide generally refers to a nucleotide having a modification to one or more chemical structures of a phosphodiester bond or backbone portion, including the base, sugar, and nucleotide phosphate.
  • FIGS. 1 and 2 The structure of a shuttle vector that operates in E. coli and Corynebacterium glutamicum using CRISPRi is shown in FIGS. 1 and 2 and the like.
  • Fig. xyla Is the structure of a shuttle vector (pCoryne-sgRNA-xylA-r-dCas9) that works in E. coli and Corynebacterium glutamicum, constructed to contain the guide RNA (sgRNA) of xylA to suppress the gene.
  • sgRNA guide RNA
  • Figure 2 is a Corynebacterium glutamicum in order to suppress the pyc gene designed to include a guide RNA (sgRNA) of pyc, Escherichia coli and Corynebacterium shuttle operating at Tommy glutamicum vector (pCoryne-sgRNA-xylA -r-dCas9).
  • sgRNA guide RNA
  • Escherichia coli Escherichia coli
  • Corynebacterium shuttle operating at Tommy glutamicum vector (pCoryne-sgRNA-xylA -r-dCas9).
  • the shuttle vector may include, but is not limited to, a DNA sequence encoding two or more guide RNAs.
  • the two or more kinds of guide RNAs can be expressed at the same time or at different times.
  • the guide RNA may reduce the amount of protein expressed by inhibiting the expression of a specific gene, and may change the flow of a conventional metabolic process to participate in the production of a useful substance, but may not be limited thereto.
  • the pta-ackA gene (a gene encoding phosphotransacetylase and acetyl kinase), the ldhA gene (a gene encoding lactate dehydrogenase), the cat gene (acetyl-coA: coA trasnferase Encoding gene) and the pqo gene (pyruvate: the gene encoding the menaquinone oxidoreductase)
  • the pqo gene pyruvate: the gene encoding the menaquinone oxidoreductase
  • two or more kinds of guide RNAs may be prepared and introduced into Corynebacterium glutamicum, but the expression of the genes may be simultaneously inhibited, but the present invention is not limited thereto.
  • the promoter may be selected from promoters that are operable in a microorganism known in the art, and a promoter that selectively operates at a specific development stage, a specific time, a specific condition, and a specific site may be used, But may not be limited thereto.
  • the shuttle vector may further include, but is not limited to, one or more elements selected from a multiple cloning site, a transcription terminator, and a reporter gene.
  • the reporter gene may be, but not limited to, an antibiotic resistance gene or a fluorescent protein expression gene known in the art.
  • a DNA sequence encoding a guide RNA may be inserted into, but not limited to, the multiple cloning site.
  • the shuttle vector may include, but is not limited to, the DNA sequence shown in SEQ ID NO: 1.
  • the sequence shown in SEQ ID NO: 1 is the pCoryne-sgRNA- ⁇ -dCas9 in which the guide RNA of the target gene is omitted, the EcoR I restriction enzyme site present in nucleotides 87 to 92 of the sequence, The BamH I restriction enzyme site is inserted between the BamH I restriction enzyme site and the BamH I restriction enzyme site.
  • the cloning start point from the Corynebacterium glutamicum may be selected from, but not limited to, pHM1519 and pBL1, and may be selected from the group consisting of Corynebacterium glutamicum- It is possible to appropriately select and use the cloning start point.
  • the E. coli-derived origin of replication may be selected from p15A, oriC, ColE1, pMB1 and pSC101, but is not limited thereto. Can be selected and used.
  • the target gene is xylA Or pyc of Corynebacterium glutamicum, and may be any gene which is intended to regulate expression in E. coli and Corynebacterium glutamicum.
  • the shuttle vectors herein may be, but are not limited to, for promoting or inhibiting expression of a gene of interest.
  • the second aspect of the present application may provide, but is not limited to, E. coli into which a shuttle vector according to the first aspect of the present application is introduced.
  • the introduction of the shuttle vector can be carried out by any microorganism transformation method known in the art, without any particular limitation.
  • the E. coli may be deposited with the deposit number KCCM12077P on July 11, 2017 at the Korean Microorganism Conservation Center, but the present invention is not limited thereto.
  • the Escherichia coli of the present invention may include a variant of Escherichia coli deposited with the above accession number KCCM12077P.
  • a third aspect of the invention provides, but is not limited to, Corynebacterium glutamicum with introduced shuttle vectors according to the first aspect of the present disclosure.
  • the introduction of the shuttle vector can be carried out by any microorganism transformation method known in the art, without any particular limitation.
  • Escherichia coli was cultured at 37 ° C and 200 rpm in LB medium (10 g / L tryptone, 5 g / L yeast extract, 5 g / L NaCl).
  • Corynebacterium glutamicum and its mutants were cultured at 30 ° C and 200 rpm using BHIS medium (37 g / L brain heart infusion, 91 g / L sorbitol) and 50 ml CgXII medium and 250 ml Beppel Erlenmeyer flasks.
  • the antibiotic used for selective culture was 100 / / ml ampicillin, 50 / / ml kanamycin for E. coli and 25 / / ml kanamycin for Corynebacterium glutamicum.
  • dCas9 was firstly synthesized into pUC57 vector in two parts. Specifically, by inserting tetR-tetO-dCas9-1 of pUC-dCas9-1 (FIG. 3) into the pCoryne-sgRNA- ⁇ plasmid (FIG. 5) using BamH I and Pst I restriction enzymes, pCoryne-sgRNA- dCas9-1 (Fig. 6) was constructed and then dCas9-2 of pUC-dCas9-2 (Fig.
  • FIG. 7 The DNA sequence of pCoryne-sgRNA- ⁇ -dCas9 according to FIG. 7 is shown in SEQ ID NO: 1.
  • a shuttle vector using CRISPRi for the xylA gene of Escherichia coli was constructed, and the expression of the xylA gene was regulated according to the shuttle vector.
  • xylA is a gene encoding xylose isomerase of Escherichia coli. It is a gene capable of hydrolyzing D-xylose with D-xylulose to enable cell growth using xylose as a carbon source .
  • xyla A diagram of a shuttle vector (pCoryne-sgRNA-xylA-r-dCas9) that works in E. coli and Corynebacterium glutamicum using CRISPRi for gene targeting is shown in FIG.
  • sgRNA-xylA-r2 Promoter portion of the xylA gene, sgRNA-xylA-r2:: To this end, sgRNA 2 jongryu (sgRNA-xylA-r1 for the purpose of xylA gene xylA (PCoryne-sgRNA-xylA-r1-dCas9, pCoryne-sgRNA-xylA-r2-dCas9) using CRISPRi, each of which contains the start codon portion of the gene (s).
  • the sequence of the primers used in RT-PCR is shown in Table 2 below, and the control group was rssA , a gene of 16S rRNA.
  • Fig. 8 is a graph
  • the strains CRISPRi shuttle vector is the expression of the intended the xylA (WT + pCoryne-sgRNA- xylA-r1-dCas9, WT + pCoryne-sgRNA-xylA-r2-dCas9) and the wild type strain (WT) and the control strain (WT + pZ8-0, WT + pCoryne-sgRNA- ⁇ -dCas9), and FIG. 9 shows the results of observing the growth of E.
  • the strains CRISPRi shuttle vector is the expression of the intended the xylA (WT + pCoryne-sgRNA- xylA-r1-dCas9, WT + pCoryne-sgRNA-xylA-r2-dCas9) and the wild type strain (WT) and the control strain (WT + pZ8-0, WT + pCoryne-sgRNA- ⁇ -dCas9).
  • the amount of shuttle vector is introduced dCas9 and sgRNA-xylA-r1, or sgRNA-xylA-r2 are both expressed strain was young growth is slow compared to the wild-type strain and the control strain ( Figure 8), Expression of xylA of the wild type strain acn expression level in the rat . (Fig. 9).
  • the shuttle vector of CRISPRi according to the present invention worked well in E. coli and mRNA transcription of xylA was reliably suppressed.
  • a shuttle vector was constructed using CRISPRi for gene expression and its phenotype was observed.
  • pyc is because of the ability to switch to Corynebacterium as a gene that encodes a pyruvate carboxyl cyclase (pyruvate carboxylase) of glutamicum, configure the reductive branch of the TCA cycle, and oxaloacetic acetate (oxaloacetate) a pyruvate, pyc Is inhibited, Corynebacterium glutamicum does not grow normally.
  • pyc A diagram of a shuttle vector (pCoryne-sgRNA-pyc-r-dCas9) that works in E. coli and Corynebacterium glutamicum using CRISPRi for gene targeting is shown in FIG.
  • a shuttle vector (pCoryne-sgRNA-pyc-r-dCas9) using CRISPRi containing sgRNA (sgRNA-pyc-r) for pyc gene was transformed into Corynebacterium glutamicum .
  • the recombinant Corynebacterium glutamicum strain was cultured in BHIS medium at 30 ° C. overnight at 200 rpm and then cultured in CgXII medium supplemented with 2% sodium lactate at about OD 1.0 for 34 hours at 30 ° C. Respectively.
  • FIG. 10 is a graph showing the results of inhibition of the expression of the pyc gene by using pCoryne-sgRNA-dCas9 for the transformation of Corynebacterium glutamicum using CRISPRi comprising one plasmid. The results are as follows.
  • a target gene can be suppressed to various expression levels without causing genetic transformation using one CRIPSRi plasmid.
  • the use of the shuttle vector of the present invention can easily suppress the expression level of the gene regardless of the type, including the gene that plays an important role in cell growth. Therefore, the optimal target gene expression inhibition degree It can be used efficiently for searching.
  • caggacgtgt cagcgccgcc accacctgca ccgaatcggc agcagcgtcg cgcgtcgaaa 6900

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본원은, 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터, 및 상기 셔틀 벡터가 도입된 대장균 및 코리네박테리움 글루타미쿰에 관한 것이다.

Description

목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터
본원은, 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 셔틀 벡터, 및 상기 셔틀 벡터가 도입된 대장균 및 코리네박테리움에 관한 것이다.
코리네박테리움 글루타미쿰(Corynebacterium glutamicum)은 그람 양성 균주로서, 글루타메이트, 라이신, 트레오닌과 같은 아미노산 및 이노신산과 같은 퓨린 계열의 핵산을 생산하는 등의 용도로 널리 이용되고 있다. 코리네박테리움 글루타미쿰은 생장 조건이 용이하며, 대장균에 비해 4 배 가량 고농도 배양이 가능하고, 유전체 구조가 안정적이어서 돌연변이 발생 확률이 낮다. 또한, 비병원성 균주이고 포자를 만들지 않아 환경에 유해한 영향을 미치지 않는 등 산업용 균주로서의 장점을 갖추고 있다.
클로닝 벡터는 세균 내에서 주염색체와 독립적으로 복제될 수 있는 고리 형태의 DNA이다. 이러한 클로닝 벡터는 균주 내에서 플라스미드 형태로 유지되기 위한 복제원점 (origin of replication), 벡터를 보유한 균주를 선별하기 위한 선발 표지 유전자 (selectable marker gene), 및 외래 유전자의 클로닝을 위한 다중클로닝부위 (multi-cloning site, MCS) 등을 포함한다.
셔틀 벡터는 일반적으로 복수의 균주에서 유지 가능한 벡터를 포함한다. 대장균-코리네박테리움 글루타미쿰 셔틀 벡터 는 대장균의 복제 원점 및 코리네박테리움 글루타미쿰의 복제 원점을 모두 포함하고 있다. 이러한 셔틀 벡터를 사용함으로써 대상 균주에 원하는 형질을 용이하게 도입할 수 있는데, 예를 들어 대장균에서 외래유전자 또는 돌연변이를 유발시킨 유전자를 셔틀 벡터에 클로닝 한 후, 이 셔틀 벡터를 코리네박테리움 글루타미쿰에 도입함으로써 원하는 형질을 유도할 수도 있다.
한편, 세균의 유전자 발현을 조절하기 위한 다양한 유전자 조작 기술들이 알려져 있다. 이 중, 불활성화된 Cas9(dCas9) 기반으로 목적 유전자의 발현을 저해하는 CRISPRi(CRISPR interference, 크리스퍼 간섭) 시스템을 이용하기 위해서 기존 연구에서는 dCas9와 목적 유전자의 가이드 RNA(sgRNA) 두 종류의 플라스미드를 이용하였다. 따라서 CRISPRi 재조합 균주를 만들기 위해서 dCas9의 플라스미드와 sgRNA의 플라스미드 2개를 공-형질전환(co-transformation)해야 하는 어려움이 있었고, 특정 유전자의 과발현을 유도하거나 외래 유전자를 발현시킬 수 있는 플라스미드를 추가적으로 형질전환하지 못해 다양한 재조합 균주를 만들지 못한다는 한계를 지니고 있었다.
본원은, 기존의 두 플라스미드로 이루어진 CRISPRi 기술의 한계를 극복하고, 대장균과 코리네박테리움 글루타미쿰에서 모두 작동하는 하나의 플라스미드로 이루어진 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터를 개발하고자 하였다.
그러나 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터; 불활성화된 Cas9 (dCas9)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터; 코리네박테리움 글루타미쿰 유래의 복제 개시점; 및 대장균 유래의 복제 개시점을 포함하는, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터를 제공할 수 있다.
본원의 제 2 측면은, 본원의 제 1 측면에 따른 셔틀 벡터가 도입된 대장균을 제공할 수 있다.
본원의 제 3 측면은, 본원의 제 1 측면에 따른 셔틀 벡터가 도입된 코리네박테리움 글루타미쿰을 제공할 수 있다.
본원의 제 4 측면은, 본원의 제 1 측면의 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터의 제조 방법을 제공할 수 있다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본 발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 구현예 외에도, 도면 및 발명의 상세한 설명에 기재된 추가적인 구현예 및 실시예가 존재할 수 있다.
본원발명에 따르면, 하나의 CRIPSRi 플라스미드를 이용하여 유전자 변형을 일으키지 않고도 목적 유전자를 다양한 발현 정도로 억제할 수 있다. 특히 세포 성장에 중요한 역할을 하는 유전자의 유전자 변형을 만드는 일은 거의 불가능한데, 본원발명의 셔틀 벡터를 이용하면 유전자의 종류에 관계없이 그 유전자의 발현량을 간단하게 억제할 수 있으며, 따라서 목적 물질의 생산을 위한 최적의 목적 유전자 발현 억제 정도를 효율적으로 탐색할 수 있다.
도 1은 본원의 일 실시예에 따른 xylA 유전자를 목적으로 하는 셔틀 벡터의 개략도이다.
도 2는 pyc 유전자를 목적으로 하는 셔틀 벡터의 개략도이다.
도 3 내지 도 7는 본원의 일 실시예에 따른 셔틀 벡터의 제작 과정에서 만들어지는 벡터들의 개략도이다.
도 8은 본원의 일 실시예에 따라 제조된 셔틀 벡터 pCoryne-sgRNA-xylA-r-dCas9가 도입된 대장균의 생장을 관찰하여 나타낸 그래프이다.
도 9는 본 발명의 셔틀 벡터 pCoryne-sgRNA-xylA-r-dCas9가 도입된 대장균에 대한 RT-PCT 결과 이다.
도 10은 본원의 일 실시예에 따라 제조된 셔틀 벡터 pCoryne-sgRNA-pyc-r-dCas9가 도입된 코리네박테리움 글루타미쿰의 표현형을 관찰하여 나타낸 그래프이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A, B, 또는, A 및 B" 를 의미한다.
이하, 본원의 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터, 및 상기 셔틀 벡터가 도입된 대장균 및 코리네박테리움 글루타미쿰에 대하여 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.
본원의 제 1 측면은, 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열 및 이에 작동 가능하게 연결된 프로모터; 불활성화된 Cas9 (dCas9)를 인코딩하는 DNA 서열 및 이에 작동 가능하게 연결된 프로모터; 코리네박테리움 글루타미쿰 유래의 복제 개시점; 및 대장균 유래의 복제 개시점을 포함하는 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터를 제공할 수 있다.
본원의 셔틀 벡터는 하나의 플라스미드 내에 가이드 RNA를 인코딩하는 서열 및 dCas9를 인코딩하는 서열이 모두 존재하므로, 두 개의 플라스미드를 공-형질 전환해야 하는 종래 기술에 비해 간편하고 경제적이며 높은 성공률로 대장균 또는 코리네박테리움 글루타미쿰 내에서 목적 유전자의 발현을 조절할 수 있다. 또한, 특정 유전자의 과발현을 유도하거나 또는 외래 유전자를 발현시킬 수 있는 플라스미드를 추가적으로 형질전환할 수 있는 장점이 있다.
본원의 셔틀 벡터는 CRIPSRi 플라스미드인데, 이러한 크리스퍼 간섭 (CRIPSRi, dCas9기반 목적 유전자의 발현저해기술) 기술은 핵산 분해효소인 Cas9를 이용해 유전체의 서열을 편집하는 데에 사용되기도 하지만, 서열 특이적이면서 돌연변이를 유발하지 않는 유전자 조절 도구로도 사용될 수 있다. 이는 Cas9를 불활성화시킨 dCas9를 사용함으로써 달성될 수 있는데, dCas9는 DNA를 자를 수는 없지만 가이드 RNA가 인도하는 특정 DNA에 결합함으로써 전사를 방해하여 해당 유전자의 발현을 억제하거나, 또는 전사를 촉진하는 단백질들을 유도함으로써 해당 유전자의 발현을 촉진할 수도 있다.
용어 “작동 가능하게 연결된"은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 의미한다.
용어 "가이드 RNA"는 일반적으로 Cas 단백질 (dCas 단백질 포함)에 결합할 수 있고 Cas 단백질을 표적 폴리뉴클레오타이드 (예를 들어, DNA)내의 특정 위치에 표적화하는 것을 도울 수 있는 RNA 분자(또는 집합적으로 RNA 분자들의 그룹)를 지칭할 수 있다. 가이드 RNA는 crRNA 분절 및 tracrRNA 분절을 포함할 수 있다. 본 명세서에 사용되는 "crRNA" 또는 "crRNA 분절"이란 용어는 폴리뉴클레오타이드-표적화 가이드 서열, 줄기 서열 및 임의로 5'-오버행 서열을 포함하는 RNA 분자 또는 그의 부분을 지칭한다. 본 명세서에 사용되는 "tracrRNA" 또는 "tracrRNA 분절"이란 용어는 단백질-결합 분절(예를 들어, 상기 단백질-결합 분절은 크리스퍼-결합된 단백질, 예를 들어 Cas9와 상호작용할 수 있다)을 포함하는 RNA 분자 또는 그의 부분을 지칭한다. 상기 "가이드 RNA"란 용어는 단일 가이드 RNA(sgRNA)를 포함하며, 이때 상기 crRNA 분절 및 상기 tracrRNA 분절은 동일한 RNA 분자 중에 위치한다. "가이드 RNA"란 용어는 또한 집합적으로 2개 이상의 RNA 분자들의 그룹을 포함하며, 이때 상기 crRNA 및 상기 tracrRNA 분절은 별도의 RNA 분자 중에 위치한다.
용어 "핵산", "폴리뉴클레오타이드" 또는 "올리고뉴클레오타이드"란 용어는 DNA 분자, RNA 분자 또는 이들의 유사체를 지칭한다. 본 명세서에 사용되는 "핵산", "폴리뉴클레오타이드" 및 "올리고뉴클레오타이드"란 용어는 비제한적으로 DNA 분자, 예를 들어 cDNA, 게놈 DNA 또는 합성 DNA 및 RNA 분자, 예를 들어 가이드 RNA, 전령 RNA 또는 합성 RNA를 포함한다. 더욱이, 본 명세서에 사용되는 "핵산" 및 "폴리뉴클레오타이드"란 용어는 단일-가닥 및 이중-가닥 형태를 포함한다.
올리고뉴클레오타이드 또는 폴리뉴클레오타이드와 관련하여 "변형"이란 용어는 비제한적으로 (a) 단부 변형, 예를 들어 5' 단부 변형 또는 3' 단부 변형, (b) 염기의 교체 또는 제거를 포함한 핵염기(또는 "염기") 변형, (c) 2', 3' 및/또는 4' 위치의 변형을 포함한 당 변형, 및 (d) 포스포다이에스터 결합의 변형 또는 교체를 포함한 주쇄 변형을 포함한다. "변형된 뉴클레오타이드"란 용어는 일반적으로 상기 염기, 당, 및 뉴클레오타이드 포스페이트를 포함한 포스포다이에스터 결합 또는 주쇄 부분 중 하나 이상의 화학 구조에 대한 변형을 갖는 뉴클레오타이드를 지칭한다.
CRISPRi을 이용한 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터의 구조가 도 1 및 도 2 등에 나타나 있다. 도 1은 대장균의 xylA 유전자를 억제하기 위해 xylA의 가이드 RNA (sgRNA)를 포함하도록 제작된, 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터 (pCoryne-sgRNA-xylA-r-dCas9)의 구조이다.
도 2는 코리네박테리움 글루타미쿰의 pyc 유전자를 억제하기 위해 pyc의 가이드 RNA (sgRNA)를 포함하도록 제작된, 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터 (pCoryne-sgRNA-xylA-r-dCas9)의 구조이다.
예를 들어, 상기 셔틀 벡터는 2종 이상의 가이드 RNA를 인코딩하는 DNA 서열을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 2 종 이상의 가이드 RNA는 동시에 또는 상이한 시기에 발현될 수 있다.
예를 들어, 상기 가이드 RNA는 특정 유전자의 발현을 억제함으로써 단백질 발현량을 줄일 수 있고, 기존 대사과정의 흐름을 변화시켜 유용물질의 생산에 관여할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 코리네박테리움 글루타미쿰에서 pta-ackA 유전자(phosphotransacetylase와 acetyl kinase를 인코딩하고 있는 유전자)와 ldhA 유전자(lactate dehydrogenase를 인코딩하고 있는 유전자), cat 유전자 (acetyl-coA:coA trasnferase를 인코딩하고 있는 유전자) 및 pqo 유전자(pyruvate:menaquinone oxidoreductase를 인코딩하고 있는 유전자)를 결손할 경우, 락틱산염을 생산하지 못하게 할 수 있다. 따라서, 2 종 이상의 가이드 RNA를 제작하여 코리네박테리움 글루타미쿰에 도입함으로써 상기 유전자들의 발현을 동시에 억제할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 프로모터는 당업계에 알려진 미생물 내에서 작동하는 프로모터들로부터 제한 없이 선택하여 사용할 수 있으며, 특정 발달 단계, 특정 시기, 특정 조건 및 특정 부위 등에서 선택적으로 작동하는 프로모터를 사용할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 셔틀 벡터는 다중클로닝부위, 전사종결자, 및 리포터 유전자로부터 선택되는 하나 이상의 요소를 더 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 리포터 유전자는 당업계에 알려진 항생제 저항성 유전자 또는 형광 단백질 발현 유전자일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 가이드 RNA를 인코딩하는 DNA 서열은 상기 다중 클로닝 부위에 삽입될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 셔틀 벡터는 서열번호 1로 표시되는 DNA 서열을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 서열번호 1로 표시되는 서열은 목적 유전자의 가이드 RNA가 생략된 pCoryne-sgRNA-Φ-dCas9로서, 그 서열 중 87~92 번째 염기에 존재하는 EcoRI 제한효소 부위, 그리고 97~102 번째 염기에 존재하는 BamHI 제한효소 부위 사이에 목적하는 유전자의 가이드 RNA가 삽입될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 코리네박테리움 글루타미쿰 유래의 복제 개시점은 pHM1519 및 pBL1로부터 선택될 수 있으나 이에 제한되지 않을 수 있으며, 당업계에 알려진 코리네박테리움 글루타미쿰 유래의 복제 개시점을 적절하게 선택하여 사용할 수 있다.
본원의 일 구현예에 따르면, 상기 대장균 유래의 복제 개시점은 p15A, oriC, ColE1, pMB1 및 pSC101로부터 선택될 수 있으나, 이에 제한되지 않을 수 있으며, 당업계에 알려진 대장균 유래의 복제 개시점을 적절하게 선택하여 사용할 수 있다.
본원의 일 구현예에 따르면, 상기 목적 유전자는 대장균의 xylA 또는 코리네박테리움 글루타미쿰의 pyc를 포함할 수 있으나, 이에 제한되지 않을 수 있으며, 대장균 및 코리네박테리움 글루타미쿰 내에서 발현을 조절하고자 하는 임의의 유전자를 목적 유전자로 선택할 수 있다.
본원의 일 구현예에 따르면, 본원의 셔틀 벡터는 목적 유전자의 발현을 촉진 또는 억제하기 위한 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제2 측면은, 본원의 제1 측면에 따른 셔틀 벡터가 도입된 대장균을 제공할 수 있으나, 이에 제한되지 않을 수 있다. 상기 셔틀 벡터의 도입은 특별한 제한 없이, 당업계에 알려진 임의의 미생물의 형질전환 방법에 의해 수행될 수 있다.
본원의 일 구현예에 따르면, 상기 대장균은 2017년 7월 11일자로 한국미생물보존센터에 수탁번호 KCCM12077P로 기탁된 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원발명의 대장균은 상기 수탁번호 KCCM12077P로 기탁된 대장균의 변이체를 포함할 수 있다.
본원의 제3 측면은, 본원의 제1 측면에 따른 셔틀 벡터가 도입된 코리네박테리움 글루타미쿰을 제공할 수 있으나, 이에 제한되지 않을 수 있다. 상기 셔틀 벡터의 도입은 특별한 제한 없이, 당업계에 알려진 임의의 미생물의 형질전환 방법에 의해 수행될 수 있다.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.
1. 세포주 및 배양조건
사용된 균주들은 아래의 표 1에 나타나 있다. 대장균은 LB 배지 (10 g/L 트립톤, 5 g/L 효모 추출물, 5 g/L NaCl)에서 37℃, 200 rpm에서 배양되었다. 코리네박테리움 글루타미쿰 및 이의 변이체들은 BHIS 배지 (37g/L brain heart infusion, 91g/L 소비톨) 및 50 ml CgXII 배지와 250 ml 베플 삼각 플라스크를 이용하여 30℃, 200 rpm에서 배양되었다.
Figure PCTKR2018008944-appb-T000001
선택적 배양을 위해 사용된 항생제는 대장균의 경우 100 ㎍/ml 앰피실린, 50 ㎍/ml 카나마이신이며, 코리네박테리움 글루타미쿰의 경우 25 ㎍/ml 카나마이신이었다.
2. pCoryne - sgRNA -Φ- dCas9 및 재조합 균주 제작
목적 유전자를 가지지 않는 pCoryne-sgRNA-Φ-dCas9의 제조를 위해, 먼저 pUC57 벡터에 dCas9을 두 부분으로 나누어 합성하였다. 구체적으로, pUC-dCas9-1 (도 3)의 tetR-tetO-dCas9-1를 pCoryne-sgRNA-Φ 플라스미드 (도 5)에 BamHI 및 PstI 제한효소를 이용하여 삽입함으로써 pCoryne-sgRNA-Φ-dCas9-1 (도 6)을 제작한 뒤, pUC-dCas9-2 (도 4)의 dCas9-2를 상기 pCoryne-sgRNA-Φ-dCas9-1 (도 6)에 ApaI 및 PstI 제한효소를 이용해 삽입함으로써 pCoryne-sgRNA-Φ-dCas9 (도 7)를 제작하였다. 도 7에 따른 pCoryne-sgRNA-Φ-dCas9의 DNA 서열은 서열번호 1에 나타나 있다. 대장균의 형질전환시 KCM 버퍼 (500 mM KCl, 150 mM CaCl2, 250 mM MgCl2)를 이용한 화학적 형질전환 방법을 이용하였고, 코리네박테리움 글루타미쿰의 경우 MicroPulser Electroporator (BioRad)를 이용한 전기적 형질전환 방법을 이용하였으며, 콜로니 PCR를 통해 형질전환 여부를 확인하였다.
3. pCoryne - sgRNA - xylA -r- dCas9의 제조 및 특성 확인
본 실시예에서는, 대장균의 xylA 유전자를 목적으로 하는 CRISPRi을 이용한 셔틀 벡터를 제작하고, 그에 따른 xylA 유전자의 발현 조절 여부를 알아보았다. xylA는 대장균의 자일로스 이소머라제(xylose isomerase)를 인코딩하는 유전자로서, D-자일로스를 D-자일룰로스로 가수분해하여 대장균이 자일로스를 탄소원으로 이용하여 세포생장을 할 수 있도록 하는 기능을 가진다. xylA 유전자를 목적으로 하는 CRISPRi을 이용한 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터 (pCoryne-sgRNA-xylA-r-dCas9)의 도면은 도 1에 나타나 있다.
이를 위해, xylA 유전자를 목적으로 하는 sgRNA 2 종류 (sgRNA-xylA-r1: xylA 유전자의 프로모터 부분, sgRNA-xylA-r2: xylA 유전자의 시작코돈 부분)를 각각 포함하는, CRISPRi을 이용한 셔틀 벡터 2 종류 (pCoryne-sgRNA-xylA-r1-dCas9, pCoryne-sgRNA-xylA-r2-dCas9)를 제조하여 대장균에 형질전환하였다.
재조합된 2 가지 종류의 대장균 균주를 LB 배지에 37℃, 200rpm에서 밤샘 배양 한 후, 0.1% 자일로스가 첨가된 LB 배지에 1:100의 비율로 접종하여 37℃에서 27 시간 동안 배양하였다. 이후, 100 nM aTc를 이용하여 0 시간 째 인덕션하여 5 시간째에 샘플을 얻었다. 이 샘플로부터 RNA를 추출하여 cDNA를 만들고, RT-PCR 실험을 통해 xylA의 발현량을 확인하였다. RT-PCR에서 사용한 프라이머의 서열은 아래 표 2에 나타나 있으며, 대조군은 16S rRNA의 유전자인 rrsA를 이용하였다.
프라이머 서열
xylA-RT-PCR-F (서열번호 2) CCAGTTGTTCCTGGCGACCA
xylA-RT-PCR-R (서열번호 3) ATGCAAGCCTATTTTGACCAGC
rrsA-RT-qPCR-F (서열번호 4) GAAGAGTTTGATCATGGCTCAG
rrsA-RT-qPCR-R (서열번호 5) TAAGGAGGTGATCCAACCGCAGGTTC
도 8은 대장균에서 xylA를 목적으로 하는 CRISPRi의 셔틀 벡터가 발현된 균주 (WT+pCoryne-sgRNA-xylA-r1-dCas9, WT+pCoryne-sgRNA-xylA-r2-dCas9)와 야생형 균주(WT) 및 대조군 균주 (WT+pZ8-0, WT+pCoryne-sgRNA-Φ-dCas9)의 생장을 관찰한 결과이고, 도 9는 대장균에서 xylA를 목적으로 하는 CRISPRi의 셔틀 벡터가 발현된 균주 (WT+pCoryne-sgRNA-xylA-r1-dCas9, WT+pCoryne-sgRNA-xylA-r2-dCas9)와 야생형 균주(WT) 및 대조군 균주(WT+pZ8-0, WT+pCoryne-sgRNA-Φ-dCas9)의 RT-PCR 결과를 나타낸다.
실험 결과, 셔틀 벡터가 도입되어 dCas9과 sgRNA-xylA-r1 또는 sgRNA-xylA-r2이 모두 발현된 균주는 야생형 균주 및 대조군 균주에 비해 성장이 느렸고 (도 8), xylA의 발현량이 야생형 균주의 acn 발현량에 비해 적음을 확인할 수 있었다. (도 9). 즉, 본원발명에 따른 CRISPRi의 셔틀 벡터가 대장균 내에서 잘 작동하여 xylA의 mRNA 전사가 확실히 억제되었음을 확인할 수 있었다.
4. pCoryne - sgRNA - pyc -r- dCas9의 제조 및 특성 확인
본 실시예에서는, 코리네박테리움 글루타미쿰의 pyc 유전자를 목적으로 하는 CRISPRi을 이용한 셔틀 벡터를 제작하고, 그 표현형을 관찰하였다. pyc는 코리네박테리움 글루타미쿰의 피루브산염 카복실라제(pyruvate carboxylase)를 인코딩하는 유전자로서, TCA 사이클의 reductive branch를 구성하며 피루브산염을 옥살로아세테이트(oxaloacetate)로 전환하는 기능을 가지므로, pyc가 억제되면 코리네박테리움 글루타미쿰이 정상적으로 자라지 못한다. pyc 유전자를 목적으로 하는 CRISPRi을 이용한 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터 (pCoryne-sgRNA-pyc-r-dCas9)의 도면은 도 2에 나타나 있다.
이를 위해, pyc 유전자를 목적으로 하는 sgRNA(sgRNA-pyc-r)가 포함된, CRISPRi을 이용한 셔틀 벡터 (pCoryne-sgRNA-pyc-r-dCas9)를 코리네박테리움 글루타미쿰에 형질전환한 뒤, 재조합된 코리네박테리움 글루타미쿰 균주를 BHIS 배지에 30℃, 200 rpm에서 밤샘 배양한 후, 2% 소듐 락테이트가 첨가된 CgXII 배지에서 약 OD 1.0으로 시작하여 30℃에서 34 시간 동안 배양하였다.
도 10은 하나의 플라스미드로 이루어진 CRISPRi을 이용한 코리네박테리움 글루타미쿰의 형질전환용 키트 (pCoryne-sgRNA-dCas9)를 이용해 pyc 유전자의 발현을 억제하였을 때, 재조합된 균주의 생장이 야생형 및 대조군 균주에 비해 억제되는 표현형을 관찰한 결과이다.
그 결과, 야생형 균주, 및 dCas9과 sgRNA가 둘 다 없거나 dCas9만 있는 대조군 균주에 비해 dCas9과 sgRNA-pyc-r이 발현된 균주의 생장이 억제되는 것으로 관찰되었다 (도 10). 즉, 본 실시예에 따른 CRISPRi의 셔틀 벡터가 코리네박테리움 글루타미쿰에 작동하여 pyc의 발현이 억제되는 결과를 확인할 수 있었다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
본원발명에 따르면, 하나의 CRIPSRi 플라스미드를 이용하여 유전자 변형을 일으키지 않고도 목적 유전자를 다양한 발현 정도로 억제할 수 있다. 본원발명의 셔틀 벡터를 이용하면 세포 성장에 중요한 역할을 하는 유전자를 포함하여 종류에 관계없이 유전자의 발현량을 간단하게 억제할 수 있으며, 따라서 목적 물질의 생산을 위한 최적의 목적 유전자 발현 억제 정도를 탐색하는데 효율적으로 이용할 수 있다.
서열목록 1:
aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc 60
tatttcgttc atccatagtt gcctgagaat tcccggggat ccttaagacc cactttcaca 120
tttaagttgt ttttctaatc cgcatatgat caattcaagg ccgaataaga aggctggctc 180
tgcaccttgg tgatcaaata attcgatagc ttgtcgtaat aatggcggca tactatcagt 240
agtaggtgtt tccctttctt ctttagcgac ttgatgctct tgatcttcca atacgcaacc 300
taaagtaaaa tgccccacag cgctgagtgc atataatgca ttctctagtg aaaaaccttg 360
ttggcataaa aaggctaatt gattttcgag agtttcatac tgtttttctg taggccgtgt 420
acctaaatgt acttttgctc catcgcgatg acttagtaaa gcacatctaa aacttttagc 480
gttattacgt aaaaaatctt gccagctttc cccttctaaa gggcaaaagt gagtatggtg 540
cctatctaac atctcaatgg ctaaggcgtc gagcaaagcc cgcttatttt ttacatgcca 600
atacaatgta ggctgctcta cacctagctt ctgggcgagt ttacgggttg ttaaaccttc 660
gattccgacc tcattaagca gctctaatgc gctgttaatc actttacttt tatctaatct 720
agacatcatt aattcctaat ttttgttgac actctatcgt tgatagagtt attttaccac 780
tccctatcag tgatagagat tgacatccct atcagtgata gagatactga gcacaacatc 840
tgatctaaag aggagaaagg atctatggat aagaagtact ccatcggcct ggcaatcggc 900
accaactccg tgggctgggc agtgatcacc gatgaataca aggtgccatc caagaagttc 960
aaggtgctgg gcaacaccga tcgccactcc atcaagaaga acctgatcgg cgcactgctg 1020
ttcgattccg gcgaaaccgc agaagcaacc cgcctgaagc gcaccgcacg ccgccgctac 1080
acccgccgca agaaccgcat ctgctacctc caggaaatct tctccaacga aatggcaaag 1140
gtggatgatt ccttcttcca ccgcctggaa gaatccttcc tggtggaaga agataagaag 1200
cacgaacgcc acccaatctt cggcaacatc gtggatgaag tggcatacca cgaaaagtac 1260
ccaaccatct accacctgcg caagaagctg gtggattcca ccgataaggc agacctgcgc 1320
ctgatctacc tggcactggc acacatgatc aagttccgcg gccacttcct gatcgaaggc 1380
gatctgaacc cagataactc cgatgtggat aagctgttca tccagctggt gcagacctac 1440
aaccagctgt tcgaagaaaa cccaatcaac gcatccggcg tggatgcaaa ggcaatcctg 1500
tccgcacgcc tgtccaagtc ccgccgcctg gaaaacctga tcgcacagct gccaggcgaa 1560
aagaagaacg gcctgttcgg caacctgatc gcactgtccc tgggcctgac cccaaacttc 1620
aagtccaact tcgatctggc agaagatgca aagctccagc tgtccaagga tacctacgat 1680
gatgatctgg ataacctgct ggcacagatc ggcgatcagt acgcagacct gttcctggca 1740
gcaaagaacc tgtccgatgc aatcctgctg tccgatatcc tgcgcgtgaa caccgaaatc 1800
accaaggcac cactgtccgc atccatgatc aagcgctacg atgaacacca ccaggatctg 1860
accctgctga aggcactggt gcgccagcag ctgccagaaa agtacaagga aatcttcttc 1920
gatcagtcca agaacggcta cgcaggctac atcgatggcg gcgcatccca ggaagagttc 1980
tacaagttca tcaagccaat cctggaaaag atggatggca ccgaagaact gctggtgaag 2040
ctgaaccgcg aagacctgct gcgcaagcag cgcaccttcg ataacggctc catcccacac 2100
cagatccacc tgggcgaact gcacgcaatc ctgcgccgcc aggaagattt ctacccattc 2160
ctgaaggata accgcgaaaa gatcgaaaag atcctgacct tccgcatccc atactacgtg 2220
ggcccactgg cacgcggcaa ctcccgcttc gcatggatga cccgcaagtc cgaagaaacc 2280
atcaccccat ggaacttcga agaagtggtg gataagggcg catccgcaca gtccttcatc 2340
gaacgcatga ccaacttcga taagaacctg ccaaacgaaa aggtgctgcc aaagcactcc 2400
ctgctgtacg aatacttcac cgtgtacaac gaactgacca aggtgaagta cgtgaccgaa 2460
ggcatgcgca agccagcatt cctgtccggc gaacagaaga aggcaatcgt ggatctgctg 2520
ttcaagacca accgcaaggt gaccgtgaag cagctgaagg aagattactt caagaagatc 2580
gaatgcttcg attccgtgga aatctccggc gtggaagatc gcttcaacgc atccctgggc 2640
acctaccacg atctgctgaa gatcatcaag gataaggatt tcctggataa cgaagaaaac 2700
gaagatatcc tggaagatat cgtgctgacc ctgaccctgt tcgaagatcg cgaaatgatc 2760
gaagaacgcc tgaagaccta cgcacacctg ttcgatgata aggtgatgaa gcagctgaag 2820
cgccgccgct acaccggctg gggccgcctg tcccgcaagc tgatcaacgg catccgcgat 2880
aagcagtccg gcaagaccat cctggatttc ctgaagtccg atggcttcgc aaaccgcaac 2940
ttcatgcagc tgatccacga tgattccctg accttcaagg aagatatcca gaaggcacag 3000
gtgtccggcc agggcgattc cctgcacgaa cacatcgcaa acctggcagg ctccccagca 3060
atcaagaagg gcatcctcca gaccgtgaag gtggtggatg aactggtgaa ggtgatgggc 3120
cgccacaagc cagaaaacat cgtgatcgaa atggcacgcg aaaaccagac cacccagaag 3180
ggccagaaga actcccgcga acgcatgaag cgcatcgaag aaggcatcaa ggaactgggc 3240
tcccagatcc tgaaggaaca cccagtggaa aacacccagc tccagaacga aaagctgtac 3300
ctgtactacc tccagaacgg ccgcgatatg tacgtggatc aggaactgga tatcaaccgc 3360
ctgtccgatt acgatgtgga tgcaatcgtg ccacagtcct tcctgaagga tgattccatc 3420
gataacaagg tgctgacccg ctccgataag aaccgcggca agtccgataa cgtgccatcc 3480
gaagaagtgg tgaagaagat gaagaactac tggcgccagc tgctgaacgc aaagctgatc 3540
acccagcgca agttcgataa cctgaccaag gcagaacgcg gcggcctgtc cgaactggat 3600
aaggcaggct tcatcaagcg ccagctggtg gaaacccgcc agatcaccaa gcacgtggca 3660
cagatcctgg attcccgcat gaacaccaag tacgatgaaa acgataagct gatccgcgaa 3720
gtgaaggtga tcaccctgaa gtccaagctg gtgtccgatt tccgcaagga tttccagttc 3780
tacaaggtgc gcgaaatcaa caactaccac cacgcacacg atgcatacct gaacgcagtg 3840
gtgggcaccg cactgatcaa gaagtaccca aagctggaat ccgagttcgt gtacggcgat 3900
tacaaggtgt acgatgtgcg caagatgatc gcaaagtccg aacaggaaat cggcaaggca 3960
accgcaaagt acttcttcta ctccaacatc atgaacttct tcaagaccga aatcaccctg 4020
gcaaacggcg aaatccgcaa gcgcccactg atcgaaacca acggcgaaac cggcgaaatc 4080
gtgtgggata agggccgcga tttcgcaacc gtgcgcaagg tgctgtccat gccacaggtg 4140
aacatcgtga agaagaccga agtgcagacc ggcggcttct ccaaggaatc catcctgcca 4200
aagcgcaact ccgataagct gatcgcacgc aagaaggatt gggacccaaa gaagtacggc 4260
ggcttcgatt ccccaaccgt ggcatactcc gtgctggtgg tggcaaaggt ggaaaagggc 4320
aagtccaaga agctgaagtc cgtgaaggaa ctgctgggca tcaccatcat ggaacgctcc 4380
tccttcgaaa agaacccaat cgatttcctg gaagcaaagg gctacaagga agtgaagaag 4440
gatctgatca tcaagctgcc aaagtactcc ctgttcgaac tggaaaacgg ccgcaagcgc 4500
atgctggcat ccgcaggcga actccagaag ggcaacgaac tggcactgcc atccaagtac 4560
gtgaacttcc tgtacctggc atcccactac gaaaagctga agggctcccc agaagataac 4620
gaacagaagc agctgttcgt ggaacagcac aagcactacc tggatgaaat catcgaacag 4680
atttccgagt tctccaagcg cgtgatcctg gcagatgcaa acctggataa ggtgctgtcc 4740
gcatacaaca agcaccgcga taagccaatc cgcgaacagg cagaaaacat catccacctg 4800
ttcaccctga ccaacctggg cgcaccagca gcattcaagt acttcgatac caccatcgat 4860
cgcaagcgct acacctccac caaggaagtg ctggatgcaa ccctgatcca ccagtccatc 4920
accggcctgt acgaaacccg catcgatctg tcccagctgg gcggcgatta actgcagcca 4980
agcttctgtt ttggcggatg agagaagatt ttcagcctga tacagattaa atcagaacgc 5040
agaagcggtc tgataaaaca gaatttgcct ggcggcagta gcgcggtggt cccacctgac 5100
cccatgccga actcagaagt gaaacgccgt agcgccgatg gtagtgtggg gtctccccat 5160
gcgagagtag ggaactgcca ggcatcaaat aaaacgaaag gctcagtcga aagactgggc 5220
ctttcgtttt atctgttgtt tgtcggtgaa cgctctcctg agtaggacaa atccgccggg 5280
agcggatttg aacgttgcga agcaacggcc cggagggtgg cgggcaggac gcccgccata 5340
aactgccagg catcaaatta agcagaaggc catcctgacg gatggccttt ttgcgtttct 5400
acaaactctt ttgtttattt ttctaaatac attcaaatat gtatccgctc atgagacaat 5460
aaccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt caacatttcc 5520
gtgtcgccct tattcccttt tttgcggcat tttgccttcc tgtttttgct cacccagaaa 5580
cgctggtgaa agtaaaagat gctgaagatc agttgggtgc acgagtgggt tacatcgaac 5640
tggatctcaa cagcggtaag atccttgaga gttttcgccc cgaagaacgt tttccaatga 5700
tgagcacttt taaagttctg ctatgtggcg cggtattatc ccgtgttgac gccgggcaag 5760
agcaactcgg tcgccgcata cactattctc agaatgactt ggttgagtac tgcggcgtcg 5820
ctgatcgccc tggcgacgtt gtgcgggtgg cttgtccctg agggcgctgc gacagatagc 5880
taaaaatctg ggtcaggatc gccgtagagc gcgcgtcgtc gattggaggc ttcccctttg 5940
gttgacggtc ttcaatcgct ctacggcgat cctgacgctt ttttgttgcg taccgtcgat 6000
cgttttattt ctgtcgatcc cgaaaaagtt tttgcctttt gtaaaaaact tctcggtcgc 6060
cccgcaaatt ttcgattcca gattttttaa aaaccaagcc agaaatacga cacaccgttt 6120
gcagataatc tgtctttcgg aaaaatcaag tgcgatacaa aatttttagc acccctgagc 6180
tgcgcaaagt cccgcttcgt gaaaattttc gtgccgcgtg attttccgcc aaaaacttta 6240
acgaacgttc gttataatgg tgtcatgacc ttcacgacga agtactaaaa ttggcccgaa 6300
tcatcagcta tggatctctc tgatgtcgcg ctggagtccg acgcgctcga tgctgccgtc 6360
gatttaaaaa cggtgatcgg atttttccga gctctcgata cgacggacgc gccagcatca 6420
cgagactggg ccagtgccgc gagcgaccta gaaactctcg tggcggatct tgaggagctg 6480
gctgacgagc tgcgtgctcg gccagcgcca ggaggacgca cagtagtgga ggatgcaatc 6540
agttgcgcct actgcggtgg cctgattcct ccccggcctg acccgcgagg acggcgcgca 6600
aaatattgct cagatgcgtg tcgtgccgca gccagccgcg agcgcgccaa caaacgccac 6660
gccgaggagc tggaggcggc taggtcgcaa atggcgctgg aagtgcgtcc cccgagcgaa 6720
attttggcca tggtcgtcac agagctggaa gcggcagcga gaattatccg cgatcgtggc 6780
gcggtgcccg caggcatgac aaacatcgta aatgccgcgt ttcgtgtggc cgtggccgcc 6840
caggacgtgt cagcgccgcc accacctgca ccgaatcggc agcagcgtcg cgcgtcgaaa 6900
aagcgcacag gcggcaagaa gcgataagct gcacgaatac ctgaaaaatg ttgaacgccc 6960
cgtgagcggt aactcacagg gcgtcggcta acccccagtc caaacctggg agaaagcgct 7020
caaaaatgac tctagcggat tcacgagaca ttgacacacc ggcctggaaa ttttccgctg 7080
atctgttcga cacccatccc gagctcgcgc tgcgatcacg tggctggacg agcgaagacc 7140
gccgcaaatt cctcgctcac ctgggcagag aaaatttcca gggcagcaag acccgcgact 7200
tcgccagcgc ttggatcaaa gacccggaca cgggagaaac acagccgaag ttataccgag 7260
ttggttcaaa atcgcttgcc cggtgccagt atgttgctct gacgcacgcg cagcacgcag 7320
ccgtgcttgt cctggacatt gatgtgccga gccaccaggc cggcgggaaa atcgagcacg 7380
taaaccccga ggtctacgcg attttggagc gctgggcacg cctggaaaaa gcgccagctt 7440
ggatcggcgt gaatccactg agcgggaaat gccagctcat ctggctcatt gatccggtgt 7500
atgccgcagc aggcatgagc agcccgaata tgcgcctgct ggctgcaacg accgaggaaa 7560
tgacccgcgt tttcggcgct gaccaggctt tttcacatag gctgagccgt ggccactgca 7620
ctctccgacg atcccagccg taccgctggc atgcccagca caatcgcgtg gatcgcctag 7680
ctgatcttat ggaggttgct cgcatgatct caggcacaga aaaacctaaa aaacgctatg 7740
agcaggagtt ttctagcgga cgggcacgta tcgaagcggc aagaaaagcc actgcggaag 7800
caaaagcact tgccacgctt gaagcaagcc tgccgagcgc cgctgaagcg tctggagagc 7860
tgatcgacgg cgtccgtgtc ctctggactg ctccagggcg tgccgcccgt gatgagacgg 7920
cttttcgcca cgctttgact gtgggatacc agttaaaagc ggctggtgag cgcctaaaag 7980
acaccaaggg tcatcgagcc tacgagcgtg cctacaccgt cgctcaggcg gtcggaggag 8040
gccgtgagcc tgatctgccg ccggactgtg accgccagac ggattggccg cgacgtgtgc 8100
gcggctacgt cgctaaaggc cagccagtcg tccctgctcg tcagacagag acgcagagcc 8160
agccgaggcg aaaagctctg gccactatgg gaagacgtgg cggtaaaaag gccgcagaac 8220
gctggaaaga cccaaacagt gagtacgccc gagcacagcg agaaaaacta gctaagtcca 8280
gtcaacgaca agctaggaaa gctaaaggaa atcgcttgac cattgcaggt tggtttatga 8340
ctgttgaggg agagactggc tcgtggccga caatcaatga agctatgtct gaatttagcg 8400
tgtcacgtca gaccgtgaat agagcactta aggtctgcgg gcattgaact tccacgagga 8460
cgccgaaagc ttcccagtaa atgtgccatc tcgtaggcag aaaacggttc ccccgtaggg 8520
tctctctctt ggcctccttt ctaggtcggg ctgattgctc ttgaagctct ctaggggggc 8580
tcacaccata ggcagataac gttccccacc ggctcgcctc gtaagcgcac aaggactgct 8640
cccaaagatc ttcaaagcca ctgccgcgac tgccttcgcg aagccttgcc ccgcggaaat 8700
ttcctccacc gagttcgtgc acacccctat gccaagcttc tttcacccta aattcgagag 8760
attggattct taccgtggaa attcttcgca aaaatcgtcc cctgatcgcc cttgcgacgt 8820
tggcgtcggt gccgctggtt gcgcttggct tgaccgactt gatcctccgg cgttcagcct 8880
gtgccacagc cgacaggatg gtgaccacca tttgccccat atcaccgtcg gtactgatcc 8940
cgtcgtcaat aaaccgaacc gctacaccct gagcatcaaa ctcttttatc agttggatca 9000
tgtcggcgtg tcgcggccaa gacggtcgag cttcttcacc agaatgacat caccttcctc 9060
caccttcatc ctcagcaaat ccagcccttc ccgatctgtt gaactgccgg atgccttgtc 9120
ggtaaagatg cggttagctt ttacccctgc atctttgagc gctgaggtct gcctcgtgaa 9180
gaaggtgttg ctgactcata ccaggcctga atcgccccat catccagcca gaaagtgagg 9240
gagccacggt tgatgagagc tttgttgtag gtggaccagt tggtgatttt gaacttttgc 9300
tttgccacgg aacggtctgc gttgtcggga agatgcgtga tctgatcctt caactcagca 9360
aaagttcgat ttattcaaca aagccgccgt cccgtcaagt cagcgtaatg ctctgccagt 9420
gttacaacca attaaccaat tctgattaga aaaactcatc gagcatcaaa tgaaactgca 9480
atttattcat atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag 9540
gagaaaactc accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc 9600
cgactcgtcc aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa 9660
gtgagaaatc accatgagtg acgactgaat ccggtgagaa tggcaaaagc ttatgcattt 9720
ctttccagac ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa 9780
ccaaaccgtt attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa 9840
aaggacaatt acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcag 9900
caatattttc acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccgggga 9960
tcgcagtggt gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa 10020
gaggcataaa ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa 10080
cgctaccttt gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat 10140
agattgtcgc acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag 10200
catccatgtt ggaatttaat cgcggcctcg agcaagacgt ttcccgttga atatggctca 10260
taacacccct tgtattactg tttatgtaag cagacagttt tattgttcat gatgatatat 10320
ttttatcttg tgcaatgtaa catcagagat tttgagacac aacgtggctt tgttgaataa 10380
atcgaacttt tgctgagttg aaggatcaga tcacgcatct tcccgacaac gcagaccgtt 10440
ccgtggcaaa gcaaaagttc aaaatcacca actggtccac ctacaacaaa gctctcatca 10500
accgtggctc cctcactttc tggctggatg atggggcgat tcaggcctgg tatgagtcag 10560
caacaccttc ttcacgaggc agacctcagc gctagcggag tgtatactgg cttactatgt 10620
tggcactgat gagggtgtca gtgaagtgct tcatgtggca ggagaaaaaa ggctgcaccg 10680
gtgcgtcagc agaatatgtg atacaggata tattccgctt cctcgctcac tgactcgcta 10740
cgctcggtcg ttcgactgcg gcgagcggaa atggcttacg aacggggcgg agatttcctg 10800
gaagatgcca ggaagatact taacagggaa gtgagagggc cgcggcaaag ccgtttttcc 10860
ataggctccg cccccctgac aagcatcacg aaatctgacg ctcaaatcag tggtggcgaa 10920
acccgacagg actataaaga taccaggcgt ttccccctgg cggctccctc gtgcgctctc 10980
ctgttcctgc ctttcggttt accggtgtca ttccgctgtt atggccgcgt ttgtctcatt 11040
ccacgcctga cactcagttc cgggtaggca gttcgctcca agctggactg tatgcacgaa 11100
ccccccgttc agtccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg 11160
gaaagacatg caaaagcacc actggcagca gccactggta attgatttag aggagttagt 11220
cttgaagtca tgcgccggtt aaggctaaac tgaaaggaca agttttggtg actgcgctcc 11280
tccaagccag ttacctcggt tcaaagagtt ggtagctcag agaaccttcg aaaaaccgcc 11340
ctgcaaggcg gttttttcgt tttcagagca agagattacg cgcagaccaa aacgatctca 11400
agaagatcat cttattaagg ggtctgacgc tcagtggaac gaaaactcac gttaagggat 11460
tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag 11520
ttttaaatca atctaaagta tatatgagt 11549
서열번호 2:
ccagttgttc ctggcgacca 20
서열번호 3:
atgcaagcct attttgacca gc 22
서열번호 4:
gaagagtttg atcatggctc ag 22
서열번호 5:
taaggaggtg atccaaccgc aggttc 26
[미생물기탁증]
기탁기관명: 한국미생물보존센터(KCCM)
기탁 번호: KCCM 12077P
기탁 일자: 2017년 7월 11일
[규칙 제91조에 의한 정정 29.08.2018] 
Figure WO-DOC-FIGURE-291

Claims (12)

  1. 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터;
    불활성화된 Cas9 (dCas9)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터;
    코리네박테리움 글루타미쿰 유래의 복제 개시점; 및
    대장균 유래의 복제 개시점을 포함하는,
    대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
  2. 제 1 항에 있어서,
    다중클로닝부위, 전사종결자, 및 리포터 유전자로부터 선택되는 하나 이상의 요소를 더 포함하는, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
  3. 제 1 항에 있어서,
    서열번호 1로 표시되는 DNA 서열을 포함하는, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
  4. 제 1 항에 있어서,
    상기 코리네박테리움 글루타미쿰 유래의 복제 개시점은 pHM1519 및 pBL1로부터 선택되는 것인, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
  5. 제 1 항에 있어서,
    상기 대장균 유래의 복제 개시점은 p15A, oriC, ColE1, pMB1 및 pSC101로부터 선택되는 것인, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
  6. 제 1 항에 있어서,
    상기 목적 유전자는 대장균의 xylA 또는 코리노박테리움의 pyc인, 셔틀 벡터.
  7. 제 1 항에 있어서,
    목적 유전자의 발현을 억제하기 위한, 셔틀 벡터.
  8. 제 1 항에 있어서,
    목적 유전자의 발현을 촉진하기 위한, 셔틀 벡터.
  9. 제 1 항에 따른 셔틀 벡터가 도입된 대장균.
  10. 제 9 항에 있어서,
    수탁번호 KCCM12077P로 기탁된, 대장균
  11. 제 1 항에 따른 셔틀 벡터가 도입된 코리네박테리움 글루타미쿰.
  12. dCas9을 두 부분으로 나누어 합성하기 위하여 dCas9-1 및 dCas9-2를 벡터에서 각각 합성하는 단계;
    상기 dCas9-1을 코리네박테리움 글루타미쿰 유래의 복제개시점, 대장균 유래의 복제개시점, 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터를 포함하는 플라스미드에 삽입하는 단계;
    상기 플라스미드에 dCas9-2를 삽입하는 단계를 포함하는,
    대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터의 제조 방법.
PCT/KR2018/008944 2017-08-07 2018-08-07 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터 WO2019031804A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0099545 2017-08-07
KR1020170099545A KR102026067B1 (ko) 2017-08-07 2017-08-07 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터

Publications (3)

Publication Number Publication Date
WO2019031804A2 WO2019031804A2 (ko) 2019-02-14
WO2019031804A3 WO2019031804A3 (ko) 2019-05-09
WO2019031804A9 true WO2019031804A9 (ko) 2019-06-13

Family

ID=65271576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008944 WO2019031804A2 (ko) 2017-08-07 2018-08-07 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터

Country Status (2)

Country Link
KR (1) KR102026067B1 (ko)
WO (1) WO2019031804A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102244489B1 (ko) * 2020-07-17 2021-04-27 광주과학기술원 유박테리움 칼란데리용 유전체 편집 벡터, 이를 이용한 유박테리움 칼란데리 유전체 편집 방법 및 이를 이용하여 형질전환 된 유박테리움 칼란데리 균주
KR102399035B1 (ko) * 2020-10-21 2022-05-17 성균관대학교산학협력단 산업 균주 내 온-타겟 효율의 감소 없이 오프-타겟이 없는 사이토신 염기 편집기를 발현하는 벡터 및 이의 용도

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095850A (ko) * 2013-01-25 2014-08-04 삼성전자주식회사 코리네박테리움과 대장균용 셔틀벡터
KR101662807B1 (ko) 2014-10-27 2016-10-06 한국과학기술연구원 코리네박테리움 및 이콜라이 셔틀 벡터

Also Published As

Publication number Publication date
KR20190015845A (ko) 2019-02-15
WO2019031804A3 (ko) 2019-05-09
KR102026067B1 (ko) 2019-09-27
WO2019031804A2 (ko) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2019117673A2 (ko) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
WO2019117671A1 (ko) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
WO2019135639A1 (ko) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2019190192A1 (ko) 신규한 프로모터 및 이를 이용한 l-아미노산 생산 방법
WO2019031804A9 (ko) 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터
WO2017069578A1 (ko) L-이소루신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용하여 l-이소루신을 생산하는 방법
WO2013085361A2 (ko) 4-하이드록시부티릭산 고생성능을 가지는 변이 미생물 및 이를 이용한 4-하이드록시부티릭산의 제조방법
WO2012134215A2 (ko) 동물세포 발현벡터
WO2020226341A1 (ko) L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
WO2021060696A1 (ko) 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2020256415A1 (ko) L-타이로신을 생산하는 미생물 및 이를 이용한 l-타이로신 생산 방법
WO2016013844A1 (ko) 페닐아세틸 호모세린 락톤 유도체의 생산 방법
WO2022035011A1 (ko) 퓨트레신 생산 미생물 및 이를 이용한 퓨트레신 생산방법
WO2019004780A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2022164118A1 (ko) 프리페네이트 탈수 효소 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
WO2022124708A1 (ko) 신규한 분지 연쇄 아미노산 아미노트렌스퍼라아제 변이체 및 이를 이용한 이소류신 생산 방법
WO2021060701A1 (ko) 메조 디아미노피멜레이트 디하이드로게네이즈 변이형 폴리펩타이드 및 이를 이용한 l-쓰레오닌 생산방법
WO2021045472A1 (ko) 신규한 프로모터 및 이를 이용한 목적 물질 생산 방법
WO2021153866A1 (ko) 시트레이트 신타아제의 활성이 약화된 신규한 변이형 폴리펩티드 및 이를 이용한 l-아미노산 생산 방법
WO2022050671A1 (ko) L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
WO2021261733A1 (ko) L-쓰레오닌 디하이드라타아제의 신규 변이체 및 이를 이용한 l-이소류신 생산 방법
WO2022231036A1 (ko) 신규한 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2021125867A1 (ko) 화합물을 생산하는 미생물 및 이를 이용한 화합물의 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843474

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843474

Country of ref document: EP

Kind code of ref document: A2