WO2006098188A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2006098188A1
WO2006098188A1 PCT/JP2006/304363 JP2006304363W WO2006098188A1 WO 2006098188 A1 WO2006098188 A1 WO 2006098188A1 JP 2006304363 W JP2006304363 W JP 2006304363W WO 2006098188 A1 WO2006098188 A1 WO 2006098188A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
organic
electrode
light
Prior art date
Application number
PCT/JP2006/304363
Other languages
English (en)
French (fr)
Inventor
Hitoshi Kuma
Kenichi Fukuoka
Chishio Hosokawa
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to US11/908,847 priority Critical patent/US7777413B2/en
Priority to JP2007508079A priority patent/JPWO2006098188A1/ja
Publication of WO2006098188A1 publication Critical patent/WO2006098188A1/ja
Priority to US12/748,025 priority patent/US20100181906A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present invention relates to an organic electoluminescence element. More specifically, the present invention relates to an organic electoluminescence device that enhances the intensity of specific light by providing a light reflecting layer between two electrodes and enables highly efficient light emission.
  • An organic electroluminescent device (hereinafter, electroluminescent device is abbreviated as "EL") is formed by laminating an organic charge transport layer or an organic light emitting layer between a first electrode and a second electrode.
  • the organic layer is provided, and is attracting attention as a self-luminous display element capable of high-luminance emission by low-voltage direct current drive!
  • the cross-sectional structure of the organic EL element is classified into a bottom emission structure and a top emission structure depending on the direction in which light generated in the organic light emitting layer is extracted.
  • top emission structure With the top emission structure, conventionally, light is extracted from the glass substrate side that supports the organic EL element structure! This is a structure that takes out light from the upper part on the opposite side of the substrate. As a result, it is possible to improve the aperture ratio with respect to the light emitting portion, and to increase the luminance.
  • a semi-transparent cathode is used as the upper electrode, and only light of a specific wavelength is enhanced by the multiple interference effect, and high color reproducibility is realized by taking it out of the EL element. To be considered.
  • a first electrode made of a light reflecting material, an organic layer having an organic light emitting layer, a semitransparent reflecting layer, and a second electrode made of a transparent material are sequentially laminated so that the organic layer becomes a resonance part.
  • an organic EL device configured to satisfy the following formula (1) when the peak wavelength of the spectrum of light to be extracted is estimated is disclosed (for example, see Patent Document 1).
  • L is the optical distance
  • is the wavelength of light to be extracted
  • m is an integer
  • is the phase shift at the electrode
  • the optical distance L is configured to be a positive minimum value.
  • Figure 4 shows aluminum ZlTO (lOnm) Z hole transport layer (xnm) Z light emitting layer (30 nm), electron transport layer (20 nm), Mg: Ag alloy layer (lOnm), ⁇ (lOOnm) t ⁇ ⁇ ⁇ In the organic EL element, which is a laminated structure, for each wavelength of 455 nm (B), 520 nm (G), and 620 nm (R), the film thickness of the organic layer x + 50 (nm) and m in equation (1) This relationship is obtained by calculation.
  • the thickness of the organic layer becomes as thin as lOOnm or less, so that a short circuit between the two electrodes is likely to occur.
  • FIG. 5 is a graph showing the relationship between the light extraction efficiency (ratio extracted from the organic EL element) and the film thickness of the hole transport layer.
  • Fig. 5 shows aluminum ZlTO (lOnm) Z hole transport layer (xnm) Z light emitting layer (30nm) , Electron transport layer (20 nm), Mg: Ag alloy layer (lOnm), ⁇ (lOOnm) t ⁇ ⁇ Laminate structure
  • Light extraction efficiency for light with a wavelength of 455 nm generated by the light emitting layer is obtained by calculating the force that changes depending on the film thickness X of the hole transport layer.
  • the light extraction efficiency has a maximum value. Show almost the same light extraction efficiency. That is, when attention is paid only to a specific wavelength, the value of the light extraction efficiency hardly changes.
  • organic EL devices generally have a broad spectrum of light emission, it is required that the light extraction efficiency be high in a wide V and wavelength range.
  • FIG. 6 is a diagram showing an example of the wavelength dependence of the light extraction efficiency and the emission spectrum of the organic EL element.
  • OLED emission generally shows broad emission.
  • an organic EL element with high luminous efficiency cannot be obtained simply by increasing the film thickness of the organic layer.
  • Patent Document 1 International Publication No. WO01Z39554 Pamphlet
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-195008
  • the present invention has been made in view of the above-described problems, and provides an organic EL element that achieves high luminous efficiency while preventing an electrical short between the first electrode and the second electrode. With the goal.
  • the following organic EL element and display device are provided.
  • the organic-electric-luminescence element which forms the optical resonance part which reinforces the light which the said organic light emitting layer emits.
  • an optical resonator that enhances light emitted from the organic light emitting layer is formed between the first electrode and the second electrode and between Z or the first electrode and the light reflecting layer.
  • the second electrode is light transmissive
  • the organic material layer includes a first charge transport layer, an organic light emitting layer, and a second charge transport layer in this order, and the first electrode and the light reflection layer are in contact with each other.
  • An organic electoluminescence device that is electrically connected and forms an optical resonance part that enhances light emitted from the organic light emitting layer between the second electrode and the light reflecting layer.
  • the organic EL device of the present invention can prevent a short circuit between the electrodes, and can improve the manufacturing yield. Moreover, high luminous efficiency can be realized.
  • FIG. 1 is a schematic view showing an organic EL element according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing an organic EL device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic view showing an organic EL device according to Embodiment 3 of the present invention.
  • FIG. 4 is a graph showing the relationship between the film thickness of the organic layer and m in Formula (1).
  • FIG. 5 is a graph showing the relationship between the light extraction efficiency and the thickness of the hole transport layer X.
  • FIG. 6 is a graph showing the wavelength dependence of the light extraction efficiency and an example of the emission spectrum of the organic EL element.
  • FIG. 1 is a schematic view showing an organic EL element according to Embodiment 1 of the present invention.
  • the organic EL element 1 has a configuration in which a first electrode 11, an organic material layer 20, and a second electrode 16 are stacked in this order on a support substrate (not shown).
  • the organic material layer 20 includes a first charge transport layer 12, an organic light emitting layer 14, and a second charge transport layer 15, and a light reflecting layer 13 is formed between the first charge transport layers 12.
  • the first electrode 11 has a function of injecting charges into the first charge transport layer 12. Specifically, it has a function of either an anode for injecting holes or a cathode for injecting electrons.
  • the first electrode 11 is preferably light-reflective in order to efficiently extract light generated from the organic light emitting layer 14 to the outside of the element.
  • the light reflectance with respect to the light extracted outside the element is preferably 30% or more, more preferably 50% or more.
  • the second electrode 16 has a function of injecting charges into the second charge transport layer 15. Specifically, it functions as an anode for injecting holes or a cathode for injecting electrons. When the first electrode 11 is a cathode, it functions as a cathode, and when the first electrode 11 is a cathode, it functions as an anode.
  • the organic light emitting layer 14 is a top emission type element that takes out light that has also generated force from the second electrode 16 side. Since it is a child, the second electrode 16 has optical transparency. Specifically, the light transmittance for the light extracted outside the device is preferably 30% or more, more preferably 50% or more.
  • the optical resonance part is formed together with the light reflection layer 13 described later, light reflectivity is also necessary.
  • the light reflectance with respect to the light extracted outside the element is preferably 20% or more, and more preferably 40% or more.
  • the first charge transport layer 12 and the second charge transport layer 15 receive charges from the respective electrode carriers and transport the charges to the organic light emitting layer 14, and are respectively a hole transport layer or an electron transport layer. It functions as any of these. That is, when the first electrode 11 is an anode and the second electrode 16 is a cathode, the first charge transport layer 12 functions as a hole transport layer, and the second charge transport layer 15 functions as an electron transport layer. Conversely, when the first electrode 11 is a cathode and the second electrode 16 is an anode, the first charge transport layer 12 functions as an electron transport layer and the second charge transport layer 15 functions as a hole transport layer.
  • the organic light-emitting layer 14 receives energy generated by coupling (electron-hole pair) of charges injected from the first electrode 11 and the second electrode 16 and injected through the charge transport layers. This is a layer that excites and emits light.
  • the light reflection layer 13 forms an optical resonance part together with the second electrode 16 and therefore requires light reflectivity.
  • the light reflectance of the light reflecting layer 13 is preferably 10%, more preferably 30% or more.
  • the light reflectance is preferably 80% or less, more preferably 60% or less.
  • the light reflectivity exceeds 80%, the light reflecting layer becomes too thick and the planar resistance of the film becomes too small, so that the unit elements according to this embodiment are juxtaposed in the plane to form a light emitting device. In this case, it may be difficult to ensure insulation between adjacent pixels.
  • the light reflecting layer 13 needs to receive the charge injected from the first charge transport layer 12 on the first electrode 11 side and release it to the first charge transport layer 12 on the organic light emitting layer 14 side. It has conductivity because it exists.
  • a region sandwiched between the second electrode 16 and the light reflecting layer 13 forms an optical resonance part.
  • the optical distance (L) between the second electrode 16 and the light reflecting layer 13 is set so as to substantially satisfy the following formula (1).
  • the optical distance L is the product of the refractive index n of the medium through which light passes and the actual distance L (nL)
  • the optical distance of the optical resonator formed by the light reflecting layer 13 and the second electrode 16 varies.
  • the thickness of the first charge transport layer 12 can be increased. That is, the thickness of the portion of the first charge transport layer 12 between the first electrode 11 and the light reflecting layer 13 can be increased. Therefore, the distance between the first electrode 11 and the second electrode 16 can be kept sufficiently large, and an electrical short between the two electrodes can be prevented.
  • an optical resonator may be formed between the first electrode 11 and the second electrode 16 and between Z or the first electrode 11 and the light reflecting layer 13.
  • the optical distance of the optical resonator formed by the light reflecting layer 13 and the second electrode 16 is set so that m in the formula (1) is 0, and the first electrode 11 and the second electrode 16 are formed.
  • the optical distance of the optical resonator can be set so that m in Equation (1) is 1.
  • the light generated in the organic light emitting layer 14 is expressed by the equation (2) in addition to the optical resonance part between the second electrode 16 and the light reflection layer 13 and also in the optical resonance part between the first electrode 11 and the second electrode 16.
  • Light near the wavelength satisfying 1) is intensified (represented by optical path B in Fig. 1).
  • the spectral half width of the light extraction efficiency can be widened.
  • the luminous efficiency of the organic EL element can be increased.
  • the space between the first electrode 11 and the light reflecting layer 13 may be an optical resonance part.
  • the optical path in this case is represented by C in Fig. 1.
  • the light reflection layer 13 is formed between the first charge transport layers 12, for example, it may be formed between the second charge transport layer 15 or the interface between the first charge transport layer 12 and the organic light emitting layer 14.
  • the light reflecting layer 13 has light reflectivity and conductivity, it is preferable to dispose the light reflecting layer 13 at a position separated from the organic light emitting layer 14 by lOnm or more.
  • the distance between the light-reflecting layer 13 and the organic light-emitting layer 14 is less than lOnm, the energy force of the dipole in the organic light-emitting layer 14 that has received the energy of one electron-hole pair Mirror image generated by the conductivity of the light-reflecting layer 13 Attenuating under the influence of force, the luminous efficiency may be impaired.
  • FIG. 2 is a schematic view showing an organic EL element according to Embodiment 2 of the present invention.
  • the first charge transport layer 12 is formed of different materials above and below the light reflecting layer 13 (in FIG. 2, the first charge transport layer 12a and the first charge transport layer 12b). Same as EL element 1. Therefore, description of other layers is omitted.
  • the distance between the light reflecting layer 13 and the second electrode 16 is made to function as an optical resonance part in which m in Formula (1) is 0, and the distance between the first electrode 11 and the second electrode 16 is sufficient. If kept large, the layer between the first electrode 11 and the light reflecting layer 13 becomes a high resistance layer, and the drive voltage of the organic EL element becomes high. For this reason, in the present embodiment, the first charge transport layer 12a provided between the first electrode 11 and the light reflecting layer 13 has a high charge mobility.
  • the hole mobility force in the vicinity of an electric field strength of 0.6 is, for example, preferably 10 ⁇ 3 cm 2 ZV ′s or more.
  • a known hole transporting material is doped with a material having a charge generation function such as an acceptor compound.
  • acceptor compound examples include the following materials a to g.
  • the hole transporting material will be described later.
  • Inorganic materials such as Au, Pt ⁇ W, Ir, POC1, AsF, Cl, Br ⁇ I
  • TCNQ (7, 7, 8, 8—tetracyanoquinodimethane)
  • TCNQF tetrafluorotetrasi
  • TNF Tri-trofluorenone
  • DNF Di-trofluorenone
  • Diciano TCNQ etc.
  • the first charge transport layer 12a is an electron transport layer
  • a specific example of a material exhibiting high electron mobility is a known electron transport material doped with a material having a charge generation function such as a donor compound. There is something.
  • Examples of the donor compound include the following materials a to c.
  • the electron transporting material will be described later.
  • a. Inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, In, etc.
  • Vanillins phenylenediamines, benzidines (N, N, ⁇ ', N' -Tetraphenylol Benzidine, ⁇ , ⁇ , One-bis (3-methylphenol) ⁇ , ⁇ , One bis- (Benzyl) -Benzidine, ⁇ , ⁇ , One-di (naphthalene 1-yl) ⁇ , ⁇ , monodiphenyl-rubenzidine, etc.), triphenylamines (triphenylamine, 4, 4, 4,), tris ( ⁇ , ⁇ diphenyl-amino) monotriphenylamine, 4, 4, 4, , 1 Tris ( ⁇ —3-methylphenol, 1-phenylamine), 1-triphenylamine, 4, 4, 4, 1, 1-tris ( ⁇ — (1-naphthyl) ⁇ methanol
  • cCondensed polycyclic compounds such as pyrene, perylene, anthracene, tetracene and pentacene (however, the condensed polycyclic compounds may have a substituent), organic materials such as TTF (tetrathiafulvalene)
  • FIG. 3 is a schematic view showing an organic EL element according to Embodiment 3 of the present invention.
  • the organic EL element 3 has a configuration in which a first electrode 11, an insulating flattening layer 21, an organic material layer 20, and a second electrode 16 are stacked in this order. That is, instead of the first charge transport layer 12a, an insulating flat layer 21 Except for the above, this is the same as Embodiment 2 described above. Therefore, explanation of other layers is omitted.
  • the first electrode 11 and the light reflecting layer 13 are electrically connected at the connection portion 22.
  • the insulating flat layer 21 is provided between the first electrode 11 and the light reflecting layer 13.
  • the flat layer 21 is provided to reduce the surface roughness of the first electrode 11 and prevent a short circuit between the electrodes.
  • first electrode 11 and the light reflecting layer 13 are electrically connected in a portion other than the light emitting region of the element.
  • the connection between the first electrode 11 and the light reflecting layer 13 is performed by a general method, for example, by forming a resist film in a non-light-emitting region, forming an electrical insulating film, and peeling (lifting off) the resist film. This can be done by forming a via hole and then filling the inside of the via hole with a conductive material by vapor deposition or the like.
  • the material of the flat layer 21 may be organic or inorganic as long as it has coverage with respect to the surface irregularities of the first electrode 11.
  • a film obtained by depositing SiN, SiON or the like used as an insulating film material in the semiconductor field by a chemical vapor deposition method (CVD method) can be suitably used.
  • the embodiments of the present invention have been described above, these embodiments show examples of top emission type EL elements. However, the present invention can also be applied to bottom emission type EL devices. Specifically, the first electrode 11 that is light-reflective and the second electrode 16 that is light-transmissive can be replaced.
  • the support substrate is disposed below the first electrode and is a member for supporting the organic EL element and TFT. Therefore, it is preferable that it is excellent in mechanical strength and dimensional stability.
  • a substrate a glass plate, a metal plate, a ceramic substrate, or a plastic plate (polycarbonate resin, acrylic resin, chlorinated resin, polyethylene terephthalate resin, polyimide resin) Polyester resin, epoxy resin, phenol resin, silicone resin, fluorine resin, etc.).
  • the substrate having these material forces prevents moisture from entering the color light emitting device.
  • a moisture-proof treatment or a hydrophobic treatment is performed by further forming an inorganic film or applying a fluorine resin.
  • the moisture content of the support substrate is preferably set to a value of 0.0001% by weight or less and the gas permeability coefficient is set to a value of 1 10 _13 'cm / cm 2 ' sec 'cmHg or less.
  • the substrate does not necessarily have to be transparent because the EL emission is extracted from the side opposite to the support substrate, that is, the second transparent electrode side.
  • the voltage from the power source for driving the organic EL element is supplied to the organic EL element and the function of injecting holes into the hole injection layer is required.
  • a metal, an alloy, an electrically conductive compound, a mixture or a laminate thereof having a high work function for example, 4. OeV or higher.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Cul copper iodide
  • SnO tin oxide
  • zinc oxide gold, platinum, palladium, aluminum, black
  • One kind of nickel, nickel, neodymium, etc. can be used alone, or two or more kinds can be used in combination.
  • the first electrode or the second electrode functions as a cathode, a metal, an alloy, an electrically conductive compound having a small work function (for example, less than 4. OeV) or an electroconductive compound such that the electron injectability is good. It is preferred to use a mixture.
  • magnesium, aluminum, indium, lithium, sodium, calcium, cesium, silver and the like can be used alone or in combination of two or more.
  • ultrathin films of these metals and metal oxides such as aluminum oxide, and ultrathin films of halides of alkali metals such as lithium, cesium, and lithium can be used.
  • the thickness of the cathode layer is not particularly limited, but is preferably in the range of 10 to L, OOOnm, and more preferably in the range of 10 to 200 nm.
  • the organic layer is mainly composed of an organic light emitting layer, a first charge transport layer, and a second charge transport layer, but is not limited thereto, and may have a known functional layer such as an adhesion improving layer as necessary. Good. Further, a layer made of an inorganic material may be included.
  • the material for the organic light emitting layer preferably has the following three functions.
  • Charge injection function A function capable of injecting holes from the anode or the hole injection layer when an electric field is applied, and can inject electrons from the cathode layer or the electron injection layer.
  • Transport function a function of moving injected holes and electrons by the force of an electric field.
  • Luminescent function a function that provides a field for recombination of electrons and holes and connects them to light emission.
  • the emission color is not particularly limited as long as it is visible light, and the technology of the present invention can be applied to any color. it can.
  • the organic light emitting layer may have a single layer structure, or may have a structure in which two or more light emitting layers of the same color or different colors are stacked. Examples of preferred light emitting layer materials for each color will be described below.
  • the blue light emitting layer includes a host material and a blue dopant.
  • the host material is preferably a styryl derivative, an anthracene derivative or an aromatic amine.
  • the styryl derivative is particularly preferably at least one selected from among distyryl derivatives, tristyryl derivatives, tetrastyryl derivatives and styrylamine derivatives.
  • the anthracene derivative is preferably an asymmetric anthracene compound.
  • the aromatic amine is preferably a compound having 2 to 4 aromatic substituted nitrogen atoms, preferably 2 to 4 aromatic substituted nitrogen atoms, and at least one alkenyl group. Especially preferred are compounds with:
  • Suitable asymmetric anthracene compounds include compounds represented by the following formulae. A method for producing these compounds is described in Japanese Patent Application No. 2004-042694.
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms.
  • X is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • a, b and c are each an integer of 0 to 4, and n is an integer of 1 to 3.
  • Examples of the substituted or unsubstituted condensed aromatic group of Ar in the above formula include 1 naphthyl group, 2 naphthyl group, 1 anthryl group, 2 anthryl group, 9 anthryl group, 1-phenanthryl group, 2 phenanthryl, 3 phenanthryl, 4 phenanthryl, 9 phenanthryl, 1 naphthacyl, 2 naphthacyl, 9 naphthacyl, 1-pyrenyl, 2 pyrenyl, 4-pyrenyl, 3-methyl-2 A naphthyl group, 4 methyl-1 naphthyl group, 4-methyl-1 anthryl group, etc. are mentioned.
  • substituted or unsubstituted aryl group of Ar, aryl group of X, aromatic heterocyclic group, alkyl group, alkoxy group, aralkyl group, aryloxy group, arylthio group and alkoxycarbo group examples of are as follows.
  • Examples of the substituted or unsubstituted aryl group include a phenyl group, a 1 naphthyl group, a 2-naphthyl group, a 1 anthryl group, a 2 anthryl group, a 9 anthryl group, a 1 antanthryl group, and a 2-phenanthryl group.
  • substituted or unsubstituted alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, n-heptyl group, n-octyl group, hydroxymethyl group, 1 hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxychetyl group, 1,3 dihydroxyisopropyl group, 2 , 3 Dihydroxy tert-butyl group, 1, 2, 3 trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2 chloroethyl group, 2-chloro isobutyl group, 1, 2 dichloroethyl group, 1, 3 dichloroisopropyl group 2,3 dichloro-t-butyl group, 1,2,3 trichloropropyl
  • the substituted or unsubstituted alkoxy group is represented as OY, and examples of Y include the same as the substituted or unsubstituted alkyl group.
  • Examples of the substituted or unsubstituted aralkyl group include the substituted or unsubstituted alkyl group substituted with the substituted or unsubstituted aryl group.
  • the substituted or unsubstituted aryloxy group is represented as OY ′, and examples of Y ′ include the same as the substituted or unsubstituted aryl group.
  • a substituted or unsubstituted arylyl group is represented by SY ′, and examples of Y ′ include the same as the above substituted or unsubstituted aryl group.
  • the substituted or unsubstituted alkoxycarbo group is represented as COOY, and examples of Y include the same as the substituted or unsubstituted alkyl group.
  • halogen atom examples include fluorine, chlorine, bromine and iodine.
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms.
  • R 1 to R 1Q each independently represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted carbon atom.
  • alkyl group having 1 to 50 carbon atoms a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms
  • Substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms substituted or unsubstituted aryloxy group having 5 to 50 carbon atoms
  • substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms substituted or unsubstituted
  • alkoxycarbo group having 1 to 50 carbon atoms a carboxyl group, a halogen atom, a cyano group, a nitro group, and a hydroxyl group.
  • Examples of the substituted or unsubstituted condensed aromatic group include the same examples as described above.
  • Examples of substituted or unsubstituted aryl groups for Ar 1 and Ar 2 in the above formula include the same examples as described above.
  • R 1 to R 1Q substituted or unsubstituted aryl groups, aromatic heterocyclic groups, alkyl groups, alkoxy groups, aralkyl groups, aryloxy groups, aryloxy groups, and alkoxycarbonyl groups in the above formulas are as follows: Examples similar to the above are given.
  • Ar 1 and Ar 2 ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms.
  • R -R 10 each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon number
  • Examples of the substituted or unsubstituted aryl group of Ar 1 ′ and Ar 2 ′ in the above formula include the same examples as described above.
  • R 1 to R 1Q substituted or unsubstituted aryl groups, aromatic heterocyclic groups, alkyl groups, alkoxy groups, aralkyl groups, aryloxy groups, aryloxy groups, and alkoxycarbonyl groups in the above formulas are as follows: Examples similar to the above are given.
  • the substituents for each group include a halogen atom, a hydroxyl group, a nitro group, a cyano group, an alkyl group, an aryl group, a cycloalkyl group, an alkoxy group, an aromatic heterocyclic group, an aralkyl group.
  • the blue dopant is preferably at least one selected from a styrylamine, an amine-substituted styryl compound, an amine-substituted condensed aromatic ring and a condensed aromatic ring-containing compound.
  • the blue dopant is composed of a plurality of different compounds.
  • the styrylamine and amine-substituted styryl compounds include compounds represented by the following formulas (1) and (2), and examples of the condensed aromatic ring-containing compound include compounds represented by the following formula (3). Can be mentioned.
  • Ar 3 , Ar 4 and ⁇ each independently represents a substituted or unsubstituted aromatic group having 6 to 40 carbon atoms, at least one of which contains a styryl group] , ⁇ represents an integer of 1 to 3.
  • Ar 6 and Ar 7 are each independently an arylene group having 6 to 30 carbon atoms
  • E 1 and Shed E 2 each independently represent a Ariru group or an alkyl group, water atom or Shiano group having 6 to 30 carbon atoms
  • q is an integer of 1-3.
  • U and Z or V are substituents containing an amino group, and the amino group is preferably an aryl amino group.
  • A represents an alkyl group or alkoxy group having 1 to 16 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted alkyl group having 6 to 30 carbon atoms.
  • An amino group or a substituted or unsubstituted arylene amino group having 6 to 30 carbon atoms B represents a condensed aromatic ring group having 10 to 40 carbon atoms, and r represents an integer of 1 to 4.
  • the green light emitting layer includes a host material and a green dopant.
  • the host material it is preferable to use the same host material as that used in the blue light emitting layer.
  • the dopant is not particularly limited.
  • coumarin derivatives disclosed in European Patent Publication No. 0281381, Publication 2003-249372, etc. or aromatics in which a substituted anthracene structure and an amine structure are linked.
  • Group amine derivatives and the like can be used.
  • the orange to red light emitting layer includes a host material and an orange to red light dopant.
  • the host material it is preferable to use the same host material as that used in the blue light emitting layer.
  • a fluorescent compound having at least one fluoranthene skeleton or perylene skeleton can be used as the dopant.
  • X 21 to X 24 are independently an alkyl group having 1 to 20 carbon atoms, substituted or is unsubstituted Ariru group having 6 to 30 carbon atoms, and X 21 X 22 and / or X 23 and X 24 may be bonded via a carbon-carbon bond or —O— or —S—.
  • x 25 to x 36 are hydrogen atoms, linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted Substituted aryl group having 6 to 30 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, substituted or unsubstituted aryl group having 6 to 30 carbon atoms, substituted or unsubstituted carbon atoms An alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylalkylamino group having 7 to 30 carbon atoms, or a substituted or unsubstituted alkyl group having 8 to 30 carbon atoms, an adjacent substituent and x 25 ⁇ x 36 may form a ring structure bonded to. It is preferable that at least one of the substituents x 25 to x
  • the thickness of the organic light emitting layer can be preferably set within a range of 5 nm to 5 ⁇ m.
  • the reason for this is that when the thickness of the organic light emitting layer is less than 5 nm, the light emission luminance and durability may decrease, whereas when the thickness of the organic light emitting layer exceeds 5 m, the value of the applied voltage increases. This is because there are cases. Therefore, the thickness of the organic light emitting layer is more preferably in the range of 10 ⁇ to 3 / ⁇ m, and more preferably in the range of 20 ⁇ to 1 / ⁇ ⁇ .
  • the first charge transport layer or the second charge transport layer is either a hole transport layer or an electron transport layer, and as described above, when the first electrode is an anode and the second electrode is a cathode, The first charge transport layer functions as a hole transport layer, and the second charge transport layer functions as an electron transport layer. Conversely, when the first electrode is a cathode and the second electrode is an anode, the first charge transport layer functions as an electron transport layer and the second charge transport layer functions as a hole transport layer.
  • Each of the first charge transport layer and the second charge transport layer may have a single layer structure or a laminated structure of two or more layers.
  • the charge transport layer may have a two-layer structure of a hole (electron) transport layer and a hole (electron) injection layer.
  • any conventionally known material that has been conventionally used as a hole transport material for photoconductive materials or used for the hole transport layer of organic EL devices can be used. Can be selected and used.
  • the material of the hole transport layer has either a hole transport property or an electron barrier property, and may be either an organic material or an inorganic material.
  • the hole transporting layer is preferably a material that transports holes to the light emitting layer with lower electric field strength. That is, the mobility of holes is preferably 10 _4 cm 2 ZV.sec or more when an electric field of 10 4 to 10 6 V / cm is applied.
  • polysilane JP-A-2-204996
  • aniline examples thereof include a conductive polymer oligomer (particularly thiophene oligomer) and the like disclosed in a copolymer (JP-A-2-282263) and JP-A-1-211399.
  • any material having a function of transmitting electrons injected from the cathode to the light emitting layer may be used. Can be used.
  • the electron transporting layer is suitably selected in a film thickness of several nm ⁇ number / zm, it is preferably having an electron mobility of 10_ 5 cm 2 ZVs above 10 4 ⁇ 10 6 VZcm upon application of an electric field.
  • the material used for the electron transport layer is preferably a metal complex of 8-hydroxyquinoline or a derivative thereof.
  • metal complex of 8-hydroxyquinoline or a derivative thereof include metal chelate oxinoid compounds (for example, Alq) containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline).
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following formula.
  • Ar 5 ′, Ar 6 ′, Ar 7 ′, Ar 9 ′, Ar 10 ′, Ar 13 ′ each represent a substituted or unsubstituted aryl group, which may be the same or different from each other.
  • Ar 8 ', Ar 11 ', and Ar 1 2 ' represent a substituted or unsubstituted arylene group, which may be the same or different!
  • examples of the aryl group include a phenyl group, a biphenyl group, an anthryl group, a perylenyl group, and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthrene group, a perylene group, and a pyrenylene group.
  • substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group.
  • This electron transfer compound is preferably a thin film forming material.
  • electron-transmitting compound include the following.
  • Me is a methyl group
  • tBu is a tbutyl group
  • Nitrogen-containing heterocyclic derivative represented by the following formula
  • a 3 to A 5 ′ are a nitrogen atom or a carbon atom.
  • R is an aryl group having 6 to 60 carbon atoms which may have a substituent, a heteroaryl group having 3 to 60 carbon atoms which may have a substituent, an alkyl group having 1 to 20 carbon atoms, carbon A haloalkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is an integer of 2 or more, a plurality of R may be the same or different from each other! / But! /
  • a plurality of adjacent R groups may be bonded to each other to form a substituted or unsubstituted carbocyclic aliphatic ring, or a substituted or unsubstituted carbocyclic aromatic ring.
  • Ar 14 is an aryl group having 6 to 60 carbon atoms which may have a substituent, or a heteroaryl group having 3 to 60 carbon atoms which may have a substituent.
  • Ar 15 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a haloalkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl having 6 to 60 carbon atoms which may have a substituent. It may be a group or a substituent, and is a heteroaryl group having 3 to 60 carbon atoms.
  • any one of Ar 14 and Ar 15 may have a substituent, which may have a condensed ring group having 10 to 60 carbon atoms or a substituent, and may have 3 to 60 carbon atoms. It is a fused ring group.
  • L ⁇ L 2 is a single bond, a condensed ring having 6 to 60 carbon atoms which may have a substituent, or a heterocyclic group having 3 to 60 carbon atoms which may have a substituent. Or, it may be substituted with V or a fluorene group.
  • HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent
  • L 3 has a single bond, an arylene group having 6 to 60 carbon atoms which may have a substituent, a substituent, and a heteroarylene group or substituent having 3 to 60 carbon atoms.
  • Ar 16 has a substituent! /, But is a divalent aromatic hydrocarbon group having 6 to 60 carbon atoms,
  • Ar 17 has a substituent! /, May be an aryl group having 6 to 60 carbon atoms, or
  • It may have a substituent and is a heteroaryl group having 3 to 60 carbon atoms.
  • Q 1 and Q 2 are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkoxy group, an alkyloxy group, a hydroxy group, substituted or unsubstituted Are aryl groups, substituted or unsubstituted heterocycles or Q 1 and Q 2 are It is a structure in which a saturated or unsaturated ring is bonded to each other, and R "to R 14 are independently hydrogen, halogen, substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, alkoxy group, aryloxy group.
  • Q 3 and Q 4 are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkoxy group, an alkyloxy group, a substituted or unsubstituted aryl group.
  • R 15 and R 18 are silyl groups
  • R 16 , R 17 , Q 3 and Q 4 are each independently a group having 1 to 6 carbon atoms. benzene rings condensed with Nag R 15 and R 16 in the monovalent hydrocarbon group or a hydrogen atom
  • Q 3 and Q 4 are alkyl groups and Hue - not Le group)).
  • R 19 to R 2 ° and Q 8 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, or an alkoxy group.
  • an aryloxy group, Q 5 , Q 6 and Q 7 each independently represent a saturated or unsaturated hydrocarbon group, aromatic group, heterocyclic group, substituted amino group, alkoxy group or aryloxy group;
  • the substituents of Q 7 and Q 8 may be bonded to each other to form a condensed ring.
  • R represents an integer of 1 to 3, and when r is 2 or more, Q 7 may be different, (This does not include the case where r is 1, Q 5 , Q 6 and R 2 ° are methyl groups and R 26 is a hydrogen atom or a substituted boryl group, and r is 3 and Q 7 is a methyl group.)
  • Q 9 and Q 1C> each independently represent a ligand represented by the following formula, and L 4 represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group.
  • rings A 4 and A 5 are 6-membered aryl structures fused to each other which may have a substituent.
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal of the formed metal complex and the ligand is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents on the ring A 4 and A 5 to form a ligand of the above formula chlorine, bromine, iodine, halogen atom such as fluorine, methyl group, Echiru group, a propyl group, Butyl group, sec butyl group, tert butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, etc., substituted or unsubstituted alkyl group, phenol group, naphthyl group, 3- Substitution or unsubstitution of methylphenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenol group, 3-trifluoromethylphenol group, 3-trifluorophenyl group, etc.
  • Substituted or unsubstituted alkoxy groups such as propyloxy group, 6- (perfluoroethyl) hexyloxy group, phenoxy group, p-trophenoxy group, p-tert butylphenoxy group, 3-fluorophenoxy group, penta Substituted or unsubstituted aryloxy group, methylthio group, ethylthio group, tert-butylthio group, hexylthio group, octylthio group, trifluoromethylthio, such as fluorophenyl group, 3-
  • Mono- or di-substituted amino groups such as dibutylamino group and diphenylamino group, bis (acetoxymethyl) amino group, bis (acetoxetyl) amino group, bis (acetoxypropyl) amino group, and other acyl amino groups such as bis (acetoxybutyl) amino group Hydroxyl groups, siloxy groups, acyl groups, methylcarbamoyl groups, dimethylcarbamoyl groups, ethylcarbamoyl groups, jetylcarbamoyl groups, propylcarbamoyl groups, butylcarbamoyl groups, phenylcarbamoyl groups, Carboxylic acid group, sulfo Aryl groups such as acid groups, imide groups, cyclopentane groups, cyclohexyl groups, etc., cycloalkyl groups, furol groups, naphthyl groups, biphenyl groups, anthral groups, phen
  • the light reflecting layer is preferably a metal film or a semiconductor film.
  • a metal film is preferred from the viewpoint of realizing a high reflectance in a wide range of visible light from blue to red!
  • the reflectivity of a metal film is determined by its film thickness d, complex refractive index n—i ′ ⁇ , and surface roughness (RMS roughness) ⁇ .
  • a material having a small real part ⁇ and imaginary part ⁇ (corresponding to a light absorption coefficient) of the complex refractive index is preferable. Specific examples include Au, Ag, Cu, Mg, Al, Ni, Pd, and alloys thereof.
  • the thickness of the light reflecting layer is preferably 5 nm or more.
  • the surface roughness ⁇ is preferably less than lOnm. More preferably, it is less than 5 nm.
  • the gas noble layer is usually made of a transparent insulator, and specifically, preferably has a configuration in which an inert liquid such as a desiccant, a dry gas, or a fluorinated hydrocarbon is enclosed.
  • an inorganic oxide layer, an inorganic nitride layer, or an inorganic oxynitride layer is preferable as long as the material has excellent moisture resistance.
  • silica, alumina, A10N, SiAl ON, SiNx and the like can be mentioned.
  • ITO Indium Tin Oxide
  • aluminum was further deposited to a thickness of lOOnm by sputtering.
  • This ITOZ aluminum film functions as the first electrode.
  • the substrate with the first electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes. UV ozone cleaning was performed for 30 minutes. The cleaned substrate with the first electrode was attached to the substrate holder of the vacuum evaporation system.
  • LiF was mounted as an electron injection material
  • Mg and Ag were mounted as a cathode material
  • Saratoko a hole injection auxiliary material
  • an ITO target as a cathode extraction electrode
  • ITO hole injection auxiliary layer
  • NPD NCNQF co-deposited film functioning as a hole transport layer
  • LiF was deposited as an electron injection layer with a thickness of lnm, and Ag and Mg were deposited on this film with a deposition rate ratio of 1: 9, and ITO was further sputtered with a thickness of lOOnm. A film was formed.
  • the LiFZMg: AgZlTO multilayer film functions as the second electrode.
  • an organic EL device is fabricated in which the resonance part is between the light reflecting layer and the second electrode (cathode) (optical distance 132 nm) and between the first electrode and second electrode (optical distance 384 nm). did.
  • An organic EL device was fabricated in the same manner as in Example 1 except that the thickness of the Ag film functioning as the light reflecting layer was lOnm.
  • An organic EL device was produced in the same manner as in Example 1 except that the thickness of the Ag film functioning as the intermediate light reflecting layer was set to 35 nm.
  • Example 1 an ITO / aluminum film was deposited on the glass substrate as the first electrode.
  • the negative resist IC28T-3 (manufactured by Fuji Film Olin Co., Ltd.) was spin-coated and exposed to ultraviolet rays through a photomask, and then the unexposed area was developed using xylene as a developer. After that, post-beta treatment was performed at 160 ° C. for 10 minutes, and a resist pattern was obtained in the portion that would become the non-light-emitting region of the organic EL element.
  • This substrate with a resist pattern was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 10 minutes.
  • a SiON film with a thickness of 300 nm is formed on the resist pattern by CVD.
  • the negative resist was removed using a stripping solution (Nagase Sangyo Co., Ltd .: N303), and a via hole surrounded by an electrical insulating layer was formed on the first electrode.
  • Ag is deposited through a mask having an opening only in a portion corresponding to the via hole to fill the inside of the via hole, and the mask is removed to form an Ag film functioning as a light reflection layer.
  • the film was formed with a thickness of 50 nm.
  • the hole transport layer, the blue light emitting layer, the electron transport layer, and the second electrode were formed in the same manner as in Example 1, and only the space between the light reflection layer and the second electrode (cathode) (optical distance 132 nm) was formed.
  • An organic EL element was fabricated as the resonance part.
  • An organic EL device was fabricated in the same manner as in Example 1 except that the Ag film functioning as a light reflecting layer was not applied.
  • the reflectance of the light reflecting layer of the organic EL device produced in each of the above examples was measured. Specifically, an Ag film is formed on a glass substrate having a thickness of 0.7 mm by 5 nm (Example 1), 10 nm (Example 2), 35 nm (Example 3), and 50 nm (Example 4), respectively. The reflectance of the Ag film surface of each substrate was measured.
  • the reflectances with respect to the peak wavelength (454 nm) of blue fluorescence generated in the blue light emitting layer were 5.8%, 10.7%, 53.5%, and 72.9%, respectively.
  • the organic EL device of the present invention can be used for display screens of various display devices such as consumer TVs, large display displays, and mobile phone display screens.

Abstract

 第1電極(11)と、第2電極(16)と、これら電極間に挟持された有機物層(20)からなり、前記第2電極(16)は光透過性であり、前記有機物層(20)は、第1電荷輸送層(12)、有機発光層(14)、及び第2電荷輸送層(15)を、この順序で積層した構造を有し、かつ、有機物層(20)中に導電性を有する光反射層(13)を有し、前記光透過性第2電極(16)と光反射層(13)の間が、前記有機発光層(14)の発する光を増強する光共振部を形成する有機エレクトロルミネッセンス素子。

Description

明 細 書
有機エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子に関する。より詳しくは、二つの電極の 間に光反射層を設けることにより、特定の光の強度を増強させ、高効率な発光を可能 にした有機エレクト口ルミネッセンス素子に関する。
背景技術
[0002] 有機エレクト口ルミネッセンス素子(以下、エレクト口ルミネッセンスを「EL」と略記す る。)は、第 1電極と第 2電極との間に、有機電荷輸送層や有機発光層を積層させて なる有機層を設けた構成であり、低電圧直流駆動による高輝度発光が可能な、自発 光型の表示素子として注目されて!/ヽる。
有機 EL素子の断面構造としては、有機発光層で発生した光を取り出す方向により 、ボトムェミッション構造とトップェミッション構造とに分類される。
トップェミッション構造とは、従来、有機 EL素子構造を支持するガラス基板側から光 を取り出して!/、たもの(ボトムェミッション構造)を、基板とは反対側の上部から光を取 り出す構造としたものである。これにより、発光部に対する開口率を向上させることが 可能となり、高輝度化を可能としている。
[0003] ところで、トップェミッション構造において、上部電極として半透明の陰極を採用し、 特定波長の光のみを多重干渉効果によって増強し、 EL素子の外部に取出すことで 、高い色再現性を実現することが検討されている。
例えば、光反射材料からなる第 1電極、有機発光層を備えた有機層、半透明反射 層及び透明材料カゝらなる第 2電極が順次積層され、有機層が共振部となるように構 成された有機 EL素子において、取り出したい光のスペクトルのピーク波長をえとした 場合、下記式(1)を満たすように構成した有機 EL素子が開示されている (例えば、特 許文献 1参照。)。
(2L) / 1 + Φ/ (2 π ) =πι · ' · (1)
(Lは光学的距離、 λは取り出したい光の波長、 mは整数、 Φは電極における位相シ フトであり、光学的距離 Lが正の最小値となるように構成する。 )
[0004] また、このようなトップェミッション構造の有機 EL素子と、この有機 EL素子をァクティ ブ駆動するための薄膜トランジスタ (TFT)アレイとを組合わせた、フルカラーディスプ レイが開示されている (例えば、特許文献 2参照。 )0
[0005] しカゝしながら、特許文献 1に記載の技術では、第 1電極と第 2電極の間に設けられる 有機層の膜厚が小さいため、第 1電極表面の凹凸が影響し、二つの電極間での電気 的ショートが発生し、有機 EL素子の製造歩留まりを悪ィ匕させるという欠点があった。 図 4は、有機層の膜厚と、式(1)の mの関係を示す図である。
尚、図 4は、アルミニウム ZlTO (lOnm) Z正孔輸送層 (xnm) Z発光層(30nm) ,電子輸送層 (20nm) ,Mg: Ag合金層(lOnm) ,ΙΤΟ (lOOnm) t\ヽぅ積層構成 力らなる有機 EL素子において、 455nm(B)、 520nm (G)、 620nm (R)のそれぞれ の波長に対し、有機層の膜厚 x+ 50 (nm)と、式(1)中の mの関係を計算によって求 めたものである。
図 4からわ力るように、特に、 520nm以下の短波長の光の場合に、有機層の膜厚 が lOOnm以下と薄くなるため、二つの電極間のショートが発生しやすくなる。
[0006] 電極間のショートを防止する技術としては、第 1電極表面を研磨して平滑化すると いう技術がある。これはボトムェミッション構造の素子には有効である。しかし、トップ ェミッション構造、特に、特許文献 2のような TFTアレイの上部にトップェミッション構 造を設けた場合には、研磨工程時に発生する静電気によって、 TFTアレイ部分が破 壊される等の不具合が生じるおそれがあった。
[0007] また、電極間のショートを防止する他の技術として、有機層の膜厚を厚くすることが 考えられる。即ち、図 4において、 m= lとなるような膜厚を選べば、多重干渉効果に よる光強度増強機能を保持したまま、ショートの防止を図ることができる。
[0008] し力しながら、 m=0のような薄い膜厚とした場合に比べ、 m= 1の厚膜では発光効 率が小さくなるという問題があった。
図 5は、光取出し効率 (有機 EL素子の外部に取り出される割合)と、正孔輸送層の 膜厚の関係を示す図である。
尚、図 5は、アルミニウム ZlTO (lOnm) Z正孔輸送層 (xnm) Z発光層(30nm) ,電子輸送層 (20nm) ,Mg: Ag合金層(lOnm) ,ΙΤΟ (lOOnm) t ヽぅ積層構成 力もなる有機 EL素子にぉ 、て、発光層で発生する波長 455nmの光に対する光取 出し効率が、正孔輸送層の膜厚 Xによってどのように変わる力 計算によって求めた ものである。
図 5からわかるように、、正孔輸送層の膜厚が 36nm (式(1)の m=0)、 152nm (式 (1)の m= 1)のときに光取出し効率は極大値をとり、ほぼ同じ光取り出し効率を示す 。即ち、特定の波長にのみ注目した場合は、光取出し効率の値は殆ど変わらない。し 力しながら、有機 EL素子の発光は、一般に広いスペクトルを有するため、ある程度広 V、波長領域で光取出し効率が高 、ことが要求される。
[0009] 図 6は、光取出し効率の波長依存性と有機 EL素子の発光スペクトルの例を示す図 である。
尚、図 6は、上記図 5の有機 EL素子に関し、正孔輸送層の膜厚が 36nm (m=0)、 152nm (m= 1)の二つの場合につ!、て、光取出し効率の波長依存性を示したもの である。
図 6からわ力るように、 m=0の薄膜の場合にくらべ、 m= lの厚膜の方が、光取出し 効率スペクトルの半値幅が狭い。一方、有機 ELの発光は一般にブロードな発光を示 す。 m= lの厚膜の場合の光取出し効率スペクトルの半値幅は、 EL素子の発光スぺ タトルよりも狭い。即ち、図 6において斜線で示す領域の光は素子の外部には取り出 せず、結果として発光効率が損なわれることを意味する。
以上説明したように、有機層の膜厚を厚くするだけでは、発光効率の高い有機 EL 素子は得られない。
特許文献 1:国際公開第 WO01Z39554号パンフレット
特許文献 2:特開 2001— 195008号公報
[0010] 本発明は、上述の問題に鑑みなされたものであり、第 1電極と第 2電極の間の電気 的ショートを防止しつつ、高 ヽ発光効率を実現する有機 EL素子を提供することを目 的とする。
発明の開示
[0011] 本発明者らは、この課題を解決するために検討をした結果、第 1電極と第 2電極の 間に、さらに導電性を有する光反射層を設けることにより、ショート防止を図りつつ高 い発光効率を実現できることを見出した。
[0012] 本発明によれば、以下の有機 EL素子及び表示装置が提供される。
1.第 1電極と、第 2電極と、これら電極間に挟持された有機物層からなり、前記第 2電 極は光透過性であり、前記有機物層は、第 1電荷輸送層、有機発光層、及び第 2電 荷輸送層を、この順序で積層した構造を有し、かつ、有機物層中に導電性を有する 光反射層を有し、前記光透過性第 2電極と光反射層の間が、前記有機発光層の発 する光を増強する光共振部を形成する有機エレクト口ルミネッセンス素子。
[0013] 2.さらに、前記第 1電極と前記第 2電極の間、及び Z又は、前記第 1電極と光反射層 の間が、前記有機発光層の発する光を増強する光共振部を形成する 1に記載の有 機エレクト口ルミネッセンス素子。
3.前記光反射層が、前記第 1電荷輸送層の層間にある 1又は 2に記載の有機エレク トロノレミネッセンス素子。
4.前記第 1電荷輸送層が、異なる電荷輸送材料からなる二以上の電荷輸送層を有 し、前記光反射層が、前記異なる電荷輸送層のいずれかの間に位置する 3に記載の 有機エレクト口ルミネッセンス素子。
5.前記第 1電荷輸送層の、前記第 1電極と前記光反射層との間に位置する電荷輸 送層が、電荷生成機能を有する材料がドープされた層である、 4に記載の有機エレク トロノレミネッセンス素子。
6.前記光反射層が、前記有機発光層から lOnm以上離れた位置にある 1〜5のい ずれかに記載の有機エレクト口ルミネッセンス素子。
[0014] 7.第 1電極と、第 1電極を覆うように配置された平坦化層と、導電性を有する光反射 層と、有機物層と、第 2電極とを、この順に有し、前記第 2電極は光透過性であり、前 記有機物層は、第 1電荷輸送層、有機発光層、及び第 2電荷輸送層とをこの順序で 保有し、前記第 1電極と光反射層とが、電気的に接続され、前記第 2電極と光反射層 の間が、前記有機発光層の発する光を増強する光共振部を形成する有機エレクト口 ルミネッセンス素子。
8.上記 1〜7のいずれかに記載の有機エレクト口ルミネッセンス素子を含んで構成さ れる表示装置。
[0015] 本発明の有機 EL素子は、電極間のショートを防止でき、製造歩留まりを向上できる 。また、高い発光効率を実現できる。
図面の簡単な説明
[0016] [図 1]本発明の実施形態 1の有機 EL素子を示す概略図である。
[図 2]本発明の実施形態 2の有機 EL素子を示す概略図である。
[図 3]本発明の実施形態 3の有機 EL素子を示す概略図である。
[図 4]有機層の膜厚と、式(1)の mの関係を示す図である。
[図 5]光取出し効率と、正孔輸送層 Xの膜厚の関係を示す図である。
[図 6]光取出し効率の波長依存性と、有機 EL素子の発光スペクトルの例を示す図で ある。
発明を実施するための最良の形態
[0017] 実施形態 1
以下、本発明の有機 EL素子の実施形態を図面を用いて説明する。
図 1は、本発明の実施形態 1の有機 EL素子を示す概略図である。
有機 EL素子 1は、支持基板 (図示せず)上に、第 1電極 11、有機物層 20、第 2電 極 16をこの順に積層した構成を有する。有機物層 20は、第 1電荷輸送層 12、有機 発光層 14及び第 2電荷輸送層 15からなり、第 1電荷輸送層 12の層間には、光反射 層 13が形成されている。
[0018] 第 1電極 11は、第 1電荷輸送層 12へ電荷を注入する機能を有する。具体的には、 正孔を注入する陽極又は電子を注入する陰極の、どちらかの機能を有する。
第 1電極 11は、有機発光層 14から発生した光を、効率よく素子の外部に取り出す ため、光反射性であることが好ましい。具体的に、素子外部に取り出す光に対する光 反射率は、好ましくは 30%以上、より好ましくは 50%以上である。
[0019] 第 2電極 16は、第 2電荷輸送層 15へ電荷を注入する機能を有する。具体的には、 正孔を注入する陽極、又は電子を注入する陰極として機能するが、第 1電極 11が陽 極の場合は陰極、第 1電極 11が陰極の場合は陽極となる。本実施形態においては、 有機発光層 14力も発生した光を第 2電極 16側から取り出すトップェミッション型の素 子であるため、第 2電極 16は光透過性を有する。具体的に、素子外部に取り出す光 に対する光透過率は、好ましくは 30%以上、より好ましくは 50%以上である。
また、後述する光反射層 13とともに、光共振部を形成するので、光反射性も必要で ある。具体的に、素子外部に取り出す光に対する光反射率は、好ましくは 20%以上 、より好ましくは 40%以上である。
[0020] 第 1電荷輸送層 12及び第 2電荷輸送層 15は、各電極カゝら電荷を受け取り、有機発 光層 14に電荷を輸送するものであり、それぞれ正孔輸送層又は電子輸送層のいず れカとして機能する。即ち、第 1電極 11が陽極であり、第 2電極 16が陰極である場合 は、第 1電荷輸送層 12は正孔輸送層、第 2電荷輸送層 15は電子輸送層として機能 する。逆に、第 1電極 11が陰極、第 2電極 16が陽極の場合は、第 1電荷輸送層 12は 電子輸送層、第 2電荷輸送層 15は正孔輸送層として機能する。
[0021] 有機発光層 14は、第 1電極 11、第 2電極 16から注入され、各電荷輸送層を介して 注入された電荷が結合 (電子一正孔対)することにより発生するエネルギーを受け取 つて励起し、発光する層である。
[0022] 光反射層 13は、第 2電極 16とともに、光共振部を形成することから、光反射性を必 要とする。光反射層 13の光反射率は、好ましくは 10%、より好ましくは 30%以上であ る。
尚、光反射率は 80%以下であることが好ましぐ 60%以下であることがより好ましい 。光反射率が 80%を超えると、光反射層の膜厚が厚くなり、膜の平面方向の抵抗が 小さくなりすぎて、本実施形態からなる単位素子を面内に並置して発光装置を形成 する場合には、隣り合う画素間の絶縁性確保が困難になる場合がある。
[0023] また、光反射層 13は、第 1電極 11側の第 1電荷輸送層 12から注入された電荷を受 け取り、有機発光層 14側の第 1電荷輸送層 12に放出する必要があることから導電性 を有する。
[0024] 有機 EL素子 1では、第 2電極 16と光反射層 13で狭持された領域が光共振部を形 成している。具体的には、第 2電極 16と光反射層 13の間の光学的距離 (L)が、ほぼ 下記式(1)を満たすように設定される。
(2L) / 1 + Φ/ (2 π ) =πι · · · (!) (Lは光学的距離、 λは取り出したい光の波長、 mは整数、 Φは電極における位相シ フトである。)
光共振部を有する素子では、有機発光層 14で発生した光は、二つの光反射面 (第 2電極 16と光反射層 13)の間で反射を繰り返し、式(1)を満たす波長付近の光が強 められ、結果として他の波長の光よりも強調されて素子の外に放出される(図 1におい て光路 Aで表す)。
尚、光学的距離 Lは、光の通過する媒体の屈折率 nと実際の距離 Lとの積 (nL )
R R
である。
[0025] 本実施形態においては、第 1電荷輸送層 12の層間に光反射層 13を形成している ので、光反射層 13と第 2電極 16で形成される光共振部の光学距離を変動することな ぐ第 1電荷輸送層 12の膜厚を厚くできる。即ち、第 1電荷輸送層 12のうち、第 1電 極 11と光反射層 13の間の部分の膜厚を厚くすることができる。そのため、第 1電極 1 1と第 2電極 16の間の距離を十分大きく保ち、両電極間の電気的ショートを防止する ことができる。
[0026] 本実施形態においては、さらに、第 1電極 11と第 2電極 16の間、及び Z又は、第 1 電極 11と光反射層 13の間が光共振部を形成していてもよい。例えば、光反射層 13 と第 2電極 16で形成される光共振部の光学距離を式(1)の mが 0となるように設定し 、第 1電極 11と第 2電極 16で形成される光共振部の光学距離を式(1)の mが 1となる ように設定することができる。
この場合、有機発光層 14で発生した光は、第 2電極 16と光反射層 13間の光共振 部の他に、第 1電極 11と第 2電極 16の間の光共振部でも、式(1)を満たす波長付近 の光が強められる(図 1にお 、て光路 Bで表す)。
このように設定することで、光反射層 13を形成しない素子と比べ、式(1)において、 m=0の光共振部を有することから、光取出し効率のスペクトル半値幅を広げることが できる。その結果、有機 EL素子の発光効率を高めることができる。
[0027] 同様に、第 1電極 11と光反射層 13の間が光共振部となっていてもよい。この場合 における光路を図 1の Cで表す。
[0028] 尚、本実施形態では、光反射層 13を第 1電荷輸送層 12の層間に形成しているが、 これに限られず、例えば、第 2電荷輸送層 15の層間や、第 1電荷輸送層 12と有機発 光層 14の界面等に形成してもよ 、。
好ましくは、光反射層 13は、光反射性と導電性を有することから、有機発光層 14か ら lOnm以上離れた位置に配置することが好ま 、。光反射層 13と有機発光層 14の 間の距離が lOnm未満の場合、電子一正孔対のエネルギーを受け取った有機発光 層 14中の双極子のエネルギー力 光反射層 13の導電性によって生じる鏡像力の影 響を受けて減衰し、発光効率が損なわれるおそれがある。
[0029] 実施形態 2
図 2は、本発明の実施形態 2の有機 EL素子を示す概略図である。
有機 EL素子 2は、第 1電荷輸送層 12を光反射層 13の上下で異なる材料より形成 した(図 2において、第 1電荷輸送層 12a、第 1電荷輸送層 12b)他は、上述した有機 EL素子 1と同様である。従って、他の層の説明は省略する。
[0030] 光反射層 13と第 2電極 16の間の距離を式(1)における mが 0の光共振部として機 能させ、かつ第 1電極 11と第 2電極 16の間の距離を十分大きく保つと、第 1電極 11と 光反射層 13の間が高抵抗な層となり、有機 EL素子の駆動電圧が高くなる。このため 、本実施形態では、第 1電極 11と光反射層 13との間に設けられる第 1電荷輸送層 1 2aを、高い電荷移動度を有するようにしている。
具体的に、第 1電荷輸送層 12aが正孔輸送層の場合、電界強度 0. 6 (VZcm)付 近における正孔移動度力 例えば、 10_3cm2ZV' s以上であることが好ましい。
[0031] 高い正孔移動度を示す材料の具体例としては、公知の正孔輸送性材料にァクセプ ター性ィ匕合物等の電荷生成機能を有する材料をドープしたものがある。
ァクセプター性ィ匕合物の具体例としては、以下の a〜gの材料が挙げられる。尚、正 孔輸送性材料にっ 、ては後述する。
[0032] a. Au、 Ptゝ W, Ir、 POC1、 AsF 、 Cl、 Brゝ I等の無機材料
3 6
b. TCNQ (7, 7, 8, 8—テトラシァノキノジメタン)、 TCNQF (テトラフルォロテトラシ
4
ァノキノジメタン)、 TCNE (テトラシァノエチレン)、 HCNB (へキサシァノブタジエン)
、 DDQ (ジシクロジシァノベンゾキノン)等のシァノ基を有する化合物
c TNF (トリ-トロフルォレノン)、 DNF (ジ-トロフルォレノン)、ジシァノ TCNQ等の ニトロ基を有する化合物
d.フルオラ-ル、クロラエル、ブロマ-ル等の有機材料が挙げられる。
e.ホウ素含有ァクセプターに代表されるルイス酸
f.ケトン及びチオケトン
g.カルボン酸金属塩などの有機塩
[0033] 第 1電荷輸送層 12aが電子輸送層の場合、高い電子移動度を示す材料の具体例 としては、公知の電子輸送材料に、ドナー性化合物等の電荷生成機能を有する材料 をドープしたものがある。
ドナー性ィ匕合物としては、以下の a〜cの材料が挙げられる。尚、電子輸送性材料 については後述する。
[0034] a.アルカリ金属、アルカリ土類金属、希土類元素、 Al、 Ag、 Cu、 In等の無機材料 b.ァニリン類、フエ二レンジアミン類、ベンジジン類(N, N, Ν' , N'ーテトラフエ二ノレ ベンジジン、 Ν, Ν,一ビス一(3—メチルフエ-ル) Ν, Ν,一ビス一(フエ-ル)一ベ ンジジン、 Ν, Ν,一ジ(ナフタレン一 1—ィル) Ν, Ν,一ジフエ-ルーベンジジン等) 、トリフエ-ルァミン類(トリフエ-ルァミン、 4, 4,4,,ートリス(Ν, Ν ジフエ-ル—アミ ノ)一トリフエ-ルァミン、 4, 4,4,,一トリス(Ν— 3—メチルフエ-ル一 Ν フエ-ル一ァ ミノ)一トリフエ-ルァミン、 4, 4,4,,一トリス(Ν— (1—ナフチル) Ν フエ-ル一アミ ノ)—トリフエ-ルァミン等)、トリフエ-ルジァミン類(Ν, Ν,—ジ—(4—メチル—フエ -ル)—Ν, Ν,ージフエ-ルー 1, 4 フエ-レンジァミン)等の芳香族 3級アミンを骨 格にもつ化合物
cピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の縮合多環化合物(ただ し、縮合多環化合物は置換基を有してもよい)、 TTF (テトラチアフルバレン)類等の 有機材料
d. Liキレート等アルカリ金属、アルカリ土類金属、希土類金属の錯体化合物
[0035] 実施形態 3
図 3は、本発明の実施形態 3の有機 EL素子を示す概略図である。
有機 EL素子 3は、第 1電極 11、絶縁平坦化層 21、有機物層 20、第 2電極 16をこ の順に積層した構成を有する。即ち、第 1電荷輸送層 12aに代えて絶縁平坦ィ匕層 21 を形成した他は、上述した実施形態 2と同様である。従って、他の層の説明は省略す る。本実施形態では、第 1電極 11と光反射層 13が接続部 22にて電気的に接続され ている。
[0036] 本実施形態では、第 1電極 11と光反射層 13との間は絶縁平坦ィ匕層 21としてある。
平坦ィ匕層 21は第 1電極 11の表面粗さを小さくし、電極間のショートを防止するために 設けられる。
さらに、素子の発光領域以外の部分で、第 1電極 11と光反射層 13とが電気的に接 続されている。第 1電極 11と光反射層 13の接続は、一般的な方法、例えば、例えば 、非発光領域にレジスト膜を形成したのちに電気絶縁膜を形成し、レジスト膜を剥離( リフトオフ)することによりビアホールを形成し、その後、蒸着法等によりビアホール内 部に導電材料を充填することによって実施できる。
平坦ィ匕層 21の材質としては、第 1電極 11の表面凹凸に対するカバレッジ性があれ ば有機物でも無機物でもよい。例えば、半導体分野で絶縁膜材料として用いられる S iN、 SiON等を化学蒸着法 (CVD法)により堆積させた膜を好適に用いることができ る。
[0037] 以上、本発明の実施形態を説明したが、これら実施形態はトップェミッション型の E L素子の例を示している。し力しながら、本発明はボトムェミッション型の EL素子にも 適用できる。具体的には、光反射性である第 1電極 11と光透過性である第 2電極 16 とを置き換えて配置すればょ ヽ。
続 ヽて、本発明の有機 EL素子を形成する各部材につ ヽて説明する。
[0038] 1.支持基板
支持基板は、第 1電極の下方に配置され、有機 EL素子や TFTを支持するための 部材である。そのため、機械的強度や、寸法安定性に優れていることが好ましい。こ のような基板として、具体的には、ガラス板、金属板、セラミックス基板、又はプラスチ ック板 (ポリカーボネート榭脂、アクリル榭脂、塩化ビュル榭脂、ポリエチレンテレフタ レート榭脂、ポリイミド榭脂、ポリエステル榭脂、エポキシ榭脂、フエノール榭脂、シリコ ン榭脂、フッ素榭脂等)等をあげることができる。
[0039] また、これらの材料力 なる基板は、カラー発光装置への水分の浸入を避けるため に、さらに無機膜を形成したり、フッ素榭脂を塗布したりして、防湿処理や疎水性処 理を施してあることが好ましい。特に、有機発光媒体層への水分の浸入を避けるため に、基板における含水率及びガス透過係数を小さくすることが好ましい。具体的には
、支持基板の含水率を 0. 0001重量%以下の値及びガス透過係数を1 10_13 ' cm/cm2 ' sec' cmHg以下の値とすることがそれぞれ好ましい。尚、トップエミッショ ン型の EL素子の場合、支持基板と反対側、即ち第二の透明電極側から EL発光を 取り出すため、基板は必ずしも透明性を有する必要はな 、。
[0040] 2.第 1電極及び第 2電極
第 1電極又は第 2電極が陽極である場合、有機 EL素子駆動用電源からの電圧を 有機 EL素子に供給し、かつ正孔注入層へ正孔を注入する機能が必要なため、低抵 抗かつ高い仕事関数 (例えば、 4. OeV以上)を有する、金属、合金、電気電導性ィ匕 合物又はこれらの混合物や積層体を使用することが好ましい。
具体的には、インジウムチンオキサイド (ITO)、インジウム亜鉛オキサイド (IZO)、 C ul (よう化銅)、 SnO (酸化錫)、酸化亜鉛、金、白金、パラジウム、アルミニウム、クロ
2
ム、ニッケル、ネオジゥム等の 1種を単独で、又は 2種以上を組み合わせて使用する ことができる。
[0041] 第 1電極又は第 2電極が陰極として機能する場合、電子注入性が良好なように、仕 事関数の小さい (例えば、 4. OeV未満)金属、合金、電気電導性化合物又はこれら の混合物を使用することが好ましい。
具体的には、マグネシウム、アルミニウム、インジウム、リチウム、ナトリウム、カルシゥ ム、セシウム、銀等の 1種を単独で、又は 2種以上を組み合わせて使用することができ る。
また、これら金属と酸化アルミニウム等金属酸化物の超薄膜、リチウム、セシウム、力 リウム等のアルカリ金属のハロゲンィ匕物の超薄膜も使用できる。
陰極層の厚さは、特に制限されるものではないが、 10〜: L, OOOnmの範囲内の値 とするのが好ましぐ 10〜200nmの範囲内の値とするのがより好ましい。
[0042] 尚、光を外部に取り出すため、陽極又は陰極の少なくとも一方が光透過性を有する 必要がある。 [0043] 3.有機物層
有機物層は、主に、有機発光層、第 1電荷輸送層及び第 2電荷輸送層からなるが、 これに限らず、必要に応じて付着改善層等の公知の機能層を有していてもよい。また 、無機物カゝらなる層を含んでいてもよい。
(3— 1)有機発光層
有機発光層の材料としては、以下の 3つの機能を併せ持つことが好ましい。
(a)電荷の注入機能:電界印加時に陽極、あるいは正孔注入層から正孔を注入す ることができる一方、陰極層、あるいは電子注入層から電子を注入することができる機 能。
(b)輸送機能:注入された正孔及び電子を電界の力で移動させる機能。
(c)発光機能:電子と正孔の再結合の場を提供し、これらを発光につなげる機能 発光色は、可視光であれば特に限定はなく何色でも本発明の技術を適用すること ができる。また、有機発光層は単層構造でもよぐまた、同色又は異色の発光層を 2 層以上積層した構成であってもよい。以下、各色の好ましい発光層材料について例 示する。
[0044] (A)青色系発光層
青系発光層はホスト材料と青色系ドーパントを含む。
ホスト材料は、スチリル誘導体、アントラセン誘導体又は芳香族ァミンであることが好 ましい。スチリル誘導体は、ジスチリル誘導体、トリスチリル誘導体、テトラスチリル誘 導体及びスチリルアミン誘導体の中力 選ばれる少なくとも一種類であることが特に 好ましい。アントラセン誘導体は、非対称アントラセン系化合物であることが好ましい。 芳香族ァミンは、芳香族置換された窒素原子を 2〜4個有する化合物であることが好 ましぐ芳香族置換された窒素原子を 2〜4個有し、かつァルケ-ル基を少なくとも一 つ有する化合物が特に好まし 、。
好適な非対称アントラセン系化合物として以下の式に示される化合物が挙げられる 。これらの化合物の製造方法等は特願 2004— 042694に記載されている。
[0045] [化 1]
Figure imgf000014_0001
[式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。
Ar,は置換もしくは無置換の核炭素数 6〜50のァリール基である。
Xは、置換もしくは無置換の核炭素数 6〜50のァリール基、置換もしくは無置換の 核原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50のアルキ ル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭 素数 6〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキ シ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換 の炭素数 1〜50のアルコキシカルボ-ル基、カルボキシル基、ハロゲン原子、シァノ 基、ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0〜4の整数であり、 nは 1〜3の整数である。 ]
[0046] 上記の式における Arの置換もしくは無置換の縮合芳香族基の例としては、 1 ナフ チル基、 2 ナフチル基、 1 アントリル基、 2 アントリル基、 9 アントリル基、 1ーフ ェナンスリル基、 2 フエナンスリル基、 3 フエナンスリル基、 4 フエナンスリル基、 9 フエナンスリル基、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9 ナフタセ-ル基、 1ーピレニル基、 2 ピレニル基、 4ーピレニル基、 3—メチルー 2 ナフチル基、 4 メチル— 1 ナフチル基、 4—メチル— 1 アントリル基等が挙げられる。
[0047] 上記の式における Ar,の置換もしくは無置換のァリール基、 Xのァリール基、芳香 族複素環基、アルキル基、アルコキシ基、ァラルキル基、ァリールォキシ基、ァリール チォ基及びアルコキシカルボ-ル基の例としては、それぞれ以下の例が挙げられる。
[0048] 置換もしくは無置換のァリール基の例としては、フエ-ル基、 1 ナフチル基、 2— ナフチル基、 1 アントリル基、 2 アントリル基、 9 アントリル基、 1 フ ナントリル 基、 2—フエナントリル基、 3—フエナントリル基、 4—フエナントリル基、 9—フエナントリ ル基、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9 ナフタセ-ル基、 1ーピレ -ル基 、 2 ピレ-ル基、 4 ピレ-ル基、 2 ビフエ-ルイル基、 3 ビフエ-ルイル基、 4— ビフエ-ルイル基、 p ターフェ-ルー 4—ィル基、 p ターフェ-ルー 3—ィル基、 p —ターフェ-ルー 2—ィル基、 m—ターフェ-ルー 4—ィル基、 m—ターフェ-ルー 3 —ィル基、 m—ターフェ-ルー 2—ィル基、 o トリル基、 m—トリル基、 ρ トリル基、 ρ t ブチルフエ-ル基、 p— (2 フエ-ルプロピル)フエ-ル基、 3—メチルー 2 ナ フチル基、 4—メチル—1—ナフチル基、 4—メチル—1—アントリル基、 4,—メチルビ フエ-ルイル基、 4" t ブチル p ターフェ-ル 4 ィル基等が挙げられる。 置換もしくは無置換の芳香族複素環基の例としては、 1 ピロリル基、 2 ピロリル 基、 3 ピロリル基、ピラジュル基、 2 ピリジニル基、 3 ピリジニル基、 4 ピリジ- ル基、 1 インドリル基、 2 インドリル基、 3 インドリル基、 4 インドリル基、 5 イン ドリル基、 6—インドリル基、 7—インドリル基、 1—イソインドリル基、 2—イソインドリル 基、 3—イソインドリル基、 4—イソインドリル基、 5—イソインドリル基、 6—イソインドリ ル基、 7 イソインドリル基、 2 フリル基、 3 フリル基、 2 べンゾフラ-ル基、 3 べ ンゾフラ-ル基、 4一べンゾフラ-ル基、 5—べンゾフラ-ル基、 6—ベンゾフラ -ル基 、 7 べンゾフラ-ル基、 1 イソべンゾフラ-ル基、 3 イソべンゾフラ-ル基、 4ーィ ソベンゾフラ -ル基、 5—イソべンゾフラ-ル基、 6—イソべンゾフラ-ル基、 7—イソべ ンゾフラニル基、キノリル基、 3—キノリル基、 4 キノリル基、 5—キノリル基、 6—キノリ ル基、 7 キノリル基、 8 キノリル基、 1 イソキノリル基、 3 イソキノリル基、 4 イソ キノリル基、 5—イソキノリル基、 6—イソキノリル基、 7—イソキノリル基、 8—イソキノリ ル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリニル基、 1一力ルバ ゾリル基、 2—力ルバゾリル基、 3—力ルバゾリル基、 4一力ルバゾリル基、 9一力ルバ ゾリル基、 1 フエナンスリジ-ル基、 2 フエナンスリジ-ル基、 3 フエナンスリジ- ル基、 4 フエナンスリジ-ル基、 6—フエナンスリジ-ル基、 7—フエナンスリジ -ル基 、 8 フエナンスリジ-ル基、 9 フエナンスリジ-ル基、 10 フエナンスリジ-ル基、 1 —アタリジ-ル基、 2—アタリジ-ル基、 3—アタリジ-ル基、 4—アタリジ-ル基、 9 アタリジ-ル基、 1, 7 フエナンスロリン— 2—ィル基、 1, 7 フエナンスロリン— 3— ィル基、 1, 7 フエナンスロリン— 4—ィル基、 1, 7 フエナンスロリン— 5—ィル基、 1, 7 フエナンスロリン一 6—ィル基、 1, 7 フエナンスロリン一 8—ィル基、 1, 7 フ ェナンスロリン— 9—ィル基、 1, 7 フエナンスロリン— 10—ィル基、 1, 8 フエナン スロリン— 2—ィル基、 1 , 8 フエナンスロリン— 3—ィル基、 1, 8 フエナンスロリン —4—ィル基、 1, 8 フエナンスロリン— 5—ィル基、 1, 8 フエナンスロリン— 6—ィ ル基、 1, 8 フエナンスロリンー7—ィル基、 1, 8 フエナンスロリンー9ーィル基、 1, 8 フエナンスロリン— 10—ィル基、 1, 9 フエナンスロリン— 2—ィル基、 1, 9 フエ ナンスロリン— 3—ィル基、 1, 9 フエナンスロリン— 4—ィル基、 1, 9 フエナンスロ リン— 5—ィル基、 1, 9 フエナンスロリン— 6—ィル基、 1, 9 フエナンスロリン— 7 —ィル基、 1, 9 フエナンスロリン— 8—ィル基、 1, 9 フエナンスロリン— 10—ィル 基、 1, 10 フエナンスロリン— 2—ィル基、 1, 10 フエナンスロリン— 3—ィル基、 1 , 10 フエナンスロリン— 4—ィル基、 1, 10 フエナンスロリン— 5—ィル基、 2, 9 - フエナンスロリン一 1—ィル基、 2, 9 フエナンスロリン一 3—ィル基、 2, 9 フエナン スロリン— 4—ィル基、 2, 9 フエナンスロリン— 5—ィル基、 2, 9 フエナンスロリン —6—ィル基、 2, 9 フエナンスロリン— 7—ィル基、 2, 9 フエナンスロリン— 8—ィ ル基、 2, 9—フエナンスロリン 10—ィル基、 2, 8—フエナンスロリン 1ーィル基、 2 , 8 フエナンスロリン一 3—ィル基、 2, 8 フエナンスロリン一 4—ィル基、 2, 8 フエ ナンスロリン— 5—ィル基、 2, 8 フエナンスロリン— 6—ィル基、 2, 8 フエナンスロ リン— 7—ィル基、 2, 8 フエナンスロリン— 9—ィル基、 2, 8 フエナンスロリン— 10 ーィル基、 2, 7 フエナンスロリン 1ーィル基、 2, 7 フエナンスロリンー3 ィル基 、 2, 7 フエナンスロリン— 4—ィル基、 2, 7 フエナンスロリン— 5—ィル基、 2, 7— フエナンスロリン一 6—ィル基、 2, 7 フエナンスロリン一 8—ィル基、 2, 7—フエナン スロリンー9ーィル基、 2, 7—フエナンスロリン 10—ィル基、 1—フエナジ-ル基、 2 フエナジ-ル基、 1 フエノチアジ-ル基、 2 フエノチアジ-ル基、 3 フエノチア ジ-ル基、 4 フエノチアジ-ル基、 10 フエノチアジ-ル基、 1 フエノキサジ-ル 基、 2 フエノキサジ-ル基、 3 フエノキサジ-ル基、 4 フエノキサジ-ル基、 10— フエノキサジニル基、 2—ォキサゾリル基、 4ーォキサゾリル基、 5—ォキサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザ-ル基、 2 チェニル基、 3 チェ-ル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一ルー 3—ィル基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5—ィル基、 3 メチルピロ一 ルー 1ーィル基、 3—メチルピロール— 2—ィル基、 3—メチルピロール— 4—ィル基、
3 メチルピロ一ルー 5—ィル基、 2 t—ブチルピロ一ルー 4ーィル基、 3—(2 フエ -ルプロピル)ピロール— 1—ィル基、 2—メチル—1—インドリル基、 4—メチル 1— インドリル基、 2—メチルー 3 インドリル基、 4ーメチルー 3 インドリル基、 2—t—ブ チル 1 インドリル基、 4 t ブチル 1 インドリル基、 2 t ブチル 3 インドリル基 、 4 t—ブチル 3—インドリル基等が挙げられる。
置換もしくは無置換のアルキル基の例としては、メチル基、ェチル基、プロピル基、 イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペン チル基、 n—へキシル基、 n—へプチル基、 n—ォクチル基、ヒドロキシメチル基、 1 ヒドロキシェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1, 2—ジヒ ドロキシェチル基、 1, 3 ジヒドロキシイソプロピル基、 2, 3 ジヒドロキシ tーブチ ル基、 1, 2, 3 トリヒドロキシプロピル基、クロロメチル基、 1—クロロェチル基、 2 ク ロロェチル基、 2 クロ口イソブチル基、 1, 2 ジクロロェチル基、 1, 3 ジクロロイソ プロピル基、 2, 3 ジクロロー t—ブチル基、 1, 2, 3 トリクロ口プロピル基、ブロモメ チル基、 1 ブロモェチル基、 2—ブロモェチル基、 2—ブロモイソブチル基、 1, 2- ジブロモェチル基、 1, 3 ジブロモイソプロピル基、 2, 3 ジブ口モー t ブチル基、 1, 2, 3 トリブロモプロピル基、ョードメチル基、 1ーョードエチル基、 2 ョードエチ ル基、 2 ョードイソブチル基、 1, 2 ジョードエチル基、 1, 3 ジョードイソプロピル 基、 2, 3 ジョードー t—ブチル基、 1, 2, 3 トリョードプロピル基、アミノメチル基、 1 アミノエチル基、 2—アミノエチル基、 2—ァミノイソブチル基、 1, 2—ジアミノエチ ル基、 1, 3 ジァミノイソプロピル基、 2, 3 ジアミノー t—ブチル基、 1, 2, 3 トリア ミノプロピル基、シァノメチル基、 1ーシァノエチル基、 2—シァノエチル基、 2—シァノ イソブチル基、 1, 2 ジシァノエチル基、 1, 3 ジシァノイソプロピル基、 2, 3 ジシ ァノー t—ブチル基、 1, 2, 3 トリシアノプロピル基、ニトロメチル基、 1 -トロェチ ル基、 2 -トロェチル基、 2 -トロイソブチル基、 1, 2 ジニトロェチル基、 1, 3— ジニトロイソプロピル基、 2, 3 ジニトロ— t—ブチル基、 1, 2, 3 トリ-トロプロピル 基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、 4ーメ チルシクロへキシル基、 1ーァダマンチル基、 2—ァダマンチル基、 1 ノルボル-ル 基、 2—ノルボルニル基等が挙げられる。
[0051] 置換もしくは無置換のアルコキシ基は OYと表され、 Yの例としては、前記置換も しくは無置換のアルキル基と同様のものが挙げられる。
置換もしくは無置換のァラルキル基の例としては、前記置換もしくは無置換のァリー ル基で置換された前記置換もしくは無置換のアルキル基等が挙げられる。
置換もしくは無置換のァリールォキシ基は OY'と表され、 Y'の例としては、前記 置換もしくは無置換のァリール基と同様のものが挙げられる。
置換もしくは無置換のァリールチオ基は SY'と表され、 Y'の例としては、前記置 換もしくは無置換のァリール基と同様のものが挙げられる。
置換もしくは無置換のアルコキシカルボ-ル基は COOYと表され、 Yの例として は、前記置換もしくは無置換のアルキル基と同様のものが挙げられる。
ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。
[0052] [化 2]
Figure imgf000018_0001
[式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50のァリール基である。
R1〜R1Qは、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50のァリール基 、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしくは無置換の 炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、 置換もしくは無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核原子 数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチ ォ基、置換もしくは無置換の炭素数 1〜50のアルコキシカルボ-ル基、カルボキシル 基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。
ただし、中心のアントラセンの 9位及び 10位に、対称型となる基が結合する場合は ない。]
上記の式における A1及び A2
の置換もしくは無置換の縮合芳香族基の例としては、前記と同様の例が挙げられる。 上記の式における Ar1及び Ar2の置換もしくは無置換のァリール基の例としては、 それぞれ前記と同様の例が挙げられる。
上記の式における R1〜R1Qの置換もしくは無置換のァリール基、芳香族複素環基、 アルキル基、アルコキシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基及びァ ルコキシカルボニル基の例としては、それぞれ前記と同様の例が挙げられる。
[化 3]
Figure imgf000019_0001
[式中、 Ar1及び Ar2'は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の ァリール基である。
R -R10^,それぞれ独立に、置換もしくは無置換の核炭素数 6〜50のァリール基 、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしくは無置換の 炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、 置換もしくは無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核原子 数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチ ォ基、置換もしくは無置換の炭素数 1〜50のアルコキシカルボ-ル基、カルボキシル 基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 ]
上記の式における Ar1'及び Ar2'の置換もしくは無置換のァリール基の例としては、 それぞれ前記と同様の例が挙げられる。
上記の式における R1〜R1Qの置換もしくは無置換のァリール基、芳香族複素環基、 アルキル基、アルコキシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基及びァ ルコキシカルボニル基の例としては、それぞれ前記と同様の例が挙げられる。
また、上記の 3つの式における、各基の置換基としては、ハロゲン原子、ヒドロキシ ル基、ニトロ基、シァノ基、アルキル基、ァリール基、シクロアルキル基、アルコキシ基 、芳香族複素環基、ァラルキル基、ァリールォキシ基、ァリールチオ基、アルコキシ力 ルポ二ル基、又はカルボキシル基等が挙げられる。
[0054] 青色系ドーパントとしては、青色系ドーパントは、スチリルァミン、ァミン置換スチリル 化合物、ァミン置換縮合芳香族環及び縮合芳香族環含有化合物の中から選ばれる 少なくとも一種類であることが好ましい。そのとき、青色系ドーパントは異なる複数の 化合物から構成されて 、もよ 、。上記スチリルァミン及びアミン置換スチリル化合物と しては、例えば下記式(1) , (2)で示される化合物が、上記縮合芳香族環含有化合 物としては、例えば下記式(3)で示される化合物が挙げられる。
[0055] [化 4]
Figure imgf000020_0001
[0056] 〔式中、 Ar3、 Ar4及び ΑΓΊま、それぞれ独立に、炭素原子数 6〜40の置換もしくは無 置換の芳香族基を示し、それらの中の少なくとも一つはスチリル基を含み、 ρは 1〜3 の整数を示す。〕
[0057] [化 5]
Figure imgf000020_0002
[0058] 〔式中、 Ar6及び Ar7は、それぞれ独立に、炭素原子数 6〜30のァリーレン基、 E1及 ひ Έ2は、それぞれ独立に、炭素原子数 6〜30のァリール基もしくはアルキル基、水 素原子又はシァノ基を示し、 qは 1〜3の整数を示す。 U及び Z又は Vはアミノ基を含 む置換基であり、該ァミノ基がァリールアミノ基であると好ましい。〕
[0059] [化 6]
( (3)
[0060] 〔式中、 Aは炭素原子数 1〜16のアルキル基もしくはアルコキシ基、炭素原子数 6〜 30の置換もしくは未置換のァリール基、炭素原子数 6〜30の置換もしくは未置換の アルキルアミノ基、又は炭素原子数 6〜30の置換もしくは未置換のァリールアミノ基、 Bは炭素原子数 10〜40の縮合芳香族環基を示し、 rは 1〜4の整数を示す。〕
[0061] (B)緑色系発光層
緑色系発光層はホスト材料と緑色系ドーパントを含む。
ホスト材料としては、青色系発光層で使用するホスト材料と同一のものを使用するこ とが好ましい。
[0062] ドーパントとしては、特に制限はないが、例えばヨーロッパ公開特許第 0281381号 公報、公開公報 2003— 249372号公報等に開示されているクマリン誘導体や、置 換アントラセン構造とァミン構造が連結した芳香族ァミン誘導体等を用いることができ る。
[0063] (C)橙色〜赤色系発光層
橙色〜赤色系発光層はホスト材料と橙色〜赤色系ドーパントを含む。
ホスト材料としては、青色系発光層で使用するホスト材料と同一のものを使用するこ とが好ましい。
[0064] ドーパントとしては、少なくとも一つのフルオランテン骨格又はペリレン骨格を有する 蛍光性ィ匕合物が使用でき、例えば下記式
[0065] [化 7]
Figure imgf000022_0001
[0066] 〔式中、 X21〜X24は、それぞれ独立に、炭素原子数 1〜20のアルキル基、置換もしく は無置換の炭素原子数 6〜30のァリール基であり、 X21と X22及び/又は X23と X24は 、炭素—炭素結合又は— O—、—S—を介して結合していてもよい。 x25〜x36は、水 素原子、直鎖、分岐もしくは環状の炭素原子数 1〜20のアルキル基、直鎖、分岐もし くは環状の炭素原子数 1〜20のアルコキシ基、置換もしくは無置換の炭素原子数 6 〜30のァリール基、置換もしくは無置換の炭素原子数 6〜30のァリールォキシ基、 置換もしくは無置換の炭素原子数 6〜30のァリールアミノ基、置換もしくは無置換の 炭素原子数 1〜30のアルキルアミノ基、置換もしくは無置換の炭素原子数 7〜30の ァリールアルキルアミノ基又は置換もしくは無置換炭素原子数 8〜30のァルケ-ル 基であり、隣接する置換基及び x25〜x36は結合して環状構造を形成していてもよい 。各式中の置換基 x25〜x36の少なくとも一つがァミン又はァルケ-ル基を含有すると 好ましい。〕
[0067] 有機発光層の厚さについては、好ましくは 5nm〜5 μ mの範囲内で設定することが できる。この理由は、有機発光層の厚さが 5nm未満となると、発光輝度や耐久性が 低下する場合があり、一方、有機発光層の厚さが 5 mを超えると、印加電圧の値が 高くなる場合があるためである。従って有機発光層の厚さを 10ηπι〜3 /ζ mの範囲内 とすることがより好ましぐ 20ηπι〜1 /ζ πιの範囲内の値とすることがさらに好ましい。
[0068] (3— 2)第 1電荷輸送層及び第 2電荷輸送層
第 1電荷輸送層又は第 2電荷輸送層は、正孔輸送層又は電子輸送層のいずれか であり、上述したように、第 1電極が陽極であり、第 2電極が陰極の場合は、第 1電荷 輸送層は正孔輸送層、第 2電荷輸送層は電子輸送層として機能する。逆に、第 1電 極が陰極、第 2電極が陽極の場合は、第 1電荷輸送層は電子輸送層、第 2電荷輸送 層は正孔輸送層として機能する。 尚、第 1電荷輸送層及び第 2電荷輸送層は、それぞれ単層構造でもよぐ又は 2層 以上の積層構造であってもよい。例えば、電荷輸送層を正孔 (電子)輸送層と正孔( 電子)注入層の 2層構造としてもよい
[0069] 正孔輸送層の材料としては、従来より光伝導材料の正孔輸送材料として慣用され て 、るものや有機 EL素子の正孔輸送層に使用されて 、る公知のものの中から任意 のものを選択して用いることができる。正孔輸送層の材料は、正孔の輸送、電子の障 壁性のいづれかを有するものであり、有機物、あるいは無機物のどちらでもよい。
[0070] 正孔輸送層は、より低い電界強度で正孔を発光層に輸送する材料が好ましい。即 ち、正孔の移動度が、 104〜106V/cmの電界印加時に、 10_4cm2ZV.秒以上で あると好ましい。
[0071] 具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォ キサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導 体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544号明細書、特 公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55 — 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 156953 号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体 (米 国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 55— 8806 4号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報、 同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 11 2637号公報、同 55— 74546号公報等参照)、フ -レンジァミン誘導体 (米国特許 第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号公報、同 4 7— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 1 19925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書、 同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号明 細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4, 012, 37 6号明糸田書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 144 250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許第 1, 110 , 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明 細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示の もの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フルォレノ ン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 7 17, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52 064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報 、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体( 特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 14642号公報、 同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10 652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報 、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国 特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリ ン系共重合体 (特開平 2— 282263号公報)、特開平 1— 211399号公報に開示され て 、る導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げることができる。
[0072] 電子輸送層の材料としては、陰極より注入された電子を発光層に伝達する機能を 有していればよぐその材料としては従来公知の化合物の中力 任意のものを選択し て用いることができる。
電子輸送層は数 nm〜数/ z mの膜厚で適宜選ばれるが、 104〜106VZcmの電界 印加時に電子移動度が 10_ 5cm2ZVs以上であるものが好まし 、。
[0073] 電子輸送層に用いられる材料としては、 8—ヒドロキシキノリン又はその誘導体の金 属錯体が好適である。
上記 8—ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、ォキシン (一般に 8—キノリノール又は 8—ヒドロキシキノリン)のキレートを含む金属キレートォ キシノイドィ匕合物(例えば、 Alq)が挙げられる。
[0074] 一方、ォキサジァゾール誘導体としては、下記の式で表される電子伝達化合物が 挙げられる。
[化 8]
Figure imgf000025_0001
(式中、 Ar5', Ar6', Ar7', Ar9', Ar10', Ar13'はそれぞれ置換又は無置換のァリール 基を示し、それぞれ互いに同一であっても異なっていてもよい。また Ar8', Ar11', Ar1 2'は置換又は無置換のァリーレン基を示し、それぞれ同一であっても異なって!/ヽても よい)
[0075] ここでァリール基としてはフエ-ル基、ビフエ-ル基、アントラ-ル基、ペリレニル基、 ピレニル基が挙げられる。またァリーレン基としてはフエ-レン基、ナフチレン基、ビフ ェ-レン基、アントラ-レン基、ペリレニレン基、ピレニレン基等が挙げられる。また置 換基としては炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基又はシァノ 基等が挙げられる。この電子伝達ィ匕合物は薄膜形成性のものが好まし 、。
[0076] 上記電子伝達性ィ匕合物の具体例としては下記のものを挙げることができる。
[化 9]
Figure imgf000026_0001
Figure imgf000026_0002
Meはメチル基であり、 tBuは tブチル基である
下記式で表される含窒素複素環誘導体
[化 10]
Figure imgf000026_0003
式中、 A3〜A5'は、窒素原子又は炭素原子である。
Rは、置換基を有していてもよい炭素数 6〜60のァリール基、置換基を有していて もよい炭素数 3〜60のへテロアリール基、炭素数 1〜20のアルキル基、炭素数 1〜2 0のハロアルキル基、炭素数 1〜20のアルコキシ基であり、 nは 0から 5の整数であり、 nが 2以上の整数であるとき、複数の Rは互いに同一又は異なって!/、てもよ!/、。
また、隣接する複数の R基同士で互いに結合して、置換又は未置換の炭素環式脂 肪族環、あるいは、置換又は未置換の炭素環式芳香族環を形成していてもよい。
Ar14は、置換基を有していてもよい炭素数 6〜60のァリール基、置換基を有してい てもよ 、炭素数 3〜60のへテロアリール基である。 Ar15は、水素原子、炭素数 1〜20のアルキル基、炭素数 1〜20のハロアルキル基 、炭素数 1〜20のアルコキシ基、置換基を有していてもよい炭素数 6〜60のァリール 基、置換基を有して 、てもよ 、炭素数 3〜60のへテロアリール基である。
ただし、 Ar14、 Ar15のいずれか一方は置換基を有していてもよい炭素数 10〜60の 縮合環基、置換基を有して 、てもよ 、炭素数 3〜60のへテロ縮合環基である。
L\ L2は、それぞれ単結合、置換基を有していてもよい炭素数 6〜60の縮合環、置 換基を有して 、てもよ 、炭素数 3〜60のへテロ縮合環又は置換基を有して 、てもよ V、フルォレ-レン基である。
[0078] 下記式で表される含窒素複素環誘導体
HAr— L— Ar — Ar
(式中、 HArは、置換基を有していても良い炭素数 3〜40の含窒素複素環であり、
L3は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を 有して 、てもよ 、炭素数 3〜60のへテロアリーレン基又は置換基を有して!/、てもよ!/ヽ フノレオレニレン基であり、
Ar16は、置換基を有して!/、てもよ 、炭素数 6〜60の 2価の芳香族炭化水素基であ り、
Ar17は、置換基を有して!/、てもよ 、炭素数 6〜60のァリール基又は、
置換基を有して 、てもよ 、炭素数 3〜60のへテロアリール基である。 )
[0079] 特開平第 09— 087616号公報に示されている、下記式で表されるシラシクロペンタ ジェン誘導体を用いた電界発光素子
[化 11]
Figure imgf000027_0001
(式中、 Q1及び Q2は、それぞれ独立に炭素数 1から 6までの飽和若しくは不飽和の 炭化水素基、アルコキシ基、ァルケ-ルォキシ基、アルキ-ルォキシ基、ヒドロキシ基 、置換若しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Q1と Q2が 結合して飽和又は不飽和の環を形成した構造であり、 R"〜R14は、それぞれ独立に 水素、ハロゲン、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ 基、ァリールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、ァミノ 基、アルキルカルボ-ル基、ァリールカルボ-ル基、アルコキシカルボ-ル基、ァリー ルォキシカルボニル基、ァゾ基、アルキルカルボニルォキシ基、ァリールカルボニル ォキシ基、アルコキシカルボ-ルォキシ基、ァリールォキシカルボ-ルォキシ基、ス ルフィ-ル基、スルフォ-ル基、スルファ-ル基、シリル基、力ルバモイル基、ァリール 基、ヘテロ環基、ァルケ-ル基、アルキ-ル基、ニトロ基、ホルミル基、ニトロソ基、ホ ルミルォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、ィ ソチオシァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環 が縮合した構造である。 )
特開平第 09— 194487号公報に示されている下記式で表されるシラシクロペンタ ジェン誘導体
[化 12]
Figure imgf000028_0001
(式中、 Q3及び Q4は、それぞれ独立に炭素数 1から 6までの飽和もしくは不飽和の炭 化水素基、アルコキシ基、ァルケ-ルォキシ基、アルキ-ルォキシ基、置換もしくは 無置換のァリール基、置換もしくは無置換のへテロ環又は Q3と Q4が結合して飽和も しくは不飽和の環を形成した構造であり、 R15〜R18は、それぞれ独立に水素、ハロゲ ン、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァリール ォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、アルキル カルボ-ル基、ァリールカルボ-ル基、アルコキシカルボ-ル基、ァリールォキシ力 ルボニル基、ァゾ基、アルキルカルボ-ルォキシ基、ァリールカルボ-ルォキシ基、 アルコキシカルボ-ルォキシ基、ァリールォキシカルボ-ルォキシ基、スルフィエル 基、スルフォ-ル基、スルファ-ル基、シリル基、力ルバモイル基、ァリール基、ヘテロ 環基、ァルケ-ル基、アルキ-ル基、ニトロ基、ホルミル基、ニトロソ基、ホルミルォキ シ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチオシァ ネート基、もしくはシァノ基又は隣接した場合には置換もしくは無置換の環が縮合し た構造である(但し、 R15及び R18がフエ-ル基の場合、 Q3及び Q4は、アルキル基及 びフエ-ル基ではなぐ R15及び R18がチェ-ル基の場合、 Q3及び Q4は、一価炭化水 素基を、 R16及び R17は、アルキル基、ァリール基、ァルケ-ル基又は R16と R17が結合 して環を形成する脂肪族基を同時に満たさない構造であり、 R15及び R18がシリル基 の場合、 R16、 R17、 Q3及び Q4は、それぞれ独立に、炭素数 1から 6の一価炭化水素 基又は水素原子でなぐ R15及び R16でベンゼン環が縮合した構造の場合、 Q3及び Q 4は、アルキル基及びフエ-ル基ではない。 ) )
[0081] 特再第 2000— 040586号公報に示されている下記式で表されるボラン誘導体 [化 13]
Figure imgf000029_0001
(式中、 R19〜R2°及び Q8は、それぞれ独立に、水素原子、飽和もしくは不飽和の炭 化水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又は ァリールォキシ基を示し、 Q5、 Q6及び Q7は、それぞれ独立に、飽和もしくは不飽和の 炭化水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基又はァリールォキ シ基を示し、 Q7と Q8の置換基は相互に結合して縮合環を形成してもよぐ rは 1〜3の 整数を示し、 rが 2以上の場合、 Q7は異なってもよい。但し、 rが 1、 Q5、 Q6及び R2°が メチル基であって、 R26が水素原子又は置換ボリル基の場合、及び rが 3で Q7がメチ ル基の場合を含まない。)
[0082] 特開平 10— 088121に示されて 、る下記式で示される化合物
[化 14]
Figure imgf000030_0001
[式中、 Q9及び Q1C>は、それぞれ独立に、下記式で示される配位子を表し、 L4は、ハ ロゲン原子、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアルキ ル基、置換もしくは未置換のァリール基、置換もしくは未置換の複素環基、 OR27 ( R27は水素原子、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロア ルキル基、置換もしくは未置換のァリール基、置換もしくは未置換の複素環基である 。)又は— O Ga— QU (Q12) (Q11及び Q12は、 Q9及び Q10と同じ意味を表す。)で示 される配位子を表す。 ]
[0083] [化 15]
Figure imgf000030_0002
(式中、環 A4および A5は、置換基を有してよい互いに縮合した 6員ァリール環構造で ある。)
[0084] この金属錯体は n型半導体としての性質が強ぐ電子注入能力が大きい。さらには 、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子と の結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
[0085] 上記式の配位子を形成する環 A4及び A5の置換基の具体的な例を挙げると、塩素 、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、ブチル基、 sec ブチル基、 tert ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル 基、ステアリル基、トリクロロメチル基等の置換もしくは未置換のアルキル基、フエ-ル 基、ナフチル基、 3—メチルフエ-ル基、 3—メトキシフエ-ル基、 3—フルオロフェ- ル基、 3—トリクロロメチルフエ-ル基、 3—トリフルォロメチルフエ-ル基、 3— -トロフ ェニル基等の置換もしくは未置換のァリール基、メトキシ基、 n—ブトキシ基、 tert—ブ トキシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキシ基、 2 , 2, 3, 3—テ卜ラフルォロプロポキシ基、 1, 1, 1, 3, 3, 3 へキサフルォロ 2 プ 口ポキシ基、 6 - (パーフルォロェチル)へキシルォキシ基等の置換もしくは未置換の アルコキシ基、フエノキシ基、 p -トロフエノキシ基、 p—tert ブチルフエノキシ基、 3—フルオロフエノキシ基、ペンタフルォロフエ-ル基、 3—トリフルォロメチルフエノキ シ基等の置換もしくは未置換のァリールォキシ基、メチルチオ基、ェチルチオ基、 ter tーブチルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチオ基等の 置換もしくは未置換のアルキルチオ基、フエ-ルチオ基、 p -トロフエ-ルチオ基、 ptert ブチルフエ-ルチオ基、 3—フルオロフヱ-ルチオ基、ペンタフルォロフエ- ルチオ基、 3 トリフルォロメチルフエ-ルチオ基等の置換もしくは未置換のァリール チォ基、シァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、ェチルァミノ 基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエニルァミノ基等の モノ又はジ置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシェチル)ァ ミノ基、ビスァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基等のァシル アミノ基、水酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメチルカルバモ ィル基、ェチルカルバモイル基、ジェチルカルバモイル基、プロィピルカルバモイル 基、ブチルカルバモイル基、フエ-ルカルバモイル基等の力ルバモイル基、カルボン 酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロへキシル基等のシクロアル キル基、フヱ-ル基、ナフチル基、ビフヱ-ル基、アントラ-ル基、フヱナントリル基、 フルォレニル基、ピレニル基等のァリール基、ピリジニル基、ピラジュル基、ピリミジ- ル基、ピリダジニル基、トリアジ-ル基、インドリニル基、キノリニル基、アタリジニル基 、ピロリジ -ル基、ジォキサ-ル基、ピベリジ-ル基、モルフオリジ-ル基、ピぺラジュ ル基、トリァチニル基、カルバゾリル基、フラニル基、チオフ ニル基、ォキサゾリル基 、ォキサジァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリル基、ベン ゾチアゾリル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ブラ二ル基等 の複素環基等がある。また、以上の置換基同士が結合してさらなる 6員ァリール環も しくは複素環を形成しても良 、。
4.光反射層 光反射層は、その一面から電荷を受け取り、他の面から電荷を放出する機能を有 することから、光反射性と同時に導電性のあることが必要である。そのため、光反射 層は金属膜や半導体膜であることが好ましい。この中で、青色から赤色に至る可視 光領域の広 1、範囲で高 、反射率を実現できると!、う観点で、金属膜が好まし 、。 金属膜の反射率は、その膜厚 d、複素屈折率 n— i ' κ、表面粗さ (RMS粗さ) σで 決まる。好ましい金属膜の材料としては、複素屈折率の実部 η、虚部 Κ (光吸収係数 に相当)ともに小さいものが好ましい。具体的には、 Au, Ag, Cu, Mg, Al, Ni, Pd 及びこれらの合金等を挙げることができる。膜厚 dが薄い場合、光が透過してしまい 反射率が小さくなる。
使用する金属種の複素屈折率虚部 κの値にもよるが、光反射層の膜厚としては 5n m以上であることが好ま U、。
また、表面粗さ σが大きい場合、光が乱反射し有機 EL素子の発光面と垂直な方向 へ反射される成分が少なくなるため、表面粗さ σとしては、 lOnm未満であることが好 ましぐ 5nm未満であることがより好ましい。
[0087] 5.ガスバリア層
有機発光層内部への水分や酸素侵入を防止するために、第 2電極を覆うように、ガ スノ リア層を設けることが好ましい。ガスノ リア層は、通常、透明絶縁体からなり、具体 的には、乾燥剤、ドライガス、フッ化炭化水素等の不活性液体を封入した構成である ことが好ましい。また、防湿性に優れた材料であれば、無機酸化物層や無機窒化物 層、無機酸窒化物層であることが好ましい。例えば、シリカ、アルミナ、 A10N、 SiAl ON, SiNx等が挙げられる。
[実施例]
[0088] 以下、本発明を実施例によってさらに具体的に説明する。
実施例 1
150mm X I 50mm X O. 7mmの支持基板上に、 ITOをスパッタリングにより 150η mの厚みになるように成膜し、さらに、アルミニウムをスパッタリングにより lOOnmの厚 みになるように成膜した。この ITOZアルミニウム膜は、第 1電極として機能する。 この第 1電極付き基板をイソプロピルアルコール中で超音波洗浄を 5分間行った後 、 UVオゾン洗浄を 30分間行った。洗浄後の第 1電極付き基板を真空蒸着装置の基 板ホルダーに装着した。尚、予め、それぞれのモリブテン製の加熱ボートに、正孔輸 送材料として 4, 4,—ビス [N— (1—ナフチル)—N—フエ-ルァミノ]ビフエ-ル(NP D)を、ァクセプター性ィ匕合物としてテトラフルォロテトラシァノキノジメタン (TCNQF )
4 を、光反射層の材料として Agを、発光材料のホストとして下記化合物(BH)を、青色 発光ドーパントとして下記化合物(BD)を、電子輸送材料としてトリス(8—キノリノール )アルミニウム (Alq)を、電子注入材料として LiFを、陰極材料として Mg及び Agを、 それぞれ装着し、さら〖こ、正孔注入補助材料及び陰極の取出し電極として ITOター ゲットを別のスパッタリング槽に装着した。
[0089] [化 16]
Figure imgf000033_0001
BD
[0090] まず、正孔注入補助層として、 ITOをスパッタリングにより lnm製膜した。次に、正 孔輸送層として機能する NPD :TCNQF共蒸着膜を、 100 : 1の膜厚比となるよう、
4
膜厚 130nmに共蒸着した。 NPD膜の成膜に続けて、光反射層として機能する Ag膜 を膜厚 5nmで蒸着した。 Ag膜の成膜に続けて、正孔輸送層として機能する NPD膜 を膜厚 20nmで蒸着した。 NPD膜に続けて、青色発光層として、化合物 BHと化合物 BDを 100 : 5の膜厚比となるように膜厚 30nmで共蒸着した。この膜上に電子輸送層 として、 Alq膜を膜厚 20nmで蒸着した。 [0091] 尚、有機発光層の蛍光スペクトルを以下の方法により測定した。
0. 7mm厚のガラス基板上に、青色発光層として、化合物 BHと化合物 BDを 100 :
5の膜厚比となるように膜厚 lOOnmで共蒸着し、波長 410nmの単色光を青色発光 層表面に照射したところ青色の蛍光を発した。この蛍光を、分光光度計に測定したと ころ、蛍光のピーク波長は 454nmであった。
[0092] この後、電子注入層として、 LiFを膜厚 lnmで蒸着し、この膜上に、 Agと Mgを成膜 速度比を 1: 9として lOnm蒸着し、さらに ITOを lOOnmの厚みでスパッタリング成膜 した。 LiFZMg :AgZlTO積層膜は、第 2電極として機能する。
以上の工程により、光反射層と第 2電極 (陰極)の間(光学距離 132nm)、及び第 1 電極と第 2電極の間 (光学距離 384nm)が共振部となっている有機 EL素子を作製し た。
[0093] 実施例 2
光反射層として機能する Ag膜の厚みを lOnmとしたこと以外は、実施例 1と同様に して有機 EL素子を作製した。
[0094] 実施例 3
中間光反射層として機能する Ag膜の厚みを 35nmとしたこと以外は、実施例 1と同 様にして有機 EL素子を作製した。
[0095] 実施例 4
実施例 1と同様に、ガラス基板上に第 1電極として ITO/アルミニウム膜を成膜した 次!、で、ネガ型レジスト IC28T— 3 (富士フィルムオーリン (株)製)をスピンコートし、 フォトマスクを介して紫外線を露光した後、現像液としてキシレンを用いて、未露光部 を現像した。その後、 160°C、 10分の条件でポストベータ処理し、有機 EL素子の非 発光領域となる部分にレジストパターンを得た。
[0096] このレジストパターン付き基板をイソプロピルアルコール中で超音波洗浄を 5分間行 つた後、 UVオゾン洗浄を 10分間行った。
次に、このレジストパターンの上から CVD法により SiON膜を厚み 300nmで成膜し その後、剥離液 (長瀬産業 (株): N303)を用いてネガ型レジストを除去し、電気絶 縁層に囲まれたビアホールを第 1電極上に形成した。
[0097] 次 、で、ビアホールに対応する部分にのみ開口部を有するマスクを通して Agを蒸 着してビアホール内部を充填し、さらに、そのマスクを外して、光反射層として機能す る Ag膜を 50nmの厚みで成膜した。
その後は、実施例 1と同様にして正孔輸送層、青色発光層、電子輸送層、第 2電極 を形成して、光反射層と第 2電極 (陰極)の間 (光学距離 132nm)のみが共振部とな つて 、る有機 EL素子を作製した。
[0098] 比較例 1
光反射層として機能する Ag膜を成膜しな力 たこと以外は、実施例 1と同様にして 有機 EL素子を作製した。
[0099] 評価例
上記の各実施例で作製した有機 EL素子の光反射層の反射率を測定した。具体的 には、 0. 7mm厚みのガラス基板上に Ag膜を、それぞれ 5nm (実施例 1)、 10nm ( 実施例 2)、 35nm (実施例 3)、 50nm (実施例 4)だけ成膜し、それぞれの基板の Ag 膜面の反射率を測定した。
その結果、青色発光層で発生する青色蛍光のピーク波長 (454nm)に対する反射 率は、それぞれ、 5. 8%、 10. 7%、 53. 5%、 72. 9%であった。
[0100] 有機 EL素子の発光性能評価
実施例 1〜4及び比較例 1で作製した有機 EL素子の第 1電極(陽極)と第 2電極 (陰 極)との間に、電流密度 lOmAZcm2の電流を通電し、分光放射輝度計 CS 1000 A ( コ-カミノルタ社製)にて CIE1931色度と発光効率 (単位: cdZA)を測定した。結果 を表 1に示す。
[0101] [表 1] C I E色度 (X) C I E色度 (y) 発光効率 (cd/A) 実施例 1 0. 13 0. 09 3. 97 実施例 2 0. 13 0. 09 4. 55 実施例 3 0. 13 0. 1 1 6. 80 実施例 4 0. 13 0. 12 4. 83 比較例 1 0. 13 0. 08 3. 39
[0102] 表 1の結果から、比較例 1の発光効率が 3.39cdZAであるのに比べ、本発明の素 子は、同じ青色色度の範囲において高い発光効率を示すことが確認できた。
産業上の利用可能性
[0103] 本発明の有機 EL素子は、民生用 TV、大型表示ディスプレイ、携帯電話用表示画 面等の各種表示装置の表示画面に用いることができる。

Claims

請求の範囲
[1] 第 1電極と、第 2電極と、これら電極間に挟持された有機物層からなり、
前記第 2電極は光透過性であり、
前記有機物層は、第 1電荷輸送層、有機発光層、及び第 2電荷輸送層を、この順 序で積層した構造を有し、
かつ、有機物層中に導電性を有する光反射層を有し、
前記光透過性第 2電極と光反射層の間が、前記有機発光層の発する光を増強する 光共振部を形成する有機エレクト口ルミネッセンス素子。
[2] さらに、前記第 1電極と前記第 2電極の間、及び Z又は、前記第 1電極と光反射層 の間が、前記有機発光層の発する光を増強する光共振部を形成する請求項 1に記 載の有機エレクト口ルミネッセンス素子。
[3] 前記光反射層が、前記第 1電荷輸送層の層間にある請求項 1又は 2に記載の有機 エレクトロノレミネッセンス素子。
[4] 前記第 1電荷輸送層が、異なる電荷輸送材料からなる二以上の電荷輸送層を有し 前記光反射層が、前記異なる電荷輸送層のいずれかの間に位置する請求項 3に 記載の有機エレクト口ルミネッセンス素子。
[5] 前記第 1電荷輸送層の、前記第 1電極と前記光反射層との間に位置する電荷輸送 層が、電荷生成機能を有する材料がドープされた層である、請求項 4に記載の有機 エレクトロノレミネッセンス素子。
[6] 前記光反射層が、前記有機発光層から lOnm以上離れた位置にある請求項 1〜5 のいずれかに記載の有機エレクト口ルミネッセンス素子。
[7] 第 1電極と、第 1電極を覆うように配置された平坦化層と、導電性を有する光反射層 と、有機物層と、第 2電極とを、この順に有し、
前記第 2電極は光透過性であり、
前記有機物層は、第 1電荷輸送層、有機発光層、及び第 2電荷輸送層とをこの順 序で保有し、
前記第 1電極と光反射層とが、電気的に接続され、 前記第 2電極と光反射層の間が、前記有機発光層の発する光を増強する光共振部 を形成する有機エレクト口ルミネッセンス素子。
請求項 1〜7のいずれか〖こ記載の有機エレクト口ルミネッセンス素子を含んで構成さ れる表示装置。
PCT/JP2006/304363 2005-03-17 2006-03-07 有機エレクトロルミネッセンス素子 WO2006098188A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/908,847 US7777413B2 (en) 2005-03-17 2006-03-07 Organic electroluminescent device having an optical resonator
JP2007508079A JPWO2006098188A1 (ja) 2005-03-17 2006-03-07 有機エレクトロルミネッセンス素子
US12/748,025 US20100181906A1 (en) 2005-03-17 2010-03-26 Organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-077000 2005-03-17
JP2005077000 2005-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/748,025 Continuation US20100181906A1 (en) 2005-03-17 2010-03-26 Organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2006098188A1 true WO2006098188A1 (ja) 2006-09-21

Family

ID=36991536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304363 WO2006098188A1 (ja) 2005-03-17 2006-03-07 有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (2) US7777413B2 (ja)
JP (1) JPWO2006098188A1 (ja)
TW (1) TWI394484B (ja)
WO (1) WO2006098188A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041690A1 (ja) * 2007-09-28 2009-04-02 Dai Nippon Printing Co., Ltd. 白色発光素子
WO2009125471A1 (ja) * 2008-04-07 2009-10-15 パイオニア株式会社 発光素子及び表示パネル
WO2010013689A1 (ja) * 2008-07-29 2010-02-04 ソニー株式会社 発光素子および有機エレクトロルミネッセンス表示装置
JP2010186637A (ja) * 2009-02-12 2010-08-26 Sony Corp 有機電界発光素子および表示装置
EP2265093A1 (en) * 2008-04-07 2010-12-22 Pioneer Corporation Light emitting element and display panel
JP2012146641A (ja) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd 発光装置及び照明装置
JP2012212664A (ja) * 2011-03-18 2012-11-01 Semiconductor Energy Lab Co Ltd 発光装置及び発光装置の作製方法
JP2012215852A (ja) * 2011-03-25 2012-11-08 Semiconductor Energy Lab Co Ltd 画像処理方法、表示装置
JP5181019B2 (ja) * 2008-04-07 2013-04-10 パイオニア株式会社 発光素子及び表示パネル
JP5350365B2 (ja) * 2008-04-07 2013-11-27 パイオニア株式会社 発光素子及び表示パネル
JP5362711B2 (ja) * 2008-05-21 2013-12-11 パイオニア株式会社 有機発光素子
WO2013190620A1 (ja) * 2012-06-18 2013-12-27 パイオニア株式会社 有機エレクトロルミネッセンス素子
WO2015186741A1 (ja) * 2014-06-03 2015-12-10 シャープ株式会社 有機el素子、及び製造方法
DE102008030845B4 (de) 2008-03-28 2021-09-23 Pictiva Displays International Limited Organisches elektronisches Bauelement und Verfahren zur Herstellung eines organischen elektronischen Bauelements

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293120B2 (ja) * 2008-11-28 2013-09-18 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
KR101708421B1 (ko) * 2010-08-23 2017-02-21 삼성디스플레이 주식회사 유기 발광 표시 장치
DE102011113428A1 (de) * 2011-09-14 2013-03-14 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
CN102760841B (zh) * 2012-07-11 2014-11-26 深圳市华星光电技术有限公司 有机发光二极管器件及相应的显示装置
JP2014032817A (ja) 2012-08-02 2014-02-20 Sony Corp 表示装置およびその製造方法、並びに電子機器の製造方法
KR101413461B1 (ko) * 2012-10-31 2014-07-01 에스에프씨 주식회사 유기 전계 발광 소자 및 이의 제조방법
CN106409876B (zh) * 2016-11-11 2019-04-05 京东方科技集团股份有限公司 一种显示器件
US10186676B2 (en) * 2017-03-13 2019-01-22 Intel Corporation Emissive devices for displays
CN109427988B (zh) * 2017-08-21 2021-02-12 上海和辉光电股份有限公司 显示面板及显示装置
WO2020056623A1 (en) 2018-09-19 2020-03-26 Boe Technology Group Co., Ltd. Light emitting diode and fabricating method thereof, display substrate, and display apparatus
WO2023205922A1 (zh) * 2022-04-24 2023-11-02 京东方科技集团股份有限公司 量子点发光二极管及其制备方法和显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243573A (ja) * 1999-02-18 2000-09-08 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子とその製造方法
WO2001039554A1 (en) * 1999-11-22 2001-05-31 Sony Corporation Display device
JP2003123987A (ja) * 2001-10-11 2003-04-25 Toyota Central Res & Dev Lab Inc 光共振器
JP2005044778A (ja) * 2003-07-19 2005-02-17 Samsung Sdi Co Ltd 電界発光素子
JP2005150042A (ja) * 2003-11-19 2005-06-09 Fuji Electric Holdings Co Ltd 有機el発光素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405710A (en) * 1993-11-22 1995-04-11 At&T Corp. Article comprising microcavity light sources
JP3809758B2 (ja) 1999-10-28 2006-08-16 ソニー株式会社 表示装置及び表示装置の製造方法
JP2003109775A (ja) * 2001-09-28 2003-04-11 Sony Corp 有機電界発光素子
JP3748406B2 (ja) * 2001-12-18 2006-02-22 株式会社日立製作所 表示装置
KR100875097B1 (ko) * 2002-09-18 2008-12-19 삼성모바일디스플레이주식회사 광학 공진 효과를 이용한 유기 전계발광 소자
JP4497881B2 (ja) * 2003-09-30 2010-07-07 三洋電機株式会社 有機el素子および有機elパネル
US7057339B2 (en) * 2004-04-08 2006-06-06 Eastman Kodak Company OLED with color change media
JP2006032315A (ja) * 2004-06-14 2006-02-02 Seiko Epson Corp 発光装置、電子機器、投射型表示装置、ラインヘッドおよび画像形成装置
US7023013B2 (en) * 2004-06-16 2006-04-04 Eastman Kodak Company Array of light-emitting OLED microcavity pixels
TWI272037B (en) * 2005-03-31 2007-01-21 Au Optronics Corp Organic electroluminescent display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243573A (ja) * 1999-02-18 2000-09-08 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子とその製造方法
WO2001039554A1 (en) * 1999-11-22 2001-05-31 Sony Corporation Display device
JP2003123987A (ja) * 2001-10-11 2003-04-25 Toyota Central Res & Dev Lab Inc 光共振器
JP2005044778A (ja) * 2003-07-19 2005-02-17 Samsung Sdi Co Ltd 電界発光素子
JP2005150042A (ja) * 2003-11-19 2005-06-09 Fuji Electric Holdings Co Ltd 有機el発光素子

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465730A (en) * 2007-09-28 2010-06-02 Dainippon Printing Co Ltd White color light emitting device
WO2009041690A1 (ja) * 2007-09-28 2009-04-02 Dai Nippon Printing Co., Ltd. 白色発光素子
DE102008030845B4 (de) 2008-03-28 2021-09-23 Pictiva Displays International Limited Organisches elektronisches Bauelement und Verfahren zur Herstellung eines organischen elektronischen Bauelements
EP2265094A1 (en) * 2008-04-07 2010-12-22 Pioneer Corporation Light emitting element and display panel
EP2701218A3 (en) * 2008-04-07 2014-07-16 Pioneer Corporation Light-emitting device and display panel
EP2265093A1 (en) * 2008-04-07 2010-12-22 Pioneer Corporation Light emitting element and display panel
JP5181019B2 (ja) * 2008-04-07 2013-04-10 パイオニア株式会社 発光素子及び表示パネル
WO2009125471A1 (ja) * 2008-04-07 2009-10-15 パイオニア株式会社 発光素子及び表示パネル
EP2265094A4 (en) * 2008-04-07 2011-12-07 Pioneer Corp LIGHT EMITTING ELEMENT AND DISPLAY PANEL
EP2265093A4 (en) * 2008-04-07 2012-05-09 Pioneer Corp LIGHT ELEMENT AND DISPLAY SHOW
US8294360B2 (en) 2008-04-07 2012-10-23 Pioneer Corporation Light-emitting element and display panel
JP5350365B2 (ja) * 2008-04-07 2013-11-27 パイオニア株式会社 発光素子及び表示パネル
JP5362711B2 (ja) * 2008-05-21 2013-12-11 パイオニア株式会社 有機発光素子
US8664677B2 (en) 2008-07-29 2014-03-04 Sony Corporation Light-emitting element and organic electroluminescent display device
CN102113415A (zh) * 2008-07-29 2011-06-29 索尼公司 发光元件和有机电致发光显示装置
WO2010013689A1 (ja) * 2008-07-29 2010-02-04 ソニー株式会社 発光素子および有機エレクトロルミネッセンス表示装置
JP2010186637A (ja) * 2009-02-12 2010-08-26 Sony Corp 有機電界発光素子および表示装置
JP2012146641A (ja) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd 発光装置及び照明装置
JP2012212664A (ja) * 2011-03-18 2012-11-01 Semiconductor Energy Lab Co Ltd 発光装置及び発光装置の作製方法
JP2012215852A (ja) * 2011-03-25 2012-11-08 Semiconductor Energy Lab Co Ltd 画像処理方法、表示装置
US9313479B2 (en) 2011-03-25 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Image processing method and display device
US10051255B2 (en) 2011-03-25 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Image processing method and display device
US10484660B2 (en) 2011-03-25 2019-11-19 Semiconductor Energy Laboratory Co., Ltd. Image processing method and display device
WO2013190620A1 (ja) * 2012-06-18 2013-12-27 パイオニア株式会社 有機エレクトロルミネッセンス素子
WO2015186741A1 (ja) * 2014-06-03 2015-12-10 シャープ株式会社 有機el素子、及び製造方法
US10230065B2 (en) 2014-06-03 2019-03-12 Sharp Kabushiki Kaisha Organic EL element having reflective interface transport layers

Also Published As

Publication number Publication date
US7777413B2 (en) 2010-08-17
US20100181906A1 (en) 2010-07-22
TWI394484B (zh) 2013-04-21
TW200640288A (en) 2006-11-16
JPWO2006098188A1 (ja) 2008-08-21
US20090230845A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
WO2006098188A1 (ja) 有機エレクトロルミネッセンス素子
KR101232592B1 (ko) 유기 전계 발광 컬러 발광 장치
KR101384046B1 (ko) 유기 전계발광 소자
KR102080638B1 (ko) 유기 전계발광 소자 및 표시장치
KR101364423B1 (ko) 유기 전계발광 소자
JP5616582B2 (ja) 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子
JP5294872B2 (ja) 有機エレクトロルミネッセンス素子
JP5647291B2 (ja) 有機el素子及び表示装置
WO2012014841A1 (ja) 有機エレクトロルミネッセンス素子
JP5097700B2 (ja) 有機エレクトロルミネッセンス素子
WO2006009039A1 (ja) カラー発光装置
WO2005109964A1 (ja) 有機エレクトロルミネッセンス表示装置
JPWO2008015949A1 (ja) 有機エレクトロルミネッセンス素子
JPH061973A (ja) 有機エレクトロルミネッセンス素子
WO2005091685A1 (ja) 有機エレクトロルミネッセンス素子及び表示装置
KR20120046779A (ko) 모노아민 유도체 및 그것을 사용하는 유기 일렉트로루미네선스 소자
WO2005086541A1 (ja) 有機エレクトロルミネッセンス素子及び表示装置
JP2014183226A (ja) 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
WO2005086540A1 (ja) 有機エレクトロルミネッセンス素子及び表示装置
US20110248251A1 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence element using nitrogen-containing heterocyclic derivative
JP2010135177A (ja) 色変換膜、色変換基板、色変換フィルタ基板、および有機電界発光素子、並びに色変換フィルタ基板の製造方法
JPWO2008111553A1 (ja) 有機el素子及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007508079

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11908847

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715333

Country of ref document: EP

Kind code of ref document: A1