WO2019024421A1 - 一种制备靶材的方法和靶材 - Google Patents

一种制备靶材的方法和靶材 Download PDF

Info

Publication number
WO2019024421A1
WO2019024421A1 PCT/CN2017/120074 CN2017120074W WO2019024421A1 WO 2019024421 A1 WO2019024421 A1 WO 2019024421A1 CN 2017120074 W CN2017120074 W CN 2017120074W WO 2019024421 A1 WO2019024421 A1 WO 2019024421A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium
optionally
target
layer
copper
Prior art date
Application number
PCT/CN2017/120074
Other languages
English (en)
French (fr)
Inventor
曾玉林
万捷
徐晓华
Original Assignee
米亚索乐装备集成(福建)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 米亚索乐装备集成(福建)有限公司 filed Critical 米亚索乐装备集成(福建)有限公司
Priority to US15/779,645 priority Critical patent/US20210164090A1/en
Priority to EP17872876.2A priority patent/EP3456857A4/en
Publication of WO2019024421A1 publication Critical patent/WO2019024421A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga

Definitions

  • the present application relates to, but is not limited to, the field of solar energy application materials, and in particular, but not limited to, a method and a target for preparing a target.
  • the target preparation technology mainly includes a smelting casting method, a low temperature aerodynamic spraying method, and an atmosphere protection plasma spraying method.
  • Chinese patent CN102286724 discloses a technology for manufacturing CIG (copper indium gallium) target by vacuum melting casting method;
  • Chinese patent CN201310172489.6 provides a method for preparing CIG target by low pressure plasma spraying under vacuum or protective atmosphere;
  • Chinese patent CN201310221657.6 provides a method for forming a copper indium gallium rotating target by layer-by-layer melting casting layer-by-layer copper indium gallium on a stainless steel cylinder substrate;
  • Chinese patent CN201510184794.6 provides a ball mill after grinding A method of preparing a CIG target by cold gas spraying of a powder.
  • the method provided by Chinese patent CN201310221657.6 needs to be carried out in a vacuum or protective gas atmosphere, the process is complicated, and it is difficult to overcome the defects such as pores and coarse grains on the target caused by the casting process; the method provided by Chinese patent CN201510184794.6,
  • the low melting point gallium metal and high ductility indium metal have their own characteristics, which make the ball milled indium powder have low yield, ball mill can not get spherical powder, and the ball milled indium powder is prone to elongation and adhesion, which cannot be carried out by the existing powder feeding system.
  • the target is sprayed, so ball-milled indium powder is not suitable for spraying CIG targets.
  • indium copper gallium alloy has a very wide solid-liquid coexistence temperature zone, the temperature of complete melting needs to exceed 500 ° C, and the temperature of complete solidification is often as low as 160 ° C or less. Therefore, solidification from liquid to complete solid state is often accompanied by very large volume shrinkage, resulting in the inability to obtain a dense target body when preparing an indium copper gallium target by conventional smelting casting, and the result is not only a lot of shrinkage and Shrinkage holes also have problems such as uneven distribution of main components.
  • the above problems can be solved by first making an indium copper gallium alloy powder and then forming a target by a powder metallurgy or thermal coating method.
  • the melting point of indium is 156 ° C
  • the melting point of gallium is 29 ° C
  • the melting point of copper is 1083 ° C
  • the melting point is very different; in the powder alloy phase, there are mainly copper gallium intermetallic compounds and indium-based alloy phases.
  • due to the low melting point of indium there is a liquid phase between the alloy powders produced by the conventional gas atomization method, so that agglomeration and blocking tend to occur during the cooling process and at room temperature, and the surface of the particles adheres to a large amount.
  • the small satellite ball not only makes the alloy powder yield too low, but also causes the alloy powder to have poor fluidity, and it is difficult to meet the production process requirements to produce a high-performance target. In the subsequent use, the powder feeding is poor and the thermal spraying powder is often caused. The system is blocked. For the same reason, the above problems also exist for the preparation of other alloy powders having a very wide solid-liquid coexistence temperature region and a low melting point of one of the metals.
  • the inventors of the present application have creatively proposed a method of preparing a target at a low cost without performing in the presence of a vacuum or a shielding gas.
  • the present application provides a method of preparing a tubular target, the method comprising:
  • a plasma spray method, an arc spray method, an ultrasonic flame spray method or a cold spray method is applied to spray a transition layer on the surface of the selected stainless steel backing tube to obtain a stainless steel backing tube including a transition layer;
  • the target layer is sprayed on the surface of the stainless steel backing tube containing the transition layer by plasma spraying in an atmospheric atmosphere.
  • the transition layer can be sprayed by a plasma spray method, an arc spray method, an ultrasonic flame spray method or a cold spray method which is commonly used in the art.
  • the cold spray method can achieve a higher bond strength between the transition layer and the target layer than the plasma spray method.
  • the tubular target may be selected from the group consisting of copper indium gallium, silver indium gallium, gold indium gallium, copper tin gallium, silver tin gallium, gold tin gallium, copper silver indium gallium, and copper gold indium gallium tubular target. Any of them.
  • the tubular target may be a copper indium gallium tubular target, the transition layer is a copper indium gallium transition layer, the target layer is a copper indium gallium target layer;
  • the gallium transition layer is formed of a copper indium gallium alloy powder, and the copper/indium + gallium in the copper indium gallium alloy powder forming the copper indium gallium transition layer may have an atomic ratio of 0.5 to 0.8, indium / (indium + gallium) The atomic ratio may be 0.6 to 0.9, and the atomic ratio of gallium/(indium + gallium) may be 0.1 to 0.4;
  • the copper indium gallium target layer is formed of copper indium gallium alloy powder to form the copper indium gallium target layer
  • the atomic ratio of copper/(indium + gallium) in the copper indium gallium alloy powder may be 0.8 to 1.1, the atomic ratio of indium / (indium + gallium) may be 0.2 to 0.8, and the atomic ratio of gallium / (indium)
  • the copper indium gallium powder forming the copper indium gallium target layer may have a particle diameter of 10 ⁇ m to 150 ⁇ m, and optionally may be 30 ⁇ m to 100 ⁇ m or 10 ⁇ m to 50 ⁇ m.
  • the transition layer may have a thickness of 50 ⁇ m to 300 ⁇ m, and the target layer may have a thickness of 1 mm to 20 mm;
  • the transition layer may have a thickness of 100 ⁇ m to 300 ⁇ m, and the target layer may have a thickness of 3 mm to 12 mm;
  • the target layer may be sprayed by reciprocating layer-by-layer spraying.
  • cooling may be performed during spraying of the transition layer and the target layer, for example, by cooling the hollow backing tube with a low temperature coolant, or by reinforcing the outer surface of the backing tube. The air flows to cool down.
  • the low temperature coolant may be water having a temperature of from 15 ° C to 25 ° C, and the outlet water temperature may be from 30 ° C to 60 ° C.
  • compressed air may be blown to the outer surface of the backing tube to enhance cooling capacity.
  • an inert gas can be blown to the outer surface of the liner to enhance the cooling capacity, which also reduces the rate of oxidation of the sprayed transition layer and target layer.
  • the backing tube can be rotated at a speed of from 100 revolutions per minute to 500 revolutions per minute during the spraying of the transition layer and the target layer.
  • the alloy powder may be sprayed by the powder feeder at a stable powder feeding rate, which may be from 50 g/min to 300 g/min.
  • the powder feeding rate may be from 80 g/min to 200 g/min;
  • the transition layer and the target layer may be sprayed by plasma spraying.
  • the plasma sprayed plasma gas may be argon
  • the flow rate may be from 50 L/min to 140 L/min
  • the voltage may be from 35 V to 55 V
  • the current may be from 350 A to 600 A
  • the spray range of the spray gun may be from 75 mm to 150 mm.
  • the alloy powder forming the transition layer and the alloy powder forming the target layer may be prepared by the following method:
  • the small droplets are forcibly cooled rapidly during the atomizing airflow pushing process to obtain an alloy powder
  • the oxygen containing gas can be oxygen, compressed air or a combination of oxygen and compressed air.
  • the metal element may have a purity of 99.99% to 99.9999%.
  • the metal element may have a purity of 99.999% to 99.9999%.
  • the reactor may be evacuated to a vacuum of 50 Pa to 500 Pa.
  • the temperature of the smelting may be 750 ° C to 1050 ° C;
  • the smelting time may be ⁇ 30 minutes.
  • the high pressure inert gas stream may be a nitrogen gas stream or an argon gas stream, and the high pressure inert gas stream may have a pressure of 0.5 MPa to 5 MPa and a flow rate of 50 m 3 /h to 500 m 3 /h.
  • the high pressure inert gas stream may have a pressure of from 1 MPa to 3 MPa and a flow rate of from 100 m 3 /h to 400 m 3 /h.
  • a high pressure inert gas stream and oxygen may be simultaneously supplied to the atomizing device, and the flow rate of the oxygen may be from 10 ml/min to 2000 ml/min, and optionally, may be from 50 ml/min to 1000 ml/min. ;
  • a high pressure inert gas stream and compressed air may be simultaneously supplied to the atomizing device, and the flow rate of the compressed air may be from 0.05 L/min to 20 L/min.
  • the high pressure inert gas stream and the oxygen-containing gas may be controlled to flow through different pipes and then passed to the atomizing device.
  • the preparation of the alloy powder may be carried out in an air atomized pulverizer, which may be a vacuum induction smelting furnace of an air atomizing pulverizer.
  • the pressure difference between the melting chamber and the atomizing chamber of the gas atomized milling machine may be 500 Pa to 0.05 MPa, and optionally, may be 1000 Pa to 10000 Pa.
  • the alloy solution may be introduced into an atomizing device through a draft tube, which may have a diameter of 0.5 mm to 2 mm.
  • the high pressure inert gas stream and the oxygen-containing gas that are introduced may be ejected by a high pressure gas jet of the atomizing device of the gas atomizing pulverizer.
  • the particle diameter of the sieved alloy powder may be from 10 ⁇ m to 50 ⁇ m or from 30 ⁇ m to 100 ⁇ m.
  • the alloy powder may have an oxygen content of less than 5000 ppm, and optionally, the oxygen content may be 100 ppm to 2000 ppm.
  • the tubular target may have an oxygen content of 200 ppm to 5000 ppm by mass percentage, and optionally, the oxygen content may be 300 ppm to 3000 ppm.
  • the present application further provides a method for preparing a target, the method comprising:
  • the target layer is sprayed on the surface of the substrate containing the transition layer in an atmospheric atmosphere.
  • the transition layer can be sprayed by a plasma spray method, an arc spray method, an ultrasonic flame spray method or a cold spray method which is commonly used in the art.
  • the cold spray method can achieve a higher bond strength between the transition layer and the target layer than the plasma spray method.
  • the target may be selected from the group consisting of copper indium gallium, silver indium gallium, gold indium gallium, copper tin gallium, silver tin gallium, gold tin gallium, copper silver indium gallium, and copper gold indium gallium target. Any one.
  • the methods of preparing the target provided by the present application include, but are not limited to, the preparation of the above-listed targets, and the above-listed targets are not intended to limit the scope of the application.
  • the target may be a tubular target.
  • the substrate may be a stainless steel backing tube.
  • the target may be a copper indium gallium target, the transition layer is a copper indium gallium transition layer, and the target layer is a copper indium gallium target layer; the copper indium gallium transition The layer is formed of a copper indium gallium alloy powder, and the atomic ratio of copper/(indium + gallium) in the copper indium gallium alloy powder forming the copper indium gallium transition layer may be 0.5 to 0.8, indium/(indium + gallium) atoms.
  • the ratio may be 0.6 to 0.9, and the atomic ratio of gallium/(indium + gallium) may be 0.1 to 0.4; the copper indium gallium target layer is formed of copper indium gallium alloy powder to form copper of the copper indium gallium target layer
  • the atomic ratio of copper/(indium + gallium) in the indium gallium alloy powder may be 0.8 to 1.1, the atomic ratio of indium / (indium + gallium) may be 0.2 to 0.8, and the atomic ratio of gallium / (indium + gallium) may be 0.2 to 0.8.
  • the copper indium gallium powder forming the copper indium gallium target layer may have a particle diameter of 10 ⁇ m to 150 ⁇ m, and optionally may be 30 ⁇ m to 100 ⁇ m or 10 ⁇ m to 50 ⁇ m.
  • the transition layer may have a thickness of 50 ⁇ m to 300 ⁇ m, and the target layer may have a thickness of 1 mm to 20 mm;
  • the transition layer may have a thickness of 100 ⁇ m to 300 ⁇ m, and the target layer may have a thickness of 3 mm to 12 mm;
  • the target layer may be sprayed by reciprocating layer-by-layer spraying.
  • the temperature can be lowered during the spraying of the transition layer and the target layer, for example, by cooling the hollow substrate with a low temperature coolant, or by cooling the air flow on the outer surface of the substrate.
  • the low temperature coolant may be water having a temperature of from 15 ° C to 25 ° C, and the outlet water temperature may be from 30 ° C to 60 ° C.
  • compressed air can be blown onto the outer surface of the substrate to enhance the ability of the cold air to flow.
  • an inert gas can be blown onto the outer surface of the substrate to enhance the cooling capacity of the air flow, which also reduces the rate of oxidation of the sprayed transition layer and target layer.
  • the substrate can be rotated at a speed of from 100 rpm to 500 rpm during the spraying of the transition layer and the target layer.
  • the alloy powder may be sprayed by the powder feeder at a stable powder feeding rate, which may be from 50 g/min to 300 g/min.
  • the powder feeding rate may be from 80 g/min to 200 g/min;
  • the transition layer and the target layer may be sprayed by plasma spraying.
  • the plasma sprayed plasma gas may be argon
  • the flow rate may be from 50 L/min to 140 L/min
  • the voltage may be from 35 V to 55 V
  • the current may be from 350 A to 600 A
  • the spray range of the spray gun may be from 75 mm to 150 mm.
  • the alloy powder forming the transition layer and the alloy powder forming the target layer may be prepared by the following method:
  • the small droplets are forcibly cooled rapidly during the atomizing airflow pushing process to obtain an alloy powder
  • the alloy powder is collected and sieved for use.
  • the metal element may have a purity of 99.99% to 99.9999%.
  • the metal element may have a purity of 99.999% to 99.9999%.
  • the reactor may be evacuated to a vacuum of 50 Pa to 500 Pa.
  • the temperature of the smelting may be 750 ° C to 1050 ° C;
  • the smelting time may be ⁇ 30 minutes.
  • the high pressure inert gas stream may be a nitrogen gas stream or an argon gas stream, and the high pressure inert gas stream may have a pressure of 0.5 MPa to 5 MPa and a flow rate of 50 m 3 /h to 500 m 3 /h.
  • the high pressure inert gas stream may have a pressure of from 1 MPa to 3 MPa and a flow rate of from 100 m 3 /h to 400 m 3 /h.
  • the oxygen-containing gas may be oxygen, compressed air, or a combination of oxygen and compressed air.
  • a high pressure inert gas stream and oxygen may be simultaneously supplied to the atomizing device, and the flow rate of the oxygen may be from 10 ml/min to 2000 ml/min, and optionally, may be from 50 ml/min to 1000 ml/min. ;
  • a high pressure inert gas stream and compressed air may be simultaneously supplied to the atomizing device, and the flow rate of the compressed air may be from 0.05 L/min to 20 L/min.
  • the high pressure inert gas stream and the oxygen-containing gas may be controlled to flow through different pipes and then passed to the atomizing device.
  • the preparation of the alloy powder may be carried out in an air atomized pulverizer, which may be a vacuum induction smelting furnace of an air atomizing pulverizer.
  • the pressure difference between the melting chamber and the atomizing chamber of the gas atomized milling machine may be 500 Pa to 0.05 MPa, and optionally, may be 1000 Pa to 10000 Pa.
  • the alloy solution may be introduced into an atomizing device through a draft tube, which may have a diameter of 0.5 mm to 2 mm.
  • the high pressure inert gas stream and the oxygen-containing gas that are introduced may be ejected by a high pressure gas jet of the atomizing device of the gas atomizing pulverizer.
  • the particle diameter of the sieved alloy powder may be from 10 ⁇ m to 50 ⁇ m or from 30 ⁇ m to 100 ⁇ m.
  • the alloy powder may have an oxygen content of less than 5000 ppm, and optionally, the oxygen content may be 100 ppm to 2000 ppm.
  • the method for preparing the target may further include washing, drying, and roughening (eg, sandblasting) the substrate.
  • the target may have an oxygen content of 200 ppm to 5000 ppm by mass percentage, and optionally, the oxygen content may be 300 ppm to 3000 ppm.
  • the present application also provides a target prepared by a method of preparing a target as described above, which has an oxygen content of 200 ppm to 5000 ppm by mass percentage.
  • the target may have an oxygen content of 300 ppm to 3000 ppm in mass percentage.
  • the oxygen content in the target affects the performance of the film subsequently formed on the target, and the higher the oxygen content, the worse the performance of the formed film, so the industry desires to reduce the oxygen content in the target.
  • the preparation of the target is generally carried out in the presence of a vacuum or an inert gas, but this increases the cost of the target preparation.
  • the method for preparing a target disclosed in the present application overcomes the prejudice of the prior art, and the method can directly prepare a target in an atmospheric atmosphere, obtain a target having an oxygen content within an acceptable range, and reduce the preparation of the target. Cost; and further reduce the oxidation phenomenon in the target preparation by cooling and controlling the process parameters to obtain a better target product.
  • the present application realizes surface modification of the alloy powder by introducing a controllable oxygen-containing gas in the gas atomization process for preparing the alloy powder, and a very thin smooth oxide layer is formed on the surface of the alloy powder.
  • the oxide layer acts as a passivation, which in turn reduces satellite ball generation and avoids sticking during powder storage and transportation.
  • FIG. 1 is a process flow diagram of preparing a copper indium gallium tubular target according to Embodiment 1 of the present application.
  • Comparative Example 1 is the appearances of Comparative Example 1 and the copper indium gallium alloy powder for the transition layer prepared in Example 1 of the present application, respectively.
  • the targets prepared in the following examples were all copper indium gallium tubular targets, and a stainless steel backing tube was selected as the substrate.
  • the method for preparing a copper indium gallium tubular target specifically includes the following steps:
  • the alloy solution is atomized in an oxygen-containing atmosphere to obtain small droplets, which are forcibly cooled rapidly to obtain an alloy powder;
  • the alloy powder is collected and sieved.
  • the copper indium gallium alloy powder for the transition layer and the copper indium gallium alloy powder for the target layer are prepared by controlling the content of the three elemental materials and the prepared process parameters, and are reserved.
  • a stainless steel backing tube is selected, which is cleaned, dried and sandblasted (roughened);
  • the surface of the stainless steel backing tube containing the transition layer was sprayed with the copper indium gallium alloy powder for the target layer prepared above to form a target layer, thereby obtaining a copper indium gallium tubular target.
  • the gas atomized pulverizer comprises a main body, and a vacuum melting chamber and a spraying chamber are arranged in the main body from top to bottom, and the two chambers are connected by a tundish with a metal liquid guiding tube.
  • the vacuum melting chamber is provided with a melting device and a heating device, the heating device heating the melting device, the melting device has a liquid outlet, and the liquid outlet passes through the draft tube and the top of the spray chamber Connected, the atomization chamber is provided with a gas nozzle, and the gas nozzle is connected to a high pressure inert gas pipeline, the gas nozzle injects a high pressure inert gas toward an outlet of the draft tube, and the atomization chamber is provided with oxygen And a gas injection device connected to the oxygen-containing gas line, wherein the oxygen-containing gas line delivers an oxygen-containing gas to the atomization chamber through the air intake device.
  • the yield of the indium copper gallium alloy powder is 98% or more, wherein the yield of the powder having a particle diameter of 30 ⁇ m to 100 ⁇ m is 45%, the fluidity of the powder is good, and the Hall flowmeter test result is 14 seconds / 50 g, between the powders. No obvious agglomeration or blocking occurred; the alloy powder had an oxygen content of 300 ppm.
  • the copper indium gallium alloy powder for the target layer is prepared by the same method as the above-mentioned preparation of the copper indium gallium alloy powder for the transition layer, the melting temperature is 920 ° C, the pressure of the atomizing medium argon gas is 2 MPa, and the flow rate is 180 m 3 /h. The compressed air flow rate is 2.5 L/min, and the other process parameters are identical.
  • the alloy powder has an oxygen content of 270 ppm.
  • a transition layer and a target layer are sprayed on the surface of the stainless steel backing tube, wherein the backing tube is hollow and has a water inlet and a water outlet.
  • the backing tube rotates at 300 rpm, and arrange two rows of nitrogen pipes in the upper and lower parts of the backing pipe to blow directly to the backing tube to cool and protect the sprayed material from oxidation.
  • the flow rate of nitrogen is 180m. 3 / h.
  • the copper indium gallium alloy powder is transported by a powder feeder at a powder feeding rate of 80 g/min, and a 200 ⁇ m thick copper indium gallium transition layer is sprayed on the surface of the backing tube by plasma spraying, wherein the plasma gas is argon. Gas, flow rate is 100L/min, spraying voltage is 50V, current is 450A, spraying distance is 120mm, and a stainless steel backing tube containing copper indium gallium transition layer is prepared;
  • the copper indium gallium target layer has a spraying voltage of 40 V, a current of 500 A, a spraying distance of 100 mm, a plasma gas of argon gas, and a flow rate of 80 L/min.
  • the prepared copper indium gallium tubular target had an oxygen content of 1600 ppm.
  • Embodiment 1 differs from Embodiment 1 only in that:
  • the softened water having a temperature of 15 ° C to 25 ° C is passed through the hollow backing tube, and the temperature of the demineralized water leaving the backing tube is 30 ° C to 40 ° C, and nitrogen gas is cooled to the surface of the backing tube, and the flow rate of nitrogen gas is 100 m 3 /h;
  • plasma gas is argon gas
  • flow rate is 60 L/min
  • voltage is 40 V
  • current is 450 A
  • plasma spraying target layer The parameters are voltage 55V, current 600A, spraying distance 150mm
  • plasma gas argon flow rate is 140L/min
  • copper indium gallium alloy powder feeding rate is 200g/min
  • copper indium gallium target layer thickness is 3mm.
  • the prepared copper indium gallium tubular target had an oxygen content of 1800 ppm.
  • Embodiment 1 differs from Embodiment 1 only in that:
  • Cooling with only cooling water, without nitrogen cooling and protection specifically: softening water with a temperature of 15 ° C to 25 ° C into the hollow backing tube, the temperature of the softened water leaving the backing tube is 35 ° C to 40 ° C;
  • the plasma gas of the plasma sprayed transition layer is argon gas, the flow rate is 120 L/min, the powder feeding rate is 100 g/min, and the thickness of the copper indium gallium transition layer is 200 ⁇ m;
  • the voltage of the transition layer plasma sprayed target layer is 50V, the current is 550A, the spraying distance is 130mm, the powder feeding rate is 90g/min, the flow rate of plasma gas argon is 100L/min, and the thickness of the copper indium gallium target layer is 5mm.
  • the prepared copper indium gallium tubular target had an oxygen content of 2,600 ppm.
  • Embodiment 1 differs from Embodiment 1 only in that:
  • the transition layer is sprayed on the surface of the backing tube by cold spraying method, wherein the cold spraying working gas is nitrogen, the flow rate is 200 m 3 /h, the temperature is 400 ° C, the powder feeding rate is 80 g / min, and the thickness of the copper indium gallium transition layer is 300 ⁇ m.
  • the cold spraying working gas is nitrogen
  • the flow rate is 200 m 3 /h
  • the temperature is 400 ° C
  • the powder feeding rate is 80 g / min
  • the thickness of the copper indium gallium transition layer is 300 ⁇ m.
  • the plasma sprayed target layer had a current of 500 A, a spray distance of 120 mm, a powder feed rate of 130 g/min, and a copper indium gallium target layer thickness of 8 mm.
  • the prepared copper indium gallium tubular target had an oxygen content of 1400 ppm.
  • Comparative Example 1 differs from the copper indium gallium alloy powder for the preparation of the transition layer of Example 1 only in that no compressed air is introduced during the atomization.
  • the transition layer prepared in Comparative Example 1 has a large number of small satellite spheres adhered to the surface of the particles of the copper indium gallium alloy powder, and there is adhesion between the powder particles; and the transition layer prepared in Example 1 is used for the transition layer prepared in Example 1.
  • the copper indium gallium alloy powder has a spherical shape with a smooth surface and few small satellite spheres on the surface of the particle.
  • the method for preparing a target provided by the present application does not need to be carried out in the presence of a vacuum or a shielding gas, which reduces the production cost of the target.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种制备管状靶材的方法,包括:选取已经过清洗和粗化处理的不锈钢背衬管;在大气气氛中,采用等离子喷涂法、电弧喷涂法、超音波火焰喷涂法或冷喷涂法在选取的不锈钢背衬管表面喷涂过渡层,得到包含过渡层的不锈钢背衬管;在大气气氛中,采用等离子喷涂法在包含过渡层的不锈钢背衬管表面喷涂靶材层。还公开了另一种制备靶材的方法及一种靶材。

Description

一种制备靶材的方法和靶材 技术领域
本申请涉及但不限于太阳能应用材料领域,特别涉及但不限于一种制备靶材的方法和靶材。
背景
靶材制备技术主要有熔炼铸造法、低温气动力喷涂法和气氛保护等离子喷涂法等。中国专利CN102286724公开了一种利用真空熔炼铸造法制造CIG(铜铟镓)靶材的技术;中国专利CN201310172489.6提供了一种在真空或保护气氛下,低压等离子喷涂制备CIG靶材的方法;中国专利CN201310221657.6提供了一种逐层熔铸法逐层将铜铟镓依次固化于不锈钢圆筒基体上形成铜铟镓旋转靶材的方法;中国专利CN201510184794.6提供了一种将球磨后的粉末经冷气体喷涂制备CIG靶材的方法。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的发明人对上述中国专利中公开的制备靶材的方法进行了研究,深入地发现了其存在的问题,具体总结如下:
中国专利CN201310172489.6提供的方法需在真空腔体或保护气氛下进行,所使用的设备昂贵,工序复杂,并且该方法要求喷涂的粉末的粒径为2200目至2600目,这种非常细的粉末难以制备,导致生产成本很高。中国专利CN201310221657.6提供的方法需要在真空或保护气体气氛中进行,工序复杂,并且难以克服熔铸工艺带来的靶材上气孔、晶粒粗大等缺点;中国专利CN201510184794.6提供的方法,由于低熔点镓金属和高延展性铟金属的自身特点,使得球磨铟粉末的产量低,球磨得不到球形粉末,而且球磨后的铟粉末容易发生延展和粘连,不能通过现有的送粉系统进行靶材喷涂作业,因此 球磨铟粉末不适合用于喷涂生产CIG靶材。
此外,本申请的发明人还发现,制备靶材的原料——合金粉末的制备过程也存在问题。以铟铜镓合金粉末的制备过程为例,铟铜镓合金具有非常宽广的固液共存温度区,完全熔化的温度需超过500℃,而完全凝固的温度常低至160℃以下。因此,从液体凝固到完全的固态常伴随着非常大的体积收缩,从而导致采用常规熔炼浇铸法制备铟铜镓靶材时得不到致密的靶材坯体,其结果不仅有很多缩松和缩孔,还存在主要成份分布不均匀等问题。先制作铟铜镓合金粉末,然后再用粉末冶金或热涂等成型方法制成靶材则可以解决以上问题。但由于铟的熔点为156℃,镓的熔点为29℃,熔点很低,而铜的熔点为1083℃,熔点差异很大;在粉末合金相中主要存在铜镓金属间化合物和铟基合金相,而由于铟的熔点很低,导致经由常规气雾化法制得的合金粉末之间有液相,从而在冷却过程以及室温下容易发生严重的团聚、粘连现象,其颗粒表面粘附有大量的小卫星球,不仅使得合金粉末产率过低,还导致合金粉末流动性差,难以满足生产工艺要求生产出高性能的靶材,在后续使用过程中送粉不畅也经常导致热喷涂的送粉系统阻塞。同理,对于其他具有非常宽广的固液共存温度区、并且其中一种金属的熔点很低的合金粉末的制备,也存在上述问题。
在对上述问题进行深入分析地基础上,本申请的发明人创造性地提出了一种不需要在真空或保护气体存在的条件下就可进行的低成本制备靶材的方法。
具体地,本申请提供了一种制备管状靶材的方法,所述方法包括:
选取已经过清洗和粗化处理的不锈钢背衬管;
在大气气氛中,采用等离子喷涂法、电弧喷涂法、超音波火焰喷涂法或冷喷涂法在选取的不锈钢背衬管表面喷涂过渡层,得到包含过渡层的不锈钢背衬管;
在大气气氛中,采用等离子喷涂法在所述包含过渡层的不锈钢背衬管表面喷涂靶材层。
在本申请中,可以采用本领域中常用的等离子喷涂法、电弧喷涂法、超音波火焰喷涂法或冷喷涂法喷涂所述过渡层。与等离子喷涂法相比,采用冷 喷涂法可以获得更高的过渡层与靶材层之间的结合强度。
在本申请的实施方式中,所述管状靶材可以选自铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓和铜金铟镓管状靶材中的任意一种。在本申请的实施方式中,所述管状靶材可以为铜铟镓管状靶材,所述过渡层为铜铟镓过渡层,所述靶材层为铜铟镓靶材层;所述铜铟镓过渡层由铜铟镓合金粉末形成,形成所述铜铟镓过渡层的铜铟镓合金粉末中的铜/(铟+镓)的原子比可以为0.5~0.8、铟/(铟+镓)的原子比可以为0.6~0.9,镓/(铟+镓)的原子比可以为0.1~0.4;所述铜铟镓靶材层由铜铟镓合金粉末形成,形成所述铜铟镓靶材层的铜铟镓合金粉末中的铜/(铟+镓)的原子比可以为0.8~1.1、铟/(铟+镓)的原子比可以为0.2~0.8,镓/(铟+镓)的原子比可以为0.2~0.8。
在本申请的实施方式中,形成所述铜铟镓靶材层的铜铟镓粉末的粒径可以为10μm至150μm,任选地,可以为30μm至100μm或10μm至50μm。
在本申请的实施方式中,所述过渡层的厚度可以为50μm至300μm,所述靶材层的厚度可以为1mm至20mm;
任选地,所述过渡层的厚度可以为100μm至300μm,所述靶材层的厚度可以为3mm至12mm;
在本申请的实施方式中,可以采用往复逐层喷涂的方式喷涂所述靶材层。
在本申请的实施方式中,在喷涂过渡层和靶材层的过程中可以进行降温,例如,可以通过向空心的背衬管中通低温冷却液进行降温,或者通过加强背衬管外表面的空气流动进行降温。
任选地,所述低温冷却液可以为温度为15℃至25℃的水,出水温度可以为30℃至60℃。
任选地,可以向背衬管外表面吹压缩空气以加强冷却能力。
任选地,可以向衬管外表面吹惰性气体以加强冷却能力,这种方式还可以降低已喷涂的过渡层和靶材层的氧化速度。
在本申请的实施方式中,在喷涂过渡层和靶材层的过程中可以使背衬管以100转/分钟至500转/分钟的速度旋转。
在本申请的实施方式中,可以通过送粉器以稳定的送粉速率喷涂合金粉末,所述送粉速率可以为50克/分钟至300克/分钟。
任选地,所述送粉速率可以为80克/分钟至200克/分钟;
在本申请的实施方式中,可以采用等离子喷涂法喷涂所述过渡层和靶材层。
任选地,等离子喷涂的等离子气体可以为氩气,流量可以为50L/min至140L/min,电压可以为35V至55V,电流可以为350A至600A,喷枪的喷涂距离可以为75mm至150mm。
在本申请的实施方式中,形成所述过渡层的合金粉末和形成所述靶材层的合金粉末可以通过下述方法制备:
将制备合金粉末的金属单质放入反应器内;
将反应器抽真空后密封,加热,将所述金属单质熔炼成合金溶液;
将所述合金溶液导入雾化装置的雾化中心处,同时向雾化装置通入高压惰性气流和含氧气体,合金溶液在高压惰性气流的冲击下雾化成小液滴;
所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末;
收集、筛分所述合金粉末,备用;
所述含氧气体可以为氧气、压缩空气或氧气与压缩空气的组合物。
在本申请的实施方式中,所述金属单质的纯度可以均为99.99%至99.9999%。
任选地,所述金属单质的纯度可以均为99.999%至99.9999%。
在本申请的实施方式中,可以将所述反应器抽真空至真空度为50Pa至500Pa。
在本申请的实施方式中,所述熔炼的温度可以为750℃至1050℃;
在本申请的实施方式中,所述熔炼的时间可以≥30分钟。
在本申请的实施方式中,所述高压惰性气流可以为氮气流或氩气流,所述高压惰性气流的压力可以为0.5MPa至5MPa,流量可以为50m 3/h至500m 3/h。
任选地,所述高压惰性气流的压力可以为1MPa至3MPa,流量可以为100m 3/h至400m 3/h。
在本申请的实施方式中,可以同时向雾化装置通入高压惰性气流和氧气,所述氧气的流量可以为10ml/min至2000ml/min,任选地,可以为50ml/min至1000ml/min;
在本申请的实施方式中,可以同时向雾化装置通入高压惰性气流和压缩空气,所述压缩空气的流量可以为0.05L/min至20L/min。
在本申请的实施方式中,可以将高压惰性气流和含氧气体通过不同的管路控制流量后再分别通入雾化装置。
在本申请的实施方式中,合金粉末的制备可以在气雾化制粉机内进行,所述反应器可以为气雾化制粉机的真空感应熔炼炉。
在本申请的实施方式中,所述气雾化制粉机的熔炼室与雾化室之间的压力差可以为500Pa至0.05MPa,任选地,可以为1000Pa至10000Pa。
在本申请的实施方式中,可以通过导流管将所述合金溶液导入雾化装置中,所述导流管的直径可以为0.5mm至2mm。
在本申请的实施方式中,可以通过气雾化制粉机的雾化装置的高压气体喷盘将通入的所述高压惰性气流和含氧气体喷出。
在本申请的实施方式中,筛分后的合金粉末的粒径可以为10μm至50μm或30μm至100μm。
在本申请的实施方式中,所述合金粉末的氧含量可以低于5000ppm,任选地,氧含量可以为100ppm至2000ppm。
在本申请的实施方式中,以质量百分比计,所述管状靶材的氧含量可以为200ppm至5000ppm,任选地,氧含量可以为300ppm至3000ppm。
具体地,本申请还提供了一种靶材的制备方法,所述方法包括:
在大气气氛中,在基体表面喷涂过渡层,得到包含过渡层的基体;
在大气气氛中,在所述包含过渡层的基体表面喷涂靶材层。
在本申请中,可以采用本领域中常用的等离子喷涂法、电弧喷涂法、超 音波火焰喷涂法或冷喷涂法喷涂所述过渡层。与等离子喷涂法相比,采用冷喷涂法可以获得更高的过渡层与靶材层之间的结合强度。
在本申请的实施方式中,所述靶材可以选自铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓和铜金铟镓靶材中的任意一种。
应理解,本申请提供的制备靶材的方法包括但不限于制备上述所列举的靶材,上述所列举的靶材并非对本申请作出任何形式上或实质上的限定。
在本申请的实施方式中,所述靶材可以为管状靶材。
在本申请的实施方式中,所述基体可以为不锈钢背衬管。
在本申请的实施方式中,所述靶材可以为铜铟镓靶材,所述过渡层为铜铟镓过渡层,所述靶材层为铜铟镓靶材层;所述铜铟镓过渡层由铜铟镓合金粉末形成,形成所述铜铟镓过渡层的铜铟镓合金粉末中的铜/(铟+镓)的原子比可以为0.5~0.8、铟/(铟+镓)的原子比可以为0.6~0.9,镓/(铟+镓)的原子比可以为0.1~0.4;所述铜铟镓靶材层由铜铟镓合金粉末形成,形成所述铜铟镓靶材层的铜铟镓合金粉末中的铜/(铟+镓)的原子比可以为0.8~1.1、铟/(铟+镓)的原子比可以为0.2~0.8,镓/(铟+镓)的原子比可以为0.2~0.8。
在本申请的实施方式中,形成所述铜铟镓靶材层的铜铟镓粉末的粒径可以为10μm至150μm,任选地,可以为30μm至100μm或10μm至50μm。
在本申请的实施方式中,所述过渡层的厚度可以为50μm至300μm,所述靶材层的厚度可以为1mm至20mm;
任选地,所述过渡层的厚度可以为100μm至300μm,所述靶材层的厚度可以为3mm至12mm;
在本申请的实施方式中,可以采用往复逐层喷涂的方式喷涂所述靶材层。
在本申请的实施方式中,在喷涂过渡层和靶材层的过程中可以进行降温,例如,可以通过向空心的基体中通低温冷却液进行降温,或者通过加强基体外表面的空气流动进行降温。
任选地,所述低温冷却液可以为温度为15℃至25℃的水,出水温度可以为30℃至60℃。
任选地,可以向基体外表面吹压缩空气以加强冷空气流动的却能力。
任选地,可以向基体外表面吹惰性气体以加强空气流动的冷却能力,这种方式还可以降低已喷涂的过渡层和靶材层的氧化速度。
在本申请的实施方式中,在喷涂过渡层和靶材层的过程中可以使基体以100转/分钟至500转/分钟的速度旋转。
在本申请的实施方式中,可以通过送粉器以稳定的送粉速率喷涂合金粉末,所述送粉速率可以为50克/分钟至300克/分钟。
任选地,所述送粉速率可以为80克/分钟至200克/分钟;
在本申请的实施方式中,可以采用等离子喷涂法喷涂所述过渡层和靶材层。
任选地,等离子喷涂的等离子气体可以为氩气,流量可以为50L/min至140L/min,电压可以为35V至55V,电流可以为350A至600A,喷枪的喷涂距离可以为75mm至150mm。
在本申请的实施方式中,形成所述过渡层的合金粉末和形成所述靶材层的合金粉末可以通过下述方法制备:
将制备合金粉末的金属单质放入反应器内;
将反应器抽真空后密封,加热,将所述金属单质熔炼成合金溶液;
将所述合金溶液导入雾化装置的雾化中心处,同时向雾化装置通入高压惰性气流和含氧气体,合金溶液在高压惰性气流的冲击下雾化成小液滴;
所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末;
收集、筛分所述合金粉末,备用。
在本申请的实施方式中,所述金属单质的纯度可以均为99.99%至99.9999%。
任选地,所述金属单质的纯度可以均为99.999%至99.9999%。
在本申请的实施方式中,可以将所述反应器抽真空至真空度为50Pa至500Pa。
在本申请的实施方式中,所述熔炼的温度可以为750℃至1050℃;
在本申请的实施方式中,所述熔炼的时间可以≥30分钟。
在本申请的实施方式中,所述高压惰性气流可以为氮气流或氩气流,所述高压惰性气流的压力可以为0.5MPa至5MPa,流量可以为50m 3/h至500m 3/h。
任选地,所述高压惰性气流的压力可以为1MPa至3MPa,流量可以为100m 3/h至400m 3/h。
在本申请的实施方式中,所述含氧气体可以为氧气、压缩空气或氧气与压缩空气的组合物。
在本申请的实施方式中,可以同时向雾化装置通入高压惰性气流和氧气,所述氧气的流量可以为10ml/min至2000ml/min,任选地,可以为50ml/min至1000ml/min;
在本申请的实施方式中,可以同时向雾化装置通入高压惰性气流和压缩空气,所述压缩空气的流量可以为0.05L/min至20L/min。
在本申请的实施方式中,可以将高压惰性气流和含氧气体通过不同的管路控制流量后再分别通入雾化装置。
在本申请的实施方式中,合金粉末的制备可以在气雾化制粉机内进行,所述反应器可以为气雾化制粉机的真空感应熔炼炉。
在本申请的实施方式中,所述气雾化制粉机的熔炼室与雾化室之间的压力差可以为500Pa至0.05MPa,任选地,可以为1000Pa至10000Pa。
在本申请的实施方式中,可以通过导流管将所述合金溶液导入雾化装置中,所述导流管的直径可以为0.5mm至2mm。
在本申请的实施方式中,可以通过气雾化制粉机的雾化装置的高压气体喷盘将通入的所述高压惰性气流和含氧气体喷出。
在本申请的实施方式中,筛分后的合金粉末的粒径可以为10μm至50μm或30μm至100μm。
在本申请的实施方式中,所述合金粉末的氧含量可以低于5000ppm,任选地,氧含量可以为100ppm至2000ppm。
在本申请的实施方式中,在所述在基体表面喷涂过渡层之前,所述靶材的制备方法还可以包括对基体进行清洗、干燥和粗化(例如,喷砂)处理。
在本申请的实施方式中,以质量百分比计,所述靶材的氧含量可以为200ppm至5000ppm,任选地,氧含量可以为300ppm至3000ppm。
具体地,本申请还提供了一种靶材,所述靶材采用如上所述的制备靶材的方法制备而成,以质量百分比计,所述靶材的氧含量为200ppm至5000ppm。
在本申请的实施方式中,以质量百分比计,所述靶材的氧含量可以为300ppm至3000ppm。
一般而言,靶材中的氧含量会影响随后在靶材上形成的薄膜的性能,并且氧含量越高形成的薄膜的性能越差,因此行业期望降低靶材中的氧含量。基于上述共识,一般会在真空或惰性气体存在的条件下进行靶材的制备,但是这样一来就增加了靶材制备的成本。本申请公开的制备靶材的方法克服了现有技术的偏见,该方法可以直接在大气气氛中进行靶材的制备,获得氧含量在可接受的范围内的靶材,降低了靶材制备的成本;并通过降温和控制工艺参数的方式来进一步减少靶材制备中的氧化现象,以获得更优的靶材产品。
进一步地,本申请通过在制备合金粉末的气雾化过程中引入可控的含氧气体,实现了合金粉末的表面改性,在合金粉末表面生成了一层非常薄的光滑的氧化物层,该氧化物层具有钝化的作用,进而减少了卫星球的产生和避免了粉末存储和运输过程中的粘结现象。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得更加清楚,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图简述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请 技术方案的限制。
图1为本申请实施例1制备铜铟镓管状靶材的工艺流程图。
图2 a、b分别为对比例1和本申请实施例1制备的过渡层用铜铟镓合金粉末的形貌。
详细描述
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
以下实施例中所用到的单质铟、单质铜和单质镓的纯度均为99.9999%,均为的符合中国国家标准的普通市售产品。
以下实施例中所测定的参数如无特殊说明,使用本领域内常规测试方法进行测试。
下述实施例制备的靶材均为铜铟镓管状靶材,选择不锈钢背衬管作为基体。
如图1所示,制备铜铟镓管状靶材的方法具体包括如下步骤:
分别称量单质铟、单质铜和单质镓;
将称好的单质铟、单质铜和单质镓熔炼成合金溶液;
将所述合金溶液在含氧气氛中雾化,得到小液滴,所述小液滴被强制迅速冷却,得到合金粉末;
收集并筛分所述合金粉末。
其中,通过控制三种单质的含量和制备的工艺参数来制备过渡层用铜铟镓合金粉末和靶材层用铜铟镓合金粉末,备用。
选取不锈钢背衬管,对其进行清洗、干燥和喷砂(粗化)处理;
在大气气氛中,向不锈钢背衬管表面喷涂上述制备的过渡层用铜铟镓合金粉末,形成过渡层;
在大气气氛中,向含有过渡层的不锈钢背衬管表面喷涂上述制备的靶材 层用铜铟镓合金粉末,形成靶材层,得到铜铟镓管状靶材。
实施例1
(1)过渡层用铜铟镓合金粉末的制备
1)分别称量50kg单质铟、30kg单质铜和20kg单质镓,也即铜/(铟+镓)的原子比为0.65、铟/(铟+镓)的原子比为0.60,镓/(铟+镓)的原子比为0.40,以制作过渡层用合金粉末。
2)在气雾化制粉机内进行熔炼和雾化制粉。
其中,所述气雾化制粉机包括主体,所述主体内由上至下依次设有真空熔炼室和雾化室,该两腔室通过带金属液导流管的中间包连接。所述真空熔炼室内设有熔化装置和加热装置,所述加热装置对所述熔化装置加热,所述熔化装置具有出液口,所述出液口通过导流管与所述雾化室的顶部连通,所述雾化室内设有气体喷嘴,所述气体喷嘴与高压惰性气体管路相连,所述气体喷嘴朝向所述导流管的出口喷射高压惰性气体,所述雾化室内设有含氧气体管路以及与所述含氧气体管路连接的喷气装置,所述含氧气体管路通过所述进气装置向所述雾化室内输送含氧气体。
将上述三种单质放入熔化装置的坩埚内,开启电源,将熔化装置抽真空至真空度为200Pa,加热至850℃,将上述三种单质加热熔化60分钟,并通过感应线圈的电磁搅拌力获得均匀的合金熔液;关闭真空泵,向熔炼室和雾化室内通入氮气,使雾化室达到常压,且熔炼室比雾化室的压力高9000Pa。
3)将熔炼完毕的合金溶液缓慢均速倒入中间包中,合金溶液在重力作用和真空熔炼室与雾化室的压力差(9000Pa)作用下,通过金属液导流管(直径为2mm)流向雾化室;同时通过高压惰性气体管路向雾化室内通入压力为3MPa、流量为200m 3/h的氮气作为雾化介质,在引入高压氮气的同时,通过含氧气体管路向雾化内通入压力为0.8MPa、流量为3L/min的洁净压缩空气;合金溶液在离开导流管的底部后,立刻在高压气流的冲击下,雾化成小液滴;小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末;
4)收集气雾化制粉机制得的粉末,并经过超声波辅助振动筛完成筛分,筛分得30μm至100μm的铟铜镓粉末。
铟铜镓合金粉末的产率为98%以上,其中30μm至100μm粒径的粉末的产率为45%,粉末的流动性较好,霍尔流量计检测结果为14秒/50克,粉末间无明显团聚、粘连现象发生;合金粉末的氧含量为300ppm。
(2)靶材层用铜铟镓合金粉末的制备
1)分别称量35kg单质铟、40kg单质铜和25kg单质镓,也即铜/(铟+镓)的原子比为0.95、铟/(铟+镓)的原子比为0.46,镓/(铟+镓)的原子比为0.54,以制作靶材层用合金粉末。
2)采用与上述制备过渡层用铜铟镓合金粉末相同的方法制备靶材层用铜铟镓合金粉末,熔炼温度为920℃,雾化介质氩气的压力为2MPa,流量为180m 3/h,压缩空气流量为2.5L/min,其它工艺参数完全相同,合金粉末的氧含量为270ppm。
(3)铜铟镓管状靶材的制备
在不锈钢背衬管表面喷涂过渡层和靶材层,其中背衬管为空心的,并且具有入水口和出水口。
1)将不锈钢背衬管清洗干净,喷砂(粗化),干燥;
2)使背衬管以300转/分钟的速度旋转,背衬管的上部、下部排列两排氮气管路直吹向背衬管,以冷却和保护已喷涂的材料不被氧化,氮气流量为180m 3/h。在大气气氛中,通过送粉器以80克/分钟的送粉速率输送铜铟镓合金粉末,采用等离子喷涂法在背衬管表面喷涂200μm厚度的铜铟镓过渡层,其中,等离子气体为氩气,流量为100L/min,喷涂电压为50V,电流为450A,喷涂距离为120mm,制备得到包含铜铟镓过渡层的不锈钢背衬管;
3)在大气气氛中,通过送粉器以120克/分钟的送粉速率喷涂铜铟镓合金粉末,采用等离子喷涂法在所述包含铜铟镓过渡层的不锈钢背衬管表面喷涂12mm厚度的铜铟镓靶材层,其中,喷涂电压为40V,电流为500A,喷涂距离为100mm,等离子气体为氩气,流量为80L/min。
所制备的铜铟镓管状靶材的氧含量为1600ppm。
实施例2
本实施例与实施例1的不同之处仅在于:
向空心的背衬管中通温度为15℃至25℃的软化水,软化水离开背衬管时的温度为30℃至40℃,同时向背衬管表面吹氮气冷却,氮气的流量为100m 3/h;
等离子喷涂过渡层的工艺为:等离子气体为氩气,流量60L/min,电压为40V,电流450A,60克/分钟送粉速率,铜铟镓过渡层的厚度为250μm;等离子喷涂靶材层的参数为电压为55V,电流为600A,喷涂距离为150mm,等离子气体氩气的流量为140L/min,铜铟镓合金粉末的送粉率为200克/分钟,铜铟镓靶材层的厚度为3mm。
所制备的铜铟镓管状靶材的氧含量为1800ppm。
实施例3
本实施例与实施例1的不同之处仅在于:
只用冷却水冷却,不用氮气冷却和保护,具体为:向空心的背衬管中通温度为15℃至25℃的软化水,软化水离开背衬管时的温度为35℃至40℃;
等离子喷涂过渡层的等离子气体为氩气,流量为120L/min,送粉率为100克/分钟,铜铟镓过渡层的厚度为200μm;
过渡层等离子喷涂靶材层的电压为50V,电流为550A,喷涂距离为130mm,送粉率为90克/分钟,等离子气体氩气的流量为100L/min,铜铟镓靶材层的厚度为5mm。
所制备的铜铟镓管状靶材的氧含量为2600ppm。
实施例4
本实施例与实施例1的不同之处仅在于:
向空心的背衬管中通温度为20℃的软化水,软化水离开背衬管时的温度为35℃,同时用氮气冷却,氮气的流量为100m 3/h;
采用冷喷涂法在背衬管表面喷涂过渡层,其中冷喷涂的工作气体为氮气,流量为200m 3/h,温度为400℃,送粉率为80g/min,铜铟镓过渡层的厚度为300μm。
等离子喷涂靶材层的,电流为500A,喷涂距离为120mm,送粉率为130 克/分钟,铜铟镓靶材层的厚度为8mm。
所制备的铜铟镓管状靶材的氧含量为1400ppm。
对比例1
制备过渡层用铜铟镓合金粉末:对比例1与实施例1的制备过渡层用铜铟镓合金粉末的不同之处仅在于在雾化过程中无压缩空气通入。
性能测试
1、利用扫描电镜观察实施例1和对比例1制备的过渡层用铜铟镓合金粉末,结果如图2所示。
从图2可以看出,对比例1制备的过渡层用铜铟镓合金粉末的颗粒表面粘附有大量的小卫星球,并且粉末颗粒之间有粘连现象;而实施例1制备的过渡层用铜铟镓合金粉末的颗粒呈球形,表面光滑,颗粒表面则只有极少的小卫星球。
2、测试上述实施例的铜铟镓管状靶材在镀膜时的使用性能。测试结果请见表1。
表1
Figure PCTCN2017120074-appb-000001
本公开内容是本申请实施例的原则的示例,并非对本申请作出任何形式上或实质上的限定,或将本申请限定到具体的实施方案。对本领域的技术人员而言,很显然本申请实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上所述的本申请的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本申请的等同实施例内,这些等同实施例均包括在本申请的由权利要求界定的范围内。虽然可以许多不同形式来使本申请实施例具体化,但此处详细描述的是本发明的一些实施方案。此外,本申请的实施例包括此处所述的各种实施方案的一些或全部的任意可能的组合,也包括在本申请的由权利要求界定的范围内。在本申请中或在任一个引用的专利、引用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和其它引用资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。
在此完成了对本申请可选择的实施方案的描述。本领域技术人员可认识到此处所述的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。
工业实用性
本申请提供的制备靶材的方法不需要在真空或保护气体存在的条件下就可以进行,降低了靶材的生产成本。

Claims (30)

  1. 一种制备管状靶材的方法,所述方法包括:
    选取已经过清洗和粗化处理的不锈钢背衬管;
    在大气气氛中,采用等离子喷涂法、电弧喷涂法、超音波火焰喷涂法或冷喷涂法在选取的不锈钢背衬管表面喷涂过渡层,得到包含过渡层的不锈钢背衬管;
    在大气气氛中,采用等离子喷涂法在所述包含过渡层的不锈钢背衬管表面喷涂靶材层。
  2. 根据权利要求1所述的方法,其中,所述管状靶材选自铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓和铜金铟镓管状靶材中的任意一种。
  3. 根据权利要求1所述的方法,其中,所述管状靶材为铜铟镓管状靶材,所述过渡层为铜铟镓过渡层,所述靶材层为铜铟镓靶材层;所述铜铟镓过渡层由铜铟镓合金粉末形成,形成所述铜铟镓过渡层的铜铟镓合金粉末中的铜/(铟+镓)的原子比为0.5至0.8、铟/(铟+镓)的原子比为0.6至0.9,镓/(铟+镓)的原子比为0.1至0.4;所述铜铟镓靶材层由铜铟镓合金粉末形成,形成所述铜铟镓靶材层的铜铟镓合金粉末中的铜/(铟+镓)的原子比为0.8至1.1、铟/(铟+镓)的原子比为0.2至0.8,镓/(铟+镓)的原子比为0.2至0.8;
    任选地,形成所述铜铟镓靶材层的铜铟镓粉末的粒径为10μm至150μm,进一步任选地为30μm至100μm或10μm至50μm。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述过渡层的厚度为50μm至300μm,所述靶材层的厚度为1mm至20mm;
    任选地,所述过渡层的厚度为100μm至300μm,所述靶材层的厚度为3mm至12mm;
    任选地,采用往复逐层喷涂的方式喷涂所述靶材层。
  5. 根据权利要求1至4中任一项所述的方法,其中,在喷涂过渡层和靶材层的过程中进行降温,任选地,通过向空心的背衬管中通低温冷却液进 行降温,或者通过加强背衬管外表面的空气流动进行降温;任选地,所述低温冷却液为温度为15℃至25℃的水,出水温度为30℃至60℃;任选地,向背衬管外表面吹压缩空气或惰性气体以加强冷却能力。
  6. 根据权利要求1至5中任一项所述的方法,其中,在喷涂过渡层和靶材层的过程中使背衬管以100转/分钟至500转/分钟的速度旋转;
    任选地,通过送粉器喷涂合金粉末,所述送粉器的送粉速率为50克/分钟至300克/分钟,进一步任选地,为80克/分钟至200克/分钟;
    任选地,采用等离子喷涂法喷涂所述过渡层和所述靶材层,等离子气体为氩气,流量为50L/min至140L/min,电压为35V至55V,电流为350A至600A,喷枪的喷涂距离为75mm至150mm。
  7. 根据权利要求1至6中任一项所述的方法,其中,形成所述过渡层的合金粉末和形成所述靶材层的合金粉末通过下述方法制备:
    将制备合金粉末的金属单质放入反应器内;
    将反应器抽真空后密封,加热,将所述金属单质熔炼成合金溶液;
    将所述合金溶液导入雾化装置的雾化中心处,同时向雾化装置通入高压惰性气流和含氧气体,合金溶液在高压惰性气流的冲击下雾化成小液滴;
    所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末;
    收集、筛分所述合金粉末,备用;
    任选地,所述含氧气体为氧气、压缩空气或氧气与压缩空气的组合物。
  8. 根据权利要求7所述的方法,其中,所述金属单质的纯度均为99.99%至99.9999%;
    任选地,
    所述金属单质的纯度均为99.999%至99.9999%;
    将所述反应器抽真空至真空度为50Pa至500Pa;
    所述熔炼的温度为750℃至1050℃;
    所述熔炼的时间≥30分钟。
  9. 根据权利要求7或8所述的方法,其中,所述高压惰性气流为氮气 流或氩气流,所述高压惰性气流的压力为0.5MPa至5MPa,流量为50m 3/h至500m 3/h;任选地,压力为1MPa至3MPa,流量为100m 3/h至400m 3/h。
  10. 根据权利要求7至9中任一项所述的方法,其中,同时向雾化装置通入高压惰性气流和氧气,所述氧气的流量为10ml/min至2000ml/min,进一步任选地,为50ml/min至1000ml/min;
    或者,同时向雾化装置通入高压惰性气流和压缩空气,所述压缩空气的流量为0.05L/min至20L/min。
  11. 根据权利要求7至10中任一项所述的方法,其中,将高压惰性气流和含氧气体通过不同的管路控制流量后再分别通入雾化装置。
  12. 根据权利要求7至11中任一项所述的方法,其中,合金粉末的制备在气雾化制粉机内进行,所述反应器为气雾化制粉机的真空感应熔炼炉,所述气雾化制粉机的熔炼室与雾化室之间的压力差为500Pa至0.05MPa,任选地,为1000Pa至10000Pa;
    任选地,
    通过导流管将所述合金溶液导入雾化装置中,所述导流管的直径为0.5mm至2mm;
    通过气雾化制粉机的雾化装置的高压气体喷盘将通入的所述高压惰性气流和含氧气体喷出。
  13. 根据权利要求7至12中任一项所述的方法,其中,筛分后的合金粉末的粒径为10μm至50μm或30μm至100μm;
    任选地,所述合金粉末的氧含量低于5000ppm,进一步任选地,为100ppm至2000ppm。
  14. 根据权利要求1至13中任一项所述的方法,其中,以质量百分比计,所述管状靶材的氧含量为200ppm至5000ppm,任选地,氧含量为300ppm至3000ppm。
  15. 一种制备靶材的方法,所述方法包括:
    在大气气氛中,在基体表面喷涂过渡层,得到包含过渡层的基体;
    在大气气氛中,在所述包含过渡层的基体表面喷涂靶材层。
  16. 根据权利要求15所述的方法,其中,所述靶材选自铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓和铜金铟镓靶材中的任意一种。
  17. 根据权利要求15所述的方法,其中,所述靶材为铜铟镓靶材,所述过渡层为铜铟镓过渡层,所述靶材层为铜铟镓靶材层;所述铜铟镓过渡层由铜铟镓合金粉末形成,形成所述铜铟镓过渡层的铜铟镓合金粉末中的铜/(铟+镓)的原子比为0.5至0.8、铟/(铟+镓)的原子比为0.6至0.9,镓/(铟+镓)的原子比为0.1至0.4;所述铜铟镓靶材层由铜铟镓合金粉末形成,形成所述铜铟镓靶材层的铜铟镓合金粉末中的铜/(铟+镓)的原子比为0.8至1.1、铟/(铟+镓)的原子比为0.2至0.8,镓/(铟+镓)的原子比为0.2至0.8;
    任选地,形成所述铜铟镓靶材层的铜铟镓粉末的粒径为10μm至150μm,进一步任选地为30μm至100μm或10μm至50μm。
  18. 根据权利要求15至17中任一项所述的方法,其中,所述过渡层的厚度为50μm至300μm,所述靶材层的厚度为1mm至20mm;
    任选地,所述过渡层的厚度为100μm至300μm,所述靶材层的厚度为3mm至12mm;
    任选地,采用往复逐层喷涂的方式喷涂所述靶材层。
  19. 根据权利要求15至18中任一项所述的方法,其中,在喷涂过渡层和靶材层的过程中进行降温,任选地,通过向空心的基体中通低温冷却液进行降温,或者通过加强基体外表面的空气流动进行降温;任选地,所述低温冷却液为温度为15℃至25℃的水,出水温度为30℃至60℃;任选地,向基体外表面吹压缩空气或惰性气体以加强冷却能力。
  20. 根据权利要求15至19中任一项所述的方法,其中,在喷涂过渡层和靶材层的过程中使所述基体以100转/分钟至500转/分钟的速度旋转;
    任选地,通过送粉器喷涂合金粉末,所述送粉器的送粉速率为50克/分钟至300克/分钟,进一步任选地,为80克/分钟至200克/分钟;
    任选地,采用等离子喷涂法、电弧喷涂法、超音波火焰喷涂法和冷喷涂 法中的任意一种喷涂所述过渡层,采用等离子喷涂法喷涂所述靶材层;
    任选地,采用等离子喷涂法喷涂所述过渡层和所述靶材层的等离子气体为氩气,流量为50L/min至140L/min,电压为35V至55V,电流为350A至600A,喷枪的喷涂距离为75mm至150mm。
  21. 根据权利要求15至20中任一项所述的方法,其中,形成所述过渡层的合金粉末和形成所述靶材层的合金粉末通过下述方法制备:
    将制备合金粉末的金属单质放入反应器内;
    将反应器抽真空后密封,加热,将所述金属单质熔炼成合金溶液;
    将所述合金溶液导入雾化装置的雾化中心处,同时向雾化装置通入高压惰性气流和含氧气体,合金溶液在高压惰性气流的冲击下雾化成小液滴;
    所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末;
    收集、筛分所述合金粉末,备用。
  22. 根据权利要求21所述的方法,其中,所述金属单质的纯度均为99.99%至99.9999%;
    任选地,
    所述金属单质的纯度均为99.999%至99.9999%;
    将所述反应器抽真空至真空度为50Pa至500Pa;
    所述熔炼的温度为750℃至1050℃;
    所述熔炼的时间≥30分钟。
  23. 根据权利要求21或22所述的方法,其中,所述高压惰性气流为氮气流或氩气流,所述高压惰性气流的压力为0.5MPa至5MPa,流量为50m 3/h至500m 3/h;任选地,压力为1MPa至3MPa,流量为100m 3/h至400m 3/h。
  24. 根据权利要求21至23中任一项所述的方法,其中,所述含氧气体为氧气、压缩空气或氧气与压缩空气的组合物;
    任选地,同时向雾化装置通入高压惰性气流和氧气,所述氧气的流量为10ml/min至2000ml/min,进一步任选地,为50ml/min至1000ml/min;
    或者,同时向雾化装置通入高压惰性气流和压缩空气,所述压缩空气的 流量为0.05L/min至20L/min。
  25. 根据权利要求21至24中任一项所述的方法,其中,将高压惰性气流和含氧气体通过不同的管路控制流量后再分别通入雾化装置。
  26. 根据权利要求21至25中任一项所述的方法,其中,合金粉末的制备在气雾化制粉机内进行,所述反应器为气雾化制粉机的真空感应熔炼炉,所述气雾化制粉机的熔炼室与雾化室之间的压力差为500Pa至0.05MPa,任选地,为1000Pa至10000Pa;
    任选地,
    通过导流管将所述合金溶液导入雾化装置中,所述导流管的直径为0.5mm至2mm;
    通过气雾化制粉机的雾化装置的高压气体喷盘将通入的所述高压惰性气流和含氧气体喷出。
  27. 根据权利要求21至26中任一项所述的方法,其中,筛分后的合金粉末的粒径为10μm至50μm或30μm至100μm;
    任选地,所述合金粉末的氧含量低于5000ppm,进一步任选地,为100ppm至2000ppm。
  28. 根据权利要求15至27中任一项所述的方法,在所述在基体表面喷涂过渡层之前,所述靶材的制备方法还包括对基体进行清洗、干燥和粗化处理;
    任选地,所述靶材为管状靶材,所述基体为不锈钢背衬管。
  29. 根据权利要求15至28中任一项所述的方法,其中,以质量百分比计,所述靶材的氧含量为200ppm至5000ppm,任选地,氧含量为300ppm至3000ppm。
  30. 一种靶材,所述靶材采用根据权利要求1至29中任一项所述的方法制备而成。
PCT/CN2017/120074 2017-08-04 2017-12-29 一种制备靶材的方法和靶材 WO2019024421A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/779,645 US20210164090A1 (en) 2017-08-04 2017-12-29 Method for Preparing Target Material and Target Material
EP17872876.2A EP3456857A4 (en) 2017-08-04 2017-12-29 METHOD FOR PREPARING TARGET MATERIAL AND TARGET MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710661544.6A CN107557737B (zh) 2017-08-04 2017-08-04 一种制备管状靶材的方法
CN201710661544.6 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019024421A1 true WO2019024421A1 (zh) 2019-02-07

Family

ID=60975227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120074 WO2019024421A1 (zh) 2017-08-04 2017-12-29 一种制备靶材的方法和靶材

Country Status (4)

Country Link
US (1) US20210164090A1 (zh)
EP (1) EP3456857A4 (zh)
CN (1) CN107557737B (zh)
WO (1) WO2019024421A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862601A (zh) * 2021-09-30 2021-12-31 江苏卓奇新材料科技有限公司 一种热喷涂层弹条及其制备方法
CN114714257A (zh) * 2022-03-21 2022-07-08 合肥江丰电子材料有限公司 一种靶材的喷砂方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824935B (zh) * 2016-12-08 2019-03-05 尚涛 一种气相色谱玻璃衬管的清洗方法
IT201700041618A1 (it) * 2017-04-13 2018-10-13 Tenova Spa Metodo di produzione di polveri metalliche mediante atomizzazione a gas e impianto di produzione di polveri metalliche secondo tale metodo.
CN107626929B (zh) * 2017-08-04 2021-04-30 领凡新能源科技(北京)有限公司 一种制备合金粉末的方法
CN108411261A (zh) * 2018-05-31 2018-08-17 米亚索乐装备集成(福建)有限公司 一种靶材加工方法和一种骨形靶材
CN110605399A (zh) * 2018-06-15 2019-12-24 米亚索乐装备集成(福建)有限公司 一种铜铟镓合金粉末的制备方法
CN108772567A (zh) * 2018-06-29 2018-11-09 米亚索乐装备集成(福建)有限公司 一种用于cig靶材打底层的合金材料、cig靶材及其制备方法
CN109295428A (zh) * 2018-11-02 2019-02-01 中国科学院宁波材料技术与工程研究所 一种利用冷喷涂工艺制备铜铟镓旋转靶材的方法及其产品
CN112176294A (zh) * 2019-07-01 2021-01-05 领凡新能源科技(北京)有限公司 靶材制备方法、装置和靶材
CN111286702A (zh) * 2020-02-25 2020-06-16 广州市尤特新材料有限公司 一种旋转银铜靶材及制备方法
CN111441021A (zh) * 2020-05-25 2020-07-24 先导薄膜材料(广东)有限公司 一种旋转靶的制备方法及其喷涂设备
CN111962031A (zh) * 2020-07-28 2020-11-20 宣城开盛新能源科技有限公司 一种铜铟镓靶材背衬管回收利用方法
CN113862620A (zh) * 2021-09-17 2021-12-31 芜湖映日科技股份有限公司 一种铜铟镓硒旋转溅射靶材制备方法
CN114182222A (zh) * 2021-11-03 2022-03-15 梭莱镀膜工业(江阴)有限公司 一种导电金属氧化物靶材制备工艺
CN115233169B (zh) * 2022-06-22 2023-09-05 苏州六九新材料科技有限公司 一种铝基管状靶材及其制备方法
CN115415534A (zh) * 2022-09-30 2022-12-02 先导薄膜材料(广东)有限公司 一种银钯铟靶材及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089030A1 (en) * 2009-10-20 2011-04-21 Miasole CIG sputtering target and methods of making and using thereof
CN102286724A (zh) 2011-09-01 2011-12-21 基迈克材料科技(苏州)有限公司 光伏吸收层溅射镀膜的铜镓合金旋转靶材及制备方法
CN103290372A (zh) * 2013-05-10 2013-09-11 无锡舒玛天科新能源技术有限公司 一种用于薄膜太阳能电池的铜铟镓旋转靶材制备方法
CN104818465A (zh) * 2015-04-17 2015-08-05 无锡舒玛天科新能源技术有限公司 铜铟镓旋转靶材及采用可控气氛冷喷涂制备铜铟镓旋转靶材的方法
CN106011758A (zh) * 2016-07-20 2016-10-12 浙江舒玛新材料有限公司 一种光通信和磁储存镀膜用稀土-过渡金属旋转靶材及其制备方法
CN106319469A (zh) * 2016-10-28 2017-01-11 中国科学院宁波材料技术与工程研究所 一种铜铟镓合金靶材的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513989C2 (sv) * 2000-01-01 2000-12-11 Sandvik Ab Förfarande för tillverkning av ett FeCrAl-material och ett sådant marerial
US6444009B1 (en) * 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
US8709548B1 (en) * 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by spray forming
CN202246827U (zh) * 2011-09-29 2012-05-30 厦门映日光电科技有限公司 一种喷涂旋转靶材的冷却装置
KR20130051289A (ko) * 2011-11-09 2013-05-20 재단법인 포항산업과학연구원 저온분사 코팅방법 및 이에 의해 제조되는 코팅층
JP2014084515A (ja) * 2012-10-25 2014-05-12 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金スパッタリングターゲット
CN103752822B (zh) * 2014-02-20 2016-11-02 西华大学 一种复合粉体及其制备方法
CN104325147B (zh) * 2014-11-25 2019-07-19 北京康普锡威科技有限公司 一种雾化制备球形钎焊粉末的原位钝化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089030A1 (en) * 2009-10-20 2011-04-21 Miasole CIG sputtering target and methods of making and using thereof
CN102286724A (zh) 2011-09-01 2011-12-21 基迈克材料科技(苏州)有限公司 光伏吸收层溅射镀膜的铜镓合金旋转靶材及制备方法
CN103290372A (zh) * 2013-05-10 2013-09-11 无锡舒玛天科新能源技术有限公司 一种用于薄膜太阳能电池的铜铟镓旋转靶材制备方法
CN104818465A (zh) * 2015-04-17 2015-08-05 无锡舒玛天科新能源技术有限公司 铜铟镓旋转靶材及采用可控气氛冷喷涂制备铜铟镓旋转靶材的方法
CN106011758A (zh) * 2016-07-20 2016-10-12 浙江舒玛新材料有限公司 一种光通信和磁储存镀膜用稀土-过渡金属旋转靶材及其制备方法
CN106319469A (zh) * 2016-10-28 2017-01-11 中国科学院宁波材料技术与工程研究所 一种铜铟镓合金靶材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3456857A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862601A (zh) * 2021-09-30 2021-12-31 江苏卓奇新材料科技有限公司 一种热喷涂层弹条及其制备方法
CN113862601B (zh) * 2021-09-30 2023-08-11 江苏卓奇新材料科技有限公司 一种热喷涂层弹条及其制备方法
CN114714257A (zh) * 2022-03-21 2022-07-08 合肥江丰电子材料有限公司 一种靶材的喷砂方法

Also Published As

Publication number Publication date
EP3456857A4 (en) 2019-03-27
US20210164090A1 (en) 2021-06-03
CN107557737A (zh) 2018-01-09
CN107557737B (zh) 2019-12-20
EP3456857A1 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
WO2019024421A1 (zh) 一种制备靶材的方法和靶材
CN104475743B (zh) 一种微细球形钛及钛合金粉末的制备方法
CN106378460B (zh) 制备球形纯钛或钛合金粉末的等离子雾化方法及设备
CN106166617B (zh) 一种3d打印用钛合金粉末的制备方法
CN112317752B (zh) 一种可用于3D打印的TiZrNbTa高熵合金及其制备方法和应用
WO2019024420A1 (zh) 一种合金粉末及其制备方法
CN106670484A (zh) 304不锈钢球形粉末的制备方法
CN107876794A (zh) 增材制造用的Mo粉末、Mo合金球形粉末的制备方法
TWI221101B (en) Method for producing alloy powder by dual self-fusion rotary electrodes
CN106392089A (zh) 一种增材制造用铝合金粉末的制备方法
CN108705096A (zh) 一种细粒径球形18Ni300粉末的制备方法
CN101850424A (zh) 一种大量制备微细球形钛铝基合金粉的方法
JP2012502182A5 (ja) 耐火金属粉末の動的水素化
CN106964782A (zh) 一种制备球形铌合金粉末的方法
CN104831244A (zh) 铝钽旋转靶材及可控气氛冷喷涂制备铝钽旋转靶材的方法
CN108526472A (zh) 一种自由电弧制备金属球形粉末的装置和方法
CN108393499A (zh) 一种高能高速等离子制备球形金属粉末的装置和方法
CN107498060A (zh) 一种低松装比金属粉末的制备装置及制备方法
CN107671299A (zh) 一种真空气雾化制备Cu‑Cr合金粉末的方法
CN107999778A (zh) 一种制备af1410球形粉末的方法
CN107052354B (zh) 一种制备高球形度3d打印难熔金属粉的装置及方法
Sun et al. Preparation and characterization of ZrB2/SiC composite powders by induction plasma spheroidization technology
CN108436095A (zh) 一种使用高温汽化、球形化处理制备金属粉末的方法
CN106825592A (zh) 一种用于冷喷涂的合金粉末的制备方法
CN107470642A (zh) 一种粉末制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE