WO2015186741A1 - 有機el素子、及び製造方法 - Google Patents

有機el素子、及び製造方法 Download PDF

Info

Publication number
WO2015186741A1
WO2015186741A1 PCT/JP2015/066043 JP2015066043W WO2015186741A1 WO 2015186741 A1 WO2015186741 A1 WO 2015186741A1 JP 2015066043 W JP2015066043 W JP 2015066043W WO 2015186741 A1 WO2015186741 A1 WO 2015186741A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
doped
organic
light emitting
layer
Prior art date
Application number
PCT/JP2015/066043
Other languages
English (en)
French (fr)
Inventor
磯村良幸
菊池克浩
川戸伸一
内田秀樹
二星学
井上智
塚本優人
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580029523.1A priority Critical patent/CN106463634B/zh
Priority to US15/315,410 priority patent/US10230065B2/en
Publication of WO2015186741A1 publication Critical patent/WO2015186741A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/157Hole transporting layers between the light-emitting layer and the cathode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/167Electron transporting layers between the light-emitting layer and the anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to an organic EL (electroluminescence) element and a manufacturing method thereof.
  • flat panel displays have been used in various products and fields, and further flat panel displays are required to have larger sizes, higher image quality, and lower power consumption.
  • an organic EL display device equipped with an organic EL (electroluminescence) element using electroluminescence of an organic material is an all-solid-state type, can be driven at a low voltage, has high-speed response, and self-emission.
  • an organic EL display device equipped with an organic EL (electroluminescence) element using electroluminescence of an organic material is an all-solid-state type, can be driven at a low voltage, has high-speed response, and self-emission.
  • the organic EL element as described above is provided with an anode, a cathode, and a light emitting layer formed between the anode and the cathode.
  • a hole injection layer or a hole transport layer is provided between the anode and the light emitting layer, or light emission from the cathode is performed in order to improve the light emission efficiency in the light emitting layer.
  • An electron injection layer or an electron transport layer is provided between the layers.
  • the organic EL element as described above is configured to emit light having a plurality of peaks from the organic EL element.
  • a conventional organic EL element as described in Patent Document 1 below, for example, by providing a plurality of light emitting layers, light having a plurality of peaks can be emitted. Further, in this conventional organic EL element, by providing an electron supply layer composed of a compound having a high electron mobility between the cathode and the light emitting layer, the carrier balance of holes and electrons in each of the plurality of light emitting layers. It was supposed to be adjustable.
  • the conventional organic EL element as described above has a problem that its light emission characteristics are deteriorated. Specifically, in this conventional organic EL element, it is necessary to adjust the light emission balance of a plurality of light emitting layers, so the adjustment of the carrier balance becomes complicated, and the balance of each color changes as the light emission time becomes longer. As a result, the light emission characteristics deteriorated.
  • this conventional organic EL device has a problem that the manufacturing process and structure are complicated. Specifically, in this conventional organic EL element, since a plurality of light emitting layers are laminated, the manufacturing process becomes complicated and the margin is reduced. Further, since the applied voltage is increased, the power consumption is increased.
  • an object of the present invention is to provide an organic EL element that is easy to manufacture and has a simple structure even when light having a plurality of peaks is emitted, and a method for manufacturing the same.
  • an organic EL device includes an anode, a cathode, a light emitting layer provided between the anode and the cathode, and between the anode and the light emitting layer.
  • An organic EL device comprising a hole transport layer provided and an electron transport layer provided between the cathode and the light emitting layer,
  • One of the anode and the cathode is constituted by a reflective electrode,
  • At least one of the hole transport layer and the electron transport layer is composed of a doped layer to which a dopant material is added and a non-doped layer to which no dopant material is added,
  • a reflection surface for reflecting light from the light emitting layer is provided at an interface between the doped layer and the non-doped layer.
  • one of the anode and the cathode is configured by a reflective electrode.
  • at least one of the hole transport layer and the electron transport layer includes a doped layer to which a dopant material is added and a non-doped layer to which no dopant material is added.
  • a reflection surface that reflects light from the light emitting layer is provided at the interface between the doped layer and the non-doped layer.
  • the said organic EL element while having the said light emitting layer of several colors, Among the light emitting layers of the plurality of colors, adjacent light emitting layers of different colors are integrally formed, and In at least one of the hole transport layer and the electron transport layer, a doped layer to which a dopant material is added and a non-doped layer to which no dopant material is added are integrally formed with the adjacent light emitting layers of different colors. May be formed in common.
  • the adjacent light emitting layers of different colors can be formed using the same mask, and in at least one of the hole transport layer and the electron transport layer, the doped layer and the non-doped layer are used using the same mask. Can be formed. As a result, the RGB positional accuracy can be easily improved in at least one of the light emitting layer, the hole transport layer, and the electron transport layer.
  • the electron transport layer is composed of a doped electron transport layer to which an n-type dopant material is added and a non-doped electron transport layer to which no n-type dopant material is added,
  • a first reflective surface as the reflective surface may be provided at the interface between the doped electron transport layer and the non-doped electron transport layer.
  • light having a plurality of peaks can be emitted by the first reflecting surface without providing a plurality of light emitting layers.
  • the hole transport layer includes a doped hole transport layer to which a p-type dopant material is added and a non-doped hole transport layer to which no p-type dopant material is added.
  • a second reflection surface as the reflection surface may be provided at the interface between the doped hole transport layer and the non-doped hole transport layer.
  • light having a plurality of peaks can be emitted by the second reflecting surface without providing a plurality of light emitting layers.
  • the cathode is constituted by a reflective electrode, Light from the light emitting layer may be emitted to the outside from the anode side.
  • a bottom emission type organic EL element that is easy to manufacture and has a simple structure and excellent emission characteristics can be configured.
  • the anode is constituted by a reflective electrode,
  • the light from the light emitting layer may be emitted to the outside from the cathode side.
  • a top emission type organic EL element which is easy to manufacture and has a simple structure and excellent emission characteristics can be configured.
  • a color filter may be provided on the anode side or the cathode side of the light emitting layer.
  • the wavelength range of the light emitted to the outside can be adjusted by the color filter.
  • the organic EL device manufacturing method of the present invention includes an anode, a cathode, a light emitting layer provided between the anode and the cathode, and a hole provided between the anode and the light emitting layer.
  • a method for producing an organic EL device comprising a transport layer, and an electron transport layer provided between the cathode and the light emitting layer, Forming a non-doped electron transport layer to which an n-type dopant material is not added and a doped electron transport layer to which an n-type dopant material is added as the electron transport layer; And heating the organic EL element.
  • the non-doped electron transport layer to which the n-type dopant material is not added and the doped electron transport layer to which the n-type dopant material is added are used as the electron transport layer. Is formed.
  • the n-type dopant material added in the doped electron transport layer can be aggregated at the interface between the non-doped electron transport layer and the doped electron transport layer. It is possible to form a reflection surface that reflects light from the light emitting layer at the interface. Thereby, unlike the conventional example, even when light having a plurality of peaks is emitted, an organic EL element that is easy to manufacture and has a simple structure and excellent emission characteristics can be configured.
  • a reflection surface that reflects light from the light emitting layer is formed at an interface between the non-doped electron transport layer and the doped electron transport layer. It is preferred that
  • the reflecting surface is formed at the interface between the non-doped electron transport layer and the doped electron transport layer, unlike the conventional example, even when light having a plurality of peaks is emitted, it is easy to manufacture and has a structure.
  • An organic EL element excellent in simple light emission characteristics can be configured.
  • the manufacturing method of the said organic EL element while providing the process of forming the light emitting layer of several colors, adjacent light emitting layers of different colors are integrally formed, In the step of forming the non-doped electron transport layer and the doped electron transport layer, the non-doped electron transport layer and the doped electron transport layer are formed in common with the adjacent light emitting layers of different colors. May be.
  • adjacent light emitting layers of different colors can be formed using the same mask, and in the electron transport layer, a doped layer and a non-doped layer can be formed using the same mask.
  • RGB positional accuracy can be easily improved in the light emitting layer and the electron transport layer.
  • the organic EL device manufacturing method of the present invention includes an anode, a cathode, a light emitting layer provided between the anode and the cathode, and a hole provided between the anode and the light emitting layer.
  • a method for producing an organic EL device comprising a transport layer, and an electron transport layer provided between the cathode and the light emitting layer, Forming, as the hole transport layer, a non-doped hole transport layer to which no p-type dopant material is added; and a doped hole transport layer to which a p-type dopant material is added; And heating the organic EL element.
  • the non-doped hole transport layer to which the p-type dopant material is not added and the doped hole transport layer to which the p-type dopant material is added are holes. It is formed as a transport layer.
  • the p-type dopant material added in the doped hole transport layer is agglomerated at the interface between the non-doped hole transport layer and the doped hole transport layer. It is possible to form a reflection surface that reflects light from the light emitting layer at the interface. Thereby, unlike the conventional example, even when light having a plurality of peaks is emitted, an organic EL element that is easy to manufacture and has a simple structure and excellent emission characteristics can be configured.
  • the reflective surface is formed at the interface between the non-doped hole transport layer and the doped hole transport layer, unlike the conventional example, even when light having a plurality of peaks is emitted, it is easy to manufacture, and Thus, an organic EL element having a simple structure and excellent light emission characteristics can be formed.
  • the manufacturing method of the said organic EL element while providing the process of forming the light emitting layer of several colors, adjacent light emitting layers of different colors are integrally formed, In the step of forming the non-doped hole transport layer and the doped hole transport layer, the non-doped hole transport layer and the doped hole transport layer are commonly used for the adjacent light emitting layers of different colors. May be formed.
  • adjacent light emitting layers of different colors can be formed using the same mask, and in the hole transport layer, a doped layer and a non-doped layer can be formed using the same mask.
  • RGB positional accuracy can be easily improved in the light emitting layer and the hole transport layer.
  • the organic EL device manufacturing method of the present invention includes an anode, a cathode, a light emitting layer provided between the anode and the cathode, and a hole provided between the anode and the light emitting layer.
  • a method for producing an organic EL device comprising a transport layer, and an electron transport layer provided between the cathode and the light emitting layer, Forming, as the hole transport layer, a non-doped hole transport layer to which no p-type dopant material is added; and a doped hole transport layer to which a p-type dopant material is added; Forming a non-doped electron transport layer to which an n-type dopant material is not added and a doped electron transport layer to which an n-type dopant material is added as the electron transport layer; And heating the organic EL element.
  • the non-doped electron transport layer to which the n-type dopant material is not added and the doped electron transport layer to which the n-type dopant material is added are used as the electron transport layer. Is formed. Further, a non-doped hole transport layer to which a p-type dopant material is not added and a doped hole transport layer to which a p-type dopant material is added are formed as a hole transport layer. In addition, since the step of heating the organic EL element is performed, the n-type dopant material added in the doped electron transport layer can be aggregated at the interface between the non-doped electron transport layer and the doped electron transport layer.
  • the first reflecting surface that reflects light from the light emitting layer can be formed at the interface, and at the interface between the non-doped hole transport layer and the doped hole transport layer, in the doped hole transport layer.
  • the added p-type dopant material can be agglomerated, and a second reflecting surface that reflects light from the light emitting layer can be formed at the interface.
  • a first reflection that reflects light from the light emitting layer at an interface between the non-doped electron transport layer and the doped electron transport layer is preferable that a second reflection surface that reflects light from the light-emitting layer is formed at the interface between the non-doped hole transport layer and the doped hole transport layer.
  • the first reflective surface is formed at the interface between the non-doped electron transport layer and the doped electron transport layer
  • the second reflective surface is formed at the interface between the non-doped hole transport layer and the doped hole transport layer.
  • the manufacturing method of the said organic EL element while providing the process of forming the light emitting layer of several colors, adjacent light emitting layers of different colors are integrally formed, In the step of forming the non-doped hole transport layer and the doped hole transport layer, and the step of forming the non-doped electron transport layer and the doped electron transport layer, the non-doped hole transport layer and the doped hole transport layer.
  • the non-doped electron transport layer and the doped electron transport layer may be formed in common for the adjacent light emitting layers of different colors.
  • adjacent light emitting layers of different colors can be formed using the same mask, and in the hole transport layer and the electron transport layer, the doped layer and the non-doped layer can be formed using the same mask. .
  • the RGB position accuracy can be easily improved in the light emitting layer, the hole transport layer, and the electron transport layer.
  • the doped electron transport layer is preferably formed using a co-evaporation method of a host material and a dopant material.
  • the doped electron transport layer can be easily formed.
  • the doped hole transport layer is preferably formed using a co-evaporation method of a host material and a dopant material.
  • the doped hole transport layer can be easily formed.
  • the present invention even when light having a plurality of peaks is emitted, it is possible to provide an organic EL element that is easy to manufacture and has a simple structure and excellent emission characteristics, and a method for manufacturing the same.
  • FIG. 1 is a cross-sectional view showing a configuration of an organic EL element according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation of the organic EL element.
  • FIG. 3 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element is applied to an active matrix organic EL display device.
  • FIG. 4 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • FIG. 5 is a graph showing a specific example of a spectrum of light emitted from the organic EL element.
  • FIG. 6 is a cross-sectional view showing a configuration of an organic EL element according to the second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration of an organic EL element according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation of the organic EL element.
  • FIG. 3 is a cross-sectional view showing a specific
  • FIG. 7 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 8 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 6 is applied to an active matrix organic EL display device.
  • FIG. 9 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • FIG. 10 is a cross-sectional view showing a configuration of an organic EL element according to the third embodiment of the present invention.
  • FIG. 11 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 12 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 10 is applied to an active matrix organic EL display device.
  • FIG. 13 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • FIG. 14 is sectional drawing which shows the structure of the organic EL element concerning the 4th Embodiment of this invention.
  • FIG. 15 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 16 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 14 is applied to an active matrix organic EL display device.
  • FIG. 17 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • FIG. 18 is sectional drawing which shows the structure of the organic EL element concerning the 5th Embodiment of this invention.
  • FIG. 19 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 20 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 18 is applied to an active matrix organic EL display device.
  • FIG. 21 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • FIG. 22 is a cross-sectional view showing a configuration of an organic EL element according to the sixth embodiment of the present invention.
  • FIG. 23 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 24 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 22 is applied to an active matrix organic EL display device.
  • FIG. 21 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • FIG. 22 is a cross-sectional view showing a configuration of an organic EL element according to the sixth
  • FIG. 25 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • FIG. 26 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element of the present invention is applied to an active matrix organic EL display device.
  • FIG. 27 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element of the present invention is applied to an active matrix organic EL display device.
  • FIG. 1 is a cross-sectional view showing a configuration of an organic EL element according to the first embodiment of the present invention.
  • the organic EL element 1 of the present embodiment is provided above a substrate 2, a color filter 3 provided on the substrate 2, an anode 4 provided on the color filter 3, and an anode 4.
  • a cathode 5 is provided.
  • a light emitting layer 6 that emits red light is provided between the anode 3 and the cathode 4.
  • the hole transport layer 7 and the hole injection layer 8 are sequentially provided between the anode 4 and the light emitting layer 6 from the light emitting layer 6 toward the anode 4 side. Yes. Further, in the organic EL element 1, an electron transport layer 9 and an electron injection layer 10 are sequentially provided between the cathode 5 and the light emitting layer 6 from the light emitting layer 6 toward the cathode 5.
  • the electron transport layer 9 a non-doped electron transport layer 9a to which no n-type dopant material (guest compound) is added, and an n-type dopant are used.
  • a doped electron transport layer 9b to which a material is added is provided.
  • the first reflecting surface 11 as the reflecting surface that reflects the light from the light emitting layer 6 is provided at the interface between the non-doped electron transport layer 9a and the doped electron transport layer 9b. ing.
  • the substrate 2 is made of a material such as glass.
  • the color filter 3 is appropriately used to adjust the wavelength range of light emitted to the outside from the organic EL element 1 of the present embodiment.
  • anode 4 for example, a transparent electrode material such as ITO or IZO, or a metal thin film such as silver is used.
  • the thickness of the anode 4 is, for example, about several nm to 300 nm.
  • the cathode 5 is made of metal such as aluminum, magnesium, or silver, for example, and the cathode 5 constitutes a reflective electrode. That is, the organic EL element 1 of this embodiment is a bottom mission type in which light from the light emitting layer 6 is emitted to the outside from the anode 4 (substrate 2) side.
  • the thickness of the cathode 5 is, for example, about 20 nm to 200 nm.
  • the light emitting layer 6 is a recombination layer (active layer) in which electrons and holes can be recombined, and includes at least a host material and a light emitting dopant material.
  • the light emitting layer 6 for example, as the light emitting dopant material, either a fluorescent dopant material or a phosphorescent dopant material can be used.
  • the thickness of the light emitting layer 6 is about 40 nm, for example.
  • the hole transport layer 7 for example, a layer possessed by a normal organic EL element can be used.
  • a layer possessed by a normal organic EL element can be used.
  • the thickness of the hole transport layer 7 is, for example, 15 nm.
  • Examples of the hole injection layer 8 include phthalocyanine materials, starburst polyamines, and polyanilines.
  • the thickness of the hole injection layer 8 is, for example, several tens of nm.
  • the electron transport layer 9 for example, Bphen is used as a host material.
  • the electron transport layer 9 is composed of the non-doped electron transport layer 9a and the doped electron transport layer 9b.
  • an n-type dopant material for example, cesium carbonate (Cs 2 CO 3 ), or a simple substance such as cesium, potassium, calcium, or a compound thereof is used. It is added (doping) to the host material.
  • the thickness of the electron transport layer 9 is, for example, 20 nm.
  • the electron injection layer 10 for example, metal lithium, metal barium, or the like, or a compound such as lithium fluoride, which is a compound thereof, is used.
  • the thickness of the electron injection layer 10 is often very thin, for example, 1 nm.
  • the first reflecting surface 11 is formed at the interface by aggregating the n-type dopant material added to the doped electron transport layer 9b at the interface between the non-doped electron transport layer 9a and the doped electron transport layer 9b. Yes.
  • the first reflecting surface 11 reflects light in a part of the wavelength region of the light from the light emitting layer 6 to the anode 4 side and transmits light in a different wavelength region to the cathode 5 side. Yes.
  • the organic EL element 1 of the present embodiment is configured to be able to emit light having a plurality of peaks.
  • FIG. 2 is a diagram for explaining the operation of the organic EL element.
  • a part of the light from the light emitting layer 6 has a first reflecting surface 11 as indicated by an arrow A in FIG. 2. Is reflected to the anode 4 side and emitted to the outside.
  • the organic EL element 1 of the present embodiment is configured to be able to emit light having at least two peaks to the outside.
  • FIG. 3 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element is applied to an active matrix type organic EL display device.
  • TFT 41 switching element
  • wiring 42 protective film 43
  • red color filter 3R red color filter 3R
  • interlayer film 44 interlayer insulating film, planarization film
  • edge cover 45 etc.
  • the TFT 41 functions as a switching element that controls the light emission of the red sub-pixel PR, and is connected to the wiring 42.
  • the protective film 43 is made of, for example, a nitride film or an oxide film, and is provided on the TFT 41 and the wiring 42 to protect the TFT 41 and the wiring 42.
  • the red color filter 3R adjusts the wavelength range of red light emitted to the outside from the light emitting layer 6 (red light emitting layer 6R) indicated by arrows A and B in FIG.
  • an organic film is used for the interlayer film 44.
  • the interlayer film 44 also functions as a planarizing film and is laminated on the color filter 3R.
  • a red anode 4R is formed for each sub-pixel PR.
  • the anode 4R is electrically connected to the TFT 41 through a contact hole 44a formed in the interlayer film 44, a contact hole 3Ra formed in the color filter 3R, and a contact hole 43a formed in the protective film 43. Has been.
  • the edge cover 45 is formed on the interlayer film 44 so as to cover the pattern end of the anode 4R.
  • the edge cover 45 is configured such that the organic EL layer between the anode 4R and the cathode 5 becomes thin or the electric field concentration occurs at the pattern end portion of the anode 4R, so that the anode 4R and the cathode 5 constituting the organic EL element 1 Is an insulating layer for preventing short circuit.
  • the edge cover 45 is provided with an opening 45R for each subpixel PR.
  • the opening 45R of the edge cover 45 becomes a light emitting region of the sub-pixel PR.
  • the edge cover 45 also functions as an element isolation film.
  • FIG. 4 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • a TFT forming process for forming the TFT 41 on the substrate 2 is first performed. Further, in this TFT formation step, the formation of the wiring 42 is performed at the same time as the formation of the TFT 41 or at a different timing. Then, after the TFT forming step, a step of forming a protective film 43 on the TFT 41 and the wiring 42 is performed.
  • a color filter forming process for forming the color filter 3R on the protective film 43 is performed.
  • the color filter 3R is formed on the protective film 43 in a predetermined pattern using, for example, photolithography.
  • an anode forming process for forming a red anode 4R on the interlayer film 44 is performed.
  • the anode 4R is formed on the interlayer film 44 using, for example, a vacuum deposition method.
  • a hole injection layer forming step of forming the hole injection layer 8 on the anode 4R is performed.
  • the hole injection layer 8 is formed on the anode 4R by using, for example, a vacuum deposition method.
  • a hole transport layer forming step of forming the hole transport layer 7 on the hole injection layer 8 is performed.
  • the hole transport layer 7 is formed on the hole injection layer 8 by using, for example, a vacuum deposition method.
  • a light emitting layer forming step of forming a red light emitting layer 6R on the hole transport layer 7 is performed.
  • the light emitting layer 6R is formed on the hole transport layer 7 by using, for example, a vacuum deposition method.
  • the non-doped electron transport layer 9a is formed on the light emitting layer 6R and the hole transport layer 7 by using, for example, a vacuum deposition method.
  • the doped electron transport layer 9b is formed on the non-doped electron transport layer 9a by, for example, a co-evaporation method using the host material and the dopant material.
  • an electron injection layer forming step of forming the electron injection layer 10 on the doped electron transport layer 9b is performed.
  • the electron injection layer 10 is formed on the doped electron transport layer 9b by using, for example, a vacuum deposition method.
  • a cathode forming step for forming the cathode 5 on the electron injection layer 10 is performed.
  • the cathode 5 is formed on the electron injection layer 10 by using, for example, a vacuum evaporation method.
  • a heating process for heating the organic EL element 1 is performed. Specifically, in this heating step, the organic EL element 1 is annealed at a temperature of 80 ° C. and a heating time of 1 hour, for example. Thereby, the n-type dopant material added in the doped electron transport layer 9b can be agglomerated at the interface between the non-doped electron transport layer 9a and the doped electron transport layer 9b. A first reflecting surface 11 that reflects light is formed.
  • the organic EL element 1 of the present embodiment is manufactured.
  • FIG. 5 is a graph showing a specific example of the spectrum of light emitted from the organic EL element.
  • the characteristic of the spectrum of the red light emitting layer 6R itself has a peak wavelength of 610 nm as illustrated by a dotted line in FIG.
  • the first reflecting surface 11 is formed at the interface between the non-doped electron transport layer 9a and the doped electron transport layer 9b.
  • the light from the light emitting layer 6 in the case where it is not formed is emitted to the outside as light having a peak wavelength of about 690 nm, as illustrated by a one-dot chain line in FIG.
  • the light from the light emitting layer 6 in the case where the first reflecting surface 11 is formed at the interface between the non-doped electron transport layer 9a and the doped electron transport layer 9b by performing the heating step is illustrated by a solid line in FIG.
  • the light having a peak wavelength of about 600 nm and the light having a peak wavelength of about 700 nm are emitted to the outside.
  • the organic EL element 1 of the present embodiment as shown by arrows A and B in FIG. 2, light having two peaks is emitted to the outside.
  • the spectrum of the light emitted to the outside from the organic EL element 1 of the present embodiment is not limited to that shown in FIG. 5.
  • the thickness of the light emitting layer 6, the kind of the light emitting dopant material, non-doped electrons each thickness of the transport layer 9a and the doped electron transport layer 9b, the kind of dopant material of the doped electron transport layer 9b, each thickness and material of the anode 4 (anode 4R), or the characteristics of the color filter 3 (color filter 3R), etc. Can also be changed.
  • the installation of the color filter 3 may be omitted or the color filter 3R that blocks the wavelength region between the two peak wavelengths may be provided. Good.
  • a color filter 3R that blocks light having the other peak wavelength may be used.
  • the cathode 5 is configured by a reflective electrode.
  • the electron transport layer 9 includes a doped electron transport layer 9b to which an n-type dopant material is added and a non-doped electron transport layer 9a to which no n-type dopant material is added.
  • a first reflection surface (reflection surface) 11 that reflects light from the light emitting layer 6 is provided at the interface between the non-doped electron transport layer 9a and the doped electron transport layer 9b.
  • the organic EL element 1 of the present embodiment light having two peaks can be emitted to the outside by only one light emitting layer 6, so that it is easy to adjust the carrier balance of holes and electrons in the light emitting layer 6.
  • the increase in applied voltage can be suppressed. Therefore, in the present embodiment, unlike the conventional example, even when light having a plurality of peaks is emitted, the organic EL element 1 that is easy to manufacture and has a simple structure and excellent emission characteristics can be configured.
  • the cathode 5 is formed of a reflective electrode, and the light from the light emitting layer 6 is emitted to the outside from the anode 4 side. Therefore, even when light having a plurality of peaks is emitted, the manufacturing is performed.
  • a bottom emission type organic EL element 1 which is simple and has a simple structure and excellent emission characteristics can be configured.
  • FIG. 6 is a cross-sectional view showing a configuration of an organic EL element according to the second embodiment of the present invention.
  • FIG. 7 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 8 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 6 is applied to an active matrix organic EL display device.
  • FIG. 9 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • the main difference between the present embodiment and the first embodiment is that a top emission type organic EL element that emits light from the light emitting layer from the cathode side is configured.
  • a top emission type organic EL element that emits light from the light emitting layer from the cathode side is configured.
  • symbol is attached
  • the anode 4 the hole injection layer 8, the hole transport layer 7, the light emitting layer 6, the electron transport layer 9, and the electron injection are formed on the substrate 2.
  • a layer 10 and a cathode 5 are sequentially formed.
  • a counter substrate 3 facing the substrate 2 is provided, and a color filter 3 is installed on the substrate 2 side of the counter substrate 12.
  • the anode 4 is configured by a reflective electrode.
  • light from the light emitting layer 6 is externally applied from the cathode 5 (counter substrate 12) side. The top emission type that is released to
  • a part of the light from the light emitting layer 6 is first reflected as indicated by an arrow A in FIG. After being reflected to the anode 4 side by the surface 11, it is reflected to the cathode 5 side at the interface between the anode 4 and the hole injection layer 8 and is emitted to the outside.
  • a part of the light from the light emitting layer 6 transmits through the first reflecting surface 11 and then at the interface between the cathode 5 and the electron injection layer 10. Reflected on the anode 4 side. Then, it is reflected to the cathode 5 side at the interface between the anode 4 and the hole injection layer 8 and emitted to the outside. Further, this light is light having a peak different from the light indicated by the arrow A in FIG.
  • the organic EL element 1 of the present embodiment is configured to be capable of emitting light having at least two peaks to the outside, as in the first embodiment.
  • the first embodiment is formed on the substrate 2 as shown in FIG. Similar to the above, a TFT 41 (switching element), a wiring 42, a protective film 43, an interlayer film 44 (interlayer insulating film, planarization film), an edge cover 45, and the like are provided. Further, on the substrate 2, unlike the first embodiment, the red color filter 3R is not installed.
  • each component on the substrate 2 side is formed in the same manner as in the first embodiment.
  • the color filter forming step shown in step S2 in FIG. 4 is performed, and the color filter 3 is formed on the counter substrate 12.
  • the organic EL element 1 of this embodiment is manufactured by bonding the board
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the anode 4 is constituted by a reflective electrode, and the light from the light emitting layer 6 is emitted to the outside from the cathode 5 side, so that even when light having a plurality of peaks is emitted, the manufacturing is performed.
  • a top emission type organic EL element 1 which is simple and has a simple structure and excellent emission characteristics can be configured.
  • the aperture ratio can be improved as compared with that of the first embodiment.
  • the formation process of the color filter 3 can be simplified as compared with the first embodiment, and the manufacturing yield can be increased. It can be improved easily.
  • FIG. 10 is a cross-sectional view showing a configuration of an organic EL element according to the third embodiment of the present invention.
  • FIG. 11 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 12 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 10 is applied to an active matrix organic EL display device.
  • FIG. 13 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • the main difference between this embodiment and the first embodiment is that, instead of providing a doped electron transport layer, a non-doped electron transport layer, and a first reflecting surface, a p-type layer is used as a hole transport layer.
  • a doped hole transport layer to which a dopant material is added and a non-doped hole transport layer to which no p-type dopant material is added are provided, and at the interface between the doped hole transport layer and the non-doped hole transport layer.
  • the second reflecting surface is provided.
  • symbol is attached
  • the electron transport layer 9 of the organic EL element 1 of the present embodiment is not provided with a doped electron transport layer to which an n-type dopant material is added, and the electron transport layer 9 is not doped with electron transport. It consists only of layers.
  • the non-doped hole transport layer 7b is, for example, 4,4′-bis [N- (1-naphthyl) -N-phenyl, like the hole transport layer 7 in the first embodiment. -Amino] -biphenyl ( ⁇ -NPD) and the like.
  • the doped hole transport layer 7a uses ⁇ -NPD or the like as a host material, and a p-type dopant material such as molybdenum, tungsten, or vanadium is added to the host material (doping). It is formed by doing.
  • the second reflecting surface 13 agglomerates the p-type dopant material added to the doped hole transport layer 7a at the interface between the non-doped hole transport layer 7b and the doped hole transport layer 7a. Is formed.
  • the second reflecting surface 13 reflects light in a part of the wavelength region of the light from the light emitting layer 6 to the cathode 5 side and transmits light in a different wavelength region to the anode 4 side. Yes.
  • the organic EL element 1 of the present embodiment is configured to be able to emit light having a plurality of peaks.
  • a part of the light from the light emitting layer 6 is, as indicated by an arrow A in FIG.
  • the light is reflected again to the anode 4 side at the interface between the cathode 5 and the electron injection layer 10 and emitted to the outside.
  • a part of the light from the light emitting layer 6 is reflected to the anode 4 side at the interface between the cathode 5 and the electron injection layer 10, and then the second light.
  • the light is transmitted through the reflecting surface 13 and emitted to the outside. Further, this light has a different peak from the light indicated by the arrow A in FIG.
  • the organic EL element 1 of the present embodiment is configured to be capable of emitting light having at least two peaks to the outside, as in the first embodiment.
  • the first embodiment is formed on the substrate 2 as shown in FIG. Similar to the above, TFT 41 (switching element), wiring 42, protective film 43, red color filter 3R, interlayer film 44 (interlayer insulating film, planarization film), edge cover 45, and the like are provided.
  • a non-doped hole transport layer 7a and a non-doped hole transport layer 7b are sequentially formed on the hole injection layer 8.
  • a transport layer and a doped hole transport layer forming step are performed.
  • the doped hole transport layer 7a is formed on the hole injection layer 8 by, for example, a co-evaporation method using the host material and the dopant material.
  • the non-doped hole transport layer 7b is formed on the doped hole transport layer 7a using, for example, a vacuum deposition method.
  • an electron transport layer forming step of forming the electron transport layer 9 on the light emitting layer 6R and the non-doped hole transport layer 7b is performed.
  • the electron transport layer 9 is formed on the light emitting layer 6R and the hole transport layer 7 by using, for example, a vacuum deposition method.
  • a heating process for heating the organic EL element 1 is performed. Specifically, in this heating step, the organic EL element 1 is annealed at a temperature of 80 ° C. and a heating time of 1 hour, for example. Thereby, the p-type dopant material added in the doped hole transport layer 7a can be agglomerated at the interface between the doped hole transport layer 7a and the non-doped hole transport layer 7b, and the light emitting layer is formed at the interface. A second reflecting surface 13 that reflects light from 6R is formed.
  • the present embodiment can achieve the same operations and effects as the first embodiment. That is, in this embodiment, by providing the second reflecting surface 13, light having at least two peaks can be emitted to the outside without providing a plurality of light emitting layers.
  • the cathode 5 is formed of a reflective electrode, and the light from the light emitting layer 6 is emitted to the outside from the anode 4 side. Therefore, even when light having a plurality of peaks is emitted, the manufacturing is performed.
  • a bottom emission type organic EL element 1 which is simple and has a simple structure and excellent emission characteristics can be configured.
  • FIG. 14 is sectional drawing which shows the structure of the organic EL element concerning the 4th Embodiment of this invention.
  • FIG. 15 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 16 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 14 is applied to an active matrix organic EL display device.
  • FIG. 17 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • the main difference between the present embodiment and the third embodiment is that a top emission type organic EL element that emits light from the light emitting layer from the cathode side is configured.
  • a top emission type organic EL element that emits light from the light emitting layer from the cathode side is configured.
  • symbol is attached
  • the anode 4 the hole injection layer 8, the hole transport layer 7, the light emitting layer 6, the electron transport layer 9, and the electron injection are formed on the substrate 2.
  • a layer 10 and a cathode 5 are sequentially formed.
  • a counter substrate 3 facing the substrate 2 is provided, and a color filter 3 is installed on the substrate 2 side of the counter substrate 12.
  • the anode 4 is configured by a reflective electrode.
  • light from the light emitting layer 6 is externally applied from the cathode 5 (counter substrate 12) side. The top emission type that is released to
  • a part of the light from the light emitting layer 6 is second reflected as shown by an arrow A in FIG.
  • the light is reflected from the surface 13 toward the cathode 5 and emitted to the outside.
  • a part of the light from the light emitting layer 6 is transmitted through the second reflecting surface 13, and then the interface between the anode 4 and the hole injection layer 8. Is reflected to the cathode 5 side and emitted to the outside. Further, this light is light having a peak different from that indicated by the arrow A in FIG.
  • the organic EL element 1 of the present embodiment is configured to be capable of emitting light having at least two peaks to the outside, as in the first embodiment.
  • the third embodiment is formed on the substrate 2 as shown in FIG. Similar to the above, a TFT 41 (switching element), a wiring 42, a protective film 43, an interlayer film 44 (interlayer insulating film, planarization film), an edge cover 45, and the like are provided. On the substrate 2, unlike the third embodiment, the red color filter 3R is not installed.
  • each component on the substrate 2 side is a third element. It is formed in the same manner as in the embodiment.
  • the color filter forming process shown in step S ⁇ b> 2 in FIG. 13 is performed, and the color filter 3 is formed on the counter substrate 12.
  • the organic EL element 1 of this embodiment is manufactured by bonding the board
  • the present embodiment can achieve the same operations and effects as the third embodiment.
  • the anode 4 is constituted by a reflective electrode, and the light from the light emitting layer 6 is emitted to the outside from the cathode 5 side, so that even when light having a plurality of peaks is emitted, the manufacturing is performed.
  • a top emission type organic EL element 1 which is simple and has a simple structure and excellent emission characteristics can be configured.
  • the aperture ratio can be improved as compared with that of the third embodiment.
  • the process of forming the color filter 3 can be simplified as compared with the third embodiment, and the production yield can be increased. It can be improved easily.
  • FIG. 18 is sectional drawing which shows the structure of the organic EL element concerning the 5th Embodiment of this invention.
  • FIG. 19 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 20 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 18 is applied to an active matrix organic EL display device.
  • FIG. 21 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • the main difference between this embodiment and the first embodiment is that a doped hole transport layer to which a p-type dopant material is added and a p-type dopant material are added as a hole transport layer.
  • a second reflecting surface is provided at the interface between the doped hole transport layer and the non-doped hole transport layer.
  • Layer 9b is provided.
  • a first reflective surface 11 as a reflective surface that reflects light from the light emitting layer 6 is provided. Is provided.
  • a part of the light from the light emitting layer 6 is the first as shown by the left arrow A in FIG.
  • the light After being transmitted through the reflecting surface 11, the light is reflected toward the anode 4 at the interface between the cathode 5 and the electron injection layer 10. Thereafter, the light is reflected on the cathode 5 side by the second reflecting surface 13, is reflected again on the anode 4 side at the interface between the cathode 5 and the electron injection layer 10, and is emitted to the outside.
  • this light can be light having the same peak as the light indicated by the arrow A on the left side in FIG. 19, and the luminance of the light having the peak can be increased. Luminous quality can be improved.
  • a part of the light from the light emitting layer 6 is transmitted through the first reflecting surface 11, and between the cathode 5 and the electron injection layer 10. After being reflected to the anode 4 side at the interface, it passes through the second reflecting surface 13 and is emitted to the outside.
  • this light can be the light having the same peak as the light indicated by the arrow B on the left side in FIG. 19, and the luminance of the light having the peak can be increased. Luminous quality can be improved.
  • the first embodiment is formed on the substrate 2 as shown in FIG. Similar to the above, TFT 41 (switching element), wiring 42, protective film 43, red color filter 3R, interlayer film 44 (interlayer insulating film, planarization film), edge cover 45, and the like are provided.
  • step S11 in FIG. 21 after the hole injection layer forming step is completed, the non-doped hole transport layer 7a and the non-doped hole transport layer 7b are sequentially formed on the hole injection layer 8. A transport layer and a doped hole transport layer forming step are performed.
  • step S7 in FIG. 21 the non-doped electron transport layer and the doped electron transport layer for sequentially forming the non-doped electron transport layer 9a and the doped electron transport layer 9b on the light-emitting layer 6 after the light-emitting layer forming step is completed.
  • a forming step is performed.
  • a heating process for heating the organic EL element 1 is performed. Specifically, in this heating step, the organic EL element 1 is annealed at a temperature of 80 ° C. and a heating time of 1 hour, for example. Thereby, the n-type dopant material added in the doped electron transport layer 9b can be agglomerated at the interface between the non-doped electron transport layer 9a and the doped electron transport layer 9b. A first reflecting surface 11 that reflects light is formed. At the same time, the p-type dopant material added in the doped hole transport layer 7a can be agglomerated at the interface between the doped hole transport layer 7a and the non-doped hole transport layer 7b. A second reflecting surface 13 that reflects the light from is formed.
  • the present embodiment can achieve the same operations and effects as the first embodiment. Moreover, in this embodiment, the light emission quality of the organic EL element 1 can be improved by providing the 1st and 2nd reflective surfaces 11 and 13. FIG.
  • the cathode 5 is formed of a reflective electrode, and the light from the light emitting layer 6 is emitted to the outside from the anode 4 side. Therefore, even when light having a plurality of peaks is emitted, the manufacturing is performed.
  • a bottom emission type organic EL element 1 which is simple and has a simple structure and excellent emission characteristics can be configured.
  • FIG. 22 is a cross-sectional view showing a configuration of an organic EL element according to the sixth embodiment of the present invention.
  • FIG. 23 is a diagram for explaining the operation of the organic EL element shown in FIG.
  • FIG. 24 is a cross-sectional view showing a specific configuration example of the organic EL element when the organic EL element shown in FIG. 22 is applied to an active matrix organic EL display device.
  • FIG. 25 is a flowchart for explaining a manufacturing process of the organic EL element shown in FIG.
  • the main difference between the present embodiment and the fifth embodiment is that a top emission type organic EL element that emits light from the light emitting layer from the cathode side is configured.
  • a top emission type organic EL element that emits light from the light emitting layer from the cathode side is configured.
  • symbol is attached
  • the organic EL element 1 of this embodiment on the substrate 2, the anode 4, the hole injection layer 8, the hole transport layer 7, the light emitting layer 6, the electron transport layer 9, the electron injection layer 10, And the cathode 5 is formed sequentially.
  • a counter substrate 3 facing the substrate 2 is provided, and a color filter 3 is installed on the substrate 2 side of the counter substrate 12.
  • the anode 4 is configured by a reflective electrode.
  • light from the light emitting layer 6 is externally applied from the cathode 5 (counter substrate 12) side. The top emission type that is released to
  • a part of the light from the light emitting layer 6 is a second light as shown by the left arrow A in FIG. Is reflected to the cathode 5 side by the reflecting surface 13 and emitted to the outside.
  • a part of the light from the light emitting layer 6 is reflected on the anode 4 side by the first reflecting surface 11 and then is positively connected to the anode 4. Reflected toward the cathode 5 at the interface with the hole injection layer 8. Thereafter, the light passes through the first reflecting surface 11 and is emitted to the outside. Further, this light can be the light having the same peak as the light indicated by the arrow A on the left side in FIG. 23, and the luminance of the light having the peak can be increased. Luminous quality can be improved.
  • this light can be the light having the same peak as the light indicated by the arrow B on the left side in FIG. 23, and the luminance of the light having the peak can be increased. Luminous quality can be improved.
  • the third embodiment is formed on the substrate 2 as shown in FIG. Similar to the above, a TFT 41 (switching element), a wiring 42, a protective film 43, an interlayer film 44 (interlayer insulating film, planarization film), an edge cover 45, and the like are provided. On the substrate 2, unlike the fifth embodiment, the red color filter 3R is not installed.
  • each component on the substrate 2 side is the same as that of the fifth embodiment. Formed in the same way.
  • the color filter forming process shown in step S ⁇ b> 2 in FIG. 21 is performed, and the color filter 3 is formed on the counter substrate 12.
  • the organic EL element 1 of this embodiment is manufactured by bonding the board
  • the present embodiment can achieve the same operations and effects as the fifth embodiment.
  • the anode 4 is constituted by a reflective electrode, and the light from the light emitting layer 6 is emitted to the outside from the cathode 5 side, so that even when light having a plurality of peaks is emitted, the manufacturing is performed.
  • a top emission type organic EL element 1 which is simple and has a simple structure and excellent emission characteristics can be configured.
  • the aperture ratio can be improved as compared with that of the fifth embodiment.
  • the process of forming the color filter 3 can be simplified as compared with the fifth embodiment, and the production yield can be increased. It can be improved easily.
  • the present invention is applied to an organic EL element having a red light emitting layer.
  • one of the anode and the cathode is constituted by a reflective electrode, and the hole transport layer and the electron transport layer are formed.
  • At least one of the doped layer to which the dopant material is added and the non-doped layer to which the dopant material is not added is formed, and a reflective surface that reflects light from the light emitting layer at the interface between the doped layer and the non-doped layer
  • the present invention can be applied to, for example, an organic EL element having a light emitting layer that emits green light, blue light, or white light.
  • an organic EL element included in an active matrix organic EL display device having red, green, and blue sub-pixels PR, PG, and PB is configured. Can do.
  • TFT 41 switching element
  • wiring 42 protective film 43
  • interlayer film 44 interlayer insulating film, planarization film
  • edge cover 45 and the like are provided on the substrate 2.
  • a counter substrate is provided so as to oppose the substrate 2 (not shown), and the counter substrate includes a color filter layer including color filters corresponding to the colors of the sub-pixels PR, PG, and PB. Is provided.
  • the TFT 41 functions as a switching element that controls each light emission of the sub-pixels PR, PG, and PB, and is provided for each of the sub-pixels PR, PG, and PB.
  • the TFT 41 is connected to the wiring 42.
  • the protective film 43 is made of, for example, a nitride film or an oxide film, and is provided on the TFT 41 and the wiring 42 to protect the TFT 41 and the wiring 42.
  • interlayer film 44 an organic film is used for the interlayer film 44.
  • the interlayer film 44 also functions as a planarizing film and is laminated on the color filter 3.
  • a reflective electrode 46 is formed for each of the sub-pixels PR, PG, and PB.
  • a red anode 4R, a green anode 4G, and a blue anode 4B are formed for each corresponding subpixel PR, PG, and PB.
  • the anode 4 ⁇ / b> R is electrically connected to the TFT 41 through the reflective electrode 46, the contact hole 44 a formed in the interlayer film 44, and the contact hole 43 a formed in the protective film 43.
  • the anode 4G is electrically connected to the TFT 41 via the reflective electrode 46, the contact hole 44a formed in the interlayer film 44, and the contact hole 43a formed in the protective film 43.
  • the anode 4B is electrically connected to the TFT 41 via the reflective electrode 46, the contact hole 44a formed in the interlayer film 44, and the contact hole 43a formed in the protective film 43.
  • the reflective electrode 46 is made of a metal having a high light reflectance such as aluminum (Al) or silver (Ag).
  • the reflective electrode 46 has a function of reflecting light emitted from a light emitting layer described later toward the cathode 5 side.
  • a transparent conductive film such as indium tin oxide (hereinafter, abbreviated as ITO) is used.
  • the edge cover 45 is formed on the interlayer film 44 so as to cover the pattern end of the anode 4.
  • the edge cover 45 is formed such that the organic EL layer between the anode 4 and the cathode 5 becomes thin or the electric field concentration occurs at the pattern end of the anode 4, so that the anode 4 and the cathode 5 constituting the organic EL element 1 Is an insulating layer for preventing short circuit.
  • the edge cover 45 is provided with openings 45R, 45G, and 45B for each of the sub-pixels PR, PG, and PB.
  • the openings 45R, 45G, and 45B of the edge cover 45 serve as light emission regions of the sub-pixels PR, PG, and PB.
  • the sub-pixels PR, PG, and PB are partitioned by the edge cover 45 having an insulating property.
  • the edge cover 45 also functions as an element isolation film.
  • the red and green light emitting layers 6RG are integrally vapor-deposited using the same mask, and the blue light emitting layer 6B is vapor-deposited using another mask.
  • a light emitting material capable of emitting light in the red wavelength region and light in the green wavelength region is used.
  • the sub-pixel PR emits red light out of the light from the light emitting layer 6RG through a red color filter (not shown) provided on the counter substrate side.
  • red color filter not shown
  • green light is emitted to the outside through a green color filter (not shown) provided on the counter substrate side.
  • the first reflecting surface 11 is formed at the interface between the non-doped electron transport layer 9a and the doped electron transport layer 9b.
  • a microcavity structure is used. That is, in this organic EL element, for example, the total layer thickness (optical path length) between the reflective electrode 46 and the cathode 5 in the red sub-pixel PR, and between the reflective electrode 46 and the cathode 5 in the green sub-pixel PG.
  • the total layer thickness (optical path length) is different from each other. Specifically, the layer thickness of the anode 4R of the red sub-pixel PR and the layer thickness of the anode 4G of the green sub-pixel PG are sequentially reduced.
  • red sub-pixel PR red light out of the light from the light-emitting layer 6RG is intensified
  • green sub-pixel PG green light out of the light from the light-emitting layer 6RG is intensified and emitted. Is done.
  • the non-doped electron transport layer 9a and the doped electron transport layer 9b are formed using the same mask in the subpixels PR and PG. In the subpixel PB, electron transport is performed using different masks. Only the layer 9 is formed.
  • the green and blue light emitting layers 6GB are integrally vapor-deposited using the same mask, and the red light emitting layer 6R is vapor-deposited using another mask. Yes.
  • a light emitting material capable of emitting light in the green wavelength region and light in the blue wavelength region is used.
  • green light out of the light from the light emitting layer 6GB is emitted to the outside through a green color filter (not shown) provided on the counter substrate side.
  • blue light is emitted to the outside through a blue color filter (not shown) provided on the counter substrate side.
  • the first reflecting surface 11 is formed at the interface between the non-doped electron transport layer 9a and the doped electron transport layer 9b.
  • the layer thickness of the anode 4G of the green sub-pixel PG and the layer thickness of the anode 4B of the blue sub-pixel PB are sequentially reduced as in the case shown in FIG. .
  • the green sub-pixel PG the green light is intensified out of the light from the light-emitting layer 6GB
  • the blue sub-pixel PB the blue light is intensified and emitted from the light from the light-emitting layer 6GB. Is done.
  • the non-doped electron transport layer 9a and the doped electron transport layer 9b are formed using the same mask in the subpixels PG and PB. In the subpixel PR, the electron transport is performed using different masks. Only the layer 9 is formed.
  • the present invention may be applied to the bottom emission type configuration shown in the first embodiment.
  • a common light emitting layer 6RG or 6GB is provided in the subpixels PR and PG or the subpixels PG and PB, and as shown in the third and fourth embodiments, the doped hole transport layer and the undoped hole transport layer are provided.
  • the structure which provides a layer and a 2nd reflective surface may be sufficient.
  • a common light emitting layer 6RG or 6GB is provided, and as shown in the fifth and sixth embodiments, a doped electron transport layer and a non-doped electron transport layer, A configuration in which a doped hole transport layer, a non-doped hole transport layer, and first and second reflecting surfaces are provided may be employed.
  • the light emitting layers of a plurality of colors are provided, and among the light emitting layers of the plurality of colors, adjacent light emitting layers of different colors are integrally formed, and a hole transport layer is formed.
  • the doped layer to which the dopant material is added and the non-doped layer to which the dopant material is not added are formed in common in the adjacent light emitting layers of different colors If it is.
  • the method includes the step of forming a light emitting layer of a plurality of colors, and the step of forming the light emitting layer of the plurality of colors includes light emission of adjacent different colors.
  • the step of forming the layer integrally and forming the non-doped electron transport layer and the doped electron transport layer the non-doped electron transport layer and the doped electron transport layer are integrally formed to adjacent light emitting layers of different colors. What is necessary is just to form in common. Accordingly, the adjacent light emitting layers of different colors can be formed using the same mask, and in the electron transport layer, the doped layer and the non-doped layer are formed of the same mask (the same in the adjacent light emitting layers of different colors). The mask may be different from the mask.). As a result, RGB positional accuracy can be easily improved in the light emitting layer and the electron transport layer.
  • the method includes a step of forming a light emitting layer of a plurality of colors, and the step of forming the light emitting layer of the plurality of colors includes light emission of adjacent different colors.
  • the step of forming the layers integrally and forming the non-doped hole transport layer and the doped hole transport layer the non-doped hole transport layer and the doped hole transport layer are integrally formed in different adjacent colors.
  • the light emitting layer may be formed in common. Accordingly, the adjacent light emitting layers of different colors can be formed using the same mask, and in the hole transport layer, the doped layer and the non-doped layer are formed of the same mask (in the adjacent light emitting layers of different colors). The mask may be different from the same mask.). As a result, RGB positional accuracy can be easily improved in the light emitting layer and the hole transport layer.
  • the method when applied to the fifth or sixth embodiment, includes a step of forming a light emitting layer of a plurality of colors, and the step of forming the light emitting layer of the plurality of colors includes light emission of adjacent different colors.
  • the step of integrally forming the layers and forming the non-doped hole transport layer and the doped hole transport layer and the step of forming the non-doped electron transport layer and the doped electron transport layer, the non-doped hole transport layer and The doped hole transport layer, and the non-doped electron transport layer and the doped electron transport layer may be formed in common to adjacent light emitting layers of different colors.
  • the adjacent light-emitting layers of different colors can be formed using the same mask, and the doped layer and the non-doped layer of the hole transport layer and the electron transport layer can be formed of the same mask (the adjacent different color layers).
  • the mask may be different from the same mask in the light-emitting layer.
  • the RGB position accuracy can be easily improved in the light emitting layer, the hole transport layer, and the electron transport layer.
  • a doped electron transport layer is formed using the co-evaporation method of the host material and the dopant material, but the present invention is not limited to this.
  • a doped electron transport layer is formed by forming an electron transport layer or a hole transport layer using, for example, a vacuum deposition method, and then doping the electron transport layer or the hole transport layer with a corresponding dopant material.
  • the structure which forms a non-doped electron transport layer or a doped hole transport layer and a non-doped hole transport layer may be sufficient.
  • the doped electron transport layer or the doped hole transport layer is formed using the co-evaporation method of the host material and the dopant material as in the above embodiment, the doped electron transport layer or the doped hole is formed. It is preferable in that the transport layer can be easily formed.
  • the color filter is provided on the anode side or cathode side of the light emitting layer.
  • the present invention is not limited to this, and the present invention omits the installation of the color filter.
  • the present invention can also be applied to an organic EL element.
  • the installation of the color filter is omitted in this way, light having at least two peaks can be emitted as described above.
  • the configuration in which the light emitting layer, the hole transport layer, and the electron transport layer are separately provided has been described.
  • the organic EL element of the present invention is not limited to this.
  • a configuration in which a light emitting layer that also serves as a hole transport layer is used, or a light emitting layer that also serves as an electron transport layer may be used.
  • the determination of the presence or absence of the reflective surface uses secondary ion mass spectrometry (SIMS), etc., and by conducting elemental analysis in the film thickness direction, a certain interface contains a large amount of dopant materials (cesium carbonate, molybdenum, etc.). It can be judged by whether or not
  • the present invention is useful for an organic EL element that is easy to manufacture and has a simple structure even when light having a plurality of peaks is emitted, and a method for manufacturing the same.

Abstract

 陽極(4)と、陰極(5)と、これらの陽極(4)と陰極(5)との間に設けられた発光層(6)と、陽極(4)と発光層(6)との間に設けられた正孔輸送層(7)と、陰極(5)と発光層(6)との間に設けられた電子輸送層(9)を備えた有機EL素子(1)において、反射電極によって陰極(5)を構成する。電子輸送層(9)は、n型のドーパント材料が添加されたドープド電子輸送層(9b)と、n型のドーパント材料が添加されていないノンドープド電子輸送層(9a)とにより構成し、これらのドープド電子輸送層(9b)とノンドープド電子輸送層(9a)との界面に、発光層(6)からの光を反射する第1の反射面(11)を設けた。

Description

有機EL素子、及び製造方法
 本発明は、有機EL(エレクトロルミネッセンス)素子、及びその製造方法に関する。
 近年、様々な商品や分野でフラットパネルディスプレイが活用されており、フラットパネルディスプレイのさらなる大型化、高画質化、低消費電力化が求められている。
 そのような状況下、有機材料の電界発光(Electro Luminescence)を利用した有機EL(エレクトロルミネッセンス)素子を備えた有機EL表示装置は、全固体型で、低電圧駆動可能、高速応答性、自発光性等の点で優れたフラットパネルディスプレイとして、高い注目を浴びている。
 また、上記のような有機EL素子には、陽極と、陰極と、これらの陽極と陰極との間に形成された発光層とが設けられている。また、このような有機EL素子では、その発光層での発光効率の向上などを図るために、陽極と発光層との間に、正孔注入層や正孔輸送層を設けたり、陰極と発光層との間に、電子注入層や電子輸送層を設けたりすることが行われている。
 また、上記のような有機EL素子では、複数のピークを有する光を当該有機EL素子から放出するように、構成することが提案されている。
 具体的にいえば、従来の有機EL素子では、例えば下記特許文献1に記載されているように、複数の発光層を設けることにより、複数のピークを有する光を放出可能とされていた。また、この従来の有機EL素子では、電子移動度が高い化合物によって構成した電子供給層を、陰極と発光層との間に設けることによって、複数の各発光層での正孔及び電子のキャリアバランスを調整可能とされていた。
特開2012-204793号公報
 しかしながら、上記のような従来の有機EL素子では、その発光特性が低下するという問題点を生じた。具体的にいえば、この従来の有機EL素子では、複数の発光層の発光バランスの調整を行う必要があるため、キャリアバランスの調整が複雑になり、発光時間が長くなると各色のバランスが変化して、発光特性の低下を招いた。
 また、この従来の有機EL素子では、製造プロセス及び構造が複雑になるという問題点を発生した。具体的にいえば、この従来の有機EL素子では、複数の発光層を積層していたので、製造プロセスが複雑になったり、マージンが低下したりした。また、印加する電圧が上昇するため、消費電力が上昇した。
 上記の課題を鑑み、本発明は、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子、及びその製造方法を提供することを目的とする。
 上記の目的を達成するために、本発明にかかる有機EL素子は、陽極と、陰極と、これらの陽極と陰極との間に設けられた発光層と、前記陽極と前記発光層との間に設けられた正孔輸送層と、前記陰極と前記発光層との間に設けられた電子輸送層を備えた有機EL素子であって、
 前記陽極及び前記陰極の一方は、反射電極により構成され、
 前記正孔輸送層及び前記電子輸送層の少なくとも一方は、ドーパント材料が添加されたドープド層と、ドーパント材料が添加されていないノンドープド層とにより構成され、
 前記ドープド層と前記ノンドープド層との界面に、前記発光層からの光を反射する反射面を設けたことを特徴とするものである。
 上記のように構成された有機EL素子では、陽極及び陰極の一方は反射電極によって構成されている。また、正孔輸送層及び電子輸送層の少なくとも一方は、ドーパント材料が添加されたドープド層と、ドーパント材料が添加されていないノンドープド層とにより構成されている。また、ドープド層とノンドープド層との界面には、発光層からの光を反射する反射面が設けられている。これにより、上記従来例と異なり、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子を構成することができる。
 また、上記有機EL素子において、複数の色の前記発光層を有するとともに、
 前記複数の色の発光層のうち、隣接する異なる色の発光層は、一体的に形成され、かつ、
 前記正孔輸送層及び前記電子輸送層の少なくとも一方において、ドーパント材料が添加されたドープド層と、ドーパント材料が添加されていないノンドープド層とは、一体的に形成した前記隣接する異なる色の発光層に共通して形成されてもよい。
 この場合、上記隣接する異なる色の発光層を同じマスクを用いて形成することができるとともに、正孔輸送層及び前記電子輸送層の少なくとも一方において、ドープド層とノンドープド層とを同じマスクを用いて形成することができる。この結果、発光層と、正孔輸送層及び前記電子輸送層の少なくとも一方において、RGBの各位置精度を容易に向上させることができる。
 また、上記有機EL素子において、前記電子輸送層は、n型のドーパント材料が添加されたドープド電子輸送層と、n型のドーパント材料が添加されていないノンドープド電子輸送層とにより構成され、
 前記ドープド電子輸送層と前記ノンドープド電子輸送層との界面に、前記反射面としての第1の反射面を設けてもよい。
 この場合、発光層を複数設けることなく、上記第1の反射面により、複数のピークを有する光を放出することができる。
 また、上記有機EL素子において、前記正孔輸送層は、p型のドーパント材料が添加されたドープド正孔輸送層と、p型のドーパント材料が添加されていないノンドープド正孔輸送層とにより構成され、
 前記ドープド正孔輸送層と前記ノンドープド正孔輸送層との界面に、前記反射面としての第2の反射面を設けてもよい。
 この場合、発光層を複数設けることなく、上記第2の反射面により、複数のピークを有する光を放出することができる。
 また、上記有機EL素子において、前記陰極が、反射電極により構成され、
 前記発光層からの光は、前記陽極側から外部に放出されてもよい。
 この場合、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れたボトムエミッションタイプの有機EL素子を構成することができる。
 また、上記有機EL素子において、前記陽極が、反射電極により構成され、
 前記発光層からの光は、前記陰極側から外部に放出されてもよい。
 この場合、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れたトップエミッションタイプの有機EL素子を構成することができる。
 また、上記有機EL素子において、前記発光層の前記陽極側または前記陰極側には、カラーフィルタが設けられてもよい。
 この場合、カラーフィルタにより、外部に放出される光の波長域を調整することができる。
 また、本発明の有機EL素子の製造方法は、陽極と、陰極と、これらの陽極と陰極との間に設けられた発光層と、前記陽極と前記発光層との間に設けられた正孔輸送層と、前記陰極と前記発光層との間に設けられた電子輸送層を備えた有機EL素子の製造方法であって、
 前記電子輸送層として、n型のドーパント材料が添加されていないノンドープド電子輸送層と、n型のドーパント材料が添加されたドープド電子輸送層とを形成する工程と、
 前記有機EL素子を加熱する工程とを具備することを特徴とするものである。
 上記のように構成された有機EL素子の製造方法では、n型のドーパント材料が添加されていないノンドープド電子輸送層と、n型のドーパント材料が添加されたドープド電子輸送層とが電子輸送層として形成されている。また、有機EL素子を加熱する工程が行われているので、ノンドープド電子輸送層とドープド電子輸送層との界面に、ドープド電子輸送層内に添加されたn型のドーパント材料を凝集することができ、発光層からの光を反射する反射面を当該界面に形成することが可能となる。これにより、上記従来例と異なり、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子を構成することができる。
 また、上記有機EL素子の製造方法では、前記有機EL素子を加熱する工程において、前記ノンドープド電子輸送層と前記ドープド電子輸送層との界面に、前記発光層からの光を反射する反射面が形成されることが好ましい。
 この場合、上記反射面がノンドープド電子輸送層とドープド電子輸送層との界面に形成されるので、上記従来例と異なり、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子を構成することができる。
 また、上記有機EL素子の製造方法において、複数の色の発光層を形成する工程を備えるとともに、
 前記複数の色の発光層を形成する工程では、隣接する異なる色の発光層を一体的に形成し、
 前記ノンドープド電子輸送層と前記ドープド電子輸送層とを形成する工程において、前記ノンドープド電子輸送層と前記ドープド電子輸送層を、一体的に形成した前記隣接する異なる色の発光層に共通して形成してもよい。
 この場合、隣接する異なる色の発光層を同じマスクを用いて形成することができるとともに、電子輸送層において、ドープド層とノンドープド層とを同じマスクを用いて形成することができる。この結果、発光層と、電子輸送層において、RGBの各位置精度を容易に向上させることができる。
 また、本発明の有機EL素子の製造方法は、陽極と、陰極と、これらの陽極と陰極との間に設けられた発光層と、前記陽極と前記発光層との間に設けられた正孔輸送層と、前記陰極と前記発光層との間に設けられた電子輸送層を備えた有機EL素子の製造方法であって、
 前記正孔輸送層として、p型のドーパント材料が添加されていないノンドープド正孔輸送層と、p型のドーパント材料が添加されたドープド正孔輸送層とを形成する工程と、
 前記有機EL素子を加熱する工程とを具備することを特徴とするものである。
 上記のように構成された有機EL素子の製造方法では、p型のドーパント材料が添加されていないノンドープド正孔輸送層と、p型のドーパント材料が添加されたドープド正孔輸送層とが正孔輸送層として形成されている。また、有機EL素子を加熱する工程が行われているので、ノンドープド正孔輸送層とドープド正孔輸送層との界面に、ドープド正孔輸送層内に添加されたp型のドーパント材料を凝集することができ、発光層からの光を反射する反射面を当該界面に形成することが可能となる。これにより、上記従来例と異なり、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子を構成することができる。
 また、上記有機EL素子の製造方法では、前記有機EL素子を加熱する工程において、前記ノンドープド正孔輸送層と前記ドープド正孔輸送層との界面に、前記発光層からの光を反射する反射面が形成されることが好ましい。
 この場合、上記反射面がノンドープド正孔輸送層とドープド正孔輸送層との界面に形成されるので、上記従来例と異なり、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子を構成することができる。
 また、上記有機EL素子の製造方法において、複数の色の発光層を形成する工程を備えるとともに、
 前記複数の色の発光層を形成する工程では、隣接する異なる色の発光層を一体的に形成し、
 前記ノンドープド正孔輸送層と前記ドープド正孔輸送層とを形成する工程において、前記ノンドープド正孔輸送層と前記ドープド正孔輸送層を、一体的に形成した前記隣接する異なる色の発光層に共通して形成してもよい。
 この場合、隣接する異なる色の発光層を同じマスクを用いて形成することができるとともに、正孔輸送層において、ドープド層とノンドープド層とを同じマスクを用いて形成することができる。この結果、発光層と、正孔輸送層において、RGBの各位置精度を容易に向上させることができる。
 また、本発明の有機EL素子の製造方法は、陽極と、陰極と、これらの陽極と陰極との間に設けられた発光層と、前記陽極と前記発光層との間に設けられた正孔輸送層と、前記陰極と前記発光層との間に設けられた電子輸送層を備えた有機EL素子の製造方法であって、
 前記正孔輸送層として、p型のドーパント材料が添加されていないノンドープド正孔輸送層と、p型のドーパント材料が添加されたドープド正孔輸送層とを形成する工程と、
 前記電子輸送層として、n型のドーパント材料が添加されていないノンドープド電子輸送層と、n型のドーパント材料が添加されたドープド電子輸送層とを形成する工程と、
 前記有機EL素子を加熱する工程とを具備することを特徴とするものである。
 上記のように構成された有機EL素子の製造方法では、n型のドーパント材料が添加されていないノンドープド電子輸送層と、n型のドーパント材料が添加されたドープド電子輸送層とが電子輸送層として形成されている。また、p型のドーパント材料が添加されていないノンドープド正孔輸送層と、p型のドーパント材料が添加されたドープド正孔輸送層とが正孔輸送層として形成されている。また、有機EL素子を加熱する工程が行われているので、ノンドープド電子輸送層とドープド電子輸送層との界面に、ドープド電子輸送層内に添加されたn型のドーパント材料を凝集することができ、発光層からの光を反射する第1の反射面を当該界面に形成することが可能となるとともに、ノンドープド正孔輸送層とドープド正孔輸送層との界面に、ドープド正孔輸送層内に添加されたp型のドーパント材料を凝集することができ、発光層からの光を反射する第2の反射面を当該界面に形成することが可能となる。これにより、上記従来例と異なり、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子を構成することができる。
 また、上記有機EL素子の製造方法では、前記有機EL素子を加熱する工程において、前記ノンドープド電子輸送層と前記ドープド電子輸送層との界面に、前記発光層からの光を反射する第1の反射面が形成されるとともに、前記ノンドープド正孔輸送層と前記ドープド正孔輸送層との界面に、前記発光層からの光を反射する第2の反射面が形成されることが好ましい。
 この場合、上記第1の反射面がノンドープド電子輸送層とドープド電子輸送層との界面に形成されるとともに、上記第2の反射面がノンドープド正孔輸送層とドープド正孔輸送層との界面に形成されるので、上記従来例と異なり、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子を構成することができる。
 また、上記有機EL素子の製造方法において、複数の色の発光層を形成する工程を備えるとともに、
 前記複数の色の発光層を形成する工程では、隣接する異なる色の発光層を一体的に形成し、
 前記ノンドープド正孔輸送層と前記ドープド正孔輸送層とを形成する工程、及び前記ノンドープド電子輸送層と前記ドープド電子輸送層とを形成する工程において、前記ノンドープド正孔輸送層と前記ドープド正孔輸送層、及び前記ノンドープド電子輸送層と前記ドープド電子輸送層を、一体的に形成した前記隣接する異なる色の発光層に共通して形成してもよい。
 この場合、隣接する異なる色の発光層を同じマスクを用いて形成することができるとともに、正孔輸送層及び電子輸送層において、ドープド層とノンドープド層とを同じマスクを用いて形成することができる。この結果、発光層と、正孔輸送層及び電子輸送層において、RGBの各位置精度を容易に向上させることができる。
 また、上記有機EL素子の製造方法において、前記ドープド電子輸送層は、ホスト材料とドーパント材料との共蒸着法を用いて、形成されていることが好ましい。
 この場合、ドープド電子輸送層を容易に形成することができる。
 また、上記有機EL素子の製造方法において、前記ドープド正孔輸送層は、ホスト材料とドーパント材料との共蒸着法を用いて、形成されていることが好ましい。
 この場合、ドープド正孔輸送層を容易に形成することができる。
 本発明によれば、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子、及びその製造方法を提供することが可能となる。
図1は、本発明の第1の実施形態にかかる有機EL素子の構成を示す断面図である。 図2は、上記有機EL素子の動作を説明する図である。 図3は、上記有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。 図4は、図3に示した有機EL素子の製造工程を説明するフローチャートである。 図5は、上記有機EL素子から放出される光のスペクトルの具体例を示すグラフである。 図6は、本発明の第2の実施形態にかかる有機EL素子の構成を示す断面図である。 図7は、図6に示した有機EL素子の動作を説明する図である。 図8は、図6に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。 図9は、図8に示した有機EL素子の製造工程を説明するフローチャートである。 図10は、本発明の第3の実施形態にかかる有機EL素子の構成を示す断面図である。 図11は、図10に示した有機EL素子の動作を説明する図である。 図12は、図10に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。 図13は、図12に示した有機EL素子の製造工程を説明するフローチャートである。 図14は、本発明の第4の実施形態にかかる有機EL素子の構成を示す断面図である。 図15は、図14に示した有機EL素子の動作を説明する図である。 図16は、図14に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。 図17は、図16に示した有機EL素子の製造工程を説明するフローチャートである。 図18は、本発明の第5の実施形態にかかる有機EL素子の構成を示す断面図である。 図19は、図18に示した有機EL素子の動作を説明する図である。 図20は、図18に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。 図21は、図20に示した有機EL素子の製造工程を説明するフローチャートである。 図22は、本発明の第6の実施形態にかかる有機EL素子の構成を示す断面図である。 図23は、図22に示した有機EL素子の動作を説明する図である。 図24は、図22に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。 図25は、図24に示した有機EL素子の製造工程を説明するフローチャートである。 図26は、本発明の有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。 図27は、本発明の有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。
 以下、本発明の有機EL素子、及びその製造方法を示す好ましい実施形態について、図面を参照しながら説明する。なお、以下の説明では、赤色の発光層を有する有機EL素子に適用した場合について説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる有機EL素子の構成を示す断面図である。図1において、本実施形態の有機EL素子1は、基板2と、基板2上に設けられたカラーフィルタ3と、カラーフィルタ3上に設けられた陽極4と、陽極4の上方に設けられた陰極5を備えている。また、有機EL素子1では、陽極3と陰極4との間に、例えば赤色の光を発光する発光層6が設けられている。
 また、本実施形態の有機EL素子1では、陽極4と発光層6との間に、発光層6から陽極4側に向かって正孔輸送層7、及び正孔注入層8が順次設けられている。さらに、有機EL素子1では、陰極5と発光層6との間に、発光層6から陰極5側に向かって電子輸送層9及び電子注入層10が順次設けられている。
 また、本実施形態の有機EL素子1では、後に詳述するように、電子輸送層9として、n型のドーパント材料(ゲスト化合物)が添加されていないノンドープド電子輸送層9aと、n型のドーパント材料が添加されたドープド電子輸送層9bとが設けられている。さらに、本実施形態の有機EL素子1では、ノンドープド電子輸送層9aとドープド電子輸送層9bとの界面に、発光層6からの光を反射する反射面としての第1の反射面11が設けられている。
 基板2には、例えばガラスなどの材料が用いられている。また、カラーフィルタ3には、後述するように、本実施形態の有機EL素子1から外部に放出される光の波長域を調整するものが適宜用いられている。
 陽極4には、例えばITOやIZOなどの透明電極材料や、銀などの金属薄膜が用いられている。また、この陽極4の厚さは、例えば数nm~300nm程度である。
 陰極5には、例えばアルミニウム、マグネシウム、または銀等の金属が用いられており、当該陰極5は、反射電極を構成している。すなわち、本実施形態の有機EL素子1は、発光層6からの光が陽極4(基板2)側から外部に放出されるボトムミッションタイプのものである。また、この陰極5の厚さは、例えば20nm~200nm程度である。
 発光層6は、電子と正孔とが再結合可能な再結合層(活性層)であり、少なくともホスト材料と発光ドーパント材料を含んでいる。また、この発光層6では、例えば発光ドーパント材料としては、蛍光ドーパント材料又は燐光ドーパント材料のどちらでも用いることができる。また、発光層6の厚さは、例えば40nm程度である。
 正孔輸送層7には、例えば通常の有機EL素子が有するものを用いることができ、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]-ビフェニル(α-NPD)等が挙げられる。また、この正孔輸送層7の厚さは、例えば15nmである。
 正孔注入層8には、例えばフタロシアニン系材料や、スターバーストポリアミン類や、ポリアニリン類などが挙げられる。この正孔注入層8の厚さは、例えば数10nmである。
 電子輸送層9には、例えばBphenがホスト材料として用いられている。また、この電子輸送層9は、上述したように、ノンドープド電子輸送層9aとドープド電子輸送層9bとで構成されている。このドープド電子輸送層9bでは、n型のドーパント材料として、例えば炭酸セシウム(Cs2CO3)、またはセシウム、カリウム、カルシウム等の単体あるいはこれらの化合物が用いられており、いずれかのドーパント材料が上記ホスト材料に添加(ドーピング)されている。また、この電子輸送層9の厚さは、例えば20nmである。
 電子注入層10には、例えば金属リチウムや、金属バリウムなど、もしくはそれらの化合物であるリチウムフロライドのような物が用いられている。また、この電子注入層10の厚さは、非常に薄い場合が多く、例えば1nmである。
 第1の反射面11は、ノンドープド電子輸送層9aとドープド電子輸送層9bとの界面に、ドープド電子輸送層9bに添加されたn型のドーパント材料を凝集させることにより、当該界面に形成されている。この第1の反射面11は、発光層6からの光のうち、一部の波長域の光を陽極4側に反射するとともに、異なる波長域の光を陰極5側に透過させるようになっている。これにより、本実施形態の有機EL素子1では、複数のピークを有する光を放出可能に構成されている。
 ここで、図2を参照して、本実施形態の有機EL素子1の動作について具体的に説明する。
 図2は、上記有機EL素子の動作を説明する図である。
 図2に示すように、本実施形態の有機EL素子1では、発光層6からの光のうち、一部の光は、同図2に矢印Aにて示すように、第1の反射面11で陽極4側に反射されて、外部に放出される。
 また、図2に矢印Bにて示すように、発光層6からの光のうち、一部の光は、第1の反射面11を透過した後、陰極5と電子注入層10との界面で陽極4側に反射されて、外部に放出される。また、この光は、図2に矢印Aにて示した光と異なるピークを有する光である。
 このように、本実施形態の有機EL素子1では、少なくとも2つのピークを有する光を外部に放出可能に構成されている。
 次に、図3を参照して、本実施形態の有機EL素子1を用いて、アクティブマトリクス方式の有機EL表示装置の赤色のサブ画素を構成した場合について具体的に説明する。
 図3は、上記有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。
 図3に示すように、基板2上には、TFT41(スイッチング素子)、配線42、保護膜43、赤色のカラーフィルタ3R、層間膜44(層間絶縁膜、平坦化膜)、エッジカバー45等が設けられている。
 TFT41は、赤色のサブ画素PRの発光を制御するスイッチング素子として機能するものであり、配線42に接続されている。
 保護膜43は、例えば窒化膜または酸化膜によって構成されており、TFT41及び配線42上に設けられて、これらのTFT41及び配線42を保護するようになっている。
 赤色のカラーフィルタ3Rは、図2に矢印A及び矢印Bにて示した発光層6(赤色の発光層6R)から外部に放出される赤色の光の波長域を調整するようになっている。
 層間膜44には、例えば有機膜が用いられている。また、この層間膜44は、平坦化膜としても機能するものであり、カラーフィルタ3R上に積層されている。
 層間膜44上には、赤色用の陽極4Rがサブ画素PRごとに形成されている。また、この陽極4Rは、層間膜44に形成されたコンタクトホール44a、カラーフィルタ3Rに形成されたコンタクトホール3Ra、及び保護膜43に形成されたコンタクトホール43aを介して、TFT41に電気的に接続されている。
 エッジカバー45は、層間膜44上に、陽極4Rのパターン端部を被覆するように形成されている。エッジカバー45は、陽極4Rのパターン端部で陽極4Rと陰極5との間の有機EL層が薄くなったり電界集中が起こったりすることで、有機EL素子1を構成する陽極4Rと陰極5とが短絡することを防止するための絶縁層である。
 エッジカバー45には、サブ画素PR毎に開口45Rが設けられている。このエッジカバー45の開口45Rが、サブ画素PRの発光領域となる。このエッジカバー45は、素子分離膜としても機能する。
 次に、図4を参照して、図3に示した有機EL素子1の製造方法について具体的に説明する。
 図4は、図3に示した有機EL素子の製造工程を説明するフローチャートである。
 図4のステップS1に示すように、上記有機EL素子1では、まず基板2上にTFT41を形成するTFT形成工程が行われる。また、このTFT形成工程では、配線42の形成がTFT41の形成と同時または異なるタイミングで行われる。そして、このTFT形成工程の後では、TFT41及び配線42上に保護膜43を形成する工程が行われる。
 続いて、図4のステップS2に示すように、カラーフィルタ3Rを保護膜43上に形成するカラーフィルタ形成工程が行われる。このカラーフィルタ形成工程では、例えばフォトリソグラフィ法を用いて、カラーフィルタ3Rが、所定のパターンで保護膜43上に形成される。
 次に、図4のステップS3に示すように、カラーフィルタ3R上に層間膜44を形成した後、この層間膜44上に赤色の陽極4Rを形成する陽極形成工程が行われる。この陽極形成工程では、例えば真空蒸着法を用いて、陽極4Rが、層間膜44上に形成される。
 続いて、図4のステップS4に示すように、陽極4R上に正孔注入層8を形成する正孔注入層形成工程が行われる。この正孔注入層形成工程では、例えば真空蒸着法を用いて、正孔注入層8が、陽極4R上に形成される。
 次に、図4のステップS5に示すように、正孔注入層8上に正孔輸送層7を形成する正孔輸送層形成工程が行われる。この正孔輸送層形成工程では、例えば真空蒸着法を用いて、正孔輸送層7が、正孔注入層8上に形成される。
 続いて、図4のステップS6に示すように、正孔輸送層7上に赤色の発光層6Rを形成する発光層形成工程が行われる。この発光層形成工程では、例えば真空蒸着法を用いて、発光層6Rが、正孔輸送層7上に形成される。
 次に、図4のステップS7に示すように、発光層6R及び正孔輸送層7上にノンドープド電子輸送層9a及びドープド電子輸送層9bを順次形成するノンドープド電子輸送層及びドープド電子輸送層形成工程が行われる。このノンドープド電子輸送層及びドープド電子輸送層形成工程では、例えば真空蒸着法を用いて、ノンドープド電子輸送層9aが、発光層6R及び正孔輸送層7上に形成される。その後、例えば上記ホスト材料とドーパント材料を用いた共蒸着法により、ドープド電子輸送層9bが、ノンドープド電子輸送層9a上に形成される。
 続いて、図4のステップS8に示すように、ドープド電子輸送層9b上に電子注入層10を形成する電子注入層形成工程が行われる。この電子注入層形成工程では、例えば真空蒸着法を用いて、電子注入層10が、ドープド電子輸送層9b上に形成される。
 次に、図4のステップS9に示すように、電子注入層10上に陰極5を形成する陰極形成工程が行われる。この陰極形成工程では、例えば真空蒸着法を用いて、陰極5が、電子注入層10上に形成される。
 続いて、図4のステップS10に示すように、有機EL素子1を加熱する加熱工程が行われる。具体的にいえば、この加熱工程では、有機EL素子1に対して、例えば温度80℃、加熱時間1時間で、アニール処理が行われる。これにより、ノンドープド電子輸送層9aとドープド電子輸送層9bとの界面に、ドープド電子輸送層9b内に添加されたn型のドーパント材料を凝集することができ、当該界面に、発光層6Rからの光を反射する第1の反射面11が形成される。
 以上の製造工程により、本実施形態の有機EL素子1が製造される。
 次に、図5を参照して、本実施形態の有機EL素子1の具体的な発光スペクトルについて説明する。
 図5は、上記有機EL素子から放出される光のスペクトルの具体例を示すグラフである。
 赤色の発光層6R自身が持つスペクトルの特性は、図5に点線にて例示するように、610nmのピーク波長を有する。
 また、図4にステップS10にて示した加熱工程を行う前、つまり加熱処理(アニール処理)を行ってノンドープド電子輸送層9aとドープド電子輸送層9bとの界面に第1の反射面11を形成していない場合での発光層6からの光は、図5に一点鎖線にて例示するように、約690nmのピーク波長を有する光として外部に放出される。
 一方、上記加熱工程を行ってノンドープド電子輸送層9aとドープド電子輸送層9bとの界面に第1の反射面11を形成した場合での発光層6からの光は、図5に実線にて例示するように、約600nmのピーク波長を有する光と、約700nmのピーク波長を有する光に分けられて外部に放出される。このように、本実施形態の有機EL素子1では、図2に矢印A及びBにて示したように、2つのピークを有する光が外部に発光される。
 なお、本実施形態の有機EL素子1から外部に放出される光のスペクトルは、図5に示すものに限定されるものではなく、例えば発光層6の厚さやその発光ドーパント材料の種類、ノンドープド電子輸送層9a及びドープド電子輸送層9bの各厚さやドープド電子輸送層9bのドーパント材料の種類、あるいは陽極4(陽極4R)等の各厚さや材質、またはカラーフィルタ3(カラーフィルタ3R)の特性などによっても変更することができる。
 また、上述の2つのピーク波長を有する光を外部に放出する場合は、例えばカラーフィルタ3の設置を省略したり、2つのピーク波長の間の波長域を遮断するカラーフィルタ3Rを設けたりすればよい。また、一方のピーク波長を有する光のみを外部に放出する場合は、他方のピーク波長の光を遮断する、カラーフィルタ3Rを使用すればよい。
 以上のように構成された本実施形態の有機EL素子1では、陰極5は反射電極によって構成されている。また、電子輸送層9は、n型のドーパント材料が添加されたドープド電子輸送層9bと、n型のドーパント材料が添加されていないノンドープド電子輸送層9aとにより構成されている。また、ノンドープド電子輸送層9aとドープド電子輸送層9bとの界面には、発光層6からの光を反射する第1の反射面(反射面)11が設けられている。これにより、本実施形態の有機EL素子1では、複数の発光層を設けることなく、図5に実線にて例示したように、2つのピーク(波長)を有する光を外部に放出することができる。すなわち、本実施形態の有機EL素子1では、1つの発光層6だけにより、2つのピークを有する光を外部に放出できるので、当該発光層6での正孔と電子のキャリアバランスの調整を容易に行うことができるとともに、印加電圧の上昇を抑制することができる。従って、本実施形態では、上記従来例と異なり、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子1を構成することができる。
 また、本実施形態では、陰極5が、反射電極により構成され、発光層6からの光は、陽極4側から外部に放出されているので、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れたボトムエミッションタイプの有機EL素子1を構成することができる。
 [第2の実施形態]
 図6は、本発明の第2の実施形態にかかる有機EL素子の構成を示す断面図である。図7は、図6に示した有機EL素子の動作を説明する図である。図8は、図6に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。図9は、図8に示した有機EL素子の製造工程を説明するフローチャートである。
 図において、本実施形態と上記第1の実施形態との主な相違点は、陰極側から発光層からの光を放出するトップエミッションタイプの有機EL素子を構成した点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図6に示すように、本実施形態の有機EL素子1では、基板2上に、陽極4、正孔注入層8、正孔輸送層7、発光層6、電子輸送層9、電子注入層10、及び陰極5が順次形成されている。また、基板2に対向する対向基板3が設けられるとともに、この対向基板12の基板2側にはカラーフィルタ3が設置されている。
 また、本実施形態の有機EL素子1では、陽極4が反射電極によって構成されており、本実施形態の有機EL素子1は、発光層6からの光が陰極5(対向基板12)側から外部に放出されるトップエミッションタイプのものである。
 また、図7に示すように、本実施形態の有機EL素子1では、発光層6からの光のうち、一部の光は、同図7に矢印Aにて示すように、第1の反射面11で陽極4側に反射された後、陽極4と正孔注入層8との界面で陰極5側に反射されて、外部に放出される。
 また、図7に矢印Bにて示すように、発光層6からの光のうち、一部の光は、第1の反射面11を透過した後、陰極5と電子注入層10との界面で陽極4側に反射される。そして、陽極4と正孔注入層8との界面で陰極5側に反射されて、外部に放出される。また、この光は、図7に矢印Aにて示した光と異なるピークを有する光である。
 このように、本実施形態の有機EL素子1では、第1の実施形態のものと同様に、少なくとも2つのピークを有する光を外部に放出可能に構成されている。
 また、本実施形態の有機EL素子1を用いて、アクティブマトリクス方式の有機EL表示装置の赤色のサブ画素を構成した場合、図8に示すように、基板2上には、第1の実施形態のものと同様に、TFT41(スイッチング素子)、配線42、保護膜43、層間膜44(層間絶縁膜、平坦化膜)、エッジカバー45等が設けられている。また、基板2上では、第1の実施形態のものと異なり、赤色のカラーフィルタ3Rは設置されていない。
 また、図9にステップS1、及びS3~S10に示すように、本実施形態の有機EL素子1では、基板2側の各構成要素が、第1の実施形態のものと同様に、形成される。一方、対向基板12側では、図4にステップS2にて示したカラーフィルタ形成工程が行われて、当該対向基板12上にカラーフィルタ3が形成される。そして、基板2と対向基板12とが貼り合わせられることにより、本実施形態の有機EL素子1は、製造される。
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。
 また、本実施形態では、陽極4が、反射電極により構成され、発光層6からの光は、陰極5側から外部に放出されているので、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れたトップエミッションタイプの有機EL素子1を構成することができる。
 また、本実施形態では、トップエミッションタイプの有機EL素子1が構成されているので、第1の実施形態のものに比べて、開口率を向上させることができる。
 また、本実施形態では、対向基板12側にカラーフィルタ3を設けているので、第1の実施形態のものに比べて、当該カラーフィルタ3の形成工程を簡単化することができ、製造歩留まりを容易に向上させることができる。
 [第3の実施形態]
 図10は、本発明の第3の実施形態にかかる有機EL素子の構成を示す断面図である。図11は、図10に示した有機EL素子の動作を説明する図である。図12は、図10に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。図13は、図12に示した有機EL素子の製造工程を説明するフローチャートである。
 図において、本実施形態と上記第1の実施形態との主な相違点は、ドープド電子輸送層とノンドープド電子輸送層と第1の反射面を設ける代わりに、正孔輸送層として、p型のドーパント材料が添加されたドープド正孔輸送層と、p型のドーパント材料が添加されていないノンドープド正孔輸送層とを設けるとともに、これらのドープド正孔輸送層とノンドープド正孔輸送層との界面に、第2の反射面を設けた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図10において、本実施形態の有機EL素子1の電子輸送層9には、n型のドーパント材料を添加したドープド電子輸送層が設けられておらず、電子輸送層9は、ノンドープド電子輸送層のみによって構成されている。
 また、本実施形態の有機EL素子1では、正孔輸送層7として、p型のドーパント材料が添加されたドープド正孔輸送層7aとp型のドーパント材料が添加されていないノンドープド正孔輸送層7bとが設けられている。また、これらのノンドープド正孔輸送層7bとp型のドーパント材料が添加されたドープド正孔輸送層7aとの界面には、発光層6からの光を反射する反射面としての第2の反射面13が設けられている。
 具体的にいえば、ノンドープド正孔輸送層7bは、第1の実施形態での正孔輸送層7と同様に、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]-ビフェニル(α-NPD)等で構成されている。また、ドープド正孔輸送層7aは、上記α-NPD等をホスト材料とするとともに、このホスト材料に対して、p型のドーパント材料、例えばモリブデン、タングステン、あるいはバナジウムなどの金属を添加(ドーピング)することにより、形成されている。
 第2の反射面13は、ノンドープド正孔輸送層7bとドープド正孔輸送層7aとの界面に、ドープド正孔輸送層7aに添加されたp型のドーパント材料を凝集させることにより、当該界面に形成されている。この第2の反射面13は、発光層6からの光のうち、一部の波長域の光を陰極5側に反射するとともに、異なる波長域の光を陽極4側に透過させるようになっている。これにより、本実施形態の有機EL素子1では、複数のピークを有する光を放出可能に構成されている。
 具体的にいえば、図11に示すように、本実施形態の有機EL素子1では、発光層6からの光のうち、一部の光は、同図11に矢印Aにて示すように、陰極5と電子注入層10との界面で陽極4側に反射された後、第2の反射面13で陰極5側に反射される。そして、陰極5と電子注入層10との界面で陽極4側に再度反射されて、外部に放出される。
 また、図11に矢印Bにて示すように、発光層6からの光のうち、一部の光は、陰極5と電子注入層10との界面で陽極4側に反射された後、第2の反射面13を透過して、外部に放出される。また、この光は、図11に矢印Aにて示した光と異なるピークを有する光である。
 このように、本実施形態の有機EL素子1では、第1の実施形態のものと同様に、少なくとも2つのピークを有する光を外部に放出可能に構成されている。
 また、本実施形態の有機EL素子1を用いて、アクティブマトリクス方式の有機EL表示装置の赤色のサブ画素を構成した場合、図12に示すように、基板2上には、第1の実施形態のものと同様に、TFT41(スイッチング素子)、配線42、保護膜43、赤色のカラーフィルタ3R、層間膜44(層間絶縁膜、平坦化膜)、エッジカバー45等が設けられている。
 また、図13にステップS11に示すように、正孔注入層形成工程が終了した後、正孔注入層8上にドープド正孔輸送層7a及びノンドープド正孔輸送層7bを順次形成するノンドープド正孔輸送層及びドープド正孔輸送層形成工程が行われる。このノンドープド正孔輸送層及びドープド正孔輸送層形成工程では、例えば上記ホスト材料とドーパント材料を用いた共蒸着法により、ドープド正孔輸送層7aが、正孔注入層8上に形成される。その後、例えば真空蒸着法を用いて、ノンドープド正孔輸送層7bが、ドープド正孔輸送層7a上に形成される。
 また、図13のステップS12に示すように、発光層6Rとノンドープド正孔輸送層7b上に電子輸送層9を形成する電子輸送層形成工程が行われる。この電子輸送層形成工程では、例えば真空蒸着法を用いて、電子輸送層9が、発光層6R及び正孔輸送層7上に形成される。
 また、図13のステップS13に示すように、有機EL素子1を加熱する加熱工程が行われる。具体的にいえば、この加熱工程では、有機EL素子1に対して、例えば温度80℃、加熱時間1時間で、アニール処理が行われる。これにより、ドープド正孔輸送層7aとノンドープド正孔輸送層7bとの界面に、ドープド正孔輸送層7a内に添加されたp型のドーパント材料を凝集することができ、当該界面に、発光層6Rからの光を反射する第2の反射面13が形成される。
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。すなわち、本実施形態では、第2の反射面13を設けることにより、複数の発光層を設けることなく、少なくとも2つのピークを有する光を外部に放出することができる。
 また、本実施形態では、陰極5が、反射電極により構成され、発光層6からの光は、陽極4側から外部に放出されているので、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れたボトムエミッションタイプの有機EL素子1を構成することができる。
 [第4の実施形態]
 図14は、本発明の第4の実施形態にかかる有機EL素子の構成を示す断面図である。図15は、図14に示した有機EL素子の動作を説明する図である。図16は、図14に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。図17は、図16に示した有機EL素子の製造工程を説明するフローチャートである。
 図において、本実施形態と上記第3の実施形態との主な相違点は、陰極側から発光層からの光を放出するトップエミッションタイプの有機EL素子を構成した点である。なお、上記第3の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図14に示すように、本実施形態の有機EL素子1では、基板2上に、陽極4、正孔注入層8、正孔輸送層7、発光層6、電子輸送層9、電子注入層10、及び陰極5が順次形成されている。また、基板2に対向する対向基板3が設けられるとともに、この対向基板12の基板2側にはカラーフィルタ3が設置されている。
 また、本実施形態の有機EL素子1では、陽極4が反射電極によって構成されており、本実施形態の有機EL素子1は、発光層6からの光が陰極5(対向基板12)側から外部に放出されるトップエミッションタイプのものである。
 また、図15に示すように、本実施形態の有機EL素子1では、発光層6からの光のうち、一部の光は、同図15に矢印Aにて示すように、第2の反射面13で陰極5側に反射されて、外部に放出される。
 また、図15に矢印Bにて示すように、発光層6からの光のうち、一部の光は、第2の反射面13を透過した後、陽極4と正孔注入層8との界面で陰極5側に反射されて、外部に放出される。また、この光は、図15に矢印Aにて示した光と異なるピークを有する光である。
 このように、本実施形態の有機EL素子1では、第1の実施形態のものと同様に、少なくとも2つのピークを有する光を外部に放出可能に構成されている。
 また、本実施形態の有機EL素子1を用いて、アクティブマトリクス方式の有機EL表示装置の赤色のサブ画素を構成した場合、図16に示すように、基板2上には、第3の実施形態のものと同様に、TFT41(スイッチング素子)、配線42、保護膜43、層間膜44(層間絶縁膜、平坦化膜)、エッジカバー45等が設けられている。また、基板2上では、第3の実施形態のものと異なり、赤色のカラーフィルタ3Rは設置されていない。
 また、図17にステップS1、S3、S4、S11、S6、S12、S8、S9、及びS13に示すように、本実施形態の有機EL素子1では、基板2側の各構成要素が、第3の実施形態のものと同様に、形成される。一方、対向基板12側では、図13にステップS2にて示したカラーフィルタ形成工程が行われて、当該対向基板12上にカラーフィルタ3が形成される。そして、基板2と対向基板12とが貼り合わせられることにより、本実施形態の有機EL素子1は、製造される。
 以上の構成により、本実施形態では、上記第3の実施形態と同様な作用・効果を奏することができる。
 また、本実施形態では、陽極4が、反射電極により構成され、発光層6からの光は、陰極5側から外部に放出されているので、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れたトップエミッションタイプの有機EL素子1を構成することができる。
 また、本実施形態では、トップエミッションタイプの有機EL素子1が構成されているので、第3の実施形態のものに比べて、開口率を向上させることができる。
 また、本実施形態では、対向基板12側にカラーフィルタ3を設けているので、第3の実施形態のものに比べて、当該カラーフィルタ3の形成工程を簡単化することができ、製造歩留まりを容易に向上させることができる。
 [第5の実施形態]
 図18は、本発明の第5の実施形態にかかる有機EL素子の構成を示す断面図である。図19は、図18に示した有機EL素子の動作を説明する図である。図20は、図18に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。図21は、図20に示した有機EL素子の製造工程を説明するフローチャートである。
 図において、本実施形態と上記第1の実施形態との主な相違点は、正孔輸送層として、p型のドーパント材料が添加されたドープド正孔輸送層と、p型のドーパント材料が添加されていないノンドープド正孔輸送層とを設けるとともに、これらのドープド正孔輸送層とノンドープド正孔輸送層との界面に、第2の反射面を設けた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図18において、本実施形態の有機EL素子1では、電子輸送層9として、n型のドーパント材料が添加されていないノンドープド電子輸送層9aとn型のドーパント材料が添加されたドープド電子輸送層9bとが設けられている。また、これらのノンドープド電子輸送層9aとn型のドーパント材料が添加されたドープド電子輸送層9bとの界面には、発光層6からの光を反射する反射面としての第1の反射面11が設けられている。
 また、本実施形態の有機EL素子1では、正孔輸送層7として、p型のドーパント材料が添加されたドープド正孔輸送層7aとp型のドーパント材料が添加されていないノンドープド正孔輸送層7bとが設けられている。また、これらのノンドープド正孔輸送層7bとp型のドーパント材料が添加されたドープド正孔輸送層7aとの界面には、発光層6からの光を反射する反射面としての第2の反射面13が設けられている。
 また、図19に示すように、本実施形態の有機EL素子1では、発光層6からの光のうち、一部の光は、同図19に左側の矢印Aにて示すように、第1の反射面11を透過した後、陰極5と電子注入層10との界面で陽極4側に反射される。その後、第2の反射面13で陰極5側に反射された後、陰極5と電子注入層10との界面で陽極4側に再度反射されて、外部に放出される。
 また、図19に右側の矢印Aにて示すように、発光層6からの光のうち、一部の光は、第2の反射面13で陽極4側に反射されて、外部に放出される。また、この光は、図19に左側の矢印Aにて示した光と同じピークを有する光とすることができ、当該ピークを有する光の輝度を上昇させることができ、ひいては有機EL素子1の発光品位を高めることができる。
 また、図19に左側の矢印Bにて示すように、発光層6からの光のうち、一部の光は、第1の反射面11を透過して、陰極5と電子注入層10との界面で陽極4側に反射された後、第2の反射面13を透過して、外部に放出される。
 また、図19に右側の矢印Bにて示すように、発光層6からの光のうち、一部の光は、第1の反射面11を透過した後、陰極5と電子注入層10との界面で陽極4側に反射されて、外部に放出される。また、この光は、図19に左側の矢印Bにて示した光と同じピークを有する光とすることができ、当該ピークを有する光の輝度を上昇させることができ、ひいては有機EL素子1の発光品位を高めることができる。
 なお、上記の説明以外に、n型及び/またはp型のドーパント材料や電子輸送層9や正孔輸送層7の各膜厚などを変更することにより、例えば互いに異なる4つのピークを有する光を外部に放出することができる。
 また、本実施形態の有機EL素子1を用いて、アクティブマトリクス方式の有機EL表示装置の赤色のサブ画素を構成した場合、図20に示すように、基板2上には、第1の実施形態のものと同様に、TFT41(スイッチング素子)、配線42、保護膜43、赤色のカラーフィルタ3R、層間膜44(層間絶縁膜、平坦化膜)、エッジカバー45等が設けられている。
 また、図21にステップS11に示すように、正孔注入層形成工程が終了した後、正孔注入層8上にドープド正孔輸送層7a及びノンドープド正孔輸送層7bを順次形成するノンドープド正孔輸送層及びドープド正孔輸送層形成工程が行われる。
 また、図21にステップS7に示すように、発光層形成工程が終了した後、発光層6上にノンドープド電子輸送層9a及びドープド電子輸送層9bを順次形成するノンドープド電子輸送層及びドープド電子輸送層形成工程が行われる。
 また、図21のステップS14に示すように、有機EL素子1を加熱する加熱工程が行われる。具体的にいえば、この加熱工程では、有機EL素子1に対して、例えば温度80℃、加熱時間1時間で、アニール処理が行われる。これにより、ノンドープド電子輸送層9aとドープド電子輸送層9bとの界面に、ドープド電子輸送層9b内に添加されたn型のドーパント材料を凝集することができ、当該界面に、発光層6Rからの光を反射する第1の反射面11が形成される。同時に、ドープド正孔輸送層7aとノンドープド正孔輸送層7bとの界面に、ドープド正孔輸送層7a内に添加されたp型のドーパント材料を凝集することができ、当該界面に、発光層6Rからの光を反射する第2の反射面13が形成される。
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、第1及び第2の反射面11及び13を設けることにより、有機EL素子1の発光品位を高めることができる。
 また、本実施形態では、陰極5が、反射電極により構成され、発光層6からの光は、陽極4側から外部に放出されているので、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れたボトムエミッションタイプの有機EL素子1を構成することができる。
 [第6の実施形態]
 図22は、本発明の第6の実施形態にかかる有機EL素子の構成を示す断面図である。図23は、図22に示した有機EL素子の動作を説明する図である。図24は、図22に示した有機EL素子をアクティブマトリクス方式の有機EL表示装置に適用した場合での当該有機EL素子の具体的な構成例を示す断面図である。図25は、図24に示した有機EL素子の製造工程を説明するフローチャートである。
 図において、本実施形態と上記第5の実施形態との主な相違点は、陰極側から発光層からの光を放出するトップエミッションタイプの有機EL素子を構成した点である。なお、上記第5の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図22において、本実施形態の有機EL素子1では、基板2上に、陽極4、正孔注入層8、正孔輸送層7、発光層6、電子輸送層9、電子注入層10、及び陰極5が順次形成されている。また、基板2に対向する対向基板3が設けられるとともに、この対向基板12の基板2側にはカラーフィルタ3が設置されている。
 また、本実施形態の有機EL素子1では、陽極4が反射電極によって構成されており、本実施形態の有機EL素子1は、発光層6からの光が陰極5(対向基板12)側から外部に放出されるトップエミッションタイプのものである。
 また、図23に示すように、本実施形態の有機EL素子1では、発光層6からの光のうち、一部の光は、同図23に左側の矢印Aにて示すように、第2の反射面13で陰極5側に反射されて、外部に放出される。
 また、図23に右側の矢印Aにて示すように、発光層6からの光のうち、一部の光は、第1の反射面11で陽極4側に反射された後、陽極4と正孔注入層8との界面で陰極5側に反射される。その後、第1の反射面11を透過して、外部に放出される。また、この光は、図23に左側の矢印Aにて示した光と同じピークを有する光とすることができ、当該ピークを有する光の輝度を上昇させることができ、ひいては有機EL素子1の発光品位を高めることができる。
 また、図23に左側の矢印Bにて示すように、発光層6からの光のうち、一部の光は、第2の反射面13を透過して、陽極4と正孔注入層8との界面で陰極5側に反射されて、外部に放出される。
 また、図23に右側の矢印Bにて示すように、発光層6からの光のうち、一部の光は、第1の反射面11を透過して、陰極5と電子注入層10との界面で陽極4側に反射される。その後、陽極4と正孔注入層8との界面で陰極5側に反射されて、外部に放出される。また、この光は、図23に左側の矢印Bにて示した光と同じピークを有する光とすることができ、当該ピークを有する光の輝度を上昇させることができ、ひいては有機EL素子1の発光品位を高めることができる。
 なお、上記の説明以外に、n型及び/またはp型のドーパント材料や電子輸送層9や正孔輸送層7の各膜厚などを変更することにより、例えば互いに異なる4つのピークを有する光を外部に放出することができる。
 また、本実施形態の有機EL素子1を用いて、アクティブマトリクス方式の有機EL表示装置の赤色のサブ画素を構成した場合、図24に示すように、基板2上には、第3の実施形態のものと同様に、TFT41(スイッチング素子)、配線42、保護膜43、層間膜44(層間絶縁膜、平坦化膜)、エッジカバー45等が設けられている。また、基板2上では、第5の実施形態のものと異なり、赤色のカラーフィルタ3Rは設置されていない。
 また、図25にステップS1、S3、S4、S11、S6~S9、及びS14に示すように、本実施形態の有機EL素子1では、基板2側の各構成要素が、第5の実施形態のものと同様に、形成される。一方、対向基板12側では、図21にステップS2にて示したカラーフィルタ形成工程が行われて、当該対向基板12上にカラーフィルタ3が形成される。そして、基板2と対向基板12とが貼り合わせられることにより、本実施形態の有機EL素子1は、製造される。
 以上の構成により、本実施形態では、上記第5の実施形態と同様な作用・効果を奏することができる。
 また、本実施形態では、陽極4が、反射電極により構成され、発光層6からの光は、陰極5側から外部に放出されているので、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れたトップエミッションタイプの有機EL素子1を構成することができる。
 また、本実施形態では、トップエミッションタイプの有機EL素子1が構成されているので、第5の実施形態のものに比べて、開口率を向上させることができる。
 また、本実施形態では、対向基板12側にカラーフィルタ3を設けているので、第5の実施形態のものに比べて、当該カラーフィルタ3の形成工程を簡単化することができ、製造歩留まりを容易に向上させることができる。
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。
 例えば、上記の説明では、赤色の発光層を有する有機EL素子に適用した場合について説明したが、本発明は、陽極及び陰極の一方が反射電極により構成され、正孔輸送層及び電子輸送層の少なくとも一方はドーパント材料が添加されたドープド層と、ドーパント材料が添加されていないノンドープド層とにより構成され、これらのドープド層と前記ノンドープド層との界面に、発光層からの光を反射する反射面を設けたものであれば何等限定されない。具体的にいえば、本発明は、例えば緑色の光、青色の光、または白色の光を発光する発光層を有する有機EL素子に適用することができる。
 具体的にいえば、図26に例示するように、赤色、緑色、及び青色のサブ画素PR、PG、及びPBを有するアクティブマトリクス方式の有機EL表示装置に含まれた有機EL素子を構成することができる。
 すなわち、図26において、基板2上には、TFT41(スイッチング素子)、配線42、保護膜43、層間膜44(層間絶縁膜、平坦化膜)、エッジカバー45等が設けられている。また、対向基板が、基板2に対向するように設けられており(図示せず)、この対向基板には、サブ画素PR、PG、及びPBの各色に対応するカラーフィルタを備えたカラーフィルタ層が設けられている。
 TFT41はサブ画素PR、PG、及びPBの各発光を制御するスイッチング素子として機能するものであり、サブ画素PR、PG、及びPBごとに設けられる。TFT41は配線42に接続される。
 保護膜43は、例えば窒化膜または酸化膜によって構成されており、TFT41及び配線42上に設けられて、これらのTFT41及び配線42を保護するようになっている。
 層間膜44には、例えば有機膜が用いられている。また、この層間膜44は、平坦化膜としても機能するものであり、カラーフィルタ3上に積層されている。
 層間膜44上には、反射電極46がサブ画素PR、PG、及びPBごとに形成されている。また、この反射電極46上には、赤色用の陽極4R、緑色用の陽極4G、及び青色用の陽極4Bが対応するサブ画素PR、PG、及びPBごとに形成されている。また、陽極4Rは、反射電極46、層間膜44に形成されたコンタクトホール44a、及び保護膜43に形成されたコンタクトホール43aを介して、TFT41に電気的に接続されている。同様に、陽極4Gは、反射電極46、層間膜44に形成されたコンタクトホール44a、及び保護膜43に形成されたコンタクトホール43aを介して、TFT41に電気的に接続されている。同様に、陽極4Bは、反射電極46、層間膜44に形成されたコンタクトホール44a、及び保護膜43に形成されたコンタクトホール43aを介して、TFT41に電気的に接続されている。
 また、反射電極46には、例えばアルミニウム(Al)や銀(Ag)等の光反射率が高い金属が用いられる。反射電極46は、後述の発光層から発せられた光を陰極5側に向けて反射させる機能を有する。
 また、陽極4R、4G、及び4Bの材料には、例えばインジウム錫酸化物(Indium Tin Oxide, 以下、ITOと略記する)等の透明導電膜が用いられる。
 エッジカバー45は、層間膜44上に、陽極4のパターン端部を被覆するように形成されている。エッジカバー45は、陽極4のパターン端部で陽極4と陰極5との間の有機EL層が薄くなったり電界集中が起こったりすることで、有機EL素子1を構成する陽極4と陰極5とが短絡することを防止するための絶縁層である。
 エッジカバー45には、サブ画素PR、PG、及びPB毎に開口45R、45G、及び45Bが設けられている。このエッジカバー45の開口45R、45G、及び45Bが、各サブ画素PR、PG、及びPBの発光領域となる。言い換えれば、各サブ画素PR、PG、及びPBは、絶縁性を有するエッジカバー45によって仕切られている。エッジカバー45は、素子分離膜としても機能する。
 また、図26に示す例では、赤色及び緑色の発光層6RGが同じマスクを用いて一体的に蒸着され、青色の発光層6Bは別のマスクを用いて蒸着されている。この赤色及び緑色の発光層6RGには、赤色の波長域の光と緑色の波長域の光を発光可能な発光材料が用いられている。そして、サブ画素PRでは、上記対向基板側に設けられた赤色のカラーフィルタ(図示せず)を介して発光層6RGからの光のうち、赤色の光を外部に放出し、サブ画素PGでは、上記対向基板側に設けられた緑色のカラーフィルタ(図示せず)を介して発光層6RGからの光のうち、緑色の光を外部に放出するようになっている。
 さらに、サブ画素PR及びPGにおいて、ノンドープド電子輸送層9aとドープド電子輸送層9bとの界面に、第1の反射面11が形成されている。これにより、図5に実線にて例示したように、サブ画素PR及びPGの各々において、2つのピーク(波長)を有する光を外部に放出することができる。
 さらに、この有機EL素子では、マイクロキャビティ構造が用いられている。すなわち、この有機EL素子では、例えば赤色のサブ画素PRにおける反射電極46と陰極5との間の全層厚(光路長)と、緑色のサブ画素PGにおける反射電極46と陰極5との間の全層厚(光路長)とが互いに異なるようになっている。具体的には、赤色のサブ画素PRの陽極4Rの層厚、及び緑色のサブ画素PGの陽極4Gの層厚が順次小さくされている。これにより、赤色のサブ画素PRにおいて、発光層6RGからの光のうち、赤色の光が強められ、緑色のサブ画素PGにおいて、発光層6RGからの光のうち、緑色の光が強められて出射される。
 また、電子輸送層9では、サブ画素PR及びPGにおいて、同じマスクを用いて、ノンドープド電子輸送層9aとドープド電子輸送層9bが形成され、サブ画素PBでは、別のマスクを用いて、電子輸送層9のみが形成されている。
 以上のように、RGB別々のマスクを用いて、蒸着及び形成する必要がないので、RGBの各位置精度を容易に向上させることができる。
 また、上記の説明以外に、図27に例示するように、緑色及び青色の発光層6GBが同じマスクを用いて一体的に蒸着され、赤色の発光層6Rは別のマスクを用いて蒸着されている。この緑色及び青色の発光層6GBには、緑色の波長域の光と青色の波長域の光を発光可能な発光材料が用いられている。そして、サブ画素PGでは、上記対向基板側に設けられた緑色のカラーフィルタ(図示せず)を介して発光層6GBからの光のうち、緑色の光を外部に放出し、サブ画素PBでは、上記対向基板側に設けられた青色のカラーフィルタ(図示せず)を介して発光層6GBからの光のうち、青色の光を外部に放出するようになっている。
 さらに、サブ画素PG及びPBにおいて、ノンドープド電子輸送層9aとドープド電子輸送層9bとの界面に、第1の反射面11が形成されている。これにより、図5に実線にて例示したように、サブ画素PG及びPBの各々において、2つのピーク(波長)を有する光を外部に放出することができる。
 また、図27に示す例においても、図26に示したものと同様に、緑色のサブ画素PGの陽極4Gの層厚、及び青色のサブ画素PBの陽極4Bの層厚が順次小さくされている。これにより、緑色のサブ画素PGにおいて、発光層6GBからの光のうち、緑色の光が強められ、青色のサブ画素PBにおいて、発光層6GBからの光のうち、青色の光が強められて出射される。
 また、電子輸送層9では、サブ画素PG及びPBにおいて、同じマスクを用いて、ノンドープド電子輸送層9aとドープド電子輸送層9bが形成され、サブ画素PRでは、別のマスクを用いて、電子輸送層9のみが形成されている。
 尚、図26及び図27に示した例以外に、例えば第1の実施形態に示したボトムエミッションタイプの構成に適用してもよい。また、サブ画素PR及びPGまたはサブ画素PG及びPBにおいて、共通した発光層6RGまたは6GBを設けるとともに、第3及び第4の実施形態に示したように、ドープド正孔輸送層とノンドープド正孔輸送層及び第2の反射面を設ける構成でもよい。さらに、サブ画素PR及びPGまたはサブ画素PG及びPBにおいて、共通した発光層6RGまたは6GBを設けるとともに、第5及び第6の実施形態に示したように、ドープド電子輸送層とノンドープド電子輸送層、ドープド正孔輸送層とノンドープド正孔輸送層、第1及び第2の反射面を設ける構成でもよい。
 以上のように、本発明では、複数の色の発光層が設けられるとともに、これら複数の色の発光層のうち、隣接する異なる色の発光層を一体的に形成し、かつ、正孔輸送層及び電子輸送層の少なくとも一方において、ドーパント材料が添加されたドープド層と、ドーパント材料が添加されていないノンドープド層とを、一体的に形成した隣接する異なる色の発光層に共通して形成する構成であればよい。
 すなわち、上記第1または第2の実施形態に適用する場合では、複数の色の発光層を形成する工程を備えるとともに、この複数の色の発光層を形成する工程では、隣接する異なる色の発光層を一体的に形成し、かつ、ノンドープド電子輸送層とドープド電子輸送層とを形成する工程において、ノンドープド電子輸送層とドープド電子輸送層を、一体的に形成した隣接する異なる色の発光層に共通して形成すればよい。これにより、上記隣接する異なる色の発光層を同じマスクを用いて形成することができるとともに、電子輸送層において、ドープド層とノンドープド層とを同じマスク(上記隣接する異なる色の発光層での同じマスクとは異なるマスクでもよい。)を用いて形成することができる。この結果、発光層と、電子輸送層において、RGBの各位置精度を容易に向上させることができる。
 また、上記第3または第4の実施形態に適用する場合では、複数の色の発光層を形成する工程を備えるとともに、この複数の色の発光層を形成する工程では、隣接する異なる色の発光層を一体的に形成し、かつ、ノンドープド正孔輸送層とドープド正孔輸送層とを形成する工程において、ノンドープド正孔輸送層とドープド正孔輸送層を、一体的に形成した隣接する異なる色の発光層に共通して形成すればよい。これにより、上記隣接する異なる色の発光層を同じマスクを用いて形成することができるとともに、正孔輸送層において、ドープド層とノンドープド層とを同じマスク(上記隣接する異なる色の発光層での同じマスクとは異なるマスクでもよい。)を用いて形成することができる。この結果、発光層と、正孔輸送層において、RGBの各位置精度を容易に向上させることができる。
 また、上記第5または第6の実施形態に適用する場合では、複数の色の発光層を形成する工程を備えるとともに、この複数の色の発光層を形成する工程では、隣接する異なる色の発光層を一体的に形成し、かつ、ノンドープド正孔輸送層とドープド正孔輸送層とを形成する工程、及びノンドープド電子輸送層とドープド電子輸送層とを形成する工程において、ノンドープド正孔輸送層とドープド正孔輸送層、及びノンドープド電子輸送層とドープド電子輸送層を、一体的に形成した隣接する異なる色の発光層に共通して形成すればよい。これにより、上記隣接する異なる色の発光層を同じマスクを用いて形成することができるとともに、正孔輸送層及び電子輸送層において、ドープド層とノンドープド層とを同じマスク(上記隣接する異なる色の発光層での同じマスクとは異なるマスクでもよい。)を用いて形成することができる。この結果、発光層と、正孔輸送層及び電子輸送層において、RGBの各位置精度を容易に向上させることができる。
 また、上記の説明では、ホスト材料とドーパント材料との共蒸着法を用いて、ドープド電子輸送層またはドープド正孔輸送層を形成した場合について説明したが、本発明はこれに限定されるものではなく、例えば真空蒸着法を用いて、電子輸送層または正孔輸送層を形成した後、この電子輸送層または正孔輸送層に対して、対応するドーパント材料をドーピングすることにより、ドープド電子輸送層及びノンドープド電子輸送層またはドープド正孔輸送層及びノンドープド正孔輸送層を形成する構成でもよい。
 但し、上記の実施形態のように、ホスト材料とドーパント材料との共蒸着法を用いて、ドープド電子輸送層またはドープド正孔輸送層を形成する場合の方が、ドープド電子輸送層またはドープド正孔輸送層を容易に形成することができる点で好ましい。
 また、上記の説明では、発光層の陽極側または陰極側にカラーフィルタを設けた構成について説明したが、本発明はこれに限定されるものではなく、本発明は、カラーフィルタの設置を省略した有機EL素子にも適用することができる。また、このようにカラーフィルタの設置を省略した場合は、上述したように、少なくとも2つのピークを有する光を発光することができる。
 但し、上記の各実施形態のように、カラーフィルタを設ける場合の方が、当該カラーフィルタにより、外部に放出される光の波長域を調整することができる点で好ましい。
 また、上記第1~第6の実施形態では、発光層、正孔輸送層、及び電子輸送層を別個に設けた構成について説明したが、本発明の有機EL素子はこれに限定されるものではなく、例えば正孔輸送層を兼用した発光層を用いたり、電子輸送層を兼用した発光層を用いたりする構成でもよい。
 また、上記反射面の有無の判断は、二次イオン質量分析法(SIMS)等を用い、膜厚方向に元素分析を行うことにより、ある界面にドーパント材料(炭酸セシウムやモリブデン等)が多く含まれるかどうかによって判断することができる。
 また、図26、図27のように、隣接する異なる色の、発光層と電子輸送層又は正孔輸送層が一体的に形成されている場合は、本来は同じ色の発光層から異なる色を取りだすために、電子輸送層又は正孔輸送層の二層の界面に反射面が形成されていると考えることができる。
 本発明は、複数のピークを有する光を放出する場合でも、製造簡単で、かつ、構造簡単な発光特性に優れた有機EL素子、及びその製造方法に対して有用である。
 1 有機EL素子
 3 カラーフィルタ
 4 陽極
 5 陰極
 6 発光層
 7 正孔輸送層
 7a ドープド正孔輸送層
 7b ノンドープド正孔輸送層
 9 電子輸送層
 9a ノンドープド電子輸送層
 9b ドープド電子輸送層
 11 第1の反射面
 13 第2の反射面

Claims (15)

  1.  陽極と、陰極と、これらの陽極と陰極との間に設けられた発光層と、前記陽極と前記発光層との間に設けられた正孔輸送層と、前記陰極と前記発光層との間に設けられた電子輸送層を備えた有機EL素子であって、
     前記陽極及び前記陰極の一方は、反射電極により構成され、
     前記正孔輸送層及び前記電子輸送層の少なくとも一方は、ドーパント材料が添加されたドープド層と、ドーパント材料が添加されていないノンドープド層とにより構成され、
     前記ドープド層と前記ノンドープド層との界面に、前記発光層からの光を反射する反射面を設けた、
     ことを特徴とする有機EL素子。
  2.  複数の色の前記発光層を有するとともに、
     前記複数の色の発光層のうち、隣接する異なる色の発光層は、一体的に形成され、かつ、
     前記正孔輸送層及び前記電子輸送層の少なくとも一方において、ドーパント材料が添加されたドープド層と、ドーパント材料が添加されていないノンドープド層とは、一体的に形成した前記隣接する異なる色の発光層に共通して形成された請求項1に記載の有機EL素子。
  3.  前記電子輸送層は、n型のドーパント材料が添加されたドープド電子輸送層と、n型のドーパント材料が添加されていないノンドープド電子輸送層とにより構成され、
     前記ドープド電子輸送層と前記ノンドープド電子輸送層との界面に、前記反射面としての第1の反射面を設けた請求項1または2に記載の有機EL素子。
  4.  前記正孔輸送層は、p型のドーパント材料が添加されたドープド正孔輸送層と、p型のドーパント材料が添加されていないノンドープド正孔輸送層とにより構成され、
     前記ドープド正孔輸送層と前記ノンドープド正孔輸送層との界面に、前記反射面としての第2の反射面を設けた請求項1~3のいずれか1項に記載の有機EL素子。
  5.  前記陰極が、反射電極により構成され、
     前記発光層からの光は、前記陽極側から外部に放出される請求項1~4のいずれか1項に記載の有機EL素子。
  6.  前記陽極が、反射電極により構成され、
     前記発光層からの光は、前記陰極側から外部に放出される請求項1~4のいずれか1項に記載の有機EL素子。
  7.  陽極と、陰極と、これらの陽極と陰極との間に設けられた発光層と、前記陽極と前記発光層との間に設けられた正孔輸送層と、前記陰極と前記発光層との間に設けられた電子輸送層を備えた有機EL素子の製造方法であって、
     前記電子輸送層として、n型のドーパント材料が添加されていないノンドープド電子輸送層と、n型のドーパント材料が添加されたドープド電子輸送層とを形成する工程と、
     前記有機EL素子を加熱する工程と
     を具備することを特徴とする有機EL素子の製造方法。
  8.  前記有機EL素子を加熱する工程において、前記ノンドープド電子輸送層と前記ドープド電子輸送層との界面に、前記発光層からの光を反射する反射面が形成される請求項7に記載の有機EL素子の製造方法。
  9.  複数の色の発光層を形成する工程を備えるとともに、
     前記複数の色の発光層を形成する工程では、隣接する異なる色の発光層を一体的に形成し、
     前記ノンドープド電子輸送層と前記ドープド電子輸送層とを形成する工程において、前記ノンドープド電子輸送層と前記ドープド電子輸送層を、一体的に形成した前記隣接する異なる色の発光層に共通して形成する請求項7または8に記載の有機EL素子の製造方法。
  10.  陽極と、陰極と、これらの陽極と陰極との間に設けられた発光層と、前記陽極と前記発光層との間に設けられた正孔輸送層と、前記陰極と前記発光層との間に設けられた電子輸送層を備えた有機EL素子の製造方法であって、
     前記正孔輸送層として、p型のドーパント材料が添加されていないノンドープド正孔輸送層と、p型のドーパント材料が添加されたドープド正孔輸送層とを形成する工程と、
     前記有機EL素子を加熱する工程と
     を具備することを特徴とする有機EL素子の製造方法。
  11.  前記有機EL素子を加熱する工程において、前記ノンドープド正孔輸送層と前記ドープド正孔輸送層との界面に、前記発光層からの光を反射する反射面が形成される請求項10に記載の有機EL素子の製造方法。
  12.  複数の色の発光層を形成する工程を備えるとともに、
     前記複数の色の発光層を形成する工程では、隣接する異なる色の発光層を一体的に形成し、
     前記ノンドープド正孔輸送層と前記ドープド正孔輸送層とを形成する工程において、前記ノンドープド正孔輸送層と前記ドープド正孔輸送層を、一体的に形成した前記隣接する異なる色の発光層に共通して形成する請求項10または11に記載の有機EL素子の製造方法。
  13.  陽極と、陰極と、これらの陽極と陰極との間に設けられた発光層と、前記陽極と前記発光層との間に設けられた正孔輸送層と、前記陰極と前記発光層との間に設けられた電子輸送層を備えた有機EL素子の製造方法であって、
     前記正孔輸送層として、p型のドーパント材料が添加されていないノンドープド正孔輸送層と、p型のドーパント材料が添加されたドープド正孔輸送層とを形成する工程と、
     前記電子輸送層として、n型のドーパント材料が添加されていないノンドープド電子輸送層と、n型のドーパント材料が添加されたドープド電子輸送層とを形成する工程と、
     前記有機EL素子を加熱する工程と
     を具備することを特徴とする有機EL素子の製造方法。
  14.  前記有機EL素子を加熱する工程において、前記ノンドープド電子輸送層と前記ドープド電子輸送層との界面に、前記発光層からの光を反射する第1の反射面が形成されるとともに、前記ノンドープド正孔輸送層と前記ドープド正孔輸送層との界面に、前記発光層からの光を反射する第2の反射面が形成される工程が行われる請求項13に記載の有機EL素子の製造方法。
  15.  複数の色の発光層を形成する工程を備えるとともに、
     前記複数の色の発光層を形成する工程では、隣接する異なる色の発光層を一体的に形成し、
     前記ノンドープド正孔輸送層と前記ドープド正孔輸送層とを形成する工程、及び前記ノンドープド電子輸送層と前記ドープド電子輸送層とを形成する工程において、前記ノンドープド正孔輸送層と前記ドープド正孔輸送層、及び前記ノンドープド電子輸送層と前記ドープド電子輸送層を、一体的に形成した前記隣接する異なる色の発光層に共通して形成する請求項13または14に記載の有機EL素子の製造方法。
PCT/JP2015/066043 2014-06-03 2015-06-03 有機el素子、及び製造方法 WO2015186741A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580029523.1A CN106463634B (zh) 2014-06-03 2015-06-03 有机el元件和制造方法
US15/315,410 US10230065B2 (en) 2014-06-03 2015-06-03 Organic EL element having reflective interface transport layers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-115173 2014-06-03
JP2014115173 2014-06-03

Publications (1)

Publication Number Publication Date
WO2015186741A1 true WO2015186741A1 (ja) 2015-12-10

Family

ID=54766810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066043 WO2015186741A1 (ja) 2014-06-03 2015-06-03 有機el素子、及び製造方法

Country Status (3)

Country Link
US (1) US10230065B2 (ja)
CN (1) CN106463634B (ja)
WO (1) WO2015186741A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096318A1 (en) * 2016-11-22 2018-05-31 Cambridge Display Technology Limited A method of manufacturing an organic light-emitting device
CN109004092A (zh) * 2018-06-29 2018-12-14 云谷(固安)科技有限公司 有机电致发光器件和有机电致发光装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411223B2 (en) * 2015-09-08 2019-09-10 Sharp Kabushiki Kaisha Organic electroluminescence device and illumination device
CN109390372B (zh) * 2017-08-08 2021-11-16 合肥视涯技术有限公司 像素结构及其形成方法、显示屏
TWI694628B (zh) * 2018-02-06 2020-05-21 星宸光電股份有限公司 電子元件
WO2019186896A1 (ja) * 2018-03-29 2019-10-03 シャープ株式会社 発光素子、発光デバイス、発光素子の製造方法、発光素子の製造装置
CN111697036A (zh) * 2019-03-15 2020-09-22 株式会社日本有机雷特显示器 自发光元件及其制造方法以及自发光显示装置、电子设备
US20210376282A1 (en) * 2020-05-27 2021-12-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming an isolation structure having multiple thicknesses to mitigate damage to a display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098188A1 (ja) * 2005-03-17 2006-09-21 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2010123512A (ja) * 2008-11-21 2010-06-03 Fujifilm Corp 有機電界発光素子及びその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317971A (ja) * 2002-04-26 2003-11-07 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
WO2004082338A1 (ja) * 2003-03-13 2004-09-23 Fujitsu Limited 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ
JP4651918B2 (ja) * 2003-05-21 2011-03-16 東北パイオニア株式会社 有機elパネルの製造方法
JP3755521B2 (ja) * 2003-06-13 2006-03-15 セイコーエプソン株式会社 有機el装置とその駆動方法、照明装置、及び電子機器
KR101027896B1 (ko) * 2004-08-13 2011-04-07 테크니셰 유니베르시테트 드레스덴 발광 컴포넌트를 위한 층 어셈블리
EP1818996A1 (de) * 2005-04-13 2007-08-15 Novaled AG Anordnung für eine organische Leuchtdiode vom pin-Typ und Verfahren zum Herstellen
US8330351B2 (en) * 2006-04-20 2012-12-11 Universal Display Corporation Multiple dopant emissive layer OLEDs
US20080286610A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid oled with fluorescent and phosphorescent layers
US8785002B1 (en) * 2008-10-07 2014-07-22 Bowling Green State University High-energy triplet host materials, luminescent layer comprising the same, and organic electroluminescent device comprising the luminescent layer
US9461253B2 (en) * 2008-12-10 2016-10-04 Udc Ireland Limited Organic electroluminescence device and luminescence apparatus
CA2656506A1 (en) * 2009-02-27 2010-08-27 Bank Of Canada Security device
JP2011119212A (ja) * 2009-11-03 2011-06-16 Seiko Epson Corp 有機el装置の製造方法、有機el装置、及び電子機器
KR101097339B1 (ko) * 2010-03-08 2011-12-23 삼성모바일디스플레이주식회사 유기 발광 소자 및 이의 제조 방법
JP2012204793A (ja) 2011-03-28 2012-10-22 Sony Corp 有機電界発光素子および表示装置
KR101830790B1 (ko) * 2011-06-30 2018-04-05 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 평판 표시 장치
KR20130050713A (ko) * 2011-11-08 2013-05-16 삼성디스플레이 주식회사 유기 발광 소자, 이의 제조 방법 및 이를 포함하는 평판 표시 장치
DE102011086277B4 (de) * 2011-11-14 2017-09-14 Osram Oled Gmbh Organisches Licht-emittierendes Bauelement
CN102694131B (zh) * 2012-06-04 2015-06-03 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法以及显示装置
DE102012211869A1 (de) * 2012-07-06 2014-01-09 Osram Opto Semiconductors Gmbh Organisches Licht emittierendes Bauelement
KR102149937B1 (ko) * 2013-02-22 2020-09-01 삼성전자주식회사 광전 소자 및 이미지 센서
KR102133451B1 (ko) * 2013-02-22 2020-07-14 삼성전자주식회사 광전 소자 및 이미지 센서
US9577206B2 (en) * 2013-03-13 2017-02-21 Panasonic Corporation Organic electroluminescence element and lighting device using same
JP2015050157A (ja) * 2013-09-04 2015-03-16 コニカミノルタ株式会社 有機エレクトロルミネッセンス照明装置
TWI515891B (zh) * 2013-11-01 2016-01-01 友達光電股份有限公司 顯示面板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098188A1 (ja) * 2005-03-17 2006-09-21 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2010123512A (ja) * 2008-11-21 2010-06-03 Fujifilm Corp 有機電界発光素子及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096318A1 (en) * 2016-11-22 2018-05-31 Cambridge Display Technology Limited A method of manufacturing an organic light-emitting device
CN109004092A (zh) * 2018-06-29 2018-12-14 云谷(固安)科技有限公司 有机电致发光器件和有机电致发光装置
US11205763B2 (en) 2018-06-29 2021-12-21 Yungu (Gu'an) Technology Co., Ltd. Organic electroluminescent device and an organic electroluminescent apparatus

Also Published As

Publication number Publication date
US20170098793A1 (en) 2017-04-06
US10230065B2 (en) 2019-03-12
CN106463634B (zh) 2019-01-18
CN106463634A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2015186741A1 (ja) 有機el素子、及び製造方法
CN112071996B (zh) 有机发光装置及使用该有机发光装置的有机发光显示装置
TWI582981B (zh) 有機發光顯示裝置
US20190296264A1 (en) Quantum dot based pixel assembly
US9343510B2 (en) Organic light emitting display device
US7710024B2 (en) Organic light emitting display device and method of fabricating the same
US8536782B2 (en) Blue light-emitting device and organic light emitting display including the same
US10873050B2 (en) Organic EL display device and organic EL display device manufacturing method
CN107093674B (zh) 一种有机发光显示面板、制备方法及其显示装置
CN107180847B (zh) 像素结构、有机发光显示面板及其制作方法、显示装置
US20130193456A1 (en) Organic light emitting diode display
US11322707B2 (en) Cadmium-free quantum dot LED with improved emission color
JP4479250B2 (ja) 表示装置の製造方法および表示装置
US8878168B2 (en) Organic light-emitting display device with improved color property
US20200243616A1 (en) Cadmium-free quantum dot led with improved emission color
CN108231848B (zh) 一种阵列基板及其制备方法、显示装置
CN109119438B (zh) 显示基板及其制造方法、显示装置
CN105826478A (zh) 发光元件
KR101849583B1 (ko) 백색 유기 발광 표시 장치
WO2015190550A1 (ja) 有機素子
KR20090029007A (ko) 유기발광소자 및 그 구동방법
US9129915B2 (en) Organic EL display device and method of manufacturing the same
KR101744874B1 (ko) 유기발광소자
CN107302013B (zh) 像素结构
JP4737369B2 (ja) 有機el素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15315410

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP