WO2019031183A1 - 半導体モジュール、表示装置、及び半導体モジュールの製造方法 - Google Patents

半導体モジュール、表示装置、及び半導体モジュールの製造方法 Download PDF

Info

Publication number
WO2019031183A1
WO2019031183A1 PCT/JP2018/027076 JP2018027076W WO2019031183A1 WO 2019031183 A1 WO2019031183 A1 WO 2019031183A1 JP 2018027076 W JP2018027076 W JP 2018027076W WO 2019031183 A1 WO2019031183 A1 WO 2019031183A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
semiconductor module
emitting elements
light
Prior art date
Application number
PCT/JP2018/027076
Other languages
English (en)
French (fr)
Inventor
宏彰 大沼
小野 高志
浩由 東坂
剛史 小野
崇 栗栖
幡 俊雄
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201880051858.7A priority Critical patent/CN110998879B/zh
Priority to US16/637,685 priority patent/US11508708B2/en
Priority to JP2019535059A priority patent/JPWO2019031183A1/ja
Publication of WO2019031183A1 publication Critical patent/WO2019031183A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a semiconductor module, a display device, and a method of manufacturing a semiconductor module.
  • Patent Documents 1 and 2 disclose a semiconductor module manufactured by peeling a growth substrate from a light emitting element.
  • An object of one embodiment of the present invention is to reduce damage to a base substrate by using a base substrate having a driver circuit for driving a light emitting element in a step of peeling a growth substrate or the like.
  • a semiconductor module concerning one mode of the present invention is provided with a ground board in which a drive circuit was formed, and a plurality of light emitting elements electrically connected with the drive circuit, and mutually The distance between the adjacent light emitting elements is 20 ⁇ m or less in top view.
  • a semiconductor module includes a base substrate on which a drive circuit is formed, a plurality of light emitting elements electrically connected to the drive circuit, and the base of a space between the light emitting elements adjacent to each other.
  • a semiconductor layer is provided on the opposite side to the substrate to block the space in top view.
  • a semiconductor module includes a base substrate on which a drive circuit is formed, and a plurality of light emitting elements electrically connected to the drive circuit, and the base of each of the plurality of light emitting elements The surface on the opposite side to the substrate is uneven.
  • the semiconductor module according to one aspect of the present invention is filled in a groove between the light emitting elements adjacent to each other, a plurality of light emitting elements electrically connected to the base substrate on which the driving circuit is formed, the drive circuit. And resin.
  • a semiconductor module includes a base substrate on which a drive circuit is formed, a plurality of light emitting elements electrically connected to the drive circuit, and the base of a groove between the light emitting elements adjacent to each other.
  • the substrate side is provided with a light shielding member or a light reflecting member which blocks the groove in a top view.
  • a method of manufacturing a semiconductor module includes the steps of: forming a plurality of light emitting elements from a semiconductor layer grown on a growth substrate; and peeling the growth substrate from the plurality of light emitting elements by laser irradiation. And, in the step of forming the plurality of light emitting elements, the distance between the light emitting elements adjacent to each other through which the laser light directed to the base substrate passes during the laser irradiation is 0.1 ⁇ m or more and 20 ⁇ m or less in top view The plurality of light emitting elements are electrically connected to a drive circuit formed on the base substrate.
  • the base substrate having a drive circuit for driving the light emitting element in the step of peeling the growth substrate or the like, the base substrate having a drive circuit for driving the light emitting element can be used, and the damage to the base substrate can be reduced.
  • FIG. 1A is a cross-sectional view showing a cross-sectional configuration of a semiconductor module according to Embodiment 1 of the present invention.
  • (B) is a top view of the said semiconductor module
  • (c) is sectional drawing of the semiconductor module shown to (b). It is a figure explaining the manufacturing method of a semiconductor module. It is a flowchart explaining the manufacturing method of the semiconductor module concerning Embodiment 1 of this invention. It is sectional drawing which shows the cross-sectional structure of the semiconductor module which concerns on Embodiment 2 of this invention. It is sectional drawing which shows the cross-sectional structure of the semiconductor module which concerns on Embodiment 3 of this invention.
  • (A) to (e) are diagrams showing the case where the surface of the growth substrate is uneven.
  • (A) is sectional drawing which shows the cross-sectional structure of the semiconductor module based on Embodiment 9 of this invention
  • (b) is a top view of the said semiconductor module. It is a figure explaining the manufacturing method of the semiconductor module concerning Embodiment 10 of this invention. It is a flowchart which shows the manufacturing method of the semiconductor module concerning Embodiment 10 of this invention.
  • FIG. 1A is a cross-sectional view showing a cross-sectional configuration of a semiconductor module 1 according to Embodiment 1 of the present invention.
  • (B) of FIG. 1 is a top view of the semiconductor module 1
  • (c) of FIG. 1 is a cross-sectional view of the semiconductor module 1 shown in (b) of FIG.
  • FIG. 2 is a view for explaining the method of manufacturing the semiconductor module 1.
  • FIG. 3 is a flowchart for explaining the method of manufacturing the semiconductor module 1 according to the first embodiment of the present invention.
  • the semiconductor module 1 includes the base substrate 11, the metal wiring 12, the insulating layer 13, the electrode 14, the light emitting element 15, and the resin 16.
  • FIG. 1A is a simplified view of FIG. 2F, and shows only the base substrate 11, the electrode 14, the light emitting element 15, and the growth substrate 18.
  • the light emitting element 15 is provided on the base substrate 11 via the electrode 14. Grooves 20 are formed between the light emitting elements 15 on the base substrate 11 side. The groove 20 is a space formed between the light emitting elements 15.
  • the width of the groove 20 between the adjacent light emitting elements 15 through which the laser light directed to the base substrate 11 passes during laser irradiation that is, between the end faces of the adjacent light emitting elements 15
  • the distance is 0.1 ⁇ m to 20 ⁇ m in top view. If the width of the groove 20 is 20 ⁇ m or less, the amount of laser light reaching the base substrate 11 side by laser irradiation decreases, so that the base substrate 11, the metal wiring 12, the insulating layer 13, And damage to the electrodes 14 can be reduced.
  • the width of the groove 20 is preferably 0.1 ⁇ m or more. Further, in terms of the reliability of the semiconductor module 1, it is desirable that the light emitting element 15 maintain the light emission intensity of 50% or more after being lit for 1000 hours with respect to the initial light emission intensity at the time of manufacture. Also in order to prevent the deterioration of the light emitting element 15 due to the reverse voltage, the width of the groove 20 is desirably 0.1 ⁇ m or more.
  • the semiconductor module 1 is incorporated into a small display device such as, for example, a head mounted display or a display for glasses-type devices. Only one semiconductor module 1 may be mounted in the light emitting device included in the display device, or a plurality of semiconductor modules 1 may be mounted. In the semiconductor module 1, individual light emitting elements 15 are disposed at locations corresponding to the respective pixels of a conventional general display device.
  • the display device includes the semiconductor module 1, and the display device also includes the semiconductor module in the second to eighth embodiments described later.
  • the semiconductor module 1 is an array (structure) in which the light emitting elements 15 are arranged in a lattice of m ⁇ n (m, n is a natural number) It may be arranged in a staggered or other pattern. That is, the arrangement of the light emitting elements 15 is not particularly limited.
  • the semiconductor module 1 contributes to the display of information in the display device while realizing high contrast by controlling lighting and extinguishing of each of the plurality of light emitting elements 15 by the drive circuit 11 a formed on the base substrate 11.
  • a layout is preferable in which the individual light emitting elements 15 are reduced in size and the light emitting elements 15 are arranged in a dense state on the base substrate 11. Thereby, the resolution of the display screen of the display device can be improved.
  • the present technology is a technology that can be applied to products having a vertical width and a horizontal width of 30 ⁇ m or less, and more preferably 2 ⁇ m to 15 ⁇ m, in a top view.
  • the base substrate 11 may be formed with a wiring so that at least the surface thereof can be connected to the light emitting element 15.
  • the base substrate 11 includes a drive circuit 11 a that drives the light emitting element 15.
  • the material of the base substrate 11 is preferably a crystalline substrate such as a single crystal or a polycrystal of aluminum nitride composed entirely of aluminum nitride, and a sintered substrate.
  • the material of the base substrate 11 is preferably a ceramic such as alumina, a semimetal such as glass, or Si, or a metal substrate, and a laminate or composite such as a substrate having an aluminum nitride thin film layer formed on the surface thereof. Can be used.
  • Metallic substrates and ceramic substrates are preferable because of their high heat dissipation.
  • a high resolution display device in which minute light emitting elements 15 are densely formed by using a driver circuit 11a for controlling light emission of the light emitting elements 15 formed on Si by integrated circuit formation technology as the base substrate 11 is used. It can be manufactured.
  • the metal wiring 12 is a wiring including at least a control circuit that supplies a control voltage to the light emitting element 15.
  • the metal wiring 12 is formed by patterning the metal layer by an ion milling method, an etching method, or the like.
  • a metal wiring 12 or the like made of a platinum thin film or the like is formed on the surface of a Si substrate can be mentioned.
  • a protective film made of a thin film such as SiO 2 may be formed on the surface of the base substrate 11 on which the metal wires 12 are formed.
  • the insulating layer 13 is an insulating layer formed of an oxide film, a resin film, and a resin layer.
  • the insulating layer 13 prevents the base substrate 11 and the electrode 14 from being in direct contact with each other.
  • the electrode 14 functions as a pad electrode that electrically connects the metal wiring 12 and a metal terminal (not shown) provided on the light emitting element 15 and is also called a bump.
  • the first portion connected to the metal wiring 12 in the electrode 14 is the substrate side electrode 141
  • the second portion connected to the metal terminal (not shown) provided on the light emitting element 15 in the electrode 14 is the light emitting element side electrode 142.
  • the substrate side electrode 141 and the light emitting element side electrode 142 are made of, for example, a metal of any of Au, Pt, Pd, Rh, Ni, W, Mo, Cr, and Ti, an alloy thereof, or a combination thereof.
  • the substrate side electrode 141 and the light emitting element side electrode 142 are configured as metal electrode layers, W / Pt / Au, Rh / Pt / Au, W / Pt / Au / Ni, Pt / Au from the lower surface A layered structure of Ti / Pt / Au, Ti / Rh, or TiW / Au is conceivable.
  • the light emitting element side electrode 142 can be of a flip chip type in which the n side electrode and the p side electrode are formed on the same surface side and disposed on the opposite side to the light emitting surface of the light emitting element 15.
  • the electrode 14 has a stepped portion in the light emission direction.
  • the area of the cross section parallel to the light emission direction in the substrate side electrode 141 is different from the area of the cross section parallel to the light emission direction in the light emitting element side electrode 142.
  • the cross-sectional area of the substrate side electrode 141 is larger than the cross-sectional area of the light emitting element side electrode 142.
  • the outermost surfaces of the substrate side electrode 141 and the light emitting element side electrode 142 are preferably Au.
  • the light emitting element 15 can use a well-known thing, specifically a semiconductor light emitting element.
  • a semiconductor light emitting element for example, there are GaAs-based, ZnO-based, and GaN-based ones.
  • an LED Light Emitting Diode
  • an LED that emits ultraviolet light may be used, or an LED that emits ultraviolet light may be used.
  • the light emitting element 15 emits light from the upper surface in (a) of FIG.
  • the upper surface of the light emitting element 15 is a light emitting surface.
  • the light emitting element 15 is electrically connected to the drive circuit 11 a formed on the base substrate 11 through the electrode 14.
  • a fluorescent substance that exhibits an emission color different from the emission color of the light emitting element 15 by being irradiated with light on the light emitting element 15 it is possible to show various emission colors in the visible light region. Therefore, it is possible to emit light of a short wavelength that can be efficiently excited.
  • a GaN-based semiconductor is preferable as the light-emitting element 15 also in that it has features such as high luminous efficiency, long lifetime, and high reliability.
  • a nitride semiconductor is a short wavelength region of a visible light region, a near ultraviolet region, or a wavelength region shorter than that, and the point is combined with a wavelength conversion member (phosphor) It is suitably used in the semiconductor module 1. Further, without being limited thereto, semiconductors such as ZnSe based, InGaAs based, AlInGaP based, etc. may be used.
  • the light emitting element structure of the semiconductor layer is preferably a structure having an active layer between the first conductive type (n type) layer and the second conductive type (p type) layer in terms of output efficiency, but is not limited thereto.
  • each conductivity type layer may be partially provided with an insulation, semi-insulation, and reverse conductivity type structure, or they may be additionally provided to the first and second conductivity type layers. . It may additionally have other circuit structures, for example protection element structures.
  • the growth substrate 18 is peeled off by laser beam irradiation or the like as described later.
  • the semiconductor module 1 is applied to a display device and the growth substrate 18 is present on the light emitting element 15, the light emitted from the light emitting element 15 is diffused in the growth substrate 18 and high-resolution display is difficult.
  • the growth substrate 18 is not provided on the light emitting element 15, the light emitted from each light emitting element 15 is extracted without being diffused, so that the display device can perform high definition display.
  • each layer may have a superlattice structure, or may have a single quantum well structure or a multiple quantum well structure in which a light emitting layer which is an active layer is formed in a thin film in which a quantum effect occurs.
  • a metal terminal intended to supply power from the outside is provided on the light emitting element 15.
  • the light emitting element 15 is provided on the growth substrate 18.
  • the growth substrate 18 is a substrate on which the semiconductor layer of the light emitting element 15 is epitaxially grown.
  • the light emitting element structure of the light emitting element 15 is formed by sequentially depositing different layers by MOCVD (Metal Organic Chemical Vapor Deposition) method, MBE (Molecular Beam Epitaxy) method, or the like.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • As the growth substrate 18 in the nitride semiconductor there is an insulating substrate such as sapphire (Al 2 O 3 ) or spinel (MgAl 2 O 4 ) whose main surface is any of C surface, R surface, and A surface. .
  • silicon nitride (6H, 4H, 3C), Si, ZnS, ZnO, GaAs, diamond, and oxide such as lithium niobate or neodymium gallate lattice-joined with nitride semiconductor as the growth substrate 18 in the nitride semiconductor
  • oxide such as lithium niobate or neodymium gallate lattice-joined with nitride semiconductor
  • a growth substrate 18 in a nitride semiconductor there is a nitride semiconductor substrate such as GaN or AlN.
  • the growth substrate 18 may be a PSS (Patterned Sapphire Substrate).
  • the PSS is a surface on which the GaN layer of the growth substrate 18 is to be deposited, and irregularities having a size of several ⁇ m are formed at a pitch of several ⁇ m.
  • the unevenness of the PSS is made of Al 2 O 3 , AlN, GaN or the like.
  • Al 2 O 3 which has the same composition as the growth substrate 18.
  • ICP Inductively Coupled Plasma
  • AlN or the like may be deposited on Al 2 O 3 in order to alleviate the lattice mismatch between Al 2 O 3 and GaN.
  • the shape of the concavities and convexities of PSS is not limited, but a generally conical shape is common, the diameter of the bottom of the substantially conical is 3 ⁇ m or less, the height is 2 ⁇ m or less, and the angle of the apex is 60 ° or more and 120 ° or less It is preferable to be in the range of degree.
  • the thickness of the growth substrate 18 is in the range of 20 ⁇ m to 1000 ⁇ m. The thickness is a thickness along the direction from the base substrate 11 toward the growth substrate 18. If the thickness of the growth substrate 18 is small, the risk of the growth substrate 18 being broken in the manufacturing process is high, so the thickness of the growth substrate 18 is desirably 20 ⁇ m or more.
  • the thickness of the growth substrate 18 is preferably 1000 ⁇ m or less.
  • the general formula In x Al y Ga 1-x -y N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1) A, B, may be mixed P, or As .
  • the n-type semiconductor layer and the p-type semiconductor layer of the light emitting element 15 are not particularly limited to a single layer and a multilayer.
  • the nitride semiconductor layer has a light emitting layer which is an active layer, and this active layer has a single (SQW) or multiple quantum well structure (MQW).
  • a nitride semiconductor such as a buffer layer, for example, a low-temperature grown thin film GaN and a GaN layer
  • an n-type nitride semiconductor layer for example, an n-type contact layer of Si-doped GaN and GaN / InGaN
  • the n-type multilayer film layer is laminated.
  • an active layer of InGaN / GaN MQW is stacked, and a structure in which a p-type multilayer film layer of Mg-doped InGaN / AlGaN and a p-type contact layer of Mg-doped GaN are stacked as a p-type nitride semiconductor layer, for example.
  • the light emitting layer (active layer) of the nitride semiconductor has, for example, a quantum well structure including a barrier layer and a well layer including a well layer.
  • the nitride semiconductor used for the active layer may be doped with p-type impurities, but preferably the output of the light emitting device 15 can be increased by doping with non-doped or n-type impurities.
  • the wavelength of light emitted from the active layer is set to a wavelength of 360 nm to 650 nm, preferably 380 nm to 560 nm, depending on the purpose and application of the light emitting element.
  • the composition of the well layer is preferably InGaN in the visible light / near-ultraviolet region, and the composition of the barrier layer at that time is preferably GaN or InGaN.
  • the film thickness of the barrier layer and the well layer are 1 nm or more and 30 nm or less and 1 nm or more and 20 nm or less, and multiple quantum of a plurality of well layers via a single quantum well and a barrier layer of one well layer. It can be a well structure.
  • the n-type GaN layer is exposed on a part of the surface of the p-type contact layer included in the light emitting element 15 by etching to form a mesa.
  • the etching may be performed using a known photolithography method.
  • An n-side electrode is formed on the exposed n-type GaN layer in a later step.
  • Step of forming light emitting element side electrode 142 After the formation of the mesa, as shown in FIG. 2B, a plurality of light emitting element side electrodes 142 are formed on the light emitting element 15. For this formation, known general electrode formation techniques are used. A typical material of the light emitting element side electrode 142 is, for example, Au.
  • Step S110 After forming the light emitting element side electrode 142, as shown in FIG. 2C, a plurality of separation grooves 19 are formed in the light emitting element 15 (step S110). A standard semiconductor selective etching process is used to form the isolation groove 19. In (c) of FIG. 2, the separation groove 19 is formed between the adjacent light emitting element side electrodes 142. The separation groove 19 formed reaches the surface of the growth substrate 18. By forming the separation groove 19, one light emitting element 15 is divided into a plurality of individual light emitting elements 15 (chips) on the surface of the growth substrate 18. The separation groove 19 is formed such that the width of the separation groove 19 is in the range of 0.1 ⁇ m to 20 ⁇ m.
  • the width of the separation groove 19 is 20 ⁇ m or less, the amount of laser light reaching the base substrate 11 decreases, so that the base substrate 11, the metal wiring 12 and the insulation are separated in the peeling process of the growth substrate 18 of the growth substrate 18 described later. Damage to the layer 13 and the electrode 14 can be reduced.
  • the width of the separation groove 19 is narrowed, the capacitance between the adjacent electrodes 14 and between the adjacent light emitting elements 15 is increased, and when a voltage is applied to the light emitting elements 15, the cup between the adjacent light emitting elements 15 Ring noise may cause an electromotive force.
  • the width of the separation groove 19 is preferably 0.1 ⁇ m or more. Further, in terms of the reliability of the semiconductor module 1, it is desirable that the light emitting element 15 maintain the light emission intensity of 50% or more after being lit for 1000 hours with respect to the initial light emission intensity at the time of manufacture. Also in order to prevent the deterioration of the light emitting element 15 due to the reverse voltage, the width of the separation groove 19 is desirably 0.1 ⁇ m or more.
  • Step of smoothing the growth substrate 18 Further, in the peeling process of the growth substrate 18 described later, it is necessary to uniformly irradiate the laser light to the peeling surface. For this reason, it is desirable to carry out the step of smoothing the surface of the growth substrate 18 other than the surface on which the light emitting elements 15 are formed by polishing or the like.
  • the thickness of the growth substrate 18 after smoothing by polishing or the like is preferably in the range of 20 ⁇ m to 400 ⁇ m. If the thickness of the growth substrate 18 is small, the risk of the growth substrate 18 being broken in the manufacturing process is high, so the thickness of the growth substrate 18 is desirably 20 ⁇ m or more.
  • the thickness of the growth substrate 18 is thick, the possibility that the warpage of the growth substrate 18 is large becomes high. As a result, the light emitting element 15 having high luminous efficiency can not be formed, it becomes difficult to perform a bonding step with the base substrate 11 described later, or the laser light irradiated for peeling the growth substrate 18 is peeled off. It is less likely to be incident uniformly on the surface. Therefore, the thickness of the growth substrate 18 is preferably 400 ⁇ m or less. The smoothing process may be performed after the array singulation process described later.
  • the light emitting elements 15 are formed on the wafer-shaped growth substrate 18, but may be divided into individual light emitting element pieces on which one or more light emitting elements 15 are mounted.
  • the light emitting element piece may be a piece on which one light emitting element array is mounted, or may be a piece on which a plurality of light emitting element arrays are mounted. Also, the light emitting element pieces may be such that a plurality of pieces form one light emitting element array.
  • the light emitting element array is composed of the number of light emitting elements corresponding to one structural unit of the drive circuit 11 a of the base substrate 11. As described above, in the semiconductor module 1, m ⁇ n light emitting elements are mounted.
  • the individualization of the growth substrate 18 can be performed by dicing or the like.
  • the growth substrate 18 may be bonded to the base substrate 11 while the growth substrate 18 remains in a wafer shape without separating the growth substrate 18 from each other.
  • the base substrate 11 on which the metal wiring 12, the insulating layer 13, and the substrate side electrode 141 are formed in advance is prepared.
  • a known general electrode forming technique is used.
  • the substrate side electrode 141 is formed on the base substrate 11 (step S120).
  • a typical material of the substrate side electrode 141 is, for example, Au.
  • the growth substrate 18 is inverted as shown in FIG. 2 (d). After inversion, the base substrate 11 and the growth substrate 18 are aligned so that each substrate side electrode 141 and each light emitting element side electrode 142 face each other.
  • step S130 the base substrate 11 and the growth substrate 18 are bonded (step S130). At that time, the base substrate 11 and the growth substrate 18 are suppressed from above and below by pressure so that the corresponding substrate side electrode 141 and light emitting element side electrode 142 are bonded using the existing bonding technology. Thereby, the corresponding substrate side electrode 141 and the light emitting element side electrode 142 are integrated, and the electrode 14 is configured. In addition, bonding may be performed while the base substrate 11 is in a wafer shape, or bonding may be performed after the base substrate 11 is singulated. The step of forming the resin 16 shown in (f) of FIG. 2 is not performed in this embodiment. On the other hand, in the fourth, sixth, seventh and eighth embodiments described later, the step of forming the resin 16 shown in (f) of FIG. 2 is performed. In the fifth embodiment described later, the light shielding member 31 is formed instead of the resin 16.
  • step S140 After completion of the bonding, the growth substrate 18 is peeled off as shown in (g) of FIG. 2 (step S140).
  • the step of forming the resin 16 shown in FIG. 2F is not performed, the resin 16 is not present.
  • a peeling technique using irradiation of a laser beam can be used as an example of the peeling means.
  • a transparent substrate such as sapphire
  • a nitride semiconductor is crystal-grown as a light emitting element layer
  • the interface between the growth substrate 18 and the crystal growth layer is irradiated by irradiating laser light from the transparent substrate side under certain conditions.
  • the light emitting element 15 has a structure in which the growth substrate 18 is peeled off from the semiconductor layer grown on the growth substrate 18 by laser irradiation.
  • the wavelength of the laser light is not particularly limited as long as it is in the range of 200 nm to 1100 nm, but it is necessary to be a wavelength at which the growth substrate 18 can be peeled off, that is, a wavelength light absorbed by the growth substrate 18 is there.
  • the width of the groove 20 formed between the light emitting elements 15 is 0.1 ⁇ m or more and 20 ⁇ m or less, in the peeling process of the growth substrate 18, the laser light is applied.
  • the intensity of the laser beam reaching the base substrate 11 is low. For this reason, damage to underlying substrate 11 involved in the step of peeling growth substrate 18 can be reduced.
  • the damage to the base substrate 11 includes the base substrate 11 itself and melting or burning of the metal wiring 12, the insulating layer 13, and the electrode 14 formed on the base substrate 11.
  • damage to the base substrate 11 may cause an element such as a transistor, a diode, and / or a capacitor used in the drive circuit 11 a formed on the base substrate 11 to stop operating.
  • damage to the underlying substrate 11 may change the characteristics of those elements. Damage to the base substrate 11 may cause a problem that characters, symbols, numbers, or images are not clearly displayed on the display screen of the display device.
  • the damage to the base substrate 11 in the peeling step of the growth substrate 18 indicates damage to the metal wiring 12 on the base substrate 11 and damage to the insulating layer 13 on the base substrate 11.
  • the present embodiment suppresses that the drive circuit 11a included in the base substrate 11 does not operate normally due to the damage to the base substrate 11.
  • the above-described manufacturing method is merely an example of a method that enables the semiconductor module 1 to be manufactured.
  • the respective steps described herein are for making the semiconductor module 1 easy to manufacture, and the steps constituting the method of manufacturing the semiconductor module 1 are not limited to these.
  • the plurality of light emitting elements 15 may be a combination of a plurality of types without using only one type, and a red LED and a green LED may be simultaneously formed as the plurality of light emitting elements 15.
  • blue LEDs, green LEDs, and red LEDs may be used as the plurality of light emitting elements 15.
  • the blue LED the light emitting element 15 in which a part of the growth substrate 18 or the whole growth substrate 18 is peeled off may be used.
  • a blue LED, a green LED, and a red LED may be mounted on the drive circuit 11a. Each of the blue LED, the green LED, and the red LED is electrically connected to the drive circuit 11a.
  • FIG. 4 is a cross-sectional view showing a cross-sectional configuration of a semiconductor module 10 according to Embodiment 2 of the present invention.
  • symbol is appended and the description is abbreviate
  • a thin GaN film 21 (semiconductor layer, nitride semiconductor layer) remains on the light emitting element 15 as compared to the semiconductor module 1. That is, the semiconductor module 10 includes the base substrate 11, the electrode 14, the light emitting element 15, and the GaN film 21. At this time, it is not necessary that only the GaN film 21 remains, and other layers of the light emitting element 15 may remain in addition to the GaN film 21. At least a part of the light emitting surfaces of the plurality of adjacent light emitting elements 15 are connected to each other via the GaN film 21.
  • the GaN film 21 remains on the growth substrate 18 side of the groove 20 through which the laser light directed to the base substrate 11 passes during laser irradiation in the peeling step of the growth substrate 18 so as to block the groove 20 in top view.
  • the GaN film 21 has a light emitting surface on the growth substrate 18 side, and the plurality of light emitting elements 15 share one light emitting surface.
  • the GaN film 21 absorbs the laser light, whereby damage to the underlying substrate 11 having the drive circuit 11 a can be suppressed.
  • the surface on the growth substrate 18 side of the semiconductor module 10 can be made smoother.
  • the semiconductor module 10 is manufactured, for example, as described below.
  • the separation groove 19 is formed such that the GaN film 21 formed by the epitaxial growth is slightly left on the surface of the growth substrate 18 without the separation groove 19 reaching the growth substrate 18.
  • the separation groove 19 is formed such that the GaN film 21 remains on the surface of the growth substrate 18 by 1 ⁇ m.
  • the separation groove 19 is formed such that the GaN film 21 is slightly left on the surface of the growth substrate 18.
  • the thickness of the GaN film 21 is preferably 0.1 ⁇ m to 3 ⁇ m. The thickness is a thickness along the direction from the base substrate 11 toward the growth substrate 18.
  • the thickness of the GaN film 21 is preferably 0.1 ⁇ m or more.
  • the GaN film 21 is too thick, blue light emitted from the light emitting element 15 propagates in the GaN film 21. As a result, the light reaches the light emitting element 15 which is located around the light emitting element 15 which is lit and not lit, so that it is difficult for the display device to perform high definition display.
  • the thickness of the GaN film 21 is preferably 3 ⁇ m or less.
  • the GaN film 21 is not degraded as shown in FIG. It can be left as it is.
  • the GaN film 21 absorbs the laser light, whereby damage to the underlying substrate 11 having the drive circuit 11 a can be suppressed.
  • the semiconductor module 10 is manufactured, the surface of the semiconductor module 10 on the growth substrate 18 side can be made smoother.
  • the semiconductor module 10 since the plurality of light emitting elements 15 are connected via the GaN film 21, damage to the underlying substrate 11 can be reduced while maintaining high-definition display performance. Thus, the product quality of the semiconductor module 10 can be improved.
  • FIG. 5 is a cross-sectional view showing the cross-sectional configuration of the semiconductor modules 10A to 10E according to the third embodiment of the present invention.
  • (A) to (e) of FIG. 5 are diagrams showing the case where the surfaces of the growth substrates 181a to 181e are uneven.
  • symbol is appended and the description is abbreviate
  • the semiconductor module 10A differs from the semiconductor module 1 in that the shape of the light emitting element 151a is different from the shape of the light emitting element 15. Further, the surface of the growth substrate 181 a on the side of the base substrate 11 is in a concavo-convex shape, and a convex portion 22 a is formed.
  • the protrusions 22a have a substantially conical shape and are formed at equal intervals.
  • a concavo-convex shape is formed on the light emission surface (surface on the growth substrate 181a side) of the plurality of light emitting elements 151a, and the light emission surface of one light emitting element 151a is formed.
  • a plurality of recesses 23a are formed at equal intervals. That is, when the light emitting element 151a and the growth substrate 181a are combined, the concave portion 23a is formed by the convex portion 22a.
  • the recess 23 a has a shape that tapers in a direction toward the base substrate 11.
  • the laser light is diffracted and scattered on the surface of the convex portion 22a of the growth substrate 181a when the growth substrate 181a is peeled off by laser irradiation. Do.
  • the scattered laser light is mostly absorbed by GaN which is the main component of the light emitting element 151a.
  • the amount of laser light that reaches the base substrate 11 is small, so damage to the base substrate 11 can be reduced.
  • the surface on the base substrate 11 side of the growth substrate 181a has an uneven shape. This is because laser light is diffracted and scattered on the surface of the convex portion 22a of the growth substrate 181a, so that the laser light reaching the base substrate 11 can be reduced, and damage to the base substrate 11 can be reduced. It is from.
  • the light emitting surface of the light emitting element 151a has a concavo-convex shape, whereby the light extraction efficiency from the light emitting element 151a can be improved.
  • the concavo-convex shape can be formed by using the growth substrate 181 a having a concavo-convex shape such as PSS when the light emitting element 151 a is formed.
  • the semiconductor module 10A damage to the base substrate 11 can be reduced, and the light extraction efficiency from the light emitting element 151a can be improved. Therefore, the product quality of the semiconductor module 10A can be improved. .
  • the same effects can be obtained with semiconductor modules 10B to 10E described later.
  • the recessed portions 23b are formed on the light emitting surfaces of the plurality of light emitting elements 151b, but the light emitting surface of one light emitting element 151b is formed on the light emitting surface There is one recess 23b formed in the.
  • the recess 23 b is formed by the protrusion 22 b.
  • the recess 23 b has a shape that tapers in a direction toward the base substrate 11.
  • the surface of the growth substrate 181b on the base substrate 11 side is uneven, but the distance between the plurality of projections 22b formed on the surface of the growth substrate 181b on the base substrate 11 side is greater than the distance between the plurality of projections 22a. It is getting bigger. Further, the convex portion 22b is formed on the surface of the growth substrate 181b on the side of the base substrate 11 so that one concave portion 23b is formed on the light emitting surface of one light emitting element 151b.
  • the convex portion 22 b has a substantially conical shape.
  • concave portions 23c are formed on the light emitting surfaces of the plurality of light emitting elements 151c.
  • the recess 23c is formed by the protrusion 22c.
  • the recess 23 c has a shape that tapers in a direction toward the base substrate 11. In the top view, of the area of the light emitting surface of the light emitting element 151c, the area of the portion occupied by the recess 23c is half or more of the area of the light emitting surface of the light emitting element 151c.
  • the surface of the growth substrate 181c on the side of the base substrate 11 is uneven, but the size of the projections 22c formed on the surface of the growth substrate 181c on the side of the base substrate 11 is larger than the size of the projections 22a. It has become.
  • the area of the light emitting surface of the light emitting element 151c in the top view the area of the portion occupied by the recess 23c is half or more of the area of the light emitting surface of the light emitting element 151c.
  • the convex part 22c is formed in the surface of the.
  • the convex portion 22c has a substantially conical shape.
  • concave portions 23d are formed on the light emitting surfaces of the plurality of light emitting elements 151d.
  • the recess 23 d is formed by the protrusion 22 d.
  • the recess 23 d has a shape that tapers in the direction toward the base substrate 11, and is shaped such that the inclination angle of the inner wall of the recess 23 d changes once along the way.
  • the surface of the growth substrate 181 d on the side of the base substrate 11 is uneven, but the convex portion 22 d formed on the surface of the growth substrate 181 d on the side of the base substrate 11 has a pointed tip.
  • the inclination angle of the outer wall of the convex portion 22d is changed once in the middle.
  • the semiconductor module 10E there is no recess on the light emitting surface of the plurality of light emitting elements 151e, and the growth substrate 181e has a protrusion so as to enter between the plurality of light emitting elements 151e. 22e is formed.
  • the light emitting element 151e on the semiconductor module 10E is different from the semiconductor modules 10A to 10D in that there is no recess.
  • the formation of the projections 22e on the growth substrate 181e is similar to the semiconductor modules 10A to 10D in that it has an effect of reducing damage to the base substrate 11 when the growth substrate 181e is peeled off.
  • the protrusions 22a to 22e have a substantially conical shape.
  • the diameter of the bottom surface is 3 ⁇ m or less
  • the height is 2 ⁇ m or less
  • the angle of the apex is in the range of 60 ° to 120 °.
  • FIG. 6 is a flowchart illustrating a method of manufacturing the semiconductor modules 100A to 100C according to the fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the cross-sectional configuration of the semiconductor modules 100A to 100C according to Embodiment 4 of the present invention.
  • 7A shows a configuration in which the outermost shape of the growth substrate 18 and the outermost shape of the resin 16 are the same in top view
  • FIG. 7B is the outermost shape of the growth substrate 182 in top view Shows a configuration smaller than the outermost shape of the resin 16.
  • FIG. 7C is a view showing a configuration in which the resin 161 is partially formed on the base substrate 11 side.
  • symbol is appended and the description is abbreviate
  • the semiconductor module 100A is different from the semiconductor module 1 in that the semiconductor module 100A includes the resin 16.
  • the resin 16 is filled in the grooves 20 between the light emitting elements 15 adjacent to each other between the base substrate 11 and each of the plurality of light emitting elements 15 and through which the laser light directed to the base substrate 11 passes during laser irradiation. There is. Also, the resin 16 completely covers the upper surface of the base substrate 11, the electrode 14, and the side surface of the light emitting element 15. The light emitting surface of the light emitting element 15 and the surface of the resin 16 on the growth substrate 18 side have the same height from the upper surface of the base substrate 11.
  • the resin 16 is filled so that the outermost shape of the resin 16 is larger than the outermost shape of the growth substrate 182 in top view.
  • an electrode for supplying driving power to the drive circuit 11a of the base substrate 11 is formed on the upper surface of the base substrate 11 outside the growth substrate 18 in top view.
  • the electrode for driving power supply is not covered by the growth substrate 18 in top view but is covered by the resin 16.
  • the resin 161 is not filled so as to cover all the upper surface of the base substrate 11, the electrode 14 and the side surface of the light emitting element 15.
  • the resin 161 is partially formed on the base substrate 11 side of the groove 20.
  • the resin 161 is formed so as to cover a part of the electrode 14.
  • the height of the surface of the resin 16 on the growth substrate 18 side from the upper surface of the base substrate 11 may be the height from the upper surface of the base substrate 11 to the light emitting surface of the light emitting element 15.
  • the thickness of the resin 16 is preferably in the range of 0.2 ⁇ m to 30 ⁇ m.
  • the thickness is a thickness along the direction from the base substrate 11 toward the growth substrate 18 (or the growth substrate 182).
  • the thickness of the resin 16 is preferably 0.2 ⁇ m or more .
  • the thickness of the resin 16 is preferably 30 ⁇ m or less. This height is the height from the base substrate 11 and is the height along the direction from the base substrate 11 toward the growth substrate.
  • the resin 16 By forming the resin 16 on the base substrate 11 side of the groove 20, the resin 16 can protect the base substrate 11. Further, by selecting a material having a function of reflecting or absorbing laser light for the resin 16, the resin 16 can reflect or absorb the laser light in the peeling step of the growth substrate 18. Thereby, damage to the base substrate 11 can be reduced.
  • the semiconductor modules 100A and 100B the light emitting surface of the light emitting element 15 and the surface on the growth substrate 18 side of the resin 16 have the same height from the upper surface of the base substrate 11. Thereby, the surfaces of the semiconductor modules 100A and 100B can be made smoother by the resin 16. Further, by making the surfaces of the semiconductor modules 100A and 100B smoother, it is advantageous when forming a color conversion layer or the like on the light emitting surface of the light emitting element as in the seventh and eighth embodiments described later.
  • the resin 16 fixes the light emitting element 15 and the electrode 14 to the base substrate 11 and prevents light from leaking from the side surface of the light emitting element 15.
  • the resin 16 is also called an underfill, and can be formed by curing a liquid resin as an example.
  • the resin 16 is embedded in a region at least including the upper surface of the base substrate 11, a part of the side surface of the light emitting element 15, and the side surface of the electrode 14 in the semiconductor module 100A.
  • the resin 16 can reduce damage to the underlying substrate 11 in the peeling step of the growth substrate 18 by reflection or absorption of laser light. Further, light emission of the light emitting element 15 is emitted from the light emitting surface of the light emitting element 15 on the opposite side to the base substrate 11 side. Therefore, by covering at least the side surface of the light emitting element 15 with the resin 16, the following actions and effects can be obtained. First, it is possible to prevent light from leaking out of the side surface of the light emitting element 15.
  • the light having an unignorable difference in color tone is prevented from being emitted outward from the side surface, and the color in the entire emission color The occurrence of unevenness can be reduced.
  • the light which has traveled in the lateral direction is reflected to the light extraction direction side of the semiconductor module 100A (or the semiconductor modules 100B and 100C), and the light emitting region to the outside is further restricted.
  • the directivity of the emitted light can be enhanced, and the emission luminance at the light emission surface 151 can be enhanced.
  • the heat dissipation of the light emitting element 15 can be enhanced.
  • the moisture resistance of the light emitting layer of the light emitting element 15 can be enhanced.
  • the side surface continuous from the light emitting surface of the light emitting element 15, that is, the side surface parallel to the thickness direction of the light emitting element 15 is covered with the resin 16, and the light emitting surface of the light emitting element 15 is exposed from the resin 16.
  • the shape of the outer surface is not particularly limited.
  • the structure may be such that the resin 16 protrudes beyond the light emitting surface of the light emitting element 15 in the direction from the base substrate 11 toward the growth substrate 18 (or the growth substrate 182). Further, as shown in (c) of FIG. 7, the resin 16 may be smaller than the light emitting surface of the light emitting element 15 in the direction from the base substrate 11 toward the growth substrate 18.
  • the surface of the resin 16 on the growth substrate 18 side is configured along the planar shape of the light emitting surface of the light emitting element 15. . That is, the exposed surface of the covering area of the resin 16 is formed to be substantially flush with the light emitting surface of the light emitting element 15. Thereby, the variation of the light emission characteristics in the semiconductor modules 100A and 100B is suppressed, which leads to the improvement of the yield. Moreover, the heat dissipation of the light emitting element 15 can be improved by coating
  • the resin 16 is preferably a resin that reflects or absorbs laser light.
  • the color of the resin 16 is preferably white or black.
  • the substrate side electrode 141 is the base substrate 11 from the top of the step surface in the substrate side electrode 141.
  • a fixing force for pressing the electrode acts on the substrate side electrode 141.
  • the electrode 14 and the light emitting element 15 disposed thereon can be fixed to the base substrate 11 more stably, which is more preferable. It is desirable that the light emitting surface of the light emitting element 15 and the surface of the resin 16 on the growth substrate 18 side be substantially the same surface.
  • the liquid resin 16a is filled in the space formed between the base substrate 11 and the growth substrate 18 (step S240).
  • the liquid resin 16 a is filled in the grooves 20 between the light emitting elements 15.
  • the state after filling is shown in FIG. 2 (f). At this time, for example, it may be dipped in a bonded state in a container filled with the liquid resin 16a.
  • the main material of the liquid resin 16a is not particularly limited, for example, an epoxy resin is preferable.
  • the method of injecting the liquid resin 16a may be a method of injecting the liquid resin 16a with a microneedle conforming to the size of the space formed between the injection needle and the base substrate 11 and the growth substrate 18 other than the above.
  • the material of the injection needle in this case is made of metal, plastic or the like.
  • the liquid resin 16 a is filled from the air gap formed between the base substrate 11 and the growth substrate 18 by capillary action. Also, by controlling the filling amount of the liquid resin 16a, the resin 16 can be completely filled in the void as in the semiconductor modules 100A and 100B. Also, by controlling the filling amount of the liquid resin 16a, it is possible to fill the resin 16 with a certain thickness only on the base substrate 11 side as in the semiconductor module 100C.
  • the liquid resin 16a is preferably filled at a temperature within a temperature range of 50 ° C. to 200 ° C.
  • the temperature range is more preferably 80 ° C. to 170 ° C. This can reduce the possibility of impairing the characteristics of the resin 16 (adhesion after heat treatment, which will be described later, heat dissipation, etc.).
  • the temperature range is even more preferably 100 ° C. to 150 ° C. As a result, air bubbles and the like generated in the air gap can be reduced, the air can be almost completely filled without generating convection, and the semiconductor modules 100A to 100C can be easily manufactured.
  • each light emitting element 15 is, for example, a minute size with a vertical width and a horizontal width of 20 ⁇ m or less, more preferably several ⁇ m to 10 several ⁇ m, and a thickness of the light emitting element 15 of several ⁇ m (2 ⁇ m to 10 ⁇ m).
  • the liquid resin 16a functions more effectively as a reinforcing member for improving the adhesion strength in the process after the separation of the growth substrate 18 and the separation. Thereby, the variation in the characteristics of the resin 16 among the products of the semiconductor modules 100A to 100C can be further reduced, so that the semiconductor modules 100A to 100C can be easily manufactured.
  • the liquid resin 16a filled in the space is completely embedded in the space as shown in FIG. 2 (f). Thereby, the liquid resin 16 a is embedded on the side surface of the light emitting element 15, the side surface and the step surface of the electrode 14, and the upper portion of the base substrate 11.
  • the liquid resin 16a is cured (step S250).
  • the method for curing the liquid resin 16a is not particularly limited.
  • the liquid resin 16a may be cured by heating the liquid resin 16a or irradiating the liquid resin 16a with ultraviolet light.
  • the above-described manufacturing method is merely an example of a method for manufacturing the semiconductor modules 100A to 100C.
  • the respective steps described herein are for facilitating the manufacture of the semiconductor modules 100A to 100C, and the steps constituting the method for manufacturing the semiconductor modules 100A to 100C are not limited to these.
  • FIG. 8 is a cross-sectional view showing a cross-sectional configuration of a semiconductor module 101A according to Embodiment 5 of the present invention.
  • symbol is appended and the description is abbreviate
  • the semiconductor module 101 ⁇ / b> A differs from the semiconductor module 1 in that the light shielding member 31 is provided.
  • a light shielding member 31 is disposed on the base substrate 11 side of the groove 20 between the light emitting elements 15 adjacent to each other through which the laser beam directed to the base substrate 11 passes during laser irradiation so as to block the groove 20 in top view .
  • the light shielding member 31 is formed on the upper surface of the base substrate 11, and the electrode 14 in the light shielding member 31 is formed. Only the portion to be formed is removed by etching or the like.
  • the light shielding member 31 is formed by chemical vapor deposition (CVD), MBE, or attachment. After the light blocking member 31 is formed, the process proceeds to step S120.
  • the process after step S120 is the same as that of the first embodiment.
  • the light shielding member 31 may be a resin such as polyimide, epoxy, or silicone, and they may contain a coloring material or a filler.
  • the light shielding member 31 may be an inorganic material such as GaN, SiO 2 , SiN, or SiC.
  • the thickness of the light shielding member 31 is preferably in the range of 0.2 ⁇ m to 10 ⁇ m. The thickness is a thickness along the direction from the base substrate 11 toward the growth substrate 18.
  • the light shielding member 31 may be a light reflective member that reflects laser light.
  • FIG. 9 is a cross-sectional view showing the cross-sectional configuration of the semiconductor modules 102A and 102B according to Embodiment 6 of the present invention.
  • (A) of FIG. 9 is a view showing the configuration in which the concavo-convex shape is formed in the resin 161a
  • (b) of FIG. 9 is a view showing the configuration in which the concavo-convex shape is formed in the light emitting element 152 and the resin 161b. is there.
  • FIG. 10 is a flowchart showing a method of manufacturing the semiconductor modules 102A and 102B according to the sixth embodiment of the present invention.
  • symbol is appended and the description is abbreviate
  • the semiconductor module 102A has a convex-concave shape formed on the surface of the growth substrate 183a on the side of the base substrate 11 as compared with the semiconductor module 100A, and a growth substrate of the resin 161a.
  • the difference is that an uneven shape is formed on the surface on the side of 183a.
  • a plurality of convex portions 221 are formed on the surface of growth substrate 183a on the side of base substrate 11, and a plurality of recesses 32 are formed on the surface of resin 161a on the side of growth substrate 183a. ing.
  • the concave portion 32 is formed by the convex portion 221.
  • the concave portion 32 is formed on the surface on the growth substrate 183 a side of the portion of the resin 161 a filled in the groove 20 between the light emitting elements 15. Further, in the peeling process of the growth substrate 183a, the growth substrate 183a is peeled so that the concavo-convex shape is formed on the surface of the resin 161a on the growth substrate 183a side.
  • the laser light passing between the light emitting elements 15 is reduced by the scattering of the laser light due to the uneven shape formed on the growth substrate 183a. Do. Thereby, damage to the base substrate 11 can be reduced.
  • the concavo-convex shape is formed on the surface of the resin 161b on the growth substrate 183b side, but also the light emitting surface of the light emitting element 152 is uneven.
  • the shape is formed. Specifically, a plurality of convex portions 22a are formed on the surface of growth substrate 183b on the side of base substrate 11, and a plurality of concave portions 231 are formed on the light emitting surface of light emitting element 152. .
  • a recess 32 is formed on the surface of the resin 161 b on the growth substrate 183 b side.
  • the concavo-convex shape formed on the growth substrate 183 b is formed on the light emitting surface of the light emitting element 152, and the light extraction efficiency from the light emitting element 152 is thereby achieved. Can be improved. Thus, the product quality of the semiconductor module 102B can be improved.
  • a growth substrate having a concavo-convex shape such as PSS may be used as the growth substrate 183a (or the growth substrate 183b).
  • the manufacturing method of the semiconductor module 100A is the same as that of the semiconductor module 100A except for using the growth substrate having the uneven shape.
  • steps S310 to S330 and step S360 shown in FIG. 10 are the same as the processes of steps S110 to S140 shown in FIG.
  • steps S340 and step S350 shown in FIG. 10 are the same processes as step S240 and step S250 shown in FIG.
  • steps S370 and S380 performed after the process of step S360 will be described.
  • the exposed surface (the peeled surface of the light emitting element 15) of the n-type nitride compound semiconductor multilayer structure is polished (step S370).
  • the method of manufacturing the semiconductor modules 102A and 102B is characterized in that it includes a polishing step of polishing the exposed surface of the light emitting element 15 exposed by peeling off the growth substrate 183a.
  • the polishing of the exposed surface of the light emitting element 15 can be performed by CMP (Chemical Mechanical Polish) or the like.
  • the configuration of the semiconductor module of this embodiment is the semiconductor modules 100A and 100B as shown in (a) and (b) of FIG. Will be similar to the Note that SiO 2 , Al 2 O 3 , diamond, Mn 2 O 3 , CeO 2 or the like can be used as an abrasive used for CMP, and SiO 2 is particularly preferable.
  • Step S380 After completion of the polishing process of the peeling surface of the light emitting element 15, the exposed surface (the peeling surface of the light emitting element 15) of the polished n-type nitride compound semiconductor multilayer structure is cleaned (step S380).
  • the polishing process (step S370) may be performed after the cleaning process (step S380) is performed.
  • the cleaning process is performed again after the polishing process is performed.
  • only the polishing process may be performed without performing the cleaning process, or only the cleaning process may be performed without performing the polishing process.
  • the residue generated in the polishing remains on the exposed surface (the peeling surface of the light emitting element 15) of the n-type nitride compound semiconductor multilayer structure.
  • droplets of Ga or the like are generated on the exposed surface (the peeling surface of the light emitting element 15) of the n-type nitride compound semiconductor multilayer structure exposed by peeling the growth substrate 183a by laser irradiation. This droplet is likely to remain even after the completion of the polishing process of step S370. Therefore, one or more cleaning agents are selected as water (hot water) at a temperature above the melting point of Ga and dilute hydrochloric acids, and the exposed surface is cleaned with the cleaning agent.
  • the method of manufacturing the semiconductor modules 102A and 102B is characterized by including a cleaning step of cleaning the exposed surface of the light emitting element 15 exposed by peeling off the growth substrate 183a.
  • the exposed surface may be wiped or soaked in hot water to remove the residue on the exposed surface. It is also preferred to soak the exposed surface in room temperature dilute hydrochloric acid or boiling dilute hydrochloric acid, or to wipe with an ambient temperature dilute hydrochloric acid or boiling dilute hydrochloric acid. Furthermore, it is more preferable to first wipe the exposed surface with hot water and soak in hot water and then soak in dilute hydrochloric acid.
  • the exposed surface of the light emitting element 15 is not cleaned
  • the n-type nitride compound semiconductor layer is a light emitting surface
  • light is absorbed, reflected, or absorbed by the residue left on the exposed surface and / or droplets of Ga or the like.
  • the light emitted from the light emitting layer of the light emitting element 15 is blocked by being scattered.
  • the light extraction efficiency of the light emitting element 15 is reduced.
  • the cleaned n-type nitride-based compound semiconductor layer is to be a light emitting surface, by washing the exposed surface of the light emitting element 15, the light emission from the light emitting layer of the light emitting element 15 is not blocked.
  • the hot water used for cleaning the exposed surface of the light emitting element 15 is preferably at a temperature equal to or higher than the melting point of Ga, and the temperature of the dilute hydrochloric acid is preferably 110 ° C. or less at room temperature or more.
  • the polishing step and / or the cleaning step it is possible to leave no residue on the light emitting surface of the light emitting element 15 and the surface of the resin 161a on the growth substrate 183a side.
  • the light emission surface of the light emitting element 15 and the surface of the resin 161a on the growth substrate 183a side can be made substantially flat. Therefore, when the color conversion layer is formed on the light emitting element 15, the color conversion layer can be applied or patterned on the plane on which no residue is left. Thereby, the color conversion layer having a more uniform thickness can be formed on the plurality of light emitting elements 15.
  • the color conversion layer is made of a color conversion material such as a phosphor or a light absorbing material, and a resin serving as a base material, and converts the spectrum of light emitted from the light emitting element 15 into, for example, green or red It is to do.
  • the above-described manufacturing method is merely an example of a method for manufacturing the semiconductor modules 102A and 102B.
  • the respective steps described herein are for facilitating the manufacture of the semiconductor modules 102A and 102B, and the steps constituting the method for manufacturing the semiconductor modules 102A and 102B are not limited to these.
  • FIG. 11 is a cross-sectional view showing a cross-sectional configuration of a semiconductor module 103 according to Embodiment 7 of the present invention.
  • symbol is appended and the description is abbreviate
  • the semiconductor module 103 is different from the semiconductor module 102B in that the light transmitting resin 41 and the color conversion layers 42 and 43 are provided.
  • the color conversion layer 42 is a green conversion layer
  • the color conversion layer 43 is a red conversion layer.
  • the light emitting element 152 included in the semiconductor module 103 is a blue LED that emits blue light.
  • the light-transmissive resin 41 and the color conversion layers 42 and 43 are formed on the top (light emitting surface) of each of the light emitting elements 152. Is placed.
  • the light transmitting property resin 41 is disposed on the top of the light emitting element 152, and the color conversion layer 42 is on the top (light emitting surface) of the light emitting element 152 adjacent to the light emitting element 152 on which the light transmitting property resin 41 is disposed. It is arranged.
  • the color conversion layer 43 is formed on the upper portion (light emitting surface) of the light emitting element 152 adjacent to the light emitting element 152 on which the color conversion layer 42 is disposed and the side opposite to the light emitting element 152 on which the light transmitting resin 41 is disposed. It is arranged.
  • Each of the translucent property resin 41 and the color conversion layers 42 and 43 is formed by a method such as photolithography or screen printing so as to cover at least the light emitting surface of the light emitting element 152.
  • the light transmitting property resin 41 does not convert the wavelength of the light emitted from the light emitting element 152 disposed immediately below it, and passes the light. That is, the translucent property resin 41 emits blue light.
  • the color conversion layer 42 converts the wavelength of light emitted from the light emitting element 152 disposed immediately below it, and emits green light.
  • the color conversion layer 43 converts the wavelength of light emitted from the light emitting element 152 disposed immediately below it, and emits red light.
  • the semiconductor module 103 can emit light of three primary colors of red light, green light, and blue light. Further, the display device in which the semiconductor module 103 is incorporated can perform color display by controlling the respective light emitting elements 152.
  • the color conversion layers 42 and 43 are, for example, specifically a glass plate, a glass plate provided with a light conversion member, a single crystal or a polycrystal having a phosphor crystal of the light conversion member or a phosphor crystal phase, It is composed of an amorphous body, a ceramic body or the like.
  • the color conversion layers 42 and 43 are, for example, a sintered body, an aggregate, a porous material, and a light transmitting member (for example, resin) of phosphor crystal particles and a light transmitting member appropriately added. It consists of what was mixed or impregnated.
  • the color conversion layers 42 and 43 are formed of a translucent member containing phosphor crystal particles, for example, a molded body of translucent resin.
  • the light transmitting member is preferably made of an inorganic material rather than an organic material such as a resin.
  • the light transmitting member is preferably made of a light transmitting inorganic material containing phosphor crystal particles, and in particular, a sintered body of phosphor crystal particles and an inorganic substance (binding material), or fluorescence It is preferable to shape
  • a single crystal of Y 3 Al 5 O 12 , a high purity sintered body, alumina Al 2 O 3
  • a sintered body of Y 3 Al 5 O 12 / alumina is used as a binder.
  • the shape of the color conversion layers 42 and 43 is not particularly limited, but in the semiconductor module 103, the shape of the color conversion layers 42 and 43 is a rectangular parallelepiped. Further, by making the thickness of the color conversion layers 42 and 43 substantially constant, uneven distribution of the phosphors (wavelength conversion members) in the color conversion layers 42 and 43 can be suppressed, and the color conversion layers 42 and 43 pass through.
  • the amount of wavelength conversion of light can be made substantially uniform. Thereby, the ratio of color mixing can be stabilized, and color unevenness in light emission of the semiconductor module 103 can be suppressed.
  • the thickness of the color conversion layers 42 and 43 is the thickness along the direction from the base substrate 11 toward the light emitting element 152. Further, in the method of manufacturing the semiconductor module 103, when the color conversion layers 42 and 43 have a rectangular shape, the color conversion layers 42 and 43 can be easily formed. Furthermore, from the viewpoint of light extraction efficiency of the light emitting element 152, the shape of the surface of the color conversion layers 42 and 43 on the opposite side to the light emitting element 152 is made uneven or hemispherical, or the end face of the surface is angled. Thus, the light extraction efficiency can be improved.
  • the surface formed of the light emitting surface of the light emitting element 152 and the upper surface of the resin 16 can be made substantially uniform by polishing, cleaning, and the like.
  • the main surface of the color conversion layer 42 and the main surface of the color conversion layer 43 can be easily aligned so as to be substantially parallel.
  • white light can be suitably combined with the light emitting element 152, and Y 3 Al 5 O 12 activated with trivalent Ce and trivalent Ce are activated as a typical phosphor used for the wavelength conversion member.
  • phosphor was Lu 3 Al 5 O 12 and the like.
  • trivalent Ce was activated (La 1-x-y Y x Gd y) 3 Si 6 N 11, 3 -valent Ce alpha form to activate the SiAlON
  • the divalent Eu was activated (Ca 1-x-y Sr x Ba y ) 5 (PO 4 ) 3 (Cl 1 -z F z ), (Lu 1 -x Y y La y ) Si 3 N 5 activated with trivalent Ce
  • BaMgAl activated with divalent Eu 10 O 17, divalent Eu
  • the divalent Mn was activated the BaMgAl 10 O 17
  • divalent Eu was activated (Sr 1-x Ba x) 2 SiO 4
  • the divalent Eu was activated (Sr, Ba) 3 SiO 5
  • divalent Eu beta was activated a SiAlON
  • the trivalent Ce and activated (Ca 1-x-y Sr x Ba y) 3 (Sc 1-z Y z) activate the 2 Si 3 O 12
  • divalent Eu Ca 1-
  • the semiconductor module 103 no residue is left at least on the light emitting surface of the light emitting element 152, so the light transmitting resin 41, the color conversion layer 42, and the color conversion layer 43 The adhesion to the exit surface can be increased.
  • the thickness of the light transmitting resin 41, the color conversion layer 42, and the color conversion layer 43 can be made uniform, the optical characteristics are improved.
  • the surface formed of the light emitting surface of the light emitting element 152 and the upper surface of the resin 162 is made substantially uniform by the polishing process and the cleaning process as described in the sixth embodiment. Thereby, it becomes easy to determine the film thickness of the light transmitting property resin 41, the color conversion layer 42, and the color conversion layer 43, and the optical characteristics can be improved.
  • stable pattern formation becomes possible in the formation process (for example, the photolithographic method or screen printing etc.) of various fluorescent substance, and product quality can be improved.
  • FIG. 12 is a cross-sectional view showing a cross-sectional configuration of a semiconductor module 104 according to Embodiment 8 of the present invention.
  • symbol is appended and the description is abbreviate
  • the light absorption layer 51 is disposed above the color conversion layer 42 as compared to the semiconductor module 103, and the light absorption layer 52 is disposed above the color conversion layer 43. It is different in being arranged.
  • the light absorbing layers 51 and 52 contain at least one light absorbing material such as a dye molecule, and the light absorbing material contained in the light absorbing layer 51 and the light absorbing material contained in the light absorbing layer 52 are the same. You may or may not be different.
  • a light absorbing layer (not shown) may be disposed on the upper side of the light transmitting property resin 41.
  • the material which comprises the light absorption layers 51 * 52 consists of resin which contains a pigment
  • the light absorbing material is covered with at least the upper surface (light emitting surface) of the color conversion layer by photolithography. 51 and 52 are formed. Even when the material constituting the light absorbing layer 51/52 is not imparted with photosensitivity, the light absorbing layer 51 ⁇ so that the light absorbing material at least covers the upper surface of the color conversion layer by a method such as screen printing or etching. 52 can be formed.
  • the light absorption layer 52 can improve the color reproduction range of the semiconductor module 104 by absorbing light of a specific wavelength among the emission spectra from the light emitting element 152 and the color conversion layer 43.
  • the light absorbing layer 52 absorbs a light component of a wavelength shorter than 630 nm and a light component of a wavelength longer than 650 nm in the light from the red phosphor emitted from the color conversion layer 43.
  • the light absorbing layer 52 absorbs blue light transmitted through the color conversion layer 43 without being absorbed by the red phosphor contained in the color conversion layer 43 among the blue light emitted from the light emitting element 152.
  • the light emitted from the light absorption layer 52 mainly has a spectral component of 630 nm or more and 650 nm or less, so that it is possible to obtain a red color with higher purity.
  • the light absorption layer 51 also acts to obtain a high purity green color by having a similar function to the light absorption layer 52.
  • FIG. 13 is a cross-sectional view showing a cross-sectional configuration of a semiconductor module 105 according to Embodiment 9 of the present invention.
  • symbol is appended and the description is abbreviate
  • the semiconductor module 105 is mounted with not only a plurality of blue light emitting elements 153 a but also a plurality of green light emitting elements 153 b and a plurality of red light emitting elements 153 c as light emitting elements compared to the semiconductor module 1.
  • the point is different.
  • the semiconductor module 105 may be configured by any combination of the blue light emitting element 153a and the green light emitting element 153b, or the blue light emitting element 153a and the red light emitting element 153c.
  • the blue light emitting element 153a, the green light emitting element 153b, and the red light emitting element 153c may be electrically connected to the base substrate 11 via the metal wiring and the electrode 14 and operated by the drive circuit 11a of the base substrate 11.
  • the distance between the blue light emitting elements 153a is 0.1 ⁇ m or more and 20 ⁇ m or less. Further, the distance between the light emitting elements is preferably 0.1 ⁇ m or more and 20 ⁇ m or less. If the distance between the light emitting elements 15 is 20 ⁇ m or less, the amount of laser light reaching the base substrate 11 side by laser irradiation decreases, so that the base substrate 11, metal wiring, insulating layer, and electrode are removed in the peeling step of the growth substrate. Damage to 14 can be reduced. In addition, high-definition image display becomes possible.
  • the width of the groove 20 is preferably 0.1 ⁇ m or more.
  • the light emitting element maintain the light emission intensity of 50% or more after being lit for 1000 hours with respect to the initial light emission intensity at the time of manufacture.
  • the distance between the light emitting elements is desirably 0.1 ⁇ m or more.
  • the blue light emitting element 153a is formed by epitaxially growing a semiconductor layer on a growth substrate, and forming a mesa process and an electrode, as in the formation process of the light emitting element of the first embodiment.
  • the green light emitting element 153 b and the red light emitting element 153 c are mounted on the base substrate 11 individually after forming the metal wiring and the insulating layer on the base substrate 11. Thereafter, after the alignment step between the growth substrate and the base substrate 11, the semiconductor module 105 can be manufactured through the same steps as the other embodiments.
  • the growth substrate on which the blue light emitting element 153a is formed is aligned and bonded to the base substrate 11, and then the growth substrate of the blue light emitting element 153a is peeled off. Further, after the growth substrate on which the green light emitting element 153 b is formed is aligned and bonded, the growth substrate of the green light emitting element 153 b is peeled off. Furthermore, after aligning and bonding the growth substrate on which the red light emitting element 153c is formed, there is a process of removing the growth substrate by peeling, polishing, etching or the like of the growth substrate of the red light emitting element 153c.
  • peeling of the growth substrate of the green light emitting element 153 b and the red light emitting element 153 c peels part or all of the growth substrate.
  • the growth substrate is a sapphire substrate
  • the blue light emitting element is a GaN based semiconductor
  • the green light emitting element 153 b is an InGaN based semiconductor
  • the red light emitting element 153 c is a GaAs based semiconductor.
  • the heights of the light emitting elements of each color are substantially the same, or the blue light emitting element 153a is the lowest, and the red light emitting element 153c is the highest.
  • the growth substrate of the light emitting element of each color it is possible to prevent mechanical interference between the growth substrate of the light emitting element of each color and the light emitting element mounted earlier.
  • it is also possible to change the order of bonding of the light emitting elements of each color and in that case, the requirements for the height of each light emitting element are different.
  • the heights of the top surfaces of the blue light emitting element 153a, the green light emitting element 153b, and the red light emitting element 153c may be different or substantially uniform.
  • the growth substrate and the base substrate 11 are attached to each other using blue light emitting elements 153a, green light emitting elements 153b, and red light emitting elements 153c having different heights, and the growth substrate is peeled off.
  • the display device can perform high-definition image display.
  • the above-described manufacturing method is merely an example of a method that enables the semiconductor module 105 to be manufactured.
  • the respective steps described herein are for facilitating the manufacture of the semiconductor module 105, and the steps constituting the method for manufacturing the semiconductor module 105 are not limited to these.
  • FIG. 14 is a diagram for explaining a method of manufacturing a semiconductor module 106 according to the tenth embodiment of the present invention.
  • FIG. 15 is a flowchart showing a method of manufacturing the semiconductor module 106 according to the tenth embodiment of the present invention.
  • symbol is appended and the description is abbreviate
  • FIG. 14 A method of manufacturing the semiconductor module 106 will be described based on FIGS. 14 and 15.
  • FIG. 15 The processes of steps S410 to S440 shown in FIG. 15 are the same as the processes of steps S110 to S140 shown in FIG. 3, respectively. Also, the processes of step S460, step S480, and step S490 shown in FIG. 15 are the same processes as step S350, step S370, and step S380 shown in FIG.
  • step S450 performed after the process of step S440
  • step S470 performed after the process of step S460
  • steps S500 and step S510 performed after the process of step S490
  • the metal terminal 61 is for supplying power for driving the drive circuit 11 a formed on the base substrate 11 from the outside.
  • the metal terminal 61 is electrically connected to the drive circuit 11 a formed on the base substrate 11 and is electrically connected to the electrode 14.
  • the resin 164 filling process After completion of the peeling process in step S440, as shown in FIG. 14B, in the resin 164 filling process, the resin 164 is filled so as to cover the upper surface of the base substrate 11 and the entire exposed surface of the light emitting element 15. (Step S450). Further, in the step of filling the resin 164, the resin 164 covers the entire exposed surface of the electrode 14, the metal terminal 61, and the insulating layer 62.
  • step S450 After completion of the filling step of step S450, as shown in FIG. 14C, the portion of the resin 164 above the height (horizontal surface) from the base substrate 11 including the upper surface of the light emitting element 15 is removed. That is, a part of the resin 164 (a portion corresponding to the thickness from the upper surface of the light emitting element 15 to the upper surface of the resin 164) is removed (step S470). As a result, the upper surface of the light emitting element 15 is exposed. Therefore, in the process of step S510 described later, the metal terminal 61 may be aligned with an apparatus (not shown) for removing the resin 164a based on the light emitting element 15. it can.
  • step S480 After completion of the step of removing a part of the resin 164 in step S470, the upper surface of the light emitting element 15 is polished (step S480). By polishing the upper surface of the light emitting element 15, the height from the base substrate 11 of the upper surface of the light emitting element 15 is reduced (the thickness of the light emitting element 15 is reduced by polishing). After completion of the step of polishing the upper surface of the light emitting element 15 in step S480, the upper surface of the light emitting element 15 is cleaned (step S490). After completion of the step of cleaning the upper surface of the light emitting element 15 in step S490, the resin 164 becomes the resin 164a.
  • color conversion layers 42 and 43 are disposed on the top of different light emitting elements 15 as shown in FIG. 14D (step S500). Specifically, the color conversion layer 42 is disposed on the top of the light emitting element 15, and the color conversion layer 43 is disposed on the top of the light emitting element 15 adjacent to the light emitting element 15 on which the color conversion layer 42 is disposed.
  • step S510 the portion of the resin 164a on the metal terminal 61 is removed.
  • the recess 71 is formed on the metal terminal 61.
  • Gold (Au) bumps are formed in the recess 71 to form an electrode for external connection.
  • the portion of the resin 164 a around the metal terminal 61 is removed. Specifically, the portion of the resin 164 a above the vicinity of the upper surface of the metal terminal 61 is removed, or the portion of the resin 164 a above the upper surface of the insulating layer 62 is removed. Furthermore, wire bonding, soldering, gold (Au) bump formation, or connector connection is performed on the exposed metal terminals 61.
  • the metal terminal 61 can be easily connected to the outside, power can be easily supplied to the semiconductor module 106.
  • the semiconductor module 106 can be mounted on a film such as polyimide or other substrate with electrical wiring. This facilitates mounting of the semiconductor module 106 on a display device.
  • a connection connector connected to the semiconductor module 106 is provided on one side of a film such as polyimide, and a connection connector connected to a display device is provided on the other side of the film such as polyimide. Since a film such as polyimide on which the semiconductor module 106 is mounted can be bent, the semiconductor module 106 can be easily mounted on a display device.
  • steps S110, S210, S310, and S410 for forming separation grooves in the light emitting elements and steps S120, S220, S320, and S420 for forming the substrate side electrode on the base substrate are reverse in process order. Needless to say, it may be
  • the semiconductor modules 1, 10, 10 A to 10 E, 100 A to 100 C, 101 A, 102 A, 102 B, 103, 104, 105 are a base substrate 11 on which a drive circuit 11 a is formed, the drive circuit, and The plurality of light emitting elements 15, 151a to 151d, 152 electrically connected to each other, and the distance between the light emitting elements adjacent to each other is 20 ⁇ m or less in top view.
  • the distance between the light emitting elements is 0.1 ⁇ m or more and 20 ⁇ m or less in top view.
  • the intensity of the laser beam reaching the base substrate at the time of the laser beam irradiation is low. Therefore, damage to the base substrate accompanying peeling off the growth substrate can be reduced. Therefore, in the step of peeling the growth substrate or the like, damage to the base substrate having a driver circuit for driving the light emitting element can be reduced.
  • the semiconductor module 10 includes the base substrate 11 on which the drive circuit 11 a is formed, the plurality of light emitting elements 15 electrically connected to the drive circuit, and the light emitting elements adjacent to each other.
  • a semiconductor layer is provided on the opposite side of the space to the base substrate, the semiconductor layer blocking the space in top view.
  • the semiconductor layer absorbs the laser light to suppress damage to the base substrate having the drive circuit. it can. Furthermore, the surface on the growth substrate side of the semiconductor module can be made smoother.
  • the semiconductor modules 10A to 10D, 102B, 103, and 104 include the base substrate 11 on which the drive circuit 11a is formed, and a plurality of light emitting elements 151a to 151d electrically connected to the drive circuit. , 152, and the surface of each of the plurality of light emitting elements on the opposite side to the base substrate has a concavo-convex shape.
  • the light extraction efficiency from the light emitting element can be improved because the surface of the light emitting element opposite to the base substrate is uneven. Therefore, in the semiconductor module, since the light extraction efficiency from the light emitting element can be improved, the product quality of the semiconductor module can be improved.
  • the semiconductor modules 100A to 100C, 102A, 102B, 103, and 104 include the base substrate 11 on which the drive circuit 11a is formed, and a plurality of light emitting elements 15 electrically connected to the drive circuit. , 152, and resins 16, 161, 161a, 161b, 162, 163 filled in the grooves between the light emitting elements adjacent to each other.
  • the resin can protect the base substrate by filling the groove between the light emitting elements with the resin. Further, for example, by selecting a material having a function of reflecting or absorbing laser light for the resin, the resin can reflect or absorb the laser light in the separation step of the growth substrate. Thereby, damage to the base substrate can be reduced.
  • a semiconductor module 101A includes a base substrate 11 on which a drive circuit 11a is formed, a plurality of light emitting elements 15 electrically connected to the drive circuit, and the light emitting elements adjacent to each other.
  • a light shielding member 31 or a light reflecting member that blocks the groove is provided on the base substrate side of the groove in top view.
  • the light shielding member or the light reflecting member blocks the groove in the top view.
  • the light shielding member reflects or absorbs the laser light, thereby reducing the laser light passing between the light emitting elements.
  • damage to the base substrate can be reduced, and the product quality of the semiconductor module can be improved.
  • the surface on the opposite side of the base substrate 11 of the resin 161a, 161b, 162, and 163 in the above aspect 4 has an uneven shape. Good.
  • the semiconductor modules 103 and 104 according to aspect 7 of the present invention may have the plurality of color conversion layers 42 and 43 disposed on top of each of the plurality of light emitting elements 152 in any of the above aspects 1 to 6. Good.
  • the plurality of color conversion layers are disposed on top of each of the plurality of light emitting elements.
  • light of various colors can be emitted from the plurality of color conversion layers, for example, by using various types of color conversion layers. .
  • the display device may include the semiconductor modules 1, 10, 10A to 10E, 100A to 100C, 101A, 102A, 102B, 103, 104 in any one of the above aspects 1 to 7. .
  • a step of forming a plurality of light emitting elements from a semiconductor layer grown on a growth substrate, and a step of peeling the growth substrate from the plurality of light emitting elements by laser irradiation is 0.1 ⁇ m or more and 20 ⁇ m or less in top view.
  • the plurality of light emitting elements are electrically connected to a drive circuit formed on the base substrate.
  • the step of forming the plurality of light emitting elements according to aspect 9 in the step of forming the plurality of light emitting elements according to aspect 9, the light emission adjacent to each other through which laser light directed to the base substrate passes during the laser irradiation.
  • the method further includes the step of leaving the semiconductor layer having a thickness of 0.1 ⁇ m or more and 3 ⁇ m or less on the growth substrate side of the space between elements so as to block the space in top view, the semiconductor layer being a nitride semiconductor It may be a layer.
  • the uneven shape is formed on the surface on the growth substrate side of each of the plurality of light emitting elements.
  • a step may be included.
  • the method of manufacturing a semiconductor module according to aspect 12 of the present invention may further include the step of filling the groove between the light emitting elements adjacent to each other with a resin in the above aspect 9 or 10.
  • the resin is filled so as to cover the upper surface of the base substrate and the entire exposed surface of the light emitting element.
  • the upper surface of the base substrate and the entire exposed surface of the light emitting element are covered with the resin, for example, to flatten the upper surface of the resin and polish the peeled surface of the light emitting element. It becomes easy to form. By forming a flat surface, it becomes easy to apply the color conversion layer.
  • the step of peeling the growth substrate may include the step of forming an uneven shape on the surface of the resin on the growth substrate side.
  • the method of manufacturing a semiconductor module according to aspect 15 of the present invention may further include the step of polishing the peeled surface of the light emitting element in the above aspect 12 or 13.
  • the step of polishing the peeling surface of the light emitting element after peeling the growth substrate it is possible to prevent the residue from remaining on the peeling surface of the light emitting element.
  • the light extraction efficiency of the light emitting element can be improved.
  • the color conversion layer can be applied or patterned on a plane on which no residue remains. Therefore, when manufacturing the semiconductor module which has a color conversion layer, the product quality of a semiconductor module can be improved.
  • the method of manufacturing a semiconductor module according to aspect 16 of the present invention may further include the step of cleaning the peeled surface of the light emitting element after polishing the peeled surface of the light emitting element in the above-mentioned aspect 15.
  • the step of cleaning the peeling surface of the light emitting element after the peeling surface of the light emitting element is polished it is possible to prevent the residue from remaining on the peeling surface of the light emitting element.
  • the light extraction efficiency of the light emitting element can be improved.
  • the color conversion layer can be applied or patterned on a plane on which no residue remains. Therefore, when manufacturing the semiconductor module which has a color conversion layer, the product quality of a semiconductor module can be improved.
  • the display device may include the semiconductor module manufactured using the method for manufacturing a semiconductor module according to any one of the above-mentioned aspects 9 to 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

半導体モジュール(1)は、駆動回路(11a)が形成された下地基板(11)と、駆動回路(11a)と電気的に接続された、複数の発光素子(15)とを備え、互いに隣接する発光素子(15)間の距離は、上面視において、20μm以下である。

Description

半導体モジュール、表示装置、及び半導体モジュールの製造方法
 本発明は、半導体モジュール、表示装置、及び半導体モジュールの製造方法に関する。
 特許文献1及び2には、発光素子から成長基板を剥離することにより製造される半導体モジュールが開示されている。
米国公開特許公報「US2010/0314605号(2010年12月16日公開)」 米国特許公報「特許第9,472,714号(2016年10月18日公開)」
 特許文献1及び2に開示されている半導体モジュールでは、発光素子が設けられる下地基板に支持以外の機能がないため、発光装置の構成及び成長基板の剥離工程においては、下地基板へダメージが及ぶか否かに注意が払われていない。よって、上記半導体モジュールでは、支持以外の機能を有する下地基板を用いようとした場合が考慮されておらず、下地基板へのダメージが発生し得るという問題がある。
 本発明の一態様は、成長基板を剥離する工程等において、発光素子を駆動させる駆動回路を有する下地基板を用い、その下地基板に対してのダメージを低減させることを目的とする。
 上記の課題を解決するために、本発明の一態様に係る半導体モジュールは、駆動回路が形成された下地基板と、前記駆動回路と電気的に接続された、複数の発光素子とを備え、互いに隣接する前記発光素子の間の距離は、上面視において、20μm以下である。
 本発明の一態様に係る半導体モジュールは、駆動回路が形成された下地基板と、前記駆動回路と電気的に接続された、複数の発光素子と、互いに隣接する前記発光素子間の空間の前記下地基板とは反対側に、上面視において、前記空間を遮る半導体層とを備える。
 本発明の一態様に係る半導体モジュールは、駆動回路が形成された下地基板と、前記駆動回路と電気的に接続された、複数の発光素子とを備え、前記複数の発光素子の各々の前記下地基板とは反対側の面が凹凸形状である。
 本発明の一態様に係る半導体モジュールは、駆動回路が形成された下地基板と、前記駆動回路と電気的に接続された、複数の発光素子と、互いに隣接する前記発光素子間の溝に充填されている樹脂とを備える。
 本発明の一態様に係る半導体モジュールは、駆動回路が形成された下地基板と、前記駆動回路と電気的に接続された、複数の発光素子と、互いに隣接する前記発光素子間の溝の前記下地基板側に、上面視において、前記溝を遮る遮光性部材又は光反射性部材とを備える。
 本発明の一態様に係る半導体モジュールの製造方法は、成長基板上に成長された半導体層から複数の発光素子を形成する工程と、前記複数の発光素子からレーザー照射により前記成長基板を剥離する工程とを含み、前記複数の発光素子を形成する工程は、前記レーザー照射時に下地基板に向かうレーザー光が通過する、互いに隣接する前記発光素子間の距離を、上面視において、0.1μm以上20μm以下に形成する工程を含み、前記複数の発光素子は、前記下地基板に形成された駆動回路と電気的に接続されている。
 本発明の一態様によれば、成長基板を剥離する工程等において、発光素子を駆動させる駆動回路を有する下地基板を用い、その下地基板に対してのダメージを低減させることができるという効果を奏する。
(a)は本発明の実施形態1に係る半導体モジュールの断面構成を示す断面図である。(b)は上記半導体モジュールの上面図であり、(c)は(b)に示す半導体モジュールの断面図である。 半導体モジュールの製造方法を説明する図である。 本発明の実施形態1に係る半導体モジュールの製造方法を説明するフローチャートである。 本発明の実施形態2に係る半導体モジュールの断面構成を示す断面図である。 本発明の実施形態3に係る半導体モジュールの断面構成を示す断面図である。(a)~(e)は成長基板の表面が凹凸形状になっている場合を示す図である。 本発明の実施形態4に係る半導体モジュールの製造方法を説明するフローチャートである。 本発明の実施形態4に係る半導体モジュールの断面構成を示す断面図である。(a)は上面視において成長基板の面積と樹脂の面積とが同一である構成を示す図であり、(b)は上面視において成長基板の面積が樹脂の面積より小さい構成を示す図である。(c)は樹脂が下地基板側に部分的に形成されている構成を示す図である。 本発明の実施形態5に係る半導体モジュールの断面構成を示す断面図である。 本発明の実施形態6に係る半導体モジュールの断面構成を示す断面図である。(a)は樹脂に凹凸形状が形成されている構成を示す図であり、(b)は発光素子及び樹脂に凹凸形状が形成されている構成を示す図である。 本発明の実施形態6に係る半導体モジュールの製造方法を示すフローチャートである。 本発明の実施形態7に係る半導体モジュールの断面構成を示す断面図である。 本発明の実施形態8に係る半導体モジュールの断面構成を示す断面図である。 (a)は本発明の実施形態9に係る半導体モジュールの断面構成を示す断面図であり、(b)は上記半導体モジュールの上面図である。 本発明の実施形態10に係る半導体モジュールの製造方法を説明する図である。 本発明の実施形態10に係る半導体モジュールの製造方法を示すフローチャートである。
 〔実施形態1〕
 図1の(a)は本発明の実施形態1に係る半導体モジュール1の断面構成を示す断面図である。図1の(b)は半導体モジュール1の上面図であり、図1の(c)は図1の(b)に示す半導体モジュール1の断面図である。図2は、半導体モジュール1の製造方法を説明する図である。図3は、本発明の実施形態1に係る半導体モジュール1の製造方法を説明するフローチャートである。
 (半導体モジュール1の構成)
 図2の(g)に示すように、半導体モジュール1は、下地基板11、金属配線12、絶縁層13、電極14、発光素子15、及び樹脂16を備えている。図1の(a)は、図2の(f)を簡略化した図であり、下地基板11、電極14、発光素子15、及び成長基板18のみを示している。図1の(a)に示すように、半導体モジュール1では、下地基板11上に電極14を介して発光素子15を設けている。下地基板11側において、発光素子15間には溝20が形成されている。溝20とは、発光素子15間に形成された空間である。また、後述する成長基板18の剥離工程において、レーザー照射時に下地基板11に向かうレーザー光が通過する、互いに隣接する発光素子15間の溝20の幅、つまり、隣接する発光素子15の端面間の距離は、上面視において、0.1μm以上20μm以下である。溝20の幅が20μm以下であれば、レーザー照射により下地基板11側へ到達するレーザー光量が小さくなるため、後述の成長基板18の剥離工程において、下地基板11、金属配線12、絶縁層13、及び電極14へのダメージを低減することができる。溝20の幅が狭くなると、隣接する電極14間及び隣接する発光素子15間の静電容量が増加し、発光素子15に電圧を印加したときに、隣接する電極14間にカップリングノイズによる起電力が発生する可能性がある。これにより、発光素子15の精密な点灯制御を妨げたり、発光素子15に逆電圧が印加されたりすることで、発光素子15の劣化が発生し得る。このため、溝20の幅は0.1μm以上であることが好ましい。また、半導体モジュール1の信頼性の点で、発光素子15は、製造時の初期の発光強度に対して、1000時間点灯した後に50%以上の発光強度を維持することが望ましい。逆電圧による発光素子15の劣化を防ぐためにも、溝20の幅は0.1μm以上であることが望ましい。
 半導体モジュール1は、例えば、ヘッドマウントディスプレイ又はメガネ型デバイス向けのディスプレイ等の小型の表示装置に組み込まれる。表示装置が備える発光装置には、半導体モジュール1が1つだけ搭載されていてもよいし、複数の半導体モジュール1が搭載されていてもよい。半導体モジュール1では、従来の一般的な表示装置の各画素に相当する箇所に、個別の発光素子15が配置されている。上記表示装置は半導体モジュール1を備えており、後述する実施形態2~8においても、表示装置は半導体モジュールを備えている。
 図1の(b)及び(c)に示すように、半導体モジュール1は、発光素子15がm×n(m、nは自然数)の格子状に配置されたアレイ(構造体)であってもよいし、千鳥格子状又は他のパターンで配置されていてもよい。つまり、発光素子15の配置形態は、特に限定されない。半導体モジュール1は、下地基板11に形成された駆動回路11aで、複数の発光素子15それぞれの点灯及び消灯を制御することによって、高いコントラストを実現しつつ、表示装置における情報の表示に寄与する。
 半導体モジュール1では、個々の発光素子15を小さくすると共に、下地基板11上に発光素子15が密集された状態で配置されるレイアウトが好ましい。これにより、表示装置の表示画面の解像度を向上することができる。本技術は、上面視において、個々の発光素子15の縦幅及び横幅が30μm以下、より好ましくは2μm~15μmの製品に応用が可能な技術である。
 (下地基板11)
 下地基板11は、少なくともその表面が発光素子15と接続できるよう、配線を形成したものが利用できる。下地基板11は、発光素子15を駆動する駆動回路11aを有する。また、下地基板11の材料は、全体が窒化アルミニウムで構成される窒化アルミニウムの単結晶又は多結晶等の結晶性基板、並びに焼結基板が好ましい。また、下地基板11の材料は、アルミナ等のセラミック、ガラス、又はSi等の半金属又は金属基板が好ましく、また、それらの表面に窒化アルミニウム薄膜層が形成された基板等の積層体又は複合体が使用できる。金属性基板及びセラミック基板は放熱性が高いため、好ましい。
 例えば、Si上に発光素子15の発光を制御する駆動回路11aを集積回路形成技術により形成したものを下地基板11として使用することで、微細な発光素子15を密集させた高解像度の表示装置を製造することができる。
 (金属配線12)
 金属配線12は、発光素子15に制御電圧を供給する制御回路を少なくとも含む配線である。金属配線12の形成は、イオンミリング法又はエッチング法等によって、金属層のパターニングが施される。例えば、Si基板表面上に白金薄膜等からなる金属配線12等を形成する例が挙げられる。さらに、金属配線12を保護する目的で、下地基板11の金属配線12が形成された側の表面にSiO等の薄膜からなる保護膜を形成してもよい。
 (絶縁層13)
 絶縁層13は、酸化膜、樹脂膜、及び樹脂層によって構成される、絶縁性の層である。絶縁層13は、下地基板11と電極14とが直接接触することを防ぐ。
 (電極14)
 電極14は、金属配線12と発光素子15上に設けられた金属端子(不図示)とを電気的に接続する、パッド電極として機能するもので、バンプとも呼ばれる。電極14における金属配線12に接続される第1部分は基板側電極141であり、電極14における発光素子15上に設けられた金属端子(不図示)に接続される第2部分は発光素子側電極142である。基板側電極141及び発光素子側電極142は、例えば、Au、Pt、Pd、Rh、Ni、W、Mo、Cr、及びTiのいずれかの金属、並びにこれらの合金又はそれらの組み合わせから成る。組合せの例としては、基板側電極141及び発光素子側電極142を金属電極層として構成する場合、下面からW/Pt/Au、Rh/Pt/Au、W/Pt/Au/Ni、Pt/Au、Ti/Pt/Au、Ti/Rh、又はTiW/Auの積層構造が考えられる。発光素子側電極142はn側電極とp側電極とを同一面側に形成し、発光素子15の光出射面とは逆側に配置するフリップチップタイプとすることができる。
 電極14は、光出射方向において段差箇所を有する。基板側電極141における光出射方向と平行な断面の面積は、発光素子側電極142における光出射方向と平行な断面の面積と異なる。図2の(g)では、基板側電極141の断面積は、発光素子側電極142の断面積よりも大きい。なお、基板側電極141及び発光素子側電極142の最表面はAuであることが好ましい。
 (発光素子15)
 発光素子15は、公知のもの、具体的には半導体発光素子を利用できる。例えば、GaAs系、ZnO系、又はGaN系のものがある。発光素子15には、赤色、黄色、緑色、青色、又は紫色の光を発光するLED(Light Emitting Diode)を用いてもよく、また紫外光を発光するLEDを用いてもよい。中でも、青色から紫色又は紫色から紫外光の発光が可能なGaN系半導体を発光素子15として用いることが好ましい。発光素子15は、図1の(a)において、上面から光を出射する。発光素子15の上面は光出射面である。発光素子15は、電極14を介して、下地基板11に形成された駆動回路11aと電気的に接続されている。発光素子15上に、光が照射されることで発光素子15の発光色とは異なる発光色を示す蛍光物質を塗布することで、可視光領域にある様々な発光色を示すことができる。このため、効率よく励起できる短波長の光を発光することが可能である。また、発光効率が高く、寿命が長く、信頼性が高いといった特徴を有する点でも、GaN系半導体は、発光素子15として好ましい。
 発光素子15の半導体層としては、窒化物半導体が、可視光域の短波長域、近紫外域、又はそれより短波長域である点、その点と波長変換部材(蛍光体)とを組み合わせた半導体モジュール1において好適に用いられる。また、それに限定されずに、ZnSe系、InGaAs系、AlInGaP系などの半導体でもよい。
 半導体層による発光素子構造は、第1導電型(n型)層、第2導電型(p型)層との間に活性層を有する構造が出力効率上好ましいがこれに限定されない。また、各導電型層に、絶縁、半絶縁性、及び逆導電型構造が一部に設けられてもよく、またそれらが第1、2導電型層に対し付加的に設けられた構造でもよい。別の回路構造、例えば保護素子構造を付加的に有してもよい。
 本実施形態においては、後述のように成長基板18をレーザー光の照射などにより剥離する。半導体モジュール1を表示装置に適用し、発光素子15上に成長基板18がある場合には、発光素子15からの出射光が成長基板18内で拡散し、高精細な表示が難しい。これに対し、発光素子15上に成長基板18がない場合には、個々の発光素子15からの出射光が拡散せずに取り出されるため、表示装置は高精細な表示が可能となる。
 発光素子15及びその半導体層の構造としては、PN接合を有したホモ構造、ヘテロ構造、又はダブルへテロ構成のものが挙げられる。また、各層を超格子構造としたりすることもできるし、活性層である発光層を量子効果が生じる薄膜に形成させた単一量子井戸構造又は多重量子井戸構造としたりすることもできる。発光素子15上には外部からの電力供給を目的とする金属端子が設けられる。
 (半導体モジュール1の製造方法)
 次に、半導体モジュール1の製造方法について、図2及び図3に基づいて説明する。
 (発光素子15の形成工程)
 まず、図2の(a)に示すように、成長基板18に発光素子15を設ける。成長基板18は、発光素子15の半導体層をエピタキシャル成長させる基板である。MOCVD(Metal Organic Chemical Vapor Deposition)法又はMBE(Molecular Beam Epitaxy)法などにより、異なる層を順々に堆積させることで、発光素子15の発光素子構造を形成する。窒化物半導体における成長基板18としては、C面、R面、及びA面のいずれかを主面とするサファイア(Al)又はスピネル(MgAl)のような絶縁性基板がある。また、窒化物半導体における成長基板18としては、炭化珪素(6H、4H、3C)、Si、ZnS、ZnO、GaAs、ダイヤモンド、及び窒化物半導体と格子接合するニオブ酸リチウム又はガリウム酸ネオジウムなどの酸化物基板がある。さらに、窒化物半導体における成長基板18としては、GaN又はAlNなどの窒化物半導体基板がある。
 例えば、サファイア基板を成長基板18として用い、MOCVD法でGaN系の発光素子15を製造する場合には、成長基板18をPSS(Patterned Sapphire Substrate)としてもよい。PSSとは、成長基板18のGaN層を堆積させる面に、数μmピッチで数μmサイズの凹凸を形成させたものである。この微細な凹凸によって、発光素子15の光射出面に傾斜構造を形成することで、発光素子15の光取り出し効率を上げる役割を果たし、且つ、発光素子15の発光層中の構造欠陥を低減させる役割を果たす。これにより、高効率発光の発光素子15を得ることができる。PSSの凹凸はAl、AlN、又はGaNなどからなる。成長基板18と同じ組成であるAlからなる場合を考える。この場合、成長基板18上にフォトレジストマスクを形成した後、ICP(Inductively Coupled Plasma)ドライエッチングなどにより凹凸が形成される。また、AlとGaNとの格子不整合を緩和するためにAl上にAlNなどを堆積させる場合もある。PSSの凹凸の形状は限定されるものではないが、略円錐形が一般的であり、その略円錐の底面の直径は3μm以下、高さは2μm以下、頂点の角度は60°以上120°以下程度の範囲にあることが好ましい。また、成長基板18の厚みは20μm以上1000μm以下の範囲にある。この厚みとは、下地基板11から成長基板18に向かう方向に沿った厚みである。成長基板18の厚みが薄いと、製造工程中で成長基板18が割れてしまうリスクが高くなるため、成長基板18の厚みは20μm以上であることが望ましい。一方、成長基板18の厚みが厚いと、発光素子15を形成した後、成長基板18の反りが大きくなる可能性が高くなり、高い発光効率の発光素子15を形成できない可能性が高くなる。このため、成長基板18の厚みは1000μm以下であることが望ましい。
 窒化物半導体としては、一般式がInAlGa1-x-yN(0≦x、0≦y、x+y≦1)であって、B、P、又はAsを混晶してもよい。発光素子15のn型半導体層及びp型半導体層は、単層、多層を特に限定しない。窒化物半導体層には活性層である発光層を有し、この活性層は、単一(SQW)又は多重量子井戸構造(MQW)とする。
 成長基板18上に、バッファ層などの窒化物半導体の下地層、例えば低温成長薄膜GaNとGaN層を介して、n型窒化物半導体層として、例えばSiドープGaNのn型コンタクト層とGaN/InGaNのn型多層膜層、を積層する。続いてInGaN/GaNのMQWの活性層を積層し、さらにp型窒化物半導体層として、例えばMgドープのInGaN/AlGaNのp型多層膜層とMgドープGaNのp型コンタクト層とを積層した構造を用いる。また、窒化物半導体の発光層(活性層)は、例えば、井戸層を含む、障壁層と井戸層とを含む量子井戸構造を有する。活性層に用いられる窒化物半導体は、p型不純物ドープでもよいが、好ましくはノンドープ又はn型不純物ドープにより発光素子15を高出力化することができる。
 井戸層にAlを含ませることで、GaNのバンドギャップエネルギーである波長365nmより短い波長を得ることができる。活性層から放出する光の波長は、発光素子の目的及び用途などに応じて360nm以上650nm以下付近、好ましくは380nm以上560nm以下の波長とする。井戸層の組成はInGaNが、可視光・近紫外域に好適に用いられ、その時の障壁層の組成は、GaN、InGaNがよい。障壁層及び井戸層の膜厚の具体例としては、それぞれ1nm以上30nm以下、1nm以上20nm以下であり、1つの井戸層の単一量子井戸及び障壁層などを介した複数の井戸層の多重量子井戸構造にすることができる。
 (メサ形成工程)
 発光素子15の形成後、発光素子15に含まれるp型コンタクト層の表面の一部に、エッチングによりn型GaN層を露出させ、メサを形成する。エッチングは公知のフォトリソグラフィー法を用いて行われてもよい。露出したn型GaN層には後の工程でn側電極が形成される。
 (発光素子側電極142の形成工程)
 メサの形成後、図2の(b)に示すように、発光素子15の上に複数の発光素子側電極142を形成する。この形成には、周知の一般的な電極形成技術が使用される。発光素子側電極142の代表的な材料は、例えばAuである。
 (分離溝19の形成工程)
 発光素子側電極142の形成後、図2の(c)に示すように、発光素子15に複数の分離溝19を形成する(ステップS110)。分離溝19の形成には、標準的な半導体選択エッチングプロセスが使用される。図2の(c)では、隣り合う発光素子側電極142の間に、分離溝19を形成する。形成される分離溝19は、成長基板18の表面にまで達する。分離溝19が形成されることによって、一枚の発光素子15が、成長基板18の表面において複数の個別の発光素子15(チップ)に分割される。分離溝19の幅が0.1μm以上20μm以下の範囲となるように、分離溝19が形成される。分離溝19の幅が20μm以下であることで、下地基板11側へ到達するレーザー光量が小さくなるため、後述の成長基板18の成長基板18の剥離工程において、下地基板11、金属配線12、絶縁層13、及び電極14へのダメージを低減することができる。一方、分離溝19の幅が狭くなると、隣接する電極14間及び隣接する発光素子15間の静電容量が増加し、発光素子15に電圧を印加したときに、隣接する発光素子15間にカップリングノイズによる起電力が発生する可能性がある。これにより、発光素子15の精密な点灯制御を妨げたり、発光素子15に逆電圧が印加されたりすることで、発光素子15の劣化が発生し得る。このため、分離溝19の幅は0.1μm以上であることが好ましい。また、半導体モジュール1の信頼性の点で、発光素子15は、製造時の初期の発光強度に対して、1000時間点灯した後に50%以上の発光強度を維持することが望ましい。逆電圧による発光素子15の劣化を防ぐためにも、分離溝19の幅は0.1μm以上であることが望ましい。
 (成長基板18の平滑化工程)
 また、後述の成長基板18の剥離工程において、剥離面にレーザー光を均一に照射する必要がある。このため、成長基板18の発光素子15が形成している面以外の面を研磨等により平滑化する工程を実施することが望ましい。研磨等による平滑化後の成長基板18の厚みは20μm以上400μm以下の範囲にあることが好ましい。成長基板18の厚みが薄いと、製造工程中で成長基板18が割れてしまうリスクが高くなるため、成長基板18の厚みは20μm以上であることが望ましい。一方、成長基板18の厚みが厚いと、成長基板18の反りが大きい可能性が高くなる。これにより、高い発光効率の発光素子15を形成できなかったり、後述する下地基板11との貼り合わせ工程を行うことが困難になったり、成長基板18を剥離するために照射するレーザー光が、剥離面に対して均一に入射される可能性が低くなったりする。このため、成長基板18の厚みは400μm以下であることが望ましい。なお、平滑化工程は、後述のアレイ個片化工程の後に実施してもよい。
 (成長基板18の個片化工程)
 発光素子15はウェハ形状の成長基板18上に形成されているが、1個以上の発光素子15が搭載される発光素子個片へと個片化する工程を実施してもよい。発光素子個片は、1つの発光素子アレイが搭載された個片であってもよいし、複数の発光素子アレイが搭載された個片であってもよい。また、発光素子個片は、複数の個片で1つの発光素子アレイとなるようなものであってもよい。ここで、発光素子アレイとは、下地基板11の駆動回路11aの一構成単位に対応する発光素子数からなるものである。前述のとおり半導体モジュール1においては、m×n個の発光素子が搭載される。成長基板18の個片化はダイシング等により行うことが可能である。特に、成長基板18のサイズと下地基板11とのサイズが異なる場合には、成長基板18の個片化工程を実施した後に、下地基板11との貼り合わせを行うことが好ましい。また、成長基板18の個片化を行わず、成長基板18をウェハ形状の状態のままで下地基板11との貼り合わせを行ってもよい。
 (2つの基板の位置合わせ工程)
 分離溝19の形成後、図2の(d)に示すように、金属配線12、絶縁層13、及び基板側電極141が予め形成された下地基板11を用意する。下地基板11に対する基板側電極141の形成には、周知の一般的な電極形成技術が使用される。下地基板11上に基板側電極141を形成する(ステップS120)。基板側電極141の代表的な材料は、例えばAuである。下地基板11の用意と並行して、図2の(d)に示すように、成長基板18を反転させる。反転後、各基板側電極141と各発光素子側電極142とが対向するように、下地基板11と成長基板18とを位置合わせする。
 (基板の貼り合わせ工程)
 位置合わせの完了後、図2の(e)に示すように、下地基板11と成長基板18とを貼り合わせる(ステップS130)。その際、既存の貼り合わせ技術を使用して、対応する基板側電極141及び発光素子側電極142が接合するように、下地基板11及び成長基板18を加圧によって上下から抑える。これにより、対応する基板側電極141及び発光素子側電極142が一体化され、電極14を構成する。また、下地基板11がウェハ形状の状態のままで、貼り合わせを行ってもよいし、下地基板11を個片化した後に貼り合わせを行ってもよい。なお、図2の(f)に示す樹脂16の形成工程は、本実施形態では行われない。一方、後述の実施形態4、6、7、及び8では、図2の(f)に示す樹脂16の形成工程が行われる。後述の実施形態5では、樹脂16に代えて、遮光性部材31が形成される。
 (成長基板18の剥離工程)
 貼り合わせの完了後、図2の(g)に示すように、成長基板18を剥離させる(ステップS140)。ただし、前述のように本実施形態においては、図2(f)に示す樹脂16の形成工程を実施していないため、樹脂16は存在していない。この工程には、剥離手段の一例として、レーザー光の照射を利用した剥離技術を利用することができる。例えば成長基板18にサファイアなどの透明基板を用い、発光素子層として窒化物半導体を結晶成長した場合、透明基板側からレーザー光を一定条件で照射することにより成長基板18と結晶成長層との界面に与えるダメージを軽減することが可能である。成長基板18を剥離させることにより、発光素子15は、成長基板18上に成長された半導体層からレーザー照射により成長基板18が剥離された構造を有する。レーザー光の波長は200nm以上1100nm以下の範囲であれば、特に限定されないが、成長基板18の剥離を行うことが可能な波長、つまり、成長基板18により光吸収される波長であることが必要である。
 また、図1の(a)に示すように、発光素子15間に形成された溝20の幅が0.1μm以上20μm以下であることから、成長基板18の剥離工程において、レーザー光の照射時に下地基板11に到達するレーザー光の強度は低いものとなる。このため、成長基板18の剥離工程に伴う下地基板11へのダメージを低減することができる。
 本実施形態の半導体モジュール1では、下地基板11へのダメージにより、下地基板11が有する駆動回路11aが正常に動作しなくなり、発光素子15全て又は一部の発光素子15が発光しなくなるという問題を抑制する。ここで、下地基板11へのダメージとは、下地基板11自体、並びに下地基板11上に形成されている金属配線12、絶縁層13、及び電極14の溶融又は焼損等がある。また、下地基板11へのダメージによって、下地基板11上に形成された駆動回路11aに用いられているトランジスタ、ダイオード、及び/又はキャパシタ等の素子が動作しなくなることがある。さらに、下地基板11へのダメージによって、それらの素子の特性が変化することがある。下地基板11へのダメージによって、文字、記号、数字、又は画像が、表示装置の表示画面に鮮明に映し出されないという問題が生じる可能性がある。
 成長基板18の剥離後、発光素子15の光出射面が露出される。これにより、半導体モジュール1の製造が完了する。成長基板18の剥離工程における下地基板11へのダメージとは、下地基板11上の金属配線12の損傷及び下地基板11上の絶縁層13の損傷を示す。本実施形態は、これらの下地基板11へのダメージにより、下地基板11が有する駆動回路11aが正常に動作しなくなることを抑制する。
 上述した製造方法は、あくまで、半導体モジュール1を製造可能とする方法の一例に過ぎない。ここに説明された各工程は、半導体モジュール1を製造し易くするためのものであり、半導体モジュール1の製造方法を構成する工程は、これらに限定されるものではない。例えば、複数の発光素子15については、一種類だけを用いずに複数の種類のものを組み合わせてもよく、複数の発光素子15として、赤色LED及び緑色LEDを同時に形成してもよい。
 ここで、複数の発光素子15として、青色LED、緑色LED、及び赤色LEDを用いてもよい。青色LEDには、成長基板18の一部又は成長基板18の全てを剥離した発光素子15を用いてもよい。また、半導体モジュール1では、青色LED、緑色LED、及び赤色LEDが駆動回路11a上に搭載されてもよい。青色LED、緑色LED、及び赤色LEDの各々は駆動回路11aと電気的に接続されている。
 〔実施形態2〕
 図4は、本発明の実施形態2に係る半導体モジュール10の断面構成を示す断面図である。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図4に示すように、半導体モジュール10は、半導体モジュール1と比べて、発光素子15上に薄いGaN膜21(半導体層、窒化物半導体層)が残存している。つまり、半導体モジュール10は、下地基板11、電極14、発光素子15、及びGaN膜21を備えている。このとき、GaN膜21のみが残存している必要はなく、GaN膜21の他に、発光素子15の他の層が残存していてもよい。隣接する複数の発光素子15の光出射面の少なくとも一部は、GaN膜21を介して互いに接続されている。つまり、成長基板18の剥離工程におけるレーザー照射時に下地基板11に向かうレーザー光が通過する、溝20の成長基板18側に、上面視において、溝20を遮るようにGaN膜21が残存している。GaN膜21は、成長基板18側に光出射面を有し、複数の発光素子15は、1つの光出射面を共有している。これにより、レーザー光の照射によって成長基板18を剥離させるとき、GaN膜21がレーザー光を吸収することで、駆動回路11aを有する下地基板11へのダメージを抑制することができる。さらに、半導体モジュール10の成長基板18側の表面をより平滑にすることもできる。
 半導体モジュール10は、例えば、以下に説明するように製造される。分離溝19の形成工程にて、分離溝19を成長基板18まで到達させず、エピタキシャル成長によって形成されたGaN膜21が少しだけ成長基板18の表面に残るように、分離溝19を形成する。例えば、GaN膜21が1μmだけ成長基板18の表面に残るように、分離溝19を形成する。よって、GaN膜21が少しだけ成長基板18の表面に残るように、分離溝19を形成する。なお、GaN膜21の厚みは0.1μm以上3μm以下であることが好ましい。この厚みとは、下地基板11から成長基板18に向かう方向に沿った厚みである。レーザー光がGaN膜21へ侵入することが可能な深さは0.1μm程度であるため、GaN膜21の厚みは0.1μm以上であることが好ましい。一方、GaN膜21が厚すぎると、発光素子15から照射される青色光がGaN膜21内を伝搬する。これにより、点灯した発光素子15の周辺に位置し、且つ、点灯していない発光素子15上にも光が到達してしまうため、表示装置は高精細な表示を行うことが難しくなる。GaN膜21中の光伝搬の影響を小さくするため、GaN膜21の厚みは3μm以下であることが好ましい。これにより、成長基板18の剥離工程において、例えば、成長基板18をレーザー照射によって剥離するとき、GaN膜21が分解されることなく、図4に示すように薄い層としてGaN膜21が半導体モジュール10に残る状態にすることができる。これにより、レーザー照射によって成長基板18を剥離させるとき、GaN膜21がレーザー光を吸収することで、駆動回路11aを有する下地基板11へのダメージを抑制することができる。また、半導体モジュール10の作製時において、半導体モジュール10の成長基板18側の表面をより平滑にすることができる。
 また、図4に示すように、GaN膜21によって発光素子15は全て繋がっているが、電極14が個別の発光素子15を発光させられるように形成されているため、半導体モジュール10による画像表示が可能である。
 このように、半導体モジュール10では、複数の発光素子15がGaN膜21を介して繋がっているため、高精細な表示性能を維持しつつ、下地基板11へのダメージを低減することができる。このため、半導体モジュール10の製品品質を向上させることができる。
 〔実施形態3〕
 図5は、本発明の実施形態3に係る半導体モジュール10A~10Eの断面構成を示す断面図である。図5の(a)~(e)は、成長基板181a~181eの表面が凹凸形状になっている場合を示す図である。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図5の(a)に示すように、半導体モジュール10Aは、半導体モジュール1と比べて、発光素子151aの形状が発光素子15の形状とは異なっている点が異なる。また、成長基板181aの下地基板11側の面は凹凸形状になっており、凸部22aが形成されている。例えば、凸部22aは略円錐形の形状を有し、等間隔に形成されている。レーザー照射によって成長基板181aを剥離させたとき、複数の発光素子151aの光出射面(成長基板181a側の面)上にはそれぞれ凹凸形状が形成され、1つの発光素子151aの光出射面上には複数の凹部23aが等間隔に形成される。つまり、発光素子151aと成長基板181aとが合わさったとき、凹部23aは、凸部22aによって形成される。凹部23aは、下地基板11に向かう方向に先細りになる形状を有する。
 以上により、成長基板181aの下地基板11側の面が凹凸形状になっていることにより、レーザー照射によって成長基板181aを剥離させるとき、成長基板181aの凸部22aの表面でレーザー光が回折・散乱する。散乱したレーザー光は、発光素子151aの主成分であるGaNにほとんど吸収される。これにより、下地基板11に到達するレーザー光が少ないため、下地基板11へのダメージを低減することができる。また、半導体モジュール10Aの構成を実現するための製造工程を考慮すると、成長基板181aの下地基板11側の面が凹凸形状になっていることが好ましい。これは、成長基板181aの凸部22aの表面でレーザー光が回折・散乱することにより、下地基板11に到達するレーザー光を少なくすることができ、下地基板11へのダメージを低減させることができるからである。
 また、発光素子151aの光出射面が凹凸形状になっていることにより、発光素子151aからの光取り出し効率を向上させることができる。この凹凸形状は、発光素子151aを形成するとき、PSS等の凹凸形状を有する成長基板181aを用いることで形成可能である。
 このように、半導体モジュール10Aでは、下地基板11へのダメージを低減させることができ、発光素子151aからの光取り出し効率を向上させることができるので、半導体モジュール10Aの製品品質を向上させることができる。後述する半導体モジュール10B~10Eでも同様の効果が得られる。
 また、図5の(b)に示すように、半導体モジュール10Bでは、複数の発光素子151bの光出射面上にはそれぞれ凹部23bが形成されているが、1つの発光素子151bの光出射面上に形成される凹部23bは1つである。発光素子151bと成長基板181bとが合わさったとき、凹部23bは、凸部22bによって形成される。凹部23bは、下地基板11に向かう方向に先細りになる形状を有する。成長基板181bの下地基板11側の面は凹凸形状になっているが、成長基板181bの下地基板11側の面に形成される複数の凸部22bの間隔は、複数の凸部22aの間隔より大きくなっている。また、1つの発光素子151bの光出射面上に形成される凹部23bが1つになるように、成長基板181bの下地基板11側の面に凸部22bが形成される。凸部22bは略円錐形の形状を有する。
 図5の(c)に示すように、半導体モジュール10Cでは、複数の発光素子151cの光出射面上にはそれぞれ凹部23cが形成されている。発光素子151cと成長基板181cとが合わさったとき、凹部23cは、凸部22cによって形成される。凹部23cは、下地基板11に向かう方向に先細りになる形状を有する。上面視において、発光素子151cの光出射面の面積のうち、凹部23cが占める部分の面積は、発光素子151cの光出射面の面積の半分以上である。また、成長基板181cの下地基板11側の面は凹凸形状になっているが、成長基板181cの下地基板11側の面に形成される凸部22cのサイズが、凸部22aのサイズよりも大きくなっている。上面視において、発光素子151cの光出射面の面積のうち、凹部23cが占める部分の面積が、発光素子151cの光出射面の面積の半分以上になるように、成長基板181cの下地基板11側の面に凸部22cが形成される。凸部22cは略円錐形の形状を有する。
 図5の(d)に示すように、半導体モジュール10Dでは、複数の発光素子151dの光出射面上にはそれぞれ凹部23dが形成されている。発光素子151dと成長基板181dとが合わさったとき、凹部23dは、凸部22dによって形成される。凹部23dは、下地基板11に向かう方向に先細りになる形状を有し、凹部23dの内壁の傾斜角度が途中で一度変化する形状になっている。また、成長基板181dの下地基板11側の面は凹凸形状になっているが、成長基板181dの下地基板11側の面上に形成された凸部22dは、先端が尖っている形状を有し、凸部22dの外壁の傾斜角度が途中で一度変化する形状になっている。
 図5の(e)に示すように、半導体モジュール10Eでは、複数の発光素子151eの光出射面上には凹部がなく、成長基板181eには、複数の発光素子151e間に入るように凸部22eが形成されている。半導体モジュール10E上の発光素子151eにおいては凹部がない点で、半導体モジュール10A~10Dと異なる。しかし、成長基板181eに凸部22eが形成されることにより、成長基板181eの剥離時に下地基板11へのダメージを低減できる効果を有する点では、半導体モジュール10A~10Dと同様である。
 以上により、凸部22a~22eは略円錐形の形状を有する。その円錐について、底面の直径は3μm以下、高さは2μm以下、頂点の角度は60°以上120°以下程度の範囲にあることが好ましい。
 〔実施形態4〕
 図6は、本発明の実施形態4に係る半導体モジュール100A~100Cの製造方法を説明するフローチャートである。図7は、本発明の実施形態4に係る半導体モジュール100A~100Cの断面構成を示す断面図である。図7の(a)は上面視において成長基板18の最外形と樹脂16の最外形とが同一である構成を示す図であり、図7の(b)は上面視において成長基板182の最外形が樹脂16の最外形より小さい構成を示す図である。図7の(c)は樹脂161が下地基板11側に部分的に形成されている構成を示す図である。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図7の(a)に示すように、半導体モジュール100Aは、半導体モジュール1と比べて、樹脂16を備えている点が異なる。下地基板11と複数の発光素子15の各々との間に、及び、レーザー照射時に下地基板11に向かうレーザー光が通過する、互いに隣接する発光素子15間の溝20に、樹脂16が充填されている。また、樹脂16は、下地基板11の上面、電極14、及び発光素子15の側面を完全に覆っている。発光素子15の光出射面と、樹脂16の成長基板18側の面とは、下地基板11の上面からの高さが同一になっている。
 また、図7の(b)に示すように、半導体モジュール100Bでは、上面視において、成長基板182の最外形よりも樹脂16の最外形の方が大きくなるように、樹脂16が充填されている。例えば、下地基板11の駆動回路11aへの駆動電力供給用の電極が、上面視において、成長基板18の外側にある下地基板11の上面に形成されている場合を考える。この場合、駆動電力供給用の電極は、上面視において、成長基板18には覆われないが、樹脂16には覆われる。これにより、成長基板18の剥離工程において、樹脂16によって、成長基板18を剥離するために照射するレーザー光に対して駆動電力供給用の電極を保護することができる。
 また、図7の(c)に示すように、半導体モジュール100Cでは、下地基板11の上面、電極14、及び発光素子15の側面を全て覆うように、樹脂161が充填されているのではなく、樹脂161は、溝20の下地基板11側に部分的に形成されている。ここでは、樹脂161は、電極14の一部を覆うように形成されている。なお、下地基板11の上面からの、樹脂16の成長基板18側の面の高さは、下地基板11の上面から発光素子15の光出射面までの間の高さであればよい。樹脂16の厚みは0.2μm以上30μm以下の範囲にあることが好ましい。この厚みとは、下地基板11から成長基板18(又は成長基板182)に向かう方向に沿った厚みである。樹脂16の厚みが薄すぎると、レーザー光を反射したり吸収したりすることができず、下地基板11へのダメージが発生し得るため、樹脂16の厚みは0.2μm以上であることが好ましい。また、金属配線及び発光素子15のサイズとの兼ね合いにはなるが、樹脂16の厚みが厚すぎると、樹脂16の高さが、発光素子15の光射出面の高さよりも高くなってしまう。このため、樹脂16の厚みは30μm以下であることが好ましい。この高さとは、下地基板11からの高さであり、下地基板11から成長基板に向かう方向に沿った高さである。
 溝20の下地基板11側に樹脂16が形成されていることにより、樹脂16は下地基板11を保護することができる。また、樹脂16に、レーザー光の反射又は吸収の機能を有する材料を選定することで、成長基板18の剥離工程において、樹脂16がレーザー光を反射又は吸収することができる。これにより、下地基板11へのダメージを低減することができる。また、半導体モジュール100A・100Bでは、発光素子15の光出射面と、樹脂16の成長基板18側の面とは、下地基板11の上面からの高さが同一になっている。これにより、樹脂16によって、半導体モジュール100A・100Bの表面をより平滑にすることができる。また、半導体モジュール100A・100Bの表面をより平滑にすることにより、後述する実施形態7及び8のように、発光素子の光出射面に色変換層等を形成する場合に有利となる。
 (樹脂16)
 次に、樹脂16について説明するが、以下に説明することは樹脂161にも適用される。樹脂16は、発光素子15及び電極14を下地基板11に固定させると共に、発光素子15の側面から光が漏れることを防ぐ。樹脂16は、アンダーフィルとも呼ばれ、一例として液状である樹脂を硬化させて形成することが可能である。樹脂16は、半導体モジュール100Aにおける、下地基板11の上面と、発光素子15の側面の一部と、電極14の側面とを少なくとも含めた領域に、埋め込まれている。
 樹脂16は、下地基板11を保護することに加えて、レーザー光の反射又は吸収によって、成長基板18の剥離工程における下地基板11へのダメージを低減することができる。また、発光素子15の発光は、発光素子15における下地基板11側とは反対側の光出射面から放出される。したがって、発光素子15における少なくとも側面を樹脂16でもって被覆することにより、以下の作用および効果が得られる。第1に、発光素子15の側面から光が漏れ出すのを回避できる。第2に、発光素子15の光出射面からの発光と比較して、無視できないほどの色味差を有する光が、側面から外方へ放出するのを抑止して、全体の発光色における色ムラの発生を低減できる。第3に、側面方向へと進行した光を半導体モジュール100A(又は半導体モジュール100B・100C)の光取り出し方向側へと反射させ、さらに外部への発光領域を制限する。これにより、放出される光の指向性を高めると共に、光出射面151における発光輝度を高められる。第4に、発光素子15から発生する熱を樹脂16へ伝導させることによって、発光素子15の放熱性を高めることができる。第5に、発光素子15の発光層の耐湿性を高めることができる。
 発光素子15における光出射面から連続した側面、つまり、発光素子15の厚さ方向と平行な側面側が、樹脂16により被覆され、且つ発光素子15の光出射面が樹脂16から露出されていれば、その外面形状は特に限定しない。例えば、樹脂16が、下地基板11から成長基板18(又は成長基板182)に向かう方向に発光素子15の光出射面を超えて突出した構造でも構わない。また、図7の(c)に示すように、樹脂16が、下地基板11から成長基板18に向かう方向に発光素子15の光出射面に満たない構造でも構わない。
 半導体モジュール100A・100Bでは、図7の(a)及び(b)に示すように、樹脂16の成長基板18側の面が、発光素子15の光出射面の面状に沿うように構成される。つまり、樹脂16の被覆領域の表出面が、発光素子15の光出射面と略同一面となるように形成されている。これにより、半導体モジュール100A・100B内での発光特性のバラツキを抑え、歩留まりの向上につながる。また、側面の略全面を被覆することにより、発光素子15の放熱性を高めることができる。なお、この段落で説明されたことは、樹脂161には適用されない。
 本実施形態では、樹脂16は、レーザー光を反射するもの、又は、吸収する特性を持つ樹脂材料が好ましい。樹脂16の色は、白系の色又は黒系の色が好ましい。
 (電極14の固定強化)
 図2の(f)においては、基板側電極141の断面積が発光素子側電極142の断面積と異なるので、樹脂16は、基板側電極141の側面及び発光素子側電極142の側面に加えて、いずれかの電極の表面がむき出しになった領域(段差面)にも、密着される。段差面に対し、樹脂16の吸着作用が働くことによって、基板側電極141及び発光素子側電極142が下地基板11により強く固定される。
 図2の(f)に示すように、基板側電極141の断面積が発光素子側電極142の断面積よりも大きい場合、基板側電極141における段差面の上部から基板側電極141を下地基板11に向けて押さえつける固定力が、基板側電極141に働く。これにより、電極14及びその上に配置される発光素子15を、より安定して下地基板11に固定することができるので、より好ましい。発光素子15の光出射面と、樹脂16の成長基板18側の面とは、略同一の面とするのが望ましい。これにより、発光素子15の発光が発光素子15の側面から出射されることを抑えることができるので、発光素子15の発光効率を高めることができる。なお、この段落で樹脂16について説明されたことは、樹脂161には適用されない。
 (半導体モジュール100A~100Cの製造方法)
 半導体モジュール100A~100Cの製造方法について、図2及び図6に基づいて説明する。図6に示すステップS210~ステップS230、及びステップS260の処理はそれぞれ、図3に示すステップS110~ステップS140と同様の処理である。ここでは、ステップS230の処理とステップS260の処理との間に行われるステップS240及びステップS250の処理について説明する。
 (樹脂16の充填工程)
 ステップS230の貼り合わせ工程の完了後、下地基板11と成長基板18との間にできた空隙内に、液状樹脂16aを充填する(ステップS240)。液状樹脂16aは、発光素子15間の溝20に充填される。充填後の状態を図2の(f)に示す。この際、例えば、液状樹脂16aで満たされた容器内に、貼り合わせ状態で浸せばよい。液状樹脂16aの主材料は特に限定されないが、例えばエポキシ樹脂であることが好ましい。なお、液状樹脂16aの注入方法は上記以外に注射針、下地基板11と成長基板18との間にできた空隙のサイズに合ったマイクロニードルで液状樹脂16aを注入する方法でもよい。この場合の注射針の材料としては金属製、又はプラスチック製などが用いられる。液状樹脂16aは、下地基板11と成長基板18との間にできた空隙から毛細管現象により充填される。また、液状樹脂16aの充填量をコントロールすることで、半導体モジュール100A・100Bのように空隙内に完全に樹脂16を充填することもできる。また、液状樹脂16aの充填量をコントロールすることで、半導体モジュール100Cのように下地基板11側のみに、ある一定の厚みで樹脂16を充填することもできる。
 充填工程では、液状樹脂16aを50℃~200℃の温度範囲内の温度下で充填することが好ましい。これにより、液状樹脂16aを空隙内に正常に充填しやすくなる。さらに、温度範囲は、80℃~170℃であることがより好ましい。これにより、樹脂16の特性(後述する硬化プロセス後の密着性、放熱性など)を損なう恐れを減少させることができる。また、温度範囲は、100℃~150℃であることがなお一層好ましい。これにより、前記空隙に発生する気泡などを少なくすることができ、対流などが発生することなくほぼ完全に充填することができ、半導体モジュール100A~100Cを製造し易くなる。
 特に、個々の発光素子15の大きさを、例えば縦幅及び横幅が20μm以下、より好ましくは数μm~10数μm、発光素子15の厚みを数μm(2μm~10μm)程度の微小サイズとした場合を考える。この場合、成長基板18の剥離及び剥離後の工程において液状樹脂16aは固着力向上のための補強部材としてより有用に機能する。これにより、樹脂16の、半導体モジュール100A~100Cの製品間の特性のバラツキをより小さくできるため、半導体モジュール100A~100Cを製造し易くできる。
 空隙内に充填された液状樹脂16aは、図2の(f)に示すように、空隙内に完全に埋め込まれる。これにより、発光素子15の側面、電極14の側面及び段差面、並びに下地基板11の上部に、液状樹脂16aが埋め込まれる。液状樹脂16aの充填完了後、液状樹脂16aを硬化させる(ステップS250)。なお、液状樹脂16aを硬化させる方法については特に限定されないが、例えば、液状樹脂16aを加熱する、又は、液状樹脂16aに紫外線を照射する、ことにより液状樹脂16aを硬化させてもよい。
 上述した製造方法は、あくまで、半導体モジュール100A~100Cを製造可能とする方法の一例に過ぎない。ここに説明された各工程は、半導体モジュール100A~100Cを製造し易くするためのものであり、半導体モジュール100A~100Cの製造方法を構成する工程は、これらに限定されるものではない。
 〔実施形態5〕
 図8は、本発明の実施形態5に係る半導体モジュール101Aの断面構成を示す断面図である。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図8に示すように、半導体モジュール101Aは、半導体モジュール1と比べて、遮光性部材31を備えている点が異なる。レーザー照射時に下地基板11に向かうレーザー光が通過する、互いに隣接する発光素子15間の溝20の下地基板11側に、上面視において、溝20を遮るように遮光性部材31が配置されている。半導体モジュール101Aの構成を実現するための1つの方法としては、下地基板11に絶縁層13を形成した後、下地基板11の上面に遮光性部材31を形成し、遮光性部材31において電極14を形成する部分のみをエッチングなどにより取り除く。遮光性部材31は、CVD(Chemical Vapor Deposition)、MBE、又は貼り付け等により形成される。遮光性部材31が形成された後は、ステップS120の処理に移る。ステップS120の処理の後は、実施形態1と同様である。遮光性部材31は、ポリイミド、エポキシ、又はシリコーン等の樹脂であっても構わないし、それらが色材又はフィラーを含んでいても構わない。また、遮光性部材31は、GaN、SiO、SiN、又はSiC等の無機材料であっても構わない。遮光性部材31の厚みは0.2μm以上10μm以下の範囲にあることが好ましい。この厚みとは、下地基板11から成長基板18に向かう方向に沿った厚みである。
 半導体モジュール101Aでは、成長基板18の剥離工程において、遮光性部材31がレーザー光の反射又は吸収することにより、下地基板11へのダメージを低減することができるので、半導体モジュール101Aの製品品質を向上させることができる。また、遮光性部材31は、レーザー光を反射する光反射性部材であっても構わない。
 〔実施形態6〕
 図9は、本発明の実施形態6に係る半導体モジュール102A・102Bの断面構成を示す断面図である。図9の(a)は樹脂161aに凹凸形状が形成されている構成を示す図であり、図9の(b)は発光素子152及び樹脂161bに凹凸形状が形成されている構成を示す図である。図10は、本発明の実施形態6に係る半導体モジュール102A・102Bの製造方法を示すフローチャートである。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図9の(a)に示すように、半導体モジュール102Aは、半導体モジュール100Aと比べて、成長基板183aの下地基板11側の面上に凹凸形状が形成されている点、及び樹脂161aの成長基板183a側の面上に凹凸形状が形成されている点が異なる。具体的には、成長基板183aの下地基板11側の面上には、複数の凸部221が形成されており、樹脂161aの成長基板183a側の面上には、複数の凹部32が形成されている。樹脂161aと成長基板183aとが合わさったとき、凹部32は、凸部221によって形成される。凹部32は、樹脂161aについて、発光素子15間の溝20に充填された部分の成長基板183a側の面上に形成されている。また、成長基板183aの剥離工程において、樹脂161aの成長基板183a側の面上に凹凸形状が形成されるように、成長基板183aが剥離される。
 これにより、成長基板183aの剥離工程において、樹脂161aがレーザー光の反射又は吸収に加えて、成長基板183aに形成された凹凸形状によるレーザー光の散乱により発光素子15の間を通るレーザー光が減少する。これにより、下地基板11へのダメージを低減することができる。
 また、図9の(b)に示すように、半導体モジュール102Bでは、樹脂161bの成長基板183b側の面上に凹凸形状が形成されているだけでなく、発光素子152の光出射面にも凹凸形状が形成されている。具体的には、成長基板183bの下地基板11側の面上には、複数の凸部22aが形成されており、発光素子152の光出射面上には、複数の凹部231が形成されている。また、樹脂161bの成長基板183b側の面上には、凹部32が形成されている。発光素子152及び樹脂161bと成長基板183bとが合わさったとき、凹部32・231は、凸部22aによって形成される。
 これにより、成長基板183bに形成された凹凸形状によって下地基板11へのダメージを低減させつつ、発光素子152の光出射面上に凹凸形状が形成されていることによって発光素子152からの光取り出し効率を向上させることができる。よって、半導体モジュール102Bの製品品質を向上させることができる。
 なお、半導体モジュール102A・102Bの構成を実現するための1つの方法としては、成長基板183a(又は成長基板183b)として、PSS等の凹凸形状を有する成長基板を用いればよい。凹凸形状を有する成長基板を用いること以外は、半導体モジュール100Aの製造方法と同様である。
 (半導体モジュール102A・102Bの製造方法)
 半導体モジュール102A・102Bの製造方法について、図2及び図10に基づいて説明する。図10に示すステップS310~ステップS330、ステップS360の処理はそれぞれ、図3に示すステップS110~ステップS140と同様の処理である。また、図10に示すステップS340及びステップS350の処理は、図6に示すステップS240及びステップS250と同様の処理である。ここでは、ステップS360の処理の後に行われるステップS370及びステップS380の処理について説明する。
 (発光素子15の剥離面の研磨工程)
 ステップS360の剥離工程の完了後、n型窒化物系化合物半導体積層構造の露出表面(発光素子15の剥離面)を研磨する(ステップS370)。半導体モジュール102A・102Bの製造方法においては、成長基板183aが剥離されて露出した発光素子15の露出表面を研磨する研磨工程を含むことを特徴としている。研磨工程において、発光素子15の露出表面の研磨は、CMP(Chemical Mechanical Polish)等で実施することができる。成長基板183aとしてPSSを用いた場合でも、発光素子15の光出射面上の凹凸形状がなくなるまで研磨することも可能である。発光素子15の光出射面上の凹凸形状がなくなるまで研磨した場合、本実施形態の半導体モジュールの構成は、図7の(a)及び図7の(b)に示すような半導体モジュール100A・100Bの構成と同様になる。なお、CMPに用いる研磨剤として、SiO、Al、ダイヤモンド、Mn、及びCeO等を用いることができ、特にSiOであることが好ましい。
 (発光素子15の剥離面の洗浄工程)
 発光素子15の剥離面の研磨工程の完了後、研磨されたn型窒化物系化合物半導体積層構造の露出表面(発光素子15の剥離面)を洗浄する(ステップS380)。なお、ステップS360の剥離工程の完了後、洗浄工程(ステップS380)を行った後、研磨工程(ステップS370)を行ってもよい。洗浄工程を行った後、研磨工程を行う場合、研磨工程を行った後に、再度洗浄工程を行う。また、ステップS360の剥離工程の完了後、洗浄工程を行わずに研磨工程のみを行ってもよく、研磨工程を行わずに洗浄工程のみを行ってもよい。
 ステップS370の研磨工程の完了後、n型窒化物系化合物半導体積層構造の露出表面(発光素子15の剥離面)上には、研磨の際に生じた残渣が残っている。また、レーザー照射によって成長基板183aが剥離して露出したn型窒化物系化合物半導体積層構造の露出表面(発光素子15の剥離面)上にはGa等のドロップレットが生じる。このドロップレットは、ステップS370の研磨工程の完了後にも残存している可能性が高い。このため、Gaの融点以上の温度の水(お湯)及び希塩酸類として1種類以上の洗浄剤を選択し、その露出表面をその洗浄剤によって洗浄する。
 つまり、半導体モジュール102A・102Bの製造方法においては、成長基板183aが剥離されて露出した発光素子15の露出表面を洗浄する洗浄工程を含むことを特徴としている。洗浄工程において、露出表面をお湯で拭く又はお湯に浸けることによって、露出表面上の残渣を取り除くことができる。また、室温の希塩酸類もしくは沸騰させた希塩酸類に露出表面を浸ける、又は室温の希塩酸類もしくは沸騰させた希塩酸類で拭くことも好ましい。さらに、まず露出表面をお湯で拭き、且つお湯に浸けて、その後に希塩酸類に浸けることがより好ましい。
 発光素子15の露出表面を洗浄しない場合、n型窒化物系化合物半導体層が光出射面となるとき、露出表面上に残った残渣及び/又はGa等のドロップレットによって、光が吸収、反射、及び散乱されることで、発光素子15の発光層からの発光が遮られる。よって、発光素子15の光取り出し効率が低下する。また、その洗浄されたn型窒化物系化合物半導体層が光出射面となるとき、発光素子15の露出表面を洗浄することにより、発光素子15の発光層からの発光が遮られることがない。よって、発光素子15の光取り出し効率を格段に向上させることができる。また、発光素子15の露出表面の洗浄に利用するお湯は、Gaの融点以上の温度であることが好ましく、希塩酸類の温度は、室温以上で110℃以下であることが好ましい。
 また、研磨工程及び/又は洗浄工程を行うことにより、発光素子15の光出射面、及び樹脂161aの成長基板183a側の面に、残渣が残らないようにすることができる。特に研磨工程を実施することで、発光素子15の光射出面、及び樹脂161aの成長基板183a側の面を略平面の形状とすることができる。このため、発光素子15上に色変換層を形成する場合に、残渣が残らない平面上に色変換層を塗布又はパターニングすることができる。これにより、複数の発光素子15上に、より均一な厚みの色変換層を形成することができる。
 なお、色変換層は、蛍光体又は光吸収材料等の色変換材料、及び母材となる樹脂等からなり、発光素子15が出射した光のスペクトルを変換し、例えば、緑色又は赤色等に変換するためのものである。
 以上のように、成長基板183aの剥離後に洗浄工程及び/又は研磨工程を実施することにより、発光素子15の光出射面、及び樹脂161aの成長基板183a側の面に、残渣が残らないようにすることができる。よって、発光素子15の光取り出し効率を向上させることができる。また、発光素子15上に色変換層を形成する場合に、残渣が残らない平面上に色変換層を塗布又はパターニングすることができる。よって、色変換層を有する半導体モジュールを製造する場合に、半導体モジュールの製品品質を向上させることができる。
 上述した製造方法は、あくまで、半導体モジュール102A・102Bを製造可能とする方法の一例に過ぎない。ここに説明された各工程は、半導体モジュール102A・102Bを製造し易くするためのものであり、半導体モジュール102A・102Bの製造方法を構成する工程は、これらに限定されるものではない。
 〔実施形態7〕
 図11は、本発明の実施形態7に係る半導体モジュール103の断面構成を示す断面図である。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図11に示すように、半導体モジュール103は、半導体モジュール102Bと比べて、透光性質樹脂41及び色変換層42・43を備えている点が異なる。色変換層42・43には複数の種類が考えられる。例えば、半導体モジュール103では、色変換層42は緑色変換層であり、色変換層43は赤色変換層である。また、例えば、半導体モジュール103が備える発光素子152は、青色光を出射する青色LEDである。半導体モジュール103の製造方法においては、ステップ370の洗浄工程及び/又はステップS380の研磨工程の後に、発光素子152の各々の上部(光出射面)に透光性質樹脂41及び色変換層42・43が配置される。
 透光性質樹脂41は、発光素子152の上部に配置されており、色変換層42は、透光性質樹脂41が配置された発光素子152と隣接する発光素子152の上部(光出射面)に配置されている。色変換層43は、色変換層42が配置された発光素子152について、透光性質樹脂41が配置された発光素子152側とは反対側と隣接する発光素子152の上部(光出射面)に配置されている。透光性質樹脂41及び色変換層42・43の各々は、少なくとも発光素子152の光出射面を覆うように、例えばフォトリソグラフィー法又はスクリーン印刷等の手法によって形成される。
 透光性質樹脂41は、その直下に配置される発光素子152から出射された光の波長を変換せず、その光を通過させる。つまり、透光性質樹脂41は青色光を出射する。色変換層42は、その直下に配置される発光素子152から出射された光の波長を変換し、緑色光を出射する。色変換層43は、その直下に配置される発光素子152から出射された光の波長を変換し、赤色光を出射する。これにより、半導体モジュール103は、赤色光、緑色光、及び青色光の三原色の色を発光することができる。また、半導体モジュール103が組み込まれる表示装置は、それぞれの発光素子152を制御することによりカラー表示を行うことができる。
 色変換層42・43は、例えば、具体的にガラス板、ガラス板に光変換部材を備えたもの、光変換部材の蛍光体結晶もしくは蛍光体結晶の相を有する単結晶体もしくは多結晶体、アモルファス体、又はセラミック体等から構成される。また、色変換層42・43は、例えば、蛍光体結晶粒子と適宜付加された透光性部材との焼結体、凝集体、多孔質性材料、それらに透光性部材(例えば樹脂)を混入もしくは含浸したもの等から構成される。さらに、色変換層42・43は、蛍光体結晶粒子を含有する透光性部材、例えば透光性樹脂の成形体等から構成される。
 なお、上記透光性部材は、耐熱性の観点から、樹脂等の有機材料よりも無機材料で構成されることが好ましい。具体的には、上記透光性部材は、蛍光体結晶粒子を含有する透光性の無機材料からなることが好ましく、特に蛍光体結晶粒子と無機物(結合材)との焼結体、又は蛍光体結晶粒子からなる焼結体もしくは単結晶で成形することが好ましい。これにより、上記透光性部材の信頼性が高まる。なお、3価Ceを賦活したYAl12の蛍光体を用いる場合、信頼性の観点から、YAl12の単結晶、高純度の焼結体、アルミナ(Al)を結合材(バインダー)とするYAl12/アルミナの焼結体が好ましい。また、色変換層42・43の形状は特に限定されないが、半導体モジュール103では、色変換層42・43の形状は直方体形状である。また、色変換層42・43の厚みを略一定とすることで、色変換層42・43内の蛍光体(波長変換部材)の偏在を抑止することができ、色変換層42・43を通過する光の波長変換量を略均一にすることができる。これにより、混色の割合を安定させ、半導体モジュール103の光出射における色ムラを抑止することができる。色変換層42・43の厚みとは、下地基板11から発光素子152に向かう方向に沿った厚みである。また、半導体モジュール103の製造方法において、色変換層42・43の形状が直方体形状であると、色変換層42・43を容易に形成することができる。さらに、発光素子152の光取り出し効率の観点から、色変換層42・43の発光素子152とは反対側の面の形状を凹凸形状又は半球形状にしたり、その面における端面に角度を付けたりすることで、光取り出し効率を向上させることができる。また、研磨・洗浄等により、発光素子152の光射出面と樹脂16の上面とからなる面を略均一な面とすることができる。これにより、色変換層42の主面と色変換層43の主面とが略平行になるよう容易に位置合わせすることができる。
 また、発光素子152と好適に組み合わせて白色発光とすることができ、波長変換部材に用いられる代表的な蛍光体としては、3価Ceを賦活したYAl12及び3価Ceを賦活したLuAl12の蛍光体が挙げられる。それらの蛍光体の一般式としては、(Re1-xCe(Al1-yGa12(0≦x<0.2、0≦y≦1、Reは、Y、Gd、La、及びLuからなる群より選択される少なくとも1種の元素である。)で表される。この他、3価Ceを賦活した(La1-x-yGdSi11、3価Ceを賦活したアルファ型SiAlON、2価Euを賦活した(Ca1-x-ySrBa(PO(Cl1-z)、3価Ceを賦活した(Lu1-x-yLa)Si、2価Euを賦活したBaMgAl1017、2価Eu及び2価Mnを賦活したBaMgAl1017、2価Euを賦活した(Sr1-xBaSiO、2価Euを賦活した(Sr、Ba)SiO、2価Euを賦活したベータ型SiAlON、3価Ceを賦活した(Ca1-x-ySrBa(Sc1-zSi12、2価Euを賦活した(Ca1-x-ySrBa)Si、4価Mnを賦活したK(Si1-xGe)F、並びに2価Euを賦活した(Ca1-xSr)AlSiN等を用いることができる。x及びyについては、0≦x<0.2、0≦y≦1である。これら蛍光体のうち、少なくとも1種を含む蛍光体を波長変換部材に使用できる。
 半導体モジュール103では、少なくとも発光素子152の光出射面には、残渣が残らないようにされているので、透光性質樹脂41、色変換層42、及び色変換層43を、発光素子152の光出射面に対して密着力を上げることができる。また、透光性質樹脂41、色変換層42、及び色変換層43の厚みの均一化も図れるので光学特性が向上する。また、実施形態6で説明したような研磨工程及び洗浄工程等により、発光素子152の光射出面と樹脂162の上面からなる面を略均一な面とする。これにより、透光性質樹脂41、色変換層42、及び色変換層43の膜厚を決定することが容易となり、光学特性を向上させることができる。また、各種蛍光体の形成工程(例えばフォトリソグラフィー法又はスクリーン印刷等)において安定なパターン形成が可能となり、製品品質を向上させることができる。
 〔実施形態8〕
 図12は、本発明の実施形態8に係る半導体モジュール104の断面構成を示す断面図である。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図12に示すように、半導体モジュール104は、半導体モジュール103と比べて、色変換層42の上部に光吸収層51が配置されている点、及び色変換層43の上部に光吸収層52が配置されている点が異なる。光吸収層51・52は、色素分子等の光吸収材料を少なくとも1種類以上含んでおり、光吸収層51が含む光吸収材料と光吸収層52が含む光吸収材料とは同一であっても構わないし、異なっていても構わない。また、透光性質樹脂41の上部にも、光吸収層(不図示)が配置されていても構わない。
 光吸収層51・52の形成方法について以下に説明する。例えば、光吸収層51・52を構成する材料は、光吸収材料として色素を含む樹脂からなっており、さらに感光性が付与されている。例えば、スピンコート塗布により、色変換層上に光吸収材料を均一に塗布した後、フォトリソグラフィー法により、上記光吸収材料が少なくとも色変換層の上面(光出射面)を覆うように光吸収層51・52が形成される。光吸収層51・52を構成する材料に感光性を付与されていない場合でも、スクリーン印刷又はエッチング等の手法によって、上記光吸収材料が少なくとも色変換層の上面を覆うように光吸収層51・52を形成することができる。
 例えば、光吸収層52は、発光素子152及び色変換層43からの発光スペクトルのうち、特定の波長の光を吸収することで、半導体モジュール104の色再現範囲を向上させることが可能となる。光吸収層52は、色変換層43から出射される赤色蛍光体からの光のうち、630nmよりも短波長の光成分、及び650nmよりも長波長の光成分を吸収する。また、光吸収層52は、発光素子152から出射される青色光のうち、色変換層43に含有される赤色蛍光体に吸収されずに色変換層43を透過した青色光を吸収する。これにより、光吸収層52から出射される光は、630nm以上650nm以下のスペクトル成分が主たるものとなることで、より純度の高い赤色を得ることが可能となる。光吸収層51も、光吸収層52と類似の機能を有することにより、純度の高い緑色を得るように作用する。このように、光吸収層51・52がそれぞれ、色変換層42・43の上部に配置されることにより、半導体モジュール104の色再現範囲を向上させることができ、半導体モジュール104の製品品質を向上させることができる。
 〔実施形態9〕
 図13は、本発明の実施形態9に係る半導体モジュール105の断面構成を示す断面図である。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図13に示すように、半導体モジュール105は、半導体モジュール1と比べて、発光素子として、複数の青色発光素子153aだけでなく、複数の緑色発光素子153b及び複数の赤色発光素子153cが搭載されていている点が異なる。青色発光素子153a及び緑色発光素子153b、又は、青色発光素子153a及び赤色発光素子153cのいずれかの組み合わせで半導体モジュール105が構成されていてもよい。青色発光素子153a、緑色発光素子153b、及び赤色発光素子153cは、下地基板11に対して、金属配線及び電極14を介して電気的に接続され、下地基板11の駆動回路11aにより動作させることが可能である。青色発光素子153a間の距離は0.1μm以上20μm以下である。また、各発光素子間の距離は0.1μm以上20μm以下であることが好ましい。この発光素子15間の距離が20μm以下であれば、レーザー照射により下地基板11側へ到達するレーザー光量が小さくなるため、成長基板の剥離工程において、下地基板11、金属配線、絶縁層、及び電極14へのダメージを低減することができる。また、高精細な画像表示が可能となる。一方、溝20の幅が狭くなると、隣接する電極14間の静電容量が増加し、発光素子に電圧を印加したときに、隣接する電極14間にカップリングノイズによる起電力が発生する可能性がある。これにより、発光素子の精密な点灯制御を妨げたり、発光素子に逆電圧が印加されたりすることで、発光素子の劣化が発生し得る。このため、溝20の幅は0.1μm以上であることが好ましい。また、半導体モジュール105の信頼性の点で、発光素子は、製造時の初期の発光強度に対して、1000時間点灯した後に50%以上の発光強度を維持することが望ましい。逆電圧による発光素子の劣化を防ぐためにも、発光素子間の距離は0.1μm以上であることが望ましい。
 青色発光素子153a、緑色発光素子153b、及び赤色発光素子153cの形成方法について以下に説明する。青色発光素子153aは、実施形態1の発光素子の形成工程と同様に、成長基板上に半導体層をエピタキシャル成長させ、メサ工程及び電極の形成を経て形成される。緑色発光素子153b及び赤色発光素子153cは、下地基板11上に金属配線及び絶縁層を形成した後、個々に下地基板11上に搭載する。その後、成長基板と下地基板11との位置合わせ工程以降は、その他の実施形態と同様の工程を経て、半導体モジュール105を製造することができる。半導体モジュール105を製造する別の方法として、下地基板11に対して、青色発光素子153aを形成した成長基板を位置合わせ及び貼り合わせした後、青色発光素子153aの成長基板を剥離する。また、緑色発光素子153bを形成した成長基板を位置合わせ及び貼り合わせした後、緑色発光素子153bの成長基板を剥離する。さらに、赤色発光素子153cを形成した成長基板を位置合わせ及び貼り合わせした後、赤色発光素子153cの成長基板を剥離、研磨、又はエッチング等により、成長基板を削除する工程がある。なお、緑色発光素子153b及び赤色発光素子153cの成長基板の剥離は、成長基板の一部又は全てを剥離する。後者の工程においては、例えば、成長基板はサファイア基板、青色発光素子はGaN系半導体、緑色発光素子153bはInGaN系半導体、赤色発光素子153cはGaAs系半導体である。また、各色の発光素子の高さは略同一、又は青色発光素子153aが最も低いようにし、赤色発光素子153cが最も高いようにする。これにより、各発光素子の貼り合わせのときに、各色の発光素子の成長基板と先に搭載した発光素子との機械的な干渉を防ぐことができる。ただし、各色の発光素子の貼り合わせの順序を変更することも可能であり、その場合には、各発光素子の高さへの要求は異なる。加えて、青色発光素子153a、緑色発光素子153b、及び赤色発光素子153cの上面の高さは、異なっていてもよいし、略均一であってもよい。異なる高さの青色発光素子153a、緑色発光素子153b、及び赤色発光素子153cを用いて成長基板と下地基板11とを貼り合わせ、成長基板を剥離する。その後、研磨工程により青色発光素子153a、緑色発光素子153b、及び赤色発光素子153cの高さを均一とすることも可能である。また、実施形態4、6、7、及び8のように各発光素子間に、光反射又は吸収特性を持つ樹脂を注入及び形成することで、各々の発光素子の発光が隣接する発光素子上へ到達する量を低減することができる。これにより、表示装置は、高精細な画像表示を行うことが可能となる。
 上述した製造方法は、あくまで、半導体モジュール105を製造可能とする方法の一例に過ぎない。ここに説明された各工程は、半導体モジュール105を製造し易くするためのものであり、半導体モジュール105の製造方法を構成する工程は、これらに限定されるものではない。
 〔実施形態10〕
 図14は、本発明の実施形態10に係る半導体モジュール106の製造方法を説明する図である。図15は、本発明の実施形態10に係る半導体モジュール106の製造方法を示すフローチャートである。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 (半導体モジュール106の製造方法)
 半導体モジュール106の製造方法について、図14及び図15に基づいて説明する。図15に示すステップS410~ステップS440の処理はそれぞれ、図3に示すステップS110~ステップS140と同様の処理である。また、図15に示すステップS460、ステップS480、及びステップS490の処理は、図10に示すステップS350、ステップS370、及びステップS380と同様の処理である。
 ここでは、ステップS440の処理の後に行われるステップS450、ステップS460の処理の後に行われるステップS470、及びステップS490の処理の後に行われるステップS500・ステップS510の処理について説明する。
 図14の(a)に示すように、下地基板11上には、電極14を介して発光素子15が設けられているだけではなく、金属端子61及び絶縁層62が設けられている。金属端子61は、下地基板11に形成された駆動回路11aを駆動するための電力を外部から供給するためのものである。金属端子61は、下地基板11に形成された駆動回路11aと電気的に接続されており、電極14と電気的に接続されている。
 ステップS440の剥離工程の完了後、図14の(b)に示すように、樹脂164の充填工程にて、下地基板11の上面、及び発光素子15の全露出面を覆うように樹脂164を充填する(ステップS450)。また、樹脂164の充填工程では、電極14、金属端子61、及び絶縁層62の全露出面が樹脂164に覆われる。
 ステップS450の充填工程の完了後、図14の(c)に示すように、発光素子15の上面を含む下地基板11からの高さ(水平面)より上にある樹脂164の部分を除去する。つまり、樹脂164の一部(発光素子15の上面から樹脂164の上面に達するまでの厚みに相当する部分)を除去する(ステップS470)。これにより、発光素子15の上面が露出するので、後述するステップS510の処理において、発光素子15を基準として、樹脂164aを除去する装置(不図示)と金属端子61との位置合わせを行うことができる。
 ステップS470の樹脂164の一部を除去する工程の完了後、発光素子15の上面を研磨する(ステップS480)。発光素子15の上面が研磨されることにより、発光素子15の上面の下地基板11からの高さが低くなる(発光素子15の厚みが研磨により薄くなる)。ステップS480の発光素子15の上面を研磨する工程の完了後、発光素子15の上面を洗浄する(ステップS490)。ステップS490の発光素子15の上面を洗浄する工程の完了後、樹脂164は樹脂164aになる。
 ステップS490の発光素子15の上面を洗浄する工程の完了後、図14の(d)に示すように、異なる発光素子15の上部にそれぞれ、色変換層42・43を配置する(ステップS500)。具体的には、発光素子15の上部に色変換層42を配置し、上部に色変換層42が配置された発光素子15と隣接する発光素子15の上部に色変換層43を配置する。
 ステップS500の発光素子15に色変換層42・43を配置する工程の完了後、図14の(e)に示すように、金属端子61上にある樹脂164aの部分を除去する(ステップS510)。金属端子61上にある樹脂164aの部分を除去すると、金属端子61上には、凹部71が形成される。
 凹部71に金(Au)バンプを形成して外部接続用の電極とする。
 また、金属端子61の周囲の樹脂164aの部分を除去する。具体的には、金属端子61の上面近傍より上にある樹脂164aの部分を除去、又は、絶縁層62の上面より上にある樹脂164aの部分を除去する。さらに、露出した金属端子61に、ワイヤボンディング、はんだ付け、金(Au)バンプの形成、又はコネクタの接続を行う。
 以上により、金属端子61と外部とを容易に接続することができるので、半導体モジュール106に容易に電力供給することができる。
 半導体モジュール106は、電気配線を有する、ポリイミドなどのフィルム上、又はその他基板に実装することが可能である。これにより、半導体モジュール106の表示装置への実装が容易になる。例えば、ポリイミドなどのフィルムの一方の側に半導体モジュール106と接続する接続コネクタを設け、ポリイミドなどのフィルムの他方の側に表示装置と接続する接続コネクタを設ける。半導体モジュール106が実装されたポリイミドなどのフィルムは折り曲げが可能であるので、半導体モジュール106を表示装置に容易に実装することができる。
 〔半導体モジュールの製造方法について〕
 なお、上記各実施形態において、発光素子に分離溝を形成するステップS110、S210、S310、S410と、下地基板に基板側電極を形成するステップS120、S220、S320、S420とは、工程順序が逆であってもよいことは言うまでもない。
 〔まとめ〕
 本発明の態様1に係る半導体モジュール1、10、10A~10E、100A~100C、101A、102A、102B、103、104、105は、駆動回路11aが形成された下地基板11と、前記駆動回路と電気的に接続された、複数の発光素子15、151a~151d、152とを備え、互いに隣接する前記発光素子間の距離は、上面視において、20μm以下である。
 上記構成によれば、発光素子間の距離が、上面視において、0.1μm以上20μm以下である。これにより、例えば、成長基板を剥離させるとき、レーザー光の照射時に下地基板に到達するレーザー光の強度は低いものとなる。このため、成長基板を剥離させるときに伴う下地基板へのダメージを低減することができる。したがって、成長基板を剥離する工程等において、発光素子を駆動させる駆動回路を有する下地基板に対してのダメージを低減させることができる。
 本発明の態様2に係る半導体モジュール10は、駆動回路11aが形成された下地基板11と、前記駆動回路と電気的に接続された、複数の発光素子15と、互いに隣接する前記発光素子間の空間の前記下地基板とは反対側に、上面視において、前記空間を遮る半導体層とを備える。
 上記構成によれば、例えば、レーザー光の照射によって複数の発光素子から成長基板を剥離させるとき、半導体層がレーザー光を吸収することで、駆動回路を有する下地基板へのダメージを抑制することができる。さらに、半導体モジュールの成長基板側の表面をより平滑にすることもできる。
 本発明の態様3に係る半導体モジュール10A~10D、102B、103、104は、駆動回路11aが形成された下地基板11と、前記駆動回路と電気的に接続された、複数の発光素子151a~151d、152とを備え、前記複数の発光素子の各々の前記下地基板とは反対側の面が凹凸形状である。
 上記構成によれば、発光素子の各々の下地基板とは反対側の面上が凹凸形状であることにより、発光素子からの光取り出し効率を向上させることができる。よって、半導体モジュールでは、発光素子からの光取り出し効率を向上させることができるので、半導体モジュールの製品品質を向上させることができる。
 本発明の態様4に係る半導体モジュール100A~100C、102A、102B、103、104は、駆動回路11aが形成された下地基板11と、前記駆動回路と電気的に接続された、複数の発光素子15、152と、互いに隣接する前記発光素子間の溝に充填されている樹脂16、161、161a、161b、162、163とを備える。
 上記構成によれば、発光素子間の溝に、樹脂が充填されていることにより、樹脂は下地基板を保護することができる。また、例えば、樹脂に、レーザー光の反射又は吸収の機能を有する材料を選定することで、成長基板の剥離工程において、樹脂がレーザー光を反射又は吸収することができる。これにより、下地基板へのダメージを低減することができる。
 本発明の態様5に係る半導体モジュール101Aは、駆動回路11aが形成された下地基板11と、前記駆動回路と電気的に接続された、複数の発光素子15と、互いに隣接する前記発光素子間の溝の前記下地基板側に、上面視において、前記溝を遮る遮光性部材31又は光反射性部材とを備える。
 上記構成によれば、上面視において、遮光性部材又は光反射性部材が溝を遮る。これにより、成長基板の剥離工程において、遮光性部材がレーザー光を反射又は吸収することにより発光素子間を通るレーザー光が減少する。これにより、下地基板へのダメージを低減することができるので、半導体モジュールの製品品質を向上させることができる。
 本発明の態様6に係る半導体モジュール102A、102B、103、104は、上記態様4において、前記樹脂161a、161b、162、163の前記下地基板11とは反対側の面が凹凸形状であってもよい。
 本発明の態様7に係る半導体モジュール103、104は、上記態様1~6のいずれかにおいて、前記複数の発光素子152の各々の上部に配置された複数の色変換層42・43を備えてもよい。
 上記構成によれば、複数の発光素子の各々の上部に複数の色変換層が配置される。これにより、発光素子から出射された光が色変換層を通過することで、例えば、様々な種類の色変換層を用いると、複数の色変換層から様々な色の光を出射することができる。
 本発明の態様8に係る表示装置は、上記態様1~7のいずれかにおいて、前記半導体モジュール1、10、10A~10E、100A~100C、101A、102A、102B、103、104を備えてもよい。
 本発明の態様9に係る半導体モジュールの製造方法は、成長基板上に成長された半導体層から複数の発光素子を形成する工程と、前記複数の発光素子からレーザー照射により前記成長基板を剥離する工程とを含み、前記複数の発光素子を形成する工程は、前記レーザー照射時に下地基板に向かうレーザー光が通過する、互いに隣接する前記発光素子間の距離を、上面視において、0.1μm以上20μm以下に形成する工程を含み、前記複数の発光素子は、前記下地基板に形成された駆動回路と電気的に接続されている。
 上記構成によれば、上記態様1と同様の効果を奏する。
 本発明の態様10に係る半導体モジュールの製造方法は、上記態様9において、前記複数の発光素子を形成する工程は、前記レーザー照射時に前記下地基板に向かうレーザー光が通過する、互いに隣接する前記発光素子間の空間の前記成長基板側に、上面視において、前記空間を遮るように、厚さ0.1μm以上3μm以下の前記半導体層を残存させる工程をさらに含み、前記半導体層は、窒化物半導体層であってもよい。
 上記構成によれば、上記態様2と同様の効果を奏する。
 本発明の態様11に係る半導体モジュールの製造方法は、上記態様9又は10において、前記成長基板を剥離する工程は、前記複数の発光素子の各々の前記成長基板側の面に凹凸形状を形成する工程を含んでもよい。
 上記構成によれば、上記態様3と同様の効果を奏する。
 本発明の態様12に係る半導体モジュールの製造方法は、上記態様9又は10において、互いに隣接する前記発光素子間の溝に樹脂を充填する工程をさらに含んでもよい。
 上記構成によれば、上記態様4と同様の効果を奏する。
 本発明の態様13に係る半導体モジュールの製造方法は、上記態様12において、前記樹脂を充填する工程にて、前記下地基板の上面、及び前記発光素子の全露出面を覆うように前記樹脂を充填してもよい。
 上記構成によれば、樹脂により下地基板の上面、及び発光素子の全露出面を覆うことにより、例えば、樹脂の上面を平坦にし、発光素子の剥離面を研磨する研磨工程にて平坦な面を形成することが容易となる。平坦な面が形成されることにより色変換層を塗布し易くなる。
 本発明の態様14に係る半導体モジュールの製造方法は、上記態様12において、前記成長基板を剥離する工程は、前記樹脂の前記成長基板側の面に凹凸形状を形成する工程を含んでもよい。
 本発明の態様15に係る半導体モジュールの製造方法は、上記態様12又は13において、前記発光素子の剥離面を研磨する工程をさらに含んでもよい。
 上記構成によれば、成長基板の剥離後に発光素子の剥離面を研磨する工程を実施することにより、発光素子の剥離面に残渣が残らないようにすることができる。よって、発光素子の光取り出し効率を向上させることができる。また、例えば、発光素子上に色変換層を形成する場合に、残渣が残らない平面上に色変換層を塗布又はパターニングすることができる。よって、色変換層を有する半導体モジュールを製造する場合に、半導体モジュールの製品品質を向上させることができる。
 本発明の態様16に係る半導体モジュールの製造方法は、上記態様15において、前記発光素子の剥離面を研磨した後、前記発光素子の剥離面を洗浄する工程をさらに含んでもよい。
 上記構成によれば、発光素子の剥離面を研磨した後、発光素子の剥離面を洗浄する工程を実施することにより、発光素子の剥離面に残渣が残らないようにすることができる。よって、発光素子の光取り出し効率を向上させることができる。また、例えば、発光素子上に色変換層を形成する場合に、残渣が残らない平面上に色変換層を塗布又はパターニングすることができる。よって、色変換層を有する半導体モジュールを製造する場合に、半導体モジュールの製品品質を向上させることができる。
 本発明の態様17に係る表示装置は、上記態様9~16のいずれかにおいて、前記半導体モジュールの製造方法を用いて製造された半導体モジュールを備えてもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1、10、10A、10B、10C、10D、10E、
 100A、100B、100C、101A、102A、
 102B、103、104、105、106 半導体モジュール
 11 下地基板
 11a 駆動回路
 12 金属配線
 13、62 絶縁層
 14 電極
 15、151a、151b、151c、151d、151e、152 発光素子
 16、161、161a、161b、162、164、164a 樹脂
 16a 液状樹脂
 18、181a、181b、181c、181d、
 181e、182、183a、183b 成長基板
 19 分離溝
 21 GaN膜
 22a、22b、22c、22d、22e、221 凸部
 23a、23b、23c、23d、32、71、231 凹部
 31 遮光性部材
 41 透光性質樹脂
 42、43 色変換層
 51、52 光吸収層
 61 金属端子
 141 基板側電極
 142 発光素子側電極
 151 光出射面
 153a 青色発光素子
 153b 緑色発光素子
 153c 赤色発光素子

Claims (17)

  1.  駆動回路が形成された下地基板と、
     前記駆動回路と電気的に接続された、複数の発光素子と
    を備え、
     互いに隣接する前記発光素子間の距離は、上面視において、20μm以下であることを特徴とする半導体モジュール。
  2.  駆動回路が形成された下地基板と、
     前記駆動回路と電気的に接続された、複数の発光素子と、
     互いに隣接する前記発光素子間の溝の前記下地基板とは反対側に、上面視において、前記溝を遮る半導体層と
    を備えることを特徴とする半導体モジュール。
  3.  駆動回路が形成された下地基板と、
     前記駆動回路と電気的に接続された、複数の発光素子と
    を備え、
     前記複数の発光素子の各々の前記下地基板とは反対側の面が凹凸形状であることを特徴とする半導体モジュール。
  4.  駆動回路が形成された下地基板と、
     前記駆動回路と電気的に接続された、複数の発光素子と、
     互いに隣接する前記発光素子間の溝に充填されている樹脂と
    を備えることを特徴とする半導体モジュール。
  5.  駆動回路が形成された下地基板と、
     前記駆動回路と電気的に接続された、複数の発光素子と、
     互いに隣接する前記発光素子間の溝の前記下地基板側に、上面視において、前記溝を遮る遮光性部材又は光反射性部材と
    を備えることを特徴とする半導体モジュール。
  6.  前記樹脂の前記下地基板とは反対側の面が凹凸形状であることを特徴とする請求項4に記載の半導体モジュール。
  7.  前記複数の発光素子の各々の上部に配置された複数の色変換層を備えることを特徴とする請求項1~6のいずれか一項に記載の半導体モジュール。
  8.  請求項1~7のいずれか一項に記載の半導体モジュールを備えることを特徴とする表示装置。
  9.  成長基板上に成長された半導体層から複数の発光素子を形成する工程と、
     前記複数の発光素子からレーザー照射により前記成長基板を剥離する工程と
    を含み、
     前記複数の発光素子を形成する工程は、前記レーザー照射時に下地基板に向かうレーザー光が通過する、互いに隣接する前記発光素子間の距離を、上面視において、0.1μm以上20μm以下に形成する工程を含み、
     前記複数の発光素子は、前記下地基板に形成された駆動回路と電気的に接続されていることを特徴とする半導体モジュールの製造方法。
  10.  前記複数の発光素子を形成する工程は、前記レーザー照射時に前記下地基板に向かうレーザー光が通過する、互いに隣接する前記発光素子間の空間の前記成長基板側に、上面視において、前記空間を遮るように、厚さ0.1μm以上3μm以下の前記半導体層を残存させる工程をさらに含み、
     前記半導体層は、窒化物半導体層であることを特徴とする請求項9に記載の半導体モジュールの製造方法。
  11.  前記成長基板を剥離する工程は、前記複数の発光素子の各々の前記成長基板側の面に凹凸形状を形成する工程を含むことを特徴とする請求項9又は10に記載の半導体モジュールの製造方法。
  12.  互いに隣接する前記発光素子間の溝に樹脂を充填する工程をさらに含むことを特徴とする請求項9又は10に記載の半導体モジュールの製造方法。
  13.  前記樹脂を充填する工程にて、前記下地基板の上面、及び前記発光素子の全露出面を覆うように前記樹脂を充填することを特徴とする請求項12に記載の半導体モジュールの製造方法。
  14.  前記成長基板を剥離する工程は、前記樹脂の前記成長基板側の面に凹凸形状を形成する工程を含むことを特徴とする請求項12に記載の半導体モジュールの製造方法。
  15.  前記発光素子の剥離面を研磨する工程をさらに含むことを特徴とする請求項12又は13に記載の半導体モジュールの製造方法。
  16.  前記発光素子の剥離面を研磨した後、前記発光素子の剥離面を洗浄する工程をさらに含むことを特徴とする請求項15に記載の半導体モジュールの製造方法。
  17.  請求項9~16のいずれか一項に記載の半導体モジュールの製造方法を用いて製造された半導体モジュールを備えることを特徴とする表示装置。
PCT/JP2018/027076 2017-08-10 2018-07-19 半導体モジュール、表示装置、及び半導体モジュールの製造方法 WO2019031183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880051858.7A CN110998879B (zh) 2017-08-10 2018-07-19 半导体模块、显示装置以及半导体模块的制造方法
US16/637,685 US11508708B2 (en) 2017-08-10 2018-07-19 Semiconductor module, display apparatus, and semiconductor module manufacturing method
JP2019535059A JPWO2019031183A1 (ja) 2017-08-10 2018-07-19 半導体モジュール、表示装置、及び半導体モジュールの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-155904 2017-08-10
JP2017155904 2017-08-10
JP2017205600 2017-10-24
JP2017-205600 2017-10-24

Publications (1)

Publication Number Publication Date
WO2019031183A1 true WO2019031183A1 (ja) 2019-02-14

Family

ID=65272084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027076 WO2019031183A1 (ja) 2017-08-10 2018-07-19 半導体モジュール、表示装置、及び半導体モジュールの製造方法

Country Status (5)

Country Link
US (1) US11508708B2 (ja)
JP (1) JPWO2019031183A1 (ja)
CN (1) CN110998879B (ja)
TW (1) TWI700682B (ja)
WO (1) WO2019031183A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150208A (ja) * 2019-03-15 2020-09-17 市光工業株式会社 発光素子及び車両用灯具、並びに発光素子の製造方法
JP2020184617A (ja) * 2019-04-30 2020-11-12 シャープ株式会社 光源装置および発光装置
CN112349744A (zh) * 2019-08-07 2021-02-09 夏普福山半导体株式会社 图像显示元件
JP2021064789A (ja) * 2019-10-14 2021-04-22 隆達電子股▲ふん▼有限公司 発光ダイオードパッケージ構造
WO2024024192A1 (ja) * 2022-07-28 2024-02-01 デクセリアルズ株式会社 発光装置の製造方法及び黒色転写フィルム
JP7474770B2 (ja) 2019-09-18 2024-04-25 泉州三安半導体科技有限公司 発光ダイオードパッケージアセンブリ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062762A (ko) * 2018-11-27 2020-06-04 삼성전자주식회사 마이크로 광원 어레이, 이를 포함한 디스플레이 장치 및 디스플레이 장치의 제조 방법
TWI770813B (zh) * 2021-02-08 2022-07-11 友達光電股份有限公司 顯示裝置及其製造方法
TWI776654B (zh) * 2021-08-24 2022-09-01 友達光電股份有限公司 顯示裝置及其製造方法
CN114551656B (zh) * 2022-01-28 2022-11-22 福建兆元光电有限公司 一种彩色Micro LED显示芯片模组的制造方法
CN114446177B (zh) * 2022-02-15 2022-09-13 珠海华萃科技有限公司 一种软膜显示屏、显示器及显示屏制造工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012932A (ja) * 1996-01-18 1998-01-16 Motorola Inc 基板を除去したledディスプレイ・パッケージおよび製造方法
WO2007126092A1 (ja) * 2006-05-01 2007-11-08 Mitsubishi Chemical Corporation 集積型半導体発光装置およびその製造方法
JP2008262993A (ja) * 2007-04-10 2008-10-30 Nikon Corp 表示装置
US20110309378A1 (en) * 2009-12-09 2011-12-22 Nano And Advanced Materials Institute Limited Method for manufacturing a monolithic led micro-display on an active matrix panel using flip-chip technology and display apparatus having the monolithic led micro-display
US20150255505A1 (en) * 2014-03-05 2015-09-10 Lg Electronics Inc. Display device using semiconductor light emitting device
JP2017054092A (ja) * 2015-09-11 2017-03-16 株式会社東芝 ディスプレイパネル、表示装置およびディスプレイパネルの製造方法
WO2017094461A1 (ja) * 2015-12-01 2017-06-08 シャープ株式会社 画像形成素子

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014447A (ja) * 2002-06-11 2004-01-15 Sony Corp 表示装置およびその製造方法
CN100552997C (zh) * 2002-08-01 2009-10-21 日亚化学工业株式会社 半导体发光元件及其制造方法、使用此的发光装置
TW200637033A (en) * 2004-11-22 2006-10-16 Matsushita Electric Ind Co Ltd Light-emitting device, light-emitting module, display unit, lighting unit and method for manufacturing light-emitting device
EP2023411A1 (en) * 2006-05-01 2009-02-11 Mitsubishi Chemical Corporation Integrated semiconductor light-emitting device and its manufacturing method
US20090200568A1 (en) * 2006-05-02 2009-08-13 Hideyoshi Horie Semiconductor light-emitting device
KR101090900B1 (ko) 2006-10-18 2011-12-08 니텍 인코포레이티드 수직구조의 심자외선 발광다이오드
KR100867541B1 (ko) * 2006-11-14 2008-11-06 삼성전기주식회사 수직형 발광 소자의 제조 방법
JP2011199221A (ja) * 2010-03-24 2011-10-06 Hitachi Cable Ltd 発光ダイオード
JP5759790B2 (ja) * 2010-06-07 2015-08-05 株式会社東芝 半導体発光装置の製造方法
US8912033B2 (en) 2010-10-08 2014-12-16 Tsmc Solid State Lighting Ltd. Dicing-free LED fabrication
JP5657591B2 (ja) * 2011-03-23 2015-01-21 株式会社東芝 半導体発光装置およびその製造方法
JP5666962B2 (ja) * 2011-03-28 2015-02-12 日東電工株式会社 発光ダイオード装置およびその製造方法
JP2012216712A (ja) * 2011-03-28 2012-11-08 Nitto Denko Corp 発光ダイオード装置の製造方法および発光ダイオード素子
CN102270633B (zh) * 2011-07-29 2013-11-20 贵州大学 大功率倒装阵列led芯片及其制造方法
JP5673581B2 (ja) * 2012-02-24 2015-02-18 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子、ランプ、並びに、レチクル
WO2013137356A1 (ja) * 2012-03-13 2013-09-19 シチズンホールディングス株式会社 半導体発光装置及びその製造方法
KR101452768B1 (ko) * 2012-08-21 2014-10-21 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US9337405B2 (en) * 2012-08-31 2016-05-10 Nichia Corporation Light emitting device and method for manufacturing the same
DE102012109460B4 (de) * 2012-10-04 2024-03-07 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Leuchtdioden-Displays und Leuchtdioden-Display
TWI455665B (zh) * 2012-11-05 2014-10-01 Ritedia Corp 覆晶式發光二極體封裝模組及其製法
CN102969422B (zh) * 2012-12-17 2015-03-04 中国科学院半导体研究所 高出光率倒装结构led的制作方法
TWM461880U (zh) * 2013-04-12 2013-09-11 Ritedia Corp 覆晶式發光二極體
KR101521939B1 (ko) * 2013-12-17 2015-05-20 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US9831387B2 (en) * 2014-06-14 2017-11-28 Hiphoton Co., Ltd. Light engine array
JP6519311B2 (ja) * 2014-06-27 2019-05-29 日亜化学工業株式会社 発光装置
DE102015107588B4 (de) 2015-05-13 2023-08-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung optoelektronischer Bauelemente und oberflächenmontierbares optoelektronisches Bauelement
JP2017059790A (ja) * 2015-09-18 2017-03-23 東芝ライテック株式会社 発光モジュール
US10121710B2 (en) * 2016-06-14 2018-11-06 Innolux Corporation Methods for manufacturing a display device
KR20180023102A (ko) * 2016-08-23 2018-03-07 삼성디스플레이 주식회사 와이어 그리드 패턴 및 이의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012932A (ja) * 1996-01-18 1998-01-16 Motorola Inc 基板を除去したledディスプレイ・パッケージおよび製造方法
WO2007126092A1 (ja) * 2006-05-01 2007-11-08 Mitsubishi Chemical Corporation 集積型半導体発光装置およびその製造方法
JP2008262993A (ja) * 2007-04-10 2008-10-30 Nikon Corp 表示装置
US20110309378A1 (en) * 2009-12-09 2011-12-22 Nano And Advanced Materials Institute Limited Method for manufacturing a monolithic led micro-display on an active matrix panel using flip-chip technology and display apparatus having the monolithic led micro-display
US20150255505A1 (en) * 2014-03-05 2015-09-10 Lg Electronics Inc. Display device using semiconductor light emitting device
JP2017054092A (ja) * 2015-09-11 2017-03-16 株式会社東芝 ディスプレイパネル、表示装置およびディスプレイパネルの製造方法
WO2017094461A1 (ja) * 2015-12-01 2017-06-08 シャープ株式会社 画像形成素子

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150208A (ja) * 2019-03-15 2020-09-17 市光工業株式会社 発光素子及び車両用灯具、並びに発光素子の製造方法
JP7243330B2 (ja) 2019-03-15 2023-03-22 市光工業株式会社 発光素子及び車両用灯具、並びに発光素子の製造方法
JP2020184617A (ja) * 2019-04-30 2020-11-12 シャープ株式会社 光源装置および発光装置
CN112349744A (zh) * 2019-08-07 2021-02-09 夏普福山半导体株式会社 图像显示元件
JP7474770B2 (ja) 2019-09-18 2024-04-25 泉州三安半導体科技有限公司 発光ダイオードパッケージアセンブリ
JP2021064789A (ja) * 2019-10-14 2021-04-22 隆達電子股▲ふん▼有限公司 発光ダイオードパッケージ構造
JP7089567B2 (ja) 2019-10-14 2022-06-22 隆達電子股▲ふん▼有限公司 発光ダイオードパッケージ構造
US11616173B2 (en) 2019-10-14 2023-03-28 Lextar Electronics Corporation Light emitting diode package
US11978832B2 (en) 2019-10-14 2024-05-07 Lextar Electronics Corporation Light emitting diode package
WO2024024192A1 (ja) * 2022-07-28 2024-02-01 デクセリアルズ株式会社 発光装置の製造方法及び黒色転写フィルム

Also Published As

Publication number Publication date
US20210134773A1 (en) 2021-05-06
US11508708B2 (en) 2022-11-22
TW201911279A (zh) 2019-03-16
CN110998879B (zh) 2023-06-27
JPWO2019031183A1 (ja) 2020-08-20
TWI700682B (zh) 2020-08-01
CN110998879A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
TWI700682B (zh) 半導體模組、顯示裝置、及半導體模組的製造方法
US10734559B2 (en) Light-emitting diode (LED), LED package and apparatus including the same
US10903397B2 (en) Light emitting device package
CN102544267B (zh) 一种晶片级荧光体涂层方法和利用该方法制造的器件
JP5634003B2 (ja) 発光装置
JP6248431B2 (ja) 半導体発光装置の製造方法
US7453092B2 (en) Light emitting device and light emitting element having predetermined optical form
JP6743866B2 (ja) 半導体発光装置
US20120235184A1 (en) Semiconductor light emitting device and method for manufacturing the same
JP7093432B2 (ja) 半導体モジュール、表示装置、および半導体モジュールの製造方法
JP6432654B2 (ja) 半導体発光装置
JP7227528B2 (ja) 半導体発光装置
JP6978708B2 (ja) 半導体発光装置
US20240105757A1 (en) Pixel device and display apparatus having the same
JP2006352038A (ja) 白色半導体発光素子およびその製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844441

Country of ref document: EP

Kind code of ref document: A1