WO2019237545A1 - 一种铜铟镓合金粉末的制备方法 - Google Patents

一种铜铟镓合金粉末的制备方法 Download PDF

Info

Publication number
WO2019237545A1
WO2019237545A1 PCT/CN2018/106167 CN2018106167W WO2019237545A1 WO 2019237545 A1 WO2019237545 A1 WO 2019237545A1 CN 2018106167 W CN2018106167 W CN 2018106167W WO 2019237545 A1 WO2019237545 A1 WO 2019237545A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
indium
gallium
alloy powder
smelting
Prior art date
Application number
PCT/CN2018/106167
Other languages
English (en)
French (fr)
Inventor
张蛟
万捷
徐国军
雷贵先
黄喜南
王云能
吴福忠
翁辉
林毅捷
蔡爱玲
Original Assignee
米亚索乐装备集成(福建)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 米亚索乐装备集成(福建)有限公司 filed Critical 米亚索乐装备集成(福建)有限公司
Priority to JP2018551460A priority Critical patent/JP2021526184A/ja
Publication of WO2019237545A1 publication Critical patent/WO2019237545A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation

Definitions

  • the present application relates to the field of alloy powder manufacturing, in particular to a method for preparing copper indium gallium (CIG) alloy powder for CIGS thin film solar cells.
  • CMG copper indium gallium
  • Copper indium gallium selenium (CIGS) thin film solar cell is a compound semiconductor with chalcopyrite structure composed of four elements: copper, indium, gallium, and selenium. It has strong light absorption, good power generation stability, high conversion efficiency, and power generation during the day. Long time, high power generation, low production costs, and short energy recovery cycles.
  • the copper indium gallium selenium thin film solar cell has a multilayer structure, including a metal grid electrode, an antireflection film, a window layer (ZnO), a transition layer (CdC), a light absorption layer (CIGS), a metal back electrode (Mo), and a glass liner. At the end.
  • the absorption layer CIGS is a key material of the thin film battery. Using magnetron sputtering technology to prepare CIGS absorption layer is the mainstream technology, and this will use copper indium gallium series targets.
  • the CIGS thin-film solar cell produced by "sputtered metal pre-layer re-selenization and vulcanization" is currently the world's most technologically advanced and industrially produced second-generation photovoltaic product.
  • the CIG target used for sputtering is usually made of copper indium gallium alloy powder with a specific particle size range. In the existing preparation technology of copper indium gallium alloy powder, the powder yield is generally 40% to 60%.
  • CIG powders that exceed the particle size range are recycled to the furnace. Therefore, when the powder processing method is charged, there are four metals or alloys in the melting crucible of the induction furnace, that is, elemental copper, indium, gallium, and copper-indium-gallium alloy powder.
  • the melting points of these four metals or alloys are very different.
  • the melting point of copper is 1083 ° C
  • the melting point of indium is 156 ° C
  • the melting point of gallium is 29.8 ° C
  • the melting point of copper indium gallium alloy is about 650 ° C.
  • copper because copper has the highest density, it is usually deposited on the bottom of the melting crucible during induction melting.
  • This application proposes a new method for preparing copper indium gallium alloy powder to improve product performance, reduce energy consumption costs, and increase production efficiency.
  • a method for preparing a copper indium gallium alloy powder including the following steps:
  • indium and gallium are placed at the bottom of the smelting crucible, copper is mixed with the recovered copper-indium-gallium alloy powder whose particle size is not within the set range, and then placed above the indium and gallium in the smelting crucible.
  • the copper is granular copper with a particle diameter of 10 mm or less, for example, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, or 10 mm, etc., and may be 1-10 mm. It can be 2-5mm.
  • the smelting includes a heating step, and the end temperature of the heating step is 900-930 ° C, such as 900 ° C, 905 ° C, 910 ° C, 915 ° C, 920 ° C, 925 ° C, or 930 ° C.
  • Etc. can be 910-920 ° C.
  • the duration of the heating step is 43-51min, such as 43min, 44min, 45min, 46min, 47min, 48min, 49min, 50min, or 51min.
  • the smelting further includes a constant temperature step after the heating step, and the constant temperature time is 43-51min, for example, 43min, 44min, 45min, 46min, 47min, 48min, 49min, 50min, or 51min, etc. .
  • the particle size range of the copper indium gallium alloy powder suitable for subsequent sputtering is 30-160 ⁇ m, may be 40-150 ⁇ m, may be 50-140 ⁇ m, may be 50-120 ⁇ m, or 40-100 ⁇ m .
  • the smelting is performed under vacuum, and the vacuum degree may be 0.1-0.5 mbar, and may be 0.2-0.5 mbar.
  • the mass percentages of indium, gallium, copper added to the smelting crucible, and copper indium gallium alloy powder with a particle size not within the set range are: indium 15% -40%, gallium 5 % -30%, copper 20% -50%, and copper indium gallium alloy powder 30% -60%.
  • the alloy solution is cooled to 800-820 ° C, for example, 800 ° C, 802 ° C, 805 ° C, 808 ° C, 810 ° C, 812 ° C, 815 ° C, 818 ° C, or 820 ° C, etc., for atomization Milling.
  • the atomizing powder includes: pouring an alloy solution into a preheated tundish; and passing an atomizing gas to powder.
  • the temperature of the preheated tundish is 750-770 ° C, for example, 750 ° C, 755 ° C, 760 ° C, 765 ° C, or 770 ° C.
  • the pressure of the atomizing gas is 2-2.5Mpa
  • the inlet flow rate of the atomizing gas is 18-20kg / min, such as 18kg / min, 18.5kg / min, 19kg / min, 19.5kg / min or 20kg / min.
  • the atomizing gas includes any one or a combination of at least two of nitrogen, argon, and helium.
  • the recovered copper-indium-gallium alloy powder described in step (1) is not in a set range, and the copper-indium-gallium alloy powder recovered in step (3) is not in a set range. powder.
  • the copper indium gallium alloy powder is prepared according to the method of the present application.
  • a feeding method in which copper particles of an appropriate size and the recovered copper indium gallium alloy powder are mixed in advance and placed above the indium and gallium in the melting crucible is used.
  • the CIG alloy can be fully alloyed at a lower temperature, and it is not necessary to keep the temperature up to a temperature above 1000 ° C.
  • the energy consumption cost and production cost are reduced, and the risk of element composition shift due to the burning of low melting point elements is reduced, which reduces the waste of elements and improves the production efficiency.
  • Progress in both technology and technology has made it more suitable for practical use and has extensive industrial use value.
  • FIG. 1 is a schematic structural diagram of distribution of indium, gallium, and a mixture of copper particles and copper indium gallium alloy powder in a melting crucible in a specific embodiment of the present application.
  • a method for preparing a copper indium gallium alloy powder includes:
  • the copper, indium, gallium, and recovered copper indium gallium alloy powder with a particle size not within the set range are smelted into an alloy solution in a melting crucible.
  • indium and gallium are placed on the bottom of the melting crucible, and the copper particles are After mixing with the recovered copper indium gallium powder whose particle size is not within the set range, it is placed above the indium and gallium in the melting crucible;
  • the alloy solution is atomized, cooled, and sieved to obtain a copper indium gallium alloy powder having a particle size within a set range;
  • the copper indium gallium alloy powder whose particle size is out of the set range is recovered.
  • the size of the copper particles is 10 mm or less, preferably 2-5 mm.
  • the purity of the metal indium, gallium and copper used in the present application is above 99.9999%.
  • the particle size of the copper indium gallium alloy powder is set in the range of 30-160 ⁇ m, preferably 40-150 ⁇ m. This range of powder has better deposition efficiency during the target preparation process.
  • the effective utilization rate of powder can reach more than 80%.
  • the smelting is performed under vacuum, and the degree of vacuum is generally 0.1-0.5 mbar, preferably 0.2-0.5 mbar.
  • indium and gallium are used at the bottom of the melting crucible, and copper particles having the above-mentioned particle size range are mixed with the recovered copper indium gallium alloy powder in advance and placed above the indium and gallium in the crucible, thereby lowering the melting point of the mixture, thereby Reduce the melting temperature.
  • the heating temperature in the smelting step is 900-930 ° C, preferably 910-920 ° C, and the heating time is 43-51min; and then the temperature is maintained at 910 ° C-920 ° C for 43-51min.
  • the mass percentage of indium, gallium, copper particles added to the smelting crucible and the recovered copper indium gallium alloy powder with a particle size not within the set range is: the mass percentage of metal indium is 15 % -40%, the mass percentage of metal gallium ranges from 5% -30%, the mass percentage of copper particles ranges from 20% -50%, and the mass percentage of CIG powder ranges from 30% -60%.
  • the alloy solution is cooled to 800-820 ° C and atomized to make powder.
  • the atomizing and pulverizing process includes:
  • the alloy solution is poured into a pre-heated tundish, and the atomizing gas is passed in for powdering operation.
  • the preheating temperature is 750-770 ° C.
  • the atomizing gas is nitrogen, argon, or helium
  • the pressure is 2-2.5Mpa
  • the gas flow rate is 18-20kg / min.
  • the copper indium gallium alloy powder obtained according to the above method of the present application has a copper indium gallium ratio in the composition of: (20% -50%): (15% -40%): (5% -30%) (by mass meter).
  • the copper-indium-gallium alloy powder obtained in accordance with the present application can reduce the burning loss of the main elements of the copper-indium-gallium alloy, thereby controlling the main element excursion within ⁇ 0.3%; and shortening the cycle for preparing CIG powder, reducing energy consumption and production costs. ,Increase productivity.
  • a method for preparing a copper indium gallium alloy powder includes the following steps:
  • the atomizing gas for the powdering operation, in which the atomizing gas is nitrogen, the pressure is about 2 MPa, the air flow is about 19 kg / min, and the tundish temperature is maintained at 750 ° C ⁇ 10 ° C during the atomization and powder making;
  • FIG. 1 is a schematic diagram of a feeding arrangement in a melting crucible according to a specific embodiment of the present application.
  • metal indium and metal gallium at the bottom, or a mixture 2 of the two are distributed in the melting crucible 1 and laid on the upper layer.
  • Mixture of copper particles and CIG powder 3 wherein the ratio of metal indium, metal gallium, copper particles and CIG powder is (15% -40%), (5% -30%), (20% -50%) and (30% -60%), the ratio of copper: indium: gallium is 40%: 40%: 20%.
  • Example 1 in Table 1 26 kg of copper particles having a size of 10 mm were used, and 65 kg of the recovered CIG alloy powder having a particle size of less than 38 ⁇ m and more than 150 ⁇ m were sufficiently mixed in advance, and then as shown in 2 in FIG. 1, indium and Gallium is placed at the bottom of the smelting crucible 1, and the above-mentioned copper particles and CIG mixture are placed above the indium and gallium in the smelting crucible 1 as shown in FIG.
  • the proportion of copper, indium and gallium is 40%: 40%: 20%
  • the melting temperature is 915 ° C
  • the vacuum degree is 0.2mbar
  • the entire metal can be completely alloyed in 51min.
  • the pouring temperature is 810 ⁇ 10 ° C.
  • Tundish temperature is 760 ⁇ 10 °C
  • nitrogen pressure is 2 ⁇ 0.05Mpa
  • nitrogen flow rate is 19.2 ⁇ 0.2.
  • the composition test results of the obtained CIG alloy powder were 39.83%, 40.13%, and 20.04% for copper, indium, and gallium, respectively, and their composition shifts were -0.17%, + 0.13%, and + 0.04%, respectively.
  • the variation in the composition of the CIG alloy powder in this example is all within ⁇ 0.3%.
  • Example 2 in Table 1 26 kg of copper particles having a size of 5 mm were used, and 65 kg of the recovered CIG alloy powder having a particle size of less than 38 ⁇ m and more than 150 ⁇ m were sufficiently mixed in advance, and then as shown in 2 in FIG. 1, indium and Gallium is placed at the bottom of the smelting crucible 1, and the above-mentioned copper particles and CIG mixture are placed above the indium and gallium in the smelting crucible 1 as shown in FIG.
  • the proportion of copper, indium and gallium is 40%: 40%: 20%, the melting temperature is 915 ° C, the vacuum is 0.3mbar, and all the metals can be completely alloyed in 47min.
  • the pouring temperature is 810 ⁇ 10 ° C.
  • Tundish temperature is 760 ⁇ 10 °C
  • nitrogen pressure is 2 ⁇ 0.05Mpa
  • nitrogen flow rate is 19.2 ⁇ 0.2.
  • the composition test results of the obtained CIG alloy powder were 39.75%, 40.03%, and 20.22% for copper, indium, and gallium, respectively, and the composition shifts were -0.25%, + 0.03%, and + 0.22%, respectively.
  • the variation in the composition of the CIG alloy powder in this example is all within ⁇ 0.3%.
  • Example 3 in Table 1 26 kg of copper particles having a size of 2 mm were used, and 65 kg of the recovered CIG alloy powder having a particle size of less than 38 ⁇ m and more than 150 ⁇ m was sufficiently mixed in advance, and then as shown in 2 in FIG. 1, indium and gallium were mixed. It is placed on the bottom of the melting crucible 1, and the above-mentioned copper particles and CIG mixture are placed above the indium and gallium in the melting crucible 1 as shown in FIG. 1.
  • the proportion of copper, indium, and gallium is 40%: 40%: 20%
  • the melting temperature is 915 ° C
  • the vacuum is 0.5mbar
  • the entire metal can be completely alloyed by melting for 43 minutes.
  • the pouring temperature is 810 ⁇ 10 ° C
  • Tundish temperature is 760 ⁇ 10 °C
  • nitrogen pressure is 2 ⁇ 0.05Mpa
  • nitrogen flow rate is 19.2 ⁇ 0.2kg / min.
  • the composition test results of the obtained CIG alloy powder were 39.91%, 40.12%, and 19.97% of copper, indium, and gallium, respectively, and their composition shifts were -0.09%, + 0.12%, and -0.03%, respectively.
  • the variation in the composition of the CIG alloy powder in this example is all within ⁇ 0.3%.
  • Comparative Example 5 in Table 1 26 kg of copper particles with a size of 5 mm were mixed with indium, gallium, and 65 kg of recovered CIG alloy powder with a particle size of less than 38 ⁇ m and more than 150 ⁇ m, and placed in a melting crucible.
  • the ratio of copper, indium and gallium is 40%: 40%: 20%.
  • the smelting temperature is 1100 ° C, and the smelting time is 46 min.
  • the other conditions are the same as those in Example 1-3.
  • the obtained CIG alloy powder composition test results are: copper, indium, and gallium are 39.77%, 39.888%, and 20.35%, respectively, and their composition shifts are -0.23%, -0.12%, and + 0.35%, respectively, and the gallium composition shift exceeds ⁇ 0.3% range.
  • composition test results of the obtained CIG alloy powder were: copper, indium, and gallium were 39.36%, 39.63%, and 21.01%, respectively, and their composition shifts were -0.64%, -0.37%, and + 1.01%, and the composition shifts exceeded ⁇ 0.3% range.
  • the alloy in the melting crucible only needs to be heated to about 915 ° C to achieve full alloying. After the full alloying, the alloy can be cooled to the atomizing temperature for atomizing operation without continuing. The temperature is increased to 1100 ° C for a period of time to reduce elemental burnout caused by excessive temperature, thereby obtaining a CIG alloy powder with a small composition shift range. It also reduces energy consumption costs and production costs, as well as the risk of element composition shift caused by the burning of low melting point elements, reduces the waste of elements, and improves production efficiency. Compared with the existing induction melting process of metals and alloys, Progress in both technology and technology has made it more suitable for practical use and has extensive industrial use value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种铜铟镓合金粉末的制备方法,将铜、铟、镓及回收的粒度不在设定范围内的铜铟镓合金粉末在熔炼坩埚中熔炼成合金溶液;将合金溶液雾化、冷却、筛分得到粒度在设定范围内的铜铟镓合金粉末;回收粒度不在设定范围内的铜铟镓合金粉末;在熔炼步骤中,将铟和镓置于熔炼坩埚的底部,将铜与回收的粒度不在设定范围内的铜铟镓粉末混合后置于熔炼坩埚中铟和镓的上方。该制备方法降低了能耗成本和生产成本,以及低熔点元素烧损导致元素成分偏移的风险,减少了元素的浪费,提升了生产效率。

Description

一种铜铟镓合金粉末的制备方法 技术领域
本申请涉及合金粉末制造领域,特别是涉及用于CIGS薄膜太阳能电池的铜铟镓(CIG)合金粉末的制备方法。
背景技术
铜铟镓硒(CIGS)薄膜太阳能电池是铜、铟、镓和硒四种元素组成的具有黄铜矿结构的化合物半导体,它具有光吸收能力强,发电稳定性好、转化效率高,白天发电时间长、发电量高、生产成本低以及能源回收周期短等优点。铜铟镓硒薄膜太阳能电池具有多层结构,包括金属栅状电极、减反射膜、窗口层(ZnO)、过渡层(CdC)、光吸收层(CIGS)、金属背电极(Mo)、玻璃衬底等。其中,吸收层CIGS是薄膜电池的关键材料。采用磁控溅射技术来制备CIGS吸收层是目前主流技术,而这将要用到铜铟镓系列靶材。
“溅射金属预制层再硒化、硫化”所生产的CIGS薄膜太阳电池是目前世界上技术最先进、工业化生产最成熟的第二代光伏产品。溅射所用到的CIG靶材通常是用特定粒径范围的铜铟镓合金粉末制备的。现有的铜铟镓合金粉末的制备技术,其得粉率一般在40%~60%。
为降低生产成本,超出粒径范围的CIG粉末都回用于回炉。因此,在粉末加工方法投料时,感应炉的熔炼坩埚内会同时存在四种金属或合金,即单质铜、铟、镓以及铜铟镓合金粉末。这四种金属或合金的熔点差异很大,铜熔点为1083℃,铟熔点为156℃,镓熔点为29.8℃,铜铟镓合金熔点为约650℃。其中,由于铜密度最大,在感应熔炼时通常会沉积在熔炼坩埚底部。又因为铜熔点最高,为了使其熔化充分,需要将合金液温度提高到1100℃,并使金属熔液在某一温度下保持一段时间,过高的熔炼温度及过长的熔炼时间,容易使部分低熔点金属元素烧损,从而造成合金成分偏移,产品性能不稳定,延长合金粉的制备周期,也会增加能耗成本及生产成本。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提出了一种新的铜铟镓合金粉末制备方法,以改善产品性能,降低能耗成本及提高生产效率。
根据本申请的一个方面,提供一种铜铟镓合金粉末的制备方法,包括如下步骤:
(1)将铜、铟、镓以及回收的粒度不在设定范围内的铜铟镓合金粉末在熔炼坩埚中熔炼成合金溶液;
(2)将合金溶液雾化、冷却、筛分得到粒度在设定范围内的铜铟镓合金粉末;
(3)回收粒度不在设定范围内的铜铟镓合金粉末;
其中,在熔炼步骤中,将铟和镓置于熔炼坩埚的底部,将铜与回收的粒度不在设定范围内的铜铟镓合金粉末混合后置于熔炼坩埚中铟和镓的上方。
作为本申请的可选技术方案,所述铜为颗粒状铜,粒径为10mm以下,例如1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm或10mm等,可以为1-10mm,可以为2-5mm。
作为本申请的可选技术方案,所述熔炼包括加热步骤,所述加热步骤的终点温度为900-930℃,例如900℃、905℃、910℃、915℃、920℃、925℃或930℃等,可以为910-920℃。
作为本申请的可选技术方案,所述加热步骤的时长为43-51min,例如43min、44min、45min、46min、47min、48min、49min、50min或51min等。
作为本申请的可选技术方案,所述熔炼还包括加热步骤之后的恒温步骤,所述恒温的时间为43-51min,例如43min、44min、45min、46min、47min、48min、49min、50min或51min等。
作为本申请的可选技术方案,适合后续溅射所用的铜铟镓合金粉末的粒度范围为30-160μm,可以为40-150μm,可以为50-140μm,可以为50-120μm,或 40-100μm。
作为本申请的可选技术方案,熔炼在真空下进行,真空度可以为0.1-0.5mbar,可以为0.2-0.5mbar。
作为根据本申请的可选技术方案,加到熔炼坩埚中的铟、镓、铜和回收的粒度不在设定范围内的铜铟镓合金粉末的质量百分比为:铟15%-40%,镓5%-30%,铜20%-50%,以及铜铟镓合金粉末30%-60%。
作为本申请的可选技术方案,合金溶液降温到800-820℃,例如800℃、802℃、805℃、808℃、810℃、812℃、815℃、818℃或820℃等,进行雾化制粉。
作为本申请的可选技术方案,所述雾化制粉,包括:将合金溶液倒入预热的中间包;通入雾化气体进行制粉。
作为本申请的可选技术方案,所述预热的中间包的温度为750-770℃,例如750℃、755℃、760℃、765℃或770℃等。
作为本申请的可选技术方案,雾化气体的压力为2-2.5Mpa,所述雾化气体的通入流量为18-20kg/min,例如18kg/min、18.5kg/min、19kg/min、19.5kg/min或20kg/min等。
作为本申请的可选技术方案,雾化气体包括氮气、氩气和氦气中的任意一种或至少两种的组合。
作为本申请的可选技术方案,步骤(1)中所述的回收的粒度不在设定范围内的铜铟镓合金粉末是步骤(3)中回收的粒度不在设定范围内的铜铟镓合金粉末。
根据本申请方法制备铜铟镓合金粉末,特别是熔炼步骤中采用预先将适当大小的铜颗粒与回收的铜铟镓合金粉末混合后,置于熔炼坩埚中铟和镓的上方的投料方式,在较低温度下即可以实现让CIG合金充分合金化,无需升温至1000℃以上的温度进行持温。进而降低了能耗成本和生产成本,以及低熔点元 素烧损导致元素成分偏移的风险,减少了元素的浪费,提升了生产效率,和现有的金属及合金的感应熔炼工艺相比,在工艺和技术上都有进步,更加适于实用,具有产业的广泛利用价值。
附图说明
图1是本申请具体实施方式中熔炼坩埚内铟、镓以及铜颗粒和铜铟镓合金粉末的混合物分布的结构示意图。
附图标记说明:1-熔炼坩埚;2-金属铟和金属鎵;3-铜颗粒和CIG粉末混合物。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在以下的详细描述中,可以参看作为本申请一部分用来说明本申请的特定实施例的说明书附图。本申请的各个特定实施例在以下进行了足够详细的描述,使得具备本领域相关知识和技术的普通技术人员能够实施本申请的技术方案。应当理解,还可以利用其它实施例或者对本申请的实施例进行改变。
本说明书中除非另有说明,百分数均为质量百分数。
根据本申请的一些优选实施方式,铜铟镓合金粉末的制备方法,包括:
将铜、铟、镓以及回收的粒度不在设定范围内的铜铟镓合金粉末在熔炼坩埚中熔炼成合金溶液,在该熔炼步骤中,将铟和镓置于熔炼坩埚的底部,将铜颗粒与回收的粒度不在设定范围内的铜铟镓粉末混合后置于熔炼坩埚中铟和镓的上方;
将合金溶液雾化、冷却、筛分得到粒度在设定范围内的铜铟镓合金粉末;
回收粒度不在设定范围内的铜铟镓合金粉末。
金属铜材料需要选用颗粒状材料,等质量的铜,颗粒越小表面积越大,熔炼时间越短。但也并非越小越好,过度减小铜颗粒的尺寸,中频炉磁感应熔炼效率也不会有所提升,还会由于铜颗粒越小,需要加工的次数越多,原材料加工成本越高,导致生产成本提高。根据本申请的一些优选实施方式,铜颗粒的大小为10mm以下,优选2-5mm。
根据本申请的一些优选实施方式,本申请中所用的金属铟、镓及铜,其纯度达到99.9999%以上。
根据后续溅射中对铜铟镓合金粉末的要求,所述铜铟镓合金粉末的粒度设定范围为30-160μm,优选40-150μm,此范围粉末在制备靶材过程中的沉积效率更好,粉末有效利用率可以达到80%以上。
根据本申请的一些优选实施方式,熔炼是在真空下进行,真空度一般在0.1-0.5mbar,优选为0.2-0.5mbar。
由于本申请中采用铟和镓置于熔炼坩埚底部,而具有上述粒度范围的铜颗粒预先与回收的铜铟镓合金粉末混合后置于坩埚中铟和镓的上方,降低了混合物的熔点,从而使熔炼温度降低。
根据本申请的一些优选实施方式,所述熔炼步骤中加热温度为900-930℃,优选910-920℃,加热时间为43-51min;然后在910℃-920℃,保持43-51min。
根据本申请的一些优选实施方式,加入到熔炼坩埚中的铟、镓、铜颗粒和回收的粒度不在设定范围内的铜铟镓合金粉末的质量百分比为:金属铟的质量百分比的范围为15%-40%,金属镓的质量百分比的范围为5%-30%,铜颗粒的质量百分比的范围为20%-50%,以及CIG粉末的质量百分比的范围为30%-60%。
根据本申请的一些优选实施方式,熔炼后,将合金溶液降温到800-820℃,雾化制粉。
根据本申请的一些优选实施方式,所述雾化制粉过程,包括:
将合金溶液倒入预热的中间包,通入雾化气体进行制粉作业。
根据本申请的一些优选实施方式,所述预热温度为750-770℃。
根据本申请的一些优选实施方式,其中雾化气体为氮气、氩气、氦气,压力为2-2.5Mpa,气体流量为18-20kg/min。
根据本申请的上述方法所得到的铜铟镓合金粉末,其组成中铜铟镓比例为:(20%-50%)∶(15%-40%)∶(5%-30%)(按质量计)。按照本申请得到的铜铟镓合金粉末,可以减少铜铟镓合金主元素烧损,从而可以将主元素偏移控制在±0.3%以内;而且缩短制备CIG粉末的周期,减少能耗和生产成本,提高生产效率。
根据本申请的一些实施例,铜铟镓合金粉末的制备方法包括如下步骤:
(1)根据金属及合金的熔点排列其在熔炼坩埚中的位置;在熔炼坩埚中排列物料时,物料中熔点低的金属铟和金属镓置于熔炼坩埚底部,如图1中2所示;
(2)将10mm以下的铜颗粒与超出粒径30-160μm范围的铜铟镓CIG合金粉末充分混合均匀;
(3)将混合均匀的铜颗粒和CIG合金粉末置于熔炼坩埚上部,即置于熔炼坩埚内金属铟和金属镓上方,如图1中3所示;
(4)抽真空至0.2-0.5mbar,开启真空熔炼炉电源,将熔炼坩埚内金属加热至915℃左右形成CIG合金溶液;
(5)关闭熔炼炉电源,用氮气回填熔炼腔及雾化腔,使得两个腔室气压等于外界大气压,CIG合金溶液温度降低到810±10℃,然后开启熔炼炉电源,将坩埚内溶液温度维持在810±10℃;
(6)熔炼腔气压增加至0.04bar左右,打开雾化腔排气口,将CIG合金溶液倒入已经加热至750℃左右的中间包;
(7)开启雾化气体进行制粉作业,其中雾化气体为氮气,压力为2MPa左右,气流量为约19kg/min,雾化制粉期间维持中间包温度为750℃±10℃;
(8)收粉。
CIG合金粉末成分检测:
(1)用取样器对收集的粉末进行取样;
(2)用湍流混粉器将样品混合均匀;
(3)将混合均匀的粉末取10克样品,用20吨液压机压制成样片;
(4)将样片放入XRF内检测;
(5)得出成分结果。
图1是根据本申请具体实施方式中熔炼坩埚内投料排布示意图,如图1所示,熔炼坩埚1内分布有位于底层的金属铟和金属镓,或两者的混合物2,以及铺设在上层的铜颗粒和CIG粉末的混合物3,其中,金属铟、金属镓、铜颗粒和CIG粉末的比例为(15%-40%),(5%-30%),(20%-50%)以及(30%-60%),铜∶铟∶镓的投料配比为40%∶40%∶20%。
表1
Figure PCTCN2018106167-appb-000001
实施例1
如表1中实施例1所示,采用26kg大小为10mm的铜颗粒,预先与回收的粒度为小于38μm和大于150μm的CIG合金粉末65kg充分混合,然后如图1中2所示,将铟和镓置于熔炼坩埚1的底部,而将上述的铜颗粒和CIG混合物如图1中3所示置于熔炼坩埚1中铟和镓的上方。其中铜、铟和镓的投料配比为40%∶40%∶20%,熔炼温度为915℃,真空度为0.2mbar,熔炼51min就可以使全部金属完全合金化,浇注温度为810±10℃,中间包温度为760±10℃,氮气气压为2±0.05Mpa,氮气流量为19.2±0.2。得到的CIG合金粉末成分检测结果为铜、铟、镓分别为39.83%、40.13%、20.04%,其成分偏移分别为-0.17%、+0.13%、+0.04%。该实施例的CIG合金粉末成分偏差均在±0.3%以内。
实施例2
如表1中实施例2所示,采用26kg大小为5mm的铜颗粒,预先与回收的粒度为小于38μm和大于150μm的CIG合金粉末65kg充分混合,然后如图1中2所示,将铟和镓置于熔炼坩埚1的底部,而将上述的铜颗粒和CIG混合物如图1中3所示置于熔炼坩埚1中铟和镓的上方。其中铜、铟和镓的投料配比为40%∶40%∶20%,熔炼温度为915℃,真空度为0.3mbar,熔炼47min就可以使全部金属完全合金化,浇注温度为810±10℃,中间包温度为760±10℃,氮气气压为2±0.05Mpa,氮气流量为19.2±0.2。得到的CIG合金粉末成分检测结果为铜、铟、镓分别为39.75%、40.03%、20.22%,其成分偏移分别为-0.25%、+0.03%、+0.22%。该实施例的CIG合金粉末成分偏差均在±0.3%以内。
实施例3
如表1中实施例3所示,采用26kg大小为2mm的铜颗粒,预先与回收的粒度小于38μm和大于150μm的CIG合金粉末65kg充分混合,然后如图1中2所示,将铟和镓置于熔炼坩埚1的底部,而将上述的铜颗粒和CIG混合物如图1中3所示置于熔炼坩埚1中铟和镓的上方。其中铜、铟和镓的投料配比为40%∶40%∶20%,熔炼温度为915℃,真空度为0.5mbar,熔炼43min就可以使全部 金属完全合金化,浇注温度为810±10℃,中间包温度为760±10℃,氮气气压为2±0.05Mpa,氮气流量为19.2±0.2kg/min。得到的CIG合金粉末成分检测结果为铜、铟、镓分别为39.91%、40.12%、19.97%,其成分偏移分别为-0.09%、+0.12%、-0.03%。该实施例的CIG合金粉末成分偏差均在±0.3%以内。
对比例1
采用26kg大小为1mm的铜颗粒与铟、镓以及65kg回收的粒度小于38μm和大于150μm的CIG合金粉末混合,置于熔炼坩埚中。其中铜、铟和镓的投料配比为40%∶40%∶20%。熔炼温度为915℃,熔炼时间为42min,其他条件同实施例1-3。得到的CIG合金粉末成分检测结果为:铜、铟、镓分别为39.95%、40.17%、19.88%,其成分偏移分别为-0.05%、+0.17%、-0.12%,该对比例的CIG合金粉末成分偏差虽然均在±0.3%以内,但减小颗粒大小会增加原料成本,较实施例3熔炼时间并无明显改变。
对比例2
采用26kg大小为20mm的铜颗粒与铟、镓以及65kg回收的粒度小于38μm和大于150μm的CIG合金粉末混合,置于熔炼坩埚中。其中铜、铟和镓的投料配比为40%∶40%∶20%。熔炼温度为915℃,熔炼时间为75min,其他条件同实施例1-3。得到的CIG合金粉末成分检测结果为:铜、铟、镓分别为39.79%、40.15%、20.06%,其成分偏移分别为-0.21%、+0.15%、+0.06%,该对比例的CIG合金粉末成分偏差虽然均在±0.3%以内,但熔炼耗时较实施例多耗时24min以上。
对比例3
如表1中对比例3所示,采用26kg大小为20mm的铜颗粒与铟、镓以及65kg回收的粒度小于38μm和大于150μm的CIG合金粉末混合,置于熔炼坩埚中。其中铜、铟和镓的投料配比为40%∶40%∶20%。熔炼温度为1100℃,熔炼时间为52min,其他条件同实施例1-3。得到的CIG合金粉末成分检测结果为:铜、铟、镓分别为39.55%、39.82%、20.63%,其成分偏移分别为-0.45%、-0.18%、+0.63%,铜和镓成分偏移超出±0.3%范围。
对比例4
如表1中对比例4所示,采用26kg大小为10mm的铜颗粒与铟、镓以及65kg回收的粒度小于38μm和大于150μm的CIG合金粉末混合,置于熔炼坩埚中。其中铜、铟和镓的投料配比为40%∶40%∶20%。熔炼温度为1100℃,熔炼时间为48min,其他条件同实施例1-3。得到的CIG合金粉末成分检测结果为:铜、铟、镓分别为39.85%、39.65%、20.50%,其成分偏移分别为-0.15%、-0.35%、+0.5%,铟和镓成分偏移超出±0.3%范围。
对比例5
如表1中对比例5所示,采用26kg大小为5mm的铜颗粒与铟、镓以及65kg回收的粒度小于38μm和大于150μm的CIG合金粉末混合,置于熔炼坩埚中。其中铜、铟和镓的投料配比为40%∶40%∶20%。熔炼温度为1100℃,熔炼时间为46min,其他条件同实施例1-3。得到的CIG合金粉末成分检测结果为:铜、铟、镓分别为39.77%、39.88%、20.35%,其成分偏移分别为-0.23%、-0.12%、+0.35%,镓成分偏移超出±0.3%范围。
对比例6
如表1中对比例6所示,采用26kg大小为2mm的铜颗粒与铟、镓以及65kg回收的粒度小于38μm和大于150μm的CIG合金粉末混合,置于熔炼坩埚中。其中铜、铟和镓的投料配比为40%∶40%∶20%。熔炼温度为1100℃,熔炼时间为45min,其他条件同实施例1-3。得到的CIG合金粉末成分检测结果为:铜、铟、镓分别为39.36%、39.63%、21.01%,其成分偏移分别为-0.64%、-0.37%、+1.01%,成分偏移均超出±0.3%范围。
对比例7
如表1中对比例7所示,采用26kg大小为1mm的铜颗粒与铟、镓以及65kg回收的粒度小于38μm和大于150μm的CIG合金粉末混合,置于熔炼坩埚中。其中铜、铟和镓的投料配比为40%∶40%∶20%。熔炼最高温度为1100℃,熔炼时间为44min,其他条件同实施例1-3。得到的CIG合金粉末成分检测结果为:铜、 铟、镓分别为39.45%、39.77%、20.78%,其成分偏移分别为-0.55%、-0.23%、+0.78%,铜和镓成分偏移超出±0.3%范围。
从以上实施例和对比例的比较结果可见,采用2-10mm铜颗粒以及采用915℃左右温度熔炼,成分偏差可控制在±0.3%以内,熔炼过程较可控;而采用1100℃无法达成此范围管控。采用大于10mm铜颗粒会造成较长熔炼时间,产生能源浪费,而采用1mm铜颗粒,会让原料成本增加,且无助于提升熔炼效率。
根据本申请的方法进行金属熔炼时,由于熔炼坩埚底部的金属最先熔化,因底部铟和镓合金液的密度大于上部铜和CIG粉末混合物的密度,混合物会浮在熔液上部,达到一定温度后,固液交界处会发生熔化。因铜颗粒密度大于合金熔液密度,包裹铜颗粒的CIG粉末熔化后,铜颗粒会逐渐向熔炼坩埚底部沉降,沉降过程中会慢慢熔化。因铜颗粒较小,达到底部就已经与熔液形成CIG合金,即完全合金化了,因而不会在熔炼坩埚底部沉积。
采用本申请的方法制备CIG合金粉末,在熔炼坩埚内合金只需要加热至约915℃就能够实现完全合金化,完全合金化后就可将合金降温至雾化温度进行雾化作业,而无需继续升温至1100℃进行持温一段时间,减少温度过高造成的元素烧损,从而得到成分偏移范围较小的CIG合金粉末。还降低了能耗成本和生产成本,以及低熔点元素烧损导致元素成分偏移的风险,减少了元素的浪费,提升了生产效率,和现有的金属及合金的感应熔炼工艺相比,在工艺和技术上都有进步,更加适于实用,具有产业的广泛利用价值。
上述实施例仅供说明本申请之用,而并非是对本申请的限制,有关技术领域的普通技术人员,在不脱离本申请范围的情况下,还可以做出各种变化和变型,因此,所有等同的技术方案也应属于本申请公开的范畴。

Claims (13)

  1. 一种铜铟镓合金粉末的制备方法,包括如下步骤:
    (1)将铜、铟、镓以及回收的粒度不在设定范围内的铜铟镓合金粉末在熔炼坩埚中熔炼成合金溶液;
    (2)将合金溶液雾化、冷却、筛分得到粒度在设定范围内的铜铟镓合金粉末;
    (3)回收粒度不在设定范围内的铜铟镓合金粉末;
    其中,在熔炼步骤中,将铟和镓置于熔炼坩埚的底部,将铜与回收的粒度不在设定范围内的铜铟镓合金粉末混合后置于熔炼坩埚中铟和镓的上方。
  2. 根据权利要求1所述的制备方法,其中,所述铜为颗粒状铜,粒径为10mm以下,可以为1-10mm,可以为2-5mm。
  3. 根据权利要求1或2所述的制备方法,其中,所述熔炼包括加热步骤,所述加热步骤的终点温度为900-930℃,可以为910-920℃。
  4. 根据权利要求3所述的制备方法,其中,所述加热步骤的时长为43-51min。
  5. 根据权利要求3或4所述的制备方法,其中,所述熔炼还包括加热步骤之后的恒温步骤,所述恒温的时间为43-51min。
  6. 根据权利要求1-5任一项所述的制备方法,其中,所述铜铟镓合金粉末的粒度设定范围为30-160μm。
  7. 根据权利要求1-6任一项所述的制备方法,其中,所述熔炼在真空下进行,真空度可以为0.1-0.5mbar。
  8. 根据权利要求1-7任一项所述的制备方法,其中,加到熔炼坩埚中的铟、镓、铜和回收的粒度不在设定范围内的铜铟镓合金粉末的质量百分比为:铟15%-40%,镓5%-30%,铜20%-50%,以及铜铟镓合金粉末30%-60%。
  9. 根据权利要求1-8任一项所述的制备方法,其中,所述合金溶液降温到800-820℃,雾化制粉。
  10. 根据权利要求9所述的制备方法,其中,所述雾化制粉包括:将所述 合金溶液倒入预热的中间包;通入雾化气体进行制粉。
  11. 根据权利要求10所述的制备方法,其中,所述预热的中间包的温度为750-770℃。
  12. 根据权利要求10或11所述的制备方法,其中,所述雾化气体的压力为2-2.5Mpa,所述雾化气体的通入流量为18-20kg/min。
  13. 根据权利要求1所述的制备方法,其中,步骤(1)中所述的回收的粒度不在设定范围内的铜铟镓合金粉末是步骤(3)中回收的粒度不在设定范围内的铜铟镓合金粉末。
PCT/CN2018/106167 2018-06-15 2018-09-18 一种铜铟镓合金粉末的制备方法 WO2019237545A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018551460A JP2021526184A (ja) 2018-06-15 2018-09-18 銅インジウムガリウム合金粉末の調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810622247.5A CN110605399A (zh) 2018-06-15 2018-06-15 一种铜铟镓合金粉末的制备方法
CN201810622247.5 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019237545A1 true WO2019237545A1 (zh) 2019-12-19

Family

ID=68842680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106167 WO2019237545A1 (zh) 2018-06-15 2018-09-18 一种铜铟镓合金粉末的制备方法

Country Status (3)

Country Link
JP (1) JP2021526184A (zh)
CN (1) CN110605399A (zh)
WO (1) WO2019237545A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909482A (zh) * 2021-10-15 2022-01-11 泉州市鑫航新材料科技有限公司 一种铁硅铬镓铟氮合金软磁粉末的气雾化制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307397A (zh) * 2008-04-15 2008-11-19 成都先锋材料有限公司 铜铟镓硒光伏材料真空熔炼方法和装置
US20110284372A1 (en) * 2010-05-19 2011-11-24 Hitachi Cable, Ltd. Cu-Ga ALLOY MATERIAL, SPUTTERING TARGET, METHOD OF MAKING Cu-Ga ALLOY MATERIAL, Cu-In-Ga-Se ALLOY FILM, AND METHOD OF MAKING Cu-In-Ga-Se ALLOY FILM
JP2014101579A (ja) * 2013-11-21 2014-06-05 Mitsubishi Materials Corp Cu−In−Ga−Se四元系合金粉末及びその製造方法
CN106319469A (zh) * 2016-10-28 2017-01-11 中国科学院宁波材料技术与工程研究所 一种铜铟镓合金靶材的制备方法
CN107245632A (zh) * 2017-06-07 2017-10-13 广东先导稀材股份有限公司 铜铟镓硒合金的制备方法
CN107557737A (zh) * 2017-08-04 2018-01-09 米亚索乐装备集成(福建)有限公司 一种制备管状靶材的方法
CN107626929A (zh) * 2017-08-04 2018-01-26 米亚索乐装备集成(福建)有限公司 一种制备合金粉末的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107377983A (zh) * 2017-08-04 2017-11-24 米亚索乐装备集成(福建)有限公司 一种制备合金金属粉末的雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307397A (zh) * 2008-04-15 2008-11-19 成都先锋材料有限公司 铜铟镓硒光伏材料真空熔炼方法和装置
US20110284372A1 (en) * 2010-05-19 2011-11-24 Hitachi Cable, Ltd. Cu-Ga ALLOY MATERIAL, SPUTTERING TARGET, METHOD OF MAKING Cu-Ga ALLOY MATERIAL, Cu-In-Ga-Se ALLOY FILM, AND METHOD OF MAKING Cu-In-Ga-Se ALLOY FILM
JP2014101579A (ja) * 2013-11-21 2014-06-05 Mitsubishi Materials Corp Cu−In−Ga−Se四元系合金粉末及びその製造方法
CN106319469A (zh) * 2016-10-28 2017-01-11 中国科学院宁波材料技术与工程研究所 一种铜铟镓合金靶材的制备方法
CN107245632A (zh) * 2017-06-07 2017-10-13 广东先导稀材股份有限公司 铜铟镓硒合金的制备方法
CN107557737A (zh) * 2017-08-04 2018-01-09 米亚索乐装备集成(福建)有限公司 一种制备管状靶材的方法
CN107626929A (zh) * 2017-08-04 2018-01-26 米亚索乐装备集成(福建)有限公司 一种制备合金粉末的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909482A (zh) * 2021-10-15 2022-01-11 泉州市鑫航新材料科技有限公司 一种铁硅铬镓铟氮合金软磁粉末的气雾化制备方法
CN113909482B (zh) * 2021-10-15 2023-11-07 泉州市鑫航新材料科技有限公司 一种铁硅铬镓铟氮合金软磁粉末的气雾化制备方法

Also Published As

Publication number Publication date
CN110605399A (zh) 2019-12-24
JP2021526184A (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP4968448B2 (ja) Cu−In−Ga−Se四元系合金スパッタリングターゲットの製造方法
JP4489842B2 (ja) 複合酸化物焼結体、アモルファス複合酸化膜の製造方法、アモルファス複合酸化膜、結晶質複合酸化膜の製造方法及び結晶質複合酸化膜
CN105648407B (zh) 一种高致密度钼铌合金靶材及其制备工艺
CN101812665B (zh) 单相结构-高密度铟锡氧化物靶材的制备方法
CN101906552A (zh) Cu-Ga合金、溅射靶、Cu-Ga合金的制造方法以及溅射靶的制造方法
CN111320478B (zh) 一种碳硅陶瓷靶材的制备方法
CN108500280B (zh) 铜铟镓合金粉末制备装置及方法
US10329661B2 (en) Cu—Ga—In—Na target
CN103917689A (zh) 溅射靶及其制造方法
CN110218981A (zh) 一种铜镓靶材及其制备方法
JP2009120863A (ja) Cu−In−Ga三元系焼結合金スパッタリングターゲットの製造方法
CN102286724B (zh) 光伏吸收层溅射镀膜的铜镓合金旋转靶材及制备方法
CN103114264B (zh) 一种溅射用铜铟合金靶材的制备方法
WO2019237545A1 (zh) 一种铜铟镓合金粉末的制备方法
CN109763109B (zh) 一种液态金属靶材及其制备合金膜的方法
CN106567048B (zh) 一种大型高纯钼合金旋转靶材的制造方法
JPWO2014077110A1 (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
JP5819323B2 (ja) Cu−Gaターゲット及びその製造方法
JP2011111641A (ja) Cu−In−Ga−Se四元系合金スパッタリングターゲットおよびその製造方法
CN101748307B (zh) 金砷合金材料及其制备方法
CN105540647B (zh) 热喷涂法制备旋转靶用ito粉及其生产方法和应用
CN108359949A (zh) 一种高纯多晶硅溅射靶材及其制备方法和应用
CN107619972B (zh) 一种磁控溅射靶材用铝钕合金的制造方法
JP2012092438A (ja) Mo系スパッタリングターゲットおよびその製造方法ならびにこれを用いたCIGS系薄膜太陽電池
CN103225066A (zh) 一种溅射用铜镓合金靶材及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018551460

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922272

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC