CN107626929A - 一种制备合金粉末的方法 - Google Patents

一种制备合金粉末的方法 Download PDF

Info

Publication number
CN107626929A
CN107626929A CN201710661557.3A CN201710661557A CN107626929A CN 107626929 A CN107626929 A CN 107626929A CN 201710661557 A CN201710661557 A CN 201710661557A CN 107626929 A CN107626929 A CN 107626929A
Authority
CN
China
Prior art keywords
gallium
indium
copper
alloy powder
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710661557.3A
Other languages
English (en)
Other versions
CN107626929B (zh
Inventor
曾玉林
万捷
徐晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongjun new energy Co.,Ltd.
Original Assignee
Miasole Equipment Integration Fujian Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201710661557.3A priority Critical patent/CN107626929B/zh
Application filed by Miasole Equipment Integration Fujian Co Ltd filed Critical Miasole Equipment Integration Fujian Co Ltd
Priority to JP2018551809A priority patent/JP2019531400A/ja
Priority to EP17885443.6A priority patent/EP3459659A4/en
Priority to US16/085,827 priority patent/US20200308671A1/en
Priority to KR1020187028186A priority patent/KR20190088002A/ko
Priority to CA3010483A priority patent/CA3010483A1/en
Priority to PCT/CN2017/120072 priority patent/WO2019024420A1/zh
Priority to BR112018014868-7A priority patent/BR112018014868A2/pt
Publication of CN107626929A publication Critical patent/CN107626929A/zh
Application granted granted Critical
Publication of CN107626929B publication Critical patent/CN107626929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0876Cooling after atomisation by gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/50Treatment under specific atmosphere air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/13Controlling pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/05Compulsory alloy component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制备合金粉末的方法,所述方法包括:将制备合金粉末的金属单质熔炼成合金溶液;将所述合金溶液在含氧气氛中雾化,得到小液滴;所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末,其中,使用上述方法制备铜铟镓合金粉末时,铜铟镓合金粉末中的铜/(铟+镓)原子比为0.5~1.1、铟/(铟+镓)原子比为0.2~0.9,镓/(铟+镓)原子比为0.1~0.8,铟/(铟+镓)原子比+镓/(铟+镓)原子比=1。利用本申请的方法制备的合金粉末表面仅含有极少的卫星球,粉末流动性好、产率高,非常有利于后续的铜铟镓靶材生产。

Description

一种制备合金粉末的方法
技术领域
本申请涉及但不限于太阳能应用材料领域,特别涉及但不限于一种制备用于薄膜太阳能电池的合金粉末的方法。
背景技术
铜铟镓硒(CIGS)薄膜太阳能电池是铜、铟、镓和硒四种元素组成的具有黄铜矿结构的化合物半导体,它目前的最高转化效率达22.3%,以转化效率高、弱光发电性能强、年发电量高以及柔性封装应用面广等诸多优势,成为第三代太阳能电池研究和应用的热点。
铜铟镓硒(CIGS)薄膜太阳能电池具有多层膜结构,包括金属栅状电极、减反射膜、窗口层(ZnO)、过渡层(CdS)、光吸收层(CIGS)、金属背电极(Mo)、玻璃衬底等。其中,吸收层CIGS是薄膜电池的关键材料。采用磁控溅射技术来制备CIGS吸收层是目前主流技术,而这将需要用到铜铟镓系列靶材。
铜铟镓合金具有非常宽广的固液共存温度区,完全熔化需超过500℃,而完全凝固常低至160℃以下。因此,从液体凝固到完全的固态常伴随着非常大的体积收缩,从而导致采用常规熔炼浇铸法制备铜铟镓靶材时得不到致密的靶材坯体,其结果不仅有很多缩松和缩孔,还存在主要成份分布不均匀等问题。先制做铜铟镓合金粉末,然后再用粉末冶金或热涂等成形方法制成靶材则可以解决以上问题。但由于铟熔点为156.6℃,镓熔点为29.8℃,熔点很低,在粉末合金相中主要存在铜镓金属间化合物和铟基合金相,而由于铟的熔点很低,导致经由常规气雾化法制得的合金粉末在冷却过程以及室温下均存在严重的团聚、粘连现象,其颗粒表面粘附有大量的小卫星球,不仅使得合金粉末产率过低,还导致合金粉末流动性差,难以满足生产工艺要求生产出高性能的靶材,在后续使用过程中送粉不畅也经常导致热喷涂的送粉系统阻塞。同样地,对于其他具有非常宽广的固液共存温度区、并且其中一种金属的熔点很低的合金粉末的制备,也存在上述问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供了一种制备低团聚、高流动性的合金粉末的方法,所制备的合金粉末具有非常低的团聚现场,并且具有较高的流动性,使制粉良率提升,并非常有利于后续的靶材生产。
具体地,本申请提供了一种制备制备合金粉末的方法,所述方法包括:
将制备合金粉末的金属单质熔炼成合金溶液;
将所述合金溶液在含氧气氛中雾化,得到小液滴;所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末。
在本申请的实施方式中,所述合金粉末包括铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓、铜金铟镓的合金粉末。
在本申请的实施方式中,所述合金粉末可以为铜铟镓合金粉末,以原子个数比计,铜铟镓合金粉末中的铜/(铟+镓)原子比为0.5~1.1、铟/(铟+镓)原子比为0.2~0.9,镓/(铟+镓)原子比为0.1~0.8,铟/(铟+镓)原子比+镓/(铟+镓)原子比=1。
可选地,上述配方中的铜部分或全部被银或金替代,铟部分或全部被锡替代。
在本申请的实施方式中,可以将所述金属单质在<1000Pa的真空度下熔炼成合金溶液。
可选地,将所述金属单质在50~500Pa的真空度下熔炼成合金溶液。
在本申请的实施方式中,所述熔炼的温度可以≥650℃。
可选地,所述熔炼的温度为750~1050℃。
在本申请的实施方式中,所述熔炼的时间可以≥30分钟。
本申请还提供了一种制备铜铟镓合金粉末的方法,所述方法包括:
将单质铟、单质铜和单质镓放入反应器内;
将反应器抽真空后密封,加热,将三种单质熔炼成合金溶液;
将所述合金溶液导入雾化装置的雾化中心处,同时向雾化装置通入高压惰性气流和含氧气体,合金溶液在高压惰性气流的冲击下被雾化成小液滴;
所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末。
在本申请的实施方式中,以三种单质的总质量为100%计,所述单质铟可以为30~70%、所述单质镓可以为5~35%,所述单质铜可以为余量;
在本申请的实施方式中,所述单质铟、单质铜、单质镓的纯度可以均为99.99%以上。
在本申请的实施方式中,可以将所述反应器抽真空至真空度为50~500Pa。
在本申请的实施方式中,所述熔炼的温度可以为750~1050℃;
在本申请的实施方式中,所述熔炼的时间可以≥30分钟。
在本申请的实施方式中,所述高压惰性气流可以为氮气流或氩气流,其压力为0.5~5MPa,流量为50~500m3/h。
可选地,所述高压惰性气流的压力为1~3MPa,流量为100~400m3/h。
在本申请的实施方式中,所述含氧气体可以为氧气、压缩空气或氧气与压缩空气的组合物。
在本申请的实施方式中,可以同时向雾化装置通入高压惰性气流和氧气,所述氧气的流量可以为10~2000ml/min,可选地,为50~1000ml/min。
在本申请的实施方式中,可以同时向雾化装置通入高压惰性气流和压缩空气,所述压缩空气的流量可以为0.05~20L/min;所述压缩空气的压力大小不会影响所制备的合金粉末的性质,因此无需限定所述压缩空气的压力。
在本申请的实施方式中,所述同时向雾化装置通入高压惰性气流和含氧气体是指同时将高压惰性气流和含氧气体通过不同的管路分别通入雾化装置,或者,将来自不同管路的高压惰性气流和含氧气体混合后一起通入雾化装置。
在本申请的实施方式中,所述方法可以在气雾化制粉机内进行,所述反应器为气雾化制粉机的真空感应熔炼炉,所述气雾化制粉机的熔炼室与雾化室之间的压力差可以为500Pa~0.05MPa。
可选地,所述气雾化制粉机的熔炼室与雾化室之间的压力差为1000Pa~10000Pa;
在本申请的实施方式中,可以通过导流管将所述合金溶液导入雾化装置中,所述导流管的直径可以为0.5~2mm。
在本申请的实施方式中,可以通过气雾化制粉机的雾化装置的高压气体喷盘将通入的所述高压惰性气流和含氧气体喷出。
在本申请的实施方式中,在得到合金粉末后,所述方法还可以包括收集所述合金粉末,筛分。
可选地,利用超声波辅助振动筛进行筛分。
可选地,筛分后合金粉末的粒径为10~50μm或30~100μm。
在本申请的实施方式中,所述合金粉末的氧含量低于5000ppm。
可选地,所述合金粉末的氧含量为100~3000ppm。
一般而言,靶材中的氧含量会影响随后产品薄膜上的性能,并且氧含量越高其性能越差,因此行业期望降低靶材中的氧含量。然而,本申请的发明人发现在制备合金粉末的气雾化制粉过程中引入可控的氧气会减少卫星球的产生,提高合金粉末性能与产率。虽然不希望受到理论的束缚,但是本申请的发明人推测原因可能是可控的氧气对粉末进行了表面改性,在粉末表面生成了一层非常薄的氧化物层,进而减少了卫星球的产生和避免了粉末存储和运输过程中的粘结现象。通过本申请的制备合金粉末的方法,极大地减少了雾化过程中产生的卫星球现象,减少了粉末因粘连而报废的比例,提高了粉末产率,并且提高了粉末流动性,对于后续使用该粉末生产靶材(例如铜铟镓靶材),能显著提高靶材的相应工艺性能,解决了粉末在热喷涂过程中合金粉末输送的问题。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例1制备铜铟镓合金粉末的工艺流程图。
图2a、b分别为现有常规气雾化法制备的铜铟镓合金粉末的形貌和本申请实施例1制备的铜铟镓合金粉末的形貌。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例1
(1)分别称量50kg单质铟、35kg单质铜和15kg单质镓(纯度均为99.9999%,普通市售产品),即铜/(铟+镓)原子比为0.86、铟/(铟+镓)原子比为0.67,镓/(铟+镓)原子比为0.33;
(2)在气雾化制粉机内进行熔炼和雾化制粉。其中所述气雾化制粉机包括主体,所述主体内由上至下依次设有真空熔炼室和雾化室,该两腔室通过带金属液导流管的中间包连接。所述真空熔炼室内设有熔化装置和加热装置,所述加热装置对所述熔化装置加热,所述熔化装置具有出液口,所述出液口通过导流管与所述雾化室的顶部连通,所述雾化室内设有气体喷嘴,所述气体喷嘴与高压惰性气体管路相连,所述气体喷嘴朝向所述导流管的出口喷射高压惰性气体,所述雾化室内设有含氧气体管路以及与所述含氧气体管路连接的喷气装置,所述含氧气体管路通过所述进气装置向所述雾化室内输送含氧气体。
将上述三种单质放入熔化装置的坩埚内,开启电源,将熔化装置抽真空至真空度为200Pa,将上述三种单质加热熔化并在900℃保温60分钟,并通过感应线圈的电磁搅拌力获得均匀的合金熔液;关闭真空泵,向熔炼室和雾化室内通入氮气,使雾化室达到常压,且熔炼室比雾化室的压力高2000Pa。
(3)将熔炼完毕的合金溶液缓慢均速倒入中间包中,合金溶液在重力作用和真空熔炼室与雾化室的压力差(9000Pa)作用下,通过金属液导流管(直径为2mm)流向雾化室;同时通过高压惰性气体管路向雾化室内通入压力为3MPa、流量为200m3/h的氮气作为雾化介质,在引入高压氮气的同时,通过含氧气体管路向雾化内通入压力为0.8MPa、流量为3L/min的洁净压缩空气;合金溶液在离开导流管的底部后,立刻在高压气流的冲击下,雾化成小液滴;小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末;整个雾化过程在1小时左右完成。
(4)收集气雾化制粉机制得的粉末,并经过超声波辅助振动筛完成筛分,筛分得30~100μm的铜铟镓粉末,即为满足铜铟镓靶材所需的铜铟镓合金粉末。
铜铟镓合金粉末的产率为98%以上,其中30~100μm粒径的粉末的产率为44%,粉末的流动性较好,霍尔流量计检测粉末流动性结果为14秒/50克,粉末间无明显团聚、粘连现象发生;粉末的氧含量为300ppm。
实施例2
(1)分别称量35kg单质铟、40kg单质铜和25kg单质镓(纯度均为99.999%,普通市售产品),即铜/(铟+镓)原子比为0.95、铟/(铟+镓)原子比为0.46,镓/(铟+镓)原子比为0.54;
(2)在实施例1所述的气雾化制粉机内进行熔炼和雾化制粉。将上述三种单质放入真空熔炼炉的坩埚内,开启电源,将真空熔炼炉抽真空至真空度为500Pa,将上述三种单质加热熔化并在1000℃保温40分钟,并通过感应线圈的电磁搅拌力获得均匀的合金熔液;
(3)将熔炼完毕的合金溶液缓慢均速倒入中间包中,合金溶液在重力作用和真空熔炼室与雾化室的压力差(20000Pa)作用下,通过金属液导流管(直径为1.5mm)流向雾化室;同时通过高压惰性气体管路向雾化室内通入压力为为2MPa、流量为120m3/h的氮气作为雾化介质,在引入高压氮气的同时,通过含氧气体管路向雾化内通入压力为0.8MPa、流量为500ml/min的氧气;合金溶液在离开导流管的底部后,立刻在高压气流的冲击下,雾化成小液滴;小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末;
(4)收集气雾化制粉机制得的粉末,并经过超声波辅助振动筛完成筛分,筛分得30~100μm的铜铟镓粉末,即为满足铜铟镓靶材所需的铜铟镓合金粉末。
铜铟镓合金粉末的产率为98%以上,其中30~100μm粒径的粉末的产率为45%,粉末的流动性经霍尔流量计检测粉末流动性结果为18秒/50克,粉末间无明显团聚、粘连现象发生;粉末的氧含量为420ppm。
实施例3-7
实施例3-7的部分工艺参数如表1所示,其他步骤和工艺参数均与实施例1相同。
表1
对比例1
对比例1与实施例1的不同之处仅在于在雾化过程中无压缩空气通入。
铜铟镓粉末的产率为98%,其中30~100μm粒径的粉末的产率为20%,粉末的流动性差,霍尔流量计检测结果30秒/50克,粉末间有团聚和粘连现象,并且有非常多卫星球。
性能测试
1、利用扫描电镜观察实施例1和对比例1制备的铜铟镓合金粉末,结果如图2所示。可以看出,对比例1制备的铜铟镓合金粉末的颗粒表面粘附有大量的小卫星球,并且粉末颗粒之间有粘连现象;而实施例1制备的铜铟镓合金粉末的颗粒呈球形,表面光滑,颗粒表面则只有极少的小卫星球。
2、将实施例1-7制备的铜铟镓合金粉末经等本领域常用的离子喷涂法制备成铜铟镓靶材,靶材厚度7mm,其相对密度为95%,纯度99.99%以上,氧含量均在3000ppm以下,在铜铟镓硒太阳能薄膜电池生产线作为溅射靶材使用时,等离子体起弧平稳,使用正常,无异常放电,满足客户对铜铟镓靶材的使用性能要求。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (12)

1.一种制备合金粉末的方法,所述方法包括:
将制备合金粉末的金属单质熔炼成合金溶液;
将所述合金溶液在含氧气氛中雾化,得到小液滴;所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末。
2.根据权利要求1所述的方法,其中,所述合金粉末包括铜铟镓、银铟镓、金铟镓、铜锡镓、银锡镓、金锡镓、铜银铟镓、铜金铟镓的合金粉末;
可选地,
以原子个数比计,铜铟镓合金粉末中的铜/(铟+镓)原子比为0.5~1.1、铟/(铟+镓)原子比为0.2~0.9,镓/(铟+镓)原子比为0.1~0.8,铟/(铟+镓)原子比+镓/(铟+镓)原子比=1;其中,铜可部分或全部被银或金替代,铟可部分或全部被锡替代。
3.根据权利要求1或2所述的方法,其中,将所述金属单质在<1000Pa的真空度下熔炼成合金溶液,可选地,在50~500Pa的真空度下熔炼成合金溶液。
4.根据权利要求3所述的方法,其中,所述熔炼的温度≥650℃,可选地,为750~1050℃;可选地,所述熔炼的时间≥30分钟。
5.一种制备铜铟镓合金粉末的方法,所述方法包括:
将单质铟、单质铜和单质镓放入反应器内;
将反应器抽真空后密封,加热,将三种单质熔炼成合金溶液;
将所述合金溶液导入雾化装置的雾化中心处,同时向雾化装置通入高压惰性气流和含氧气体,合金溶液在高压惰性气流的冲击下被雾化成小液滴;
所述小液滴在雾化气流推动过程中被强制迅速冷却,得到合金粉末。
6.根据权利要求5所述的方法,其中,以三种单质的总质量为100%计,所述单质铟为30~70%、所述单质镓为5~35%,所述单质铜为余量;
可选地,
所述单质铟、单质铜、单质镓的纯度均为99.99%以上;
将所述反应器抽真空至真空度为50~500Pa;
所述熔炼的温度为750~1050℃;
所述熔炼的时间≥30分钟。
7.根据权利要求5所述的方法,其中,所述高压惰性气流为氮气流或氩气流,其压力为0.5~5MPa,流量为50~500m3/h;可选地,压力为1~3MPa,流量为100~400m3/h。
8.根据权利要求5所述的方法,其中,所述含氧气体为氧气、压缩空气或氧气与压缩空气的组合物;
可选地,
同时向雾化装置通入高压惰性气流和氧气,所述氧气的流量为10~2000ml/min,可选地,为50~1000ml/min;
或者,同时向雾化装置通入高压惰性气流和压缩空气,所述压缩空气的流量为0.05~20L/min。
9.根据权利要求5或8所述的方法,其中,所述同时向雾化装置通入高压惰性气流和含氧气体是指同时将高压惰性气流和含氧气体通过不同的管路分别通入雾化装置,或者,将来自不同管路的高压惰性气流和含氧气体混合后一起通入雾化装置。
10.根据权利要求5所述的方法,其中,所述方法在气雾化制粉机内进行,所述反应器为气雾化制粉机的真空感应熔炼炉,所述气雾化制粉机的熔炼室与雾化室之间的压力差为500Pa~0.05MPa,可选地,为1000Pa~10000Pa;
可选地,
通过导流管将所述合金溶液导入雾化装置中,所述导流管的直径为0.5~2mm;
通过气雾化制粉机的雾化装置的高压气体喷盘将通入的所述高压惰性气流和含氧气体喷出。
11.根据权利要求5所述的方法,在所述得到合金粉末后,所述方法还包括收集所述合金粉末,筛分;可选地,利用超声波辅助振动筛进行筛分;可选地,筛分后合金粉末的粒径为10~50μm或30~100μm。
12.根据权利要求5-11中任一项所述的方法,其中,所述合金粉末的氧含量低于5000ppm,可选地,氧含量为100~3000ppm。
CN201710661557.3A 2017-08-04 2017-08-04 一种制备合金粉末的方法 Active CN107626929B (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201710661557.3A CN107626929B (zh) 2017-08-04 2017-08-04 一种制备合金粉末的方法
EP17885443.6A EP3459659A4 (en) 2017-08-04 2017-12-29 ALLOY POWDER AND PREPARATION METHOD THEREOF
US16/085,827 US20200308671A1 (en) 2017-08-04 2017-12-29 Alloy powder and method for preparing the same
KR1020187028186A KR20190088002A (ko) 2017-08-04 2017-12-29 합금 분말 및 이의 제조방법
JP2018551809A JP2019531400A (ja) 2017-08-04 2017-12-29 合金粉末及びその製造方法
CA3010483A CA3010483A1 (en) 2017-08-04 2017-12-29 Alloy powder and method for preparing the same
PCT/CN2017/120072 WO2019024420A1 (zh) 2017-08-04 2017-12-29 一种合金粉末及其制备方法
BR112018014868-7A BR112018014868A2 (pt) 2017-08-04 2017-12-29 Pó de liga e método de preparação do mesmo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710661557.3A CN107626929B (zh) 2017-08-04 2017-08-04 一种制备合金粉末的方法

Publications (2)

Publication Number Publication Date
CN107626929A true CN107626929A (zh) 2018-01-26
CN107626929B CN107626929B (zh) 2021-04-30

Family

ID=61099128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710661557.3A Active CN107626929B (zh) 2017-08-04 2017-08-04 一种制备合金粉末的方法

Country Status (8)

Country Link
US (1) US20200308671A1 (zh)
EP (1) EP3459659A4 (zh)
JP (1) JP2019531400A (zh)
KR (1) KR20190088002A (zh)
CN (1) CN107626929B (zh)
BR (1) BR112018014868A2 (zh)
CA (1) CA3010483A1 (zh)
WO (1) WO2019024420A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019237545A1 (zh) * 2018-06-15 2019-12-19 米亚索乐装备集成(福建)有限公司 一种铜铟镓合金粉末的制备方法
CN111378839A (zh) * 2018-12-28 2020-07-07 汉能新材料科技有限公司 一种利用含有铜铟镓硒的废料制备合金粉末的方法
CN112517917A (zh) * 2020-11-25 2021-03-19 河南东微电子材料有限公司 一种用于铬钛靶材的CrTiLa合金粉末的制备方法
CN116377367A (zh) * 2023-03-13 2023-07-04 基迈克材料科技(苏州)有限公司 一种ZnTe合金靶材的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190217391A1 (en) 2018-01-12 2019-07-18 Hammond Group, Inc. Methods for forming metal-containing particles in barton reactors and for retrofitting barton reactors
CN111097917B (zh) * 2018-10-26 2022-11-08 松下知识产权经营株式会社 金属微粒的制作方法及金属微粒的制作装置
JP7309055B2 (ja) * 2019-09-27 2023-07-14 エーピーアンドシー アドバンスド パウダーズ アンド コーティングス インコーポレイテッド アルミニウム系金属粉末及びその生成方法
CN111531172B (zh) * 2020-05-29 2021-12-31 同济大学 高强度铝硅合金的3d打印工艺方法
KR102410113B1 (ko) * 2021-03-31 2022-06-22 박요설 고품위 적층제조용 금속분말 제조 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362206A (zh) * 2008-10-09 2009-02-11 陈新国 一种连续化高品质锡焊粉的制备方法
CN102248171A (zh) * 2011-07-12 2011-11-23 中南大学 氧过饱和铁基合金粉末的气体雾化制备方法
CN103600084A (zh) * 2013-09-12 2014-02-26 苏州米莫金属科技有限公司 一种粉末冶金高压水雾化制粉装置
CN104325147A (zh) * 2014-11-25 2015-02-04 北京康普锡威科技有限公司 一种雾化制备球形钎焊粉末的原位钝化方法
JP2016084487A (ja) * 2014-10-23 2016-05-19 Dowaエレクトロニクス株式会社 金属粉末およびその製造方法
CN106378460A (zh) * 2016-09-22 2017-02-08 成都优材科技有限公司 制备纯钛或钛合金粉末的等离子雾化方法及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162109A (ja) * 2002-11-12 2004-06-10 Nikko Materials Co Ltd スパッタリングターゲット及び同製造用粉末
EP2646593A1 (en) * 2010-11-30 2013-10-09 Dow Global Technologies LLC Refurbishing copper and indium containing alloy sputter targets
CN202684094U (zh) * 2012-06-21 2013-01-23 北京有色金属研究总院 一种金属粉末制备装置
CN102689015B (zh) * 2012-06-21 2014-03-26 北京有色金属研究总院 一种金属粉末制备装置及方法
TWI551704B (zh) * 2015-05-21 2016-10-01 China Steel Corp Copper gallium alloy composite sodium element target manufacturing method
CN107377983A (zh) * 2017-08-04 2017-11-24 米亚索乐装备集成(福建)有限公司 一种制备合金金属粉末的雾化装置
CN107557737B (zh) * 2017-08-04 2019-12-20 领凡新能源科技(北京)有限公司 一种制备管状靶材的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362206A (zh) * 2008-10-09 2009-02-11 陈新国 一种连续化高品质锡焊粉的制备方法
CN102248171A (zh) * 2011-07-12 2011-11-23 中南大学 氧过饱和铁基合金粉末的气体雾化制备方法
CN103600084A (zh) * 2013-09-12 2014-02-26 苏州米莫金属科技有限公司 一种粉末冶金高压水雾化制粉装置
JP2016084487A (ja) * 2014-10-23 2016-05-19 Dowaエレクトロニクス株式会社 金属粉末およびその製造方法
CN104325147A (zh) * 2014-11-25 2015-02-04 北京康普锡威科技有限公司 一种雾化制备球形钎焊粉末的原位钝化方法
CN106378460A (zh) * 2016-09-22 2017-02-08 成都优材科技有限公司 制备纯钛或钛合金粉末的等离子雾化方法及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019237545A1 (zh) * 2018-06-15 2019-12-19 米亚索乐装备集成(福建)有限公司 一种铜铟镓合金粉末的制备方法
CN110605399A (zh) * 2018-06-15 2019-12-24 米亚索乐装备集成(福建)有限公司 一种铜铟镓合金粉末的制备方法
CN111378839A (zh) * 2018-12-28 2020-07-07 汉能新材料科技有限公司 一种利用含有铜铟镓硒的废料制备合金粉末的方法
CN112517917A (zh) * 2020-11-25 2021-03-19 河南东微电子材料有限公司 一种用于铬钛靶材的CrTiLa合金粉末的制备方法
CN116377367A (zh) * 2023-03-13 2023-07-04 基迈克材料科技(苏州)有限公司 一种ZnTe合金靶材的制备方法

Also Published As

Publication number Publication date
EP3459659A4 (en) 2019-10-30
WO2019024420A1 (zh) 2019-02-07
EP3459659A1 (en) 2019-03-27
KR20190088002A (ko) 2019-07-25
CN107626929B (zh) 2021-04-30
US20200308671A1 (en) 2020-10-01
CA3010483A1 (en) 2019-02-04
BR112018014868A2 (pt) 2020-02-11
JP2019531400A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
CN107626929A (zh) 一种制备合金粉末的方法
CN107557737B (zh) 一种制备管状靶材的方法
CN106166617B (zh) 一种3d打印用钛合金粉末的制备方法
CN107377983A (zh) 一种制备合金金属粉末的雾化装置
CN102950291B (zh) 亚微米级锡铜合金粉的生产方法
CN106956008A (zh) 一种3D打印用Hastelloy X合金粉末的制备方法
EP2232565B1 (en) Sodium/molybdenum composite metal powders, products thereof, and methods for producing photovoltaic cells
CN106319469B (zh) 一种铜铟镓合金靶材的制备方法
CN102909362B (zh) 亚微米级焊锡合金粉及其制备方法
CN107876794A (zh) 增材制造用的Mo粉末、Mo合金球形粉末的制备方法
CN103846448B (zh) 一种超低氧球形微米铜粉的制备方法
CN207119804U (zh) 一种制备合金金属粉末的雾化装置
CN108526472A (zh) 一种自由电弧制备金属球形粉末的装置和方法
CN111151764A (zh) 一种基于VIGA工艺制备CuNiSi球形粉的方法
CN106825592A (zh) 一种用于冷喷涂的合金粉末的制备方法
CN106623952A (zh) 一种表面微氢化的钛或钛合金粉末的制备方法
CN113145853B (zh) 一种球状金属粉的气雾化制备装置及方法
CN102248173A (zh) 一种球形低氧铝基钎料粉的制备方法与设备
CN107999776A (zh) 一种3d打印金属粉末的制备工艺
CN102950292B (zh) 亚微米级铜锰镍合金粉的生产方法
CN104372205A (zh) 发动机涡轮外环耐磨涂层的CoCrW基高温合金粉末及制备方法
CN107429384A (zh) Cu‑Ga合金溅射靶以及Cu‑Ga合金溅射靶的制造方法
CN110605399A (zh) 一种铜铟镓合金粉末的制备方法
CN115502389B (zh) 热喷涂用磁性合金/氧化铝陶瓷复合粉末及其制备和应用
CN116493597A (zh) 一种利用cak制备超细金属粉末的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191128

Address after: 101407 Beijing city Huairou District Yanqi Park Economic Development Zone No. 38 Street

Applicant after: Lingfan new energy technology (Beijing) Co., Ltd

Address before: 362000 42 Purple Mountain Road, Gaoxin District, Licheng District, Fujian, Quanzhou

Applicant before: Mia Alfonso Lo equipment integration (Fujian) Co., Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211108

Address after: No.31 Yanqi street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Dongjun new energy Co.,Ltd.

Address before: No.38, Paradise Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee before: Lingfan new energy technology (Beijing) Co.,Ltd.

TR01 Transfer of patent right