WO2019026545A1 - トルク監視装置および内燃機関制御システム - Google Patents

トルク監視装置および内燃機関制御システム Download PDF

Info

Publication number
WO2019026545A1
WO2019026545A1 PCT/JP2018/025697 JP2018025697W WO2019026545A1 WO 2019026545 A1 WO2019026545 A1 WO 2019026545A1 JP 2018025697 W JP2018025697 W JP 2018025697W WO 2019026545 A1 WO2019026545 A1 WO 2019026545A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
value
internal combustion
combustion engine
engine
Prior art date
Application number
PCT/JP2018/025697
Other languages
English (en)
French (fr)
Inventor
嵩允 後藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018003932.3T priority Critical patent/DE112018003932T5/de
Publication of WO2019026545A1 publication Critical patent/WO2019026545A1/ja
Priority to US16/775,651 priority patent/US11313306B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/22Control of the engine output torque by keeping a torque reserve, i.e. with temporarily reduced drive train or engine efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the disclosure in this specification relates to a torque monitoring device that monitors a torque abnormality of an internal combustion engine, and an internal combustion engine control system.
  • Patent Document 1 discloses a torque monitoring device that monitors whether or not an actual torque of an internal combustion engine is in an abnormal torque state that is different from an engine required torque required of the internal combustion engine.
  • the present inventor determines that torque abnormality is present when the above-described state in which the amount of deviation between the actual torque and the engine required torque is equal to or more than a predetermined amount continues for a predetermined time (determination time) or more. It was investigated. However, if the determination time is set short, it may be determined that the torque is abnormal even when the amount of deviation temporarily increases due to noise or the like. On the other hand, if the determination time is set long, torque abnormality can not be detected promptly.
  • An object of the present disclosure is to provide a torque monitoring device that achieves both the erroneous determination suppression of torque abnormality and the rapid detection.
  • a torque monitoring device monitors a torque that monitors whether or not an estimated torque that is an estimated value of an actual torque of an internal combustion engine deviates from an engine required torque required for the internal combustion engine.
  • a monitoring device comprising: a count value setting unit that sets a count value to a larger value as a deviation amount between an estimated torque and an engine request torque increases, and an integration unit that calculates an integration value that is a value obtained by integrating count values.
  • an abnormality determination unit that determines that the torque is in an abnormal state when the integrated value is equal to or greater than a predetermined abnormality determination threshold.
  • the larger the deviation between the estimated torque and the engine required torque the larger the count value is set, and the integrated value of the count value exceeds a predetermined abnormality determination threshold value. It is determined that the torque is in an abnormal state. Therefore, the larger the deviation amount, the easier it is to be judged as a torque abnormal state, the torque abnormality can be detected quickly, and the smaller the deviation amount is, the harder it becomes to be judged as a torque abnormal state. Can be reduced.
  • FIG. 1 is a block diagram of an internal combustion engine control system according to a first embodiment
  • 2 is a block diagram of the control module shown in FIG. 3 is a block diagram of the monitoring module shown in FIG.
  • FIG. 4 is a flowchart showing a procedure of torque monitoring control in the first embodiment
  • FIG. 5 is a block diagram showing details of the torque comparison abnormality determination unit of FIG. 3
  • FIG. 6 is a map showing the relationship between the dead zone and the gear position used for setting the dead zone in FIG.
  • FIG. 7 is a characteristic diagram showing the relationship between the gear position and the traveling acceleration
  • FIG. 8 is a map showing the relationship between the dead zone and the vehicle speed, which is used for setting the dead zone in FIG.
  • FIG. 9 is a map showing the relationship between the dead zone and the engine required torque, which is used for setting the dead zone in FIG.
  • FIG. 10 is a map showing the relationship between the abnormality determination threshold and the gear, which is used to set the abnormality determination threshold in FIG.
  • FIG. 11 is a map showing the relationship between the abnormality determination threshold and the vehicle speed, which is used to set the abnormality determination threshold in FIG.
  • FIG. 12 is a flowchart showing a processing procedure of torque abnormality determination shown in FIG.
  • FIG. 13 is a time chart showing the transition of calculation results of the control module and the monitoring module with respect to the transition of the operating state of the internal combustion engine in the first embodiment
  • FIG. 14 is a time chart explaining the operation and effect according to the first embodiment.
  • FIG. 1 shows an electronic control unit (ECU) mounted on a vehicle, which controls the operation of an internal combustion engine mounted on the vehicle.
  • the vehicle travels with an internal combustion engine as a drive source.
  • the internal combustion engine according to the present embodiment is an ignition ignition gasoline engine, but may be a self-ignition diesel engine.
  • the vehicle is provided with a transmission that converts the rotational speed of the output shaft of the internal combustion engine into a desired rotational speed and outputs it.
  • the ECU 10 includes an MCU 11 (Micro Controller Unit), an ignition drive IC 12, a fuel injection valve drive IC 13, a throttle drive IC 14, a communication circuit 15, and an integrated IC 16.
  • MCU 11 Micro Controller Unit
  • ignition drive IC 12 a fuel injection valve drive IC 13
  • throttle drive IC 14 a communication circuit 15
  • integrated IC 16 an integrated circuit
  • the MCU 11 includes a CPU 11a which is an arithmetic processing unit, a memory 11m which is a storage medium, an input processing circuit 11c, a communication circuit 11d, and a CPU check circuit 11e.
  • the MCU 11 includes the CPU 11a, the memory 11m, the input processing circuit 11c, the communication circuit 11d, and the CPU check circuit 11e integrated on one semiconductor chip, but is dispersed and integrated on a plurality of semiconductor chips.
  • a plurality of semiconductor chips may be mounted on a common substrate, or a semiconductor chip may be mounted on each of a plurality of substrates.
  • each semiconductor chip may be housed in one common housing, or may be housed in separate housings.
  • the memory 11 m is a storage medium for storing programs and data, and includes a non-transitional tangible storage medium for non-temporarily storing a program readable by the CPU 11 a.
  • the storage medium may be provided by semiconductor memory or a magnetic disk or the like.
  • the program stored in the memory 11m when executed by the CPU 11a, causes the ECU 10 to function as the device described in this specification and causes the control device to execute the method described in this specification.
  • control device may be provided by software stored in a tangible storage medium and a computer executing the same, only software, only hardware, or a combination thereof.
  • control device is provided by an electronic circuit that is hardware, it can be provided by a digital circuit or analog circuit that includes multiple logic circuits.
  • the MCU 11 receives various signals such as an engine rotational speed, an accelerator opening degree, an intake manifold pressure, an exhaust pressure, a water temperature, an oil temperature, and an external signal output from an external ECU. These signals are input from the outside of the ECU 10 to the input processing circuit 11c or the communication circuit 11d.
  • the engine speed signal is a signal representing the detected value of the crank angle sensor, and based on this detected value, the MCU 11 counts the rotational speed per unit time of the crankshaft (output shaft) of the internal combustion engine, that is, the rotational speed of the output shaft.
  • the signal of the accelerator opening is a signal representing the detected value of the accelerator pedal sensor, and the MCU 11 calculates the amount of depression of the accelerator pedal operated by the driver of the vehicle, that is, the user of the internal combustion engine based on this detected value.
  • the signal of the intake manifold pressure is a signal representing the detected value of the intake pressure sensor, and the MCU 11 calculates the pressure of the intake air taken into the combustion chamber based on this detected value.
  • the exhaust pressure signal is a signal representing the detection value of the exhaust pressure sensor, and the MCU 11 calculates the pressure of the exhaust gas discharged from the combustion chamber based on this detection value.
  • the water temperature signal is a signal that represents the detection value of the water temperature sensor, and the MCU 11 calculates the temperature of the water that cools the internal combustion engine based on this detection value.
  • the oil temperature signal is a signal representing a detected value of the oil temperature sensor, and the MCU 11 calculates the temperature of the lubricating oil of the internal combustion engine or the hydraulic oil of the hydraulic actuator based on the detected value.
  • a signal representing the operating state of an auxiliary device whose drive source is the output shaft of the internal combustion engine can be mentioned.
  • the said auxiliary machine it is a refrigerant
  • coolant compressor which the air conditioning apparatus which air-conditions a vehicle interior has, Comprising: The compressor which makes an output shaft of an internal combustion engine a drive source is mentioned.
  • the ignition drive IC 12 has a switching element for controlling power supply and interruption to an ignition device provided in the internal combustion engine, and the MCU 11 outputs a command signal to the switching element. Specifically, the MCU 11 calculates a target ignition timing, which is a target value of the timing for performing discharge ignition by the ignition device, based on the various signals such as the engine rotation speed described above, and the command signal is calculated according to the calculated target ignition timing. Output to the ignition drive IC12.
  • the fuel injection valve drive IC 13 has a switching element for controlling power supply and interruption to the fuel injection valve provided in the internal combustion engine, and the MCU 11 outputs a command signal to the switching element. Specifically, the MCU 11 calculates a target injection amount which is a target value of a period (that is, an injection amount) in which fuel injection is performed by the fuel injection valve based on various signals such as the engine rotation speed described above. The command signal is output to the fuel injection valve drive IC 13 in accordance with.
  • the throttle drive IC 14 has a switching element for controlling power supply and disconnection to an electronic throttle valve (charge throttle) provided in the internal combustion engine, and the MCU 11 outputs a command signal to the switching element. Specifically, the MCU 11 calculates a target opening degree which is a target value of the valve opening degree of the screw based on the various signals such as the engine rotation speed described above, and generates a command signal according to the calculated target opening degree. It outputs to the slo drive IC 14.
  • a target opening degree which is a target value of the valve opening degree of the screw based on the various signals such as the engine rotation speed described above
  • the combustion state of the internal combustion engine is controlled by the ECU 10 controlling the operation of the ignition device, the fuel injection valve, and the throttle.
  • the target ignition timing, the target injection amount and the target opening degree calculated by the MCU 11 correspond to a target control amount that is a target value of a control amount for controlling the combustion state of the internal combustion engine.
  • the communication circuit 15 outputs various information held by the MCU 11 to the external ECU. For example, a signal of an abnormality flag representing that an abnormality such as a torque abnormality state occurs is output to a display ECU that controls the operation of a display device that the vehicle driver visually recognizes. The display ECU generates a warning display and a warning sound when acquiring the signal of the abnormality flag.
  • the integrated IC 16 includes a memory (not shown), a CPU that executes various programs stored in the memory, and the like. Depending on the program executed by the CPU, the integrated IC 16 functions as the microcomputer monitoring unit 16a or functions as the flash cut control unit 16b.
  • the CPU check circuit 11e checks whether the CPU 11a and the memory 11m are normal, such as executing a check (for example, parity check) whether the program and data stored in the memory 11m are normal.
  • the microcomputer monitoring unit 16a monitors the operation failure of the MCU 11 while referring to the check result of the CPU check circuit 11e.
  • the integrated IC 16 executes control of the electrocut, such as restricting the operation of the electrocut.
  • control of the electrocut such as restricting the operation of the electrocut.
  • the target opening degree is fixed to a predetermined opening degree set in advance, and the output of the internal combustion engine is limited so as to be less than the predetermined output.
  • the target opening is made zero and the internal combustion engine is forcibly stopped.
  • the throttle cut control unit 16 b outputs a signal for commanding the throttle cut to the throttle drive IC 14.
  • the throttle drive IC 14 operates by giving priority to the throttle cut command signal over the command signal output from the MCU 11.
  • the MCU 11 has a control module 20 and a monitoring module 30. Each of these modules is a function provided by the common CPU 11a and the memory 11m. That is, the CPU 11 a and the memory 11 m function as the control module 20 when the CPU 11 a is executing the control program stored in the control storage area 20 m of the memory 11 m.
  • the CPU 11 a and the memory 11 m function as the monitoring module 30 when the CPU 11 a is executing the monitoring program stored in the monitoring storage area 30 m of the memory 11 m.
  • the control storage area 20m and the monitoring storage area 30m are separately set in different areas of the storage area of the memory 11m.
  • the control module 20 provides a “control arithmetic device” that calculates various target control amounts described above in accordance with a user request torque which is a drive torque of an internal combustion engine requested by a user.
  • the monitoring module 30 monitors whether or not the estimated torque which is an estimated value of the actual torque of the internal combustion engine deviates by a predetermined amount or more from the engine required torque required for the internal combustion engine.
  • a computing device is provided.
  • the ECU 10 provides a “torque monitoring device” including a control computing device and a monitoring computing device.
  • the control module 20 has functions as an engine required torque calculation unit 21 and a drive signal output unit 22.
  • the engine required torque calculation unit 21 calculates an engine required torque, which is a torque to be required for the internal combustion engine, based on various signals acquired from the input processing circuit 11c and the communication circuit 11d.
  • the drive signal output unit 22 calculates target control amounts such as the target ignition timing, the target injection amount, and the target opening degree described above in accordance with the engine request torque calculated by the engine request torque calculation unit 21. Furthermore, the drive signal output unit 22 outputs various command signals to the actuators such as the ignition drive IC 12, the fuel injection valve drive IC 13 and the throttle drive IC 14 according to the calculated target control amount.
  • the engine required torque calculation unit 21 includes a user required torque calculation unit 21 a, a pump loss calculation unit 21 b, a friction loss calculation unit 21 c, a torque efficiency calculation unit 21 d, and calculation units B1 to B6. It has a function.
  • the user request torque calculation unit 21a calculates a user request torque based on the engine speed and the accelerator opening degree described above.
  • the user request torque is calculated to a larger value as the engine rotational speed is higher and as the accelerator opening degree is larger.
  • a map representing the correlation between the engine rotational speed and the accelerator opening degree and the user request torque is stored in advance in the memory 11m, and the user request torque according to the engine rotational speed and the accelerator opening degree is referred to by referring to the map.
  • the user request torque calculation unit 21a calculates.
  • the pump loss calculating unit 21b calculates a pump loss torque, which is a value obtained by converting the pump loss into a torque, based on the above-described intake manifold pressure and exhaust pressure.
  • Pump loss is energy loss due to resistance received from intake and exhaust when the piston of the internal combustion engine reciprocates. As the intake manifold pressure is lower, the pump loss is set to a larger value on the assumption that the intake resistance in the intake stroke of the piston is larger. Further, the pump loss is set to a large value, assuming that the exhaust resistance in the exhaust stroke of the piston is larger as the exhaust pressure is higher.
  • a map representing the intake manifold pressure and the correlation between the exhaust pressure and the pump loss is stored in advance in the memory 11m, and the pump loss calculation unit 21b calculates the pump loss according to the intake manifold pressure and the exhaust pressure with reference to the map.
  • the friction loss calculation unit 21c calculates friction loss torque which is a value obtained by converting the friction loss into torque based on the water temperature and the oil temperature described above.
  • the friction loss is a mechanical energy loss due to the friction with the cylinder when the piston of the internal combustion engine reciprocates.
  • the friction loss is set to a large value, assuming that the friction is large, as the water temperature is out of the proper range and becomes low or high. Further, the friction loss is set to a large value, assuming that the viscosity of the lubricating oil or the like is larger as the oil temperature is lower.
  • a map representing the correlation between the water temperature and the oil temperature and the friction loss is stored in advance in the memory 11m, and the friction loss calculating unit 21c calculates the friction loss according to the water temperature and the oil temperature with reference to the map. .
  • the calculation unit B1 calculates the total loss torque by adding the pump loss calculated by the pump loss calculation unit 21b, the friction loss calculated by the friction loss calculation unit 21c, and the loss torque learning value.
  • the calculation unit B2 calculates the loss-included torque by adding the user request torque calculated by the user request torque calculation unit 21a, the total loss torque calculated by the calculation unit B1, and the external request torque.
  • a specific example of the externally required torque is, for the purpose of charging the on-vehicle battery, a torque for an increase in power generation such as increasing the amount of power generation by a generator driven by an internal combustion engine.
  • the calculation unit B3 calculates a reserve torque by adding a torque corresponding to each of the idle reserve, the catalyst warm-up reserve, and the auxiliary machine reserve. Each reserve torque is set by the control module 20 according to the operating state of the internal combustion engine such as the engine speed, the engine load, and the water temperature.
  • the calculating unit B4 calculates the reserve included torque by adding the reserve torque calculated by the calculating unit B3 to the loss-included torque calculated by the calculating unit B2.
  • the idle reserve torque is a torque corresponding to the amount of torque increase when performing control for increasing the torque at the time of idle operation of the internal combustion engine to stabilize the combustion.
  • the catalyst warm-up reserve torque is the amount of combustion energy used to raise the exhaust gas temperature when performing warm-up control to raise the exhaust gas temperature to raise the temperature of the catalyst for purifying the exhaust gas of the internal combustion engine above the activation temperature. It is a value obtained by converting the loss into torque.
  • the accessory reserve torque is a torque required to drive an accessory such as a generator whose drive source is an internal combustion engine.
  • the torque efficiency calculation unit 21 d calculates the torque efficiency based on the maximum torque generation ignition timing (MBT ignition timing), the knock learning included base retardation amount and the target lambda.
  • MBT ignition timing is an ignition timing at which the maximum torque can be obtained, and is different depending on the engine speed, the engine load, the water temperature, and the like.
  • knocking is apt to occur at the MBT ignition timing, it is required to ignite at a timing that is a predetermined time later than the MBT ignition timing, that is, a timing at which the predetermined angle is retarded.
  • the retarded timing is called base ignition timing.
  • the retardation amount (base retardation amount) differs depending on the engine speed, the engine load, the water temperature, and the like.
  • knock learning amount is used for the ignition timing from the next time on. Learning control to be reflected in control is called knock learning. Then, the timing at which the knocking learning amount is reflected in the base ignition timing corresponds to the target ignition timing.
  • the calculation unit B5 calculates a timing obtained by subtracting the target ignition timing from the MBT ignition timing as an MBT retardation amount that is a retardation amount of the target ignition timing with respect to the MBT ignition timing.
  • the torque efficiency calculation unit 21d calculates torque efficiency based on the MBT retardation amount calculated by the calculation unit B5 and the target lambda.
  • the torque efficiency is the ratio of the energy to be converted to the rotational torque of the crankshaft among the combustion energy in the combustion chamber. As the MBT retardation amount is smaller, that is, as the target ignition timing is closer to the MBT ignition timing, the torque efficiency is calculated to a higher value.
  • the target lambda is the target value of the ratio of air to fuel (lambda) included in the mixture that burns in the combustion chamber, and the torque efficiency calculator 21 d calculates torque efficiency to a value according to the target lambda. Do.
  • a map representing the MBT retardation amount and the correlation between the target lambda and the torque efficiency is stored in advance in the memory 11m, and the torque efficiency corresponding to the MBT retardation amount and the target lambda is referred to as torque efficiency.
  • the calculating unit 21d calculates.
  • Each of the MBT ignition timing, the base ignition timing, and the target lambda described above is set by the control module 20 according to the operating state of the internal combustion engine such as the engine speed, the engine load, and the water temperature.
  • the ECU 10 includes a detection circuit that detects the drive current or voltage output from the ignition drive IC. Then, the control module 20 calculates the engine required torque using the detected value by the detection circuit. Specifically, the actual ignition timing is calculated based on the detected value, and learning control relating to knock learning is executed using the actual ignition timing to calculate the knock learning amount.
  • the calculation unit B6 divides the torque efficiency calculated by the torque efficiency calculation unit 21d by the reserve built-in torque calculated by the calculation unit B4 to calculate an engine request torque for control used for engine control.
  • the engine required torque calculation unit 21 calculates the engine required torque by dividing the value obtained by adding the total loss torque and the reserve torque to the user required torque by the torque efficiency.
  • the monitoring module 30 monitors whether or not the estimated torque is in an abnormal torque state in which the estimated torque deviates from the engine required torque by a predetermined amount or more.
  • the estimated torque is the actual torque of the internal combustion engine. It is the value which estimated
  • the engine required torque is a torque required for the internal combustion engine, and is synonymous with the engine required torque calculated by the engine required torque calculation unit 21 of the control module 20.
  • the engine request torque calculated by the monitoring module 30 is a value used to monitor torque abnormality
  • the engine request torque calculated by the control module 20 is a value used to calculate a target control amount for the internal combustion engine. is there. That is, the engine required torque for monitoring and the engine required torque for control are values calculated in different areas of the storage area of the memory 11m.
  • the monitoring module 30 has functions as an input securing unit 31, an engine required torque calculation unit 32, an estimated torque calculation unit 33, a torque comparison abnormality determination unit 34, and a throttle control unit 35.
  • the input securing unit 31 checks that the data of various signals acquired from the input processing circuit 11c and the communication circuit 11d are normal (for example, parity check). If abnormal, the input securing unit 31 executes data restoration, data reacquisition, data discarding, and the like. Thereby, it can be avoided that the monitoring module 30 performs various calculations using the abnormal data. That is, the input securing unit 31 guarantees that various data used for calculation by the monitoring module 30 are normal.
  • the torque comparison abnormality determination unit 34 calculates the difference between the period required torque calculated by the engine required torque calculation unit 32 and the estimated torque calculated by the estimated torque calculation unit 33, and if the difference is equal to or more than a predetermined value, It is determined that the torque abnormality state described above is present. The details of the abnormality determination will be described later with reference to FIGS. 5 and 12. If it is determined that the torque is in an abnormal state, the screw cut control unit 35 outputs a signal for commanding the screw cut to the screw drive IC 14 in the same manner as the screw cut control unit 16b.
  • the engine required torque calculation unit 32 has functions as a catalyst warmup required torque calculation unit 32a, an idle required torque calculation unit 32b, and a calculation unit B11.
  • the catalyst warm-up request torque calculation unit 32a calculates a catalyst warm-up request torque based on the catalyst warm-up target rotational speed and the accelerator opening degree described above.
  • the warm-up control for raising the exhaust gas temperature to raise the temperature of the catalyst for purifying the exhaust gas of the internal combustion engine above the activation temperature is as described above, and the target value of the engine speed during the warm-up control is being performed. Is the catalyst warm-up target rotational speed.
  • the catalyst warm-up request torque calculation unit 32a calculates the catalyst warm-up request torque based on the accelerator opening degree and the catalyst warm-up target rotational speed in the period in which the warm-up control is being performed.
  • the catalyst warm-up request torque is synonymous with the catalyst warm-up reserve torque.
  • the catalyst warm-up request torque calculated by the monitoring module 30 is a value used for monitoring a torque abnormality
  • the catalyst warm-up reserve torque calculated by the control module 20 is used to calculate the target control amount for the internal combustion engine This is the value used. That is, the catalyst warm-up request torque for monitoring and the catalyst warm-up reserve torque for control are values calculated in different areas of the storage area of the memory 11 m.
  • the catalyst warm-up target rotational speed and the accelerator opening are described as an example of variables used for calculation of the catalyst warm-up required torque, but the water temperature, the user request torque, the engine rotational speed and the intake are described as other variables.
  • the filling efficiency can be mentioned.
  • the intake charge efficiency is the ratio of the flow rate of the intake air compressed in the combustion chamber to the flow rate of the intake air that has passed through the throttle valve.
  • the catalyst warm-up request torque calculation unit 32a calculates a catalyst warm-up request torque using at least one of these variables.
  • the catalyst warm-up request torque (reserve amount) is calculated to be larger as the catalyst warm-up target rotational speed is larger when the accelerator pedal is not depressed. Further, if the accelerator opening degree when the accelerator pedal is depressed is less than a predetermined value, the catalyst warm-up request torque is set to a predetermined value, and if it is equal to or more than a predetermined value, it is set to zero. Further, the catalyst warm-up request torque may be increased or decreased according to the water temperature or the engine rotation speed, or the catalyst warm-up request torque may be increased or decreased according to the charging efficiency.
  • the idle required torque calculation unit 32 b calculates an idle required torque based on the idle target rotational speed and the above-described engine rotational speed.
  • the idle control for increasing the torque at the time of idle operation of the internal combustion engine and stabilizing the combustion is as described above, and the target value of the engine speed during this idle control is the idle target speed. Then, the idle required torque calculation unit 32 b calculates the idle required torque based on the engine rotation speed and the idle target rotational speed during the period in which the idle control is being performed.
  • the idle request torque is synonymous with the idle reserve torque.
  • the idle required torque calculated by the monitoring module 30 is a value used to monitor torque abnormality
  • the idle reserve torque calculated by the control module 20 is a value used to calculate a target control amount for the internal combustion engine. is there. That is, the idle request torque for monitoring and the idle reserve torque for control are values calculated in different areas of the storage area of the memory 11m.
  • the idle target rotational speed and the engine rotational speed are described as an example of variables used to calculate the idle required torque, but other variables include water temperature, vehicle speed, atmospheric pressure and intake charge efficiency.
  • the idle required torque calculation unit 32 b calculates an idle required torque using at least one of these variables.
  • the calculation unit B11 adds the catalyst warm-up request torque, the idle request torque, the user request torque, and the external request torque, which are calculated by the catalyst warm-up request torque calculation unit 32a and the idle request torque calculation unit 32b. Calculate the required engine torque required of the engine.
  • the user request torque used for this calculation is calculated using data of the engine speed and the accelerator opening degree secured by the input securing unit 31.
  • the engine required torque calculation unit 32 is various signals acquired from the input processing circuit 11c and the communication circuit 11d, and is requested to the internal combustion engine based on the signal (data) secured by the input guaranteeing unit 31. Calculate the engine request torque.
  • the estimated torque calculation unit 33 includes an estimated torque calculation unit 33a, an MBT ignition timing calculation unit 33b, a base ignition timing calculation unit 33c, a torque efficiency calculation unit 33d, a loss torque calculation unit 33e, and calculation units B12 and B13. , B14.
  • the estimated torque calculation unit 33a estimates the actual driving torque (MBT estimated torque) of the internal combustion engine when the ignition timing is MBT based on the above-described charging efficiency and engine speed.
  • the MBT estimated torque is calculated to be a larger value as the engine speed is higher and as the filling efficiency is higher.
  • a map representing the correlation between the engine rotational speed and the charging efficiency and the MBT estimated torque is stored in advance in the memory 11m, and the MBT estimated torque corresponding to the engine rotational speed and the charging efficiency is estimated torque by referring to the map
  • the calculator 33a calculates.
  • the MBT ignition timing calculation unit 33b calculates the MBT ignition timing based on the charging efficiency and the engine speed.
  • the base ignition timing calculation unit 33c calculates the base ignition timing based on the charging efficiency and the engine speed.
  • the MBT ignition timing and the base ignition timing are calculated with reference to the map stored in advance in the memory 11m, as in the estimated torque calculation unit 33a.
  • the calculation unit B12 calculates a value obtained by subtracting the base ignition timing calculated by the base ignition timing calculation unit 33c from the MBT ignition timing calculated by the MBT ignition timing calculation unit 33b as the above-described base retardation amount.
  • the torque efficiency calculation unit 33d calculates the above-described torque efficiency based on the base retardation amount calculated by the calculation unit B12. However, assuming that the knock learning amount is a predetermined amount or zero set in advance, the torque efficiency calculation unit 33 d calculates the torque efficiency.
  • the loss torque calculation unit 33e calculates loss torque obtained by converting the loss energy including the pump loss and the friction loss into torque based on the engine rotation speed and the water temperature. For example, a map representing the correlation between the engine rotational speed and the water temperature and the loss torque is stored in advance in the memory 11m, and the loss torque calculation unit 33e calculates loss torque according to the engine rotational speed and the water temperature with reference to the map.
  • the calculation unit B13 calculates a value obtained by multiplying the MBT estimated torque calculated by the estimated torque calculation unit 33a by the torque efficiency calculated by the torque efficiency calculation unit 33d as an estimated torque not considering the loss torque.
  • the calculation unit B14 calculates a value obtained by subtracting the loss torque calculated by the loss torque calculation unit 33e from the estimated torque calculated by the calculation unit B13 as an estimated torque for monitoring.
  • the estimated torque calculation unit 33 is various signals acquired from the input processing circuit 11c and the communication circuit 11d, and the internal combustion engine actually outputs based on the signal (data) secured by the input securing unit 31. Estimate the driving torque.
  • the monitoring function by the monitoring module 30 is always operated. Specifically, the main processing shown in FIG. 4 is always executed.
  • the monitor execution condition For example, the completion of the check by the CPU check circuit 11e, the fact that the microcomputer monitoring unit 16a does not detect an abnormality, and the like are given as specific examples of the monitor execution condition.
  • the engine required torque calculation unit 32 described above calculates the engine required torque for monitoring in S20.
  • the calculation block of the user request torque is omitted in the engine request torque calculation unit 32 shown in FIG. 3, the user request torque is calculated based on the engine rotational speed and the accelerator opening, for example, in the same manner as the user request torque calculation unit 21a. Calculate However, the user request torque is calculated using the data of the engine speed and the accelerator opening degree secured by the input securing unit 31.
  • the above-described estimated torque calculation unit 33 calculates an estimated torque for monitoring.
  • the torque comparison abnormality determination unit 34 described above executes the determination of torque abnormality. If it is determined in S50 that the torque is abnormal, in S60, the screw cut control unit 35 outputs a screw cut command signal.
  • the torque comparison abnormality determination unit 34 includes an upper limit guard setting unit 34a, a torque deviation amount calculation unit 34b, a dead zone setting unit 34c, a torque deviation amount integration unit 34d, a torque abnormality determination unit 34e and an arithmetic unit B15, It has a function as B16.
  • the calculating unit B15 subtracts the estimated torque calculated by the estimated torque calculating unit 33 from the engine required torque calculated by the engine required torque calculating unit 32 to calculate a torque deviation amount.
  • the upper limit guard setting unit 34a sets an upper limit guard value according to the operating state of the internal combustion engine. For example, the upper limit guard value is set to a smaller value as the engine speed is higher and the load operation is higher.
  • the torque deviation amount calculation unit 34b compares the torque deviation amount calculated by the calculation unit B15 with the upper limit guard value set by the upper limit guard setting unit 34a, and sets the smaller value as the torque deviation amount. In short, when the amount of torque deviation calculated by the calculation unit B15 becomes larger than the upper limit guard value, the amount of torque deviation used for the torque abnormality determination is limited to the upper limit guard value.
  • the dead zone setting unit 34 c sets the dead zone in accordance with at least one of the operating state of the vehicle and the operating state of the internal combustion engine.
  • the dead zone is an area from a predetermined lower value (zero) to an upper value of the torque deviation, and is an area where the torque deviation is regarded as zero.
  • Specific examples of the driving state of the vehicle include the transmission gear ratio of the transmission described above, the traveling speed (vehicle speed) of the vehicle, and the like.
  • the operating state of the internal combustion engine an engine request torque, a user request torque, an engine speed, an engine load and the like can be mentioned.
  • the upper value of the dead zone is set to a larger value as the transmission gear ratio is smaller, that is, as the output torque of the transmission is larger (see FIG. 6).
  • the transmission according to the present embodiment has a plurality of gear stages, and by switching the gear stages, the transmission gear ratio of the output to the input to the transmission can be switched.
  • the gear is switched to the low gear
  • the drive wheels of the vehicle are rotationally driven at a low rotational speed (low speed) and high torque
  • the high rotational speed (high speed) low torque Drive wheels of the vehicle are rotationally driven.
  • the amount of depression of the accelerator pedal in the high speed gear stage when the high speed low torque is used see the solid line in FIG. 7) compared to when the low speed gear stage is used in the low speed high torque (see the dotted line in FIG. 7) If the conditions such as are the same, the traveling acceleration of the vehicle becomes large.
  • the upper value of the dead zone is set to a larger value as the gear is larger, that is, as the gear is higher in speed and lower torque and the traveling acceleration is larger (see FIG. 6).
  • the sense of incongruity given to the vehicle driver along with the occurrence of the torque abnormality is considered to be smaller, and the torque abnormality state is less likely to be determined.
  • the upper value of the dead zone is set to a larger value as the vehicle speed is higher (see FIG. 8).
  • the larger the monitoring engine request torque is, the smaller the sense of incongruity given to the vehicle driver along with the occurrence of the torque abnormality is, and the torque abnormality state is less likely to be determined.
  • the upper value of the dead zone is set to a larger value as the monitoring engine request torque is larger (see FIG. 9).
  • the calculation unit B 16 determines the dead zone based on the torque deviation. Subtract the upper value.
  • the torque deviation amount integration unit 34d integrates the torque deviation amount calculated by the calculation unit B16.
  • the torque abnormality determination unit 34 e determines that the torque abnormality is present.
  • the upper limit guard setting unit 34a, the torque deviation amount calculation unit 34b, the dead zone setting unit 34c, and the calculation unit B16 set the count value to a larger value as the deviation amount between the estimated torque and the engine request torque is larger.
  • the torque deviation amount is used as the count value as it is, but for example, when the torque deviation amount is 10 Nm, the torque deviation amount may be converted to a predetermined count value with the count value being 1. In any case, the larger the torque deviation amount, the larger the count value is set.
  • the amount of divergence is set to a negative value.
  • the torque abnormality determination unit 34e variably sets the abnormality determination threshold value in accordance with at least one of the driving state of the vehicle and the driving state of the internal combustion engine.
  • the operating state of the vehicle include the aforementioned gear ratio and vehicle speed, etc.
  • Specific examples of the operating state of the internal combustion engine include engine required torque, user requested torque, engine speed and engine load etc. .
  • the gear ratio is smaller, that is, as the output torque by the transmission is larger, the sense of incongruity given to the vehicle driver is considered smaller as the torque abnormality occurs, and the abnormality determination threshold is set larger to make it difficult to be determined as a torque abnormality. (See FIG. 10).
  • the sense of incongruity given to the vehicle driver along with the occurrence of the torque abnormality is considered to be smaller, and the abnormality determination threshold value is set larger to make it difficult to determine the torque abnormality state (see FIG. 11).
  • FIG. 12 is a flowchart showing the subroutine processing according to S40 of FIG. 4.
  • the torque deviation integrated value is reset to zero.
  • S42 it is determined whether the engine speed is equal to or more than a predetermined value.
  • the predetermined value is set to a value smaller than the rotational speed during idle operation and higher than the cranking rotational speed during startup operation of the internal combustion engine by the starter motor. If the engine rotational speed is less than the predetermined value, it is considered that the detected value of the intake air amount detected by the air flow meter is not stable, the execution of the subsequent abnormality determination processing is prohibited, and the process returns to S41.
  • the calculation unit B15 subtracts the estimated torque calculated by the estimated torque calculation unit 33 from the engine required torque calculated by the engine required torque calculation unit 32 in the next S43. And calculate the amount of torque deviation.
  • the upper limit guard setting unit 34a variably sets the upper limit guard value according to the operating state of the internal combustion engine.
  • the torque deviation amount calculation unit 34b limits the torque deviation amount to the upper limit guard value.
  • the dead zone setting unit 34c variably sets the dead zone according to at least one of the driving state of the vehicle and the driving state of the internal combustion engine.
  • S45a it is determined whether the amount of torque deviation set in S44a is a value within the range of the dead zone set in S45. Specifically, it is determined whether the amount of torque deviation is equal to or greater than the upper value of the dead zone.
  • the torque deviation amount set in S44a is added to the previous value of the integrated value of the torque deviation amount in the next S46. If it is determined that the torque deviation amount is out of the range of the dead zone, in the next S47, the torque deviation amount set in S44a is added to the previous value of the integrated value of the torque deviation amount, and from the value added Subtract the upper value of the dead zone. In short, the processing of S45a, S46, and S47 is executed by the calculation unit B16 and the torque deviation amount integration unit 34d.
  • the abnormality determination threshold value is variably set according to at least one of the driving state of the vehicle and the driving state of the internal combustion engine.
  • S48a it is determined whether the torque deviation integrated value calculated in S46 and S47 is equal to or greater than the determination threshold set in S48. If it is determined that the integrated value is less than the determination threshold, the process returns to S42. If it is determined that the integrated value is equal to or greater than the determination threshold value, the torque abnormality determination unit 34e determines that the torque abnormality state is present in S49, and sets the torque abnormality flag to ON. As a result, it is determined in S50 of FIG. 4 that an abnormality determination is made, and a throttle cut command signal is output, and the operation of the throttle is limited.
  • the engine speed, the ignition switch, the calculation result of the control module 20, the torque monitoring execution flag, the calculation result of the monitoring module 30, the integrated value of the torque deviation amount, the torque abnormality Indicates a change of the determination flag with respect to elapsed time
  • the starter motor of the internal combustion engine is driven to start the engine, and then, the acceleration running, the deceleration running, the idle, The driving state changes in the order of creep, acceleration and deceleration.
  • the torque monitoring flag shown in column (d) is set to ON to execute torque monitoring, and Integration has been started.
  • the counter referred to here is a torque deviation amount integration unit 34d that integrates the count value of the torque deviation amount. That is, at time t2, an affirmative determination is made in S42 of FIG. 12, and integration of the torque deviation integrated value shown in the (f) column is permitted.
  • the engine required torque calculated by the control module 20 matches the estimated torque.
  • the engine required torque calculated by the monitoring module 30 and the estimated torque substantially match.
  • the drive signal output unit 22 of the control module 20 controls the various drive ICs 12, 13, 14 to increase the engine output torque.
  • the control estimated torque and the actual torque which are torques estimated by the control module 20, increase in accordance with the increase of the engine required torque for control.
  • the estimated torque for control is a feedback value used for feedback control of the drive ICs 12, 13, 14.
  • the monitoring module 30 calculates the required torque (the required torque for monitoring) using the data of the monitoring storage area 30m different from the control storage area 20m where the abnormality has occurred. Therefore, even if a data abnormality occurs in the control storage area 20m and the required torque for control increases, the required torque for monitoring does not increase. However, as the actual torque rises, the estimated torque for monitoring rises as indicated by the dotted line in (e). Therefore, a torque deviation amount which is a deviation between the monitoring required torque and the monitoring estimated torque is increased.
  • the integrated value shown in the (f) column also increases. However, since the torque deviation amount is smaller than the dead zone during the period from time t3 to time t4 when the abnormality occurs, the integrated value remains zero. In addition, the increase speed of the integrated value is decreased after time t5 because the amount of torque deviation has increased to the upper limit guard at time t5.
  • the flag of the torque abnormality determination is set to on.
  • the engine output is limited by the throttle control unit 35, the actual torque and the engine rotational speed decrease, and the control estimated torque and the monitor estimated torque also decrease.
  • the integrated value decreases in S47 of FIG. That is, the integrated value starts to decrease at time t7 shown in the (f) column.
  • the torque abnormality determination flag is set to OFF.
  • the drive signal output unit 22 of the control module 20 controls the various drive ICs 12, 13, 14 so as to reduce the engine output torque.
  • the estimated torque for control and the actual torque decrease in accordance with the increase of the required torque for control engine.
  • the estimated torque for monitoring also decreases, but the torque deviation amount has a negative value, and the torque deviation amount integrated value is stuck to zero.
  • the ECU 10 (torque monitoring device) includes a count value setting unit, an integration unit, and an abnormality determination unit.
  • the count value setting unit sets the torque deviation amount as the count value to a larger value as the deviation amount between the estimated torque for monitoring and the engine requested torque for monitoring is larger.
  • the integration unit calculates an integrated value of the torque deviation amount, and the abnormality determination unit determines that the torque is in an abnormal state when the integrated value becomes equal to or more than the abnormality determination threshold. Therefore, the larger the deviation amount, the easier it is to be judged as a torque abnormal state, the torque abnormality can be detected quickly, and the smaller the deviation amount is, the harder it becomes to be judged as a torque abnormal state. Can be reduced.
  • FIG. 14 is an aspect showing how torque abnormality can be detected rapidly as described above, and the horizontal axis of FIG. 14 shows the elapsed time, and the vertical axis shows the actual output of the internal combustion engine (actual torque ) Shows how it rises.
  • the dashed-dotted line L1 in the figure is an example in the case where the increase of the actual torque due to the abnormality is small and the torque deviation amount is small. In this case, the integrated value increases to the abnormality determination threshold at time tc and the abnormality is determined Be done.
  • the dotted line L2 in the figure is an example in the case where the increase of the actual torque due to the abnormality is large and the amount of torque deviation is large.
  • the integrated value rises to the abnormality determination threshold at time tb earlier than time tc, and abnormality determination is made.
  • the two-dot chain line L3 in the figure is an example in the case where the increase in the actual torque due to the abnormality is even larger, and the torque deviation amount is larger than the upper limit guard value.
  • the count value is limited to the upper limit guard value
  • the integrated value increases to the abnormality determination threshold value at time ta that is earlier than time tb, and abnormality determination is performed.
  • the solid line L4 in the figure indicates a required value for which the rapidity of the abnormality determination is required. As indicated by the solid line L4, as the increase speed of the actual torque is larger, it is required that the abnormality determination be made in a short time. However, since the magnitude of the count value is limited by the upper limit guard value, no abnormality determination is made in less than a predetermined time.
  • the count value setting unit sets the count value so that the count value does not increase beyond the preset upper limit guard value. Therefore, when the phenomenon that the torque deviation amount exceeds the upper limit guard value increases instantaneously due to noise or the like, it is avoided that the integrated value instantaneously exceeds the abnormality determination value and the abnormality determination is made. . Therefore, it is possible to suppress that the torque abnormality determination is made even in the case where it is not necessary to cut the amount of torque deviation which instantaneously exceeds the upper limit guard value. In other words, the erroneous determination of the torque abnormality can be suppressed.
  • the upper limit guard value is set to a smaller value, the erroneous determination suppression of the torque abnormality can be promoted, but as a tradeoff, the rapidity of the torque abnormality detection is impaired. And the optimal balance of misjudgment suppression and promptness differs according to the operating state of an internal combustion engine.
  • the upper limit guard value is variably set according to the operating state of the internal combustion engine, the balance can be optimized. For example, the higher the engine speed and the higher the load operation, the smaller the sense of discomfort given to the vehicle driver due to the torque abnormality occurrence, the upper limit guard value is set to a smaller value, and torque abnormality detection Prioritize the promotion of false positives over promptness.
  • the integration unit limits integration of the count value for the count value when the amount of torque deviation is within the range of the preset dead zone. Specifically, if the torque deviation amount is less than the upper value of the dead zone, the count value corresponding to the torque deviation amount is added to the integrated value while the count value corresponding to the upper value is subtracted from the integrated value. Therefore, when the phenomenon in which the torque deviation amount occurs with a small value in the range of the dead zone continues over a long period due to noise or the like, it is avoided that the integrated value exceeds the abnormal determination value and the abnormality determination is made. .
  • the dead zone is variably set in accordance with the operating condition of the vehicle or the internal combustion engine, so that the balance can be optimized.
  • the smaller the speed change ratio or the faster the traveling speed of the vehicle the smaller the sense of incongruity given to the vehicle driver along with the torque abnormality occurrence, and the dead zone is set in a wide range, and the torque abnormality detection is quicker Also give priority to promotion of misjudging suppression.
  • the abnormality determination threshold value is set to a larger value, the erroneous determination suppression of the torque abnormality can be promoted, but as a tradeoff, the rapidity of the torque abnormality detection is impaired.
  • the optimal balance between the erroneous determination suppression and the promptness differs depending on the operating condition of the vehicle and the operating condition of the internal combustion engine.
  • the abnormality determination threshold value is variably set according to the driving state of the vehicle or the driving state of the internal combustion engine, the balance can be optimized.
  • the ECU 10 (torque monitoring device) according to the present embodiment includes a control module 20 (control arithmetic device) and a monitoring module 30 (monitoring arithmetic device).
  • the control module 20 is an arithmetic device that performs calculation using the control storage area 20m, and calculates a target control amount that is a target value of a control amount for controlling the combustion state of the internal combustion engine according to a user request torque.
  • the monitoring module 30 is an arithmetic device that performs calculation using the monitoring storage area 30m different from the control storage area 20m, and includes a count value setting unit, an integration unit, and an abnormality determination unit.
  • the monitoring module 30, which is a computing device that monitors torque, performs computation using the monitoring storage area 30m different from the control storage area 20m. Therefore, as illustrated in FIG. 13, the estimated torque for monitoring becomes an abnormal value while the required torque for monitoring does not occur at an abnormal time, so the amount of torque deviation increases and is stored in the control storage area 20 m. It is possible to monitor torque abnormalities caused by abnormal data.
  • the calculation speed and calculation accuracy of the estimated torque and required torque used for monitoring are lower than the estimated torque and required torque used for control.
  • the operation cycle of the monitoring module 30 is longer than the operation cycle of the control module 20. Therefore, it can be avoided that the operation processing load of the monitoring module 30 becomes larger than necessary.
  • the monitoring module 30 includes the input securing unit 31 that checks that the data acquired from the outside of the monitoring module 30 is normal. Therefore, it is possible to improve the guarantee that the data used for the calculation of the monitoring module 30 is normal, and it is possible to meet the above request.
  • the monitoring module 30 includes the engine required torque calculation unit 32 and the estimated torque calculation unit 33. Then, the engine required torque calculation unit 32 calculates, as reserve torque, a decrease in actual torque that occurs with the retardation of the ignition timing of the internal combustion engine, and calculates the engine required torque based on the calculated reserve torque and the user required torque. Therefore, the difference between the engine required torque and the estimated torque, which is caused due to the calculation of the engine required torque without considering the reserve torque, can be suppressed, so that the possibility of erroneous determination of torque abnormality can be suppressed.
  • control module 20 sets the target ignition timing to be retarded at the time of catalyst warmup request, and the engine required torque calculation unit 32 performs combustion corresponding to the retarded amount of catalyst warmup request.
  • the reserve torque is calculated to be equal to or more than the torque for the efficiency deterioration.
  • control module 20 sets the target ignition timing to be retarded during idle operation, and the engine required torque calculation unit 32 reduces the combustion efficiency corresponding to the retarded amount of the idle required torque.
  • the reserve torque is calculated to be equal to or higher than As described above, since the deterioration of the combustion efficiency caused by the retardation of the ignition timing such as the catalyst warm-up request and the idle request is reflected in the engine request torque for monitoring, the possibility of the above-mentioned erroneous determination can be suppressed.
  • the disclosure in this specification is not limited to the illustrated embodiments.
  • the disclosure includes the illustrated embodiments and variations based on them by those skilled in the art.
  • the disclosure is not limited to the combination of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure can have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and / or elements of the embodiments have been omitted.
  • the disclosure includes replacements or combinations of parts and / or elements between one embodiment and another embodiment.
  • the disclosed technical scope is not limited to the description of the embodiments. It is to be understood that the technical scopes disclosed herein are indicated by the description of the scope of the claims, and further include all modifications within the meaning and scope equivalent to the descriptions of the scope of the claims.
  • the torque deviation amount when the torque deviation amount is less than the upper value of the dead zone, only the count value corresponding to the torque deviation amount is added to the integrated value, and the count value corresponding to the upper value is subtracted from the integrated value. , Integrated value will decrease.
  • the torque deviation amount when the torque deviation amount is less than the upper value of the dead zone, the addition of the count value to the integrated value is prohibited, and the subtraction of the count value corresponding to the upper value from the integrated value is eliminated. May not decrease.
  • the integration of the count value is limited in accordance with whether or not the torque deviation amount is within the range of the dead zone.
  • the integration of the count value may be limited depending on whether or not the count value corresponding to the torque deviation amount is within the range of the dead zone.
  • the upper limit guard value is variably set according to the operating state of the internal combustion engine. However, regardless of the operating state, the upper limit guard value may be set to a preset fixed value.
  • the dead zone is variably set in accordance with the operating condition of the vehicle or the internal combustion engine, but the dead zone may be set to a preset fixed value regardless of the operating condition.
  • the variable setting may be abolished and set to a preset fixed value.
  • the torque abnormality determination process after S43 is executed on condition that the engine speed is equal to or more than a predetermined value.
  • the torque abnormality determination processing after S43 may be executed.
  • the monitoring module 30 includes a count value setting unit, an integration unit, and an abnormality determination unit, and setting of the count value, calculation of the integration value, and abnormality determination are performed by the monitoring module 30.
  • the control module 20 may include a count value setting unit, an integration unit, and an abnormality determination unit, and setting of the count value, calculation of the integration value, and abnormality determination may be performed by the control module 20. Also, it may be executed by both the control module 20 and the monitoring module 30.
  • the calculation speed of the monitoring module 30 is slower than the calculation speed of the control module 20. Specifically, the check processing speed by the input securing unit 31 becomes a bottleneck, and the calculation speed of the engine required torque calculation unit 32 and the estimated torque calculation unit 33 is slower than the calculation speed of the engine required torque calculation unit 21 . On the other hand, the calculation speed of the monitoring module 30 may be equal to the calculation speed of the control module 20.
  • control storage area 20m and the monitoring storage area 30m are set in the storage area of one common memory 11m.
  • a plurality of memories may be provided in the ECU 10, the storage area of the first memory may be set as the control storage area, and the storage area of the second memory may be set as the monitoring storage area.
  • one common MCU 11 has the control storage area 20m and the monitoring storage area 30m.
  • the ECU 10 may be provided with a plurality of MCUs, the first MCU may have a control storage area, and the second MCU may have a monitoring storage area.
  • the internal combustion engine mounted on the vehicle is the control target of the ECU 10, but a stationary internal combustion engine other than the on-vehicle may be the control target of the ECU 10.
  • a vehicle drive motor mounted on a hybrid vehicle or an electric vehicle may be monitored. In that case, the count value is set to a larger value as the amount of deviation between the required torque of the vehicle drive motor and the actual torque is larger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

トルク監視装置は、内燃機関の実トルクの推定値である推定トルクが、内燃機関に要求されている機関要求トルクと乖離したトルク異常状態であるか否かを監視するトルク監視装置であって、推定トルクと機関要求トルクとの乖離量が大きいほど、計数値を大きい値に設定する計数値設定部(34a、34b、34c、B16)と、計数値を積算した値である積算値を算出する積算部(34d)と、積算値が所定の異常判定閾値以上になった場合に、トルク異常状態であると判定する異常判定部(34e)と、を備える。

Description

トルク監視装置および内燃機関制御システム 関連出願の相互参照
 本出願は、2017年8月1日に出願された日本特許出願番号2017-149368号に基づくもので、ここにその記載内容を援用する。
 この明細書における開示は、内燃機関のトルク異常を監視するトルク監視装置、および内燃機関制御システムに関する。
 特許文献1には、内燃機関の実トルクが、内燃機関に要求されている機関要求トルクと乖離したトルク異常状態であるか否かを監視するトルク監視装置が開示されている。
特開2010-196713号公報
 さて、本発明者は、上述した実トルクと機関要求トルクとの乖離量が所定量以上になった状態が、所定の時間(判定時間)以上継続した場合に、トルク異常であると判定することを検討した。しかしながら、判定時間を短く設定すると、ノイズ等の原因により一時的に乖離量が大きくなった場合にもトルク異常であると判定するおそれがある。一方、判定時間を長く設定すると、トルク異常を迅速に検知できなくなる。
 本開示の目的は、トルク異常の誤判定抑制と迅速な検知の両立を図ったトルク監視装置を提供することである。
 本開示の一態様によるトルク監視装置は、内燃機関の実トルクの推定値である推定トルクが、内燃機関に要求されている機関要求トルクと乖離したトルク異常状態であるか否かを監視するトルク監視装置であって、推定トルクと機関要求トルクとの乖離量が大きいほど、計数値を大きい値に設定する計数値設定部と、計数値を積算した値である積算値を算出する積算部と、積算値が所定の異常判定閾値以上になった場合に、トルク異常状態であると判定する異常判定部と、を備える。
 ここに開示されたトルク監視装置によると、推定トルクと機関要求トルクとの乖離量が大きいほど計数値を大きい値に設定し、その計数値を積算した値が所定の異常判定閾値を超えた場合にトルク異常状態であると判定する。そのため、乖離量が大きいほどトルク異常状態と判定されやすくなり、トルク異常を迅速に検知できるようになり、それでいて、乖離量が小さいほどトルク異常状態と判定されにくくなり、ノイズ等の原因によりトルク異常と誤判定されるおそれを低減できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る内燃機関制御システムのブロック図であり、 図2は、図1に示す制御モジュールのブロック図であり、 図3は、図1に示す監視モジュールのブロック図であり、 図4は、第1実施形態においてトルク監視制御の手順を示すフローチャートであり、 図5は、図3のトルク比較異常判定部の詳細を示すブロック図であり、 図6は、図5の不感帯設定に用いる、不感帯とギア段との関係を示すマップであり、 図7は、ギア段と走行加速度との関係を示す特性図であり、 図8は、図5の不感帯設定に用いる、不感帯と車速との関係を示すマップであり、 図9は、図5の不感帯設定に用いる、不感帯と機関要求トルクとの関係を示すマップであり、 図10は、図5の異常判定閾値の設定に用いる、異常判定閾値とギア段との関係を示すマップであり、 図11は、図5の異常判定閾値の設定に用いる、異常判定閾値と車速との関係を示すマップであり、 図12は、図4に示すトルク異常判定の処理手順を示すフローチャートであり、 図13は、第1実施形態において、内燃機関の運転状態の推移に対する、制御モジュールおよび監視モジュールの演算結果の推移を示すタイムチャートであり、 図14は、第1実施形態による作用効果を説明するタイムチャートである。
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/または関連付けられる部分については、他の実施形態の説明を参照することができる。
 (第1実施形態)
 図1は、車両に搭載された電子制御装置(Electronic Control Unit)であって、車両に搭載された内燃機関の作動を制御するECU10を示す。上記車両は、内燃機関を駆動源として走行する。なお、本実施形態に係る内燃機関は点火着火式のガソリンエンジンであるが、自着火式のディーゼルエンジンであってもよい。また、上記車両には、内燃機関の出力軸の回転速度を所望の回転速度に変換して出力する変速機が備えられている。
 ECU10は、MCU11(Micro Controller Unit)、点火駆動IC12、燃料噴射弁駆動IC13、電スロ駆動IC14、通信回路15および統合IC16を備える。
 MCU11は、演算処理装置であるCPU11aと、記憶媒体であるメモリ11mと、入力処理回路11cと、通信回路11dと、CPUチェック回路11eと、を備える。図1に示す例では、MCU11は1つの半導体チップ上に、CPU11a、メモリ11m、入力処理回路11c、通信回路11dおよびCPUチェック回路11eが集積されているが、複数の半導体チップに分散して集積させてもよい。また、複数の半導体チップに分散して集積させた場合、共通の基板に複数の半導体チップを実装させてもよいし、複数の基板の各々に半導体チップを実装させてもよい。さらに、共通した1つの筐体に各々の半導体チップを収容させてもよいし、別々の筐体に収容させてもよい。
 メモリ11mは、プログラムおよびデータを記憶する記憶媒体であり、CPU11aによって読み取り可能なプログラムを非一時的に格納する非遷移的実体的記憶媒体を含む。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。メモリ11mに記憶されたプログラムは、CPU11aによって実行されることによって、ECU10をこの明細書に記載される装置として機能させ、この明細書に記載される方法を実行するように制御装置を機能させる。
 制御装置が提供する手段および/または機能は、実体的な記憶媒体に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。
 MCU11には、エンジン回転数、アクセル開度、インマニ圧、排気圧、水温、油温、外部ECUから出力された外部信号等の各種信号が入力される。これらの信号は、ECU10の外部から入力処理回路11cまたは通信回路11dへ入力される。
 エンジン回転数の信号は、クランク角センサの検出値を表す信号であり、この検出値に基づきMCU11は、内燃機関のクランク軸(出力軸)の単位時間当りの回転数、つまり出力軸の回転速度を演算する。アクセル開度の信号は、アクセルペダルセンサの検出値を表す信号であり、この検出値に基づきMCU11は、車両の運転者つまり内燃機関のユーザが操作したアクセルペダルの踏込量を演算する。
 インマニ圧の信号は、吸気圧センサの検出値を表す信号であり、この検出値に基づきMCU11は、燃焼室へ吸入される吸気の圧力を演算する。排気圧の信号は、排気圧センサの検出値を表す信号であり、この検出値に基づきMCU11は、燃焼室から排出される排気の圧力を演算する。水温の信号は、水温センサの検出値を表す信号であり、この検出値に基づきMCU11は、内燃機関を冷却する水の温度を演算する。油温の信号は、油温センサの検出値を表す信号であり、この検出値に基づきMCU11は、内燃機関の潤滑油や油圧アクチュエータの作動油の温度を演算する。
 外部ECUから出力された外部信号の具体例としては、内燃機関の出力軸を駆動源とする補機の作動状態を表す信号が挙げられる。上記補機の具体例としては、車室内を空調する空調装置が有する冷媒圧縮機であって、内燃機関の出力軸を駆動源とするコンプレッサが挙げられる。
 点火駆動IC12は、内燃機関が備える点火装置への電力供給と遮断を制御するスイッチング素子を有し、このスイッチング素子への指令信号をMCU11は出力する。具体的には、MCU11は、先述したエンジン回転数等の各種信号に基づき、点火装置で放電点火させる時期の目標値である目標点火時期を演算し、演算した目標点火時期に応じて指令信号を点火駆動IC12へ出力する。
 燃料噴射弁駆動IC13は、内燃機関が備える燃料噴射弁への電力供給と遮断を制御するスイッチング素子を有し、このスイッチング素子への指令信号をMCU11は出力する。具体的には、MCU11は、先述したエンジン回転数等の各種信号に基づき、燃料噴射弁で燃料噴射させる期間(つまり噴射量)の目標値である目標噴射量を演算し、演算した目標噴射量に応じて指令信号を燃料噴射弁駆動IC13へ出力する。
 電スロ駆動IC14は、内燃機関が備える電子スロットルバルブ(電スロ)への電力供給と遮断を制御するスイッチング素子を有し、このスイッチング素子への指令信号をMCU11は出力する。具体的には、MCU11は、先述したエンジン回転数等の各種信号に基づき、電スロのバルブ開度の目標値である目標開度を演算し、演算した目標開度に応じて指令信号を電スロ駆動IC14へ出力する。
 このように、点火装置、燃料噴射弁および電スロの作動をECU10が制御することで、内燃機関の燃焼状態は制御される。そして、MCU11により演算される目標点火時期、目標噴射量および目標開度は、内燃機関の燃焼状態を制御する制御量の目標値である目標制御量に相当する。
 通信回路15は、MCU11が把握している各種情報を外部ECUへ出力する。例えば、トルク異常状態等の異常が生じている旨を表す異常フラグの信号を、車両運転者が視認する表示装置の作動を制御する表示ECUへ出力する。表示ECUは、異常フラグの信号を取得した場合に警告表示や警告音を生じさせる。
 統合IC16は、図示しないメモリ、およびメモリに記憶されている各種のプログラムを実行するCPU等を備える。CPUが実行するプログラムに応じて、統合IC16は、マイクロコンピュータ監視部16aとして機能したり、電スロカット制御部16bとして機能したりする。
 ここで、CPUチェック回路11eは、メモリ11mに記憶されているプログラムおよびデータが正常であるかのチェック(例えばパリティチェック)を実行する等、CPU11aおよびメモリ11mが正常であるか否かをチェックする。マイクロコンピュータ監視部16aは、CPUチェック回路11eのチェック結果を参照しつつ、MCU11の作動不良を監視する。
 統合IC16は、マイクロコンピュータ監視部16aが異常を検出した場合には、電スロの作動を制限するといった電スロカットの制御を実行する。例えば、アクセル開度に拘らず、予め設定しておいた所定開度に目標開度を固定して、内燃機関の出力が所定出力未満となるように制限する。あるいは、目標開度をゼロにして内燃機関を強制的に停止させる。電スロカット制御部16bは、電スロ駆動IC14へ電スロカットを指令する信号を出力する。電スロ駆動IC14は、MCU11から出力される指令信号よりも電スロカット指令信号を優先して作動する。
 MCU11は、制御モジュール20および監視モジュール30を有する。これらのモジュールは、いずれについても、共通するCPU11aおよびメモリ11mにより提供される機能である。すなわち、メモリ11mの制御用記憶領域20mに記憶された制御プログラムをCPU11aが実行している時のCPU11aおよびメモリ11mは、制御モジュール20として機能する。
 また、メモリ11mの監視用記憶領域30mに記憶された監視プログラムをCPU11aが実行している時のCPU11aおよびメモリ11mは、監視モジュール30として機能する。制御用記憶領域20mおよび監視用記憶領域30mは、メモリ11mの記憶領域のうち異なる領域に、別々に設定されている。
 制御モジュール20は、ユーザが要求する内燃機関の駆動トルクであるユーザ要求トルクに応じて、先述した各種の目標制御量を演算する「制御用演算装置」を提供する。監視モジュール30は、内燃機関の実トルクの推定値である推定トルクが、内燃機関に要求されている機関要求トルクに対して所定以上乖離したトルク異常状態であるか否かを監視する「監視用演算装置」を提供する。ECU10は、制御用演算装置および監視用演算装置を備える「トルク監視装置」を提供する。
 制御モジュール20は、機関要求トルク算出部21および駆動信号出力部22としての機能を有する。機関要求トルク算出部21は、入力処理回路11cおよび通信回路11dから取得した各種信号に基づき、内燃機関に要求するべきトルクである機関要求トルクを算出する。駆動信号出力部22は、機関要求トルク算出部21で算出された機関要求トルクに応じて、先述した目標点火時期、目標噴射量、および目標開度等の目標制御量を演算する。さらに駆動信号出力部22は、演算された目標制御量に応じて、点火駆動IC12、燃料噴射弁駆動IC13および電スロ駆動IC14等のアクチュエータへ、各種の指令信号を出力する。
 図2を用いてより詳細に説明すると、機関要求トルク算出部21は、ユーザ要求トルク算出部21a、ポンプロス算出部21b、フリクションロス算出部21c、トルク効率算出部21dおよび演算部B1~B6としての機能を有する。
 ユーザ要求トルク算出部21aは、先述したエンジン回転数およびアクセル開度に基づきユーザ要求トルクを算出する。エンジン回転数が高回転数であるほど、また、アクセル開度が大きいほど、ユーザ要求トルクは大きい値に算出される。例えば、エンジン回転数およびアクセル開度とユーザ要求トルクとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、エンジン回転数およびアクセル開度に応じたユーザ要求トルクをユーザ要求トルク算出部21aは算出する。
 ポンプロス算出部21bは、先述したインマニ圧および排気圧に基づき、ポンプロスをトルク換算した値であるポンプロストルクを算出する。ポンプロスとは、内燃機関のピストンが往復動する際に吸排気から受ける抵抗によるエネルギ損失のことである。インマニ圧が低いほど、ピストンの吸気行程での吸気抵抗が大きいとみなしてポンプロスは大きい値に設定される。また、排気圧が高いほど、ピストンの排気行程での排気抵抗が大きいとみなしてポンプロスは大きい値に設定される。例えば、インマニ圧および排気圧とポンプロスとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、インマニ圧および排気圧に応じたポンプロスをポンプロス算出部21bは算出する。
 フリクションロス算出部21cは、先述した水温および油温に基づき、フリクションロスをトルク換算した値であるフリクションロストルクを算出する。フリクションロスとは、内燃機関のピストンが往復動する際のシリンダとの摩擦による機械エネルギロスのことである。水温が適正範囲から外れて低温または高温になっているほど、摩擦が大きいとみなしてフリクションロスは大きい値に設定される。また、油温が低いほど潤滑油等の粘性が大きいとみなしてフリクションロスは大きい値に設定される。例えば、水温および油温とフリクションロスとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、水温および油温に応じたフリクションロスをフリクションロス算出部21cは算出する。
 演算部B1は、ポンプロス算出部21bにより算出されたポンプロス、フリクションロス算出部21cにより算出されたフリクションロス、およびロストルク学習値を加算して、総ロストルクを演算する。演算部B2は、ユーザ要求トルク算出部21aにより算出されたユーザ要求トルク、演算部B1により演算された総ロストルク、および外部要求トルクを加算して、ロス込みトルクを演算する。外部要求トルクの具体例としては、車載バッテリへの充電を目的として、内燃機関で駆動する発電機による発電量を増大させるといった、発電増大分のトルクが挙げられる。
 演算部B3は、アイドルリザーブ、触媒暖機リザーブおよび補機リザーブの各々に相当するトルクを加算してリザーブトルクを演算する。これら各々のリザーブトルクは、エンジン回転数、エンジン負荷および水温等の内燃機関の運転状態に応じて、制御モジュール20により設定される。演算部B4は、演算部B2により演算されたロス込みトルクに、演算部B3により演算されたリザーブトルクを加算して、リザーブ込みトルクを演算する。
 アイドルリザーブトルクとは、内燃機関のアイドル運転時にトルクアップさせて燃焼を安定化させる制御を実施するにあたり、そのトルクアップ分に相当するトルクのことである。触媒暖機リザーブトルクとは、内燃機関の排気を浄化する触媒を活性化温度以上に温度上昇させるべく排気温度を上昇させる暖機制御を実施するにあたり、排気温度を上昇させることに用いる燃焼エネルギのロス分をトルクに換算した値のことである。補機リザーブトルクとは、内燃機関を駆動源とする発電機等の補機を駆動させるのに要するトルクのことである。
 トルク効率算出部21dは、最大トルク発生点火時期(MBT点火時期)、ノック学習込みベース遅角量および目標ラムダに基づき、トルク効率を算出する。MBT点火時期とは、最大トルクが得られる点火時期のことであり、エンジン回転数やエンジン負荷、水温等に応じて異なる時期となる。但し、MBT点火時期ではノッキングが生じやすいので、MBT点火時期よりも所定時間遅い時期、つまり所定角度遅角させた時期で点火させることが要求される。その遅角させた時期をベース点火時期と呼ぶ。その遅角量(ベース遅角量)は、エンジン回転数やエンジン負荷、水温等に応じて異なる。
 また、ノッキングがセンサで検出された場合には、点火時期を所定時間だけ遅角させるように補正するフィードバック制御を実行しており、その遅角補正量(ノック学習量)を次回以降の点火時期制御に反映させる学習制御をノック学習と呼ぶ。そして、ベース点火時期にノック学習量を反映させた時期が目標点火時期に相当する。
 演算部B5は、MBT点火時期から目標点火時期を減算して得られた時期を、MBT点火時期に対する目標点火時期の遅角量であるMBT遅角量として演算する。トルク効率算出部21dは、演算部B5により演算されたMBT遅角量および目標ラムダに基づき、トルク効率を算出する。
 トルク効率とは、燃焼室での燃焼エネルギのうち、クランク軸の回転トルクに変換される分のエネルギの割合のことである。MBT遅角量が小さいほど、つまり目標点火時期がMBT点火時期に近いほど、トルク効率は高い値に算出される。目標ラムダとは、燃焼室で燃焼する混合気に含まれる、空気と燃料の比率(ラムダ)の目標値のことであり、トルク効率算出部21dは、目標ラムダに応じた値にトルク効率を算出する。例えば、MBT遅角量および目標ラムダとトルク効率との相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、MBT遅角量および目標ラムダに応じたトルク効率をトルク効率算出部21dは算出する。
 なお、上述したMBT点火時期、ベース点火時期および目標ラムダの各々は、エンジン回転数、エンジン負荷および水温等の内燃機関の運転状態に応じて、制御モジュール20により設定される。
 また、上記ノック学習に係る学習制御は制御モジュール20により実行される。本実施形態に係るECU10は、点火駆動ICから出力される駆動電流または電圧を検出する検出回路を備えている。そして、その検出回路による検出値を用いて、制御モジュール20は機関要求トルクを演算している。具体的には、上記検出値に基づき実点火時期を算出し、その実点火時期を用いてノック学習に係る学習制御を実行し、ノック学習量を算出している。
 演算部B6は、演算部B4により演算されたリザーブ込みトルクに、トルク効率算出部21dにより算出されたトルク効率を除算して、エンジン制御に用いる制御用の機関要求トルクを演算する。要するに、総ロストルクおよびリザーブトルクをユーザ要求トルクに加算した値を、トルク効率で除算することで、機関要求トルク算出部21は機関要求トルクを算出する。
 監視モジュール30は、推定トルクが機関要求トルクに対して所定以上乖離したトルク異常状態であるか否かを監視するものであることは先述した通りであり、推定トルクとは、内燃機関の実トルクを推定した値のことである。機関要求トルクとは、内燃機関に要求されているトルクのことであり、制御モジュール20の機関要求トルク算出部21により算出される機関要求トルクと同義である。但し、監視モジュール30で算出される機関要求トルクは、トルク異常の監視に用いられる値であり、制御モジュール20で算出される機関要求トルクは、内燃機関に対する目標制御量の算出に用いられる値である。つまり、これら監視用の機関要求トルクと制御用の機関要求トルクは、メモリ11mの記憶領域のうち異なる領域で演算された値である。
 図1に示すように、監視モジュール30は、入力保障部31、機関要求トルク演算部32、推定トルク演算部33、トルク比較異常判定部34および電スロカット制御部35としての機能を有する。
 入力保障部31は、入力処理回路11cおよび通信回路11dから取得した各種信号のデータが正常であることをチェック(例えばパリティチェック)する。異常であれば、データ修復、データ再取得、データ廃棄等を入力保障部31は実行する。これにより、監視モジュール30が異常データを用いて各種の算出を行うことを回避できる。つまり、入力保障部31は、監視モジュール30による算出に用いられる各種データが正常であることを保障する。
 トルク比較異常判定部34は、機関要求トルク演算部32により算出された期間要求トルクと、推定トルク演算部33により算出された推定トルクとの差分を算出し、その差分が所定以上であれば、上述したトルク異常状態であると判定する。この異常判定の詳細については、図5および図12を用いて後述する。トルク異常状態であると判定された場合、電スロカット制御部35は、電スロカット制御部16bと同様にして、電スロ駆動IC14へ電スロカットを指令する信号を出力する。
 図3に示すように、機関要求トルク演算部32は、触媒暖機要求トルク算出部32a、アイドル要求トルク算出部32bおよび演算部B11としての機能を有する。
 触媒暖機要求トルク算出部32aは、触媒暖機目標回転数および先述したアクセル開度に基づき、触媒暖機要求トルクを算出する。内燃機関の排気を浄化する触媒を活性化温度以上に温度上昇させるべく排気温度を上昇させる暖機制御については先述した通りであり、暖機制御を実行している期間におけるエンジン回転数の目標値が触媒暖機目標回転数である。そして、触媒暖機要求トルク算出部32aは、暖機制御を実行している期間におけるアクセル開度および触媒暖機目標回転数に基づき、触媒暖機要求トルクを算出する。
 触媒暖機要求トルクとは、触媒暖機リザーブトルクと同義である。但し、監視モジュール30で算出される触媒暖機要求トルクは、トルク異常の監視に用いられる値であり、制御モジュール20で算出される触媒暖機リザーブトルクは、内燃機関に対する目標制御量の算出に用いられる値である。つまり、これら監視用の触媒暖機要求トルクと制御用の触媒暖機リザーブトルクは、メモリ11mの記憶領域のうち異なる領域で演算された値である。
 図3では、触媒暖機要求トルクの算出に用いる変数の例示として触媒暖機目標回転数およびアクセル開度を記載しているが、他の変数として、水温、ユーザ要求トルク、エンジン回転数および吸気充填効率が挙げられる。吸気充填効率とは、スロットルバルブを通過した吸気の流量に対する、燃焼室で圧縮される吸気の流量の比率のことである。触媒暖機要求トルク算出部32aは、これらの変数の少なくとも1つを用いて触媒暖機要求トルクを算出する。
 例えば、アクセルペダルが踏み込まれていない時の触媒暖機目標回転数が大きいほど、触媒暖機要求トルク(リザーブ量)を大きく算出する。また、アクセルペダルが踏み込まれている時のアクセル開度が所定未満であれば触媒暖機要求トルクを所定値に設定し、所定以上であればゼロに設定する。また、水温やエンジン回転数に応じて触媒暖機要求トルクを増減させてもよいし、充填効率に応じて触媒暖機要求トルクを増減させてもよい。
 アイドル要求トルク算出部32bは、アイドル目標回転数および先述したエンジン回転数に基づき、アイドル要求トルクを算出する。内燃機関のアイドル運転時にトルクアップさせて燃焼を安定化させるアイドル制御については先述した通りであり、このアイドル制御を実行している期間におけるエンジン回転数の目標値がアイドル目標回転数である。そして、アイドル要求トルク算出部32bは、アイドル制御を実行している期間におけるエンジン回転数およびアイドル目標回転数に基づき、アイドル要求トルクを算出する。
 アイドル要求トルクとは、アイドルリザーブトルクと同義である。但し、監視モジュール30で算出されるアイドル要求トルクは、トルク異常の監視に用いられる値であり、制御モジュール20で算出されるアイドルリザーブトルクは、内燃機関に対する目標制御量の算出に用いられる値である。つまり、これら監視用のアイドル要求トルクと制御用のアイドルリザーブトルクは、メモリ11mの記憶領域のうち異なる領域で演算された値である。
 図3では、アイドル要求トルクの算出に用いる変数の例示としてアイドル目標回転数およびエンジン回転数を記載しているが、他の変数として、水温、車速、大気圧および吸気充填効率が挙げられる。アイドル要求トルク算出部32bは、これらの変数の少なくとも1つを用いてアイドル要求トルクを算出する。
 例えば、アクセルペダルが踏み込まれていない時の目標回転数とエンジン回転数との差分が小さいほど、アイドル要求トルク(リザーブ量)を大きく算出する。また、アクセルペダルが踏み込まれている時のアクセル開度が小さいほど、アイドル要求トルクを大きく算出する。また、水温やエンジン回転数に応じてアイドル要求トルクを増減させてもよいし、充填効率に応じてアイドル要求トルクを増減させてもよい。
 演算部B11は、触媒暖機要求トルク算出部32aおよびアイドル要求トルク算出部32bで算出された触媒暖機要求トルクおよびアイドル要求トルクと、ユーザ要求トルクと、外部要求トルクとを加算して、内燃機関に要求されている機関要求トルクを算出する。この算出に用いるユーザ要求トルクは、入力保障部31により保障されたエンジン回転数およびアクセル開度のデータを用いて算出される。
 以上により、機関要求トルク演算部32は、入力処理回路11cおよび通信回路11dから取得した各種信号であって、入力保障部31により保障された信号(データ)に基づき、内燃機関に要求されている機関要求トルクを算出する。
 図3に示すように、推定トルク演算部33は、推定トルク算出部33a、MBT点火時期算出部33b、ベース点火時期算出部33c、トルク効率算出部33d、ロストルク算出部33eおよび演算部B12、B13、B14としての機能を有する。
 推定トルク算出部33aは、先述した充填効率およびエンジン回転数に基づき、点火時期がMBTである場合における内燃機関の実際の駆動トルク(MBT推定トルク)を推定する。エンジン回転数が高回転数であるほど、また、充填効率が大きいほど、MBT推定トルクは大きい値に算出される。例えば、エンジン回転数および充填効率とMBT推定トルクとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、エンジン回転数および充填効率に応じたMBT推定トルクを推定トルク算出部33aは算出する。
 MBT点火時期算出部33bは、充填効率およびエンジン回転数に基づきMBT点火時期を算出する。ベース点火時期算出部33cは、充填効率およびエンジン回転数に基づきベース点火時期を算出する。これらのMBT点火時期およびベース点火時期は、推定トルク算出部33aと同様にして、メモリ11mに予め記憶させておいたマップを参照して算出される。
 演算部B12は、MBT点火時期算出部33bにより算出されたMBT点火時期から、ベース点火時期算出部33cにより算出されたベース点火時期を減算した値を、先述したベース遅角量として演算する。トルク効率算出部33dは、演算部B12により演算されたベース遅角量に基づき、先述したトルク効率を算出する。但し、ノック学習量が予め設定しておいた所定量またはゼロとみなして、トルク効率算出部33dはトルク効率を算出する。
 ロストルク算出部33eは、エンジン回転数および水温に基づき、ポンプロスおよびフリクションロスを含むロスエネルギをトルク換算したロストルクを算出する。例えば、エンジン回転数および水温とロストルクとの相関を表すマップをメモリ11mに予め記憶させておき、そのマップを参照して、エンジン回転数および水温に応じたロストルクをロストルク算出部33eは算出する。
 演算部B13は、推定トルク算出部33aにより算出されたMBT推定トルクに、トルク効率算出部33dにより演算されたトルク効率を乗算した値を、ロストルクを考慮しない推定トルクとして演算する。演算部B14は、演算部B13により演算された推定トルクから、ロストルク算出部33eにより算出されたロストルクを減算した値を、監視用の推定トルクとして演算する。
 以上により、推定トルク演算部33は、入力処理回路11cおよび通信回路11dから取得した各種信号であって、入力保障部31により保障された信号(データ)に基づき、内燃機関が実際に出力している駆動トルクを推定する。
 内燃機関の運転期間中には、監視モジュール30による監視機能が常時作動する。具体的には、図4に示すメイン処理が常時実行される。
 図4のメイン処理では、先ずS10において、モニタ実行条件が満たされているか否かを判定する。例えば、CPUチェック回路11eによるチェックが完了していることや、マイクロコンピュータ監視部16aが異常を検出していないこと等が、モニタ実行条件の具体例として挙げられる。
 モニタ実行条件が満たされていると判定された場合、S20において、先述した機関要求トルク演算部32が、監視用の機関要求トルクを算出する。なお、図3に示す機関要求トルク演算部32ではユーザ要求トルクの算出ブロックを省略しているが、例えばユーザ要求トルク算出部21aと同様にして、エンジン回転数およびアクセル開度に基づきユーザ要求トルクを算出する。但し、入力保障部31により保障されたエンジン回転数およびアクセル開度のデータを用いてユーザ要求トルクを算出する。
 S30では、先述した推定トルク演算部33が、監視用の推定トルクを算出する。S40、S50では、先述したトルク比較異常判定部34が、トルク異常の判定を実行する。S50にてトルク異常と判定された場合、S60において、電スロカット制御部35が電スロカット指令信号を出力する。
 以下、上記S40およびトルク比較異常判定部34によるトルク異常判定の処理について、詳細に説明する。図5に示すように、トルク比較異常判定部34は、上限ガード設定部34a、トルク乖離量算出部34b、不感帯設定部34c、トルク乖離量積算部34d、トルク異常判定部34eおよび演算部B15、B16としての機能を有する。
 演算部B15は、機関要求トルク演算部32により演算された機関要求トルクから、推定トルク演算部33により演算された推定トルクを減算して、トルク乖離量を算出する。上限ガード設定部34aは、内燃機関の運転状態に応じて上限ガード値を設定する。例えば、高エンジン回転数であるほど、また、高負荷運転であるほど、上限ガード値を小さい値に設定する。
 トルク乖離量算出部34bでは、演算部B15で算出されたトルク乖離量と、上限ガード設定部34aで設定された上限ガード値とを比較して、小さい方の値をトルク乖離量として設定する。要するに、演算部B15で算出されたトルク乖離量が上限ガード値を超えて大きくなった場合には、トルク異常判定に用いるトルク乖離量を上限ガード値に制限する。
 不感帯設定部34cは、車両の運転状態および内燃機関の運転状態の少なくとも一方に応じて、不感帯を設定する。不感帯とは、トルク乖離量のうち所定の下値(ゼロ)から上値までの領域のことであり、トルク乖離量をゼロとみなす領域のことである。車両の運転状態の具体例としては、先述した変速機による変速比および車両の走行速度(車速)等が挙げられる。内燃機関の運転状態の具体例としては、機関要求トルク、ユーザ要求トルク、エンジン回転数およびエンジン負荷等が挙げられる。
 例えば、変速機による変速比が小さいほど、つまり変速機による出力トルクが大きいほど、不感帯の上値を大きく設定する(図6参照)。本実施形態に係る変速機は、複数のギア段を有しており、ギア段を切り替えることで、変速機への入力に対する出力の変速比が切り替えられる。そして、低速ギア段に切り替えられた場合には、低回転数(低速)高トルクで車両の駆動輪が回転駆動し、高速ギア段に切り替えられた場合には、高回転数(高速)低トルクで車両の駆動輪が回転駆動する。高速ギア段にして高速低トルクにした場合(図7中の実線参照)には、低速ギア段にして低速高トルクにした場合(図7中の点線参照)に比べて、アクセルペダルの踏み込み量等の条件が同じであれば車両の走行加速度が大きくなる。
 そして、走行加速度が大きいほど、トルク異常発生に伴い車両運転者に与える違和感は小さいとみなし、トルク異常状態と判定されにくくしている。具体的には、ギア段が大きいほど、つまり高速低トルクのギア段であり走行加速度が大きいほど、不感帯の上値を大きい値に設定している(図6参照)。
 例えば、車速が速いほど、トルク異常発生に伴い車両運転者に与える違和感は小さいとみなし、トルク異常状態と判定されにくくしている。具体的には、車速が速いほど不感帯の上値を大きい値に設定している(図8参照)。例えば、監視用機関要求トルクが大きいほど、トルク異常発生に伴い車両運転者に与える違和感は小さいとみなし、トルク異常状態と判定されにくくしている。具体的には、監視用機関要求トルクが大きいほど不感帯の上値を大きい値に設定している(図9参照)。
 図5の説明に戻り、演算部B16は、トルク乖離量算出部34bで設定されたトルク乖離量が、不感帯設定部34cで設定された不感帯の上値未満であれば、そのトルク乖離量から不感帯の上値を減算する。そしてトルク乖離量積算部34d(積算部)は、演算部B16により演算された後のトルク乖離量を積算していく。トルク異常判定部34e(異常判定部)は、トルク乖離量積算部34dにより算出された積算値が所定の異常判定閾値にまで達した場合には、トルク異常状態であると判定する。
 上限ガード設定部34a、トルク乖離量算出部34b、不感帯設定部34cおよび演算部B16は、推定トルクと機関要求トルクとの乖離量が大きいほど、計数値を大きい値に設定する「計数値設定部」に相当する。本実施形態では、トルク乖離量をそのまま計数値として用いているが、例えばトルク乖離量が10Nmである場合に計数値を1として、トルク乖離量を所定の計数値に換算してもよい。いずれにしても、トルク乖離量が大きいほど計数値は大きく設定される。なお、本実施形態では、推定トルクから要求トルクを減算した値を乖離量(計数値)としているため、推定トルクが要求トルクよりも小さい場合には乖離量はマイナスの値に設定される。
 また、トルク異常判定部34eは、車両の運転状態および内燃機関の運転状態の少なくとも一方に応じて異常判定閾値を可変設定している。車両の運転状態の具体例としては、先述した変速比および車速等が挙げられ、内燃機関の運転状態の具体例としては、機関要求トルク、ユーザ要求トルク、エンジン回転数およびエンジン負荷等が挙げられる。例えば、変速比が小さいほど、つまり変速機による出力トルクが大きいほど、トルク異常発生に伴い車両運転者に与える違和感は小さいとみなし、異常判定閾値を大きく設定してトルク異常状態と判定されにくくしている(図10参照)。或いは、車速が速いほど、トルク異常発生に伴い車両運転者に与える違和感は小さいとみなし、異常判定閾値を大きく設定してトルク異常状態と判定されにくくしている(図11参照)。
 図12は、図4のS40に係るサブルーチン処理を示すフローチャートであり、先ずS41において、トルク乖離量積算値をゼロにリセットする。S42では、エンジン回転数が所定値以上であるか否かを判定する。上記所定値は、アイドル運転時の回転数より小さい値、かつ、スタータモータによる内燃機関の始動運転時のクランキング回転数より大きい値に設定されている。エンジン回転数が所定値未満であれば、エアフロメータにより検出される吸気量の検出値が安定していないとみなし、以降の異常判定処理の実行を禁止してS41に戻る。
 エンジン回転数が所定値以上であれば、次のS43において、演算部B15が、機関要求トルク演算部32により演算された機関要求トルクから、推定トルク演算部33により演算された推定トルクを減算して、トルク乖離量を算出する。S44では、上限ガード設定部34aが、内燃機関の運転状態に応じて上限ガード値を可変設定する。S44aでは、トルク乖離量算出部34bが、トルク乖離量を上限ガード値に制限する。
 S45では、不感帯設定部34cが、車両の運転状態および内燃機関の運転状態の少なくとも一方に応じて、不感帯の領域を可変設定する。S45aでは、S44aで設定したトルク乖離量が、S45で設定された不感帯の領域内の値であるか否かを判定する。具体的には、トルク乖離量が不感帯の上値以上であるか否かを判定する。
 トルク乖離量が不感帯の領域内であると判定された場合、次のS46において、トルク乖離量の積算値の前回値に、S44aで設定されたトルク乖離量を加算する。トルク乖離量が不感帯の領域外であると判定された場合、次のS47において、トルク乖離量の積算値の前回値に、S44aで設定されたトルク乖離量を加算するとともに、その加算した値から不感帯の上値を減算する。要するに、これらS45a、S46、S47の処理は、演算部B16およびトルク乖離量積算部34dにより実行される。
 S48では、トルク異常判定部34eの説明で先述した通り、車両の運転状態および内燃機関の運転状態の少なくとも一方に応じて、異常判定閾値を可変設定する。S48aでは、S46、S47で算出したトルク乖離量積算値が、S48で設定された判定閾値以上であるか否かを判定する。積算値が判定閾値未満であると判定された場合には、S42の処理に戻る。積算値が判定閾値以上であると判定された場合には、S49において、トルク異常判定部34eがトルク異常状態であると判定して、トルク異常フラグをオンに設定する。これにより、図4のS50にて異常判定であると判定され、電スロカット指令信号が出力され、電スロの作動が制限される。
 図13の(a)~(g)欄の各々は、エンジン回転数、イグニッションスイッチ、制御モジュール20の演算結果、トルク監視実行フラグ、監視モジュール30の演算結果、トルク乖離量の積算値、トルク異常判定フラグの、経過時間に対する変化を示す。図13に示す例では、(b)欄に示すようにt1時点でイグニッションスイッチがオン操作されると、内燃機関のスタータモータが駆動してエンジン始動し、その後、加速走行、減速走行、アイドル、クリープ、加速走行、減速走行の順に運転状態は推移している。
 (a)欄に示すように、エンジン始動に伴いエンジン回転数が所定値にまで上昇したt2時点で、(d)欄に示すトルク監視フラグをオンに設定してトルク監視を実行させ、カウンタによる積算を開始している。ここで言うカウンタとは、トルク乖離量の計数値を積算するトルク乖離量積算部34dのことである。つまり、t2時点で、図12のS42で肯定判定され、(f)欄に示すトルク乖離量積算値の積算が許可されている。
 (c)欄に示すように、t2時点からt3時点までの期間では、制御モジュール20により演算される機関要求トルクと推定トルクは一致している。同様にして、(d)欄に示すように、t2時点からt3時点までの期間では、監視モジュール30により演算される機関要求トルクと推定トルクはほぼ一致している。
 但し、アイドル運転のt3時点で、制御用記憶領域20mに記憶されているデータの異常が発生し、この異常発生に起因して、制御用の機関要求トルクが意図に反して上昇している。これに伴い、制御モジュール20の駆動信号出力部22は、エンジン出力トルクを上昇させるように各種の駆動IC12、13、14を制御する。その結果、制御モジュール20により推定されるトルクである制御用推定トルクおよび実トルクは、制御用の機関要求トルクの上昇に合わせて上昇する。なお、制御用推定トルクは、駆動IC12、13、14のフィードバック制御に用いられるフィードバック値である。
 その一方で、監視モジュール30は、異常発生している制御用記憶領域20mとは別の監視用記憶領域30mのデータを用いて要求トルク(監視用要求トルク)を演算している。そのため、制御用記憶領域20mにてデータ異常が発生して制御用要求トルクが上昇しても、監視用要求トルクは上昇しない。但し、実トルクが上昇していることに伴い、(e)欄の点線に示すように監視用推定トルクは上昇する。そのため、監視用要求トルクと監視用推定トルクとの乖離であるトルク乖離量が増大していく。
 トルク乖離量が増大していくと、(f)欄に示す積算値も増大していく。但し、異常発生のt3時点からt4時点までの期間は、トルク乖離量が不感帯よりも小さいため、積算値はゼロのままである。また、t5時点でトルク乖離量が上限ガードまで上昇したことに起因して、t5時点以降は積算値の増加速度は低下している。
 その後、積算値が異常判定閾値まで上昇したt6時点で、(g)欄に示すようにトルク異常判定のフラグがオンに設定されている。これにより、電スロカット制御部35によるエンジン出力制限が為され、実トルクおよびエンジン回転数が低下し、制御用推定トルクおよび監視用推定トルクも低下している。監視用推定トルクが十分に低下すると、トルク乖離量が不感帯の上値よりも小さい値となり、その結果、図12のS47にて積算値が減少していく。つまり、(f)欄に示すt7時点で積算値が減少を開始する。その後、積算値が異常判定閾値未満となったt8時点で、(g)欄に示すようにトルク異常判定のフラグがオフに設定されている。
 その後、加速走行中に、制御用記憶領域20mに記憶されているデータの異常が発生し、この異常発生に起因して、制御用の機関要求トルクが意図に反して低下している。これに伴い、制御モジュール20の駆動信号出力部22は、エンジン出力トルクを低下させるように各種の駆動IC12、13、14を制御する。その結果、制御用推定トルクおよび実トルクは、制御用機関要求トルクの上昇に合わせて低下する。この場合、監視用推定トルクも減少するがトルク乖離量はマイナスの値となり、トルク乖離量積算値はゼロに張り付いた状態になる。
 その後、イグニッションスイッチがオフ操作されたことに伴い、エンジン回転数が低下して所定値未満となったt9時点で、トルク監視フラグをオフに設定してトルク監視を終了させ、積算値をゼロにクリアさせている。
 本実施形態によれば、ECU10(トルク監視装置)は、計数値設定部、積算部および異常判定部を備える。計数値設定部は、監視用推定トルクと監視用機関要求トルクとの乖離量が大きいほど、計数値としてのトルク乖離量を大きい値に設定する。積算部は、トルク乖離量の積算値を算出し、異常判定部は、積算値が異常判定閾値以上になった場合に、トルク異常状態であると判定する。そのため、乖離量が大きいほどトルク異常状態と判定されやすくなり、トルク異常を迅速に検知できるようになり、それでいて、乖離量が小さいほどトルク異常状態と判定されにくくなり、ノイズ等の原因によりトルク異常と誤判定されるおそれを低減できる。
 図14は、上述の如くトルク異常を迅速に検知できる様子を示す一態様であり、図14の横軸は経過時間を示し、縦軸は、意図に反して内燃機関の実際の出力(実トルク)が上昇する様子を示す。図中の一点鎖線L1は、異常に伴う実トルクの上昇が小さく、トルク乖離量が小さい場合の例であり、この場合には、tc時点で積算値が異常判定閾値にまで上昇して異常判定される。
 図中の点線L2は、異常に伴う実トルクの上昇が大きく、トルク乖離量が大きい場合の例である。この場合には、トルク乖離量が大きいので計数値が大きく設定されため、tc時点よりも早いtb時点で積算値が異常判定閾値にまで上昇して異常判定される。
 図中の二点鎖線L3は、異常に伴う実トルクの上昇がさらに大きく、トルク乖離量が上限ガード値を超えて大きくなっている場合の例である。この場合には、計数値が上限ガード値に制限されるものの、tb時点よりも早いta時点で積算値が異常判定閾値にまで上昇して異常判定される。
 図中の実線L4は、異常判定の迅速性が要求される要求値を示す。実線L4に示すように、実トルクの上昇速度が大きいほど、短時間で異常判定されることが要求される。但し、上限ガード値により計数値の大きさが制限されているので、所定時間未満では異常判定されない。
 さらに本実施形態では、計数値設定部は、計数値が予め設定された上限ガード値を超えて大きくならないように計数値を設定する。そのため、トルク乖離量が上限ガード値を超えて大きくなる現象が、ノイズ等の原因で瞬時的に生じた場合に、一瞬で積算値が異常判定値を超えて異常判定されることが回避される。よって、トルク乖離量が瞬時的に上限ガード値を超えるような電スロカットが必要でない場合にまでトルク異常判定されることを抑制できる。換言すれば、トルク異常の誤判定を抑制できる。
 ここで、上限ガード値を小さい値に設定するほど、トルク異常の誤判定抑制を促進できるが、その背反として、トルク異常検知の迅速性が損なわれる。そして、誤判定抑制と迅速性の最適なバランスは、内燃機関の運転状態に応じて異なる。この点を鑑み、本実施形態では、内燃機関の運転状態に応じて上限ガード値を可変設定するので、上記バランスの最適化を図ることができる。例えば、高エンジン回転数であるほど、また、高負荷運転であるほど、トルク異常発生に伴い車両運転者に与える違和感は小さいとみなして、上限ガード値を小さい値に設定し、トルク異常検知の迅速性よりも誤判定抑制の促進を優先させる。
 さらに本実施形態では、積算部は、トルク乖離量が予め設定された不感帯の範囲内である場合の計数値については、計数値の積算を制限する。具体的には、トルク乖離量が不感帯の上値未満であれば、トルク乖離量に相当する計数値だけ積算値に加算しつつも、上値に相当する計数値だけ積算値から減算する。そのため、トルク乖離量が不感帯の範囲の小さい値で生じる現象が、ノイズ等の原因で長期間に亘って継続する場合に、積算値が異常判定値を超えて異常判定されることが回避される。よって、微少なトルク乖離量が長期間継続するような電スロカットが必要でない場合にまでトルク異常判定されることを抑制できる。換言すれば、トルク異常の誤判定を抑制できる。
 ここで、不感帯の上値を大きい値に設定するほど、トルク異常の誤判定抑制を促進できるが、その背反として、トルク異常検知の迅速性が損なわれる。そして、誤判定抑制と迅速性の最適なバランスは、内燃機関の運転状態や車両の運転状態に応じて異なる。この点を鑑み、本実施形態では、不感帯は、車両または内燃機関の運転状態に応じて可変設定されるので、上記バランスの最適化を図ることができる。例えば、変速比が小さいほど、或いは、車両の走行速度が速いほど、トルク異常発生に伴い車両運転者に与える違和感は小さいとみなして、不感帯を広い範囲に設定し、トルク異常検知の迅速性よりも誤判定抑制の促進を優先させる。
 また、異常判定閾値を大きい値に設定するほど、トルク異常の誤判定抑制を促進できるが、その背反として、トルク異常検知の迅速性が損なわれる。そして、誤判定抑制と迅速性の最適なバランスは、車両の運転状態や内燃機関の運転状態に応じて異なる。この点を鑑み、本実施形態では、異常判定閾値は、車両の運転状態または内燃機関の運転状態に応じて可変設定されるので、上記バランスの最適化を図ることができる。例えば、変速比が小さいほど、或いは、車両の走行速度が速いほど、トルク異常発生に伴い車両運転者に与える違和感は小さいとみなして、異常判定閾値を大きい値に設定し、トルク異常検知の迅速性よりも誤判定抑制の促進を優先させる。
 さらに本実施形態に係るECU10(トルク監視装置)は、制御モジュール20(制御用演算装置)および監視モジュール30(監視用演算装置)を備える。制御モジュール20は、制御用記憶領域20mを用いて演算する演算装置であって、ユーザ要求トルクに応じて、内燃機関の燃焼状態を制御する制御量の目標値である目標制御量を演算する。監視モジュール30は、制御用記憶領域20mとは別の監視用記憶領域30mを用いて演算する演算装置であって、計数値設定部、積算部および異常判定部を有する。このように、トルク監視する演算装置である監視モジュール30は、制御用記憶領域20mとは別の監視用記憶領域30mを用いて演算する。そのため、図13に例示したように、監視用の推定トルクが異常値になるのに対して監視用の要求トルクは異常時にならないので、トルク乖離量が大きくなり、制御用記憶領域20mに記憶されたデータの異常に起因したトルク異常の監視が可能となる。
 さて、監視に用いる推定トルクおよび要求トルクの演算速度および演算精度は、制御に用いる推定トルクおよび要求トルクに比べて低い。この点を鑑み、本実施形態では、監視モジュール30の演算周期は制御モジュール20の演算周期より長い。そのため、監視モジュール30の演算処理負荷が必要以上に大きくなることを回避できる。
 また、監視に用いる推定トルクおよび要求トルクの場合、これらのトルクの演算に用いるデータが正常時であることの保障に対する要求は、制御に用いる推定トルクおよび要求トルクの場合に比べて高い。この点を鑑み、本実施形態では、監視モジュール30は、監視モジュール30の外部から取得したデータが正常であることをチェックする入力保障部31を有する。そのため、監視モジュール30の演算に用いるデータが正常時であることの保障を向上でき、上記要求に応えることができる。
 さらに本実施形態では、監視モジュール30は、機関要求トルク演算部32および推定トルク演算部33を有する。そして機関要求トルク演算部32は、内燃機関の点火時期の遅角に伴い生じる実トルクの低下分をリザーブトルクとして算出し、算出したリザーブトルクおよびユーザ要求トルクに基づき機関要求トルクを演算する。そのため、リザーブトルクを考慮せずに機関要求トルクを演算することに起因して生じる、機関要求トルクと推定トルクとの乖離を抑制できるので、トルク異常を誤判定するおそれを抑制できる。
 さらに本実施形態では、制御モジュール20は、目標点火時期を触媒暖機要求時に遅角させるように設定しており、機関要求トルク演算部32は、触媒暖機要求の遅角量に相当する燃焼効率悪化分のトルク以上となるようにリザーブトルクを算出する。
 さらに本実施形態では、制御モジュール20は、目標点火時期をアイドル運転時に遅角させるように設定しており、機関要求トルク演算部32は、アイドル要求トルクの遅角量に相当する燃焼効率悪化分のトルク以上となるようにリザーブトルクを算出する。このように、触媒暖機要求やアイドル要求の如く点火時期の遅角に起因した燃焼効率悪化分が、監視用の機関要求トルクに反映されるので、上述した誤判定のおそれを抑制できる。
 (他の実施形態)
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、1つの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
 上記第1実施形態では、トルク乖離量が不感帯の上値未満の場合に、トルク乖離量に相当する計数値だけ積算値に加算しつつ、上値に相当する計数値だけ積算値から減算していくので、積算値は減少していくことになる。これに対し、トルク乖離量が不感帯の上値未満の場合に、積算値への計数値の加算を禁止し、かつ、上値に相当する計数値だけ積算値から減算することを廃止して、積算値が減少しないようにしてもよい。
 上記第1実施形態では、トルク乖離量が不感帯の範囲内であるか否かに応じて計数値の積算を制限している。これに対し、トルク乖離量に対応する計数値が不感帯の範囲内であるか否かに応じて計数値の積算を制限してもよい。
 上記第1実施形態では、内燃機関の運転状態に応じて上限ガード値を可変設定しているが、運転状態に拘らず、上限ガード値を予め設定した固定値に設定してもよい。上記第1実施形態では、車両または内燃機関の運転状態に応じて不感帯を可変設定しているが、運転状態に拘らず、不感帯を予め設定した固定値に設定してもよい。同様にして、異常判定閾値についても、可変設定を廃止して、予め設定した固定値に設定してもよい。
 上記第1実施形態では、図12のS42の処理において、エンジン回転数が所定値以上であることを条件として、S43以降のトルク異常判定処理を実行している。これに対し、エンジン回転数の変動量が所定未満であることを条件として、S43以降のトルク異常判定処理を実行してもよい。
 上記第1実施形態では、監視モジュール30が計数値設定部、積算部および異常判定部を有しており、監視モジュール30により計数値の設定、積算値の算出および異常判定が実行されている。これに対し、制御モジュール20が計数値設定部、積算部および異常判定部を有し、制御モジュール20により計数値の設定、積算値の算出および異常判定が実行されていてもよい。また、制御モジュール20および監視モジュール30の両方で実行されていてもよい。
 上記各実施形態では、監視モジュール30の演算速度は制御モジュール20の演算速度よりも遅い。具体的には、入力保障部31によるチェック処理速度がボトルネックとなり、機関要求トルク演算部32および推定トルク演算部33の演算速度は、機関要求トルク算出部21の演算速度よりも遅くなっている。これに対し、監視モジュール30の演算速度が制御モジュール20の演算速度と同等であってもよい。
 上記各実施形態では、共通する1つのメモリ11mの記憶領域に、制御用記憶領域20mおよび監視用記憶領域30mを設定している。これに対し、ECU10に複数のメモリを設け、第1のメモリの記憶領域を制御用記憶領域として設定し、第2のメモリの記憶領域を監視用記憶領域として設定してもよい。
 上記各実施形態では、共通する1つのMCU11が、制御用記憶領域20mおよび監視用記憶領域30mを有している。これに対し、ECU10に複数のMCUを設け、第1のMCUが制御用記憶領域を有し、第2のMCUが監視用記憶領域を有するように構成されていてもよい。
 上記各実施形態では、車両に搭載された内燃機関をECU10の制御対象としているが、車載以外の定置式の内燃機関をECU10の制御対象としてもよい。また、ハイブリッド車や電気自動車に搭載されている車両駆動用モータを監視対象としても良い。その場合には、車両駆動用モータの要求トルクと実トルクの乖離量が大きいほど、計数値を大きい値に設定する。

 

Claims (11)

  1.  内燃機関の実トルクの推定値である推定トルクが、前記内燃機関に要求されている機関要求トルクと乖離したトルク異常状態であるか否かを監視するトルク監視装置であって、
     前記推定トルクと前記機関要求トルクとの乖離量が大きいほど、計数値を大きい値に設定する計数値設定部(34a、34b、34c、B16)と、
     前記計数値を積算した値である積算値を算出する積算部(34d)と、
     前記積算値が所定の異常判定閾値以上になった場合に、前記トルク異常状態であると判定する異常判定部(34e)と、
    を備えるトルク監視装置。
  2.  前記計数値設定部は、前記計数値が予め設定された上限ガード値を超えて大きくならないように前記計数値を設定する請求項1に記載のトルク監視装置。
  3.  前記上限ガード値は、前記内燃機関の運転状態に応じて可変設定される請求項2に記載のトルク監視装置。
  4.  前記積算部は、前記乖離量が予め設定された不感帯の範囲内である場合の前記計数値については、前記積算を制限する請求項1~3のいずれか1つに記載のトルク監視装置。
  5.  前記不感帯は、前記内燃機関を駆動源として走行する車両の運転状態、または前記内燃機関の運転状態に応じて可変設定される請求項4に記載のトルク監視装置。
  6.  前記車両には、前記内燃機関の出力軸の回転速度を所望の回転速度に変換して出力する変速機が備えられており、
     前記変速機への入力に対する出力の変速比が小さいほど、或いは、前記車両の走行速度が速いほど、前記不感帯は広い範囲に設定される請求項5に記載のトルク監視装置。
  7.  前記異常判定閾値は、前記内燃機関を駆動源として走行する車両の運転状態、または前記内燃機関の運転状態に応じて可変設定される請求項1~6のいずれか1つに記載のトルク監視装置。
  8.  前記車両には、前記内燃機関の出力軸の回転速度を所望の回転速度に変換して出力する変速機が備えられており、
     前記変速機への入力に対する出力の変速比が小さいほど、或いは、前記車両の走行速度が速いほど、前記異常判定閾値は大きい値に設定される請求項7に記載のトルク監視装置。
  9.  制御用記憶領域(20m)を用いて演算する演算装置であって、ユーザが要求する前記内燃機関の駆動トルクであるユーザ要求トルクに応じて、前記内燃機関の燃焼状態を制御する制御量の目標値である目標制御量を演算する制御用演算装置(20)と、
     前記制御用記憶領域とは別の監視用記憶領域(30m)を用いて演算する演算装置であって、前記計数値設定部、前記積算部および前記異常判定部を有する監視用演算装置(30)と、
    を備える請求項1~8のいずれか1つに記載のトルク監視装置。
  10.  前記監視用演算装置の演算周期は、前記制御用演算装置の演算周期より長い請求項9に記載のトルク監視装置。
  11.  前記監視用演算装置は、前記監視用演算装置の外部から取得したデータが正常であることをチェックする入力保障部(31)を有する請求項9または10に記載のトルク監視装置。

     
PCT/JP2018/025697 2017-08-01 2018-07-06 トルク監視装置および内燃機関制御システム WO2019026545A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018003932.3T DE112018003932T5 (de) 2017-08-01 2018-07-06 Drehmomentüberwachungsvorrichtung und steuerungssystem für verbrennungsmotoren
US16/775,651 US11313306B2 (en) 2017-08-01 2020-01-29 Torque monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017149368A JP6809408B2 (ja) 2017-08-01 2017-08-01 トルク監視装置および内燃機関制御システム
JP2017-149368 2017-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/775,651 Continuation US11313306B2 (en) 2017-08-01 2020-01-29 Torque monitoring device

Publications (1)

Publication Number Publication Date
WO2019026545A1 true WO2019026545A1 (ja) 2019-02-07

Family

ID=65232756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025697 WO2019026545A1 (ja) 2017-08-01 2018-07-06 トルク監視装置および内燃機関制御システム

Country Status (4)

Country Link
US (1) US11313306B2 (ja)
JP (1) JP6809408B2 (ja)
DE (1) DE112018003932T5 (ja)
WO (1) WO2019026545A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10907555B2 (en) 2017-07-28 2021-02-02 Denso Corporation Internal combustion engine control system
US11008961B2 (en) 2017-07-28 2021-05-18 Denso Corporation Internal combustion engine control system
US11028793B2 (en) 2017-08-30 2021-06-08 Denso Corporation Internal combustion engine control system
CN113374591A (zh) * 2020-02-25 2021-09-10 本田技研工业株式会社 发动机控制装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571306A (en) * 2018-02-23 2019-08-28 Sony Interactive Entertainment Europe Ltd Video recording and playback systems and methods
JP6939718B2 (ja) * 2018-06-26 2021-09-22 日本電信電話株式会社 ネットワーク機器及びネットワーク機器の設定方法
WO2020121807A1 (ja) * 2018-12-14 2020-06-18 日立オートモティブシステムズ株式会社 制御装置
JP6758451B1 (ja) * 2019-04-17 2020-09-23 三菱電機株式会社 内燃機関の制御装置
GB2584427B (en) * 2019-05-29 2021-11-10 Jaguar Land Rover Ltd Controller for a vehicle internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152882A (ja) * 1999-11-25 2001-06-05 Denso Corp 内燃機関の電磁駆動バルブの異常診断装置
JP2007303294A (ja) * 2006-05-09 2007-11-22 Denso Corp 過給機付き内燃機関の制御装置
JP2014073768A (ja) * 2012-10-04 2014-04-24 Mitsubishi Motors Corp ハイブリッド電気車両の協調制御装置排気浄化装置
JP2014080951A (ja) * 2012-10-18 2014-05-08 Denso Corp 車両用制御装置
JP2015010498A (ja) * 2013-06-27 2015-01-19 株式会社デンソー 燃料噴射制御装置
WO2015072269A1 (ja) * 2013-11-13 2015-05-21 本田技研工業株式会社 原動機の駆動制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203250A (ja) * 1990-11-29 1992-07-23 Mitsubishi Motors Corp 走行負荷分補償式速度制御部付ドライブバイワイヤ式車両
DE19609242A1 (de) * 1996-03-09 1997-09-11 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
JPH10213469A (ja) * 1997-01-30 1998-08-11 Ricoh Co Ltd 感熱式フローセンサの特性補償方法
DE19808167C1 (de) * 1998-02-27 1999-08-26 Daimler Chrysler Ag Verfahren zur Korrektur eines rechnerisch ermittelten Drehmoments im Antriebsstrang eines Kraftfahrzeugs
DE19836059A1 (de) * 1998-08-10 2000-02-17 Mannesmann Vdo Ag Verfahren und Vorrichtung zur Ansteuerung einer Leistungsverstelleinrichtung eines Fahrzeugmotors
JP2001295677A (ja) * 2000-03-29 2001-10-26 Robert Bosch Gmbh 車両速度の制御方法および装置
JP2001296155A (ja) * 2000-04-12 2001-10-26 Yazaki Corp 電子式積算流量計
JP3855677B2 (ja) 2001-04-27 2006-12-13 株式会社デンソー 電子制御システムの故障診断装置
DE10210684B4 (de) * 2002-03-12 2005-04-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Moments einer Antriebseinheit eines Fahrzeugs
JP2007224728A (ja) * 2006-02-21 2007-09-06 Denso Corp エンジンオイル供給制御装置
JP2013015444A (ja) * 2011-07-05 2013-01-24 Akebono Brake Ind Co Ltd 信号処理装置、信号処理方法、及び信号処理プログラム
JP6248548B2 (ja) * 2013-10-31 2017-12-20 株式会社デンソー 車両制御装置
JP2017149368A (ja) 2016-02-26 2017-08-31 株式会社東芝 情報処理装置及び情報処理の方法
JP6780600B2 (ja) 2017-07-28 2020-11-04 株式会社デンソー 内燃機関制御システム
JP6717271B2 (ja) 2017-07-28 2020-07-01 株式会社デンソー 内燃機関制御システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152882A (ja) * 1999-11-25 2001-06-05 Denso Corp 内燃機関の電磁駆動バルブの異常診断装置
JP2007303294A (ja) * 2006-05-09 2007-11-22 Denso Corp 過給機付き内燃機関の制御装置
JP2014073768A (ja) * 2012-10-04 2014-04-24 Mitsubishi Motors Corp ハイブリッド電気車両の協調制御装置排気浄化装置
JP2014080951A (ja) * 2012-10-18 2014-05-08 Denso Corp 車両用制御装置
JP2015010498A (ja) * 2013-06-27 2015-01-19 株式会社デンソー 燃料噴射制御装置
WO2015072269A1 (ja) * 2013-11-13 2015-05-21 本田技研工業株式会社 原動機の駆動制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10907555B2 (en) 2017-07-28 2021-02-02 Denso Corporation Internal combustion engine control system
US11008961B2 (en) 2017-07-28 2021-05-18 Denso Corporation Internal combustion engine control system
US11028793B2 (en) 2017-08-30 2021-06-08 Denso Corporation Internal combustion engine control system
CN113374591A (zh) * 2020-02-25 2021-09-10 本田技研工业株式会社 发动机控制装置
CN113374591B (zh) * 2020-02-25 2023-03-07 本田技研工业株式会社 发动机控制装置

Also Published As

Publication number Publication date
JP2019027394A (ja) 2019-02-21
US20200165996A1 (en) 2020-05-28
JP6809408B2 (ja) 2021-01-06
DE112018003932T5 (de) 2020-04-30
US11313306B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2019026545A1 (ja) トルク監視装置および内燃機関制御システム
JP6717271B2 (ja) 内燃機関制御システム
JP6780600B2 (ja) 内燃機関制御システム
US10696293B2 (en) Start controller and start controlling method
JP2008014221A (ja) 補機付きエンジンの制御装置
US20190226440A1 (en) Driving system and driving method for vehicle
JP5158228B2 (ja) 内燃機関制御装置
JP6809415B2 (ja) 内燃機関制御システム
JP2014098360A (ja) 内燃機関の異常燃焼判定装置及び内燃機関の制御装置
US11118527B2 (en) Internal combustion engine control system
JP7067078B2 (ja) 内燃機関制御システム
CN113374591B (zh) 发动机控制装置
JPWO2010071096A1 (ja) 動力取出機構装備車のエンジン制御方法及び動力取出機構装備車用エンジン制御装置
JP2019094873A (ja) 内燃機関制御システム
JP7505298B2 (ja) 車両の制御装置
JP2018080581A (ja) エンジン停止位置制御装置
JP2007046573A (ja) 内燃機関の制御装置
JP5868075B2 (ja) 発電機の制御装置
JP2017001568A (ja) ハイブリッド車両
JP2019019712A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840225

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18840225

Country of ref document: EP

Kind code of ref document: A1