WO2019026638A1 - センサユニットおよび空気調和機 - Google Patents

センサユニットおよび空気調和機 Download PDF

Info

Publication number
WO2019026638A1
WO2019026638A1 PCT/JP2018/027176 JP2018027176W WO2019026638A1 WO 2019026638 A1 WO2019026638 A1 WO 2019026638A1 JP 2018027176 W JP2018027176 W JP 2018027176W WO 2019026638 A1 WO2019026638 A1 WO 2019026638A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sensor
radar
sensor unit
air conditioner
Prior art date
Application number
PCT/JP2018/027176
Other languages
English (en)
French (fr)
Inventor
山下 哲也
宏祐 坪井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880048099.9A priority Critical patent/CN110945375B/zh
Priority to AU2018311770A priority patent/AU2018311770A1/en
Publication of WO2019026638A1 publication Critical patent/WO2019026638A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Definitions

  • the present invention relates to a sensor unit and an air conditioner.
  • a conventional sensor unit includes a casing and a Doppler sensor in which a sensor surface is disposed at a predetermined distance from the casing (see Patent Document 1).
  • the distance between the casing and the sensor surface of the Doppler sensor is determined so as to reduce the influence of the reflected wave emitted from the Doppler sensor and reflected by the casing on the detection accuracy of the Doppler sensor. .
  • an air conditioner there is an air conditioner provided with an indoor unit having a built-in Doppler sensor for detecting biological information (see, for example, International Publication No. 2016/181546 (Patent Document 2)).
  • the air conditioner includes a controller that controls the Doppler sensor, and transmits the biological information detected by the Doppler sensor to the outside through the communication interface connected to the controller. This makes it possible to use detection information of the Doppler sensor outside.
  • the attachment structure of the Doppler sensor to the casing is not sufficiently considered. Therefore, in the above-described conventional sensor unit, the distance between the casing and the sensor surface of the Doppler sensor may fluctuate due to vibration or the like, and the detection accuracy of the Doppler sensor may be reduced.
  • the subject of this invention is providing the sensor unit which can suppress the fall of the detection precision of a radar in the sensor unit which has a radar as a sensor.
  • the subject of this invention is providing the air conditioner which can transmit the detection information of a radar outside, even if the control part of an indoor unit fails.
  • a sensor unit is With the radar, A substrate on which the above radar is mounted, A cover member that covers the radar and the substrate; And a mounting member for mounting the substrate to the cover member such that the transmitting and receiving surface of the radar is disposed at a predetermined distance from the cover member.
  • the substrate on which the radar is mounted is attached to the cover member by the attachment member such that the transmission / reception surface of the radar and the cover member are disposed at a predetermined interval. For this reason, the fall of the detection accuracy of a radar can be suppressed by maintaining the predetermined space
  • the transmission and reception surface of the radar and a portion of the cover member facing the radar are parallel.
  • the radio wave emitted from the transmitting and receiving surface of the radar is perpendicularly incident on the cover member, so that the radio wave can be prevented from being refracted by the cover member and the propagation direction of the radio wave can be prevented from being disturbed. Therefore, it is possible to prevent the detection accuracy of the radar from being reduced by the cover member.
  • a detection range expansion unit is provided to expand the detection range of the radar.
  • the detection range expanding unit expands the detection range of the radar, so that a wide range of objects to be detected can be detected.
  • the detection range enlargement unit is provided on the cover member.
  • the mounting member can maintain the relative position between the detection range expansion part and the transmitting and receiving surface of the radar.
  • the positional relationship between the transmission / reception surface of the radar and the detection range expanding portion is prevented from being broken and the propagation direction of the radio wave is prevented from being disturbed, so that a desired detection range can be obtained.
  • An air conditioner is An indoor unit having an indoor control unit; A sensor unit connected to the indoor control unit; The above sensor unit Radar for detecting biological information; A radar control unit for controlling the above radar, And a wireless communication unit controlled by the radar control unit and wirelessly transmitting a signal representing the biological information detected by the radar.
  • biological information detected by the radar there is biological information such as heart beat, respiration and body movement of the human body.
  • a radar control unit for controlling the radar is provided separately from the indoor control unit for controlling the indoor unit, the radio control unit is controlled by the radar control unit, and the living body detected by the radar By wirelessly transmitting a signal representing information, even if the indoor control unit of the indoor unit fails, the radar control unit can control the radar, and the wireless communication unit can wirelessly transmit the radar detection information to the outside.
  • a communication state display unit is provided to display the communication state of the wireless communication unit of the sensor unit.
  • the user can visually confirm the communication state, and the convenience is improved.
  • a detection state display unit is provided to display the detection state of the radar of the sensor unit.
  • the user can visually confirm the detection state of the radar, and the convenience is improved.
  • the radar can be directed in an optimal direction while confirming the detection state of the radar displayed on the detection state display unit when the sensor unit is installed.
  • the sensor unit is separate from the indoor unit.
  • the radar is not influenced by the rotation of the blower fan of the indoor unit and the vibration due to the louver operation.
  • the radar detection accuracy can be improved compared to the case where the radar is built in.
  • optimal air conditioning control can be performed.
  • the sensor unit is separate from the indoor unit, the degree of freedom of installation is expanded, and the sensor unit can be installed with the detection direction of the radar having a relatively narrow detection range directed to the optimum direction.
  • the indoor unit and the sensor unit are connected by wiring, The indoor control unit of the indoor unit and the radar control unit of the sensor unit communicate via the wiring.
  • the indoor unit and the sensor unit are connected via the wiring, and the indoor control unit of the indoor unit and the radar control unit of the sensor unit communicate with each other via the wiring, compared with wireless communication etc.
  • the responsiveness is improved, and since it is sufficient to connect the wiring at the time of installation, there is no bother in connection setting of wireless communication and the like.
  • the sensor unit is supplied with power from the indoor unit via a power supply line included in the wiring.
  • the substrate on which the radar is mounted is covered by the attachment member so that the transmission / reception surface of the radar and the cover member are disposed at a predetermined interval.
  • a radar control unit for controlling the radar is provided separately from the indoor control unit for controlling the indoor unit, and the wireless communication unit is controlled by the radar control unit and detected by the radar.
  • FIG. 1 is a perspective view of a sensor unit according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the sensor unit.
  • FIG. 3 is a perspective view of the cover member.
  • FIG. 4 is a front view of the sensor unit.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a perspective view of the Doppler sensor and the sensor mounting board.
  • FIG. 7 is a top view of the sensor unit.
  • FIG. 8 is a view similar to FIG. 4 of the sensor unit of the second embodiment.
  • FIG. 9 is an external view of an air conditioner according to a fourth embodiment of the present invention.
  • FIG. 10 is a block diagram of the air conditioner.
  • FIG. 11 is a perspective view of a sensor unit of the air conditioner.
  • FIG. 12 is a perspective view of the sensor unit with the conical casing removed.
  • FIG. 13 is an exploded perspective view of the sensor unit.
  • FIG. 14
  • FIG. 1 is a perspective view of a sensor unit 1 according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the sensor unit 1 according to the present embodiment.
  • the sensor unit 1 includes a unit body 10, a fixing post 20 supporting the unit body 10, and a truncated cone shaped mounting portion 30 to which the lower end of the fixing post 20 is fixed.
  • the unit body 10 includes a conical-shaped casing 11 and a cover member 12 that covers the front surface of the casing 11.
  • the sensor unit 1 includes a Doppler sensor (Doppler radar, which is an example of a radar) 40, a sensor mounting substrate (substrate) 41, a control substrate 50, a display unit 51, and an operation unit 52. , Wireless module 53.
  • the sensor unit 1 includes a Doppler sensor 40, a sensor mounting substrate 41, a control substrate 50, a display unit 51, an operation unit 52, and a wireless module 53 in an internal space covered by the casing 11 and the cover member 12. Is housed.
  • FIG. 3 is a perspective view of the cover member 12, and FIG. 4 is a front view of the sensor unit 1. 5 is a cross-sectional view taken along the line VV of FIG.
  • the cover member 12 is disk-shaped and made of a material that transmits radio waves such as polycarbonate or ABS resin.
  • Four studs (attachment members) 13 are erected on one surface 12 a of the cover member 12. Referring to FIGS. 4 and 5, the cover member 12 is attached to the casing 11 so as to cover the Doppler sensor 40 and the sensor mounting substrate 41.
  • the fixed support 20 is provided at its upper end with a universal joint 21 with a built-in harness.
  • the universal joint 21 is fixed to the casing 11 using a mounting bracket (not shown).
  • the universal joint 21 is an example of a mechanism capable of changing the detection range of the Doppler sensor 40.
  • the mounting portion 30 includes a bottom cover 31 having a truncated cone shape and a bottom plate 32 covering the bottom cover 31.
  • the bottom cover 31 is provided with a hole into which the lower end of the fixed support 20 can be inserted, and the fixed support 20 is fitted to the hole and fixed to the bottom cover 31.
  • the sensor unit 1 is installed on a wall, a pillar or the like by the mounting unit 30.
  • FIG. 6 is a perspective view of the Doppler sensor 40 and the sensor mounting board 41. As shown in FIG.
  • the Doppler sensor 40 includes a flat sensor surface (transmission / reception surface) 40a.
  • the sensor surface 40 a is provided with a transmitting antenna (not shown) for transmitting a radio wave and a receiving antenna (not shown) for receiving a radio wave.
  • the frequency of the radio wave (transmission radio wave) transmitted from the transmission antenna is the frequency of the microwave band.
  • the sensor mounting substrate 41 has a Doppler sensor 40 disposed at the center, and is electrically connected to the Doppler sensor 40 by a plurality of connector terminals 42. In addition, through holes 43 are provided at the four corners of the sensor mounting substrate 41.
  • the sensor mounting substrate 41 is attached to the cover member 12 by inserting a screw (not shown) into the through hole 43 and screwing it with the stud 13 of the cover member 12. Referring to FIG. 5, the sensor mounting substrate 41 is attached to the cover member 12 such that the sensor surface 40 a of the Doppler sensor 40 is disposed at a predetermined distance from the cover member 12. Further, the sensor surface 40 a of the Doppler sensor 40 and the portion of the cover member 12 facing the Doppler sensor 40 are parallel.
  • the control board 50 includes a display unit 51, an operation unit 52, and a wireless module 53.
  • the control substrate 50 is connected to the sensor mounting substrate 41 by the wiring 60.
  • the control substrate 50 is connected to an external device 62 such as a power supply or an indoor unit of an air conditioner by a wire harness 61 inserted through the fixed support 20. Further, the control board 50 is attached to the casing 11 by an attachment (not shown).
  • FIG. 7 is a top view of the sensor unit 1.
  • the display unit 51 is an LED light guide for guiding the light emitted from the LED mounted on the front surface of the control substrate 50 to the outside, and displays various information such as the detection condition by the Doppler sensor 40 and the communication condition by the wireless module 53. Do. With reference to FIGS. 4 and 7, a part of the display unit 51 is inserted into an opening provided at the top of the casing 11, and can be viewed from the outside of the casing 11.
  • the operation unit 52 is a push button switch that can set activation and stop of the sensor unit 1 or the wireless module 53. Referring to FIGS. 4 and 7, the operation unit 52 is partially inserted into an opening provided at the top of the casing 11 and can be operated from the outside of the casing 11.
  • the wireless module 53 is mounted on the control board 50 and is electrically connected to the control board 50 by connector terminals.
  • the wireless module 53 transmits sensor information detected by the Doppler sensor 40 to, for example, a management server (not shown).
  • a management server not shown.
  • biological information such as heart beat, respiration and body movement of the human body.
  • the sensor mounting substrate 41 on which the Doppler sensor 40 is mounted is the stud 13 so that the sensor surface 40 a of the Doppler sensor 40 and the cover member 12 are arranged at a predetermined interval. Are attached to the cover member 12. Therefore, by keeping the predetermined distance between the Doppler sensor 40 and the cover member 12 at the optimum distance, it is possible to suppress the decrease in detection accuracy of the Doppler sensor 40.
  • the optimal distance indicates the distance between the sensor surface 40a of the Doppler sensor 40 and the cover member 12 in a state where the detection accuracy is good, and the material, thickness of the cover member 12, and the frequency of the transmission radio wave It is determined.
  • the radio wave emitted from the sensor surface 40a of the Doppler sensor 40 is perpendicularly incident on the cover member 12. Therefore, it is possible to prevent the radio wave from being refracted by the cover member 12 and disturbing the propagation direction of the radio wave. Therefore, it is possible to prevent the detection accuracy of the Doppler sensor 40 from being reduced by the cover member 12.
  • the sensor unit of the second embodiment of the present invention has the same configuration as the sensor unit of the first embodiment except for the cover member 12.
  • FIG. 8 is a view similar to FIG. 4 of the sensor unit of the second embodiment.
  • the same components as in FIGS. 1 to 7 are denoted by the same reference numerals.
  • the cover member 12 of the sensor unit according to the second embodiment is provided with a detection range enlargement unit 70 that expands the detection range of the Doppler sensor 40.
  • the detection range enlarging unit 70 is a deflection element such as a diffraction grating or a prism.
  • the detection range expanding unit 70 expands the detection range of the Doppler sensor 40, so that a wide range of objects to be detected can be detected.
  • the stud 13 is a relative position between the detection range expansion unit 70 and the sensor surface 40 a of the Doppler sensor 40.
  • the positional relationship between the sensor surface 40a of the Doppler sensor 40 and the detection range expanding unit 70 is prevented from being broken and the propagation direction of the radio wave is prevented from being disturbed, so a desired detection range can be obtained.
  • the sensor unit of the third embodiment of the present invention is the sensor unit of the first embodiment except that it has a single member having the function of the sensor mounting substrate 41 of the first embodiment and the function of the control substrate 50. It has the same configuration as that of FIG. Specifically, the sensor unit of the third embodiment includes a substrate on which the Doppler sensor 40 is mounted and attached to the stud 13 of the cover member 12, and the substrate includes the operation unit 52, the display unit 51, and wireless A module 53 is mounted.
  • the studs 13 are provided integrally with the cover member 12.
  • the present invention is not limited to this.
  • the studs 13 and the cover member 12 may be separated.
  • the frequency of the transmission radio wave of the Doppler sensor 40 is the frequency of the microwave band, but is not limited thereto, and may be the frequency of the millimeter wave band.
  • the Doppler sensor 40 may be a frequency modulated continuous wave (FM-CW) Doppler radar, or may be another type of Doppler radar.
  • FM-CW frequency modulated continuous wave
  • the Doppler radar is used as an example of the radar, but other radars may be used.
  • the other radars include pulse radar, CW (Continuous Wave) radar, FM-CW radar and the like.
  • FIG. 9 is an external view of an air conditioner according to a fourth embodiment of the present invention.
  • the air conditioner according to the fourth embodiment includes, as shown in FIG. 9, an indoor unit 100, a sensor unit 200 separate from the indoor unit 100, and an outdoor unit (not shown) connected to the indoor unit 100. There is.
  • the indoor unit 100 is installed on the upper side of the wall surface 1001 in the room, and is connected to an outlet 1002 provided on the same wall surface 1001 via a power cable 1010.
  • the sensor unit 200 is installed below the indoor unit 100 of the wall surface 1001.
  • the sensor unit 200 is connected to the indoor unit 100 via a cable 1020.
  • the cable 1020 is an example of wiring.
  • the sensor unit 200 is not limited to a wall surface, and may be installed on a ceiling.
  • FIG. 10 shows a block diagram of the air conditioner.
  • the same components as in FIG. 9 are assigned the same reference numerals.
  • the indoor unit 100 includes a power supply unit 1101 and an indoor control unit 1102 that controls a blower fan (not shown) and the like.
  • the sensor unit 200 also includes a Doppler sensor 1201 as an example of a radar, a sensor control unit 1202 that controls the Doppler sensor 1201, and a wireless communication unit 1203.
  • the sensor control unit 1202 transmits a control signal for controlling the operation of the indoor unit 100 based on the biological information detected by the Doppler sensor 1201.
  • the sensor control unit 1202 is an example of a radar control unit.
  • the wireless communication unit 1203 communicates with a portable information terminal (for example, a smartphone) or a server via a wireless adapter or the like (not shown) using WiFi (registered trademark) which is a wireless LAN standard as an example of a communication standard. Note that other communication standards such as Bluetooth (registered trademark) may be used instead of WiFi. Also, the wireless communication unit 1203 may directly communicate with the portable information terminal.
  • WiFi registered trademark
  • WiFi registered trademark
  • Bluetooth registered trademark
  • the Doppler sensor 1201 uses an FM-CW (Frequency Modulated Continuous Wave) Doppler radar.
  • FM-CW Frequency Modulated Continuous Wave
  • the Doppler sensor 1201 When microwave (or millimeter wave) frequency-modulated from the Doppler sensor 1201 is emitted to the human body and the distance between the human body and the Doppler sensor 1201 changes, the reflected wave reflected by the human body changes due to the Doppler effect.
  • the reflected wave from the human body is received by the Doppler sensor 1201, and the signal of the received reflected wave is processed by the sensor control unit 1202 to detect biological information such as heartbeat, respiration, and body movement of the human body.
  • a cable 1020 connecting the indoor unit 100 and the sensor unit 200 has a signal line 1020a and a power supply line 1020b.
  • the sensor control unit 1202 is connected to the indoor control unit 1102 via a signal line 1020 a.
  • the sensor unit 200 is supplied with power from the power supply unit 1101 of the indoor unit 100 via the power supply line 1020 b.
  • FIG. 11 shows a perspective view of the sensor unit 200. As shown in FIG. 11
  • the sensor unit 200 has a unit body 1210, a fixing post 1220 for supporting the unit body 1210, and a truncated cone shaped mounting portion 1230 to which the lower end of the fixing post 1220 is fixed.
  • the unit body 1210 has a conical casing 1211 and a cover member 1212 that covers the front of the casing 1211.
  • FIG. 12 shows a perspective view of the sensor unit 200 in a state in which the conical casing 1211 is removed.
  • the same components as in FIG. 11 are assigned the same reference numerals.
  • a universal joint 1221 with a built-in harness is provided at the upper end of the fixed support 1220.
  • the universal joint 1221 is fixed to the casing 1211 using a mounting bracket (not shown).
  • the universal joint 1221 is an example of a mechanism capable of changing the detection range of the Doppler sensor 1201.
  • FIG. 13 is an exploded perspective view of the sensor unit 200.
  • the same components as in FIGS. 11 and 12 are assigned the same reference numerals.
  • the sensor mounting substrate 1214 on which the Doppler sensor 1201 is mounted is provided via four studs 1213 (only one is shown in FIG. 13) erected on the back surface side of the cover member 1212. It is fixed to the cover member 1212. Further, the unit control board 1215 is fixed to a mounting bracket (not shown).
  • the unit control board 1215 has a sensor control unit 1202 (shown in FIG. 10). The sensor mounting substrate 1214 and the unit control substrate 1215 are connected via a wire (not shown).
  • a wireless module that is a wireless communication unit 1203 is mounted.
  • the push button switch 1218 and the light guide 1217 are mounted on the front and upper side of the unit control board 1215.
  • the light guide 1217 guides the light emitted from the light emitting diodes LED1 and LED2 mounted on the front surface of the unit control board 1215 to the outside.
  • the light guide 1217 has a communication state display unit 1217 a that lights up with light emitted from the light emitting diode LED 1 and a detection state display unit 1217 b that lights up with light emitted from the light emitting diode LED 2.
  • the communication status display unit 1217 a displays the communication status by the wireless communication unit 1203, and the detection status display unit 1217 b displays the detection status by the Doppler sensor 1201.
  • the communication state display unit 1217 a and the detection state display unit 1217 b of the light guide 1217 are inserted in the opening provided in the upper part of the casing 1211 and can be visually recognized from the outside.
  • activation and stop of the sensor unit 200 and the wireless communication unit 1203 are set by the push button switch 1218.
  • a part of the push button switch 1218 is inserted into an opening provided at the top of the casing 1211 and can be operated from the outside.
  • the mounting portion 1230 has a truncated cone-shaped bottom cover 1203a whose bottom opens, and a bottom plate 1203b covering the bottom cover 1203a.
  • the cable 1020 (shown in FIG. 9) is inserted into the fixed support 1220 via the mounting portion 1230, and the distal end of the cable 1020 is connected to the unit control board 1215 via the universal joint 1221.
  • the sensor control unit 1202 for controlling the Doppler sensor 1201 is provided separately from the indoor control unit 1102 for controlling the indoor unit 100, and the sensor control unit 1202 controls the wireless communication unit 1203. And wirelessly transmit a signal representing the biological information detected by the Doppler sensor 1201. Therefore, even if the indoor control unit 1102 of the indoor unit 100 breaks down, the sensor control unit 1202 can control the Doppler sensor 1201, and the wireless communication unit 1203 can wirelessly transmit detection information of the Doppler sensor 1201 to the outside.
  • the user can visually confirm the communication state, and the convenience is improved.
  • the communication state (communication on / off, radio wave intensity, communication speed, connection mode, etc.) of the wireless communication unit 1203 is displayed by blinking or color change of the communication state display unit 1217a.
  • the user can visually confirm the detection state of the Doppler sensor 1201, and the convenience is improved.
  • the Doppler sensor 1201 is directed in the optimum direction while confirming the detection state of the Doppler sensor 1201 displayed on the detection state display unit 1217b. It can be turned.
  • the detection state of the Doppler sensor 1201 is displayed by blinking or color change of the detection state display unit 1217b.
  • the detection state display unit 1217b and the detection state display unit 1217b are lighted by the light emitting diodes LED1 and LED2.
  • the detection state display unit and the detection state display unit are not limited thereto, and a liquid crystal display element etc. May be used.
  • the detection accuracy of the Doppler sensor 1201 can be improved as compared with the case where the indoor unit 100 incorporates the Doppler sensor.
  • the sensor control unit 1202 transmits a control signal to the indoor unit 100.
  • the air conditioner By controlling the operation of the air conditioner, optimal air conditioning control is possible.
  • the sensor unit 200 is separate from the indoor unit 100, the degree of freedom of installation is expanded, and the sensor unit 200 is installed with the detection direction of the Doppler sensor 1201 having a relatively narrow detection range directed to the optimum direction. be able to.
  • the indoor unit 100 and the sensor unit 200 are connected via the cable 1020 (wiring), and the indoor control unit 1102 of the indoor unit 100 and the sensor control unit 1202 of the sensor unit 200 are included in the cable 1020 (wiring).
  • Communication is performed with each other via the signal line 1020a, so that responsiveness can be improved as compared with wireless communication and the like, and only connection of the cable 1020 at the time of installation is required, so that connection setting of wireless communication and the like is not bothersome.
  • the unit main body 1210 which is the mounting portion of the Doppler sensor 1201 can be rotatably supported by the universal joint 1221, so that the detection direction of the Doppler sensor 1201 can be oriented more optimally.
  • the FM-CW Doppler sensor 1201 is used as an example of the radar, but the radar is not limited to this, and pulse radar, CW (Continuous Wave; connection wave) radar, FM-CW radar, FM -Other Doppler radars may be used except the CW method.
  • FIG. 14 shows a block diagram of an air conditioner according to a fifth embodiment of the present invention.
  • the air conditioner according to the fifth embodiment has the same configuration as the air conditioner according to the fourth embodiment except that the sensor unit 400 is mounted in the indoor unit 300, and the same components as those in the fourth embodiment are used. Have the same reference numerals.
  • the indoor unit 300 includes a power supply unit 1101, an indoor control unit 1102 that controls a blower fan (not shown) and the like, and a sensor unit 400.
  • the sensor unit 400 includes a Doppler sensor 1201, a sensor control unit 1202 that controls the Doppler sensor 1201, and a wireless communication unit 1203.
  • the sensor control unit 1202 transmits a control signal for controlling the operation of the indoor unit 100 based on the biological information detected by the Doppler sensor 1201.
  • the indoor unit 300 further includes a communication state display unit (not shown) for displaying the communication state of the wireless communication unit 1203 of the sensor unit 400 and a detection state display unit for displaying the detection state of the Doppler sensor 1201 of the sensor unit 400. (Not shown).
  • the air conditioner of the fifth embodiment has the same effect as the air conditioner of the fourth embodiment.
  • the sensor unit of the air conditioner according to the sixth embodiment of the present invention has the same configuration as the sensor unit 200 according to the fourth embodiment except for the image sensor, and FIGS. 9 to 13 are referred to.
  • the sensor unit of the air conditioner according to the sixth embodiment has a Doppler sensor 1201, a sensor control unit 1202, and an image sensor.
  • a sensor control unit 1202 controls the Doppler sensor 1201 and an image sensor.
  • each sensor is not good at providing the image sensor that detects the physical quantity different from the physical quantity (biometric information such as the heartbeat, respiration, body movement of the human body) detected by the Doppler sensor 1201 By compensating for each other, it becomes possible to accurately determine the indoor situation.
  • the image sensor can detect the number of people in the room based on the captured image, or can identify an individual by face recognition or the like.
  • the image sensor may have a reduced (or undetectable) detection capability in the dark, or may not be able to detect an obstruction.
  • biological information such as heart beat, respiration and body movement of the human body can be detected even in the dark, and even if there is a shield, it is made of a material that transmits microwaves (or millimeter waves). If it is a shielding object, it is detectable.
  • the air conditioner according to the seventh embodiment of the present invention has the same configuration as the air conditioner according to the fourth embodiment except for the image sensor of the sensor unit and the pyroelectric sensor, and FIGS. 9 to 13 are referred to. .
  • the air conditioner according to the seventh embodiment includes the image sensor and the pyroelectric sensor for detecting a physical quantity different from the physical quantity detected by the Doppler sensor 1201 (biological information such as heart rate, respiration and body movement of the human body). It is possible to accurately determine the indoor condition by compensating each other for which each sensor is not good.
  • a pyroelectric sensor which is an example of an infrared sensor, can detect a change in infrared light in a wide range as compared with the Doppler sensor 1201 or an image sensor.
  • the air conditioner in which the indoor unit 100 and the sensor unit 200 are connected by the cable 1020 has been described in the fourth, sixth, and seventh embodiments, the air conditioner in which the indoor unit and the sensor unit are wirelessly connected is described The invention may be applied.
  • Power cable 1020 ... Cable 1020a ... Signal line 1020b ... Power supply line 1101 ... Power supply unit 1102 ... Indoor control unit 1201 ... Doppler sensor (radar) 1202 ... sensor control unit (radar control unit) 1203 ... Wireless communication unit 1210 ... Unit main body 1211 ... Casing 1212 ... Cover member 1213 ... Stud 1214 ... Sensor mounting board 1215 ... Unit control board 1217 ... Light guide 1217a ... Communication status display section 1217b ... Detection status display section 1218 ... Push button Switch 1220 ... Fixed post 1221 ... Universal joint 1230 ... Installation part LED1, LED2 ... Light emitting diode

Abstract

センサユニット(1)は、レーダー(40)と、レーダー(40)が搭載された基板(41)と、レーダー(40)と、基板(41)とを覆うカバー部材(12)と、レーダー(40)の送受信面(40a)が、カバー部材(12)から所定の間隔をあけて配置されるように、基板(41)をカバー部材(12)に取り付けるための取付部材(13)とを備える。

Description

センサユニットおよび空気調和機
 本発明は、センサユニットおよび空気調和機に関する。
 従来のセンサユニットとしては、ケーシングと、ケーシングからセンサ面が所定の間隔をあけて配置されたドップラーセンサとを備えるものがある(特許文献1参照)。このセンサユニットでは、ドップラーセンサから発射されてケーシングで反射された反射波がドップラーセンサの検出精度に与える影響を低減するように、ケーシングとドップラーセンサのセンサ面との間の距離が決定されている。
 また、従来、空気調和機としては、生体情報を検知するドップラーセンサを内蔵する室内ユニットを備えたものがある(例えば、国際公開第2016/181546号(特許文献2)参照)。
 上記空気調和機では、ドップラーセンサを制御するコントローラを備え、ドップラーセンサにより検知された生体情報を、コントローラに接続された通信インターフェースを介して外部に送信する。これにより、ドップラーセンサの検知情報を外部で利用することが可能になる。
特開2002-286833号公報 国際公開第2016/181546号
 上記従来のセンサユニットでは、ドップラーセンサのケーシングへの取付構造については、十分に考慮されていない。このため、上記従来のセンサユニットでは、ケーシングとドップラーセンサのセンサ面との間の距離が振動などにより変動し、ドップラーセンサの検出精度が低下する恐れがある。
 また、上記従来の空気調和機では、室内ユニットのコントローラが故障すると、ドップラーセンサの検知情報を外部に送信することができなくなるという問題がある。
 そこで、この発明の課題は、センサとしてレーダーを有するセンサユニットにおいて、レーダーの検出精度の低下を抑制できるセンサユニットを提供することにある。
 また、この発明の課題は、室内ユニットの制御部が故障しても、レーダーの検知情報を外部に送信することができる空気調和機を提供することにある。
 この発明の一態様に係るセンサユニットは、
 レーダーと、
 上記レーダーが搭載された基板と、
 上記レーダーと、上記基板とを覆うカバー部材と、
 上記レーダーの送受信面が、上記カバー部材から所定の間隔をあけて配置されるように、上記基板を上記カバー部材に取り付けるための取付部材と
 を備えることを特徴とする。
 上記構成のセンサユニットによれば、レーダーの送受信面とカバー部材とが所定の間隔をあけて配置されるように、レーダーが搭載された基板は、取付部材によってカバー部材に取り付けられる。このため、レーダーとカバー部材との間の所定の間隔を最適距離に保つことによって、レーダーの検出精度の低下を抑制できる。
 一実施形態では、
 上記レーダーの上記送受信面と、上記カバー部材の上記レーダーと対向する部分とが平行である。
 上記実施形態では、レーダーの送受信面から発射された電波は、カバー部材に垂直に入射するので、カバー部材で電波が屈折して電波の伝播方向が乱れることを防止できる。このため、カバー部材によってレーダーの検出精度が低下することを防止できる。
 一実施形態では、
 上記レーダーの検出範囲を拡大する検出範囲拡大部を備える。
 上記実施形態では、検出範囲拡大部により、レーダーの検出範囲を拡大するので、広範囲の被検知物を検出できる。
 一実施形態では、
 上記検出範囲拡大部は、上記カバー部材に設けられている。
 上記実施形態では、検出範囲拡大部(例えば、回折格子)がカバー部材に設けられているため、取付部材は、検出範囲拡大部とレーダーの送受信面との相対的な位置を維持できる。このため、レーダーの送受信面と検出範囲拡大部との位置関係が崩れて電波の伝播方向が乱れることが防止されるので、所望の検出範囲が得られる。
 この発明の一態様に係る空気調和機は、
 室内制御部を有する室内ユニットと、
 上記室内制御部に接続されたセンサユニットと
を備え、
 上記センサユニットは、
 生体情報を検出するためのレーダーと、
 上記レーダーを制御するレーダー制御部と、
 上記レーダー制御部により制御され、上記レーダーにより検出された上記生体情報を表す信号を無線送信する無線通信部と
を有することを特徴とする。
 ここで、レーダーにより検出される生体情報として、人体の心拍、呼吸、体動などの生体情報がある。
 上記構成の空気調和機によれば、室内ユニットを制御する室内制御部とは別にレーダーを制御するレーダー制御部を備え、そのレーダー制御部により無線通信部を制御して、レーダーで検出された生体情報を表す信号を無線送信することによって、室内ユニットの室内制御部が故障しても、レーダー制御部によりレーダーを制御して、無線通信部によりレーダーの検知情報を外部に無線送信することができる。
 また、一実施形態の空気調和機では、
 上記センサユニットの上記無線通信部の通信状態を表示する通信状態表示部を備える。
 上記実施形態によれば、センサユニットの無線通信部の通信状態を通信状態表示部により表示することによって、通信状態をユーザーが視覚的に確認でき、利便性が向上する。
 また、一実施形態の空気調和機では、
 上記センサユニットの上記レーダーの検知状態を表示する検知状態表示部を備える。
 上記実施形態によれば、センサユニットのレーダーの検知状態を検知状態表示部により表示することによって、レーダーの検知状態をユーザーが視覚的に確認でき、利便性が向上する。例えば、センサユニットが室内ユニットと別体の場合、センサユニットの設置時に、検知状態表示部に表示されたレーダーの検知状態を確認しながら、最適な方向にレーダーを向けることができる。
 また、一実施形態の空気調和機では、
上記センサユニットは、上記室内ユニットと別体である。
 上記実施形態によれば、レーダーが搭載されたセンサユニットを室内ユニットとは別体とすることにより、室内ユニットの送風ファンの回転やルーバー動作による振動の影響をレーダーが受けないので、室内ユニットにレーダーを内蔵した場合に比べてレーダーの検知精度を向上できる。この室内ユニットと別体のセンサユニットに搭載されたレーダーで検出された正確な生体情報に基づいて、室内ユニットの運転を制御することにより、最適な空調制御が可能になる。さらに、センサユニットは、室内ユニットとは別体であるので、設置の自由度が広がり、検出範囲が比較的狭いレーダーの検出方向を最適な方向に向けてセンサユニットを設置することができる。
 また、一実施形態の空気調和機では、
 上記室内ユニットと上記センサユニットは、配線で接続され、
 上記室内ユニットの上記室内制御部と上記センサユニットの上記レーダー制御部は、上記配線を介して通信を行う。
 上記実施形態によれば、室内ユニットとセンサユニットが配線を介して接続され、その室内ユニットの室内制御部とセンサユニットのレーダー制御部が配線を介して互いに通信を行うので、無線通信などに比べて応答性が向上すると共に、設置時に配線を接続するだけでよいので、無線通信の接続設定などの煩わしさがない。
 また、一実施形態の空気調和機では、
 上記センサユニットは、上記室内ユニットから上記配線に含まれる電源線を介して給電される。
 上記実施形態によれば、室内ユニットから配線に含まれる電源線を介してセンサユニットに給電することによって、センサユニット用に電源コンセントを用意する必要がなくなる。
 以上より明らかなように、この発明のセンサユニットによれば、レーダーの送受信面とカバー部材とが所定の間隔をあけて配置されるように、レーダーが搭載された基板が、取付部材によってカバー部材に取り付けられることによって、レーダーの検出精度の低下を抑制できる。
 また、この発明の空気調和機によれば、室内ユニットを制御する室内制御部とは別にレーダーを制御するレーダー制御部を備え、そのレーダー制御部により無線通信部を制御して、レーダーにより検出された物理量を表す信号を無線送信することによって、室内ユニットの制御部が故障しても、レーダーの検知情報を外部に送信することができる空気調和機を実現することができる。
図1は、この発明の第1実施形態のセンサユニットの斜視図である。 図2は、上記センサユニットの分解斜視図である。 図3は、カバー部材の斜視図である。 図4は、上記センサユニットの正面図である。 図5は、図4のV-V線での断面図である。 図6は、ドップラーセンサとセンサ実装基板の斜視図である。 図7は、上記センサユニットの上面図である。 図8は、第2実施形態のセンサユニットの図4と同様の図である。 図9は、この発明の第4実施形態の空気調和機の外観図である。 図10は、上記空気調和機のブロック図である。 図11は、上記空気調和機のセンサユニットの斜視図である。 図12は、円錐形状のケーシングを外した状態のセンサユニットの斜視図である。 図13は、上記センサユニットの分解斜視図である。 図14は、この発明の第5実施形態の空気調和機のブロック図である。
 以下、本発明の実施形態に係るセンサユニットおよび空気調和機を添付図面を参照して説明する。
 〔第1実施形態〕
 図1は、この発明の第1実施形態のセンサユニット1の斜視図であり、図2は、本実施形態のセンサユニット1の分解斜視図である。
 図1を参照すると、センサユニット1は、ユニット本体10と、ユニット本体10を支持する固定支柱20と、固定支柱20の下端が固定された円錐台状の据付部30とを備える。
 図1および図2を参照すると、ユニット本体10は、円錐形状のケーシング11と、ケーシング11の前面を覆うカバー部材12とを備える。
 また、図2を参照すると、センサユニット1は、ドップラーセンサ(レーダーの一例であるドップラーレーダー)40と、センサ実装基板(基板)41と、制御基板50と、表示部51と、操作部52と、無線モジュール53とを更に備える。センサユニット1は、ケーシング11とカバー部材12とによって覆われた内部空間に、ドップラーセンサ40と、センサ実装基板41と、制御基板50と、表示部51と、操作部52と、無線モジュール53とを収容している。
 図3は、カバー部材12の斜視図であり、図4は、センサユニット1の正面図である。また、図5は、図4のV-V線での断面図である。
 図3を参照すると、カバー部材12は、円板状であり、ポリカーボネートまたはABS樹脂のような電波を透過する材料からなる。カバー部材12の一方の面12aには、4つのスタッド(取付部材)13が立設されている。図4および図5を参照すると、カバー部材12は、ドップラーセンサ40とセンサ実装基板41とを覆うようにケーシング11に取り付けられている。
 図2および図5を参照すると、固定支柱20は、ハーネス内蔵の自在継手21を上端に備える。自在継手21は、図示しない取り付け金具を用いてケーシング11に固定されている。自在継手21は、ドップラーセンサ40の検出範囲を変更可能な機構の一例である。
 図2および図5を参照すると、据付部30は、底部が開口する円錐台形状の底カバー31と、底カバー31を覆う底板32とを備える。底カバー31には、固定支柱20の下端を挿入可能な穴が設けられており、固定支柱20は、上記穴に嵌合して底カバー31に固定されている。センサユニット1は、据付部30によって壁または柱などに据え付けられる。
 図6は、ドップラーセンサ40とセンサ実装基板41の斜視図である。
 図6を参照すると、ドップラーセンサ40は、平板状のセンサ面(送受信面)40aを備えている。センサ面40aには、電波を送信する送信アンテナ(図示せず)と、電波を受信する受信アンテナ(図示せず)が設けられている。上記送信アンテナから送信する電波(送信電波)の周波数は、マイクロ波帯の周波数である。
 センサ実装基板41は、中央部にドップラーセンサ40が配置されており、複数のコネクタ端子42によってドップラーセンサ40と電気的に接続されている。また、センサ実装基板41の四隅には貫通孔43が設けられている。この貫通孔43に図示しないねじが挿通されてカバー部材12のスタッド13と螺合することで、センサ実装基板41は、カバー部材12に取り付けられる。図5を参照すると、センサ実装基板41は、ドップラーセンサ40のセンサ面40aがカバー部材12から所定の間隔をあけて配置されるように、カバー部材12に取り付けられている。また、ドップラーセンサ40のセンサ面40aと、カバー部材12のドップラーセンサ40と対向する部分とは平行である。
 図2および図5を参照すると、制御基板50は、表示部51と、操作部52と、無線モジュール53とが搭載されている。制御基板50は、配線60によりセンサ実装基板41と接続されている。制御基板50は、固定支柱20に挿通されたワイヤハーネス61により、電源または空気調和機の室内ユニットのような外部機器62と接続されている。また、制御基板50は、図示しない取り付け金具によってケーシング11に取り付けられている。
 図7は、センサユニット1の上面図である。
 表示部51は、制御基板50の前面に実装されたLEDから出射された光を外部に導くLED導光体であり、ドップラーセンサ40による検出状況や無線モジュール53による通信状況などの各種情報を表示する。図4および図7を参照すると、表示部51は、ケーシング11の上部に設けられた開口に一部が挿入されており、ケーシング11の外部から視認できる。
 操作部52は、センサユニット1または無線モジュール53の起動および停止を設定できる押ボタンスイッチである。図4および図7を参照すると、操作部52は、ケーシング11の上部に設けられた開口に一部が挿入されており、ケーシング11の外部から操作できる。
 図5を参照すると、無線モジュール53は、制御基板50に搭載されており、コネクタ端子により制御基板50と電気的に接続されている。無線モジュール53は、例えば図示しない管理サーバーなどにドップラーセンサ40によって検出されたセンサ情報を送信する。このセンサ情報として、人体の心拍、呼吸、体動などの生体情報がある。
 上記構成のセンサユニット1によれば、ドップラーセンサ40のセンサ面40aとカバー部材12とが所定の間隔をあけて配置されるように、ドップラーセンサ40が搭載されたセンサ実装基板41は、スタッド13によってカバー部材12に取り付けられる。このため、ドップラーセンサ40とカバー部材12との間の所定の間隔を最適距離に保つことによって、ドップラーセンサ40の検出精度の低下を抑制できる。ここで、最適距離とは、検出精度が良好な状態におけるドップラーセンサ40のセンサ面40aとカバー部材12との間の距離を示し、カバー部材12の材質、厚さ、および上記送信電波の周波数によって決定される。
 上記実施形態では、ドップラーセンサ40のセンサ面40aから発射された電波は、カバー部材12に垂直に入射するので、カバー部材12で電波が屈折して電波の伝播方向が乱れることを防止できる。このため、カバー部材12によってドップラーセンサ40の検出精度が低下することを防止できる。
 〔第2実施形態〕
 この発明の第2実施形態のセンサユニットは、カバー部材12を除いて第1実施形態のセンサユニットと同一の構成をしている。図8は、第2実施形態のセンサユニットの図4と同様の図である。図8において、図1~図7と同一の構成部には同一の参照符号を付している。
 図8を参照すると、第2実施形態のセンサユニットのカバー部材12には、ドップラーセンサ40の検出範囲を拡大する検出範囲拡大部70が設けられている。検出範囲拡大部70は、回折格子またはプリズムのような偏向素子である。
 上記実施形態では、検出範囲拡大部70により、ドップラーセンサ40の検出範囲を拡大するので、広範囲の被検知物を検出できる。
 上記実施形態では、検出範囲拡大部70(例えば、回折格子)がカバー部材12に設けられているため、スタッド13は、検出範囲拡大部70とドップラーセンサ40のセンサ面40aとの相対的な位置を維持できる。このため、ドップラーセンサ40のセンサ面40aと検出範囲拡大部70との位置関係が崩れて電波の伝播方向が乱れることが防止されるので、所望の検出範囲が得られる。
 〔第3実施形態〕
 この発明の第3実施形態のセンサユニットは、第1実施形態のセンサ実装基板41の機能と制御基板50の機能とを有する単一の部材を備えた点を除いて第1実施形態のセンサユニットと同一の構成をしており、図1を援用する。具体的には、第3実施形態のセンサユニットは、ドップラーセンサ40が搭載されてカバー部材12のスタッド13に取り付けられた基板を備え、上記基板は、操作部52と、表示部51と、無線モジュール53とが搭載されている。
 この第3実施形態では、第1実施形態と同様の作用効果を奏する。
 以上、本発明を好適な第1~第3実施形態により説明してきたが、本発明は特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲において、種々の変更が可能である。
 例えば、上記第1~第3実施形態では、スタッド13は、カバー部材12と一体に設けられていたが、これに限定されず、スタッド13とカバー部材12とは別体であってもよい。
 上記第1~第3実施形態では、ドップラーセンサ40の送信電波の周波数はマイクロ波帯の周波数であったが、これに限定されず、ミリ波帯の周波数であってもよい。
 上記第1~第3実施形態では、ドップラーセンサ40は、FM-CW(Frequency Modulated Continuous Wave)方式のドップラーレーダーであってもよいし、他の方式のドップラーレーダーであってもよい。
 また、上記第1~第3実施形態では、レーダーの一例としてドップラーレーダーを用いたが、他のレーダーを用いてもよい。ここで、上記他のレーダーとしては、パルスレーダー,CW(Continuous Wave)レーダー、FM-CWレーダーなどがある。
 〔第4実施形態〕
 図9はこの発明の第4実施形態の空気調和機の外観図を示している。
 この第4実施形態の空気調和機は、図9に示すように、室内ユニット100と、室内ユニット100と別体のセンサユニット200と、室内ユニット100と接続された図示しない室外ユニットとを備えている。
 また、室内ユニット100は、室内の壁面1001の上側に設置され、同じ壁面1001に設けられたコンセント1002に電源ケーブル1010を介して接続されている。
 また、センサユニット200は、壁面1001の室内ユニット100よりも下側に設置されている。このセンサユニット200は、室内ユニット100とケーブル1020を介して接続されている。ケーブル1020は、配線の一例である。なお、センサユニット200は、壁面に限らず、天井に設置してもよい。
 図10は上記空気調和機のブロック図を示している。図10において、図9と同一の構成部には同一参照番号を付している。
 図10に示すように、室内ユニット100は、電源部1101と、送風ファン(図示せず)などを制御する室内制御部1102とを有する。
 また、センサユニット200は、レーダーの一例としてのドップラーセンサ1201と、ドップラーセンサ1201を制御するセンサ制御部1202と、無線通信部1203とを有する。このセンサ制御部1202は、ドップラーセンサ1201により検出された生体情報に基づいて、室内ユニット100の運転を制御する制御信号を送信する。また、センサ制御部1202は、レーダー制御部の一例である。
 上記無線通信部1203は、通信規格の一例としての無線LANの規格であるWiFi(登録商標)を用い、図示しない無線アダプタなどを介して携帯情報端末(例えばスマートフォン)やサーバーなどと通信を行う。なお、WiFiの代わりにBluetooth(登録商標)などの他の通信規格を用いてもよい。また、無線通信部1203は、携帯情報端末と直接通信を行ってもよい。
 上記ドップラーセンサ1201は、FM-CW(Frequency Modulated Continuous Wave)方式のドップラーレーダーを用いている。
 上記ドップラーセンサ1201から周波数変調されたマイクロ波(またはミリ波)を人体に出射し、人体とドップラーセンサ1201との距離が変化すると、ドップラー効果によって人体で反射した反射波が変化する。この人体からの反射波をドップラーセンサ1201で受信して、受信した反射波の信号をセンサ制御部1202で処理することにより、人体の心拍、呼吸、体動などの生体情報を検知する。
 室内ユニット100とセンサユニット200を接続するケーブル1020は、信号線1020aと電源線1020bを有する。センサ制御部1202は、室内制御部1102と信号線1020aを介して接続されている。また、センサユニット200は、室内ユニット100の電源部1101から電源線1020bを介して給電される。
 図11はセンサユニット200の斜視図を示している。
 センサユニット200は、図11に示すように、ユニット本体1210と、ユニット本体1210を支持する固定支柱1220と、固定支柱1220の下端が固定された円錐台形状の据付部1230とを有する。
 ユニット本体1210は、円錐形状のケーシング1211と、ケーシング1211の前面を覆うカバー部材1212とを有する。
 また、図12は円錐形状のケーシング1211を外した状態のセンサユニット200の斜視図を示している。図12において、図11と同一の構成部には同一参照番号を付している。
 図12に示すように、固定支柱1220の上端にハーネス内蔵の自在継手1221を設けている。この自在継手1221は、図示しない取り付け金具を用いてケーシング1211に固定されている。上記自在継手1221は、ドップラーセンサ1201の検出範囲を変更可能な機構の一例である。
 また、図13は上記センサユニット200の分解斜視図を示している。図13において、図11,図12と同一の構成部には同一参照番号を付している。
 図12,図13に示すように、カバー部材1212の裏面側に立設された4つのスタッド1213(図13では1つのみ示す)を介して、ドップラーセンサ1201が実装されたセンサ実装基板1214をカバー部材1212に固定している。また、図示しない取り付け金具にユニット制御基板1215を固定している。このユニット制御基板1215は、センサ制御部1202(図10に示す)を有する。センサ実装基板1214とユニット制御基板1215とを配線(図示せず)を介して接続している。
 また、ユニット制御基板1215の裏面側に無線通信部1203である無線モジュールを実装している。
 また、ユニット制御基板1215の前面かつ上側に押ボタンスイッチ1218と導光体1217を実装している。この導光体1217は、ユニット制御基板1215の前面に実装された発光ダイオードLED1,LED2から出射された光を外部に導く。
 導光体1217は、発光ダイオードLED1から出射された光で点灯する通信状態表示部1217aと、発光ダイオードLED2から出射された光で点灯する検知状態表示部1217bとを有する。通信状態表示部1217aは、無線通信部1203による通信状態を表示し、検知状態表示部1217bは、ドップラーセンサ1201による検出状況を表示する。導光体1217の通信状態表示部1217aと検知状態表示部1217bは、ケーシング1211の上部に設けられた開口に挿入されており、外部から視認できる。
 また、上記押ボタンスイッチ1218によって、センサユニット200や無線通信部1203の起動および停止を設定する。この押ボタンスイッチ1218は、ケーシング1211の上部に設けられた開口に一部が挿入されており、外部から操作できる。
 また、据付部1230は、底部が開口する円錐台形状の底カバー1203aと、その底カバー1203aを覆う底板1203bとを有する。この据付部1230を介して固定支柱1220内にケーブル1020(図9に示す)が挿通され、自在継手1221を介してケーブル1020の先端がユニット制御基板1215に接続されている。
 上記構成の空気調和機によれば、室内ユニット100を制御する室内制御部1102とは別にドップラーセンサ1201を制御するセンサ制御部1202を備え、そのセンサ制御部1202により無線通信部1203を制御して、ドップラーセンサ1201により検出された生体情報を表す信号を無線送信する。したがって、室内ユニット100の室内制御部1102が故障しても、センサ制御部1202によりドップラーセンサ1201を制御して、無線通信部1203によりドップラーセンサ1201の検知情報を外部に無線送信することができる。
 また、上記センサユニット200の無線通信部1203の通信状態を通信状態表示部1217aにより表示することによって、通信状態をユーザーが視覚的に確認でき、利便性が向上する。ここで、無線通信部1203の通信状態(通信のオンオフ、電波強度、通信速度、接続モードなど)は、通信状態表示部1217aの点滅あるいは色変化などにより表示する。
 また、上記センサユニット200のドップラーセンサ1201の検知状態を検知状態表示部1217bにより表示することによって、ドップラーセンサ1201の検知状態をユーザーが視覚的に確認でき、利便性が向上する。例えば、センサユニット200が室内ユニット100と別体の場合、センサユニット200の設置時に、検知状態表示部1217bに表示されたドップラーセンサ1201の検知状態を確認しながら、最適な方向にドップラーセンサ1201を向けることができる。ここで、ドップラーセンサ1201の検知状態は、検知状態表示部1217bの点滅あるいは色変化などにより表示する。
 なお、この実施の形態では、検知状態表示部1217bおよび検知状態表示部1217bを発光ダイオードLED1,LED2により点灯させたが、検知状態表示部および検知状態表示部はこれに限らず、液晶表示素子などを用いてもよい。
 また、ドップラーセンサ1201が搭載されたセンサユニット200を室内ユニット100とは別体とすることによって、室内ユニット100の送風ファン(図示せず)の回転やルーバー(図示せず)の動作による振動の影響をドップラーセンサ1201が受けないので、室内ユニット100にドップラーセンサを内蔵した場合に比べてドップラーセンサ1201の検知精度を向上できる。
 また、上記室内ユニット100と別体のセンサユニット200に搭載されたドップラーセンサ1201で検出された正確な生体情報に基づいて、センサ制御部1202(送信部)から制御信号を送信して室内ユニット100の運転を制御することにより、最適な空調制御が可能になる。
 さらに、センサユニット200は、室内ユニット100とは別体であるので、設置の自由度が広がり、検出範囲が比較的狭いドップラーセンサ1201の検出方向を最適な方向に向けてセンサユニット200を設置することができる。
 また、上記室内ユニット100とセンサユニット200がケーブル1020(配線)を介して接続され、その室内ユニット100の室内制御部1102とセンサユニット200のセンサ制御部1202が、ケーブル1020(配線)に含まれる信号線1020aを介して互いに通信を行うので、無線通信などに比べて応答性が向上すると共に、設置時にケーブル1020を接続するだけでよいので、無線通信の接続設定などの煩わしさがない。
 また、上記室内ユニット100からケーブル1020(配線)に含まれる電源線1020bを介してセンサユニット200に給電することによって、センサユニット200用に電源コンセントを用意する必要がなくなる。
 また、上記センサユニット200において、ドップラーセンサ1201の搭載部分であるユニット本体1210を自在継手1221により回動可能に支持することによって、ドップラーセンサ1201の検出方向をより最適な方向に向けることができる。
 上記第4実施形態では、レーダーの一例としてFM-CW方式のドップラーセンサ1201を用いたが、レーダーはこれに限らず、パルスレーダー、CW(Continuous Wave;接続波)レーダー、FM-CWレーダー、FM-CW方式を除く他のドップラーレーダーなどを用いてもよい。
 〔第5実施形態〕
 図14はこの発明の第5実施形態の空気調和機のブロック図を示している。この第5実施形態の空気調和機は、室内ユニット300内にセンサユニット400を搭載している点を除いて第4実施形態の空気調和機と同一の構成をしており、同一の構成部には同一参照番号を付している。
 この第5実施形態の空気調和機は、図14に示すように、室内ユニット300は、電源部1101と、送風ファン(図示せず)などを制御する室内制御部1102を有すると共に、センサユニット400を内蔵する。このセンサユニット400は、ドップラーセンサ1201と、ドップラーセンサ1201を制御するセンサ制御部1202と、無線通信部1203とを有する。センサ制御部1202は、ドップラーセンサ1201により検出された生体情報に基づいて、室内ユニット100の運転を制御する制御信号を送信する。
 また、上記室内ユニット300は、センサユニット400の無線通信部1203の通信状態を表示する通信状態表示部(図示せず)と、センサユニット400のドップラーセンサ1201の検知状態を表示する検知状態表示部(図示せず)を備える。
 上記第5実施形態の空気調和機は、第4実施形態の空気調和機と同様の効果を有する。
 〔第6実施形態〕
 この発明の第6実施形態の空気調和機のセンサユニットは、画像センサを除いて第4実施形態のセンサユニット200と同一の構成をしており、図9~図13を援用する。
 この第6実施形態の空気調和機のセンサユニットは、ドップラーセンサ1201と、センサ制御部1202と、画像センサとを有する。センサ制御部1202は、ドップラーセンサ1201と画像センサを制御する。
 上記構成の空気調和機によれば、ドップラーセンサ1201により検出される物理量(人体の心拍、呼吸、体動などの生体情報)と異なる物理量を検出する画像センサを備えることによって、各センサが得意でないところを互いに補うことで室内の状況を正確に判断することが可能になる。
 画像センサは、ドップラーセンサ1201と異なり、撮像した画像に基づいて、室内にいる人数を検知したり、顔認識などにより個人を特定したりできる。
 しかしながら、画像センサは、暗闇では検知能力が低下(または検知不能)したり、遮蔽物があると検知できなくなったりする。これに対して、ドップラーセンサ1201を用いることによって、暗闇でも人体の心拍、呼吸、体動などの生体情報を検知でき、遮蔽物があっても、マイクロ波(またはミリ波)が透過する材質の遮蔽物であれば検知可能である。
 〔第7実施形態〕
 この発明の第7実施形態の空気調和機は、センサユニットの画像センサと焦電センサを除いて第4実施形態の空気調和機と同一の構成をしており、図9~図13を援用する。
 上記第7実施形態の空気調和機は、ドップラーセンサ1201により検出される物理量(人体の心拍、呼吸、体動などの生体情報)と異なる物理量を検出する画像センサおよび焦電センサを備えることによって、各センサが得意でないところを互いに補うことで室内の状況を正確に判断することが可能になる。
 赤外線センサの一例である焦電センサは、ドップラーセンサ1201や画像センサに比べて広い範囲の赤外線の変化を検知できる。
 上記第4,第6,第7実施形態では、室内ユニット100とセンサユニット200がケーブル1020により接続された空気調和機について説明したが、室内ユニットとセンサユニットが無線接続された空気調和機にこの発明を適用してもよい。
 この発明の具体的な実施の形態について説明したが、この発明は上記第1~第7実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、上記第1~第7実施形態で記載した内容を適宜組み合わせたものを、この発明の一実施形態としてもよい。
 1…センサユニット
 10…ユニット本体
 11…ケーシング
 12…カバー部材
 13…スタッド(取付部材)
 20…固定支柱
 21…自在継手
 30…据付部
 31…底カバー
 32…底板
 40…ドップラーセンサ(レーダー)
 40a…センサ面(送受信面)
 41…センサ実装基板
 42…コネクタ端子
 43…貫通孔
 50…制御基板
 51…表示部
 52…操作部
 53…無線モジュール
 60…配線
 61…ワイヤハーネス
 62…外部機器
 70…検出範囲拡大部
 100,300…室内ユニット
 200,400…センサユニット
 1001…壁面
 1002…コンセント
 1010…電源ケーブル
 1020…ケーブル
 1020a…信号線
 1020b…電源線
 1101…電源部
 1102…室内制御部
 1201…ドップラーセンサ(レーダー)
 1202…センサ制御部(レーダー制御部)
 1203…無線通信部
 1210…ユニット本体
 1211…ケーシング
 1212…カバー部材
 1213…スタッド
 1214…センサ実装基板
 1215…ユニット制御基板
 1217…導光体
 1217a…通信状態表示部
 1217b…検知状態表示部
 1218…押ボタンスイッチ
 1220…固定支柱
 1221…自在継手
 1230…据付部
 LED1,LED2…発光ダイオード

Claims (10)

  1.  レーダー(40)と、
     上記レーダー(40)が搭載された基板(41)と、
     上記レーダー(40)と、上記基板(41)とを覆うカバー部材(12)と、
     上記レーダー(40)の送受信面(40a)が、上記カバー部材(12)から所定の間隔をあけて配置されるように、上記基板(41)を上記カバー部材(12)に取り付けるための取付部材(13)と
     を備えることを特徴とする、センサユニット(1)。
  2.  請求項1に記載のセンサユニット(1)において、
     上記レーダー(40)の上記送受信面(40a)と、上記カバー部材(12)の上記レーダー(40)と対向する部分とが平行であることを特徴とする、センサユニット(1)。
  3.  請求項1または2に記載のセンサユニット(1)において、
     上記レーダー(40)の検出範囲を拡大する検出範囲拡大部(70)を備えることを特徴とする、センサユニット(1)。
  4.  請求項3に記載のセンサユニット(1)において、
     上記検出範囲拡大部(70)は、上記カバー部材(12)に設けられていることを特徴とする、センサユニット(1)。
  5.  室内制御部(1102)を有する室内ユニット(100,300)と、
     上記室内制御部(1102)に接続されたセンサユニット(200,400)と
    を備え、
     上記センサユニット(200,400)は、
     生体情報を検出するためのレーダー(1201)と、
     上記レーダー(1201)を制御するレーダー制御部(1202)と、
     上記レーダー制御部(1202)により制御され、上記レーダー(1201)により検出された上記生体情報を表す信号を無線送信する無線通信部(1203)と
    を有することを特徴とする、空気調和機。
  6.  請求項5に記載の空気調和機において、
     上記センサユニット(200,400)の上記無線通信部(1203)の通信状態を表示する通信状態表示部(1217a)を備えることを特徴とする、空気調和機。
  7.  請求項5または6に記載の空気調和機において、
     上記センサユニット(200,400)の上記レーダー(1201)の検知状態を表示する検知状態表示部(1217b)を備えることを特徴とする、空気調和機。
  8.  請求項5から7のいずれか1つに記載の空気調和機において、
     上記センサユニット(200)は、上記室内ユニット(100)と別体であることを特徴とする、空気調和機。
  9.  請求項8に記載の空気調和機において、
     上記室内ユニット(100)と上記センサユニット(200)は、配線(1020)で接続され、
     上記室内ユニット(100)の上記室内制御部(1102)と上記センサユニット(200)の上記レーダー制御部(1202)は、上記配線(1020)を介して通信を行うことを特徴とする、空気調和機。
  10.  請求項9に記載の空気調和機において、
     上記センサユニット(200)は、上記室内ユニット(100)から上記配線(1020)に含まれる電源線(1020b)を介して給電されることを特徴とする、空気調和機。
PCT/JP2018/027176 2017-07-31 2018-07-19 センサユニットおよび空気調和機 WO2019026638A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880048099.9A CN110945375B (zh) 2017-07-31 2018-07-19 传感器单元和空调机
AU2018311770A AU2018311770A1 (en) 2017-07-31 2018-07-19 Sensor unit and air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017147483 2017-07-31
JP2017-147483 2017-07-31
JP2017-152156 2017-08-07
JP2017152156 2017-08-07

Publications (1)

Publication Number Publication Date
WO2019026638A1 true WO2019026638A1 (ja) 2019-02-07

Family

ID=65233850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027176 WO2019026638A1 (ja) 2017-07-31 2018-07-19 センサユニットおよび空気調和機

Country Status (3)

Country Link
CN (1) CN110945375B (ja)
AU (1) AU2018311770A1 (ja)
WO (1) WO2019026638A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3118835B1 (fr) * 2021-01-14 2023-07-14 Thales Sa Radôme et systeme d'antenne avec fonction de compensation d'elevation
CN113064146B (zh) * 2021-04-23 2023-10-03 沈阳工程学院 一种用于风电功率预测声雷达的防护装置及控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174540A (ja) * 1999-12-15 2001-06-29 Fujitsu Ten Ltd 車両用レーダ装置の取付け角度調整方法および取付け角度調整用支援装置
WO2003040754A1 (fr) * 2001-11-09 2003-05-15 Hitachi, Ltd. Radar mobile a onde millimetrique
JP2003224414A (ja) * 2003-01-20 2003-08-08 Mitsubishi Electric Corp ミリ波平面アンテナ
JP2006140956A (ja) * 2004-11-15 2006-06-01 Anritsu Corp 車載用アンテナ
JP2008104597A (ja) * 2006-10-24 2008-05-08 Terumo Corp 心拍ゆらぎ検出装置および情報処理方法
WO2013055272A1 (en) * 2011-10-14 2013-04-18 Saab Ab Short range radar system
WO2016157379A1 (ja) * 2015-03-30 2016-10-06 富士通株式会社 空調機、センサユニット、及び、空調システム
US20170109481A1 (en) * 2015-10-16 2017-04-20 General Electric Company Methods and systems to sense situational awareness with a dual doppler and control for optimized operations
WO2017098609A1 (ja) * 2015-12-09 2017-06-15 富士通株式会社 センサシステム、センサ情報処理装置、センサ情報処理プログラム、及び、ベッド

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755924A (ja) * 1993-08-11 1995-03-03 Daikin Ind Ltd Fmcwレーダの送信波生成方法およびfmcwレーダ
JP4286855B2 (ja) * 2006-09-07 2009-07-01 株式会社日立製作所 レーダ装置
CN201145742Y (zh) * 2008-01-08 2008-11-05 严伟文 倒车雷达报警器
CN101404355B (zh) * 2008-10-31 2012-07-04 浙江大学 利用环状金属对单元结构天线罩的高指向天线
US8149157B2 (en) * 2009-02-27 2012-04-03 Toyota Jidosha Kabushiki Kaisha In-vehicle radar device and cover for in-vehicle radar device
CN201319068Y (zh) * 2009-03-19 2009-09-30 湖南湘依铁路机车电器有限公司 用于车载测速的微型雷达收发器
CN101710654B (zh) * 2009-04-02 2013-08-14 广东通宇通讯股份有限公司 一种gps接收天线
TWI463735B (zh) * 2010-08-03 2014-12-01 Shunsin Technology Zhong Shan Ltd 具有天線介面之模組及其製造方法
CN102156277A (zh) * 2011-01-28 2011-08-17 广东铁将军防盗设备有限公司 倒车雷达传感器组件
CN104752814B (zh) * 2012-01-30 2017-04-12 原田工业株式会社 天线装置
CN103296408A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 具有滤波功能的超材料天线罩和天线
CN103308908B (zh) * 2012-03-08 2015-03-11 珠海格力电器股份有限公司 人体位置的识别方法及装置和空调器
DE102013220259A1 (de) * 2013-10-08 2015-04-09 Robert Bosch Gmbh Radarsensor mit Radom
DE102014106840A1 (de) * 2014-05-15 2015-11-19 Hella Kgaa Hueck & Co. Steuervorrichtung
CN104459697B (zh) * 2014-11-28 2019-11-01 辉创电子科技(苏州)有限公司 车用倒车雷达传感器
CN105990661A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 通信天线、天线系统及通讯设备
CN105990658A (zh) * 2015-01-30 2016-10-05 深圳光启尖端技术有限责任公司 通信天线、天线系统和通信设备
CN204966698U (zh) * 2015-08-20 2016-01-13 武汉大学 用于高频海洋雷达的双频收发共杆天线系统
CN205168354U (zh) * 2015-12-15 2016-04-20 厦门博电电子有限公司 一种倒车雷达探头
JP6124231B1 (ja) * 2016-11-14 2017-05-10 株式会社Cq−Sネット 定在波レーダーによる状態検知装置
CN106707244B (zh) * 2017-01-09 2019-03-29 深圳迈睿智能科技有限公司 一种分区域微波感应的检测方法及微波感应器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174540A (ja) * 1999-12-15 2001-06-29 Fujitsu Ten Ltd 車両用レーダ装置の取付け角度調整方法および取付け角度調整用支援装置
WO2003040754A1 (fr) * 2001-11-09 2003-05-15 Hitachi, Ltd. Radar mobile a onde millimetrique
JP2003224414A (ja) * 2003-01-20 2003-08-08 Mitsubishi Electric Corp ミリ波平面アンテナ
JP2006140956A (ja) * 2004-11-15 2006-06-01 Anritsu Corp 車載用アンテナ
JP2008104597A (ja) * 2006-10-24 2008-05-08 Terumo Corp 心拍ゆらぎ検出装置および情報処理方法
WO2013055272A1 (en) * 2011-10-14 2013-04-18 Saab Ab Short range radar system
WO2016157379A1 (ja) * 2015-03-30 2016-10-06 富士通株式会社 空調機、センサユニット、及び、空調システム
US20170109481A1 (en) * 2015-10-16 2017-04-20 General Electric Company Methods and systems to sense situational awareness with a dual doppler and control for optimized operations
WO2017098609A1 (ja) * 2015-12-09 2017-06-15 富士通株式会社 センサシステム、センサ情報処理装置、センサ情報処理プログラム、及び、ベッド

Also Published As

Publication number Publication date
CN110945375A (zh) 2020-03-31
CN110945375B (zh) 2023-06-27
AU2018311770A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP2019027773A (ja) 空気調和システム
EP2325670B1 (en) Lighting system with user interface with position awareness
US8130099B2 (en) Sensor light
JP5096549B2 (ja) 火災感知器
WO2019026638A1 (ja) センサユニットおよび空気調和機
KR101262095B1 (ko) 모션감지센서가 장착된 디스플레이 장치
JPH10322280A (ja) 送受信装置及びその制御方法
CN113253258A (zh) 一种基于毫米波雷达检测车内活体的方法及装置
JP6544467B2 (ja) 空気調和機
EP3822554B1 (en) Controller and air-conditioning system
US7902508B2 (en) Selectable field motion detector
JP6540865B2 (ja) センサユニット
US11910960B2 (en) Food mixing device
TWM538253U (zh) 無線訊號收發器及其天線桿
KR101828078B1 (ko) 대기전력 자동 복구 기능을 구현하는 대기전력 콘센트
EP3552537A1 (en) Health device for smart home care
US20150068310A1 (en) Sensor with oblique-angle display
JP7035804B2 (ja) センサユニット、照明器具、電子機器
JP4818238B2 (ja) 空気調和機
US20060198637A1 (en) Non-directional infrared remote-control transmitter for infrared remote control system
KR19980043014A (ko) 리모콘 위치확인 장치
JP2023009863A (ja) センサユニット
US10884107B2 (en) Laser scanning sensor
JPH0617413Y2 (ja) ワイヤレス送信装置
JP3579907B2 (ja) 人体検知式自動スイッチ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018311770

Country of ref document: AU

Date of ref document: 20180719

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18841014

Country of ref document: EP

Kind code of ref document: A1