WO2019024420A1 - 一种合金粉末及其制备方法 - Google Patents

一种合金粉末及其制备方法 Download PDF

Info

Publication number
WO2019024420A1
WO2019024420A1 PCT/CN2017/120072 CN2017120072W WO2019024420A1 WO 2019024420 A1 WO2019024420 A1 WO 2019024420A1 CN 2017120072 W CN2017120072 W CN 2017120072W WO 2019024420 A1 WO2019024420 A1 WO 2019024420A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium
indium
alloy powder
copper
oxygen
Prior art date
Application number
PCT/CN2017/120072
Other languages
English (en)
French (fr)
Inventor
曾玉林
万捷
徐晓华
Original Assignee
米亚索乐装备集成(福建)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 米亚索乐装备集成(福建)有限公司 filed Critical 米亚索乐装备集成(福建)有限公司
Priority to KR1020187028186A priority Critical patent/KR20190088002A/ko
Priority to BR112018014868-7A priority patent/BR112018014868A2/pt
Priority to EP17885443.6A priority patent/EP3459659A4/en
Priority to CA3010483A priority patent/CA3010483A1/en
Priority to JP2018551809A priority patent/JP2019531400A/ja
Priority to US16/085,827 priority patent/US20200308671A1/en
Publication of WO2019024420A1 publication Critical patent/WO2019024420A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0876Cooling after atomisation by gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/50Treatment under specific atmosphere air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/13Controlling pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/05Compulsory alloy component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga

Definitions

  • the present application relates to, but is not limited to, the field of solar energy application materials, and in particular, but not limited to, an alloy powder and a preparation method thereof.
  • Copper indium gallium selenide (CIGS) thin film solar cell is a compound semiconductor with chalcopyrite structure composed of copper, indium, gallium and selenium. Its current highest conversion efficiency is 22.3%, with high conversion efficiency and low light power generation. It has many advantages such as high performance, high annual power generation and wide application of flexible packaging, and has become a hot spot in the research and application of the third generation of solar cells.
  • CGS Copper indium gallium selenide
  • Copper indium gallium selenide (CIGS) thin film solar cells have a multilayer film structure including a metal grid electrode, an antireflection film, a window layer (ZnO), a transition layer (CdS), a light absorbing layer (CIGS), and a metal back electrode (Mo ), glass substrate, etc.
  • the light absorbing layer CIGS is a key material of the thin film battery.
  • the use of magnetron sputtering to prepare the light absorbing layer CIGS is currently the mainstream technology, and this will require the use of copper indium gallium series targets.
  • the copper indium gallium alloy has a very wide solid-liquid coexistence temperature zone, and the complete melting needs to exceed 500 ° C, and the complete solidification is often as low as 160 ° C or less. Therefore, solidification from liquid to complete solid state is often accompanied by very large volume shrinkage, resulting in the inability to obtain a dense target body when preparing a copper indium gallium target by conventional smelting casting, and the result is not only a lot of shrinkage and Shrinkage holes also have problems such as uneven distribution of main components.
  • the above problems can be solved by first making a copper indium gallium alloy powder and then forming a target by a powder metallurgy or thermal coating method.
  • the melting point of indium is 156.6 ° C
  • the melting point of gallium is 29.8 ° C
  • the melting point is very low
  • the melting point of copper is 1083 ° C
  • the melting point is very different; in the powder alloy phase, there are mainly copper gallium intermetallic compounds and indium-based alloy phases.
  • due to the low melting point of indium there is a liquid phase between the alloy powders produced by the conventional gas atomization method, so that agglomeration and blocking tend to occur during the cooling process and at room temperature, and the surface of the particles adheres to a large amount.
  • the small satellite ball not only makes the alloy powder yield too low, but also causes the alloy powder to have poor fluidity, it is difficult to meet the production process requirements and produce a high-performance target.
  • the powder feeding is not smooth and often leads to the thermal spraying. The powder system is blocked.
  • the inventors of the present application have creatively proposed a method for preparing a low agglomerated, high flow alloy powder, the alloy powder prepared by the method having a very low agglomeration phenomenon, and It has high fluidity, which improves the milling yield and is very beneficial for subsequent target production.
  • the present application provides an alloy powder selected from the group consisting of copper indium gallium, silver indium gallium, gold indium gallium, copper tin gallium, silver tin gallium, gold tin gallium, copper silver indium gallium, and copper gold indium gallium. Any one of alloy powders, and the alloy powder has an oxygen content of less than 5000 ppm.
  • the alloy powder may have an oxygen content ranging from 100 ppm to 3000 ppm.
  • the alloy powder may have a particle diameter ranging from 10 ⁇ m to 50 ⁇ m or from 30 ⁇ m to 100 ⁇ m.
  • the application also provides a method of preparing an alloy powder, the method comprising:
  • the alloy solution is atomized in an oxygen-containing atmosphere to obtain small droplets; the small droplets are forcibly cooled rapidly during the atomizing gas flow to obtain an alloy powder.
  • the alloy powder may be selected from the group consisting of copper indium gallium, silver indium gallium, gold indium gallium, copper tin gallium, silver tin gallium, gold tin gallium, copper silver indium gallium, and copper gold indium gallium alloy powder. Any of them.
  • the method for preparing the alloy powder provided by the present application is not limited to the preparation of the alloy powders listed above, and may also be used to prepare other alloy powders.
  • the specific alloy powders listed above are not intended to be any form or substantial to the present application. limited. Especially when the alloy has a wide melting point range, and the alloy powder prepared by the conventional method is prone to inter-powder adhesion and/or the surface of the powder has more satellite balls, it is more suitable to prepare the alloy powder by the method provided by the present application.
  • the alloy powder may be a copper indium gallium alloy powder
  • the atomic ratio of copper/(indium + gallium) in the copper indium gallium alloy powder may be 0.5 to 1.1
  • indium / (indium + gallium) atomic ratio can be 0.2 to 0.9
  • gallium / (indium + gallium) atomic ratio can be 0.1 to 0.8
  • indium / (indium + gallium) atomic ratio + gallium / (indium + The atomic ratio of gallium is 1.
  • the copper in the copper indium gallium alloy powder may be partially or completely replaced by silver or gold, and the indium may be partially or completely replaced by tin.
  • the metal element may be smelted into an alloy solution at a vacuum of ⁇ 1000 Pa.
  • the metal element may be smelted into an alloy solution at a vacuum of 50 Pa to 500 Pa.
  • the temperature of the smelting may be ⁇ 650 °C.
  • the temperature of the smelting may range from 750 °C to 1050 °C.
  • the smelting time may be ⁇ 30 minutes.
  • the application also provides a method of preparing a copper indium gallium alloy powder, the method comprising:
  • the mass of the elemental indium may be 30% to 70%, and the mass of the elemental gallium may be 5% to 35%, based on 100% of the total mass of the three elements.
  • Elemental copper can be the balance;
  • the high pressure inert gas stream may be a nitrogen gas stream or an argon gas stream, and the high pressure inert gas stream may have a pressure of 0.5 MPa to 5 MPa and a flow rate of 50 m 3 /h to 500 m 3 /h.
  • the high pressure inert gas stream may have a pressure of from 1 MPa to 3 MPa and a flow rate of from 100 m 3 /h to 400 m 3 /h.
  • the oxygen-containing gas may be oxygen, compressed air, or a combination of oxygen and compressed air.
  • a high pressure inert gas stream and oxygen may be simultaneously supplied to the atomizing device, and the flow rate of the oxygen may be from 10 ml/min to 2000 ml/min, and optionally, may be from 50 ml/min to 1000 ml/min. .
  • the high-pressure inert gas stream and the compressed air may be simultaneously supplied to the atomizing device, and the flow rate of the compressed air may be 0.05 L/min to 20 L/min; the pressure of the compressed air does not affect the pressure.
  • the simultaneous introduction of the high-pressure inert gas stream and the oxygen-containing gas into the atomizing device may simultaneously pass the high-pressure inert gas stream and the oxygen-containing gas into the atomizing device through different pipes, or The high pressure inert gas stream from the different lines is mixed with the oxygen containing gas and passed into the atomizing device.
  • the method may be carried out in a gas atomizing pulverizer, which is a vacuum induction melting furnace of an air atomizing pulverizer, and a melting chamber of the gas atomizing pulverizer
  • a gas atomizing pulverizer which is a vacuum induction melting furnace of an air atomizing pulverizer, and a melting chamber of the gas atomizing pulverizer
  • the pressure difference between the chamber and the atomization chamber may be from 500 Pa to 0.05 MPa.
  • the pressure difference between the smelting chamber and the atomizing chamber of the gas atomizing pulverizer may be from 1000 Pa to 10000 Pa;
  • the alloy solution may be introduced into an atomizing device through a draft tube, which may have a diameter of 0.5 mm to 2 mm.
  • the high pressure inert gas stream and the oxygen-containing gas that are introduced may be ejected by a high pressure gas jet of the atomizing device of the gas atomizing pulverizer.
  • the method may further include collecting the alloy powder and sieving.
  • an ultrasonic assisted vibrating screen can be used for sieving.
  • the particle size of the alloy powder after sieving may be from 10 ⁇ m to 50 ⁇ m or from 30 ⁇ m to 100 ⁇ m.
  • the alloy powder has an oxygen content of less than 5000 ppm.
  • the alloy powder may have an oxygen content of from 100 ppm to 3000 ppm.
  • the alloy powder may have an oxygen content of 100 ppm to 3000 ppm.
  • the oxygen content in the target affects the performance of the film subsequently formed on the target, and the higher the oxygen content, the worse the performance of the formed film, so the industry desires to reduce the oxygen content in the target.
  • the inventors of the present application have found that the introduction of a controlled oxygen-containing gas in the gas atomization milling process for preparing an alloy powder not only reduces the generation of satellite balls, but also improves the performance and productivity of the alloy powder, and can also be used in the target.
  • the oxygen content is controlled to an acceptable range. While not wishing to be bound by theory, the inventors of the present application speculate that the reason may be that the controlled oxygen-containing gas surface-modifies the powder to form a very thin oxide layer on the surface of the powder.
  • FIG. 1 is a process flow diagram of preparing a copper indium gallium alloy powder according to an embodiment of the present application.
  • the method for preparing a copper indium gallium alloy powder specifically includes the following steps:
  • the alloy solution is atomized in an oxygen-containing atmosphere to obtain small droplets, which are forcibly cooled rapidly to obtain an alloy powder;
  • the collected alloy powder was sieved using ultrasonic waves.
  • the gas atomized pulverizer comprises a main body, and a vacuum melting chamber and a spraying chamber are arranged in the main body from top to bottom, and the two chambers are connected by a tundish with a metal liquid guiding tube.
  • the vacuum melting chamber is provided with a melting device and a heating device, the heating device heating the melting device, the melting device has a liquid outlet, and the liquid outlet passes through the draft tube and the top of the spray chamber Connected, the atomization chamber is provided with a gas nozzle, and the gas nozzle is connected to a high pressure inert gas pipeline, the gas nozzle injects a high pressure inert gas toward an outlet of the draft tube, and the atomization chamber is provided with oxygen And a gas injection device connected to the oxygen-containing gas line, wherein the oxygen-containing gas line delivers an oxygen-containing gas to the atomization chamber through the air intake device.
  • the copper indium gallium alloy powder prepared in Examples 1 to 7 is prepared into a copper indium gallium target by ion spraying method commonly used in the art, and the target has a thickness of 7 mm, a relative density of 95%, a purity of 99.99% or more, and an oxygen content. Both are below 3000ppm.
  • the copper indium gallium selenide solar thin film battery production line is used as a sputtering target, the plasma arcing is stable, the use is normal, and there is no abnormal discharge, which satisfies the customer's requirements for the performance of the copper indium gallium target.
  • the method for preparing an alloy powder improves the yield and the yield of the alloy powder, and the prepared alloy powder has the advantages of less surface satellite balls, less adhesion, and good fluidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制备合金粉末的方法,所述方法包括:将制备合金粉末的金属单质熔炼成合金溶液;将所述合金溶液在含氧气氛中雾化,得到小液滴;所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末,其中,使用上述方法制备铜铟镓合金粉末时,铜铟镓合金粉末中的铜/(铟+镓)的原子比为0.5~1.1、铟/(铟+镓)的原子比为0.2~0.9,镓/(铟+镓)的原子比为0.1~0.8,铟/(铟+镓)原子比+镓/(铟+镓)原子比=1。以及一种合金粉末和一种制备铜铟镓合金粉末的方法。通过在气雾化制粉过程中引入可控氧气,减少了卫星球的产生,提高了合金粉末性能与产率。

Description

一种合金粉末及其制备方法 技术领域
本申请涉及但不限于太阳能应用材料领域,特别涉及但不限于一种合金粉末及其制备方法。
背景
铜铟镓硒(CIGS)薄膜太阳能电池是铜、铟、镓和硒四种元素组成的具有黄铜矿结构的化合物半导体,它目前的最高转化效率达22.3%,以转化效率高、弱光发电性能强、年发电量高以及柔性封装应用面广等诸多优势,成为第三代太阳能电池研究和应用的热点。
铜铟镓硒(CIGS)薄膜太阳能电池具有多层膜结构,包括金属栅状电极、减反射膜、窗口层(ZnO)、过渡层(CdS)、光吸收层(CIGS)、金属背电极(Mo)、玻璃衬底等。其中,光吸收层CIGS是薄膜电池的关键材料。采用磁控溅射技术来制备光吸收层CIGS是目前的主流技术,而这将需要用到铜铟镓系列靶材。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的发明人发现,铜铟镓合金具有非常宽广的固液共存温度区,完全熔化需超过500℃,而完全凝固常低至160℃以下。因此,从液体凝固到完全的固态常伴随着非常大的体积收缩,从而导致采用常规熔炼浇铸法制备铜铟镓靶材时得不到致密的靶材坯体,其结果不仅有很多缩松和缩孔,还存在主要成份分布不均匀等问题。先制作铜铟镓合金粉末,然后再用粉末冶金或热涂等成型方法制成靶材则可以解决以上问题。但由于铟的熔点为156.6℃,镓的熔点为29.8℃,熔点很低,而铜的熔点为1083℃,熔点差异很大;在粉末合金相中主要存在铜镓金属间化合物和铟基合金相,而由于铟的熔点 很低,导致经由常规气雾化法制得的合金粉末之间有液相,从而在冷却过程以及室温下容易发生严重的团聚、粘连现象,其颗粒表面粘附有大量的小卫星球,不仅使得合金粉末产率过低,还导致合金粉末流动性差,难以满足生产工艺要求并生产出高性能的靶材,在后续使用过程中送粉不畅也经常导致热喷涂的送粉系统阻塞。
同样地,对于其他具有非常宽广的固液共存温度区、并且其中一种金属的熔点很低的合金粉末的制备,也存在上述问题。
在对上述问题进行深入分析地基础上,本申请的发明人创造性地提出了一种制备低团聚、高流动性的合金粉末的方法,利用该方法制备的合金粉末具有非常低的团聚现象,并且具有较高的流动性,使制粉良率提升,并非常有利于后续的靶材生产。
具体地,本申请提供了一种合金粉末,所述合金粉末选自铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓和铜金铟镓的合金粉末中的任意一种,并且所述合金粉末具有低于5000ppm的氧含量。
在本申请的实施方式中,所述合金粉末可以具有在100ppm至3000ppm范围内的氧含量。
在本申请的实施方式中,所述合金粉末可以具有在10μm至50μm范围内或30μm至100μm范围内的粒径。
在本申请的实施方式中,以原子个数比计,铜铟镓合金粉末中的铜/(铟+镓)的原子比为0.5至1.1、铟/(铟+镓)的原子比为0.2至0.9,镓/(铟+镓)的原子比为0.1至0.8,铟/(铟+镓)的原子比+镓/(铟+镓)的原子比=1;其中,铜可部分或全部被银或金替代,铟可部分或全部被锡替代。
本申请还提供了一种制备合金粉末的方法,所述方法包括:
将制备合金粉末的金属单质熔炼成合金溶液;
将所述合金溶液在含氧气氛中雾化,得到小液滴;所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末。
在本申请的实施方式中,所述合金粉末可以选自铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓、铜金铟镓的合金粉末中的任意一 种。
应理解,本申请提供的制备合金粉末的方法并不限于制备上述所列举的合金粉末,也可以用于制备其他合金粉末,上述所列举的具体合金粉末并非对本申请作出任何形式上或实质上的限定。尤其当合金的熔点范围较宽、利用常规方法制备合金粉末容易出现粉末间粘连现象和/或粉末表面带有较多卫星球时,更适合采用本申请提供的方法去制备合金粉末。
在本申请的实施方式中,所述合金粉末可以为铜铟镓合金粉末,以原子个数比计,所述铜铟镓合金粉末中的铜/(铟+镓)的原子比可以为0.5至1.1、铟/(铟+镓)的原子比为可以0.2至0.9,镓/(铟+镓)的原子比可以为0.1至0.8,铟/(铟+镓)的原子比+镓/(铟+镓)的原子比=1。
任选地,所述铜铟镓合金粉末中的铜可以部分或全部被银或金替代,铟可以部分或全部被锡替代。
在本申请的实施方式中,可以将所述金属单质在<1000Pa的真空度下熔炼成合金溶液。
任选地,可以将所述金属单质在50Pa至500Pa的真空度下熔炼成合金溶液。
在本申请的实施方式中,所述熔炼的温度可以≥650℃。
任选地,所述熔炼的温度可以为750℃至1050℃。
在本申请的实施方式中,所述熔炼的时间可以≥30分钟。
本申请还提供了一种制备铜铟镓合金粉末的方法,所述方法包括:
将单质铟、单质铜和单质镓放入反应器内;
将反应器抽真空后密封,加热,将三种单质熔炼成合金溶液;
将所述合金溶液导入雾化装置的雾化中心处,同时向雾化装置通入高压惰性气流和含氧气体,合金溶液在高压惰性气流的冲击下被雾化成小液滴;
所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末。
在本申请的实施方式中,以三种单质的总质量为100%计,所述单质铟的质量可以占30%至70%、所述单质镓的质量可以占5%至35%,所述单质 铜可以为余量;
在本申请的实施方式中,所述单质铟、单质铜、单质镓的纯度可以均为99.99%以上。
在本申请的实施方式中,可以将所述反应器抽真空至真空度为50Pa至500Pa。
在本申请的实施方式中,所述熔炼的温度可以为750℃至1050℃;
在本申请的实施方式中,所述熔炼的时间可以≥30分钟。
在本申请的实施方式中,所述高压惰性气流可以为氮气流或氩气流,所述高压惰性气流的压力可以为0.5MPa至5MPa,流量可以为50m 3/h至500m 3/h。
任选地,所述高压惰性气流的压力可以为1MPa至3MPa,流量可以为100m 3/h至400m 3/h。
在本申请的实施方式中,所述含氧气体可以为氧气、压缩空气或氧气与压缩空气的组合物。
在本申请的实施方式中,可以同时向雾化装置通入高压惰性气流和氧气,所述氧气的流量可以为10ml/min至2000ml/min,任选地,可以为50ml/min至1000ml/min。
在本申请的实施方式中,可以同时向雾化装置通入高压惰性气流和压缩空气,所述压缩空气的流量可以为0.05L/min至20L/min;所述压缩空气的压力大小不会影响所制备的合金粉末的性质,因此无需限定所述压缩空气的压力。
在本申请的实施方式中,所述同时向雾化装置通入高压惰性气流和含氧气体可以为同时将高压惰性气流和含氧气体通过不同的管路分别通入雾化装置,或者,将来自不同管路的高压惰性气流和含氧气体混合后一起通入雾化装置。
在本申请的实施方式中,所述方法可以在气雾化制粉机内进行,所述反应器为气雾化制粉机的真空感应熔炼炉,所述气雾化制粉机的熔炼室与雾化室之间的压力差可以为500Pa至0.05MPa。
任选地,所述气雾化制粉机的熔炼室与雾化室之间的压力差可以为1000Pa至10000Pa;
在本申请的实施方式中,可以通过导流管将所述合金溶液导入雾化装置中,所述导流管的直径可以为0.5mm至2mm。
在本申请的实施方式中,可以通过气雾化制粉机的雾化装置的高压气体喷盘将通入的所述高压惰性气流和含氧气体喷出。
在本申请的实施方式中,在得到合金粉末后,所述方法还可以包括收集所述合金粉末,筛分。
任选地,可以利用超声波辅助振动筛进行筛分。
任选地,筛分后合金粉末的粒径可以为10μm至50μm或30μm至100μm。
在本申请的实施方式中,所述合金粉末的氧含量低于5000ppm。
任选地,所述合金粉末的氧含量可以为100ppm至3000ppm。
本申请还提供了由如上所述的方法制备得到的粉末,所述合金粉末的粒径为10μm至50μm或30μm至100μm,氧含量低于5000ppm。
在本申请的实施方式中,所述合金粉末的氧含量可以为100ppm至3000ppm。
一般而言,靶材中的氧含量会影响随后在靶材上形成的薄膜的性能,并且氧含量越高形成的薄膜的性能越差,因此行业期望降低靶材中的氧含量。然而,本申请的发明人发现,在制备合金粉末的气雾化制粉过程中引入可控的含氧气体不但会减少卫星球的产生,提高合金粉末性能与产率,还能将靶材中的氧含量控制在可接受的范围内。虽然不希望受到理论的束缚,但是本申请的发明人推测原因可能是可控的含氧气体对粉末进行了表面改性,在粉末表面生成了一层非常薄的氧化物层,该氧化物层具有钝化的作用,进而减少了卫星球的产生和避免了粉末存储和运输过程中的粘结现象。通过本申请的制备合金粉末的方法,极大地减少了雾化过程中产生的卫星球现象,减少了粉末因粘连而报废的比例,提高了粉末产率,并且提高了粉末流动性,对于后续使用该粉末生产靶材(例如铜铟镓靶材),能显著提高靶材的相应工艺性能,解决了粉末在热喷涂过程中合金粉末输送的问题。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得更加清楚,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图简述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例制备铜铟镓合金粉末的工艺流程图。
图2a、b分别为常规气雾化法制备的铜铟镓合金粉末的形貌和本申请实施例1制备的铜铟镓合金粉末的形貌。
详细描述
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
以下实施例中所测定的参数如无特殊说明,使用本领域内常规测试方法进行测试。
如图1所示,下述实施例的制备铜铟镓合金粉末的方法具体包括如下步骤:
按比例称量单质铟、单质铜和单质镓;
将称好的单质铟、单质铜和单质镓放入反应器内,将反应器抽真空后密封,加热;
将三种单质熔炼成合金溶液;
将所述合金溶液在含氧气氛中雾化,得到小液滴,所述小液滴被强制迅速冷却,得到合金粉末;
收集所述合金粉末;
利用超声波对收集的合金粉末进行筛分。
实施例1
(1)分别称量50kg单质铟、35kg单质铜和15kg单质镓(纯度均为99.9999%,普通市售产品),即铜/(铟+镓)的原子比为0.86、铟/(铟+镓)的原子比为0.67,镓/(铟+镓)的原子比为0.33;
(2)在气雾化制粉机内进行熔炼和雾化制粉。
其中,所述气雾化制粉机包括主体,所述主体内由上至下依次设有真空熔炼室和雾化室,该两腔室通过带金属液导流管的中间包连接。所述真空熔炼室内设有熔化装置和加热装置,所述加热装置对所述熔化装置加热,所述熔化装置具有出液口,所述出液口通过导流管与所述雾化室的顶部连通,所述雾化室内设有气体喷嘴,所述气体喷嘴与高压惰性气体管路相连,所述气体喷嘴朝向所述导流管的出口喷射高压惰性气体,所述雾化室内设有含氧气体管路以及与所述含氧气体管路连接的喷气装置,所述含氧气体管路通过所述进气装置向所述雾化室内输送含氧气体。
将上述三种单质放入熔化装置的坩埚内,开启电源,将熔化装置抽真空至真空度为200Pa,将上述三种单质加热熔化并在900℃保温60分钟,并通过感应线圈的电磁搅拌力获得均匀的合金熔液;关闭真空泵,向熔炼室和雾化室内通入氮气,使雾化室达到常压,且熔炼室比雾化室的压力高2000Pa。
(3)将熔炼完毕的合金溶液缓慢均速倒入中间包中,合金溶液在重力作用和真空熔炼室与雾化室的压力差(9000Pa)作用下,通过金属液导流管(直径为2mm)流向雾化室;同时通过高压惰性气体管路向雾化室内通入压力为3MPa、流量为200m 3/h的氮气作为雾化介质,在引入高压氮气的同时,通过含氧气体管路向雾化内通入压力为0.8MPa、流量为3L/min的洁净压缩空气;合金溶液在离开导流管的底部后,立刻在高压气流的冲击下,雾化成小液滴;小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末;整个雾化过程在1小时左右完成。
(4)收集气雾化制粉机制得的粉末,并经过超声波辅助振动筛完成筛分,筛分得30μm至100μm的铜铟镓粉末,即为满足铜铟镓靶材所需的铜铟 镓合金粉末。
铜铟镓合金粉末的产率为98%以上,其中30μm至100μm粒径的粉末的产率为44%,粉末的流动性较好,霍尔流量计检测粉末流动性结果为14秒/50克,粉末间无明显团聚、粘连现象发生;粉末的氧含量为300ppm。
实施例2
(1)分别称量35kg单质铟、40kg单质铜和25kg单质镓(纯度均为99.999%,普通市售产品),即铜/(铟+镓)的原子比为0.95、铟/(铟+镓)的原子比为0.46,镓/(铟+镓)的原子比为0.54;
(2)在实施例1所述的气雾化制粉机内进行熔炼和雾化制粉。将上述三种单质放入真空熔炼炉的坩埚内,开启电源,将真空熔炼炉抽真空至真空度为500Pa,将上述三种单质加热熔化并在1000℃保温40分钟,并通过感应线圈的电磁搅拌力获得均匀的合金熔液;
(3)将熔炼完毕的合金溶液缓慢均速倒入中间包中,合金溶液在重力作用和真空熔炼室与雾化室的压力差(20000Pa)作用下,通过金属液导流管(直径为1.5mm)流向雾化室;同时通过高压惰性气体管路向雾化室内通入压力为2MPa、流量为120m 3/h的氮气作为雾化介质,在引入高压氮气的同时,通过含氧气体管路向雾化内通入压力为0.8MPa、流量为500ml/min的氧气;合金溶液在离开导流管的底部后,立刻在高压气流的冲击下,雾化成小液滴;小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末;
(4)收集气雾化制粉机制得的粉末,并经过超声波辅助振动筛完成筛分,筛分得30μm至100μm的铜铟镓粉末,即为满足铜铟镓靶材所需的铜铟镓合金粉末。
铜铟镓合金粉末的产率为98%以上,其中30μm至100μm粒径的粉末的产率为45%,粉末的流动性经霍尔流量计检测粉末流动性结果为18秒/50克,粉末间无明显团聚、粘连现象发生;粉末的氧含量为420ppm。
实施例3至7
实施例3至7的部分工艺参数如表1所示,其他步骤和工艺参数均与实施例1相同。
表1
  实施例3 实施例4 实施例5 实施例6 实施例7
熔炼温度,℃ 900 950 1050 750 800
氮气流量,m 3/h 200 180 300 350 150
氮气压力,MPa 3 3.5 1 2 2
压缩空气/流量,L/min 16 0.1 5 5 2
金属液导流管直径,mm 2 0.5 1.5 1 2
30~100μm粉末产率,% 44 33 40 37 42
粉末流动性,秒/50克 25 19 16 14 13
粉末的氧含量,ppm 1480 120 380 280 230
对比例1
对比例1与实施例1的不同之处仅在于在雾化过程中无压缩空气通入。
铜铟镓粉末的产率为98%,其中30μm至100μm粒径的粉末的产率为20%,粉末的流动性差,霍尔流量计检测结果30秒/50克,粉末间有团聚和粘连现象,并且有非常多卫星球。
性能测试
1、利用扫描电镜观察实施例1和对比例1制备的铜铟镓合金粉末,结果如图2所示。
可以看出,对比例1制备的铜铟镓合金粉末的颗粒表面粘附有大量的小卫星球,并且粉末颗粒之间有粘连现象;而实施例1制备的铜铟镓合金粉末的颗粒呈球形,表面光滑,颗粒表面则只有极少的小卫星球。
2、将实施例1至7制备的铜铟镓合金粉末经本领域常用的离子喷涂法 制备成铜铟镓靶材,靶材厚度7mm,其相对密度为95%,纯度99.99%以上,氧含量均在3000ppm以下,在铜铟镓硒太阳能薄膜电池生产线作为溅射靶材使用时,等离子体起弧平稳,使用正常,无异常放电,满足客户对铜铟镓靶材的使用性能要求。
本公开内容是本申请实施例的原则的示例,并非对本申请作出任何形式上或实质上的限定,或将本申请限定到具体的实施方案。对本领域的技术人员而言,很显然本申请实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上所述的本申请的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本申请的等同实施例内,这些等同实施例均包括在本申请的由权利要求界定的范围内。虽然可以许多不同形式来使本申请实施例具体化,但此处详细描述的是本发明的一些实施方案。此外,本申请的实施例包括此处所述的各种实施方案的一些或全部的任意可能的组合,也包括在本申请的由权利要求界定的范围内。在本申请中或在任一个引用的专利、引用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和其它引用资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。
在此完成了对本申请可选择的实施方案的描述。本领域技术人员可认识到此处所述的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。
工业实用性
本申请提供的制备合金粉末的方法提高了合金粉末的产率和合格率,制备出的合金粉末具有表面卫星球较少、不容易发生粘连、流动性较好的优点。

Claims (18)

  1. 一种合金粉末,所述合金粉末选自铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓和铜金铟镓的合金粉末中的任意一种,并且所述合金粉末的表面被氧化,并且所述合金粉末具有低于5000ppm的氧含量。
  2. 根据权利要求1所述的合金粉末,其中,所述合金粉末具有在100ppm至3000ppm范围内的氧含量;任选地,所述合金粉末具有在10μm至50μm范围内或30μm至100μm范围内的粒径。
  3. 根据权利要求1或2所述的合金粉末,其中,以原子个数比计,铜铟镓合金粉末中的铜/(铟+镓)的原子比为0.5至1.1、铟/(铟+镓)的原子比为0.2至0.9,镓/(铟+镓)的原子比为0.1至0.8,铟/(铟+镓)的原子比+镓/(铟+镓)的原子比=1;其中,铜可部分或全部被银或金替代,铟可部分或全部被锡替代。
  4. 一种制备合金粉末的方法,所述方法包括:
    将制备合金粉末的金属单质熔炼成合金溶液;
    将所述合金溶液在含氧气氛中雾化,得到小液滴;所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末。
  5. 根据权利要求4所述的方法,其中,所述合金粉末选自铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓和铜金铟镓的合金粉末中的任意一种;
    任选地,
    以原子个数比计,铜铟镓合金粉末中的铜/(铟+镓)的原子比为0.5至1.1、铟/(铟+镓)的原子比为0.2至0.9,镓/(铟+镓)的原子比为0.1至0.8,铟/(铟+镓)的原子比+镓/(铟+镓)的原子比=1;其中,铜可部分或全部被银或金替代,铟可部分或全部被锡替代。
  6. 根据权利要求4或5所述的方法,其中,将所述金属单质在<1000Pa的真空度下熔炼成合金溶液,任选地,在50Pa至500Pa的真空度下熔炼成 合金溶液。
  7. 根据权利要求4至6中任一项所述的方法,其中,所述熔炼的温度≥650℃,任选地,为750℃至1050℃;任选地,所述熔炼的时间≥30分钟。
  8. 一种制备铜铟镓合金粉末的方法,所述方法包括:
    将单质铟、单质铜和单质镓放入反应器内;
    将反应器抽真空后密封,并加热,将三种单质熔炼成合金溶液;
    将所述合金溶液导入雾化装置的雾化中心处,同时向雾化装置通入高压惰性气流和含氧气体,合金溶液在高压惰性气流的冲击下被雾化成小液滴;
    所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末。
  9. 根据权利要求8所述的方法,其中,以三种单质的总质量为100%计,所述单质铟的质量占30%至70%、所述单质镓的质量占5%至35%,所述单质铜为余量;
    任选地,
    所述单质铟、单质铜、单质镓的纯度均为99.99%以上;
    将所述反应器抽真空至真空度为50Pa至500Pa;
    所述熔炼的温度为750℃至1050℃;
    所述熔炼的时间≥30分钟。
  10. 根据权利要求8或9所述的方法,其中,所述高压惰性气流为氮气流或氩气流,所述高压惰性气流的压力为0.5MPa至5MPa,流量为50m 3/h至500m 3/h;任选地,压力为1MPa至3MPa,流量为100m 3/h至400m 3/h。
  11. 根据权利要求8至10中任一项所述的方法,其中,所述含氧气体为氧气、压缩空气或氧气与压缩空气的组合物;
    任选地,
    同时向雾化装置通入高压惰性气流和氧气,所述氧气的流量为10ml/min至2000ml/min,进一步任选地,为50ml/min至1000ml/min;
    或者,同时向雾化装置通入高压惰性气流和压缩空气,所述压缩空气的流量为0.05L/min至20L/min。
  12. 根据权利要求8至11中任一项所述的方法,其中,所述同时向雾化装置通入高压惰性气流和含氧气体是指同时将高压惰性气流和含氧气体通过不同的管路分别通入雾化装置,或者,将来自不同管路的高压惰性气流和含氧气体混合后一起通入雾化装置。
  13. 根据权利要求8至12中任一项所述的方法,其中,所述方法在气雾化制粉机内进行,所述反应器为气雾化制粉机的真空感应熔炼炉,所述气雾化制粉机的熔炼室与雾化室之间的压力差为500Pa至0.05MPa,任选地,为1000Pa至10000Pa;
    任选地,
    通过导流管将所述合金溶液导入雾化装置中,所述导流管的直径为0.5mm至2mm;
    通过气雾化制粉机的雾化装置的高压气体喷盘将通入的所述高压惰性气流和含氧气体喷出。
  14. 根据权利要求8至13中任一项所述的方法,在所述得到合金粉末后,所述方法还包括收集所述合金粉末,筛分;任选地,利用超声波辅助振动筛进行筛分;任选地,筛分后合金粉末的粒径为10μm至50μm或30μm至100μm。
  15. 根据权利要求8至14中任一项所述的方法,其中,所述合金粉末的氧含量低于5000ppm,任选地,氧含量为100ppm至3000ppm。
  16. 一种合金粉末,所述合金粉末由根据权利要求4至7中任一项所述的方法制备得到,所述合金粉末的粒径为10μm至50μm或30μm至100μm,氧含量低于5000ppm。
  17. 根据权利要求16所述的合金粉末,其中所述合金粉末的氧含量为100ppm至3000ppm。
  18. 一种合金粉末,所述合金粉末由根据权利要求8至15中任一项所述的方法制备得到。
PCT/CN2017/120072 2017-08-04 2017-12-29 一种合金粉末及其制备方法 WO2019024420A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187028186A KR20190088002A (ko) 2017-08-04 2017-12-29 합금 분말 및 이의 제조방법
BR112018014868-7A BR112018014868A2 (pt) 2017-08-04 2017-12-29 Pó de liga e método de preparação do mesmo
EP17885443.6A EP3459659A4 (en) 2017-08-04 2017-12-29 ALLOY POWDER AND PREPARATION METHOD THEREOF
CA3010483A CA3010483A1 (en) 2017-08-04 2017-12-29 Alloy powder and method for preparing the same
JP2018551809A JP2019531400A (ja) 2017-08-04 2017-12-29 合金粉末及びその製造方法
US16/085,827 US20200308671A1 (en) 2017-08-04 2017-12-29 Alloy powder and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710661557.3 2017-08-04
CN201710661557.3A CN107626929B (zh) 2017-08-04 2017-08-04 一种制备合金粉末的方法

Publications (1)

Publication Number Publication Date
WO2019024420A1 true WO2019024420A1 (zh) 2019-02-07

Family

ID=61099128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120072 WO2019024420A1 (zh) 2017-08-04 2017-12-29 一种合金粉末及其制备方法

Country Status (8)

Country Link
US (1) US20200308671A1 (zh)
EP (1) EP3459659A4 (zh)
JP (1) JP2019531400A (zh)
KR (1) KR20190088002A (zh)
CN (1) CN107626929B (zh)
BR (1) BR112018014868A2 (zh)
CA (1) CA3010483A1 (zh)
WO (1) WO2019024420A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185919B2 (en) 2018-01-12 2021-11-30 Hammond Group, Inc. Methods and systems for forming mixtures of lead oxide and lead metal particles

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605399A (zh) * 2018-06-15 2019-12-24 米亚索乐装备集成(福建)有限公司 一种铜铟镓合金粉末的制备方法
CN111097917B (zh) * 2018-10-26 2022-11-08 松下知识产权经营株式会社 金属微粒的制作方法及金属微粒的制作装置
CN111378839A (zh) * 2018-12-28 2020-07-07 汉能新材料科技有限公司 一种利用含有铜铟镓硒的废料制备合金粉末的方法
KR20220061187A (ko) * 2019-09-27 2022-05-12 에이피앤드씨 어드밴스드 파우더스 앤드 코팅스 인크. 알루미늄 기반 금속 분말들 및 그들의 제조 방법
CN111531172B (zh) * 2020-05-29 2021-12-31 同济大学 高强度铝硅合金的3d打印工艺方法
CN112517917B (zh) * 2020-11-25 2023-04-18 河南东微电子材料有限公司 一种用于铬钛靶材的CrTiLa合金粉末的制备方法
KR102410113B1 (ko) * 2021-03-31 2022-06-22 박요설 고품위 적층제조용 금속분말 제조 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044260A1 (ja) * 2002-11-12 2004-05-27 Nikko Materials Co., Ltd. スパッタリングターゲット及び同製造用粉末
CN102689015A (zh) * 2012-06-21 2012-09-26 北京有色金属研究总院 一种金属粉末制备装置及方法
CN202684094U (zh) * 2012-06-21 2013-01-23 北京有色金属研究总院 一种金属粉末制备装置
CN106282941A (zh) * 2015-05-21 2017-01-04 中国钢铁股份有限公司 铜镓合金复合钠元素靶材的制造方法
CN107377983A (zh) * 2017-08-04 2017-11-24 米亚索乐装备集成(福建)有限公司 一种制备合金金属粉末的雾化装置
CN107557737A (zh) * 2017-08-04 2018-01-09 米亚索乐装备集成(福建)有限公司 一种制备管状靶材的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362206B (zh) * 2008-10-09 2011-03-23 陈新国 一种连续化高品质锡焊粉的制备方法
CN103228815B (zh) * 2010-11-30 2016-08-17 陶氏环球技术有限责任公司 翻新含有铜和铟的合金溅射靶
CN102248171A (zh) * 2011-07-12 2011-11-23 中南大学 氧过饱和铁基合金粉末的气体雾化制备方法
CN103600084A (zh) * 2013-09-12 2014-02-26 苏州米莫金属科技有限公司 一种粉末冶金高压水雾化制粉装置
JP6412401B2 (ja) * 2014-10-23 2018-10-24 Dowaエレクトロニクス株式会社 金属粉末およびその製造方法
CN104325147B (zh) * 2014-11-25 2019-07-19 北京康普锡威科技有限公司 一种雾化制备球形钎焊粉末的原位钝化方法
CN106378460B (zh) * 2016-09-22 2018-05-11 成都优材科技有限公司 制备球形纯钛或钛合金粉末的等离子雾化方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044260A1 (ja) * 2002-11-12 2004-05-27 Nikko Materials Co., Ltd. スパッタリングターゲット及び同製造用粉末
CN102689015A (zh) * 2012-06-21 2012-09-26 北京有色金属研究总院 一种金属粉末制备装置及方法
CN202684094U (zh) * 2012-06-21 2013-01-23 北京有色金属研究总院 一种金属粉末制备装置
CN106282941A (zh) * 2015-05-21 2017-01-04 中国钢铁股份有限公司 铜镓合金复合钠元素靶材的制造方法
CN107377983A (zh) * 2017-08-04 2017-11-24 米亚索乐装备集成(福建)有限公司 一种制备合金金属粉末的雾化装置
CN107557737A (zh) * 2017-08-04 2018-01-09 米亚索乐装备集成(福建)有限公司 一种制备管状靶材的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3459659A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185919B2 (en) 2018-01-12 2021-11-30 Hammond Group, Inc. Methods and systems for forming mixtures of lead oxide and lead metal particles
US11185920B2 (en) 2018-01-12 2021-11-30 Hammond Group, Inc. Methods and systems for making metal-containing particles

Also Published As

Publication number Publication date
CN107626929B (zh) 2021-04-30
JP2019531400A (ja) 2019-10-31
BR112018014868A2 (pt) 2020-02-11
KR20190088002A (ko) 2019-07-25
US20200308671A1 (en) 2020-10-01
EP3459659A4 (en) 2019-10-30
CN107626929A (zh) 2018-01-26
EP3459659A1 (en) 2019-03-27
CA3010483A1 (en) 2019-02-04

Similar Documents

Publication Publication Date Title
WO2019024420A1 (zh) 一种合金粉末及其制备方法
US20210164090A1 (en) Method for Preparing Target Material and Target Material
CN106166617B (zh) 一种3d打印用钛合金粉末的制备方法
CN106319469B (zh) 一种铜铟镓合金靶材的制备方法
CN107377983A (zh) 一种制备合金金属粉末的雾化装置
CN112317752B (zh) 一种可用于3D打印的TiZrNbTa高熵合金及其制备方法和应用
TWI527923B (zh) 管狀之濺鍍標靶
CN204396886U (zh) 用于球形稀有金属粉末的制备装置
WO2011082596A1 (zh) 一种微细球形钛粉的短流程制备方法
CN204934612U (zh) 一种制备3d打印用的超细微球形钛粉的装置
CN106956008A (zh) 一种3D打印用Hastelloy X合金粉末的制备方法
CN107876794A (zh) 增材制造用的Mo粉末、Mo合金球形粉末的制备方法
TW201515996A (zh) SiOx粉末製造方法及SiOx粉末製造裝置
CN107900366A (zh) 气雾化连续制备3d打印用钛或钛合金粉末的装置及方法
CN102950293B (zh) 纳米铝粉的生产方法
CN106964782A (zh) 一种制备球形铌合金粉末的方法
TW201219132A (en) Potassium/molybdenum composite metal powders, powder blends, products thereof, and methods for producing photovoltaic cells
JP4957968B2 (ja) Cu−In−Ga三元系焼結合金スパッタリングターゲットおよびその製造方法
CN103205723A (zh) 一种纳米超细粉的制备装置和方法
CN111390193A (zh) 一种无卫星球高球形度3d打印增材制造金属粉末及其制备方法与设备
CN107052354B (zh) 一种制备高球形度3d打印难熔金属粉的装置及方法
CN112658271B (zh) 一种高效复合式气雾化制粉装置及方法
CN106825592A (zh) 一种用于冷喷涂的合金粉末的制备方法
CN112658272B (zh) 一种高冷却梯度等离子电弧-气雾化复合制粉装置及方法
CN103290372B (zh) 一种用于薄膜太阳能电池的铜铟镓旋转靶材制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017885443

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018551809

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20187028186

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017885443

Country of ref document: EP

Effective date: 20180706

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018014868

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018014868

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180720