WO2019029187A1 - 像素结构及其形成方法、显示屏 - Google Patents

像素结构及其形成方法、显示屏 Download PDF

Info

Publication number
WO2019029187A1
WO2019029187A1 PCT/CN2018/084056 CN2018084056W WO2019029187A1 WO 2019029187 A1 WO2019029187 A1 WO 2019029187A1 CN 2018084056 W CN2018084056 W CN 2018084056W WO 2019029187 A1 WO2019029187 A1 WO 2019029187A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel region
material layer
compensation
anode
Prior art date
Application number
PCT/CN2018/084056
Other languages
English (en)
French (fr)
Inventor
居宇涵
顾铁
孔杰
Original Assignee
上海视涯信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海视涯信息科技有限公司 filed Critical 上海视涯信息科技有限公司
Publication of WO2019029187A1 publication Critical patent/WO2019029187A1/zh
Priority to US16/729,814 priority Critical patent/US11081680B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a pixel structure, a method for forming the same, and a display screen.
  • the organic electroluminescent display is a display device based on an organic light emitting diode (OLED), which has the advantages of high reaction speed, high contrast, wide viewing angle and the like.
  • OLED organic light emitting diode
  • the OLED panel has the characteristics of self-illumination, eliminating the need for a backlight, thereby saving the cost of the backlight module, and being thinner and thinner than the conventional liquid crystal panel, so that the OLED has a great application prospect in the field of displays and the like.
  • the silicon-based OLED is a display screen technology using a silicon wafer as a driving circuit substrate and an OLED as a light-emitting unit on a silicon wafer.
  • the silicon-based OLED utilizes an integrated circuit manufacturing process to produce a minimum of 3 ⁇ m to 4 ⁇ m pixels. Since the shadow mask required for fabricating the OLED pixel structure is difficult to achieve such high precision, the white light OLED layer only needs to block the peripheral circuit of each screen during evaporation, and the shadow mask does not need to be opened for a single pixel but throughout The display area is open, so the silicon-based OLED that can be actually produced at present can mainly realize the color display by using a white light OLED layer and a color filter.
  • the problem to be solved by the present invention is to provide a pixel structure, a method for forming the same, and a display screen, which improve the brightness of the silicon-based OLED pixel structure, thereby improving the brightness and color gamut of the display screen.
  • the present invention provides a method of forming a pixel structure, comprising: providing a substrate for forming an OLED device, the substrate including a first pixel region, a second pixel region, and a third pixel region; A compensation layer is formed thereon, and the compensation layer thicknesses of the first pixel region, the second pixel region, and the third pixel region have a difference.
  • the present invention also provides a pixel structure, comprising: a substrate for forming an OLED device, the substrate comprising a first pixel region, a second pixel region and a third pixel region; a compensation layer on the substrate, The compensation layer thicknesses of the first pixel region, the second pixel region, and the third pixel region have differences.
  • the present invention also provides a display screen comprising a plurality of pixel structures according to the present invention.
  • the present invention forms a compensation layer on the substrate, and the compensation layers of the first pixel region, the second pixel region, and the third pixel region have different thicknesses, thereby realizing the first pixel region, the second pixel region, and the third pixel.
  • the cavity length of the region is separately modulated, so that the OLED device can utilize the strong microcavity effect to improve the luminous efficiency and improve the color purity, thereby improving the brightness and color gamut of the display.
  • the method before forming the compensation layer on the substrate, the method further includes the steps of: forming an anode layer on the substrate, and the anode layers of the first pixel region, the second pixel region, and the third pixel region are the same thickness And performing, by the alternating formation and removal processes of the first compensation material layer, the second compensation material layer, and the third compensation material layer, the first compensation material layer, the second compensation material layer, and the third pixel region
  • the compensation material layer constitutes a compensation layer of the first pixel region
  • the first compensation material layer and the second compensation material layer of the second pixel region constitute a compensation layer of the second pixel region
  • the first compensation material layer constitutes a compensation layer of the third pixel region, so that compensation layers of different thicknesses are formed on the anode layer of the three pixel regions, thereby implementing the first pixel region and the second pixel region.
  • the cavity length of the third pixel region is separately modulated.
  • the method before the forming the compensation layer on the substrate, the method further includes the steps of: forming an anode layer on the substrate, and the anode layer thickness of the first pixel region, the second pixel region, and the third pixel region has a difference, a spacer layer is formed on the anode layer, and an opening exposing the anode layer is formed in the isolation layer of the first pixel region, the second pixel region, and the third pixel region, and a top portion is formed in the opening a compensation layer of a flat surface; by flushing a top of the compensation layer of the first pixel region, the second pixel region, and the third pixel region, and the first pixel region, the second pixel region, and the third pixel region
  • the top of the anode layer has a height difference, so that compensation layers of different thicknesses are formed on the anode layers of the first pixel region, the second pixel region and the third pixel region, thereby implementing the first pixel region and the second pixel.
  • FIG. 13 are schematic structural diagrams corresponding to respective steps in the first embodiment of the method for forming a pixel structure according to the present invention
  • FIG. 14 and FIG. 15 are schematic structural diagrams corresponding to respective steps in the second embodiment of the method for forming a pixel structure according to the present invention.
  • FIG. 16 to FIG. 24 are schematic structural diagrams corresponding to respective steps in the third embodiment of the method for forming a pixel structure according to the present invention.
  • FIG. 34 are schematic diagrams showing the corresponding steps in the fourth embodiment of the method for forming a pixel structure of the present invention.
  • the silicon-based OLED pixel structure of high resolution (1000PPI to 3000PPI) can only be vapor-deposited by using the open mask of the display area.
  • the white OLED layer is combined with a color filter (such as an RGB filter) to achieve full color display.
  • the actually illuminated OLED devices are the same, correspondingly, the red pixel region, the green pixel region, and the blue pixel region correspond to
  • the OLED device cavity length ie, the distance between the anode and cathode of the OLED device.
  • the white light emitted by the OLED device loses more than half of the brightness after passing through the color filter, and the white light OLED device is fabricated, the OLED device cavity corresponding to the red pixel region, the green pixel region, and the blue pixel region is elongated. Etc. Therefore, it is impossible to make a strong microcavity effect to improve luminous efficiency and color purity, resulting in a low brightness of the display screen, which usually only reaches about 300 nit.
  • the present invention forms compensation layers of different thicknesses in the first pixel region, the second pixel region, and the third pixel region, thereby implementing the first pixel region, the second pixel region, and the third pixel region.
  • the cavity length is separately modulated, so that the OLED device can utilize the strong microcavity effect to improve the luminous efficiency and improve the color purity, thereby improving the brightness and color gamut of the display.
  • FIG. 1 to FIG. 13 are schematic diagrams showing the corresponding steps in the first embodiment of the method for forming a pixel structure according to the present invention.
  • a substrate 100 is provided for forming an OLED device, the substrate 100 including a first pixel region I, a second pixel region II, and a third pixel region III.
  • the substrate provides a drive circuit substrate for subsequent formation of the OLED device.
  • the OLED device is a top emitting OLED device.
  • the formed pixel structure is a silicon-based OLED structure.
  • the silicon-based OLED refers to a display screen technology in which a silicon wafer is used as a driving circuit substrate, and an OLED is fabricated on the silicon wafer as a light-emitting unit.
  • An interconnect metal layer 110 and a conductive plug 120 electrically connected to the interconnect metal layer 110 are formed in the substrate 100, and the substrate 100 exposes the conductive plug 120, thereby implementing the substrate 100 and Subsequent circuit connections for the formed OLED device.
  • the first pixel region I, the second pixel region II, and the third pixel region III are used to emit light of different colors.
  • the formed pixel structure adopts a white light OLED layer and a color filter to realize color display, and the color filter is an RGB filter, so the first pixel region I is red light.
  • the method further includes the step of forming an anode layer 130 on the substrate 100.
  • an anode layer 130 and a cathode layer (not shown) on the substrate 100, and a plurality of layers of organic functional layers (not shown) between the anode layer 130 and the cathode layer are generally included.
  • the anode layer 130 is connected to the positive electrode of the electric power to form an anode
  • the cathode layer is connected to the negative electrode of the electric power to become a cathode.
  • the anode layer 130 may be a single layer structure or a stacked structure. Specifically, the anode layer 130 may be a reflective metal layer, or the anode layer 130 includes a reflective metal layer and a transparent conductive layer on the reflective metal layer.
  • the reflective metal layer has good reflectivity and ductility, and thus can function as reflection and conduction; the transparent conductive layer has the advantages of good conductivity, high transparency, high work function, and the like, thereby facilitating improvement of display efficiency.
  • the material of the reflective metal layer may be a metal such as Al, Ag or Cu, and the material of the transparent conductive layer may be one or more of ITO, IZO, MoOx and AZO.
  • the anode layer 130 is a reflective metal layer.
  • the material of the reflective metal layer is Al.
  • the anode layer 130 is formed on the substrate 100 by evaporation.
  • the evaporation process is a physical vapor deposition process.
  • the anode layers 130 of the first pixel region I, the second pixel region II, and the third pixel region III have the same thickness.
  • a compensation layer (not labeled) is formed on the substrate 100, and compensation layers of the first pixel region I, the second pixel region II, and the third pixel region III are formed.
  • the thickness has a difference.
  • the anode layer 130 and the cathode layer have reflection characteristics, light is reciprocally reflected between the anode layer 130 and the cathode layer, thereby forming a microcavity effect.
  • the compensation layer thicknesses of the first pixel region I, the second pixel region II, and the third pixel region III have differences so as to be compensated by the first pixel region I, the second pixel region II, and the third pixel region III
  • the layers respectively modulate the cavity lengths of the first pixel region I, the second pixel region II, and the third pixel region III, so that the OLED device can utilize the strong microcavity effect to improve the luminous efficiency and color purity of the formed pixel structure, thereby improving The brightness and color gamut of the display.
  • the material of the compensation layer is a highly transparent metal oxide.
  • the material of the compensation layer is one or more of ITO, IZO, MoOx, and AZO.
  • the first pixel region I is a red pixel region
  • the second pixel region II is a green pixel region
  • the third pixel region III is a blue pixel region
  • the wavelength of the green light is smaller than the wavelength of the red light and is greater than The wavelength of the blue light
  • the cavity length of the second pixel region II is smaller than the cavity length of the first pixel region I and larger than the cavity of the third pixel region III
  • the compensation layer thickness of the second pixel region II is smaller than the compensation layer thickness of the first pixel region I and larger than the compensation layer thickness of the third pixel region III.
  • the compensation layer thicknesses of the region I, the second pixel region II, and the third pixel region III have a difference.
  • a first compensation material layer 140 is formed on the anode layer 130.
  • the first compensation material layer 140 is part of a subsequently formed compensation layer.
  • the material of the first compensation material layer 140 may be one or more of ITO, IZO, MoOx, and AZO.
  • the first compensation material layer 140 is formed on the anode layer 130 by evaporation.
  • the evaporation process is a physical vapor deposition process.
  • the first compensation material layer 140 is formed on the anode layer 130 of the third pixel region III, that is, the compensation layer of the third pixel region III is a single layer structure, so the first A thickness of the compensation material layer 140 is required to satisfy the requirements of the blue pixel, and the first compensation material layer 140 is used to modulate the cavity length of the third pixel region III.
  • the thickness of the first compensation material layer 140 is to
  • the anode layer 130 is apt to be oxidized when exposed to air, thereby causing an increase in the resistance of the anode layer 130, thereby causing a decrease in the performance of the formed pixel structure.
  • Forming the first compensation material layer 140 in a machine stage in which the anode layer 130 is formed and in a state where no vacuum is formed, that is, ensuring continuity of the anode layer 130 and the first compensation material layer 140 Deposition is performed to prevent the anode layer 130 from coming into contact with the air.
  • a second layer of compensation material 150 (shown in Figure 3) is formed on the first layer of compensation material 140.
  • the second compensation material layer 150 is part of a subsequently formed compensation layer.
  • the material of the second compensation material layer 150 may be one or more of ITO, IZO, MoOx, and AZO.
  • the material of the second compensation material layer 150 is the same as the material of the first compensation material layer 140.
  • a second compensation material layer 150 is formed on the first compensation material layer 140 by evaporation.
  • the evaporation process is a physical vapor deposition process.
  • the compensation layer of the second pixel region II is a stacked structure of the first compensation material layer 140 and the second compensation material layer 150, so that the total thickness of the first compensation material layer 140 and the second compensation material layer 150 needs to meet the requirements of the green pixel.
  • the first compensation material layer 140 and the second compensation material layer 150 of the two-pixel region II are used to modulate the cavity length of the second pixel region II.
  • the thickness of the second compensation material layer 150 is appropriately set.
  • the thickness of the second compensation material layer 150 is to
  • the first compensation material layer 140 is formed on the anode layer 130 of the third pixel region III.
  • the subsequent step further includes removing the second compensation material layer 150 of the third pixel region III.
  • the first compensation material layer 140 of the third pixel region III is adversely affected, and the second compensation material layer 150 is formed.
  • the method includes: forming a first sacrificial layer 210 on the first compensation material layer 140 of the third pixel region III (as shown in FIG. 2); forming a second compensation material layer 150, the second compensation material layer 150 covering a first compensation material layer 140 of the first pixel region I and the second pixel region II, and the first sacrificial layer 210.
  • the first sacrificial layer 210 is used to protect the first compensation material layer 140 of the third pixel region III during the subsequent removal of the second compensation material layer 150 of the third pixel region III.
  • the first sacrificial layer 210 is also removed, so the material of the first sacrificial layer 210 is a material that is easy to remove, and the first sacrifice is removed.
  • the process of layer 210 has less effect on the first compensation material layer 140 and the second compensation material layer 150.
  • the first sacrificial layer 210 is formed by an exposure development process.
  • the first sacrificial layer 210 further exposes a first compensation material layer at a boundary between the third pixel region III and the second pixel region II. 140, thereby providing a process basis for subsequently forming a first isolation opening exposing the substrate 100 at the interface between the third pixel region III and the second pixel region II.
  • the second compensation material layer 150 of the third pixel region III is removed.
  • the compensation layer thickness of the third pixel region III is reduced by removing the second compensation material layer 150 of the third pixel region III.
  • the step of removing the second compensation material layer 150 of the third pixel region III includes: forming a first photoresist on the second compensation material layer 150 of the first pixel region I and the second pixel region II a layer 220 (shown in FIG. 4); etching the second compensation material layer 150 of the third pixel region III by using the first photoresist layer 220 as a mask; removing the first photoresist Layer 220.
  • the second compensation material layer 150 on the sidewalls and the top of the first sacrificial layer 210 is etched away.
  • the first photoresist layer 220 further exposes the second compensation material layer 150 at the intersection of the second pixel region II and the third pixel region III. Therefore, in the step of removing the second compensation material layer 150 of the third pixel region III, the second compensation material layer 150 at the boundary between the second pixel region II and the third pixel region III is also etched away.
  • a compensation material layer 140 and an anode layer 130 form a first isolation opening 151 (shown in FIG. 5) exposing the substrate 100 at the interface between the second pixel region II and the third pixel region III.
  • the first isolation opening 151 provides a spatial location for subsequently forming an isolation layer for isolating the second pixel region II and the third pixel region III.
  • etching is performed by a dry etching process.
  • the etching may be performed by a wet etching process or an etching process combining a dry method and a wet method.
  • the first compensation layer 210 is formed on the first compensation material layer 140 of the third pixel region III, and after removing the second compensation material layer 150 of the third pixel region III, the exposed region is exposed.
  • the first sacrificial layer 210 is described, and the material of the first sacrificial layer 210 is a photoresist. Therefore, as shown in FIG. 6, in the step of removing the first photoresist layer 220, the first portion is also removed.
  • the sacrificial layer 210 may also avoid the use of an additional process to remove the first sacrificial layer 210.
  • the first photoresist layer 220 and the first sacrificial layer 210 are removed by ashing or wet stripping.
  • a third compensation material layer 160 (shown in FIG. 8) is formed on the first compensation material layer 140 of the third pixel region III.
  • the third compensation material layer 160 serves as a part of the subsequently formed compensation layer.
  • the material of the third compensation material layer 160 may be one or more of ITO, IZO, MoOx, and AZO.
  • the material of the third compensation material layer 160 is the same as the material of the first compensation material layer 140.
  • the third compensation material layer 160 is formed by vapor deposition.
  • the evaporation process is a physical vapor deposition process.
  • the third compensation material layer 160 is formed on the second compensation material layer 150 of the first pixel region I, and thus the first compensation material layer 140, the second compensation material layer 150, and The total thickness of the third compensation material layer 160 needs to meet the requirements of the red pixel, and the first compensation material layer 140, the second compensation material layer 150, and the third compensation material layer 160 of the first pixel region I are used to modulate the The cavity length of the first pixel region I.
  • the third is reasonably set.
  • the thickness of the compensation material layer 160 In this embodiment, the thickness of the third compensation material layer 160 is to
  • the third compensation material layer 160 is formed on the second compensation material layer 150 of the first pixel region I.
  • the subsequent step further includes removing the second pixel region II and the third pixel region III.
  • the third compensation material layer 160 in order to reduce the process of removing the third compensation material layer 160 of the second pixel region II and the third pixel region III, the second compensation material for the second pixel region II
  • the layer 150 and the first compensation material layer 140 of the third pixel region III cause adverse effects
  • the step of forming the third compensation material layer 160 includes: on the second compensation material layer 150 of the second pixel region II, and Forming a second sacrificial layer 230 on the first compensation material layer 140 of the third pixel region III (as shown in FIG. 7); forming a third compensation material layer 160, the third compensation material layer 160 covering the first a second compensation material layer 150 of the pixel region I, and the second sacrificial layer 230.
  • the second sacrificial layer 230 is used for the second compensation material layer of the second pixel region II during the subsequent removal of the third compensation material layer 160 of the second pixel region II and the third pixel region III
  • the first compensation material layer 140 of 150 and the third pixel region III serves as a protection.
  • the second sacrificial layer 230 is also removed, so that the material of the second sacrificial layer 230 is a material that is easy to remove, and The process of removing the second sacrificial layer 230 has less influence on the first compensation material layer 140, the second compensation material layer 150, and the third compensation material layer 160.
  • the effect of the second sacrificial layer 230 on the formed pixel structure is reduced under the premise of ensuring the protection function of the second sacrificial layer 230, and the material of the second sacrificial layer 230 is The photoresist forms the second sacrificial layer 230 by an exposure developing process.
  • the second sacrificial layer 230 further exposes the second compensation material layer at the boundary between the second pixel region II and the first pixel region I. 150, thereby providing a process basis for subsequently forming a second isolation opening exposing the substrate 600 at the junction of the second pixel region II and the first pixel region I.
  • the third compensation material layer 160 of the second pixel region II and the third pixel region III is removed.
  • the compensation layer thickness of the second pixel region II and the third pixel region III is reduced by removing the third compensation material layer 160 of the second pixel region II and the third pixel region III, and the second layer is made
  • the compensation layer thickness of the pixel region II is greater than the compensation layer thickness of the third pixel region III.
  • the step of removing the third compensation material layer 160 of the second pixel region II and the third pixel region III includes: forming a second photoresist on the third compensation material layer 160 of the first pixel region I a layer 240 (shown in FIG. 9); using the second photoresist layer 240 as a mask, etching and removing the third compensation material layer 160 of the second pixel region II and the third pixel region III; The second photoresist layer 240 is described.
  • the sidewalls of the second sacrificial layer 230 and the third compensation material layer 160 on the top are etched away.
  • the second photoresist layer 240 also exposes the third compensation material layer 160 at the interface between the first pixel region I and the second pixel region II, thus removing the second pixel region II and
  • the third compensation material layer 160 and the second compensation material layer 150 at the interface between the first pixel region I and the second pixel region II are also etched away.
  • the first compensation material layer 140 and the anode layer 130 form a second isolation opening 152 (shown in FIG. 10) exposing the substrate 100 at the interface between the first pixel region I and the second pixel region II.
  • the second isolation opening 152 provides a spatial location for subsequently forming an isolation layer for isolating the first pixel region I and the second pixel region II.
  • etching is performed by a dry etching process.
  • the etching may be performed by a wet etching process or an etching process combining a dry method and a wet method.
  • the second sacrificial layer 230 is formed on the second compensation material layer 150 of the second pixel region II and the first compensation material layer 140 of the third pixel region III, and the After the second compensation material layer 160 of the second pixel region II and the third pixel region III, the second sacrificial layer 230 is exposed, and the material of the second sacrificial layer 230 is a photoresist, so as shown in FIG. In the step of removing the second photoresist layer 240, the second sacrificial layer 230 is also removed, and correspondingly, an additional process may be avoided to remove the second sacrificial layer 230.
  • the second photoresist layer 240 and the second sacrificial layer 230 are removed by ashing or wet stripping.
  • the first compensation material layer 140, the second compensation material layer 150, and the third compensation material layer 160 of the first pixel region 1 constitute a compensation layer of the first pixel region I
  • the first compensation material layer 140 and the second compensation material layer 150 of the two pixel region II constitute a compensation layer of the second pixel region II
  • the first compensation material layer 140 of the third pixel region III constitutes the third pixel
  • the compensation layer of the region III, and the compensation layers of the first pixel region I, the second pixel region II, and the third pixel region III are separated from each other.
  • the bottoms of the compensation layers of the first pixel region I, the second pixel region II and the third pixel region III are flush, and the first pixel region I, the second pixel region II and the third pixel region III
  • the top of the compensation layer has a height difference, thereby achieving separate modulation of the cavity lengths of the first pixel region I, the second pixel region II, and the third pixel region III.
  • the method further includes the steps of: filling the first isolation opening 151 (shown in FIG. 11) and the second isolation opening 152 (FIG. 11).
  • the isolation layer 170 (shown in Figure 13) is shown.
  • the isolation layer 170 is used to isolate adjacent pixels.
  • the step of forming the isolation layer 170 includes: filling the first isolation opening 151 and the second isolation opening 152 with a full isolation film 175 (shown in FIG. 12), and the isolation film 175 is also covered.
  • the separator 175 is described as the separator 170.
  • the material of the separator 175 is SiO 2
  • the separator 175 is formed by Plasma Enhanced Chemical Vapor Deposition (PECVD).
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • the PECVD process has the advantages of low process temperature, fast deposition rate, good film formation quality, and the like, thereby facilitating the improvement of the formation quality of the isolation layer 170, and the lower process temperature can be avoided due to the poor temperature resistance of the OLED device.
  • the performance of the formed pixel structure has an adverse effect.
  • the material of the separator may also be SiN or SiON.
  • the etching process used is a dry etching process.
  • the isolation film 175 on the top of the compensation layer can be better removed by using a maskless process, so as to avoid the isolation layer 170 occupying the area of the compensation layer, thereby avoiding the isolation.
  • Layer 170 occupies the area of the illuminated area of the formed pixel structure.
  • the present invention also provides a pixel structure.
  • the pixel structure of the present invention includes a substrate 100 for forming an OLED device, the substrate including a first pixel region I and a second pixel.
  • the region II and the third pixel region III; a compensation layer (not labeled) on the substrate 100, and the compensation layer thicknesses of the first pixel region I, the second pixel region II, and the third pixel region III have a difference.
  • the OLED device is a top emitting OLED device.
  • the pixel structure is a silicon-based OLED structure, and an interconnect metal layer 110 and a conductive plug 120 electrically connected to the interconnect metal layer 110 are formed in the substrate 100, and the substrate 100 is The conductive plug 120 is exposed to achieve electrical connection of the substrate 100 with the OLED device.
  • the first pixel region I, the second pixel region II, and the third pixel region III are used to emit light of different colors.
  • the OLED device adopts an RGB filter, so the first pixel region I is a red pixel region, the second pixel region II is a green pixel region, and the third pixel region III is Blu-ray pixel area.
  • the pixel structure further includes an anode layer 130 between the substrate 100 and the compensation layer.
  • the anode layer 130 may be a single layer structure or a stacked structure. Specifically, the anode layer 130 may be a reflective metal layer, or the anode layer 130 includes a reflective metal layer and a transparent conductive layer on the reflective metal layer.
  • the material of the reflective metal layer may be a metal such as Al, Ag or Cu, and the material of the transparent conductive layer may be one or more of ITO, IZO, MoOx and AZO.
  • the anode layer 130 is a reflective metal layer.
  • the material of the reflective metal layer is Al.
  • the anode layers 130 of the first pixel region I, the second pixel region II, and the third pixel region III have the same thickness.
  • the compensation layer thicknesses of the first pixel region I, the second pixel region II, and the third pixel region III have differences, so that the compensation layers of the first pixel region I, the second pixel region II, and the third pixel region III can
  • the cavity lengths of the first pixel region I, the second pixel region II, and the third pixel region III are separately modulated, so that the OLED device can utilize the strong microcavity effect to improve the luminous efficiency and color purity of the pixel structure, thereby improving display.
  • the brightness and color gamut of the screen are separately modulated, so that the OLED device can utilize the strong microcavity effect to improve the luminous efficiency and color purity of the pixel structure, thereby improving display.
  • the material of the compensation layer is a highly transparent metal oxide.
  • the material of the compensation layer is one or more of ITO, IZO, MoOx, and AZO.
  • the first pixel region I is a red pixel region
  • the second pixel region II is a green pixel region
  • the third pixel region III is a blue pixel region, because the wavelength of the green light is smaller than the wavelength of the red light.
  • the cavity length of the second pixel region II is smaller than the cavity length of the first pixel region I and larger than the cavity length of the third pixel region III Therefore, the compensation layer thickness of the second pixel region II is smaller than the compensation layer thickness of the first pixel region I and larger than the compensation layer thickness of the third pixel region III.
  • the compensation layer of the first pixel region I and the compensation layer of the second pixel region II are laminated structures.
  • the pixel structure further includes: a first compensation material layer 140 on the anode layer 130 of the first pixel region I, the second pixel region II, and the third pixel region III; and a second compensation material layer 150, located on the first compensation material layer 140 of the first pixel region I and the second pixel region II; a third compensation material layer 160, located in the second compensation material layer of the first pixel region I 150 on.
  • the first compensation material layer 140, the second compensation material layer 150, and the third compensation material layer 160 of the first pixel region 1 constitute a compensation layer of the first pixel region I;
  • the first compensation material layer 140 and the second compensation material layer 150 constitute a compensation layer of the second pixel region II;
  • the first compensation material layer 140 of the third pixel region III constitutes a compensation layer of the third pixel region III .
  • the compensation layers of the first pixel region I, the second pixel region II, and the third pixel region III be composed of different compensation material layers, the evaporation and etching processes of the compensation material layer may be alternately performed.
  • the compensation layer thicknesses of the first pixel region I, the second pixel region II, and the third pixel region III have a difference.
  • the materials of the first compensation material layer 140, the second compensation material layer 150, and the third compensation material layer 160 are the same.
  • the first compensation material layer 140 is formed on the anode layer 130 of the third pixel region III, that is, the compensation layer of the third pixel region III is a single layer structure, so the first The thickness of a compensation material layer 140 needs to meet the requirements of the blue light pixel; the first compensation material layer 140 and the second compensation material layer 150 are formed on the anode layer 130 of the second pixel region II, that is, the second The compensation layer of the pixel region II is a stacked structure of the first compensation material layer 140 and the second compensation material layer 150, so the total thickness of the first compensation material layer 140 and the second compensation material layer 150 needs to satisfy the green a requirement of a light pixel; only the first compensation material layer 140, the second compensation material layer 150, and the third compensation material layer 160 are formed on the anode layer 130 of the first pixel region I, and thus the first compensation material The total thickness of layer 140, second compensation material layer 150, and third compensation material layer 160 needs to meet the requirements of red pixels.
  • the thickness of the first compensation material layer 140 is according to actual process requirements.
  • the thickness of the second compensation material layer 150 is to The thickness of the third compensation material layer 160 is to
  • the pixel structure further includes: an isolation layer 170, the isolation layer 170 at least penetrating the compensation layer and the anode layer 130 at the intersection of the first pixel region I and the second pixel region II, and the A compensation layer and an anode layer 130 at the junction of the two pixel regions II and the third pixel region III.
  • the isolation layer 170 is used to isolate adjacent pixels.
  • the material of the isolation layer 170 is SiO 2 . In other embodiments, the material of the isolation layer may also be SiN or SiON.
  • the isolation layer 170 only penetrates the compensation layer and the anode layer 130, that is, the isolation layer 170 is not formed on the top of the compensation layer, so that the isolation layer 170 can be prevented from occupying the compensation layer.
  • the area, and thus the isolation layer 170, avoids occupying the area of the light-emitting area of the pixel structure.
  • the pixel structure of the present invention is formed by the method of the first embodiment of the foregoing method for forming a pixel structure.
  • the pixel structure refer to the corresponding description in the first embodiment of the foregoing forming method, and details are not described herein again. .
  • the present invention also provides a display screen comprising a plurality of pixel structures according to the first embodiment of the pixel structure of the present invention.
  • the first pixel region I, the second pixel region II, and the third pixel region III have compensation layers of different thicknesses, thereby implementing a cavity for the first pixel region I, the second pixel region II, and the third pixel region III
  • the long modulation alone allows the OLED device to utilize the strong microcavity effect to improve luminous efficiency and color purity, thereby increasing the brightness and color gamut of the display.
  • FIG. 14 and FIG. 15 are schematic diagrams showing the corresponding steps in the second embodiment of the method for forming a pixel structure of the present invention.
  • the step of forming the isolation layer 370 includes: at the first isolation opening (as shown in FIG. 14 , not shown) And a second isolation opening (as shown in FIG. 14, not shown) filled with a barrier film 375 (shown in FIG. 14), the isolation film 375 also covering the top of the compensation layer (not labeled); Forming a third photoresist layer 350 on the isolation film 375 corresponding to the first isolation opening and the second isolation opening (as shown in FIG. 14); using the third photoresist layer 350 as a mask, etching The isolation film 375 is disposed, and the isolation film 375 is left as the isolation layer 370; the third photoresist layer 350 is removed.
  • the isolation layer 370 also covers the top of the compensation layer at the intersection of the first pixel region I and the second pixel region II, and the top of the compensation layer at the junction of the second pixel region II and the third pixel region III. .
  • the isolation film 375 of the first isolation opening and the second isolation opening is damaged, thereby ensuring the isolation layer 370 to the compensation layer.
  • the covering effect at the corners of the side walls and the top portion, thereby facilitating the deposition effect of subsequent film layers, is advantageous for improving the performance of the formed pixel structure.
  • the isolation film 375 exposed by the pattern layer 350 is etched by dry etching. After the isolation layer 370 is formed, the third photoresist layer 350 is removed by ashing or wet stripping.
  • the present invention also provides a pixel structure.
  • FIG. 15 a schematic structural view of a second embodiment of the pixel structure of the present invention is shown.
  • This embodiment is identical to the first embodiment of the pixel structure, and the present invention is not described herein again.
  • the present embodiment is different from the first embodiment of the pixel structure in that the isolation layer 370 further covers the top of the compensation layer at the intersection of the first pixel region I and the second pixel region II, and the second pixel region. The top of the compensation layer at the junction of II and third pixel region III.
  • the isolation layer 370 also covers the top of the compensation layer, the problem of exposure at the top corner of the compensation layer is avoided, thereby facilitating the deposition effect of other subsequent film layers, and is advantageous for improving the performance of the pixel structure.
  • the pixel structure of the present invention is formed by the method of the second embodiment of the method for forming a pixel structure.
  • the pixel structure refer to the corresponding description in the second embodiment of the foregoing forming method, and details are not described herein again.
  • the present invention also provides a display screen comprising a plurality of pixel structures according to the second embodiment of the pixel structure of the present invention.
  • the first pixel region I, the second pixel region II, and the third pixel region III have compensation layers of different thicknesses, thereby being capable of improving the brightness and color gamut of the display screen.
  • FIG. 16 to FIG. 24 are schematic diagrams showing the corresponding steps in the third embodiment of the method for forming a pixel structure of the present invention.
  • This embodiment is the same as the first embodiment of the forming method, and the present invention will not be repeated herein.
  • the difference between this embodiment and the first embodiment of the forming method is that:
  • Forming a compensation layer (not labeled) on the substrate 600 includes: forming a first compensation material layer 640 on the anode layer 630; forming a second compensation material layer 650 on the first compensation material layer 640 ( As shown in FIG. 18; forming a third compensation material layer 660 on the second compensation material layer 650 (as shown in FIG.
  • the third compensation material layer 660 of the third pixel region III constitutes a compensation layer of the third pixel region III.
  • the thickness of the first compensation material layer 640 is to The thickness of the second compensation material layer 650 is to The thickness of the third compensation material layer 660 is to
  • first compensation material layer 640 the second compensation material layer 650, and the third compensation material layer 660, refer to the corresponding description in the first embodiment of the foregoing forming method, and the embodiment is not described herein again.
  • the step of forming the second compensation material layer 650 includes: forming a first sacrificial layer 710 on the first compensation material layer 640 of the third pixel region III; forming a second A compensation material layer 650 covering the first compensation material layer 640 of the first and second pixel regions I and II, and the first sacrificial layer 710.
  • the material of the first sacrificial layer 710 is a photoresist, and the first sacrificial layer 710 is formed by an exposure and development process.
  • the first sacrificial layer 710 further exposes the first compensation material layer at the boundary between the second pixel region II and the third pixel region III. 640, thereby providing a process basis for subsequently forming a first isolation opening exposing the substrate 600 at the junction of the second pixel region II and the third pixel region III.
  • first sacrificial layer 710 For a detailed description of the first sacrificial layer 710, please refer to the corresponding description in the first embodiment of the foregoing forming method, and the embodiment is not described herein again.
  • the forming of the third compensation material layer 660 includes forming a second sacrificial layer 720 on the second compensation material layer 650 of the second pixel region II (FIG. 19). a third compensation material layer 660 is formed, the third compensation material layer 660 covering the second compensation material layer 650 of the first and third pixel regions I and III, and the second sacrificial layer 720 .
  • the material of the second sacrificial layer 720 is a photoresist, and the second sacrificial layer 720 is formed by an exposure and development process.
  • the second sacrificial layer 720 further exposes a boundary between the second pixel region II and the third pixel region III, and the first a second compensation material layer 650 at a junction of the pixel region I and the second pixel region II, thereby forming a first isolation opening exposing the substrate 600 at a boundary between the second pixel region II and the third pixel region III, Forming a second isolation opening exposing the substrate 600 at the interface of the first pixel region I and the second pixel region II provides a process basis.
  • the third compensation material layer 660 of the third pixel region III and the second compensation material layer 650 of the third pixel region III are removed, and the second pixel region II is removed.
  • the step of the third compensation material layer 660 includes: forming a fourth photoresist layer 730 on the third compensation material layer 660 of the first pixel region I (as shown in FIG. 21);
  • the layer 730 is a mask, and the third compensation material layer 660 of the third pixel region III and the second compensation material layer 650 of the third pixel region III and the third region of the second pixel region II are etched away.
  • the fourth photoresist layer 730 after the fourth photoresist layer 730 is formed, the fourth photoresist layer 730 also exposes the intersection of the first pixel region I and the second pixel region II.
  • the third compensation material layer 660 provides a process basis for subsequently forming a second isolation opening exposing the substrate 600 at the interface of the first pixel region I and the second pixel region II.
  • the fourth photoresist layer 730, the first sacrificial layer 710, and the second sacrificial layer 720 are all photoresist materials. Therefore, as shown in FIG. 23, the fourth photoresist layer 730 may be removed in the same step.
  • the first sacrificial layer 710 and the second sacrificial layer 720 respectively reduce the process difficulty of removing the fourth photoresist layer 730, the first sacrificial layer 710 and the second sacrificial layer 720, and save process time.
  • the fourth photoresist layer 730, the first sacrificial layer 710, and the second sacrificial layer 720 are removed by ashing or wet stripping.
  • the second pixel region II and The third compensation material layer 660, the second compensation material layer 650, the first compensation material layer 640, and the anode layer 630 at the interface of the third pixel region III are formed at the boundary between the second pixel region II and the third pixel region III. Exposing the first isolation opening 651 of the substrate 100 (as shown in FIG.
  • the first compensation material layer 640, the second compensation material layer 650, and the third compensation material layer 660 of the first pixel region 1 constitute a compensation layer of the first pixel region I
  • the first compensation material layer 640 and the second compensation material layer 650 of the region II constitute a compensation layer of the second pixel region II
  • the first compensation material layer 640 of the third pixel region III constitutes the third pixel region III a compensation layer
  • the compensation layers of the first pixel region I, the second pixel region II, and the third pixel region III are separated from each other.
  • etching is performed by a dry etching process.
  • the bottoms of the compensation layers of the first pixel region I, the second pixel region II, and the third pixel region III are flush, and the first pixel region I, the second pixel region II, and the third pixel region III are
  • the top of the compensation layer has a height difference to achieve separate modulation of the cavity lengths of the first pixel region I, the second pixel region II, and the third pixel region III.
  • different thicknesses may be formed on the first pixel region I, the second pixel region II, and the third pixel region III through the fourth photoresist layer 730, the first sacrificial layer 710, and the second sacrificial layer 720.
  • the compensation layer and the number of masks used are small, which helps to reduce the process cost.
  • the method further includes the steps of: filling the first isolation opening 651 (shown in FIG. 23) and the second isolation opening 652 (shown in FIG. 23).
  • the isolation layer 670 is filling the first isolation opening 651 (shown in FIG. 23) and the second isolation opening 652 (shown in FIG. 23).
  • the step of forming the isolation layer 670 includes: filling the first isolation opening 651 and the second isolation opening 652 with a full isolation film, the isolation film also covering the top of the compensation layer; The film process etches the separator, removes the separator at the top of the compensation layer, and retains the separator in the first isolation opening 651 and the second isolation opening 652 as the isolation layer 670.
  • isolation layer 670 For a detailed description of the isolation layer 670, please refer to the corresponding description in the first embodiment of the foregoing forming method, and the embodiment is not described herein again.
  • the step of forming the isolation layer may further include: filling the first isolation opening and the second isolation opening with a full isolation film, the isolation film further covering the top of the compensation layer; Forming a second pattern layer on the isolation film of the region corresponding to the first isolation opening and the second isolation opening; etching the isolation film with the second pattern layer as a mask, and leaving the isolation film as an isolation layer.
  • FIG. 34 are schematic diagrams showing the corresponding steps in the fourth embodiment of the method for forming a pixel structure of the present invention.
  • This embodiment is the same as the first embodiment of the forming method, and the present invention will not be repeated herein.
  • the present embodiment is different from the first embodiment of the forming method in that the thicknesses of the anode layers (not labeled) of the first pixel region I, the second pixel region II, and the third pixel region III have a difference.
  • an isolation layer having a top flat surface is formed on the anode layer, and an isolation layer in the first pixel region I, the second pixel region II, and the third pixel region III is formed.
  • Forming an opening exposing the anode layer filling the opening with a layer of compensation material to form a compensation layer having a top flat surface; by making the first pixel region I, the second pixel region II, and the third pixel region
  • the top surface of the anode layer of III has a height difference such that the opening depths in the isolation layers of the first pixel region I, the second pixel region II, and the third pixel region III are different, and correspondingly, the openings are filled with
  • the thicknesses of the compensation layers on the anode of the first pixel region I, the second pixel region II, and the third pixel region III are different, thereby implementing the first pixel region I and the second pixel region II.
  • the cavity length of the third pixel region III is separately modulated
  • the first pixel region I is a red pixel region
  • the second pixel region II is a green pixel region
  • the third pixel region III is a blue pixel region.
  • the anode layer thickness of the second pixel region II is greater than the anode layer thickness of the first pixel region I and smaller than the anode layer thickness of the third pixel region III.
  • a first anode material layer (not labeled) is formed on the substrate 400.
  • the first anode material layer is part of a subsequently formed anode layer.
  • the subsequent step further includes only the third pixel region III.
  • the thickness of the first anode material layer is appropriately set.
  • the thickness of the first anode material layer is to
  • the first anode material layer includes a first reflective metal layer 430 and a first transparent conductive layer 435 on the first reflective metal layer 430. In other embodiments, the first anode material layer may further include only the first reflective metal layer.
  • first reflective metal layer 430 refers to the corresponding description of the reflective metal layer in the first embodiment of the foregoing forming method.
  • first transparent conductive layer 435 please refer to the transparent method in the first embodiment.
  • the present invention will not be described herein.
  • the first anode material layer is formed by evaporation.
  • the evaporation process is a physical vapor deposition process.
  • the first reflective metal layer 430 is apt to be oxidized when exposed to air, thereby causing an increase in the resistance of the formed anode layer, thereby causing a decrease in the performance of the formed pixel structure.
  • the first transparent conductive layer 435 is made to the first reflective metal in a subsequent process by using the first reflective metal layer 430 and the first transparent conductive layer 435 as a first anode material layer of the stacked structure.
  • the layer 430 serves as a protection against the problem that the first reflective metal layer 430 is in contact with the air to cause oxidation, and the first reflective metal layer 430 is also prevented from being damaged or lost by etching.
  • the first reflective metal layer 430 and the first transparent conductive layer 435 are formed by continuous deposition, that is, in the same machine and not in the same machine.
  • the first reflective metal layer 430 and the first transparent conductive layer 435 are formed in a vacuum state.
  • the thickness of the first transparent conductive layer 435 is not too small and should not be too large. If the thickness of the first transparent conductive layer 435 is too small, the first transparent conductive layer 435 has a poor protection effect on the first reflective metal layer 430 during a subsequent process, and the first A reflective metal layer 430 is subject to etch damage or loss; if the thickness of the first transparent conductive layer 435 is too large, material waste is caused, and in the case where the thickness of the subsequently formed isolation layer is constant, the The thickness of the compensation layer of the second pixel region II and the third pixel region III is too small, and the performance of the formed pixel structure is easily lowered. Therefore, in this embodiment, the thickness of the first transparent conductive layer 435 is to
  • a first anode material layer (not labeled) of the first pixel region I is removed to expose the substrate 400 of the first pixel region 1.
  • the thickness of the anode layer of the subsequently formed first pixel region I is reduced, thereby increasing the thickness of the compensation layer of the subsequently formed first pixel region I.
  • the step of removing the first anode material layer of the first pixel region I includes: forming a fifth photoresist layer on the first anode material layer of the second pixel region II and the third pixel region III ( The first photoresist material layer of the first pixel region I is etched away by using the fifth photoresist layer as a mask; and the fifth photoresist layer is removed.
  • the first anode material layer of the first pixel region I is removed by dry etching.
  • the etching may be performed by a wet etching process or an etching process combining a dry method and a wet method.
  • a second anode is formed on the substrate 400 of the first pixel region I and on the first anode material layer. Material layer (not labeled).
  • the second anode material layer acts as part of the subsequently formed anode layer.
  • the second anode material layer is formed on only the first anode material layer of the third pixel region III, and the subsequent step is further included on the substrate 400 of the first pixel region I.
  • Forming a third anode material layer on the first anode material layer of the second pixel region II and the second anode material layer of the third pixel region III, so that the thickness of the second anode material layer needs to satisfy the blue light The second anode material layer of the third pixel region III affects the cavity length of the third pixel region III.
  • the thickness of the second anode material layer is appropriately set.
  • the thickness of the second anode material layer is to
  • the second anode material layer includes a second reflective metal layer 440 and a second transparent conductive layer 445 on the second reflective metal layer 440.
  • the first anode material layer may further include only the first reflective metal layer.
  • the second reflective metal layer 440 refers to the corresponding description of the reflective metal layer in the first embodiment of the foregoing forming method.
  • the second transparent conductive layer 445 refer to the foregoing forming method in the first embodiment.
  • the present invention will not be described herein.
  • the second anode material layer is formed by vapor deposition.
  • the evaporation process is a physical vapor deposition process.
  • the second transparent conductive layer 445 is used to protect the second reflective metal layer 440 in a subsequent process, preventing the second reflective metal layer 440 from being in contact with the air to cause oxidation, and may also The second reflective metal layer 440 is prevented from being damaged or lost by etching.
  • the second reflective metal layer 440 and the second transparent conductive layer 445 are formed by continuous deposition, that is, in the same machine and not in the same machine.
  • the second reflective metal layer 440 and the second transparent conductive layer 445 are formed in a vacuum state.
  • the thickness of the second transparent conductive layer 445 is to
  • the analysis of the setting of the thickness of the second transparent conductive layer 445 please refer to the foregoing analysis of the setting of the thickness of the first transparent conductive layer 435, and the present invention will not be repeated herein.
  • a second anode material layer (not labeled) of the first pixel region I and the second pixel region II is removed, exposing the substrate 400 of the first pixel region I and the second pixel region II An anode material layer (not labeled).
  • the thickness of the anode layer of the subsequently formed first pixel region I and the second pixel region II is reduced, thereby increasing subsequent formation
  • the thickness of the compensation layer of the first pixel region I and the second pixel region II is such that the compensation layer thickness of the first pixel region I is greater than the compensation layer thickness of the second pixel region II.
  • the step of removing the second anode material layer of the first pixel region I and the second pixel region II includes: forming a sixth photoresist layer on the second anode material layer of the third pixel region III ( The second anode material layer of the first pixel region I and the second pixel region II is etched away by using the sixth photoresist layer as a mask; and the sixth photoresist layer is removed.
  • the second anode material layer of the first pixel region I and the second pixel region II is removed by dry etching.
  • the etching may be performed by a wet etching process or an etching process combining a dry method and a wet method.
  • the etching process can be better stopped at the The top of the first transparent conductive layer 435 can improve the etching effect on the second anode material layer and avoid the problem of over-etching.
  • the third anode material layer acts as part of the subsequently formed anode layer.
  • the third anode material layer is formed on the substrate 400 of the first pixel region 1. Therefore, the thickness of the third anode material layer needs to meet the requirement of a red pixel.
  • the third anode material layer of region I affects the cavity length of the first pixel region I.
  • the thickness of the third anode material layer is appropriately set.
  • the thickness of the third anode material layer is to
  • the third anode material layer includes a third reflective metal layer 450 and a third transparent conductive layer 455 on the third reflective metal layer 450. In other embodiments, the third anode material layer may further include only the third reflective metal layer.
  • the third reflective metal layer 450 refers to the corresponding description of the reflective metal layer in the first embodiment of the foregoing forming method.
  • the third transparent conductive layer 455 please refer to the foregoing method for forming the transparent in the first embodiment.
  • the present invention will not be described herein.
  • the third anode material layer is formed by evaporation.
  • the evaporation process is a physical vapor deposition process.
  • the third transparent conductive layer 455 is used to protect the third reflective metal layer 450 in a subsequent process, preventing the third reflective metal layer 450 from being in contact with air to cause oxidation, and may also The third reflective metal layer 450 is prevented from being damaged or lost by etching.
  • the third reflective metal layer 450 and the third transparent conductive layer 455 are formed by continuous deposition, that is, in the same machine and not in the same machine.
  • the third reflective metal layer 450 and the third transparent conductive layer 455 are formed in a vacuum state.
  • the thickness of the third transparent conductive layer 455 is to
  • the analysis of the setting of the thickness of the third transparent conductive layer 455 please refer to the foregoing analysis of the setting of the thickness of the first transparent conductive layer 435, and the present invention will not be repeated herein.
  • the anode layers of the first pixel region I, the second pixel region II, and the third pixel region III are separated from each other, and Between adjacent anode layers there is an isolation opening 451 (shown in Figure 31) that exposes the substrate 400.
  • the isolation opening 451 provides a spatial location for subsequent formation of the isolation layer.
  • the method further includes the steps of: forming a portion on the third anode material layer (not labeled) of the first pixel region I, the second pixel region II, and the third pixel region III a seventh photoresist layer 500 (shown in FIG.
  • the seventh photoresist layer 500 exposing a third anode material layer at a boundary between the first pixel region I and the second pixel region II, and further exposing the a third anode material layer at a junction of the second pixel region II and the third pixel region III; etching the exposed third anode material layer and the second anode material layer by using the seventh photoresist layer 500 as a mask
  • An unillustrated layer and a first anode material layer (not labeled) form an isolation opening 451 exposing the substrate 400; the seventh photoresist layer 500 is removed.
  • etching is performed by a dry etching process.
  • the etching may be performed by a wet etching process or an etching process combining a dry method and a wet method.
  • the third anode material layer of the first pixel region I constitutes an anode layer of the first pixel region I
  • the third anode material layer of the second pixel region II and the first An anode material layer constitutes an anode layer of the second pixel region II
  • a third anode material layer, a second anode material layer and a first anode material layer (not labeled) of the third pixel region III constitute The anode layer of the third pixel region III is described.
  • the step of forming the compensation layer includes: forming a separator (not labeled) covering the anode layer (not labeled); performing the first on the separator a planarization process, the isolation film remaining as an isolation layer 460 (shown in FIG. 32); etching the isolation layer 460 in the first pixel region I, the second pixel region II, and the third pixel region III
  • An opening 465 exposing the anode layer is formed in the isolation layer 460 (as shown in FIG. 33); the opening 465 is filled with a compensation material layer; and the compensation material layer is subjected to a second planarization process, and the compensation is left.
  • the material layer acts as a compensation layer 470 (shown in Figure 34).
  • an isolation opening 451 exposing the substrate 400 is disposed between adjacent anode layers, and thus the isolation layer 460 is further filled in the isolation opening 451.
  • the thickness of the isolation layer 460 determines the thickness of the compensation layer 470. Therefore, in the embodiment, the thickness of the isolation layer 460 is according to actual process requirements. to
  • the step of forming the opening 465 includes: forming an eighth photoresist layer on the isolation layer 460 of the first pixel region I, the second pixel region II, and the third pixel region III (not shown)
  • the isolation layer 460 is etched by using the eighth photoresist layer as a mask, and an exposed region is formed in the isolation layer 460 of the first pixel region I, the second pixel region II, and the third pixel region III.
  • An opening 465 of the anode layer; the eighth photoresist layer is removed.
  • the remaining isolation layer 460 also covers part of the anode layer of the first pixel region I, the second pixel region II, and the third pixel region III. That is, the opening 465 exposes a portion of the anode layer.
  • the material of the compensation layer 470 is a highly transparent metal oxide.
  • the material of the compensation layer 470 is one or more of ITO, IZO, MoOx, and AZO.
  • the second planarization process is used to remove the compensation material layer above the top of the isolation layer 460, that is, the top of the formed compensation layer 470 is flush with the top of the isolation layer 460.
  • the top of the compensation layer 470 is a flat surface, that is, the tops of the compensation layers 470 of the first pixel region I, the second pixel region II, and the third pixel region III are flush, due to the first pixel region I,
  • the tops of the anode layers of the two pixel regions II and the third pixel regions III have height differences such that compensation is performed on the anode layers of the first pixel region I, the second pixel region II, and the third pixel region III with different thicknesses.
  • Layer 470 in turn, achieves separate modulation of the cavity lengths of the first pixel region I, the second pixel region II, and the third pixel region III.
  • the present invention also provides a pixel structure.
  • FIG. 34 a schematic structural view of a third embodiment of the pixel structure of the present invention is shown.
  • This embodiment is the same as the first embodiment of the pixel structure, and the present invention is not described herein again.
  • the present embodiment is different from the first embodiment of the pixel structure in that the thicknesses of the anode layers (not labeled) of the first pixel region I, the second pixel region II, and the third pixel region III have differences.
  • the pixel structure further includes: a first anode material layer (not labeled) on the substrate 400 of the second pixel region II and the third pixel region III; and a second anode material layer (not Marked on the first anode material layer of the third pixel region III; a third anode material layer (not labeled) on the substrate 400 of the first pixel region I, the second pixel region On the first anode material layer of II, and on the second anode material layer of the third pixel region III.
  • the third anode material layer of the first pixel region I constitutes an anode layer of the first pixel region I; the third anode material layer and the first anode material layer of the second pixel region II constitute a substrate
  • the second pixel region II anode layer; the third anode material layer, the second anode material layer and the first anode material layer of the third pixel region III constitute an anode layer of the third pixel region III.
  • the pixel structure further includes: an isolation layer 460 having an opening in the anode layer exposing the first pixel region I, the second pixel region II, and the third pixel region III (not Correspondingly, the compensation layer 470 is located within the opening.
  • the top surface of the anode layer of the first pixel region I, the second pixel region II, and the third pixel region III have a height difference, the first pixel region I, the second pixel region II, and the third region are caused.
  • the opening depths in the isolation layer 470 of the pixel region III are different. Accordingly, the thicknesses of the compensation layers 470 on the anodes of the first pixel region I, the second pixel region II, and the third pixel region III are also different, thereby achieving the opposite.
  • the cavity lengths of the first pixel region I, the second pixel region II, and the third pixel region III are separately modulated.
  • the isolation layer 460 also covers a portion of the anode layer of the first pixel region I, the second pixel region II, and the third pixel region III, that is, the opening a portion of the anode layer is exposed; correspondingly, the compensation layer 470 of the first pixel region I is located on a portion of the anode layer of the first pixel region I, and the compensation layer 470 of the second pixel region II is located at a portion of the first layer On the anode layer of the two-pixel region II, the compensation layer 470 of the third pixel region III is located on a part of the anode layer of the third pixel region III.
  • the thickness of the second anode material layer can meet the requirement of the blue pixel
  • the thickness of the third anode material layer can satisfy the red light.
  • the thicknesses of the first anode material layer, the second anode material layer, and the third anode material layer are appropriately set.
  • the thickness of the first anode material layer is to The thickness of the second anode material layer is to The thickness of the third anode material layer is to
  • the thickness of the isolation layer 460 determines the thickness of the compensation layer 470. Therefore, in the embodiment, the thickness of the isolation layer 460 is according to actual process requirements. to
  • anode layers of the first pixel region I, the second pixel region II, and the third pixel region III are separated from each other, and an isolation opening exposing the substrate 400 is adjacent between the anode layers ( Not marked).
  • the isolation layer 460 is also located in the isolation opening, and the isolation layer 170 is used to isolate adjacent pixels.
  • isolation layer 460 For a detailed description of the isolation layer 460, refer to the corresponding description of the fourth embodiment of the foregoing forming method, and details are not described herein again.
  • the first anode material layer includes a first reflective metal layer 430 and a first transparent conductive layer 435 on the first reflective metal layer 430. In other embodiments, the first anode material layer may further include only the first reflective metal layer.
  • the second anode material layer includes a second reflective metal layer 440 and a second transparent conductive layer 445 on the second reflective metal layer 440.
  • the first anode material layer may further include only the first reflective metal layer.
  • the third anode material layer includes a third reflective metal layer 450 and a third transparent conductive layer 455 on the third reflective metal layer 450. In other embodiments, the third anode material layer may further include only the third reflective metal layer.
  • the first reflective metal layer 430 and the first transparent conductive layer 435 are used as the first anode material layer of the laminated structure
  • the second reflective metal layer 440 and the second transparent conductive layer 445 are used as the laminated structure.
  • the second anode material layer, the third reflective metal layer 450 and the third transparent conductive layer 455 are used as the third anode material layer of the laminated structure, so that the first transparent conductive layer 435 and the second transparent conductive layer
  • the layer 445 and the third transparent conductive layer 455 respectively protect the first reflective metal layer 430, the second reflective metal layer 440, and the third reflective metal layer 450.
  • the present invention also provides a display screen comprising a plurality of pixel structures according to the third embodiment of the pixel structure of the present invention.
  • the first pixel region I, the second pixel region II, and the third pixel region III have compensation layers of different thicknesses, thereby being capable of improving the brightness and color gamut of the display screen.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素结构及其形成方法、显示屏,形成方法包括:提供基底,用于形成 OLED 器件,所述基底包括第一像素区、第二像素区和第三像素区;在所述基底上形成补偿层,所述第一像素区、第二像素区和第三像素区的补偿层厚度具有差异。本发明在基底上形成补偿层,所述第一像素区、第二像素区和第三像素区的补偿层厚度具有差异,从而实现对所述第一像素区、第二像素区和第三像素区的腔长单独调制,使得 OLED 器件可以利用强微腔效应来提高发光效率和提高色纯度,进而提高显示屏的亮度和色域。

Description

像素结构及其形成方法、显示屏
本申请要求于2017年08月08日提交中国专利局、申请号为201710669365.7、发明名称为“像素结构及其形成方法、显示屏”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,尤其涉及一种像素结构及其形成方法、显示屏。
背景技术
随着多媒体技术的发展,对平板显示设备性能的要求越来越高,目前,等离子显示器、场发射显示器和有机电致发光显示器为主要的显示技术。其中,有机电致发光显示器是基于有机发光二极管(Organic Light Emitting Diode,OLED)制得的显示设备,其具有反应速度快、对比度高、视角广等优点。此外,OLED面板具有自发光的特性,无需使用背光板,从而可以节约背光模块的成本,且相比传统液晶面板更为轻薄,因此OLED在显示器等领域具有巨大的应用前景。
硅基OLED是采用硅片作为驱动电路基板、并在硅片上制作OLED作为发光单元的显示屏技术,硅基OLED利用了集成电路的制造工艺,可以制作出最小3μm至4μm的像素。由于制作OLED像素结构所需的荫罩很难达到这样高的精度,而白光OLED层在蒸镀时只需要对每个屏的周边电路进行遮挡,荫罩无需针对单个像素开孔而是在整个显示区开口,因此目前可实际生产的硅基OLED主要采用白光OLED层加彩色滤光片的方式来实现彩色显示。
但是,现有技术硅基OLED像素结构的亮度较低。
发明内容
本发明解决的问题是提供一种像素结构及其形成方法、显示屏,提升硅基OLED像素结构的亮度,从而提高显示屏的亮度和色域。
为解决上述问题,本发明提供一种像素结构的形成方法,包括:提供基底,用于形成OLED器件,所述基底包括第一像素区、第二像素区和第三像素区;在所述基底上形成补偿层,所述第一像素区、第二像素区和第三像素区的补偿层厚度具有差异。
相应的,本发明还提供一种像素结构,包括:基底,用于形成OLED器件,所述基底包括第一像素区、第二像素区和第三像素区;位于所述基底上的补偿层,所述第一像素区、第二像素区和第三像素区的补偿层厚度具有差异。
此外,本发明还提供一种显示屏,包括若干个本发明所述的像素结构。
与现有技术相比,本发明的技术方案具有以下优点:
本发明在基底上形成补偿层,所述第一像素区、第二像素区和第三像素区的补偿层厚度具有差异,从而实现对所述第一像素区、第二像素区和第三像素区的腔长单独调制,使得OLED器件可以利用强微腔效应来提高发光效率和提高色纯度,进而提高显示屏的亮度和色域。
可选方案中,在所述基底上形成补偿层之前,还包括步骤:在所述基底上形成阳极层,且所述第一像素区、第二像素区和第三像素区的阳极层厚度相同,通过第一补偿材料层、第二补偿材料层以及第三补偿材料层的形成和去除工艺的交替进行,使所述第一像素区的第一补偿材料层、第二补偿材料层和第三补偿材料层构成所述第一像素区的补偿层,所述第二像素区的第一补偿材料层和第二补偿材料层构成所述第二像素区的补偿层,所述第三像素区的第一补偿材料层构成所述第三像素区的补偿层,从而使所述三个像素区的阳极层上形成有不 同厚度的补偿层,进而实现对所述第一像素区、第二像素区和第三像素区的腔长单独调制。
可选方案中,在所述基底上形成补偿层之前,还包括步骤:在所述基底上形成阳极层,且所述第一像素区、第二像素区和第三像素区的阳极层厚度具有差异,后续在所述阳极层上形成隔离层,所述第一像素区、第二像素区和第三像素区的隔离层内形成露出所述阳极层的开口,并在所述开口中形成顶部为平坦面的补偿层;通过使所述第一像素区、第二像素区和第三像素区的补偿层顶部齐平,且所述第一像素区、第二像素区和第三像素区的阳极层顶部具有高度差,从而使所述第一像素区、第二像素区和第三像素区的阳极层上形成有不同厚度的补偿层,进而实现对所述第一像素区、第二像素区和第三像素区的腔长单独调制。
附图说明
图1至图13是本发明像素结构的形成方法第一实施例中各步骤对应的结构示意图;
图14和图15是本发明像素结构的形成方法第二实施例中各步骤对应的结构示意图;
图16至图24是本发明像素结构的形成方法第三实施例中各步骤对应的结构示意图;
图25至图34是本发明像素结构的形成方法第四实施例中各步骤对应的结构示意图。
具体实施方式
由背景技术可知,硅基OLED像素结构的亮度较低。分析其亮度较低的原因在于:
由于荫罩制作工艺和蒸镀时荫罩与基板对位精度的限制,对于高 解析度(1000PPI至3000PPI)的硅基OLED像素结构,只能使用显示区全开(Open Mask)的方式蒸镀白光OLED层,再搭配彩色滤光片(例如RGB滤光片)来实现全彩显示。
因此,对于红光像素区、绿光像素区和蓝光像素区来说,实际发光的OLED器件都是一样的,相应的,所述红光像素区、绿光像素区和蓝光像素区所对应的OLED器件腔长(即OLED器件阳极至阴极之间的距离)相等。
但由于OLED器件发出的白光在经过彩色滤光片后损失了超过一半的亮度,而且制作白光OLED器件时,所述红光像素区、绿光像素区和蓝光像素区所对应的OLED器件腔长相等,因此无法做成强微腔效应来提高发光效率和色纯度,从而导致显示屏的亮度较低,通常只能达到约300nit(尼特)。
为了解决所述技术问题,本发明在第一像素区、第二像素区和第三像素区形成不同厚度的补偿层,从而实现对所述第一像素区、第二像素区和第三像素区的腔长单独调制,使得OLED器件可以利用强微腔效应来提高发光效率和提高色纯度,进而提高显示屏的亮度和色域。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1至图13是本发明像素结构的形成方法第一实施例中各步骤对应的结构示意图。
参考图1,提供基底100,用于形成OLED器件,所述基底100包括第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ。
所述基底为后续形成OLED器件提供驱动电路基板。
具体地,所述OLED器件为顶发射OLED器件。
本实施例中,所形成的像素结构为硅基OLED结构。其中,硅基 OLED指的是采用硅片作为驱动电路基板、并在所述硅片上制作OLED作为发光单元的显示屏技术。
所述基底100内形成有互连金属层110、以及与所述互连金属层110电连接的导电插塞120,且所述基底100露出所述导电插塞120,从而实现所述基底100与后续所形成OLED器件的电路连接。
所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ用于发出不同颜色的光。本实施例中,所形成的像素结构采用白光OLED层加彩色滤光片的方式来实现彩色显示,且所述彩色滤光片为RGB滤光片,因此所述第一像素区Ⅰ为红光像素区,所述第二像素区Ⅱ为绿光像素区,所述第三像素区Ⅲ为蓝光像素区。
继续参考图1,需要说明的是,提供所述基底100后,还包括步骤:在所述基底100上形成阳极层130。
在OLED器件中,通常包括位于所述基底100上的阳极层130和阴极层(图未示)、以及位于所述阳极层130和阴极层之间的若干层有机功能层(图未示)。其中,所述阳极层130与电力正极相连而成为阳极,所述阴极层与电力负极相连而成为阴极,当为所述阳极层130和阴极层施加适当电压时,阳极产生的空穴与阴极产生的电荷相结合,用于产生光亮。
所述阳极层130可以为单层结构或叠层结构。具体地,所述阳极层130可以为反射金属层,或者,所述阳极层130包括反射金属层以及位于所述反射金属层上的透明导电层。
所述反射金属层具有良好地反射率和延展性,因此能够起到反射和导电的作用;所述透明导电层具有导电性好、透明度高、功函数高等优点,从而有利于提高显示效率。其中,所述反射金属层的材料可以为Al、Ag或Cu等金属,所述透明导电层的材料可以为ITO、IZO、MoOx和AZO中的一种或多种。
本实施例中,所述阳极层130为反射金属层。
由于Al材料的反射率较高,且针对Al材料的刻蚀工艺较为简单,因此综合考虑工艺实现难度和金属反射率,本实施例中,所述反射金属层的材料为Al。
本实施例中,采用蒸镀的方式在所述基底100上形成所述阳极层130。具体地,所述蒸镀工艺为物理气相沉积工艺。
需要说明的是,本实施例中,所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层130厚度相同。
继续参考图1,并结合参考图2至图11,在所述基底100上形成补偿层(未标示),所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层厚度具有差异。
在OLED器件中,由于所述阳极层130和阴极层(图未示)具有反射特性,光在所述阳极层130和阴极层之间往复反射,从而形成微腔效应。所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层厚度具有差异,从而能够通过所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层分别调制所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的腔长,使得OLED器件能够利用强微腔效应来提高所形成像素结构的发光效率和色纯度,进而提高显示屏的亮度和色域。
所以,本实施例中,所述补偿层的材料为高透明度的金属氧化物。具体地,所述补偿层的材料为ITO、IZO、MoOx和AZO中的一种或多种。
所述第一像素区Ⅰ为红光像素区,所述第二像素区Ⅱ为绿光像素区,所述第三像素区Ⅲ为蓝光像素区,由于绿光的波长小于红光的波长且大于蓝光的波长,为了使得后续所形成OLED器件能够利用强微腔效应,所述第二像素区Ⅱ的腔长小于所述第一像素区Ⅰ的腔长且大于所述第三像素区Ⅲ的腔长;相应的,所述第二像素区Ⅱ的补偿层厚度小于所述第一像素区Ⅰ的补偿层厚度,且大于所述第三像素区Ⅲ的补偿层厚度。
对于高解析度(1000PPI至3000PPI)的硅基OLED像素结构,由于荫罩开口尺寸的限制,难以采用荫罩对不同颜色的像素区分别蒸镀不同厚度的补偿层,只能同时对所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ进行蒸镀,因此本实施例中,采用补偿材料层的蒸镀和刻蚀工艺交替进行的方式,从而能够使所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层厚度具有差异。
以下结合附图,对形成所述补偿层的步骤做详细说明。
继续参考图1,在所述阳极层130上形成第一补偿材料层140。
所述第一补偿材料层140作为后续所形成补偿层的一部分。
因此所述第一补偿材料层140的材料可以为ITO、IZO、MoOx和AZO中的一种或多种。
本实施例中,采用蒸镀的方式在所述阳极层130上形成所述第一补偿材料层140。具体地,所述蒸镀工艺为物理气相沉积工艺。
需要说明的是,后续所述第三像素区Ⅲ的阳极层130上仅形成有所述第一补偿材料层140,即所述第三像素区Ⅲ的补偿层为单层结构,因此所述第一补偿材料层140的厚度需满足蓝光像素的需求,所述第一补偿材料层140用于调制所述第三像素区Ⅲ的腔长。
为此,本实施例中,所述第一补偿材料层140的厚度为
Figure PCTCN2018084056-appb-000001
Figure PCTCN2018084056-appb-000002
还需要说明的是,所述阳极层130暴露在空气中易发生氧化,从而导致所述阳极层130的阻值增加,进而引起所形成像素结构性能的下降,为此,本实施例中,在形成所述阳极层130所采用的机台中且在不出真空的状态下形成所述第一补偿材料层140,也就是说,保证所述阳极层130和所述第一补偿材料层140的连续沉积,以防止所述阳极层130与空气相接触。
结合参考图2和图3,在所述第一补偿材料层140上形成第二补 偿材料层150(如图3所示)。
所述第二补偿材料层150作为后续所形成补偿层的一部分。
因此所述第二补偿材料层150的材料可以为ITO、IZO、MoOx和AZO中的一种或多种。
本实施例中,为了降低后续工艺的难度且提高工艺兼容性,所述第二补偿材料层150的材料与所述第一补偿材料层140的材料相同。
本实施例中,采用蒸镀的方式在所述第一补偿材料层140上形成第二补偿材料层150。具体地,所述蒸镀工艺为物理气相沉积工艺。
需要说明的是,后续所述第二像素区Ⅱ的阳极层130上仅形成有所述第一补偿材料层140和第二补偿材料层150,即所述第二像素区Ⅱ的补偿层为所述第一补偿材料层140和第二补偿材料层150构成的叠层结构,因此所述第一补偿材料层140和第二补偿材料层150的总厚度需满足绿光像素的需求,所述第二像素区Ⅱ的第一补偿材料层140和第二补偿材料层150用于调制所述第二像素区Ⅱ的腔长。
所以,在保证所述第一补偿材料层140的厚度能够满足红光像素的需求的情况下,合理设定所述第二补偿材料层150的厚度。本实施例中,所述第二补偿材料层150的厚度为
Figure PCTCN2018084056-appb-000003
Figure PCTCN2018084056-appb-000004
后续所述第三像素区Ⅲ的阳极层130上仅形成有所述第一补偿材料层140,相应的,后续步骤还包括去除所述第三像素区Ⅲ的所述第二补偿材料层150,为了减小去除所述第三像素区Ⅲ第二补偿材料层150所采用的工艺对所述第三像素区Ⅲ的第一补偿材料层140造成不良影响,形成所述第二补偿材料层150的步骤包括:在所述第三像素区Ⅲ的第一补偿材料层140上形成第一牺牲层210(如图2所示);形成第二补偿材料层150,所述第二补偿材料层150覆盖所述第一像素区Ⅰ和第二像素区Ⅱ的第一补偿材料层140、以及所述第一牺牲层210。
所述第一牺牲层210用于在后续去除所述第三像素区Ⅲ的第二 补偿材料层150的过程中,对所述第三像素区Ⅲ的第一补偿材料层140起到保护作用。
去除所述第三像素区Ⅲ的第二补偿材料层150后,还去除所述第一牺牲层210,因此所述第一牺牲层210的材料为易于去除的材料,且去除所述第一牺牲层210的工艺对所述第一补偿材料层140和第二补偿材料层150的影响较小。
为此,本实施例中,在保证所述第一牺牲层210的保护功能的前提下,降低所述第一牺牲层210对后续所形成像素结构的影响,所述第一牺牲层210的材料为光刻胶,通过曝光显影工艺形成所述第一牺牲层210。
需要说明的是,本实施例中,形成所述第一牺牲层210后,所述第一牺牲层210还露出所述第三像素区Ⅲ和第二像素区Ⅱ交界处的第一补偿材料层140,从而为后续在所述第三像素区Ⅲ和第二像素区Ⅱ交界处形成露出所述基底100的第一隔离开口提供工艺基础。
结合参考图4至图6,去除所述第三像素区Ⅲ的第二补偿材料层150。
通过去除所述第三像素区Ⅲ的第二补偿材料层150,以减小所述第三像素区Ⅲ的补偿层厚度。
具体地,去除所述第三像素区Ⅲ的第二补偿材料层150的步骤包括:在所述第一像素区Ⅰ和第二像素区Ⅱ的第二补偿材料层150上形成第一光刻胶层220(如图4所示);以所述第一光刻胶层220为掩膜,刻蚀去除所述第三像素区Ⅲ的第二补偿材料层150;去除所述第一光刻胶层220。
本实施例中,在所述刻蚀工艺过程中,刻蚀去除所述第一牺牲层210侧壁和顶部上的第二补偿材料层150。
需要说明的是,形成所述第一光刻胶层220后,所述第一光刻胶层220还露出所述第二像素区Ⅱ和第三像素区Ⅲ交界处的第二补偿 材料层150,因此在去除所述第三像素区Ⅲ的第二补偿材料层150的步骤中,还刻蚀去除所述第二像素区Ⅱ和第三像素区Ⅲ交界处的第二补偿材料层150、第一补偿材料层140和阳极层130,在所述第二像素区Ⅱ和第三像素区Ⅲ交界处形成露出所述基底100的第一隔离开口151(如图5所示)。
所述第一隔离开口151为后续形成用于隔离所述第二像素区Ⅱ和第三像素区Ⅲ的隔离层提供空间位置。
本实施例中,为了较好地控制剩余第二补偿材料层150、第一补偿材料层140和阳极层130的形貌,采用干法刻蚀工艺进行刻蚀。
在其他实施例中,还可以采用湿法刻蚀工艺、或者干法和湿法相结合的刻蚀工艺进行刻蚀。
还需要说明的是,所述第三像素区Ⅲ的第一补偿材料层140上形成有所述第一牺牲层210,去除所述第三像素区Ⅲ的第二补偿材料层150后,露出所述第一牺牲层210,且所述第一牺牲层210的材料为光刻胶,因此如图6所示,在去除所述第一光刻胶层220的步骤中,还去除所述第一牺牲层210,相应还可以避免采用额外工艺以去除所述第一牺牲层210。
具体地,通过灰化或湿法去胶的方式去除所述第一光刻胶层220和第一牺牲层210。
结合参考图7和图8,去除所述第三像素区Ⅲ的第二补偿材料层150后,在所述第一像素区Ⅰ和第二像素区Ⅱ的第二补偿材料层150上、以及所述第三像素区Ⅲ的第一补偿材料层140上形成第三补偿材料层160(如图8所示)。
所述第三补偿材料层160作为后续所形成补偿层的一部分。
因此所述第三补偿材料层160的材料可以为ITO、IZO、MoOx和AZO中的一种或多种。
本实施例中,为了降低后续工艺的难度且提高工艺兼容性,所述第三补偿材料层160的材料与所述第一补偿材料层140的材料相同。
本实施例中,采用蒸镀的方式形成所述第三补偿材料层160。具体地,所述蒸镀工艺为物理气相沉积工艺。
需要说明的是,后续仅所述第一像素区Ⅰ的第二补偿材料层150上形成有所述第三补偿材料层160,因此所述第一补偿材料层140、第二补偿材料层150和第三补偿材料层160的总厚度需满足红光像素的需求,所述第一像素区Ⅰ的第一补偿材料层140、第二补偿材料层150和第三补偿材料层160用于调制所述第一像素区Ⅰ的腔长。
所以,在保证所述第一补偿材料层140的厚度能够满足红光像素的需求、所述第二补偿材料层150的厚度能够满足绿光像素的需求的情况下,合理设定所述第三补偿材料层160的厚度。本实施例中,所述第三补偿材料层160的厚度为
Figure PCTCN2018084056-appb-000005
Figure PCTCN2018084056-appb-000006
后续仅所述第一像素区Ⅰ的第二补偿材料层150上形成有所述第三补偿材料层160,相应的,后续步骤还包括去除所述第二像素区Ⅱ和第三像素区Ⅲ的所述第三补偿材料层160,为了减小去除所述第二像素区Ⅱ和第三像素区Ⅲ的第三补偿材料层160所采用的工艺对所述第二像素区Ⅱ的第二补偿材料层150和第三像素区Ⅲ的第一补偿材料层140造成不良影响,形成所述第三补偿材料层160的步骤包括:在所述第二像素区Ⅱ的第二补偿材料层150上、以及所述第三像素区Ⅲ的第一补偿材料层140上形成第二牺牲层230(如图7所示);形成第三补偿材料层160,所述第三补偿材料层160覆盖所述第一像素区Ⅰ的第二补偿材料层150、以及所述第二牺牲层230。
所述第二牺牲层230用于在后续去除所述第二像素区Ⅱ和第三像素区Ⅲ的第三补偿材料层160的过程中,对所述第二像素区Ⅱ的第二补偿材料层150和第三像素区Ⅲ的第一补偿材料层140起到保护作用。
去除所述第二像素区Ⅱ和第三像素区Ⅲ的第三补偿材料层160后,还去除所述第二牺牲层230,因此所述第二牺牲层230的材料为易于去除的材料,且去除所述第二牺牲层230的工艺对所述第一补偿材料层140、第二补偿材料层150和第三补偿材料层160的影响较小。
为此,本实施例中,在保证所述第二牺牲层230的保护功能的前提下,降低所述第二牺牲层230对所形成像素结构的影响,所述第二牺牲层230的材料为光刻胶,通过曝光显影工艺形成所述第二牺牲层230。
需要说明的是,本实施例中,形成所述第二牺牲层230后,所述第二牺牲层230还露出所述第二像素区Ⅱ和第一像素区Ⅰ交界处的第二补偿材料层150,从而为后续在所述第二像素区Ⅱ和第一像素区Ⅰ交界处形成露出所述基底600的第二隔离开口提供工艺基础。
结合参考图9至图11,去除所述第二像素区Ⅱ和第三像素区Ⅲ的第三补偿材料层160。
通过去除所述第二像素区Ⅱ和第三像素区Ⅲ的第三补偿材料层160,以减小所述第二像素区Ⅱ和第三像素区Ⅲ的补偿层厚度,且使所述第二像素区Ⅱ的补偿层厚度大于所述第三像素区Ⅲ的补偿层厚度。
具体地,去除所述第二像素区Ⅱ和第三像素区Ⅲ的第三补偿材料层160的步骤包括:在所述第一像素区Ⅰ的第三补偿材料层160上形成第二光刻胶层240(如图9所示);以所述第二光刻胶层240为掩膜,刻蚀去除所述第二像素区Ⅱ和第三像素区Ⅲ的第三补偿材料层160;去除所述第二光刻胶层240。
本实施例中,在所述刻蚀工艺过程中,刻蚀去除所述第二牺牲层230侧壁和顶部上的第三补偿材料层160。
需要说明的是,所述第二光刻胶层240还露出所述第一像素区Ⅰ和第二像素区Ⅱ交界处的第三补偿材料层160,因此在去除所述第二 像素区Ⅱ和第三像素区Ⅲ的第三补偿材料层160的步骤中,还刻蚀去除所述第一像素区Ⅰ和第二像素区Ⅱ交界处的第三补偿材料层160、第二补偿材料层150、第一补偿材料层140和阳极层130,在所述第一像素区Ⅰ和第二像素区Ⅱ交界处形成露出所述基底100的第二隔离开口152(如图10所示)。
所述第二隔离开口152为后续形成用于隔离所述第一像素区Ⅰ和第二像素区Ⅱ的隔离层提供空间位置。
本实施例中,为了较好地控制剩余第三补偿材料层160、第二补偿材料层150、第一补偿材料层140和阳极层130的形貌,采用干法刻蚀工艺进行刻蚀。
在其他实施例中,还可以采用湿法刻蚀工艺、或者干法和湿法相结合的刻蚀工艺进行刻蚀。
还需要说明的是,所述第二像素区Ⅱ的第二补偿材料层150上以及所述第三像素区Ⅲ的第一补偿材料层140上形成有所述第二牺牲层230,去除所述第二像素区Ⅱ和第三像素区Ⅲ的第三补偿材料层160后,露出所述第二牺牲层230,且所述第二牺牲层230的材料为光刻胶,因此如图11所示,在去除所述第二光刻胶层240的步骤中,还去除所述第二牺牲层230,相应还可以避免采用额外工艺以去除所述第二牺牲层230。
具体地,通过灰化或湿法去胶的方式去除所述第二光刻胶层240和第二牺牲层230。
所以,本实施例中,所述第一像素区Ⅰ的第一补偿材料层140、第二补偿材料层150和第三补偿材料层160构成所述第一像素区Ⅰ的补偿层,所述第二像素区Ⅱ的第一补偿材料层140和第二补偿材料层150构成所述第二像素区Ⅱ的补偿层,所述第三像素区Ⅲ的第一补偿材料层140构成所述第三像素区Ⅲ的补偿层,且所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层相互分立。
相应的,所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层的底部齐平,且所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层的顶部具有高度差,从而实现对所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的腔长单独调制。
结合参考图12和图13,形成所述补偿层(未标示)后,还包括步骤:形成填充满所述第一隔离开口151(如图11所示)和第二隔离开口152(如图11所示)的隔离层170(如图13所示)。
所述隔离层170用于隔离相邻像素。
本实施例中,形成所述隔离层170的步骤包括:在所述第一隔离开口151和第二隔离开口152内填充满隔离膜175(如图12所示),所述隔离膜175还覆盖所述补偿层的顶部;采用无掩膜工艺回刻所述隔离膜175,去除所述补偿层顶部的所述隔离膜175,保留所述第一隔离开口151和第二隔离开口152内的所述隔离膜175作为隔离层170。
本实施例中,所述隔离膜175的材料为SiO 2,采用等离子体增强化学的气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD)形成所述隔离膜175。
PECVD工艺具有工艺温度低、沉积速率快、成膜质量好等优点,因此有利于提高所述隔离层170的形成质量,且由于OLED器件的耐温性较差,较低的工艺温度能够避免对所形成像素结构的性能产生不良影响。
在其他实施例中,所述隔离膜的材料还可以为SiN或SiON。
本实施例中,采用无掩膜工艺回刻所述隔离膜175的步骤中,所采用的刻蚀工艺为干法刻蚀工艺。
其中,通过采用无掩膜工艺回刻的方式,能够较好地去除所述补偿层顶部的所述隔离膜175,从而避免所述隔离层170占用所述补偿层的面积,进而避免所述隔离层170占用所形成像素结构的发光区面 积。
相应的,本发明还提供一种像素结构。
继续参考图13,示出了本发明像素结构第一实施例的结构示意图,本发明所述像素结构包括:基底100,用于形成OLED器件,所述基底包括第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ;位于所述基底100上的补偿层(未标示),所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层厚度具有差异。
具体地,所述OLED器件为顶发射OLED器件。
本实施例中,所述像素结构为硅基OLED结构,所述基底100内形成有互连金属层110、以及与所述互连金属层110电连接的导电插塞120,且所述基底100露出所述导电插塞120,从而实现所述基底100与OLED器件的电路连接。
所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ用于发出不同颜色的光。本实施例中,所述OLED器件采用RGB滤光片,因此所述第一像素区Ⅰ为红光像素区,所述第二像素区Ⅱ为绿光像素区,所述第三像素区Ⅲ为蓝光像素区。
需要说明的是,所述像素结构还包括:阳极层130,位于所述基底100和所述补偿层之间。
所述阳极层130可以为单层结构或叠层结构。具体地,所述阳极层130可以为反射金属层,或者,所述阳极层130包括反射金属层以及位于所述反射金属层上的透明导电层。其中,所述反射金属层的材料可以为Al、Ag或Cu等金属,所述透明导电层的材料可以为ITO、IZO、MoOx和AZO中的一种或多种。
本实施例中,所述阳极层130为反射金属层。
由于Al材料的反射率较高,且针对Al材料的刻蚀工艺较为简单,因此综合考虑工艺实现难度和金属反射率,本实施例中,所述反射金 属层的材料为Al。
需要说明的是,本实施例中,所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层130厚度相同。
所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层厚度具有差异,因此所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层能够分别调制所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的腔长,使得OLED器件可以利用强微腔效应来提高所述像素结构的发光效率和色纯度,进而提高显示屏的亮度和色域。
所以,本实施例中,所述补偿层的材料为高透明度的金属氧化物。具体地,所述补偿层的材料为ITO、IZO、MoOx和AZO中的一种或多种。
其中,所述第一像素区Ⅰ为红光像素区,所述第二像素区Ⅱ为绿光像素区,所述第三像素区Ⅲ为蓝光像素区,由于绿光的波长小于红光的波长且大于蓝光的波长,为了使OLED器件能够利用强微腔效应,所述第二像素区Ⅱ的腔长小于所述第一像素区Ⅰ的腔长且大于所述第三像素区Ⅲ的腔长,所以,所述第二像素区Ⅱ的补偿层厚度小于所述第一像素区Ⅰ的补偿层厚度,且大于所述第三像素区Ⅲ的补偿层厚度。
本实施例中,所述第一像素区Ⅰ的补偿层和所述第二像素区Ⅱ的补偿层为叠层结构。
具体地,所述像素结构还包括:第一补偿材料层140,位于所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的所述阳极层130上;第二补偿材料层150,位于所述第一像素区Ⅰ和第二像素区Ⅱ的所述第一补偿材料层140上;第三补偿材料层160,位于所述第一像素区Ⅰ的所述第二补偿材料层150上。
其中,所述第一像素区Ⅰ的第一补偿材料层140、第二补偿材料层150和第三补偿材料层160构成所述第一像素区Ⅰ的补偿层;所述 第二像素区Ⅱ的第一补偿材料层140和第二补偿材料层150构成所述第二像素区Ⅱ的补偿层;所述第三像素区Ⅲ的第一补偿材料层140构成所述第三像素区Ⅲ的补偿层。
通过使所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层由不同补偿材料层构成,因此可以采用补偿材料层的蒸镀和刻蚀工艺交替进行的方式,使所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层厚度具有差异。
需要说明的是,本实施例中,为了降低形成工艺的难度且提供工艺兼容性,所述第一补偿材料层140、第二补偿材料层150和第三补偿材料层160的材料相同。
还需要说明的是,所述第三像素区Ⅲ的阳极层130上仅形成有所述第一补偿材料层140,即所述第三像素区Ⅲ的补偿层为单层结构,因此所述第一补偿材料层140的厚度需满足蓝光像素的需求;所述第二像素区Ⅱ的阳极层130上仅形成有所述第一补偿材料层140和第二补偿材料层150,即所述第二像素区Ⅱ的补偿层为所述第一补偿材料层140和第二补偿材料层150构成的叠层结构,因此所述第一补偿材料层140和第二补偿材料层150的总厚度需满足绿光像素的需求;所述第一像素区Ⅰ的阳极层130上仅形成有所述第一补偿材料层140、第二补偿材料层150和第三补偿材料层160,因此所述第一补偿材料层140、第二补偿材料层150和第三补偿材料层160的总厚度需满足红光像素的需求。
所以,本实施例中,根据实际工艺需求,所述第一补偿材料层140的厚度为
Figure PCTCN2018084056-appb-000007
Figure PCTCN2018084056-appb-000008
所述第二补偿材料层150的厚度为
Figure PCTCN2018084056-appb-000009
Figure PCTCN2018084056-appb-000010
所述第三补偿材料层160的厚度为
Figure PCTCN2018084056-appb-000011
Figure PCTCN2018084056-appb-000012
本实施例中,所述像素结构还包括:隔离层170,所述隔离层170至少贯穿所述第一像素区Ⅰ和第二像素区Ⅱ交界处的补偿层和阳极层130、以及所述第二像素区Ⅱ和第三像素区Ⅲ交界处的补偿层和阳极层130。
所述隔离层170用于隔离相邻像素。
本实施例中,所述隔离层170的材料为SiO 2。在其他实施例中,所述隔离层的材料还可以为SiN或SiON。
本实施例中,所述隔离层170仅贯穿所述补偿层和阳极层130,即所述补偿层顶部未形成有所述隔离层170,从而可以避免所述隔离层170占用所述补偿层的面积,进而避免所述隔离层170占用所述像素结构的发光区面积。
本发明所述像素结构采用前述像素结构的形成方法第一实施例的方法所形成,对所述像素结构的具体描述,请参考前述形成方法第一实施例中的相应描述,在此不再赘述。
此外,本发明还提供一种显示屏,包括若干个本发明像素结构第一实施例所述的像素结构。
所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ具有不同厚度的补偿层,从而实现对所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的腔长单独调制,使得OLED器件可以利用强微腔效应来提高发光效率和提高色纯度,进而提高显示屏的亮度和色域。
图14和图15是本发明像素结构的形成方法第二实施例中各步骤对应的结构示意图。
本实施例与形成方法第一实施例相同之处,本发明在此不再赘述。本实施例与形成方法第一实施例的不同之处在于:形成所述隔离层370(如图15所示)的步骤包括:在所述第一隔离开口(如图14所示,未标示)和第二隔离开口(如图14所示,未标示)内填充满隔离膜375(如图14所示),所述隔离膜375还覆盖所述补偿层(未标示)的顶部;在所述第一隔离开口和第二隔离开口所对应区域的隔离膜375上形成第三光刻胶层350(如图14所示);以所述第三光刻胶层350为掩膜,刻蚀所述隔离膜375,剩余所述隔离膜375作为隔离层370;去除所述第三光刻胶层350。
相应的,所述隔离层370还覆盖所述第一像素区Ⅰ和第二像素区Ⅱ交界处的补偿层顶部、以及所述第二像素区Ⅱ和第三像素区Ⅲ交界处的补偿层顶部。
通过采用光刻和刻蚀工艺相结合的工艺,能够避免所述第一隔离开口和第二隔离开口所对应区域的隔离膜375发生损耗的问题,从而保证所述隔离层370对所述补偿层侧壁和顶部的拐角处的覆盖效果,进而有利于后续其他膜层的沉积效果,有利于提高所形成像素结构的性能。
本实施例中,采用干法刻蚀的方式,刻蚀所述图形层350露出的所述隔离膜375。形成所述隔离层370后,通过灰化或湿法去胶的方式,去除所述第三光刻胶层350。
相应的,本发明还提供一种像素结构。
继续参考图15,示出了本发明像素结构第二实施例的结构示意图,本实施例与像素结构第一实施例相同之处,本发明在此不再赘述。本实施例与像素结构第一实施例的不同之处在于:所述隔离层370还覆盖所述第一像素区Ⅰ和第二像素区Ⅱ交界处的补偿层顶部、以及所述第二像素区Ⅱ和第三像素区Ⅲ交界处的补偿层顶部。
通过采用所述隔离层370还覆盖所述补偿层顶部的方案,避免所述补偿层顶部拐角处暴露的问题,从而有利于后续其他膜层的沉积效果,有利于提高像素结构的性能。
本发明所述像素结构采用像素结构的形成方法第二实施例的方法所形成,对所述像素结构的具体描述,请参考前述形成方法第二实施例中的相应描述,在此不再赘述。
此外,本发明还提供一种显示屏,包括若干个本发明像素结构第二实施例所述的像素结构。
所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ具有不同厚度的补偿层,从而能够提高显示屏的亮度和色域。
图16至图24是本发明像素结构的形成方法第三实施例中各步骤对应的结构示意图。
本实施例与形成方法第一实施例相同之处,本发明在此不再赘述。本实施例与形成方法第一实施例的不同之处在于:
在所述基底600上形成补偿层(未标示)的步骤包括:在所述阳极层630上形成第一补偿材料层640;在所述第一补偿材料层640上形成第二补偿材料层650(如图18所示);在所述第二补偿材料层650上形成第三补偿材料层660(如图20所示);去除所述第三像素区Ⅲ的第三补偿材料层660和所述第三像素区Ⅲ的第二补偿材料层650;去除所述第二像素区Ⅱ的第三补偿材料层660;所述第一像素区Ⅰ的第一补偿材料层640、第二补偿材料层650和第三补偿材料层660构成所述第一像素区Ⅰ的补偿层,所述第二像素区Ⅱ的第一补偿材料层640和第二补偿材料层650构成所述第二像素区Ⅱ的补偿层,所述第三像素区Ⅲ的第一补偿材料层640构成所述第三像素区Ⅲ的补偿层。
本实施例中,所述第一补偿材料层640的厚度为
Figure PCTCN2018084056-appb-000013
Figure PCTCN2018084056-appb-000014
所述第二补偿材料层650的厚度为
Figure PCTCN2018084056-appb-000015
Figure PCTCN2018084056-appb-000016
所述第三补偿材料层660的厚度为
Figure PCTCN2018084056-appb-000017
Figure PCTCN2018084056-appb-000018
对所述第一补偿材料层640、第二补偿材料层650和第三补偿材料层660的具体描述,请参考前述形成方法第一实施例中的相应描述,本实施例在此不再赘述。
对形成所述第一补偿材料层640的步骤的具体描述,请参考前述形成方法第一实施例中的相应描述,本实施例在此不再赘述。
结合参考图17和图18,具体地,形成所述第二补偿材料层650的步骤包括:在所述第三像素区Ⅲ的第一补偿材料层640上形成第一牺牲层710;形成第二补偿材料层650,所述第二补偿材料层650覆盖所述第一像素区Ⅰ和第二像素区Ⅱ的第一补偿材料层640、以及所述第一牺牲层710。
本实施例中,所述第一牺牲层710的材料为光刻胶,通过曝光显影工艺形成所述第一牺牲层710。
需要说明的是,本实施例中,形成所述第一牺牲层710后,所述第一牺牲层710还露出所述第二像素区Ⅱ和第三像素区Ⅲ交界处的第一补偿材料层640,从而为后续在所述第二像素区Ⅱ和第三像素区Ⅲ交界处形成露出所述基底600的第一隔离开口提供工艺基础。
对所述第一牺牲层710的具体描述,请参考前述形成方法第一实施例中的相应描述,本实施例在此不再赘述。
结合参考图19和图20,具体地,形成所述第三补偿材料层660的步骤包括:在所述第二像素区Ⅱ的第二补偿材料层650上形成第二牺牲层720(如图19所示);形成第三补偿材料层660,所述第三补偿材料层660覆盖所述第一像素区Ⅰ和第三像素区Ⅲ的第二补偿材料层650、以及所述第二牺牲层720。
本实施例中,所述第二牺牲层720的材料为光刻胶,通过曝光显影工艺形成所述第二牺牲层720。
需要说明的是,本实施例中,形成所述第二牺牲层720后,所述第二牺牲层720还露出所述第二像素区Ⅱ和第三像素区Ⅲ交界处、以及所述第一像素区Ⅰ和第二像素区Ⅱ交界处的第二补偿材料层650,从而为后续在所述第二像素区Ⅱ和第三像素区Ⅲ交界处形成露出所述基底600的第一隔离开口、在所述第一像素区Ⅰ和第二像素区Ⅱ交界处形成露出所述基底600的第二隔离开口提供工艺基础。
对所述第二牺牲层720的具体描述,请参考前述形成方法第一实施例中的相应描述,本实施例在此不再赘述。
因此,结合参考图21至图23,去除所述第三像素区Ⅲ的第三补偿材料层660和所述第三像素区Ⅲ的第二补偿材料层650、去除所述第二像素区Ⅱ的第三补偿材料层660的步骤包括:在所述第一像素区Ⅰ的第三补偿材料层660上形成第四光刻胶层730(如图21所示); 以所述第四光刻胶层730为掩膜,刻蚀去除所述第三像素区Ⅲ的第三补偿材料层660和所述第三像素区Ⅲ的第二补偿材料层650、以及所述第二像素区Ⅱ的第三补偿材料层660;去除所述第四光刻胶层730、第一牺牲层710和第二牺牲层720。
需要说明的是,本实施例中,形成所述第四光刻胶层730后,所述第四光刻胶层730还露出所述第一像素区Ⅰ和第二像素区Ⅱ交界处的第三补偿材料层660,从而为后续在所述第一像素区Ⅰ和第二像素区Ⅱ交界处形成露出所述基底600的第二隔离开口提供工艺基础。
所述第四光刻胶层730、第一牺牲层710和第二牺牲层720均为光刻胶材料,因此如图23所示,可以在同一步骤中去除所述第四光刻胶层730、第一牺牲层710和第二牺牲层720,相应降低了去除所述第四光刻胶层730、第一牺牲层710和第二牺牲层720的工艺难度,节约工艺时间。
本实施例中,采用灰化或湿法去胶的方式,去除所述第四光刻胶层730、第一牺牲层710和第二牺牲层720。
还需要说明的是,去除所述第三像素区Ⅲ的第三补偿材料层660和所述第三像素区Ⅲ的第二补偿材料层650的步骤中,还去除所述第二像素区Ⅱ和第三像素区Ⅲ交界处的第三补偿材料层660、第二补偿材料层650、第一补偿材料层640和阳极层630,在所述第二像素区Ⅱ和第三像素区Ⅲ交界处形成露出所述基底100的第一隔离开口651(如图23所示);去除所述第二像素区Ⅱ的第三补偿材料层660的步骤中,还去除所述第一像素区Ⅰ和第二像素区Ⅱ交界处的第三补偿材料层660、第二补偿材料层650、第一补偿材料层640和阳极层630,在所述第一像素区Ⅰ和第二像素区Ⅱ交界处形成露出所述基底100的第二隔离开口652(如图23所示)。
本实施例中,所述第一像素区Ⅰ的第一补偿材料层640、第二补偿材料层650和第三补偿材料层660构成所述第一像素区Ⅰ的补偿层,所述第二像素区Ⅱ的第一补偿材料层640和第二补偿材料层650 构成所述第二像素区Ⅱ的补偿层,所述第三像素区Ⅲ的第一补偿材料层640构成所述第三像素区Ⅲ的补偿层,且所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层相互分立。
本实施例中,为了较好地控制剩余第三补偿材料层660、第二补偿材料层650、第一补偿材料层640和阳极层630的形貌,采用干法刻蚀工艺进行刻蚀。
所以,所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层的底部齐平,且所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的补偿层的顶部具有高度差,从而实现对所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的腔长单独调制。
此外,通过所述第四光刻胶层730、第一牺牲层710和第二牺牲层720,可在所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ上形成不同厚度的补偿层,且所采用的光罩数量较少,从而有利于降低工艺成本。
结合参考图24,形成所述补偿层(未标示)后,还包括步骤:形成填充满所述第一隔离开口651(如图23所示)和第二隔离开口652(如图23所示)的隔离层670。
本实施例中,形成所述隔离层670的步骤包括:在所述第一隔离开口651和第二隔离开口652内填充满隔离膜,所述隔离膜还覆盖所述补偿层顶部;采用无掩膜工艺回刻所述隔离膜,去除所述补偿层顶部的所述隔离膜,保留所述第一隔离开口651和第二隔离开口652内的所述隔离膜作为隔离层670。
对所述隔离层670的具体描述,请参考前述形成方法第一实施例中的相应描述,本实施例在此不再赘述。
在其他实施例中,形成所述隔离层的步骤还可以包括:在所述第一隔离开口和第二隔离开口内填充满隔离膜,所述隔离膜还覆盖所述补偿层顶部;在所述第一隔离开口和第二隔离开口所对应区域的隔离 膜上形成第二图形层;以所述第二图形层为掩膜,刻蚀所述隔离膜,剩余所述隔离膜作为隔离层。
对形成所述隔离层的具体描述,请参考前述形成方法第二实施例中的相应描述,本实施例在此不再赘述。
图25至图34是本发明像素结构的形成方法第四实施例中各步骤对应的结构示意图。
本实施例与形成方法第一实施例相同之处,本发明在此不再赘述。本实施例与形成方法第一实施例的不同之处在于:所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层(未标示)的厚度具有差异。
因此,在形成所述阳极层后,后续在所述阳极层上形成顶部为平坦面的隔离层,且在所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的隔离层内形成露出所述阳极层的开口,在所述开口内填充满补偿材料层以形成顶部为平坦面的补偿层;通过使所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层顶部表面具有高度差,从而使所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的隔离层内的开口深度不同,相应的,在所述开口内填充满补偿材料层后,使所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极上补偿层厚度具有差异,进而实现对所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的腔长单独调制。
也就是说,所述阳极层的厚度越大,所对应像素区的补偿层厚度越小。
本实施例中,所述第一像素区Ⅰ为红光像素区,所述第二像素区Ⅱ为绿光像素区,所述第三像素区Ⅲ为蓝光像素区。
相应的,所述第二像素区Ⅱ的阳极层厚度大于所述第一像素区Ⅰ的阳极层厚度,且小于所述第三像素区Ⅲ的阳极层厚度。
以下结合附图,对形成所述阳极层的步骤做详细说明。
参考图25,在所述基底400上形成第一阳极材料层(未标示)。
对所述基底400的描述,请参考前述形成方法第一实施例的相应描述,本实施例在此不再赘述。
所述第一阳极材料层作为后续所形成阳极层的一部分。
需要说明的是,后续仅所述第二像素区Ⅱ和第三像素区Ⅲ的基底400上仅形成有所述第一阳极材料层,且后续步骤还包括仅在所述第三像素区Ⅲ的第一阳极材料层上形成第二阳极材料层,因此所述第一阳极材料层的厚度需满足绿光像素的需求,所述第二像素区Ⅱ的第一阳极材料层影响所述第二像素区Ⅱ的腔长。
所以,在保证所述第一阳极材料层的厚度能够满足绿光像素的需求的情况下,合理设定所述第一阳极材料层的厚度。本实施例中,所述第一阳极材料层的厚度为
Figure PCTCN2018084056-appb-000019
Figure PCTCN2018084056-appb-000020
本实施例中,所述第一阳极材料层包括第一反射金属层430以及位于所述第一反射金属层430上的第一透明导电层435。在其他实施例中,所述第一阳极材料层还可以仅包括所述第一反射金属层。
对所述第一反射金属层430的描述请参考前述形成方法第一实施例中反射金属层的相应描述,对所述第一透明导电层435的描述请参考前述形成方法第一实施例中透明导电层的相应描述,本发明在此不再赘述。
本实施例中,采用蒸镀的方式形成所述第一阳极材料层。具体地,所述蒸镀工艺为物理气相沉积工艺。
需要说明的是,所述第一反射金属层430暴露在空气中易发生氧化,从而导致所形成阳极层的阻值增加,进而导致所形成像素结构的性能下降,为此,本实施例中,通过采用所述第一反射金属层430和第一透明导电层435作为叠层结构的第一阳极材料层的方式,使所述第一透明导电层435在后续工艺中对所述第一反射金属层430起到保护作用,防止所述第一反射金属层430与空气相接触而发生氧化的问 题,且还可以防止所述第一反射金属层430受到刻蚀损伤或损耗。
相应的,在形成所述第一阳极材料层的过程中,采用连续沉积的方式形成所述第一反射金属层430和第一透明导电层435,也就是说,在同一机台中且在不出真空的状态下形成所述第一反射金属层430和第一透明导电层435。
所述第一透明导电层435的厚度不宜过小,也不宜过大。如果所述第一透明导电层435的厚度过小,则在后续的工艺过程中,所述第一透明导电层435对所述第一反射金属层430的保护效果不佳,容易出现所述第一反射金属层430受到刻蚀损伤或损耗的问题;如果所述第一透明导电层435的厚度过大,则造成材料的浪费,且在后续所形成隔离层的厚度一定的情况下,导致所述第二像素区Ⅱ和第三像素区Ⅲ的补偿层厚度过小,反而容易降低所形成像素结构的性能。为此,本实施例中,第一透明导电层435的厚度为
Figure PCTCN2018084056-appb-000021
Figure PCTCN2018084056-appb-000022
参考图26,去除所述第一像素区Ⅰ的第一阳极材料层(未标示),露出所述第一像素区Ⅰ的基底400。
通过去除所述第一像素区Ⅰ的第一阳极材料层,从而减小后续所形成第一像素区Ⅰ的阳极层的厚度,进而增加后续所形成第一像素区Ⅰ的补偿层的厚度。
具体地,去除所述第一像素区Ⅰ的第一阳极材料层的步骤包括:在所述第二像素区Ⅱ和第三像素区Ⅲ的第一阳极材料层上形成第五光刻胶层(图未示);以所述第五光刻胶层为掩膜,刻蚀去除第一像素区Ⅰ的第一阳极材料层;去除所述第五光刻胶层。
本实施例中,为了较好地控制剩余第一阳极材料层的侧壁形貌,采用干法刻蚀的方式去除所述第一像素区Ⅰ的第一阳极材料层。
在其他实施例中,还可以采用湿法刻蚀工艺、或者干法和湿法相结合的刻蚀工艺进行刻蚀。
参考图27,去除所述第一像素区Ⅰ的第一阳极材料层(未标示) 后,在所述第一像素区Ⅰ的基底400上、以及所述第一阳极材料层上形成第二阳极材料层(未标示)。
所述第二阳极材料层作为后续所形成阳极层的一部分。
需要说明的是,后续仅所述第三像素区Ⅲ的第一阳极材料层上仅形成有所述第二阳极材料层,且后续步骤还包括在所述第一像素区Ⅰ的基底400上、所述第二像素区Ⅱ的第一阳极材料层上、以及所述第三像素区Ⅲ的第二阳极材料层上形成第三阳极材料层,因此所述第二阳极材料层的厚度需满足蓝光像素的需求,所述第三像素区Ⅲ的第二阳极材料层影响所述第三像素区Ⅲ的腔长。
所以,在保证所述第二阳极材料层的厚度能够满足蓝光像素的需求的情况下,合理设定所述第二阳极材料层的厚度。本实施例中,所述第二阳极材料层的厚度为
Figure PCTCN2018084056-appb-000023
Figure PCTCN2018084056-appb-000024
本实施例中,所述第二阳极材料层包括第二反射金属层440以及位于所述第二反射金属层440上的第二透明导电层445。在其他实施例中,所述第一阳极材料层还可以仅包括所述第一反射金属层。
对所述第二反射金属层440的描述请参考前述形成方法第一实施例中反射金属层的相应描述,对所述第二透明导电层445的描述请参考前述形成方法第一实施例中透明导电层的相应描述,本发明在此不再赘述。
本实施例中,采用蒸镀的方式形成所述第二阳极材料层。具体地,所述蒸镀工艺为物理气相沉积工艺。
所述第二透明导电层445用于在后续工艺中对所述第二反射金属层440起到保护作用,防止所述第二反射金属层440与空气相接触而发生氧化的问题,且还可以防止所述第二反射金属层440受到刻蚀损伤或损耗。
相应的,在形成所述第二阳极材料层的过程中,采用连续沉积的方式形成所述第二反射金属层440和第二透明导电层445,也就是说, 在同一机台中且在不出真空的状态下形成所述第二反射金属层440和第二透明导电层445。
本实施例中,所述第二透明导电层445的厚度为
Figure PCTCN2018084056-appb-000025
Figure PCTCN2018084056-appb-000026
对所述第二透明导电层445厚度的设定分析,请参考前述对所述第一透明导电层435厚度的设定分析,本发明在此不再赘述。
参考图28,去除所述第一像素区Ⅰ和第二像素区Ⅱ的第二阳极材料层(未标示),露出所述第一像素区Ⅰ的基底400和所述第二像素区Ⅱ的第一阳极材料层(未标示)。
通过去除所述第一像素区Ⅰ和第二像素区Ⅱ的第二阳极材料层,从而减小后续所形成第一像素区Ⅰ和第二像素区Ⅱ的阳极层的厚度,进而增加后续所形成第一像素区Ⅰ和第二像素区Ⅱ的补偿层的厚度,且使所述第一像素区Ⅰ的补偿层厚度大于所述第二像素区Ⅱ的补偿层厚度。
具体地,去除所述第一像素区Ⅰ和第二像素区Ⅱ的第二阳极材料层的步骤包括:在所述第三像素区Ⅲ的第二阳极材料层上形成第六光刻胶层(图未示);以所述第六光刻胶层为掩膜,刻蚀去除第一像素区Ⅰ和第二像素区Ⅱ的第二阳极材料层;去除所述第六光刻胶层。
本实施例中,为了较好地控制剩余第二阳极材料层的侧壁形貌,采用干法刻蚀的方式去除所述第一像素区Ⅰ和第二像素区Ⅱ的第二阳极材料层。
在其他实施例中,还可以采用湿法刻蚀工艺、或者干法和湿法相结合的刻蚀工艺进行刻蚀。
其中,由于所述第二像素区Ⅱ的第一反射金属层430和第二反射金属层440之间形成有所述第一透明导电层435,因此所述刻蚀工艺能够较好地停止在所述第一透明导电层435顶部,从而可以提高对所述第二阳极材料层的刻蚀效果,避免出现过刻蚀的问题。
参考图29,在所述第一像素区Ⅰ的基底400上、所述第二像素 区Ⅱ的第一阳极材料层(未标示)上、以及所述第三像素区Ⅲ的第二阳极材料层(未标示)上形成第三阳极材料层(未标示)。
所述第三阳极材料层作为后续所形成阳极层的一部分。
需要说明的是,所述第一像素区Ⅰ的基底400上仅形成有所述第三阳极材料层,因此所述第三阳极材料层的厚度需满足红光像素的需求,所述第一像素区Ⅰ的第三阳极材料层影响所述第一像素区Ⅰ的腔长。
所以,在保证所述第三阳极材料层的厚度能够满足红光像素的需求的情况下,合理设定所述第三阳极材料层的厚度。本实施例中,所述第三阳极材料层的厚度为
Figure PCTCN2018084056-appb-000027
Figure PCTCN2018084056-appb-000028
本实施例中,所述第三阳极材料层包括第三反射金属层450以及位于所述第三反射金属层450上的第三透明导电层455。在其他实施例中,所述第三阳极材料层还可以仅包括所述第三反射金属层。
对所述第三反射金属层450的描述请参考前述形成方法第一实施例中反射金属层的相应描述,对所述第三透明导电层455的描述请参考前述形成方法第一实施例中透明导电层的相应描述,本发明在此不再赘述。
本实施例中,采用蒸镀的方式形成所述第三阳极材料层。具体地,所述蒸镀工艺为物理气相沉积工艺。
所述第三透明导电层455用于在后续工艺中对所述第三反射金属层450起到保护作用,防止所述第三反射金属层450与空气相接触而发生氧化的问题,且还可以防止所述第三反射金属层450受到刻蚀损伤或损耗。
相应的,在形成所述第三阳极材料层的过程中,采用连续沉积的方式形成所述第三反射金属层450和第三透明导电层455,也就是说,在同一机台中且在不出真空的状态下形成所述第三反射金属层450和第三透明导电层455。
本实施例中,所述第三透明导电层455的厚度为
Figure PCTCN2018084056-appb-000029
Figure PCTCN2018084056-appb-000030
对所述第三透明导电层455厚度的设定分析,请参考前述对所述第一透明导电层435厚度的设定分析,本发明在此不再赘述。
结合参考图30和图31,还需要说明的是,为了使相邻像素之间相互隔离,所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层相互分立,且相邻所述阳极层之间具有露出所述基底400的隔离开口451(如图31所示)。
所述隔离开口451为后续形成隔离层提供空间位置。
因此,形成所述第三阳极材料层之后,还包括步骤:在所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的部分第三阳极材料层(未标示)上形成第七光刻胶层500(如图30所示),所述第七光刻胶层500露出所述第一像素区Ⅰ和第二像素区Ⅱ交界处的第三阳极材料层,还露出所述第二像素区Ⅱ和第三像素区Ⅲ交界处的第三阳极材料层;以所述第七光刻胶层500为掩膜,刻蚀露出的第三阳极材料层、第二阳极材料层(未标示)和第一阳极材料层(未标示),形成露出所述基底400的隔离开口451;去除所述第七光刻胶层500。
本实施例中,为了较好地控制剩余第三阳极材料层、第二阳极材料层和第一阳极材料层的侧壁形貌,采用干法刻蚀工艺进行刻蚀。
在其他实施例中,还可以采用湿法刻蚀工艺、或者干法和湿法相结合的刻蚀工艺进行刻蚀。
在形成所述隔离开口451后,所述第一像素区Ⅰ的第三阳极材料层构成所述第一像素区Ⅰ的阳极层,所述第二像素区Ⅱ的第三阳极材料层和第一阳极材料层(未标示)构成所述第二像素区Ⅱ的阳极层,所述第三像素区Ⅲ的第三阳极材料层、第二阳极材料层和第一阳极材料层(未标示)构成所述第三像素区Ⅲ的阳极层。
相应的,结合参考图32至图34,形成所述补偿层(未标示)的步骤包括:形成覆盖所述阳极层(未标示)的隔离膜(未标示);对 所述隔离膜进行第一平坦化处理,剩余所述隔离膜作为隔离层460(如图32所示);刻蚀所述隔离层460,在所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的隔离层460内形成露出所述阳极层的开口465(如图33所示);向所述开口465内填充满补偿材料层;对所述补偿材料层进行第二平坦化处理,剩余所述补偿材料层作为补偿层470(如图34所示)。
本实施例中,相邻所述阳极层之间具有露出所述基底400的隔离开口451,因此所述隔离层460还填充于所述隔离开口451内。
在所述第一阳极材料层、第二阳极材料层和第三阳极材料层厚度一定的情况下,所述隔离层460的厚度决定所述补偿层470的厚度。为此,本实施例中,根据实际工艺需求,所述隔离层460的厚度为
Figure PCTCN2018084056-appb-000031
Figure PCTCN2018084056-appb-000032
具体地,形成所述开口465的步骤包括:在部分所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的隔离层460上形成第八光刻胶层(图未示);以所述第八光刻胶层为掩膜,刻蚀所述隔离层460,在所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的隔离层460内形成露出所述阳极层的开口465;去除所述第八光刻胶层。
需要说明的是,为了降低光刻工艺的工艺难度,形成所述开口465后,剩余隔离层460还覆盖所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的部分阳极层,即所述开口465露出部分所述阳极层。
本实施例中,所述补偿层470的材料为高透明度的金属氧化物。具体地,所述补偿层470的材料为ITO、IZO、MoOx和AZO中的一种或多种。对所述补偿层470的具体描述,请参考前述形成方法第一实施例中的相应描述,本发明在此不再赘述。
具体地,所述第二平坦化处理用于去除高于所述隔离层460顶部的补偿材料层,即所形成补偿层470顶部与所述隔离层460顶部齐平。
所述补偿层470的顶部为平坦面,即所述第一像素区Ⅰ、第二像 素区Ⅱ和第三像素区Ⅲ的补偿层470的顶部齐平,由于所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层的顶部具有高度差,从而使所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层上形成有不同厚度的补偿层470,进而实现对所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的腔长单独调制。
相应的,本发明还提供一种像素结构。
继续参考图34,示出了本发明像素结构第三实施例的结构示意图。
本实施例与像素结构第一实施例相同之处,本发明在此不再赘述。本实施例与像素结构第一实施例的不同之处在于:所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层(未标示)的厚度具有差异。
对所述基底400的描述,请参考前述形成方法第一实施例的相应描述,在此不再赘述。
本实施例中,所述像素结构还包括:第一阳极材料层(未标示),位于所述第二像素区Ⅱ和第三像素区Ⅲ的所述基底400上;第二阳极材料层(未标示),位于所述第三像素区Ⅲ的所述第一阳极材料层上;第三阳极材料层(未标示),位于所述第一像素区Ⅰ的基底400上、所述第二像素区Ⅱ的所述第一阳极材料层上、以及所述第三像素区Ⅲ的所述第二阳极材料层上。
其中,所述第一像素区Ⅰ的所述第三阳极材料层构成所述第一像素区Ⅰ的阳极层;所述第二像素区Ⅱ的第三阳极材料层和第一阳极材料层构成所述第二像素区Ⅱ阳极层;所述第三像素区Ⅲ的第三阳极材料层、第二阳极材料层和第一阳极材料层构成所述第三像素区Ⅲ的阳极层。
本实施例中,所述像素结构还包括:隔离层460,所述隔离层460内具有露出所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极 层的开口(未标示);相应的,所述补偿层470位于所述开口内。
因此,通过使所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层顶部表面具有高度差,从而使所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的隔离层470内的开口深度不同,相应的,所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极上的补偿层470厚度也不同,进而实现对所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的腔长单独调制。
需要说明的是,为了降低形成所述开口的工艺难度,所述隔离层460还覆盖所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的部分阳极层,即所述开口露出部分所述阳极层;相应的,所述第一像素区Ⅰ的补偿层470位于部分所述第一像素区Ⅰ阳极层上,所述第二像素区Ⅱ的补偿层470位于部分所述第二像素区Ⅱ阳极层上,所述第三像素区Ⅲ的补偿层470位于部分所述第三像素区Ⅲ阳极层上。
其中,在保证所述第一阳极材料层的厚度能够满足绿光像素的需求、所述第二阳极材料层的厚度能够满足蓝光像素的需求、所述第三阳极材料层的厚度能够满足红光像素的需求的情况下,合理设定所述第一阳极材料层、第二阳极材料层和第三阳极材料层的厚度。本实施例中,所述第一阳极材料层的厚度为
Figure PCTCN2018084056-appb-000033
Figure PCTCN2018084056-appb-000034
所述第二阳极材料层的厚度为
Figure PCTCN2018084056-appb-000035
Figure PCTCN2018084056-appb-000036
所述第三阳极材料层的厚度为
Figure PCTCN2018084056-appb-000037
Figure PCTCN2018084056-appb-000038
在所述第一阳极材料层、第二阳极材料层和第三阳极材料层厚度一定的情况下,所述隔离层460的厚度决定所述补偿层470的厚度。为此,本实施例中,根据实际工艺需求,所述隔离层460的厚度为
Figure PCTCN2018084056-appb-000039
Figure PCTCN2018084056-appb-000040
还需要说明的是,所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ的阳极层相互分立,且相邻所述阳极层之间具有露出所述基底400的隔离开口(未标示)。
本实施例中,所述隔离层460还位于所述隔离开口内,所述隔离层170用于隔离相邻像素。
对所述隔离层460的具体描述,请参考前述形成方法第四实施例的相应描述,在此不再赘述。
本实施例中,所述第一阳极材料层包括第一反射金属层430以及位于所述第一反射金属层430上的第一透明导电层435。在其他实施例中,所述第一阳极材料层还可以仅包括所述第一反射金属层。
本实施例中,所述第二阳极材料层包括第二反射金属层440以及位于所述第二反射金属层440上的第二透明导电层445。在其他实施例中,所述第一阳极材料层还可以仅包括所述第一反射金属层。
本实施例中,所述第三阳极材料层包括第三反射金属层450以及位于所述第三反射金属层450上的第三透明导电层455。在其他实施例中,所述第三阳极材料层还可以仅包括所述第三反射金属层。
其中,通过采用所述第一反射金属层430和第一透明导电层435作为叠层结构的第一阳极材料层、采用所述第二反射金属层440和第二透明导电层445作为叠层结构的第二阳极材料层、采用所述第三反射金属层450和第三透明导电层455作为叠层结构的第三阳极材料层的方式,使所述第一透明导电层435、第二透明导电层445和第三透明导电层455分别对所述第一反射金属层430、第二反射金属层440和第三反射金属层450起到保护作用。
对所述阳极层的具体描述,请参考前述形成方法第四实施例的相应描述,在此不再赘述。
此外,本发明还提供一种显示屏,包括若干个本发明像素结构第三实施例所述的像素结构。
所述第一像素区Ⅰ、第二像素区Ⅱ和第三像素区Ⅲ具有不同厚度的补偿层,从而能够提高显示屏的亮度和色域。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (54)

  1. 一种像素结构的形成方法,其特征在于,包括:
    提供基底,用于形成OLED器件,所述基底包括第一像素区、第二像素区和第三像素区;
    在所述基底上形成补偿层,所述第一像素区、第二像素区和第三像素区的补偿层厚度具有差异。
  2. 如权利要求1所述的像素结构的形成方法,其特征在于,所述像素结构为硅基OLED结构。
  3. 如权利要求1所述的像素结构的形成方法,其特征在于,所述补偿层的材料为ITO、IZO、MoOx和AZO中的一种或多种。
  4. 如权利要求1所述的像素结构的形成方法,其特征在于,所述第一像素区为红光像素区,所述第二像素区为绿光像素区,所述第三像素区为蓝光像素区。
  5. 如权利要求1或4所述的像素结构的形成方法,其特征在于,所述第二像素区的补偿层厚度小于所述第一像素区的补偿层厚度,且大于所述第三像素区的补偿层厚度。
  6. 如权利要求1所述的像素结构的形成方法,其特征在于,在所述基底上形成补偿层之前,还包括步骤:在所述基底上形成阳极层。
  7. 如权利要求6所述的像素结构的形成方法,其特征在于,所述第一像素区、第二像素区和第三像素区的阳极层厚度相同。
  8. 如权利要求7所述的像素结构的形成方法,其特征在于,所述阳极层为反射金属层;
    或者,所述阳极层包括反射金属层以及位于所述反射金属层上的透明导电层。
  9. 如权利要求7所述的像素结构的形成方法,其特征在于,在所述基底上形成补偿层的步骤包括:
    在所述阳极层上形成第一补偿材料层;
    在所述第一补偿材料层上形成第二补偿材料层;
    去除所述第三像素区的第二补偿材料层;
    在所述第一像素区和第二像素区的第二补偿材料层上、以及所述第三像素区的第一补偿材料层上形成第三补偿材料层;
    去除所述第二像素区和第三像素区的第三补偿材料层;
    其中,所述第一像素区的第一补偿材料层、第二补偿材料层和第三补偿材料层构成所述第一像素区的补偿层,所述第二像素区的第一补偿材料层和第二补偿材料层构成所述第二像素区的补偿层,所述第三像素区的第一补偿材料层构成所述第三像素区的补偿层。
  10. 如权利要求9所述的像素结构的形成方法,其特征在于,形成所述第二补偿材料层的步骤包括:
    在所述第三像素区的第一补偿材料层上形成第一牺牲层;
    形成第二补偿材料层,所述第二补偿材料层覆盖所述第一像素区和第二像素区的第一补偿材料层、以及所述第一牺牲层。
  11. 如权利要求9所述的像素结构的形成方法,其特征在于,形成所述第三补偿材料层的步骤包括:
    在所述第二像素区的第二补偿材料层上、以及所述第三像素区的第一补偿材料层上形成第二牺牲层;
    形成第三补偿材料层,所述第三补偿材料层覆盖所述第一像素区的第二补偿材料层、以及所述第二牺牲层。
  12. 如权利要求9所述的像素结构的形成方法,其特征在于,去除所述第三像素区的第二补偿材料层的步骤中,还去除所述第二像素区和第三像素区交界处的第二补偿材料层、第一补偿材料层和阳极层,在所述第二像素区和第三像素区交界处形成露出所述基底的第一隔离开口;
    去除所述第二像素区和第三像素区的第三补偿材料层的步骤中, 还去除所述第一像素区和第二像素区交界处的第三补偿材料层、第二补偿材料层、第一补偿材料层和阳极层,在所述第一像素区和第二像素区交界处形成露出所述基底的第二隔离开口。
  13. 如权利要求7所述的像素结构的形成方法,其特征在于,在所述基底上形成补偿层的步骤包括:
    在所述阳极层上形成第一补偿材料层;
    在所述第一补偿材料层上形成第二补偿材料层;
    在所述第二补偿材料层上形成第三补偿材料层;
    去除所述第三像素区的第三补偿材料层和所述第三像素区的第二补偿材料层;
    去除所述第二像素区的第三补偿材料层;
    其中,所述第一像素区的第一补偿材料层、第二补偿材料层和第三补偿材料层构成所述第一像素区的补偿层,所述第二像素区的第一补偿材料层和第二补偿材料层构成所述第二像素区的补偿层,所述第三像素区的第一补偿材料层构成所述第三像素区的补偿层。
  14. 如权利要求13所述的像素结构的形成方法,其特征在于,形成所述第二补偿材料层的步骤包括:
    在所述第三像素区的第一补偿材料层上形成第一牺牲层;
    形成第二补偿材料层,所述第二补偿材料层覆盖所述第一像素区和第二像素区的第一补偿材料层、以及所述第一牺牲层。
  15. 如权利要求14所述的像素结构的形成方法,其特征在于,形成所述第三补偿材料层的步骤包括:
    在所述第二像素区的第二补偿材料层上形成第二牺牲层;
    形成第三补偿材料层,所述第三补偿材料层覆盖所述第一像素区和第三像素区的第二补偿材料层、以及所述第二牺牲层。
  16. 如权利要求13所述的像素结构的形成方法,其特征在于,去除所述第三像素区的第三补偿材料层和所述第三像素区的第二补偿 材料层的步骤中,还去除所述第二像素区和第三像素区交界处的第三补偿材料层、第二补偿材料层、第一补偿材料层和阳极层,在所述第二像素区和第三像素区交界处形成露出所述基底的第一隔离开口;
    去除所述第二像素区的第三补偿材料层的步骤中,还去除所述第一像素区和第二像素区交界处的第三补偿材料层、第二补偿材料层、第一补偿材料层和阳极层,在所述第一像素区和第二像素区交界处形成露出所述基底的第二隔离开口。
  17. 如权利要求9或13所述的像素结构的形成方法,其特征在于,所述第一补偿材料层的厚度为
    Figure PCTCN2018084056-appb-100001
    Figure PCTCN2018084056-appb-100002
    所述第二补偿材料层的厚度为
    Figure PCTCN2018084056-appb-100003
    Figure PCTCN2018084056-appb-100004
    所述第三补偿材料层的厚度为
    Figure PCTCN2018084056-appb-100005
    Figure PCTCN2018084056-appb-100006
  18. 如权利要求10或14所述的像素结构的形成方法,其特征在于,所述第一牺牲层的材料为光刻胶。
  19. 如权利要求11或15所述的像素结构的形成方法,其特征在于,所述第二牺牲层的材料为光刻胶。
  20. 如权利要求12或16所述的像素结构的形成方法,其特征在于,形成所述补偿层后,还包括步骤:形成填充满所述第一隔离开口和第二隔离开口的隔离层。
  21. 如权利要求20所述的像素结构的形成方法,其特征在于,形成所述隔离层的步骤包括:
    在所述第一隔离开口和第二隔离开口内填充满隔离膜,所述隔离膜还覆盖所述补偿层的顶部;
    采用无掩膜工艺回刻所述隔离膜,去除所述补偿层顶部的所述隔离膜,保留所述第一隔离开口和第二隔离开口内的所述隔离膜作为隔离层。
  22. 如权利要求20所述的像素结构的形成方法,其特征在于,形成 所述隔离层的步骤包括:
    在所述第一隔离开口和第二隔离开口内填充满隔离膜,所述隔离膜还覆盖所述补偿层的顶部;
    在所述第一隔离开口和第二隔离开口所对应区域的隔离膜上形成图形层;
    以所述图形层为掩膜,刻蚀所述隔离膜,剩余所述隔离膜作为隔离层;
    去除所述图形层。
  23. 如权利要求6所述的像素结构的形成方法,其特征在于,所述第一像素区、第二像素区和第三像素区的阳极层厚度具有差异。
  24. 如权利要求23所述的像素结构的形成方法,其特征在于,在所述基底上形成补偿层的步骤包括:
    形成覆盖所述阳极层的隔离膜;
    对所述隔离膜进行第一平坦化处理,剩余所述隔离膜作为隔离层;
    刻蚀所述隔离层,在所述第一像素区、第二像素区和第三像素区的隔离层内形成露出所述阳极层的开口;
    向所述开口内填充满补偿材料层;
    对所述补偿材料层进行第二平坦化处理,剩余所述补偿材料层作为补偿层。
  25. 如权利要求24所述的像素结构的形成方法,其特征在于,所述隔离层的厚度为
    Figure PCTCN2018084056-appb-100007
    Figure PCTCN2018084056-appb-100008
  26. 如权利要求24所述的像素结构的形成方法,其特征在于,所述第一像素区、第二像素区和第三像素区的阳极层相互分立,且相邻所述阳极层之间具有露出所述基底的隔离开口;
    所述隔离层还填充于所述隔离开口内。
  27. 如权利要求23所述的像素结构的形成方法,其特征在于,形成 所述阳极层的步骤包括:
    在所述基底上形成第一阳极材料层;
    去除所述第一像素区的第一阳极材料层,露出所述第一像素区的基底;
    所述第一像素区的基底上、以及所述第一阳极材料层上形成第二阳极材料层;
    去除所述第一像素区和第二像素区的第二阳极材料层,露出所述第一像素区的基底和所述第二像素区的第一阳极材料层;
    在所述第一像素区的基底上、所述第二像素区的第一阳极材料层上、以及所述第三像素区的第二阳极材料层上形成第三阳极材料层;
    其中,所述第一像素区的第三阳极材料层构成所述第一像素区的阳极层,所述第二像素区的第三阳极材料层和第一阳极材料层构成所述第二像素区的阳极层,所述第三像素区的第三阳极材料层、第二阳极材料层和第一阳极材料层构成所述第三像素区的阳极层。
  28. 如权利要求27所述的像素结构的形成方法,其特征在于,所述第一阳极材料层的厚度为
    Figure PCTCN2018084056-appb-100009
    Figure PCTCN2018084056-appb-100010
    所述第二阳极材料层的厚度为
    Figure PCTCN2018084056-appb-100011
    Figure PCTCN2018084056-appb-100012
    所述第三阳极材料层的厚度为
    Figure PCTCN2018084056-appb-100013
    Figure PCTCN2018084056-appb-100014
  29. 如权利要求27所述的像素结构的形成方法,其特征在于,所述第一阳极材料层为第一反射金属层;
    或者,所述第一阳极材料层包括第一反射金属层以及位于所述第一反射金属层上的第一透明导电层。
  30. 如权利要求27所述的像素结构的形成方法,其特征在于,所述第二阳极材料层为第二反射金属层;
    或者,所述第二阳极材料层包括第二反射金属层以及位于所述第二反射金属层上的第二透明导电层。
  31. 如权利要求27所述的像素结构的形成方法,其特征在于,所述 第三阳极材料层为第三反射金属层;
    或者,所述第三阳极材料层包括第三反射金属层以及位于所述第三反射金属层上的第三透明导电层。
  32. 一种像素结构,其特征在于,包括:
    基底,用于形成OLED器件,所述基底包括第一像素区、第二像素区和第三像素区;
    位于所述基底上的补偿层,所述第一像素区、第二像素区和第三像素区的补偿层厚度具有差异。
  33. 如权利要求32所述的像素结构,其特征在于,所述像素结构为硅基OLED结构。
  34. 如权利要求32所述的像素结构,其特征在于,所述补偿层的材料为ITO、IZO、MoOx和AZO中的一种或多种。
  35. 如权利要求32所述的像素结构,其特征在于,所述第一像素区为红光像素区,所述第二像素区为绿光像素区,所述第三像素区为蓝光像素区。
  36. 如权利要求32或35所述的像素结构,其特征在于,所述第二像素区的补偿层厚度小于所述第一像素区的补偿层厚度,且大于所述第三像素区的补偿层厚度。
  37. 如权利要求32所述的像素结构,其特征在于,所述像素结构还包括:阳极层,位于所述基底和所述补偿层之间。
  38. 如权利要求37所述的像素结构,其特征在于,所述第一像素区、第二像素区和第三像素区的阳极层厚度相同。
  39. 如权利要求38所述的像素结构,其特征在于,所述阳极层为反射金属层;
    或者,所述阳极层包括反射金属层以及位于所述反射金属层上的透明导电层。
  40. 如权利要求38所述的像素结构,其特征在于,所述像素结构还包括:第一补偿材料层,位于所述第一像素区、第二像素区和第三像素区的所述基底上;
    第二补偿材料层,位于所述第一像素区和第二像素区的所述第一补偿材料层上;
    第三补偿材料层,位于所述第一像素区的所述第二补偿材料层上;
    其中,所述第一像素区的第一补偿材料层、第二补偿材料层和第三补偿材料层构成所述第一像素区的补偿层,所述第二像素区的第一补偿材料层和第二补偿材料层构成所述第二像素区的补偿层,所述第三像素区的第一补偿材料层构成所述第三像素区的补偿层。
  41. 如权利要求40所述的像素结构,其特征在于,所述第一补偿材料层的厚度为
    Figure PCTCN2018084056-appb-100015
    Figure PCTCN2018084056-appb-100016
    所述第二补偿材料层的厚度为
    Figure PCTCN2018084056-appb-100017
    Figure PCTCN2018084056-appb-100018
    所述第三补偿材料层的厚度为
    Figure PCTCN2018084056-appb-100019
    Figure PCTCN2018084056-appb-100020
  42. 如权利要求40所述的像素结构,其特征在于,所述像素结构还包括:隔离层,所述隔离层至少贯穿所述第一像素区和第二像素区交界处的补偿层和阳极层、以及所述第二像素区和第三像素区交界处的补偿层和阳极层。
  43. 如权利要求42所述的像素结构,其特征在于,所述隔离层仅贯穿所述第一像素区和第二像素区交界处的补偿层和阳极层、以及所述第二像素区和第三像素区交界处的补偿层和阳极层。
  44. 如权利要求42所述的像素结构,其特征在于,所述隔离层还覆盖所述第一像素区和第二像素区交界处的补偿层顶部、以及所述第二像素区和第三像素区交界处的补偿层顶部。
  45. 如权利要求37所述的像素结构,其特征在于,所述第一像素区、第二像素区和第三像素区的阳极层厚度具有差异。
  46. 如权利要求45所述的像素结构,其特征在于,所述像素结构还 包括:第一阳极材料层,位于所述第二像素区和第三像素区的所述基底上;
    第二阳极材料层,位于所述第三像素区的所述第一阳极材料层上;
    第三阳极材料层,位于所述第一像素区的基底上、所述第二像素区的所述第一阳极材料层上、以及所述第三像素区的所述第二阳极材料层上;
    其中,所述第一像素区的第三阳极材料层构成所述第一像素区的阳极层,所述第二像素区的第三阳极材料层和第一阳极材料层构成所述第二像素区的阳极层,所述第三像素区的第三阳极材料层、第二阳极材料层和第一阳极材料层构成所述第三像素区的阳极层。
  47. 如权利要求46所述的像素结构,其特征在于,所述第一阳极材料层的厚度为
    Figure PCTCN2018084056-appb-100021
    Figure PCTCN2018084056-appb-100022
    所述第二阳极材料层的厚度为
    Figure PCTCN2018084056-appb-100023
    Figure PCTCN2018084056-appb-100024
    所述第三阳极材料层的厚度为
    Figure PCTCN2018084056-appb-100025
    Figure PCTCN2018084056-appb-100026
  48. 如权利要求46所述的像素结构,其特征在于,其特征在于,所述第一阳极材料层为第一反射金属层;
    或者,所述第一阳极材料层包括第一反射金属层以及位于所述第一反射金属层上的第一透明导电层。
  49. 如权利要求46所述的像素结构,其特征在于,其特征在于,所述第二阳极材料层为第二反射金属层;
    或者,所述第二阳极材料层包括第二反射金属层以及位于所述第二反射金属层上的第二透明导电层。
  50. 如权利要求46所述的像素结构,其特征在于,其特征在于,所述第三阳极材料层为第三反射金属层;
    或者,所述第三阳极材料层包括第三反射金属层以及位于所述第三反射金属层上的第三透明导电层。
  51. 如权利要求46所述的像素结构,其特征在于,所述像素结构还 包括:隔离层,所述隔离层内具有露出所述第一像素区、第二像素区和第三像素区的阳极层的开口;
    所述补偿层位于所述开口内。
  52. 如权利要求51所述的像素结构,其特征在于,所述隔离层的厚度为
    Figure PCTCN2018084056-appb-100027
    Figure PCTCN2018084056-appb-100028
  53. 如权利要求51所述的像素结构,其特征在于,所述第一像素区、第二像素区和第三像素区的阳极层相互分立,且相邻所述阳极层之间具有露出所述基底的隔离开口;
    所述隔离层还位于所述隔离开口内。
  54. 一种显示屏,其特征在于,包括:
    若干个如权利要求32至权利要求53任一项权利要求所述的像素结构。
PCT/CN2018/084056 2017-08-08 2018-04-23 像素结构及其形成方法、显示屏 WO2019029187A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/729,814 US11081680B2 (en) 2017-08-08 2019-12-30 Pixel structure, method for forming the same, and display screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710669365.7A CN109390372B (zh) 2017-08-08 2017-08-08 像素结构及其形成方法、显示屏
CN201710669365.7 2017-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/729,814 Continuation US11081680B2 (en) 2017-08-08 2019-12-30 Pixel structure, method for forming the same, and display screen

Publications (1)

Publication Number Publication Date
WO2019029187A1 true WO2019029187A1 (zh) 2019-02-14

Family

ID=65272755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084056 WO2019029187A1 (zh) 2017-08-08 2018-04-23 像素结构及其形成方法、显示屏

Country Status (3)

Country Link
US (1) US11081680B2 (zh)
CN (1) CN109390372B (zh)
WO (1) WO2019029187A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11552134B2 (en) 2018-09-19 2023-01-10 Beijing Boe Technology Development Co., Ltd. Light emitting diode with microcavities and different reflective layers and fabricating method thereof, display substrate, and display apparatus
CN110165088B (zh) * 2019-03-12 2022-03-25 合肥视涯技术有限公司 一种oled器件的制备方法
CN110085636A (zh) * 2019-04-09 2019-08-02 深圳市华星光电半导体显示技术有限公司 有机发光器件及其制作方法
CN110164930B (zh) * 2019-05-22 2021-06-18 合肥视涯技术有限公司 一种强微腔硅基有机发光显示装置及其形成方法
KR20210031085A (ko) * 2019-09-11 2021-03-19 삼성전자주식회사 발광 소자 및 그 제조방법
CN110649075B (zh) * 2019-09-27 2022-01-28 京东方科技集团股份有限公司 微腔阳极结构、显示基板及其制作方法
CN116437712A (zh) * 2020-03-18 2023-07-14 京东方科技集团股份有限公司 一种阵列基板及其制备方法和显示面板
US11980046B2 (en) * 2020-05-27 2024-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming an isolation structure having multiple thicknesses to mitigate damage to a display device
KR20220021966A (ko) * 2020-08-13 2022-02-23 삼성디스플레이 주식회사 표시 패널, 이의 제조 방법 및 표시 패널을 포함하는 표시 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409468A (zh) * 2014-10-29 2015-03-11 京东方科技集团股份有限公司 显示基板及其显示装置、制作方法
CN105720081A (zh) * 2016-02-24 2016-06-29 京东方科技集团股份有限公司 一种有机发光二极管阵列基板、显示装置和制作方法
CN106981504A (zh) * 2017-05-27 2017-07-25 华南理工大学 一种显示面板及显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510066A (ja) * 2002-12-16 2006-03-23 イー−インク コーポレイション 電気光学表示装置用バックプレーン
US7816677B2 (en) * 2008-02-12 2010-10-19 Samsung Electronics Co., Ltd. Organic light emitting device
KR101058109B1 (ko) * 2009-09-15 2011-08-24 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
KR101659953B1 (ko) * 2010-03-30 2016-09-27 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 이의 제조 방법
KR101988217B1 (ko) * 2013-01-04 2019-06-12 엘지디스플레이 주식회사 유기 발광 다이오드 마이크로-캐비티 구조 및 그 제조 방법
TWI500146B (zh) * 2013-04-25 2015-09-11 Au Optronics Corp 電激發光顯示面板之畫素結構
CN104701145B (zh) * 2013-12-10 2018-08-10 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN103839794B (zh) * 2014-02-25 2016-08-17 京东方科技集团股份有限公司 透明导电电极及阵列基板的制备方法
WO2015186741A1 (ja) * 2014-06-03 2015-12-10 シャープ株式会社 有機el素子、及び製造方法
US9679920B2 (en) * 2014-06-20 2017-06-13 Samsung Display Co., Ltd. Liquid crystal display
CN104466022B (zh) * 2014-12-17 2019-01-18 昆山国显光电有限公司 一种有机发光二极管显示器件及其制备方法
JP2017072812A (ja) * 2015-10-09 2017-04-13 株式会社ジャパンディスプレイ 表示装置
CN107256879B (zh) * 2017-06-12 2020-03-20 上海天马有机发光显示技术有限公司 有机发光显示面板及其制作方法、有机发光显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409468A (zh) * 2014-10-29 2015-03-11 京东方科技集团股份有限公司 显示基板及其显示装置、制作方法
CN105720081A (zh) * 2016-02-24 2016-06-29 京东方科技集团股份有限公司 一种有机发光二极管阵列基板、显示装置和制作方法
CN106981504A (zh) * 2017-05-27 2017-07-25 华南理工大学 一种显示面板及显示装置

Also Published As

Publication number Publication date
US11081680B2 (en) 2021-08-03
CN109390372A (zh) 2019-02-26
US20200136095A1 (en) 2020-04-30
CN109390372B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
US11081680B2 (en) Pixel structure, method for forming the same, and display screen
US11871611B2 (en) Display unit with reflector layer and electronic apparatus
US11289669B2 (en) Light-emitting device, pixel unit, manufacturing method for pixel unit and display device
US20130056714A1 (en) Organic el display, method of producing organic el display, and electronic unit
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
US20220367581A1 (en) Display substrate and preparation method therefor, and display apparatus
KR20140089260A (ko) 유기 발광 다이오드 마이크로-캐비티 구조 및 그 제조 방법
KR20160072010A (ko) 유기 발광 표시 장치 및 이의 제조 방법
KR20180104257A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
JP2013134813A (ja) 表示装置
JP2008146026A (ja) 発光装置及びその製造方法
JP2006261058A (ja) 有機el素子、表示装置、有機el素子の製造方法
KR20220143252A (ko) 유기발광 표시장치 및 제조방법
CN110165070B (zh) Oled阳极的制作方法及oled显示装置的制作方法
WO2024065616A1 (zh) 显示面板和显示装置
WO2023092935A1 (zh) 显示装置、显示面板及其制造方法
US20220336771A1 (en) Organic light emitting diode display device and manufacturing method thereof
US20240138182A1 (en) Display unit, method of manufacturing display unit, and electronic apparatus
JP7403540B2 (ja) 有機マイクロスクリーンの画素の製造方法
WO2023245599A1 (zh) 显示面板及其制备方法、显示装置
WO2023123131A1 (zh) 显示装置、显示面板及其制造方法
WO2022170479A1 (zh) 显示基板及其制作方法、显示装置
WO2023201602A1 (zh) 显示面板和显示装置
WO2023039792A1 (zh) 显示面板和显示装置
KR100588868B1 (ko) 유기전계발광 소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844777

Country of ref document: EP

Kind code of ref document: A1