WO2019022268A1 - 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법 - Google Patents

높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법 Download PDF

Info

Publication number
WO2019022268A1
WO2019022268A1 PCT/KR2017/008024 KR2017008024W WO2019022268A1 WO 2019022268 A1 WO2019022268 A1 WO 2019022268A1 KR 2017008024 W KR2017008024 W KR 2017008024W WO 2019022268 A1 WO2019022268 A1 WO 2019022268A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
graphene
nanocomposite
photocatalyst
reduced
Prior art date
Application number
PCT/KR2017/008024
Other languages
English (en)
French (fr)
Inventor
심재진
웬반쿠앙
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Publication of WO2019022268A1 publication Critical patent/WO2019022268A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/39
    • B01J35/40
    • B01J35/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Definitions

  • the present invention can exhibit high photocatalytic activity against the decomposition of various dyes such as methylene blue (MB) and rhodamine B (RhB), and also has a high photocatalytic property
  • MB methylene blue
  • RhB rhodamine B
  • the present invention relates to a zinc oxide nanoparticle / reduced graphene nanocomposite photocatalyst having a controlled shape and a method of manufacturing the same.
  • Water treatment techniques that can remove pollutants from water include adsorption or solvent extraction; Chemical precipitation, ion exchange, ultrafiltration, reverse osmosis or electrochemical techniques; Biodegradation; And photocatalyst-based processes.
  • the method of removing contaminants through adsorption may exhibit a high recovery rate, reusability and separation rate, but has a problem of not being able to completely remove contaminants.
  • the method of removing contaminants by physicochemical methods is suitable only for treating heavy metals in wastewater and has serious drawbacks such as high energy consumption, ineffective removal and accumulation of harmful sludge after treatment.
  • biodegradation techniques minimize the toxic organic compounds based on the metabolism of microorganisms, but biodegradation methods are extremely limited due to high concentration sensitivity of microorganisms, low rates of biodegradation at high concentrations, and high costs.
  • the photocatalytic decomposition method based on a semiconductor material is attracting attention as an effective decomposition method due to a low-cost, non-toxic process and an easy processing system.
  • titanium dioxide TiO 2
  • SiO 2 titanium dioxide
  • TiO 2 As a photocatalytic semiconductor material for a variety of applications, a variety of materials including photocatalysts such as sol-gel method, electrochemical synthesis, CVD, physical vapor deposition (PVD), sputtering and ion implantation Methods have been developed to produce TiO 2 , but in general, there is a problem in that expensive and modern equipments and precursors are required and complex procedures are required.
  • ZnO zinc oxide
  • zinc oxide has disadvantages associated with recombination of photogenerated electron-hole pairs, photocorrosion effect, and photostability, which considerably reduce photocatalytic activity.
  • graphene belonging to the carbon series is an ideal material for improving the photocatalytic performance of the metal oxide due to its large specific surface area, high electron conductivity, chemical stability and excellent transport properties.
  • the main purpose of the combination of the two materials is to obtain a high electron-hole isolation efficiency and freely transfer the charge generated by the photo-excitation process to the surface.
  • RGO reduced graphene oxide
  • the present invention provides a photocatalyst comprising a reduced oxide graphene nanocomposite-attached photocatalyst having zinc oxide nanoparticles, which comprises reduced oxidized graphene and zinc oxide nanoparticles attached on the reduced oxidized graphene, to provide.
  • the present invention also relates to a method for preparing a silver halide emulsion, comprising the steps of: adding a zinc precursor to an oxidized graphene suspension, followed by stirring to prepare a first agitated material; Drying the first precipitate obtained by centrifuging the first agitate; Heat treating the dried first precipitate to prepare a reduced graphene graphene nanocomposite having zinc oxide seeds attached thereto; Adding the nanocomposite to anhydrous ethanol and a zinc oxide seed growth solvent; Adding a zinc precursor and a reducing agent to the zinc oxide seed growth solvent to which the nanocomposite is added and stirring to prepare a second agitated material; Subjecting the second agitator to heat treatment, cooling and centrifuging to obtain a second precipitate; And washing and drying the second precipitate to produce a reduced graphene graphene nanocomposite photocatalyst with zinc oxide nanoparticles, wherein the graphene oxide nanoparticle-adhered reduced graphene graphene nanocomp
  • the shape-controlled zinc oxide nanoparticles / reduced graphene oxide nanocomposite photocatalyst prepared according to the present invention exhibited dye removal efficiency of 98.8% and 97.7% for MB and RhB when UV was irradiated at a low power of 40 W And when the dye decomposition was repeated 15 times, the dye removal efficiency of the photocatalyst was 96.0%, which shows an excellent reusability.
  • FIG. 1 is a schematic diagram showing the synthesis of three different types of nanocomposite photocatalysts (sZG, dZG, rZG), such as spherical, hexagonal disc, rod-like shapes;
  • FIG. 2 is a graph showing the results of a comparison between graphite (a), oxidized graphene (b), reduced graphene graphene nanocomposite (c) with zinc oxide seeds attached thereto before heat treatment under argon gas, After the heat treatment, the reduced graphene graphene nanocomposite (e) having zinc oxide seeds adhered thereto, the reduced graphene graphene nanocomposite photocatalyst (f ', hereinafter referred to as' rZG nanocomposite ') having zinc oxide nanoparticles having nanorods' , Reduced oxidized graphene nanocomposite photocatalyst (g 'dZG nanocomposite') with zinc oxide nanoparticles in the shape of nano hexagonal plate, and reduced oxidized zinc oxide nanoparticles with nanospherical shape (Right) showing the XRD pattern (left) of the graphene nanocomposite photocatalyst (h) (hereinafter, 'sZG nanocompo
  • FIG. 3A shows FTIR spectra of oxidized graphene, reduced graphene oxide nanocomposite with zinc oxide seed, sZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst, and rZG nanocomposite photocatalyst;
  • FIG. 3B is an enlarged image of a Raman spectrum and a rectangular dotted line region of the photocatalyst of oxide graphene and sZG nanocomposite;
  • 4A is a scanning scan of a sZG nanocomposite photocatalyst
  • Figure 4b shows a deconvoluted Zn 2p spectrum
  • Figure 4c is a diagram illustrating the inverted line separated O1s spectrum
  • Figure 4d shows a C 1s spectrum back-separated
  • FIG. 6 is a graph showing the results of measurement of the activity of zinc oxide nanoparticles synthesized during 24 hours using hexamethylenetetramine ((CH 2 ) 6 N 4 , hexamethylenetetraamine (hereinafter referred to as 'HMTA' Fig. 3 is a SEM image of a reduced graphene oxide nanocomposite photocatalyst having a photocatalyst; Fig.
  • FIG. 7 shows an SEM image of a reduced oxidized graphene sheet to which zinc oxide nanoparticles having various shapes are adhered.
  • FIG. 7 shows an SEM image of a reduced oxidized graphene nanocomposite (a), a rZG nanocomposite photocatalyst (b ), dZG nanocomposite photocatalyst (c), and sZG nanocomposite photocatalyst (d).
  • FIG. 8 is a graph showing the results of measurement of a photocatalyst of a nanocomposite (hereinafter referred to as 'sZG * nanocomposite photocatalyst') synthesized using a thin oxide graphene sheet instead of a reduced oxidized graphene sheet to which zinc oxide seeds are attached, a nanocomposite photocatalyst * Nanocomposite photocatalyst ') (b), nanocomposite photocatalyst (hereinafter' rZG * nanocomposite photocatalyst ') (c), and oxidized graphene sheet (d).
  • 'sZG * nanocomposite photocatalyst' nanocomposite synthesized using a thin oxide graphene sheet instead of a reduced oxidized graphene sheet to which zinc oxide seeds are attached
  • Fig. 9 shows TEM images (a1 to c1), HRTEM images (a2 to c2) of reduced oxidized graphene thin films to which zinc oxide nanoparticles having various shapes are attached, and reduced The SAED patterns (a3 to c3) corresponding to the oxidized graphene thin plate are shown.
  • FIG. 11 shows TEM images of oxidized graphene sheet (a), reduced graphene graphene nanocomposite (b) and sZG nanocomposite photocatalyst (c to d) with various magnifications at various magnifications;
  • FIG. 12 is a diagram showing a nitrogen adsorption-desorption isotherm of an sZG nanocomposite photocatalyst, a dZG nanocomposite photocatalyst, and an rZG nanocomposite photocatalyst;
  • 13A is a graph showing the UV-vis diffus reflectance spectra (UV-vis DRS) of i) sZG nanocomposite photocatalyst, ii) dZG nanocomposite photocatalyst, and iii) rZG nanocomposite photocatalyst drawing;
  • FIG. 13B shows a Tauc plot of an sZG nanocomposite photocatalyst, a dZG nanocomposite photocatalyst, and an rZG nanocomposite photocatalyst;
  • thermogravimetric analysis hereinafter referred to as "TGA"
  • TGA thermogravimetric analysis
  • 16A shows the photocatalytic decomposition of MB solution (10 ppm) under UV irradiation for several hours in the absence and presence of reduced oxidized graphene sheet, sZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst and rZG nanocomposite photocatalyst (0.1 g / Fig.
  • FIG. 16B shows pseudo first order kinetics of photolysis of MB under UV irradiation
  • FIG. 16C shows the photocatalytic decomposition of RhB solution (10 ppm) under UV irradiation for several hours in the absence and presence of reduced oxidized graphene sheet, sZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst and rZG nanocomposite photocatalyst (0.1 g / Fig.
  • 16D is a diagram showing a similar primary rate equation of photolysis of RhB under UV irradiation
  • Figure 17 shows adsorption of the MB solution (10 ppm) onto the sZG nanocomposite photocatalyst after 3 hours under dark conditions
  • Figure 18 shows a comparison of photocatalytic degradation of a 10 ppm MB solution in the presence of sZG nanocomposite photocatalyst, sZG * nanocomposite photocatalyst, dZG * nanocomposite photocatalyst and rZG * nanocomposite photocatalyst after 60 minutes under UV irradiation;
  • 20A shows a photocatalytic decomposition curve of an aqueous 10 ppm MB solution when various catalysts (sZG nanocomposite photocatalyst) are loaded under UV irradiation;
  • 20B shows photocatalytic decomposition of various concentrations of RhB aqueous solution under ultraviolet irradiation using 0.1 g / l of sZG nanocomposite photocatalyst under UV irradiation;
  • 20C is a graph showing the results of trapping experiments on sZG nanocomposite photocatalyst (0.1 g / L) in a 10 ppm RhB dye solution;
  • 20d shows the photocatalytic stability of the sZG nanocomposite photocatalyst (0.1 g / l) in 10 ppm MB dye under UV irradiation;
  • 21 shows electron transfer between a reduced oxidized graphene sheet and zinc oxide nanoparticles of a reduced oxidized graphene nanocomposite photocatalyst adhered with zinc oxide nanoparticles under UV irradiation and dye photolysis mechanism;
  • 22 is an SEM image of the sZG nanocomposite photocatalyst before and after use for measuring photocatalyst stability
  • 23A is a nyquist plot of an sZG nanocomposite photocatalyst, a dZG nanocomposite photocatalyst, and an electrode to which an rZG nanocomposite photocatalyst is applied;
  • FIG. 23B is a graph showing the photocurrent response of the sZG nanocomposite photocatalyst, the dZG nanocomposite photocatalyst, and the rZG nanocomposite photocatalyst;
  • 24 is an SEM image of an sZG nanocomposite photocatalyst, a dZG nanocomposite photocatalyst, and an rZG nanocomposite photocatalyst manufactured under various reaction times (12 hours and 24 hours);
  • Example 25 shows the sZG nano-structure synthesized without the HMTA for 12 hours (Sample-S1), 18 hours (Sample-S2), 24 hours (Sample-S3) and 36 hours (0.1 g / l) of the photocatalyst (sample-SO).
  • the inventors of the present invention have found that zinc oxide nanoparticles having various shapes can be obtained according to the mixing ratio of the solvent of anhydrous ethanol and deionized water constituting the zinc oxide seed growth solvent and the reduced zinc oxide nanoparticles
  • the present invention has been accomplished on the basis of the findings that it has high dye decomposition efficiency and excellent reusability when a composite photocatalyst is used.
  • the present invention provides a reduced oxidized graphene nanocomposite photocatalyst to which zinc oxide nanoparticles are attached, comprising reduced oxidized graphene and zinc oxide nanoparticles attached on the reduced oxidized graphene.
  • the zinc oxide nanoparticles may have any one of nanospheres, nano hexagons, and nanorods, but is not limited thereto.
  • the nanoporous zinc oxide nanoparticles having the nanoporous shape may have an average diameter of 5 to 30 nm, but are not limited thereto.
  • the nanoporous zinc oxide nanoparticles of the nano hexagonal plate may have an average diameter of 100 to 400 nm and an average thickness of 10 to 30 nm, but are not limited thereto.
  • the zinc oxide nanoparticles having the nanorods of the nanorods may have an average diameter of 20 to 200 nm, but are not limited thereto.
  • the present invention also relates to a method for preparing a silver halide emulsion, comprising the steps of: adding a zinc precursor to an oxidized graphene suspension, followed by stirring to prepare a first agitated material; Drying the first precipitate obtained by centrifuging the first agitate; Heat treating the dried first precipitate to prepare a reduced graphene graphene nanocomposite having zinc oxide seeds attached thereto; Adding the nanocomposite to anhydrous ethanol and a zinc oxide seed growth solvent; Adding a zinc precursor and a reducing agent to the zinc oxide seed growth solvent to which the nanocomposite is added and stirring to prepare a second agitated material; Subjecting the second agitator to heat treatment, cooling and centrifuging to obtain a second precipitate; And washing and drying the second precipitate to produce a reduced graphene graphene nanocomposite photocatalyst with zinc oxide nanoparticles, wherein the graphene oxide nanoparticle-adhered reduced graphene graphene nanocomp
  • the zinc precursor may be selected from the group consisting of zinc acetate, zinc nitrate, zinc sulfate, zinc phosphate, zinc fluoride, zinc chloride, and zinc iodide iodate), but the present invention is not limited thereto.
  • the step of drying the first precipitate obtained by centrifuging the first agitated product may include a step of drying the first precipitate obtained by centrifuging the first agitated product at 10,000 to 15,000 rpm at 20 to 30 ° C, But is not limited thereto.
  • the step of preparing the reduced graphene oxide nanocomposite with the zinc oxide seed may be a step of heat-treating the dried first precipitate at 250 to 350 ° C for 30 minutes to 90 minutes, but the present invention is not limited thereto.
  • the zinc oxide seed growth solvent may be anhydrous ethanol, deionized water, or a combination thereof, but is not limited thereto.
  • the zinc oxide seed growth solvent composed of the anhydrous ethanol and the deionized water may be an ethanol solution of anhydrous ethanol and deionized water at a volume ratio of 1: 0.25 to 1, but is not limited thereto.
  • the reducing agent may be hexamethylenetetramine (HMTA), but is not limited thereto.
  • HMTA hexamethylenetetramine
  • the step of obtaining the second precipitate comprises heat-treating the second agitated material at 100 to 110 ° C for 12 to 36 hours, cooling, and centrifuging at 6,500 to 7,500 rpm for 3 to 10 minutes to obtain a second precipitate But is not limited thereto.
  • the zinc oxide nanoparticles may have any one of nanospheres, nano hexagons, and nanorods, but is not limited thereto.
  • the nanoporous zinc oxide nanoparticles having the nanoporous shape may have an average diameter of 5 to 30 nm, but are not limited thereto.
  • the nanoporous zinc oxide nanoparticles of the nano hexagonal plate may have an average diameter of 100 to 400 nm and an average thickness of 10 to 30 nm, but are not limited thereto.
  • the zinc oxide nanoparticles having the nanorods of the nanorods may have an average diameter of 20 to 200 nm, but are not limited thereto.
  • Graphite powder 99.9995%, Junsei Chemical Co., Ltd
  • zinc acetate dihydrate Zn (CH 3 COO) 2 ⁇ 2H 2 O, 99.0%, Sigma Aldrich
  • hexamethylenetetramine (CH 2) 6 N 4 , hexamethylenetetramine (hereinafter referred to as 'HMTA', 99 +%, solid, Alfa Aesar)
  • methylene blue hereinafter referred to as 'MB', high purity Alfa Aesar
  • rhodamine B Gold was used.
  • the synthesis process has two steps.
  • the graphene oxide (GO, 50 mg) prepared by the Marcano-Tour method with a slight modification of the Hummers method was dispersed in anhydrous ethanol (1 mg / ml) with vigorous stirring to prepare an oxidized graphene suspension.
  • the first agitator was separated into centrifuges (Beckman Coulter, Avanti J-E Centrifuge) at a rate of 12,000 rpm to obtain a first precipitate and dried overnight in a vacuum oven (room temperature).
  • the dried first precipitate was calcined in a quartz tube furnace under a stream of argon at 300 DEG C for 60 minutes (heating rate: 9 DEG C / min, operating pressure: 800 to 900 torr) And deposited on a reduced oxidized graphene sheet.
  • Reduced graphene oxide graphene nanocomposite (15 mg) and anhydrous ethanol (15 ml) adhered with zinc oxide seeds were added to the vial (20 ml) and mixed for 2 hours.
  • the second agitated material was transferred to a Teflon-lined stainless steel autoclave (30 ml) and heat treated in an oven at 105 ° C for 24 hours under autogenous pressure to obtain a reaction mixture .
  • reaction mixture was then rapidly cooled to room temperature and centrifuged at 7,000 rpm for 5 minutes to obtain a second precipitate, which was washed five times with deionized water and then once with ethanol.
  • the sZG nanocomposite photocatalyst was synthesized under the same conditions as in Example 1 except that the heat treatment was performed in the oven for 12 hours.
  • the sZG nanocomposite photocatalyst was synthesized under the same conditions as in Example 1 except that the heat treatment was performed in the oven for 18 hours.
  • the sZG nanocomposite photocatalyst was synthesized under the same conditions as in Example 1 except that the heat treatment was performed in the oven for 36 hours.
  • a thin layer of oxidized graphene grafted with zinc oxide nanoparticles having the shape of a nanosecond nanodisk was synthesized (hereinafter referred to as " nanoparticles ") by adding anhydrous ethanol (15 ml) and deionized water (3.75 ml) dZG nano-composite photocatalyst ").
  • dZG Nanocomposite photocatalyst &quot was used as the photocatalyst.
  • a reduced oxidized graphene nanocomposite with zinc oxide nanoparticles attached thereto under the same conditions as in Example 1 (Hereinafter referred to as " sZG * nanocomposite photocatalyst ").
  • the reduced graphene oxide nanocomposite photocatalyst to which zinc oxide nanoparticles were attached was synthesized under the same conditions as in Example 5 except that the oxidized graphene sheet was used instead of the reduced oxidized graphene sheet to which zinc oxide seeds were attached (Hereinafter referred to as " dZG * nanocomposite photocatalyst ").
  • a reduced graphene oxide nanocomposite photocatalyst to which zinc oxide nanoparticles were attached was synthesized under the same conditions as in Example 5 except that the GO thin plate was used in place of the reduced oxide graphene thin plate to which zinc oxide seeds were attached " rZG * nanocomposite photocatalyst ").
  • a reduced oxidized graphene nanocomposite photocatalyst with zinc oxide nanoparticles was synthesized under the same conditions as in Example 1 except that HMTA was not added.
  • SEM Scanning Electron Microscopy
  • TEM transmission electron microscope
  • a process for synthesizing a reduced graft oxide nanocomposite photocatalyst having zinc oxide nanoparticles is performed in two steps.
  • the reduced graphene graphene nanocomposite with zinc oxide seeds showed XRD with a broad zinc oxide peak at low intensity at 31.1, 33.5, 35.4, 46.8, 56.0, 62.3, Pattern (see Fig. 2 (e)) was observed.
  • the reduced graphene graphene nanocomposite photocatalyst with zinc oxide nanoparticles prepared exhibits a (100), (002), (100), and (100) values in the wurtzite hexagonal structures of zinc oxide nanoparticles (JCPDS no. 36-1451) 101, 102, 110, 103, 200, 112, 201, 004, and 202, respectively, (See Figs. 2 (f) to 2 (h)).
  • Peak migration towards the smaller Bragg's angle may be due to the effect of the solvent used during the reaction.
  • the peak moves further away from the reference peak.
  • the change of the peak is due to the deformation of the? -Electron interaction in the aromatic ring capable of polarizing into the cation-? Interaction or the coordination between the hydroxyl group and the epoxy group present on the oxide graphene surface to which the zinc oxide nanoparticles are attached.
  • Zn-O stretching vibration observed at 500 cm -1 or less was observed at 453, 403, and 300 nm in the reduced graphene oxide nanocomposite, rZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst, and sZG nanocomposite photocatalyst, respectively, 405 and 406 cm -1 A peak was observed.
  • the observed change may be due to the insertion of zinc oxide nanoparticles between oxidized graphene sheets reduced in the growth process of zinc oxide seeds.
  • Raman spectroscopy is another effective tool to identify structural changes in oxidized graphene and reduced oxidized graphene and the presence of zinc oxide nanoparticles in nanocomposite photocatalysts.
  • the Raman spectrum of the oxidized graphene has two characteristic peaks at 1366 cm -1 (D-band) and 1591 cm -1 (G-band).
  • the D-band corresponds to the breathing mode of the k-point phonon of the A 1g symmetry, which is assigned to the disorder and defect at the edge of the graphene sheet.
  • the G-band is related to the in-plane E 2g optical phonon mode of the sp 2 bond of the carbon atom.
  • the peak intensity ratio (I D / I G ) was calculated so as to evaluate the degree of disorder in the oxide graphene and the reduced oxide graphene structure.
  • the presence of reduced oxidized graphene in the reduced graphene graphene nanocomposite photocatalyst can be confirmed.
  • sZG nanocomposite further confirmed the formation of a bond CO-Zn a blue shift (blue-shift) of the G- band of graphene oxide in confirmed by (at 1597.43 cm -1 moved to 1591.54 cm -1) in the photocatalytic nanocomposite photocatalyst sZG Respectively.
  • a blue shift of approximately 6 cm -1 indicates the formation of CO-Zn bonds in the nanocomposite photocatalyst and the strong chemical interaction between the zinc oxide nanoparticles and the reduced oxidized graphene.
  • XPS was performed to confirm the oxidation state and elemental composition of the sZG nanocomposite photocatalyst and to confirm that the oxide graphene was reduced to reduced graphene grains (see FIGS. 4A to 4D).
  • the survey spectrum of FIG. 4A shows the presence of the three major components Zn, O and C present in the reduced graphene oxide nanocomposite-adhered zinc oxide nanocomposite photocatalyst.
  • High-resolution XPS spectra of the Zn 2p core level is Zn 2p 3 / and represents the 2 and Zn 2p 1/2, the two peaks has a spin-orbit separation (spin-orbit splitting, ⁇ E ) of 23.1 eV , And the main peak centered at 1021.4 eV and 1045.5 eV, respectively. This shows only the Zn (II) oxidation state in the nanocomposite photocatalyst.
  • the C 1s and O 1s spectra show the reduction of oxidized graphene and the formation of reduced oxidized graphene nanocomposite photocatalyst with zinc oxide nanoparticles attached during the synthesis of reduced oxidized graphene nanocomposite photocatalyst with zinc oxide nanoparticles
  • the background correction was then adjusted using a Gaussian function to evaluate.
  • the deconvoluted C 1s spectrum showed four peaks at 284.5 eV, 285.4 eV, 288.3 eV, and 290.3 eV (see FIG. 4d).
  • the 290.3 eV peak is assigned to the ⁇ - ⁇ * satellite peak, which can be self-healed in the synthesis process or transformed into another functional group (carboxylate, epoxide or hydroxyl group) It indicates recovery.
  • the degree of reduction of oxidized graphene to reduced oxidized graphene was confirmed by XPS.
  • Figures 5 and 6 (d) show typical C 1s XPS spectra of oxidized graphene and sZG nanocomposite photocatalyst, respectively.
  • the zinc oxide nanoparticles have a nanospherical shape and are uniformly distributed on the reduced graphene graphene surface and on the edge of the reduced oxidized graphene sheet, Insertion of nanoparticles could be observed (see Fig. 7 (d)).
  • the zinc oxide nanoparticles When a zinc oxide seed growth solvent having a volume ratio of 1: 0.25 of anhydrous ethanol and deionized water is used, the zinc oxide nanoparticles have a shape of a nano hexagonal plate, and a structure such as a randomly arranged nano hexagonal plate is formed of a reduced oxidized graphene sheet (See Fig. 7 (c)).
  • the four-digit ligand is (CH 2) 6 N 4 ( 'HMTA') is a metallic ion (Zn 2 +) pore 4s orbital and coordination between the lone pair of electrons of the nitrogen of the metal ion (Zn 2 +) by combining And plays an important role in forming a zinc-ammonium complex in medium with high concentration of ammonium.
  • the zinc-ammonium complex can interact with the reduced graphene graphene nanocomposite with zinc oxide seeds and can promote the formation of reduced graphene graphene nanocomposite photocatalyst with zinc oxide nanoparticles under hydrothermal reaction conditions have.
  • the solvent is considered to be an important factor controlling the growth behavior of the structure of the zinc oxide nanoparticles.
  • the characteristics of the solvent in the reaction solution such as dielectric constant and saturation vapor pressure as well as interfacial-solvent interactions related to the surface energy of the crystal, are also considered.
  • the TEM image of the reduced graphene oxide nanocomposite photocatalyst with zinc oxide nanoparticles shows that the short nanorods, nano hexagonal plates and nanoparticles of zinc oxide nanoparticles adhere to the opaque and thin reduced oxide graphene sheet (See Figs. 9 (a1) to 9 (c1)).
  • the weak point of the rZG nanocomposite photocatalyst is that it has a wide particle size distribution (see FIG. 9 (a1)), and when the content of deionized water in the mixed solvent of anhydrous ethanol and deionized water increases, 3 production rate can result in uncontrolled particle size.
  • Zinc oxide nanoparticles having the shape of a nano hexagonal plate having a lying orientation and a free-standing orientation on a reduced oxidized graphene sheet were clearly observed (see Fig. 9 (b1)), .
  • the TEM image of the sZG nanocomposite photocatalyst shows uniform nanocrystalline zinc oxide nanoparticles attached on the surface of the reduced oxidized graphene sheet (see FIG. 9 (c1), FIG. 10 and FIG. 11).
  • the reduced graphene graphene nanocomposite photocatalyst to which the zinc oxide nanoparticles are attached is 0.25 corresponding to the interplanar spacing of the (101), (104), and (202) planes, Well-resolved lattice fringes including 0.13 and 0.12 nm (d-spacing) are seen (see Figs. 9 (a2) to 9 (c2)).
  • the reduced graphene oxide nanocomposite photocatalyst with zinc oxide nanoparticles was degassed at 200 ° C for 24 hours.
  • the sZG nanocomposite photocatalyst, the dZG nanocomposite photocatalyst and the rZG nanocomposite photocatalyst showed a type IV isotherm exhibiting a mesoporous structure (see FIG. 12).
  • the specific surface area (S BET ) of the sZG nanocomposite photocatalyst, the dZG nanocomposite photocatalyst and the rZG nanocomposite photocatalyst were calculated as 84.6 m 2 / g, 61.3 m 2 / g and 38.6 m 2 / g, respectively.
  • the calculated specific surface area was determined by using a reduced graphene graphene nanocomposite photocatalyst (36.93 m 2 / g) on which zinc oxide rod nanoparticles were adhered and a reduced graphene nano- Than the composite photocatalyst (23.6863 m 2 / g and 23.8 m 2 / g).
  • the specific surface area of the catalyst is large, it means that there are many adsorption-reaction active sites capable of improving the resolution of the catalyst.
  • Visible light diffuse reflectance spectra (UV-vis-NIR spectroscopy) of the reduced graphene oxide nanocomposite photocatalyst with zinc oxide nanoparticles in the wavelength range of 200 nm to 800 nm using a UV-vis-NIR spectrophotometer (Varian Cary 5000) vis diffus reflectance spectra (UV-vis DRS) and ultraviolet-visible spectra (UV-vis spectra).
  • the prepared sZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst, and rZG nanocomposite photocatalyst showed strong absorption at a wavelength of 400 nm or less, which is an electron excitation from a valence band to a conduction band under UV excitation Is the result of the intrinsic band gap of zinc oxide nanoparticles.
  • Absorption tendency of visible light (400 ⁇ 800 nm) region was relatively stable for all sZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst, and rZG nanocomposite.
  • the sZG nanocomposite photocatalyst among the sZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst and rZG nanocomposite photocatalyst showed the strongest absorption in the UV-Vis spectrum.
  • optical band gap of the reduced graphene oxide nanocomposite photocatalyst with zinc oxide nanoparticles was calculated using the following equation (7) for the Tauc plot.
  • h ⁇ is the photon energy (eV)
  • is the absorption coefficient
  • A is a proportional constant
  • E g is the band gap (eV).
  • n depends on the nature of the electron transition. For direct permissible transitions n is 1/2, for direct prohibited transitions n is 3/2, for indirectly permissible transitions n is 2, and for indirectly prohibited transitions n is 3.
  • Zinc oxide nanoparticles belong directly to the direct semiconductor group with direct permissible transitions.
  • Equation (7) can be expressed again by Equation (8).
  • the band gap of the reduced graphene oxide nanocomposite photocatalyst with zinc oxide nanoparticles is extrapolating the linear region and the Tauc plot [(h ⁇ ) 2 . hv).
  • the band gap of the sZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst and rZG nanocomposite photocatalyst is estimated to be 2.85 eV, 2.93 eV and 3.06 eV, respectively, which is much lower than bulk zinc oxide nanoparticles (3.37 eV) (see FIG.
  • TGA Thermogravimetric analysis
  • the weight loss corresponding to the temperature range of 20 to 120 ° C., 120 to 250 ° C. and 250 to 500 ° C. is the loss of adsorbed water To 5%), gradual loss of oxygen-containing functional groups and burn-out of graphene (see FIG. 14).
  • TGA showed the weight of zinc oxide nanoparticles contained in the reduced graphene nanocomposite with rZG nanocomposite photocatalyst, sZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst and zinc oxide seed, which were 78.6%, 77.8% , 74.2% and 43.2%, respectively.
  • Photoluminescence (PL) spectrum analysis of the reduced graphene oxide nanocomposite photocatalyst with zinc oxide nanoparticles was carried out using a photoluminescence spectrometer (HORIBA scientific) at 325 nm laser wavelength excitation at room temperature Respectively.
  • PL spectroscopy is an effective tool for evaluating recombination rates of photogenerated electron-hole pairs through recording of PL emission signals under excitation of room temperature and 325 nm laser.
  • the greater emission intensity of the PL spectrum reflects the high recombination rate of the charge carriers, which hinders the photocatalytic activity of the catalyst.
  • the emission intensity of the sZG nanocomposite photocatalyst was lower than that of the rZG nanocomposite photocatalyst and the dZG nanocomposite photocatalyst (see FIG. 15), giving the most effective charge separation by having the lowest emission intensity, Showed the highest photocatalytic activity.
  • the photoreaction was carried out at room temperature in a photochemical reactor.
  • reaction mixture was stirred for 30 minutes under dark conditions before operating the UV lamp.
  • the absorbance of the MB and RhB solutions was measured at 664 nm and 553 nm, respectively, during photolysis and the residual dye concentration was monitored with a spectrophotometer.
  • the photodegradation efficiencies of sZG nanocomposite, dZG nanocomposite, and rZG nanocomposite photocatalysts were 98.8%, 79.9% and 100%, respectively, when the same initial dye concentration (10 ppm) and catalyst input (0.1 g / 68.6%, and photodegradation efficiencies for RhB were 97.7%, 77.8%, and 61.7%, respectively.
  • the dye adsorption capacity plays an important role in promoting the photolytic ability of the reduced graphene oxide nanocomposite photocatalyst with zinc oxide nanoparticles.
  • FIG. 16A shows the dye adsorption ability of the sZG nanocomposite photocatalyst, the dZG nanocomposite photocatalyst, and the rZG nanocomposite photocatalyst.
  • the dye adsorption is due to the offset printing face-to-face orientation through the ⁇ - ⁇ conjugation in the interaction of MB molecules with the aromatic rings of the reduced oxidized graphene.
  • the highest photocatalytic activity of the sZG nanocomposite photocatalyst is due to the large number of adsorption / reaction sites provided by large specific surface area.
  • C is the residual concentration of the dye in the solution
  • C 0 is the initial concentration of the dye after adsorption-desorption equilibrium
  • k is the apparent rate constant (min -1 ).
  • Table 2 lists the rate constants calculated for photodegradation of 10 ppm MB and 10 ppm RhB. Among the listed values, the rate constants of MB (0.0642 min -1 ) and RhB (0.0610 min -1 ) were the highest when using the sZG nanocomposite photocatalyst under UV irradiation.
  • MB (10 ppm) decomposition experiment was performed by changing the sZG nanocomposite photocatalyst to 0.1 g / l, 0.2 g / l, and 0.3 g / l.
  • sZG nanocomposite photocatalyst After irradiation with ultraviolet rays, 0.2 g / l of sZG nanocomposite photocatalyst was used to obtain MB decomposition efficiency of 98.1% over 30 minutes, and the amount of injected sZG nanocomposite photocatalyst was increased to 0.3 g / l. The decomposition efficiency of 97.8% was obtained.
  • the sZG nanocomposite photocatalyst (0.1 g / l) was used under UV irradiation to investigate dye removal efficiency according to dye concentration.
  • RhB solutions with initial concentrations of 10, 15 and 20 ppm were used (see Fig. 20b).
  • RhB concentration not only increases the amount of dye adsorbed on the catalyst surface but also has a filtering effect at the interface between the bulk RhB solution and the adsorbed layer and the catalyst surface.
  • This effect prevents large quantities of incident UV light from reaching the catalyst surface through the bulk solution, thereby reducing photocatalytic activity.
  • the conduction band and the valence band of the zinc oxide semiconductor can be determined using the following empirical formula.
  • E CB and E VB are the conduction band edge (E CB ) and the valence band edge (E VB ) of the semiconductor with a band gap of E g , respectively, and ⁇ is the electronegativity of the constituent atoms Mulliken electronegativity, geometric mean.
  • the conduction band and the valence band obtained from the above equations (10) and (11) under vacuum were -4.36 eV and -7.21 eV, respectively, when ⁇ was 5.790.
  • the capture or capture experiments were carried out on scavengers, ie, hydroxyl radicals, hole and superoxide radicals, ie 0.2 M tert-butyl alcohol (TBA), 0.2 M sodium bicarbonate sodium hydrogen carbonate, NaHCO 3 ) and 1 mM p-benzoquinone (BZQ) were added to the dye solution before UV irradiation.
  • scavengers ie, hydroxyl radicals, hole and superoxide radicals, ie 0.2 M tert-butyl alcohol (TBA), 0.2 M sodium bicarbonate sodium hydrogen carbonate, NaHCO 3 ) and 1 mM p-benzoquinone (BZQ) were added to the dye solution before UV irradiation.
  • a reactive substance as a main component was confirmed by adding a capturing agent or a capturing agent.
  • hole (h VB + ) also plays a role in the photolysis process.
  • the photodegradation mechanism of the dye for the sZG nanocomposite photocatalyst prepared according to the present invention can be expressed by the following equations (12) to (20) (see FIG. 21).
  • the sZG nanocomposite photocatalyst (1.0 g / l) was added to the 10 ppm MB solution and the photocatalytic decomposition reaction was repeated 15 times to analyze the reusability.
  • the sZG nanocomposite photocatalyst was separated from the treated MB solution, washed with deionized water, and reused after drying in a vacuum oven at room temperature before the next photolysis reaction proceeded.
  • the degradation efficiency of 99.4% after one photodegradation reaction and 96.0% after 15 photodegradation reactions was obtained and it was found that the reduction of the photocatalytic decomposition efficiency after 15 times of use was insignificant.
  • the sZG nanocomposite photocatalyst can be used for a long time (See FIG. 20D).
  • EIS analysis is a powerful tool for analyzing the photogenerated charges of a photocatalyst system and their migration behavior for their separation efficiency.
  • Electrochemical impedance spectroscopy was performed in a conventional three-electrode cell system using an Autolab PGSTAT 302 N (Metrohm) instrument.
  • An Ag / AgCl electrode and a platinum (Pt) electrode were used as a reference electrode and a counter electrode, respectively, and an electrolyte solution containing 5 mM K 3 [Fe (CN) 6 ] and 0.5 M sodium sulfate was used.
  • the working electrode was prepared by drop-casting a reduced oxidized graphene nanocomposite photocatalyst with zinc oxide nanoparticles prepared in a fluorine-tin oxide (FTO) glass (active region, 1 cm x 1 cm) (drop-casting) method.
  • FTO fluorine-tin oxide
  • the impedance spectrum of the sample was recorded in the frequency range of 10 5 Hz (high frequency) to 0.01 Hz (low frequency).
  • Photocurrent was measured at 0.5 V (vs. SEC) on an Autolab PGSTAT302 N (Metrohm) instrument.
  • the reduced graft oxide nanocomposite photocatalyst with the prepared zinc oxide nanoparticles was treated with fluorine-tin oxide (FTO) glass (active region, 1 cm x 1 cm ) By a drop-casting method to prepare a working electrode.
  • FTO fluorine-tin oxide
  • a conventional three-electrode cell system was immersed in a 1 M Na 2 SO 4 electrolyte.
  • the working electrode has the same illuminated area of 1 cm x 1 cm.
  • a Randles equilibrium circuit is used as the basis for the impedance characteristics, where Rs and Rct denote bulk solution resistance and charge transfer resistance, respectively.
  • the semicircle at high frequencies is related to the resistance of the solid state interface and the charge transfer resistance.
  • the small semicircle represents the low resistance of the surface.
  • the sZG nanocomposite photocatalyst induces the fastest constant in the dye decomposition process as a result of the fastest interfacial movement of the photogenerated charge and the most effective recombination prevention of the electron-hole pairs at the interface of the nanocomposite photocatalyst.
  • the photocurrent transient response was measured, as well as the electronic interaction between the zinc oxide nanoparticles and the reduced graphene oxide, as well as the efficiency of photoinduced electron-hole pairs separation in each nanocomposite photocatalyst.
  • Photocurrent measurement was performed on the rZG nanocomposite photocatalyst, dZG nanocomposite photocatalyst and sZG nanocomposite photocatalyst under UV irradiation after adhering to the FTO electrode through on-off circulation (see FIG. 23B).
  • the photocurrent (2.03 ⁇ A) of the electrode with the sZG nanocomposite photocatalyst was about 3 times and 1.4 times higher than the electrode (0.75 ⁇ A) with the rZG nanocomposite photocatalyst and the electrode with the dZG nanocomposite photocatalyst (1.46 ⁇ A) This means that the efficiency of photoelectrolytic electron-hole separation is the highest, which is in good agreement with the results of EIS analysis and photocatalytic activity analysis as a result of electron interaction between zinc oxide nanoparticles and reduced graphene oxide.
  • the photocurrent is generated by the transfer of photoexcited electrons to the surface of the oxidized graphene and the FTO reduced in the semiconductor, it is believed that the spherical structure of the zinc oxide nanoparticles and the presence of the reduced oxidized graphene effectively separates the photo- Indicating that it plays an important role in promoting migration.
  • Improvement of separation efficiency and specific surface area of light absorption, charge transport, and charged carriers is a key factor contributing to improvement of the photocatalytic activity of the prepared catalyst, and it is believed that zinc oxide nanoparticles and reduced graphene graphene Can be achieved by an effective combination.

Abstract

본 발명은 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 환원된 산화그래핀 및 상기 환원된 산화그래핀 상에 부착된 산화아연 나노입자를 포함하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 제공한다. 본 발명에 따라 제조된 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매는 40 W의 저출력에서 UV를 조사하였을 때 MB와 RhB의 경우 98.8% 및 97.7%의 염료제거효율을 나타내었고, 15회 반복하여 염료분해를 진행하였을 때 광촉매의 염료제거효율이 96.0%로 유지되는 등 뛰어난 재사용성을 나타내는 효과가 있다.

Description

높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법
본 발명은 다양한 염료인 메틸렌블루 (methylene blue; 이하 'MB') 및 로다민 B(rhodamine B; 이하 'RhB')의 분해에 대한 높은 광촉매활성을 나타낼 수 있으며, 또한 재사용성이 뛰어난 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법에 관한 것이다.
최근 몇 년 동안 국가경제 발전과 여러 나라의 수질오염 증가로 인해 수처리 수요가 크게 증가하였다.
물에 포함된 오염물질을 제거할 수 있는 수처리 기술로는 크게 흡착 또는 용매추출; 화학침전, 이온교환, 한외여과, 역삼투 또는 전기화학 기술; 생분해; 및 광촉매 기반 공정 등이 있다.
흡착을 통한 오염물질 제거방법은 높은 회수율, 재사용성 및 분리율을 나타낼 수 있으나, 오염물질을 완전히 제거하지 못하는 문제가 있다.
물리화학적 방법을 통한 오염물질 제거방법은 오로지 폐수에서 중금속을 처리하는데 적합하며, 높은 에너지소비, 비효율적인 제거 및 처리 후 유해한 슬러지의 축적과 같은 심각한 단점이 있다.
생분해기술을 통한 오염물질을 제거방법은 미생물의 신진대사에 기반한 독성 유기화합물을 최소화시켜 주지만, 미생물의 높은 농도민감도, 고농축에서의 낮은 생분해속도 및 고비용으로 인해 생분해 방법은 극히 제한적이다.
반면에, 반도체재료를 기반으로 하는 광촉매분해법은 저비용, 무독성 공정 및 쉬운 처리 시스템으로 인해 효과적인 분해법으로 각광받고 있다.
다양한 반도체재료 중에서 이산화티타늄(TiO2)은 자가세정, 항박테리아, 태양전지의 반사방지코팅 및 부식방지제와 같은 다양한 응용 분야의 광촉매 반도체 재료로 이용되고 있다.
이산화티타늄(이하 'TiO2')을 다양한 응용 분야의 광촉매 반도체재료로 이용하기 위해, 졸겔법, 전기화학합성법, 화학기상증착법(CVD), 물리기상증착법(PVD), 스퍼터링 및 이온주입법을 포함한 다양한 방법으로 TiO2를 생산하는 경로를 개발하였으나, 일반적으로 고가의 현대 장비와 전구체가 필요할 뿐만 아니라 복잡한 절차를 거쳐야 하는 문제가 있다.
이와는 대조적으로, 산화아연(ZnO)은 저가이고, 풍부한 가용성, 전기화학적활성 및 친환경성으로 인해 광검출기 또는 센서, 에너지저장재료, 슈퍼커패시터 및 광촉매와 같은 여러 응용분야에서 유용한 반도체로 주목받고 있다.
한편, 광촉매재료로서, 산화아연은 광촉매활성을 상당히 감소시키는 광발생된 전자-정공 쌍의 재결합, 광부식(photocorrosion) 효과, 및 광안정성(photostability)과 관련된 단점을 가지고 있다.
이러한 문제점을 극복하기 위해, 카본질화물(C3N4), 풀러렌(C60), 키토산, 단일층 폴리아닐린, 또는 비금속 또는 금속원소로 도핑된 탄소화합물과 산화아연이 하이브리드 복합재료를 형성함으로써 증가된 비표면적, 향상된 촉매활성, 광침착 억제 및 효과적인 전자-정공 분리를 갖는 몇 가지 방법이 개발되었다.
그 중에서도, 탄소 계열에 속하는 그래핀은 큰 비표면적, 높은 전자전도성, 화학적 안정성 및 우수한 수송특성으로 인해 금속산화물의 광촉매 성능을 향상시키기 위한 이상적인 재료이다.
산화아연과 그래핀의 조합은 광촉매 재료의 연구 분야에 상당한 관심을 불러 일으켰다.
상기 두 물질 조합의 주 목적은 높은 전자-정공 분리효율을 얻고 광여기 과정에 의해 발생된 전하를 표면으로 자유롭게 이동시키는 것이다.
최근에 그래핀 박판(sheet) 상에 부착된 입자, 막대, 조각 및 꽃 모양의 다양한 형상을 갖는 산화아연 구조의 응용에 대해 보고되었다.
예를 들어, 화학기상증착법을 이용하여 산화아연 막대가 성장된 3차원 산화그래핀 복합체의 제조방법 및 상기 복합체를 광촉매로 이용하여 메틸오렌지(MO)의 분해를 위한 수열처리 방법이 개발되었고, 산화아연 막대가 성장된 3차원 산화그래핀 복합체의 복잡한 합성절차 및 UV 조사 하에서 3시간 후에 MO에 대한 92%의 분해효율이 보고되었다.
또한 수열조건 하에서 환원제로서 고 독성 화합물인 히드라진(hydrazine)을 사용하여 꽃 형상의 산화아연이 부착된 환원된 산화그래핀(reduced graphene oxide; RGO) 복합체 제조방법이 개발되었고, UV 조사 하에서 제조된 복합체를 광촉매로 이용하여 메틸렌블루(MB) 분해를 위해 얻은 가장 높은 속도상수가 0.0395 min-1 에 달하였다.
또한 수열경로를 통해, 광촉매 H2 생산을 위해 산화아연 나노입자, 나노박판, 나노구형 및 나노막대가 부착된 환원된 산화그래핀 복합체 제조방법이 보고되었다.
그러나 산화아연이 부착된 환원된 산화그래핀 나노복합체 및 그 응용에 관한 수많은 연구가 보고 되었지만, 다양한 형태학적 변화에 따른 산화아연이 부착된 환원된 산화그래핀 나노복합체의 광촉매 효율에 대한 비교는 연구가 미미한 상황이다.
본 발명의 목적은 산화아연 씨앗(seed) 성장용매를 이루는 무수에탄올과 탈이온수의 용매 혼합비율에 따라 짧은 나노막대, 나노육각판 및 나노구형의 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 복합체를 간편한 2단계 방법을 통해 광촉매 특성이 우수하고, 재사용성이 뛰어난 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매를 제조할 수 있는 방법을 제공하는 데에 있다.
상기 목적을 달성하기 위하여, 본 발명은 환원된 산화그래핀 및 상기 환원된 산화그래핀 상에 부착된 산화아연 나노입자를 포함하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 제공한다.
또한 본 발명은 산화그래핀 현탁액에 아연전구체를 첨가한 후 교반하여 제1교반물을 준비하는 단계; 상기 제1교반물을 원심분리하여 수득한 제1침전물을 건조하는 단계; 상기 건조된 제1침전물을 열처리하여 산화아연 씨앗(ZnO seeds)이 부착된 환원된 산화그래핀 나노복합체를 준비하는 단계; 상기 나노복합체를 무수에탄올과 산화아연 씨앗 성장용매에 첨가하는 단계; 상기 나노복합체가 첨가된 산화아연 씨앗 성장용매에 아연전구체와 환원제를 첨가하고 교반하여 제2교반물을 준비하는 단계; 상기 제2교반물을 열처리한 후 냉각시키고 원심분리하여 제2침전물을 수득하는 단계; 및 상기 제2침전물을 세척한 후 건조하여 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 제조하는 단계를 포함하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법을 제공한다.
본 발명에 따라 제조된 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매는 40 W의 저출력에서 UV를 조사하였을 때 MB와 RhB의 경우 98.8% 및 97.7%의 염료제거효율을 나타내었고, 15회 반복하여 염료분해를 진행하였을 때 광촉매의 염료제거효율이 96.0%를 나타내었는 바 뛰어난 재사용성을 나타내는 효과가 있다.
도 1은 구형, 육각디스크형, 막대형 등 세 가지 다른 형태의 나노복합체 광촉매 (sZG , dZG, rZG) 합성을 나타낸 개략도;
도 2는 흑연(a), 산화그래핀(b), 아르곤 가스 하에서 열처리 전에 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체(c), 환원된 산화그래핀 박판(d), 아르곤 가스 하에서 열처리 후에 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체(e), 나노막대의 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매(f, 이하 'rZG 나노복합체'), 나노육각판의 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매(g, 이하 'dZG 나노복합체') 및 나노구형의 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매(h, 이하 'sZG 나노복합체')의 XRD 패턴(왼쪽) 및 상기 시료의 (100), (002) 및 (101) 결정면을 나타낸 확대된 XRD 패턴(오른쪽)을 나타낸 도면;
도 3a는 산화그래핀, 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체, sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매의 FTIR 스펙트럼을 나타낸 도면;
도 3b는 산화그래핀 및 sZG 나노복합체 광촉매의 라만 스펙트럼 및 직사각형 점선 영역의 확대 이미지를 나타낸 도면;
도 4a는 sZG 나노복합체 광촉매의 탐사 스캔을 나타낸 도면;
도 4b는 역회선분리된(deconvoluted) Zn 2p 스펙트럼을 나타낸 도면;
도 4c는 역회선분리된 O 1s 스펙트럼을 나타낸 도면;
도 4d는 역회선분리된 C 1s 스펙트럼을 나타낸 도면;
도 5는 산화그래핀의 C 1s XPS 스펙트럼을 나타낸 도면;
도 6은 헥사메틸렌테트라아민((CH2)6N4, hexamethylenetetraamine; 이하 'HMTA')을 사용하거나(실시예 1) 사용하지 않은 상태에서(비교예 4) 24시간 동안 합성된 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 SEM 이미지를 나타낸 도면;
도 7은 다양한 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 박판의 SEM 이미지를 나타낸 것으로서, 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체(a), rZG 나노복합체 광촉매(b), dZG 나노복합체 광촉매(c), 및 sZG 나노복합체 광촉매(d)의 SEM 이미지를 나타낸 도면;
도 8은 산화아연 씨앗이 부착된 환원된 산화그래핀 박판 대신에 산화그래핀 박판을 이용하여 합성된 나노복합체 광촉매(이하 'sZG* 나노복합체 광촉매')(a), 나노복합체 광촉매(이하 'dZG* 나노복합체 광촉매')(b), 나노복합체 광촉매(이하 'rZG* 나노복합체 광촉매')(c), 및 산화그래핀 박판(d)의 SEM 이미지를 나타낸 도면;
도 9는 다양한 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 박판의 TEM 이미지(a1 내지 c1), HRTEM 이미지(a2 내지 c2) 및 다양한 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 박판에 대응되는 SAED 패턴(a3 내지 c3)를 나타낸 것으로서, rZG 나노복합체 광촉매(a); dZG 나노복합체 광촉매(b); sZG 나노복합체 광촉매(c); 및 sZG 나노복합체 광촉매의 원소지도(mappping) 및 EDX 스펙트럼(d)를 나타낸 도면;
도 10은 12시간(a), 18시간(b), 24시간(c) 및 36시간(d)동안 제조된 sZG 나노복합체 광촉매의 SEM 이미지를 나타낸 도면;
도 11은 다양한 배율에서 산화그래핀 박판(a), 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체(b) 및 sZG 나노복합체 광촉매(c 내지 d)의 TEM 이미지를 나타낸 도면;
도 12는 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매, rZG 나노복합체 광촉매의 질소 흡착-탈착 등온선을 나타낸 도면;
도 13a는 i) sZG 나노복합체 광촉매, ii) dZG 나노복합체 광촉매, 및 iii) rZG 나노복합체 광촉매의 자외선-가시광선 확산반사스펙트럼(UV-vis diffus reflectance spectra; 이하 'UV-vis DRS')을 나타낸 도면;
도 13b는 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매, 및 rZG 나노복합체 광촉매의 타우츠 선도(Tauc plot)를 나타낸 도면;
도 14는 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매, rZG 나노복합체 광촉매, 및 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체의 열중량분석(Thermogravimetric analysis; 이하 'TGA') 프로파일을 나타낸 도면;
도 15는 실온에서 325 nm의 파장에서 여기된 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매, 및 rZG 나노복합체 광촉매의 PL 스펙트럼을 나타낸 도면;
도 16a는 환원된 산화그래핀 박판, sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매(0.1 g/ℓ)의 부재 및 존재 하에서 다양한 시간동안 UV 조사 하에서의 MB 용액(10 ppm)의 광촉매 분해를 나타낸 도면;
도 16b는 UV 조사 하에서 MB의 광분해의 유사 일차속도식(pseudo first order kinetics)을 나타낸 도면;
도 16c는 환원된 산화그래핀 박판, sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매(0.1 g/ℓ)의 부재 및 존재 하에서 다양한 시간동안 UV 조사 하에서 RhB 용액(10 ppm)의 광촉매 분해를 나타낸 도면;
도 16d는 UV 조사 하에서 RhB의 광분해의 유사 일차속도식을 나타낸 도면;
도 17은 암(dark) 조건 하에서 3시간 후 sZG 나노복합체 광촉매 상에 MB 용액(10 ppm)의 흡착을 나타낸 도면;
도 18은 UV 조사 하에서 60분 후에 sZG 나노복합체 광촉매, sZG* 나노복합체 광촉매, dZG* 나노복합체 광촉매 및 rZG* 나노복합체 광촉매의 존재 하에 10 ppm MB 용액의 광촉매 분해의 비교를 나타낸 도면;
도 19는 UV 조사 하에서(10 ppm 염료용액, 0.1 g/ℓ, 40 W), 60분 후 rZG 나노복합체 광촉매, dZG 나노복합체 광촉매, 및 sZG 나노복합체 광촉매의 염료분해효율을 나타낸 도면;
도 20a는 UV 조사 하에서 다양한 촉매(sZG 나노복합체 광촉매) 로딩시 10 ppm MB 수용액의 광촉매 분해곡선을 나타낸 도면;
도 20b는 UV 조사 하에서 0.1 g/ℓ의 sZG 나노복합체 광촉매를 사용하여 자외선 조사 하에서 다양한 농도의 RhB 수용액의 광촉매 분해를 나타낸 도면;
도 20c는 10 ppm RhB 염료용액에서 sZG 나노복합체 광촉매(0.1 g/ℓ)에 대한 포집(trapping) 실험결과를 나타낸 도면;
도 20d는 UV 조사 하에서 10 ppm MB 염료에서 sZG 나노복합체 광촉매(0.1 g/ℓ)의 광촉매 안정성을 나타낸 도면;
도 21은 염료의 광분해 메커니즘 및 UV 조사 하에서 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 환원된 산화그래핀 시트와 산화아연 나노입자 간의 전자전달을 나타낸 도면;
도 22는 광촉매 안정성 측정을 위해 사용 전후의 sZG 나노복합체 광촉매의 SEM 이미지를 나타낸 도면;
도 23a는 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매가 적용된 전극의 나이퀴스트 선도(nyquist plot)를 나타낸 도면;
도 23b는 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매가 적용된 전극의 광전류 응답을 나타낸 도면;
도 24는 다양한 반응 시간(12시간 및 24시간) 하에서 제조된 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매의 SEM 이미지를 나타낸 도면;
도 25는 UV 조사 하에서 50분 후 12시간(시료-S1), 18시간(시료-S2), 24시간(시료-S3) 및 36시간 (시료-S4) 및 24시간 동안 HMTA 없이 합성된 sZG 나노복합체 광촉매(시료-SO)(0.1 g/ℓ)의 MB 분해효율을 나타낸 도면이다.
이하, 본 발명인 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법을 보다 상세하게 설명한다.
본 발명의 발명자들은 산화아연 씨앗 성장용매를 이루는 무수에탄올과 탈이온수의 용매 혼합비율에 따라 다양한 형상을 갖는 산화아연 나노입자를 얻을 수 있고, 상기 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 이용할 경우 높은 염료분해효율 및 뛰어난 재사용성이 있음을 밝혀내어 본 발명을 완성하였다.
본 발명은 환원된 산화그래핀 및 상기 환원된 산화그래핀 상에 부착된 산화아연 나노입자를 포함하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 제공한다.
상기 산화아연 나노입자는 나노구형, 나노육각판, 또는 나노막대 중 어느 하나의 나노형상을 가질 수 있으며, 이에 제한되는 것은 아니다.
상기 나노구형의 나노형상을 갖는 산화아연 나노입자는 평균직경이 5 내지 30 nm 일 수 있으며, 이에 제한되는 것은 아니다.
상기 나노육각판의 나노형상을 갖는 산화아연 나노입자는 평균직경이 100 내지 400 nm이고, 평균두께가 두께 10 내지 30 nm 일 수 있으며, 이에 제한되는 것은 아니다.
상기 나노막대의 나노형상을 갖는 산화아연 나노입자는 평균직경이 20 내지 200 nm 일 수 있으며, 이에 제한되는 것은 아니다.
또한 본 발명은 산화그래핀 현탁액에 아연전구체를 첨가한 후 교반하여 제1교반물을 준비하는 단계; 상기 제1교반물을 원심분리하여 수득한 제1침전물을 건조하는 단계; 상기 건조된 제1침전물을 열처리하여 산화아연 씨앗(ZnO seeds)이 부착된 환원된 산화그래핀 나노복합체를 준비하는 단계; 상기 나노복합체를 무수에탄올과 산화아연 씨앗 성장용매에 첨가하는 단계; 상기 나노복합체가 첨가된 산화아연 씨앗 성장용매에 아연전구체와 환원제를 첨가하고 교반하여 제2교반물을 준비하는 단계; 상기 제2교반물을 열처리한 후 냉각시키고 원심분리하여 제2침전물을 수득하는 단계; 및 상기 제2침전물을 세척한 후 건조하여 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 제조하는 단계를 포함하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법을 제공한다.
상기 아연전구체는 초산아연(zinc acetate), 질산아연(zinc nitrate), 황산아연(zinc sulfate), 인산아연(zinc phosphate), 불화아연(zinc fluoride), 염화아연(zinc chloride) 및 요오드화아연(zinc iodate)으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.
상기 제1교반물을 원심분리하여 수득한 제1침전물을 건조하는 단계는 제1교반물을 10,000 내지 15,000 rpm으로 원심분리하여 수득한 제1침전물을 20 내지 30℃에서 건조하는 단계일 수 있으며, 이에 제한되는 것은 아니다.
상기 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체를 준비하는 단계는 상기 건조된 제1침전물을 250 내지 350℃에서 30분 내지 90분 동안 열처리하는 단계일 수 있으며, 이에 제한되는 것은 아니다.
상기 산화아연 씨앗 성장용매는 무수에탄올, 탈이온수 또는 이들의 조합으로 이루어진 것일 수 있으며, 이에 제한되는 것은 아니다.
상기 무수에탄올과 탈이온수로 이루어진 산화아연 씨앗 성장용매는 무수에탄올과 탈이온수가 1 : (0.25 ~ 1)의 부피비로 이루어진 것일 수 있으며, 이에 제한되는 것은 아니다.
상기 환원제는 헥사메틸렌테트라민(HMTA)일 수 있으며, 이에 제한되는 것은 아니다.
상기 제2침전물을 수득하는 단계는 제2교반물을 100 내지 110℃에서 12 내지 36시간 동안 열처리한 후 냉각시키고 6,500 내지 7,500 rpm에서 3 내지 10분 동안 원심분리하여 제2침전물을 수득하는 단계일 수 있으며, 이에 제한되는 것은 아니다.
상기 산화아연 나노입자는 나노구형, 나노육각판, 또는 나노막대 중 어느 하나의 나노형상을 가질 수 있으며, 이에 제한되는 것은 아니다.
상기 나노구형의 나노형상을 갖는 산화아연 나노입자는 평균직경이 5 내지 30 nm 일 수 있으며, 이에 제한되는 것은 아니다.
상기 나노육각판의 나노형상을 갖는 산화아연 나노입자는 평균직경이 100 내지 400 nm이고, 평균두께가 두께 10 내지 30 nm 일 수 있으며, 이에 제한되는 것은 아니다.
상기 나노막대의 나노형상을 갖는 산화아연 나노입자는 평균직경이 20 내지 200 nm 일 수 있으며, 이에 제한되는 것은 아니다.
이하, 하기 실시예에 의해 본 발명인 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.
<실시예 1>
1. 재료의 준비
흑연 분말(99.9995%, Junsei Chemical Co., Ltd), 초산아연·2수화물(Zn(CH3COO)2·2H2O, 99.0%, Sigma Aldrich), 헥사메틸렌테트라아민((CH2)6N4, hexamethylenetetraamine; 이하 'HMTA', 99+%, 고체, Alfa Aesar), 메틸렌 블루 (methylene blue; 이하 'MB', 고순도, Alfa Aesar) 및 로다민 B(rhodamine B; 이하 'RhB', 대정화금)를 사용하였다.
2. 산화아연 씨앗(ZnO seeds)이 부착된 환원된 산화그래핀 나노복합체 합성
도 1을 참조하면, 합성과정은 두 단계로 이루어져있다.
Hummers법을 약간 변형한 Marcano-Tour 방법에 의해 제조된 산화그래핀(graphene oxide; GO, 50 ㎎)을 격렬하게 교반하면서 무수에탄올(1 ㎎/㎖)에 분산시켜 산화그래핀 현탁액을 준비하였다.
이어서, 초산아연·2수화물((Zn(CH3COO)2·2H2O, 54.9 ㎎)를 산화그래핀 현탁액에 첨가하고 상온에서 60분 동안 자석교반기로 1,150 rpm의 교반속도로 교반하여 제1교반물을 준비하였다.
제1교반물을 12,000 rpm의 속도에서 원심분리기(Beckman Coulter, Avanti J-E Centrifuge)로 분리하여 제1침전물을 수득하고 진공오븐(실온)에서 밤새 건조시켰다.
마지막으로, 석영관로(quartz tube furnace) 내에서 아르곤 기류 하에 300℃에서 60분 동안(가열 속도: 9 ℃/분, 작동 압력: 800 ~ 900 torr) 건조된 제1침전물을 소성시켜 산화아연 씨앗을 환원된 산화그래핀 박판 상에 부착시켰다.
3. 나노구형 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 노복합체 광촉매 합성
바이알(20 ㎖)에 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체(15 mg)와 무수에탄올(15 ㎖)을 투입하고 2시간 동안 혼합하였다.
이어서, 상기 바이알에 몰비 1:1에 해당하는 초산아연·2수화물((Zn(CH3COO)2·2H2O, 98.8 ㎎)과 HMTA(63.1 ㎎)을 가하고 30분 동안 더 교반하여 제2교반물을 준비하였다.
테프론-안대기 된 스테인레스스틸 오토클레이브(Teflon-lined stainless steel autoclave, 30 ㎖)에 상기 제2교반물을 옮기고, 자동발생 압력(autogenous pressure) 하에 105℃에서 24시간 동안 오븐 내부에서 열처리하여 반응혼합물을 얻었다.
이후 반응혼합물을 신속하게 실온으로 냉각시키고, 7,000 rpm에서 5분 동안 원심분리하여 제2침전물을 수득하였고, 이를 탈이온수로 5회 세척한 다음 에탄올로 1회 세척하였다.
마지막으로 세척된 제2침전물을 실온에서 24시간 동안 진공건조기에서 서서히 건조시켜 나노구형의 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 합성(이하 'sZG 나노복합체 광촉매'라 명명함)하였다.
<실시예 2>
12시간 동안 오븐 내부에서 열처리하는 것을 제외하고는, 상기 실시예 1과 동일한 조건으로 sZG 나노복합체 광촉매를 합성하였다.
<실시예 3>
18시간 동안 오븐 내부에서 열처리하는 것을 제외하고는, 상기 실시예 1과 동일한 조건으로 sZG 나노복합체 광촉매를 합성하였다.
<실시예 4>
36시간 동안 오븐 내부에서 열처리하는 것을 제외하고는, 상기 실시예 1과 동일한 조건으로 sZG 나노복합체 광촉매를 합성하였다.
<실시예 5>
무수에탄올(15 ㎖) 및 탈이온수(3.75 ㎖)를 1 : 0.25의 부피비로 투입하여 나노육각판(nanodisk)의 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 박판을 합성(이하 'dZG 나노복합체 광촉매'라 명명함)한 것을 제외하고는, 상기 실시예 1과 동일한 조건이었다.
<실시예 6>
무수에탄올(15 ㎖) 및 탈이온수(15 ㎖)를 1 : 1의 부피비로 투입하여 나노막대(nanorod)의 형상을 갖는 산화아연 나노입자가 부착된 환원된 산화그래핀 박판을 합성(이하 'dZG 나노복합체 광촉매'라 명명함)한 것을 제외하고는, 상기 실시예 1과 동일한 조건이었다.
<비교예 1>
비교를 위해, 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체 대신에 산화그래핀 박판을 첨가함으로써 상기 언급된 동일한 절차에 따르는 합성실험을 수행하였다.
구체적으로, 산화아연 씨앗이 부착된 환원된 산화그래핀 박판 대신에 산화그래핀 박판을 이용한 것을 제외하고는, 상기 실시예 1과 동일한 조건으로 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 합성(이하 'sZG* 나노복합체 광촉매'라 명명함)하였다.
<비교예 2>
산화아연 씨앗이 부착된 환원된 산화그래핀 박판 대신에 산화그래핀 박판을 이용한 것을 제외하고는, 상기 실시예 5와 동일한 조건으로 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 합성(이하 'dZG* 나노복합체 광촉매'라 명명함)하였다.
<비교예 3>
산화아연 씨앗이 부착된 환원된 산화그래핀 박판 대신에 GO 박판을 이용한 것을 제외하고는, 상기 실시예 5와 동일한 조건으로 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 합성(이하 'rZG* 나노복합체 광촉매'라 명명함)하였다.
<비교예 4>
HMTA를 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 조건으로 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 합성하였다.
< 실험예 1> 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 형태 분석
준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 형태를 분석하기 위해, 주사전자현미경 분석(Scanning Electron Microscopy; 이하 'SEM')은 주사전자현미경(Hitachi, S-4800, 일본)을 이용하였으며, 투과전자현미경 분석(ransmission Electron Microscope; 이하 'TEM')은 투과전자현미경(Philips, CM-200)을 200 kV로 가속하여 관찰하였고, 고분해능 투과전자현미경 분석(high resolution transmission electron microscopy; 이하 'HRTEM')은 투과전자현미경(TITAN G2 ChemiSTEM Cs Probe electron microscope)을 200 kV으로 가속하여 관찰하였고, X선 회절분석(X-ray diffraction; 이하'XRD')은 Cu Kα(λ= 0.154 nm) 조사를 이용한 X선 회절분석기(XRD, PANalytical, X'Pert-PRO MPD)를 40 kV의 가속전압, 30 mA의 공급전류(applied current) 및 0.101 ˚/s의 스캔속도(2θ)로 관찰하였고, 푸리에변환적외선분광분석(Fourier transform infrared spectroscopy; 이하 'FT-IR')은 FT-IR 분광분석기(Bio-Rad, Excalibur Series FTS 3000)를 이용하였고, 라만분광분석(Raman spectroscopy)은 라만분광기(HORIBA, XploRA plus)(532 nm 레이저 여기)를 이용하여 기록하였고, X선 광전자분광분석(X-ray photoelectron spectroscopy; 이하 'XPS')은 시료의 원소 조성 및 화학적 상태를 조사하기 위해 Al Kα 단색광 조사(monochromatized radiation)를 이용한 X선 광전자분광기(KRATOS, AXIS Nova)로 각각 분석하였다.
도 1을 참조하면, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 합성과정은 두단계로 이루어져 있다.
흑연 박편(graphite flakes)을 산화 및 박리하여 산화그래핀을 생성한 후, 산화아연 씨앗이 환원된 산화그래핀 박판 상에 뿌려지고(제1단계), 이어서 온화한 조건 하에서 산화아연 나노입자가 성장된다(제2단계).
다양한 형상의 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 얻기 위해 간단하고 효율적인 합성절차로 이루어져 있음을 알 수 있다.
산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체는 31.1˚, 33.5˚, 35.4˚, 46.8˚, 56.0˚, 62.3˚, 및 67.6˚ 2θ에서 낮은 강도의 넓은(broad) 산화아연 피크를 갖는 XRD 패턴(도 2(e) 참조)이 관찰되었다.
이는 하기 수학식 1로 표시되는 디바이-셰러 방정식(Debye-Scherrer equation)을 이용하여 (101) 피크로부터 추정되는 0.42 nm의 평균 결정자 크기(Mean crystallite size, d)를 갖는 낮은 결정질(crystalline quality)을 나타낸다.
[수학식 1]
Figure PCTKR2017008024-appb-I000001
상기 λ는 Cu Kα 조사 파장(λ = 0.154 nm), β는 회절 피크의 반치전폭(Full width at half maximum; FWHM), θ는 회절각이다.
흑연의 경우, (002) 결정면에 대응하는 26.0˚ 2θ의 날카로운 피크와, (004) 평면에 대한 54.5˚ 2θ의 약한 피크가 육방정계 흑연(hexagonal graphite)에 할당되었다(도 2(a) 참조).
상기 2개의 피크(26.0˚ 2θ 및 54.5˚ 2θ)는 산화그래핀의 XRD 패턴에서 확인되지 않았고(도 2(b) 참조), 이를 통해 산화 및 박리공정을 통해 흑연에서 산화그래핀으로 완전히 전환되었음을 확인하였다.
아르곤 가스에서 열처리하기 전 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체의 XRD 패턴에서는 산화아연 피크가 나타나지 않았다(도 2(c) 참조).
도 2(b)에 나타낸 산화그래핀의 XRD 패턴과 비교하여, 산화그래핀의 (001) 평면에 대응하는 10.9˚ 2θ에서의 피크가 사라졌다(도 2(c) 참조).
산화그래핀 층의 재적층(restacking)으로 인하여 상기 거동은 Zn2 + 이온과 산소 작용기 간의 상호작용으로 인한 것으로 추정되며, 그 결과, 산화그래핀 층들 간의 거리가 상당히 좁아져 산화그래핀의 (001) 피크가 사라졌음을 알 수 있다.
산화아연 씨앗 형성 과정에서, 23.3˚ 2θ에서 넓은 피크의 존재로 인하여 산화그래핀에서 환원된 산화그래핀으로의 환원이 진행되었는 바, 산화아연 씨앗 성장 단계 이전에 산화그래핀에서 환원된 산화그래핀으로 이미 환원되었음을 알 수 있다(도 2(d) 및 도 2(e) 참조).
준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매는 산화아연 나노입자의 우르트사이트 육방구조(wurtzite hexagonal structures)(JCPDS no. 36-1451)의 (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), 및 (202)의 격자면에 해당하는 특징적인 XRD 피크를 명확하게 나타내었다(도 2(f) 내지 도 2(h) 참조).
23.3˚ 2θ에서 환원된 산화그래핀의 피크강도가 나노복합체 광촉매의 산화아연 피크와 비교하여 매우 약하기 때문에, 준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 XRD 패턴에서 환원된 산화그래핀의 피크는 관찰되지 않았다(도 2(f) 내지 도 2(h) 참조).
또한, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매는 다른 결정성 불순물이 없는 상태에서도 성공적으로 합성되었으나, 도 2에서 점선 영역으로 둘러싸인 부분의 확대도를 참조하면, (100), (002) 및 (101) 평면에 대한 XRD 피크의 이동이 관찰되었다.
더 작은 브래그 각도(Bragg's angle)쪽으로의 피크 이동은 반응하는 동안 사용된 용매의 효과에 기인할 수 있다.
구체적으로, 반응 중에 탈이온수의 양이 50 부피%에서 20 부피%로 감소하면 피크가 기준 피크에서 더 멀리 이동하게 된다.
이러한 변화는 산화아연 나노입자와 환원된 산화그래핀 간의 상호작용 또는 구조 내의 격자변형의 결과로서 격자변형 뿐만 아니라 산화아연 나노입자의 크기와 구조의 변화에 기인한다.
산화그래핀에서 환원된 산화그래핀으로 환원됨에 따라 풍부한 산소 함유 작용기의 감소를 확인하기 위해, 4000 ~ 400 cm-1의 FT-IR 분광학을 통해 순수한 산화그래핀, 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체 및 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 특성을 분석하였다.
순수한 산화그래핀의 경우, 3209 cm-1을 중심으로 하는 넓은 흡수 피크가 O-H 신축진동에 할당되었다.
순수한 산화그래핀은 1,730 cm-1(산화그래핀 박판의 가장자리에서 카르복실기 -COOH의 C=O 신축진동), 1,627 cm-1(sp2 혼성화 C=C기 또는 카르복실기 -COOH 또는 흑연 도메인의 골격진동의 O-H 변형진동으로부터 변경 가능한 진동), 1394 cm-1(3차 C-OH의 O-H 변형진동), 1160 cm-1(C-O 신축진동), 1043 cm-1(알콕시 C-O 진동), 및 876 cm-1(에폭시 진동)의 FT-IR 스펙트럼을 나타내었다.
산소 작용기에 해당하는 피크는 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체의 스펙트럼과 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 스펙트럼에서 사라졌다. 이를 통해 산화그래핀에서 환원된 산화그래핀으로 환원되었음을 확인하였다.
또한, 순수한 산화그래핀의 스팩트럼에서 1627 cm-1 피크가, 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체에 대해 1551 cm-1로 이동하고, rZG 나노복합체 광촉매 및 dZG 나노복합체 광촉매에 대해서는 1565 cm-1, sZG 나노복합체 광촉매에 대해서는 1553 cm-1으로 이동되었음을 관찰하였다.
상기 피크의 변화는 편광시킬 수 있는 방향족고리에서 π전자 상호작용이 양이온-π 상호작용으로의 변형 또는 산화아연 나노입자가 부착된 산화그래핀 표면 상에 존재하는 수산화기 및 에폭시기 간의 배위로 인한 것이다.
또한 C-O-Zn 결합에 할당된 산화아연 나노입자를 함유한 모든 시료에서 1230 cm-1에 새로운 흡수피크가 나타났다.
통상적으로 500 cm-1 이하에서 관찰되는 Zn-O 신축진동이 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체, rZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 sZG 나노복합체 광촉매에서 각각 453, 403, 405 및 406 cm-1 피크가 관찰되었다.
관찰된 변화는 산화아연 씨앗의 성장과정에서 환원된 산화그래핀 박판들 간에 산화아연 나노입자의 삽입에 의한 것일 수 있다.
피크강도의 현저한 감소, 관찰된 이동, 일부 피크의 소실 및 새로운 피크의 형성은 산화그래핀의 환원된 산화그래핀으로의 효과적인 환원 및 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 형성을 입증 할 수 있다.
라만 분광법은 산화그래핀과 환원된 산화그래핀의 구조변화와 나노복합체 광촉매에서 산화아연 나노입자의 존재를 확인하는 또 다른 효과적인 도구이다.
도 3b를 참조하면, 산화그래핀의 라만스펙트럼은 1366 cm-1(D-밴드) 및 1591 cm-1(G-밴드)의 두 개의 특징적인 피크가 존재한다.
D-밴드는 A1g symmetry의 k-point phonon의 breathing mode와 일치하며, 이는 그래핀 박판의 가장자리에 있는 무질서(disorder)와 결함(defect)에 할당된다.
G-밴드는 탄소원자의 sp2 결합의 평면 내 E2g optical phonon mode과 관련된다.
또한, 산화그래핀 및 환원된 산화그래핀 구조에서의 무질서도를 평가할 수 있도록 피크강도비(ID/IG)를 산출하였다.
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매(sZG 나노복합체 광촉매)에 대한 피크강도비(ID/IG = 1.006)가 산화그래핀에 대한 피크강도비(ID/IG = 0.861) 보다 크게 나타난 것은 sp2 도메인의 형성 및 환원된 산화그래핀 구조의 무질서 및 결함 정도의 증가에 기인한 것이고, 이를 통해 산화그래핀에서 환원된 산화그래핀으로의 환원 및 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매에서의 환원된 산화그래핀의 존재를 확인할 수 있다.
sZG 나노복합체 광촉매에서 산화그래핀의 G-밴드의 청색이동(blue-shift)을 확인(1597.43 cm-1에서 1591.54 cm-1로 이동)함으로써 sZG 나노복합체 광촉매에서 C-O-Zn 결합의 형성을 추가적으로 확인하였다.
대략 6 cm-1의 청색이동은 나노복합체 광촉매에서 C-O-Zn 결합의 형성 및 산화아연 나노입자와 환원된 산화그래핀 간의 강한 화학적 상호작용을 나타낸다.
도 3b의 점선 영역으로 둘러싸인 확대된 이미지를 참조하면, 우르트사이트 산화아연 나노입자 상에 328 cm-1에서 2E2(M) 및 434 cm-1에서의 비극성 광학 포논 E2(H)를 포함하는 2개의 특징적인 진동모드를 갖는 sZG 나노복합체 광촉매의 라만스펙트럼을 나타내고 있다.
sZG 나노복합체 광촉매의 산화상태 및 원소조성의 특징을 나타내고, 산화그래핀이 환원된 산화그래핀으로 환원된 것을 확인하기 위해 XPS를 수행하였다(도 4a 내지 도 4d 참조).
도 4a의 탐사스펙트럼(survey spectrum)은 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매에 존재하는 3가지 주성분인 Zn, O 및 C의 존재를 나타내었다.
Zn 2p 핵심수준(core level)의 고분해능 XPS 스펙트럼은 Zn 2p3 /2와 Zn 2p1 /2를 나타내고 있으며, 상기 2개의 피크는 23.1 eV의 스핀궤도 분리(spin-orbit splitting, △E)를 가지며, 각각 1021.4 eV와 1045.5 eV를 중심으로 하는 주 피크를 나타내고 있다. 이는 오로지 나노복합체 광촉매에서 Zn(Ⅱ) 산화상태를 나타낸다.
C 1s 및 O 1s 스펙트럼은 산화그래핀의 환원 및 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 합성하는 동안 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 형성을 평가하기 위해 백그라운드 보정(background correction) 후에 가우시안 함수(Gaussian function)를 사용하여 조정하였다.
O 1s의 핵심수준 피크는 530.9 eV(Zn을 갖는 격자 산소결합; Zn-O 결합), 532.2 eV (C-O-Zn, C-O, C=O 결합 또는 표면흡착 산소성분) 및 533.2 eV(C-O 결합)의 3개의 주 피크로 이루어져 있으며, 이를 통해 산화아연 나노입자와 환원된 산화그래핀 간의 화학결합이 형성되었음을 확인하였다.
역회선분리된(deconvoluted) C 1s 스펙트럼은 284.5 eV, 285.4 eV, 288.3 eV 및 290.3 eV에서 4개의 피크를 나타내었다(도 4d 참조).
상기 284.5 eV, 285.4 eV, 및 288.3 eV 피크는 비산소화된 C-C 또는 C=C 결합, C-O-C(에폭시) 결합 및 C=O(카르보닐 또는 카르복실레이트) 결합에 각각 할당되었다.
그러나 290.3 eV 피크는 π-π* 위성 피크에 할당되며, 이는 합성과정에서 결함을 자가 복구하거나 또는 산화그래핀의 환원에 따라 다른작용기(카르복실레이트, 에폭사이드 또는 수산기)로 변형됨으로써 방향족구조가 회복되었음을 나타낸다.
탄소-금속(carbon-metal; C-M) 결합에 대한 283.3 eV 피크는 검출되지 않았고, 이를 통해 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매에서 C-Zn 결합의 부재를 확인하였다.
또한, 산화그래핀의 환원된 산화그래핀으로의 환원정도를 XPS를 통하여 확인하였다.
도 5 및 도 6(d)는 각각 산화그래핀 및 sZG 나노복합체 광촉매의 전형적인 C 1s XPS 스펙트럼을 나타내고 있다.
산화그래핀의 경우, 역회선분리된 스펙트럼은 284.4 eV에서 C-C 및 C=C 결합, 285.3 eV에서 C-O 결합, 288.7 eV에서 O-C=O(카르복실레이트) 결합 및 287.2 eV에서 O-C-O(C=O) 결합에 해당하는 4개의 가우시안 피크를 나타내었다(도 5 참조).
반면에, sZG 나노복합체 광촉매의 C 1S 스펙트럼은 C-C/C=C 결합에 해당하는 피크강도에서 상당한 증가, O-C=O 결합의 면적율(relative area percentage) 감소 및 287.2 eV에서 C=O 결합의 사라졌음을 나타내었고, 이를 통해 산화그래핀에서 환원된 산화그래핀으로의 환원을 확인하였다(표 1 참조).
시료 sZG 나노복합체 광촉매 산화그래핀
결합 C-C/C=C C-O O-C=O C-C/C=C C-O O-C=O O-C=O(C=O)
결합 에너지(eV) 284.5 285.4 288.3 284.4 285.3 288.7 287.2
영역(Area) 31302.2 52667.2 8173.6 15941.3 45942.4 18754.7 75500.8
면적율(%) 31.2 52.5 8.1 10.2 29.4 12.0 48.4
상기 표 1에 나타낸 결과는 FT-IR 및 라만 데이터 결과와 일치한다.
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 형태는 SEM에 의해 관찰되었다.
오로지 무수에탄올로 이루어진산화아연 씨앗 성장용매를 이용할 경우, 산화아연 나노입자는 나노구형의 형상을 가지며, 환원된 산화그래핀 표면과 환원된 산화그래핀 박판의 가장자리에 균일하게 분포되었고, 층간 산화아연 나노입자의 삽입도 관찰할 수 있었다(도 7(d) 참조).
무수에탄올과 탈이온수가 1 : 0.25의 부피비로 이루어진 산화아연 씨앗 성장용매를 이용할 경우 산화아연 나노입자는 나노육각판의 형상을 가지며, 무작위로 배열된 나노육각판와 같은 구조는 환원된 산화그래핀 박판에서 발견될 수 있다(도 7(c) 참조).
무수에탄올과 탈이온수가 1 : 1의 부피비로 이루어진 산화아연 씨앗 성장용매를 이용할 경우 더 큰 입자크기를 갖는 짧은 나노막대 형상의 산화아연 나노입자가 얻어졌고, 환원된 산화그래핀 박판에 부착된 짧은 나노막대는 육각형의 우르트사이트 구조를 가지고 있음을 확인하였다(도 7(b) 참조).
대조적으로, sZG* 나노복합체 광촉매(비교예 1), dZG* 나노복합체 광촉매(비교예 2) 및 rZG* 나노복합체 광촉매(비교예 3)의 SEM 이미지를 살펴하면, 환원된 산화그래핀 표면 상에 부착된 산화아연 나노입자는 나노구형, 나노육각판, 및 나노막대의 형상을 나타내지 않았다(도 8 참조).
산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체 대신에 산화그래핀 박판을 이용할 경우(비교예 1 내지 비교예 3 참조), 음전하의 산화그래핀 표면과 양전하의 아연-암모늄 복합체 간의 약한 정전기력 때문에 환원된 산화그래핀 박판 표면 위에 짧은 나노막대, 나노육각판 및 나노구형이 형성되지 않아 반응 중에 산화아연 나노입자가 그 자리에서(in-situ) 부착이 되지 않음을 알 수 있다.
또한, HMTA의 부재 하에 반응을 진행할 경우(비교예 4 참조), 환원된 산화그래핀 표면 위에 산화아연 씨앗의 성장에 따른 구조의 발현을 방해할 수 있음을 나타내었다(도 6 참조).
상기 결과는 용매의 특성 외에도, 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체가 존재하고, HMTA를 이용하면 환원된 산화그래핀 박판 표면 위에 산화아연 씨앗 결정이 나노막대, 나노육각판 및 나노구형으로 성장할 수 있음을 확인하였다.
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 형성을 위한 제안된 메커니즘은 하기 수학식 2 내지 수학식 6과 같다.
[수학식 2]
Figure PCTKR2017008024-appb-I000002
[수학식 3]
Figure PCTKR2017008024-appb-I000003
[수학식 4]
Figure PCTKR2017008024-appb-I000004
[수학식 5]
Figure PCTKR2017008024-appb-I000005
[수학식 6]
Figure PCTKR2017008024-appb-I000006
이 경우, 4자리 배위 리간드인 (CH2)6N4 ('HMTA')는 금속이온(Zn2 +)을 결합시켜 금속이온(Zn2 +)의 공극 4s 오비탈과 질소의 고립전자쌍 간의 배위를 통해 고농도 암모늄을 갖는 매질(medium)에서 아연-암모늄 복합체를 형성하는 데에 중요한 역할을 한다.
아연-암모늄 복합체는 주로 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체와 상호작용할 수 있으며, 수열반응조건 하에서 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 형성을 촉진할 수 있다.
가열 상태에서의 HMTA의 가수분해는 NH3 및 [Zn(NH3)4]2+와 같은 중간체의 형성을 초래한다(수학식 3 참조).
Zn2 +와 NH3의 복합체는 환원된 산화그래핀 상에서 산화아연 씨앗의 성장을 제어하는 무수에탄올에서 느린 속도로 발생한다. 그러나 상기 공정은 탈이온수의 존재 하에서 강력하게 일어난다. 따라서 NH3와 [Zn(NH3)4]2+의 형성속도는 환원된 산화그래핀 상에서 성장되는 산화아연 나노입자의 입자크기와 형태에 큰 영향을 미친다.
또한, 용매는 산화아연 나노입자의 구조의 성장거동을 조절하는 중요한 요소로 고려된다. 여기서, 결정의 표면 에너지와 관련된 계면-용매 상호작용뿐만 아니라 유전상수 및 포화증기압과 같은 반응용액 내의 용매특성 또한 고려하였다.
구체적으로, 산화아연 씨앗 용매에 탈이온수 함량을 증가시킬 경우, 용매 혼합물의 분극화를 증가시키며, 이것은 무수에탄올과 탈이온수의 혼합용매에서 포화증기압의 변화를 야기하였고, 이는 다양한 형상을 갖는 산화아연 나노입자의 형성과 관련이 있을 수 있다.
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 형태를 추가적으로 분석하기 위해 TEM 및 HRTEM을 이용하였다.
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 TEM 이미지는 불투명하고 얇은 환원된 산화그래핀 박판 상에 짧은 나노막대, 나노육각판 및 나노구형의 산화아연 나노입자가 부착되어 있음을 나타내고 있다(도 9(a1) 내지 도 9(c1) 참조).
구체적으로, rZG 나노복합체 광촉매의 취약점은 넓은 입자크기분포를 가지는 것이며(도 9(a1) 참조), 무수에탄올과 탈이온수로 이루어진 혼합용매에 탈이온수의 함량이 증가할 경우 가수분해 과정에서 높은 NH3 생성 속도로 인해 제어되지 않는 입자크기를 초래할 수 있다.
환원된 산화그래핀 박판 상에 누운 배향(lying orientation) 및 프리-스탠딩 배향(free-standing orientation)을 갖는 나노육각판의 형상을 갖는 산화아연 나노입자가 명확히 관찰되었다(도 9(b1) 참조).
sZG 나노복합체 광촉매의 TEM 이미지는 환원된 산화그래핀 박판 표면 위에 부착된 균일한 나노구형의 산화아연 나노입자를 나타내고 있다(도 9(c1), 도 10 및 도 11 참조).
또한, HRTEM 이미지를 면밀히 관찰하면, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매는 (101), (104), 및 (202) 평면의 면 간격(interplanar spacing)에 해당하는 0.25, 0.13 및 0.12 nm(d-간격)를 포함한 잘 분해된(well-resolved) 격자 줄무늬(lattice fringes)가 나타남을 알 수 있다(도 9(a2) 내지 도 9(c2) 참조).
또한, 환원된 산화그래핀 박판과 산화아연 나노입자 구조 사이의 계면은 환원된 산화그래핀 및 산화아연 나노입자 상경계(phase boundary) 영역에서 명확하게 관찰되었으며, 이를 통해 나노복합체 광촉매에서 산화아연 나노입자와 환원된 산화그래핀 사이의 우수한 상호작용을 확인하였다.
고유한 띠(band)구조, 입자크기 및 비표면적과 같은 광촉매물질의 활성에 영향을 주는 많은 요인들 중에서, 촉매의 결정화도 역시 광촉매활성을 향상시키는데 유익하다는 것이 밝혀졌다.
구체적으로, 제한시야전자회절(selected area electron diffraction; 이하 'SAED')을 이용하여 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 우수한 결정도를 확인하였다(도 9(a3) 내지 도 9(c3) 참조).
또한, sZG 나노복합체 광촉매에서 원소성분의 존재를 확인하기 위해 에너지분산형 X선 분석(energy-dispersive X-ray spectroscopy; EDX) 매핑을 수행하였고(도 9(d) 참조), 원소지도는 sZG 나노복합체 광촉매의 제한시야에서 탄소(C), 산소(O) 및 아연(Zn)의 균일한 분포를 나타내었다.
또한 EDX 스펙트럼을 통해 sZG 나노복합체 광촉매에서 C, O 및 Zn의 존재를 확인하였다. 구체적으로, EDX 스펙트럼에서 약 8 eV의 피크가 TEM 그리드(TEM grid)로부터 구리(Cu)에 할당되었다(도 9(d) 참조).
<실험예 2> BET 표면적 분석
-196℃에서 질소 흡착-탈착기(3Flex, Micromeritics Instruments Corp.)를 이용하여 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 브루나우어-에메트-텔러(Brunauer-Emmett-Teller; 이하 'BET') 비표면적(BET specific surface area; 이하 'SBET')을 조사하였다.
흡착-탈착실험 전에, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 200℃에서 24시간 동안 탈기(degassed)시켰다.
SBET는 BET방정식을 적용하여 얻었다.
sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매의 N2 흡착-탈착 등온선을 분석하였다(도 12 참조).
IUPAC 분류에 따르면, sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매는 메조기공(mesoporous) 구조를 나타내는 IV형 등온선을 나타내었다(도 12 참조).
sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매의 비표면적(SBET)은 각각 84.6 m2/g, 61.3 m2/g 및 38.6 m2/g으로 산출되었다.
상기 산출된 비표면적(SBET)은 종래 산화아연 막대 형상의 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매(36.93 m2/g) 및 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매(23.6863 m2/g 및 23.8 m2/g)보다 훨씬 높게 나타났다.
촉매의 비표면적이 크면 촉매의 분해능을 향상시킬 수있는 흡착-반응 활성 부위가 많이 존재한다는 것을 의미한다.
시료 겉보기 속도상수(apparent rate constant) (k, min-1) 분해효율(degradation efficiency, %) SBET(m2/g) 띠간격(eV)
rZG 나노복합체 광촉매 MB RhB MB RhB
0.0169 0.0141 68.6 61.7 38.6 3.06
dZG 나노복합체 광촉매 0.0225 0.0224 79.9 77.8 61.3 2.93
sZG 나노복합체 광촉매 0.0642 0.0610 98.8 97.7 84.6 2.85
<실험예 3> UV-vis 분광학(UV-vis spectroscopy) 분석
UV-vis-NIR 분광광도계(Varian Cary 5000)를 사용하여 200 nm에서 800 nm의 파장 범위에서 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 자외선-가시광선 확산반사스펙트럼(UV-vis diffus reflectance spectra; 이하 'UV-vis DRS') 및 자외선-가시광선 스펙트럼(UV-vis spectra; 이하 'UV-vis 스펙트럼')을 얻었다.
광학적 연구는 UV/vis-NIR 분광광도계를 이용하여 상온에서 200 nm에서 800 nm의 범위에서 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 광흡수를 분석하였다(도 13a 참조).
준비한 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매, 및 rZG 나노복합체 광촉매는 400 nm 이하의 파장에서 강한 흡수를 보였으며, 이는 UV 여기 하에서 원자가띠(valence band)에서 전도띠(conduction band)로의 전자여기에 인한 산화아연 나노입자의 본질적인 띠간격(band gap)의 결과이다.
가시광선(400 ~ 800 nm) 영역의 흡수 경향은 모든 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매, 및 rZG 나노복합체에 대해 비교적 안정적이었다.
한편, sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매 중에서 sZG 나노복합체 광촉매는 UV-Vis 스펙트럼에서 가장 강한 흡수를 나타내었다.
상기 결과를 고려할 때, sZG 나노복합체 광촉매의 광이용(light utilization)이 dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매 보다 더 효과적이라고 결론 내릴 수 있다.
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 광학 띠간격은 타우츠 선도(Tauc plot)에 대한 하기 수학식 7을 이용하여 산출하였다.
[수학식 7]
Figure PCTKR2017008024-appb-I000007
상기 hν는 광자에너지(eV), α는 흡수계수, A는 비례상수, Eg는 띠간격(eV)이다.
지수 n은 전자 전이의 특성에 따라 달라진다. 직접 허용된 전이의 경우 n은 1/2이고, 직접 금지된 전이의 경우 n은 3/2이고, 간접적 허용된 전이의 경우 n은 2이고, 간접적 금지된 전이의 경우 n은 3이다.
산화아연 나노입자는 직접 허용된 전이와 함께 직접 반도체(direct semiconductor) 그룹에 속한다.
따라서, 상기 식 7은 하기 식 8로 다시 표현할 수 있다.
[수학식 8]
Figure PCTKR2017008024-appb-I000008
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 띠간격은 직선 영역을 외삽(extrapolating)하여 타우츠 선도(Tauc plot)[(hνα)2 vs. hν)]로부터 추정하였다.
sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매의 띠간격은 벌크 산화아연 나노입자(3.37 eV)보다 훨씬 낮은 2.85 eV, 2.93 eV 및 3.06 eV로 각각 추정된다(도 13b 참조).
상기 결과는 광 띠간격 에너지 및 광촉매활성 간의 좋은 상관 관계를 나타내었다.
<실험예 4> 열중량분석
준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 열중량분석(Thermogravimetric analysis; 이하 'TGA')은 10 ℃/min의 속도로 상온에서 900℃까지 가열하면서 공기 분위기에서 열중량분석기(TA Instruments SDT Q600 thermogravimetric analyzer)로 수행하였다.
sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매의TGA 곡선으로부터, 20 ~ 120℃, 120 ~ 250℃ 및 250 ~ 500℃의 온도범위에 해당하는 중량손실은 각각 흡착된 물의 손실(대략 3 내지 5 %), 산소함유 작용기의 점진적 손실 및 그래핀의 전소(burn-out)에 의한 것임을 확인하였다(도 14 참조).
TGA는 rZG 나노복합체 광촉매, sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체에 포함된 산화아연 나노입자의 중량을 나타냈고, 이는 각각 78.6%, 77.8%, 74.2% 및 43.2%이었다.
rZG 나노복합체 광촉매, sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 중에서 산화아연 나노입자 함량의 작은 차이에 기초하여, 이것이 광촉매활성의 비교에 크게 영향을 미치지 않는다는 것을 제안 할 수 있다.
<실험예 5> 광발광 스펙트럼 분석
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 광발광(photoluminescence; 이하 'PL') 스펙트럼 분석은 상온에서 325 nm의 레이저 파장 여기에서 광발광 분광계(photoluminescence spectrometer, HORIBA scientific)로 기록하였다.
PL 분광학은 실온 및 325 nm 레이저의 여기 하에서 PL 방출 신호의 기록을 통해 광 발생된 전자-정공 쌍의 재결합율를 평가하는 데 효과적인 도구이다.
본질적으로, PL 스펙트럼의 보다 큰 방출강도는 전하 캐리어의 높은 재조합 률을 반영하며, 이것은 촉매의 광촉매활성을 방해한다.
sZG 나노복합체 광촉매의 방출강도는 rZG 나노복합체 광촉매, 및 dZG 나노복합체 광촉매 보다 낮았으며(도 15 참조), 가장 낮은 방출강도를 가짐으로써 가장 효과적인 전하 분리를 야기하고, 이를 통해 MB 및 RhB 분해에 대해 가장 높은 광촉매활성을 나타내었다.
<실험예 6> 광촉매활성 분석
중심 파장이 365 nm 파장을 갖는 40 W UV 램프(UV 광원, λ = 365 nm)를 이용하여 UV 조사 하에서 실시예 및 비교예에 따라 제조된 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 염료분해를 통해 광촉매활성을 평가하였다.
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 광분해효율을 결정하기 위해 폐수에서 모델 오염원으로 MB와 RhB를 사용하였다.
광반응은 광화학 반응기에서 실온에서 수행되었다.
통상적인 방법으로 염료용액(0.1 g/ℓ) 50 ㎖에 준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 5 ㎎을 첨가하였다.
염료와 촉매 사이의 흡착-탈착 평형에 도달하게 하기 위해, UV 램프를 작동하기 전에 반응혼합물을 암 조건 하에서 30분 동안 교반하였다.
그 후 UV 램프를 작동하고, 10분의 발광 간격에서, 3 ㎖ 분취액을 회수하고 13,000 rpm에서 10분 동안 원심분리하여 준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 제거하였다.
광분해하는 동안 각각 664 nm 및 553 nm에서 MB 및 RhB 용액의 흡광도를 측정하여 분광광도계로 잔류염료농도를 모니터링 하였다.
준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매와 환원된 산화그래핀의 광촉매활성을 비교하기 위해 실온에서 60분 동안 UV를 조사하여 MB와 RhB의 광분해를 진행하였고(도 16a 내지 도 16d 참조), 두 가지 염료에 대해 바탕시험(blank test)을 수행하였다.
바탕시험 결과는 UV 조사 하에서 염료농도가 변하지 않았음을 나타냈고, MB 및 RhB 염료의 높은 화학적 안정성을 나타내었다.
환원된 산화그래핀 시료는 무시할 수 있는 광분해로 염료의 강한 흡착을 나타내었다. 그러나 rZG 나노복합체 광촉매, sZG 나노복합체 광촉매, 및 dZG 나노복합체 광촉매가 존재할 때, MB와 RhB의 농도는 UV 조사 60분 후에 상당히 감소하였다(도 16a 및 도 16c 참조).
동일한 초기 염료농도(10 ppm)와 촉매 투입량(0.1 g/ℓ)을 사용하였을 때 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매, 및 rZG 나노복합체 광촉매의 MB 에 대한 광분해효율은 각각 98.8%, 79.9% 및 68.6%이고, RhB에 대한 광분해효율은 각각 97.7%, 77.8%, 및 61.7%이었다.
염료흡착능력은 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 광분해능을 촉진 시키는데 중요한 역할을 한다.
도 16a는 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매, 및 rZG 나노복합체 광촉매의 염료흡착능력을 나타낸 것으로서, 어둠 속의 10 ppm MB 용액에서 30분간의 흡착-탈착 평형 후의(도 17 참조) sZG 나노복합체 광촉매의 염료흡착능력은 30.7%로서 dZG 나노복합체 광촉매(20.5%) 및 rZG 나노복합체 광촉매(13.2%)보다 훨씬 높음을 보여주었다.
상기 염료흡착은 MB 분자와 환원된 산화그래핀의 방향족고리들의 상호작용에서 π-π 결합(conjugation)을 통한 오프셋 인쇄식의 대면배향에 기인한 것이다.
더 높은 분자량과 보다 복잡한 구조를 갖는 RhB 분자는 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매의 흡착용량을 현저하게 억제하였으며, 용액 내의 RhB 분자에 대해 sZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 rZG 나노복합체 광촉매는 각각 14.6%, 10.9% 및 9.6 %를 흡착하였다.
상기 결과는 나노복합체 광촉매의 비표면적과 관련하여 설명 될 수 있다.
sZG 나노복합체 광촉매의 가장 높은 광촉매활성 특성은 큰 비표면적에 의해 제공된 다수의 흡착/반응 부위에 기인한다.
비교를 위해, UV 조사 하에서 10 ppm MB 용액을 사용하여 sZG* 나노복합체 광촉매, dZG* 나노복합체 광촉매 및 rZG* 나노복합체 광촉매에 대한 광촉매 테스트를 수행하였다(도 18 참조).
60분 후에 dZG* 나노복합체 광촉매 및 rZG* 나노복합체 광촉매는 매우 작은 MB광분해를 나타내었으나, sZG* 나노복합체 광촉매는 MB의 44.5%를 분해할 수 있었다(도 19 참조).
UV 조사 하에서 MB 및 RhB의 광촉매 분해속도(photocatalytic degradation kinetics)는 유사 일차속도식(pseudo-first-order kinetics)을 따른다(도 15(b) 및 도 15(d) 참조).
[수학식 9]
Figure PCTKR2017008024-appb-I000009
상기 C는 용액 내 염료의 잔류 농도, C0는 흡착-탈착 평형 후 염료의 초기 농도, k는 겉보기 속도상수(min-1)이다.
상기 표 2는 10 ppm MB 및 10 ppm RhB의 광분해에 대하여 산출한 속도상수를 나열하고 있다. 나열된 값 중에서 UV 조사 하에서 sZG 나노복합체 광촉매를 사용하였을 때 MB(0.0642 min-1) 및 RhB (0.0610 min-1)의 속도상수가 가장 높았다.
촉매량에 따른 광분해효율을 알아보기 위해 sZG 나노복합체 광촉매를 0.1 g/ℓ, 0.2 g/ℓ, 및 0.3 g/ℓ로 변화시켜 MB(10 ppm) 분해실험을 수행하였다.
자외선 조사 후 0.2 g/ℓ의 sZG 나노복합체 광촉매를 이용하여 30분이 경과하였을 때 98.1%의 MB 분해효율을 얻었고, sZG 나노복합체 광촉매의 투입량을 0.3 g/ℓ로 증가시키니 동일한 조건에서 20분이 경과하였을 때 97.8%의 분해효율이 얻어졌다.
MB 용액에서 촉매량이 증가함에 따라 흡착능력 또한 증가하였다(도 20a 참조).
촉매량을 증가시키면 총 표면적 및 활성부위의 수가 증가하여 보다 짧은 시간 내에 MB의 흡착 및 제거효율이 증가하게 된다.
염료농도에 따른 염료제거효율을 알아보기 위해 UV 조사 하에서 sZG 나노복합체 광촉매(0.1 g/ℓ)를 이용하였다.
초기농도가 10, 15 및 20 ppm인 RhB 용액을 이용하였다(도 20b 참조).
RhB의 농도를 증가시켰을 때 60분 후의 광분해효율은 15 ppm의 RhB 용액에서는 17.1%, 20 ppm의 RhB 용액에서는 42.3%가 감소한 것으로 나타났다.
RhB 농도의 증가는 촉매 표면 위에 흡착된 염료의 양을 증가시킬 뿐만 아니라 벌크 RhB 용액 및 흡착된 층과 촉매 표면의 계면에서 여과 효과를 갖는다.
상기 효과는 대량의 입사 UV 광이 벌크 용액을 통과하여 촉매 표면에 도달하는 것을 방해하여 광촉매활성을 감소시킨다.
<실험예 7> 광촉매반응 메커니즘
산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매에서 산화아연 반도체의 전도띠와 원자가띠는 다음의 실험식을 사용하여 결정될 수 있다.
[수학식 10]
Figure PCTKR2017008024-appb-I000010
[수학식 11]
Figure PCTKR2017008024-appb-I000011
상기 ECB와 EVB는 각각 띠간격이 Eg인 반도체의 전도띠 끝(conduction band edge; ECB) 및 원자가띠 끝(valence band edge; EVB)이고, χ는 구성 원자의 전기음성도의 기하 평균인 멀리컨(Mulliken) 전기음성도를 나타낸다.
산화아연 나노입자의 경우 χ가 5.790일 때, 진공 상태에서 상기 수학식 10 및 수학식 11로 얻은 전도띠와 원자가띠는 각각 -4.36 eV와 -7.21 eV이었다.
광촉매 메커니즘을 더 자세히 조사하고, 광분해반응에 관여하는 지배적인 활성산화종을 확인하기 위해, 포집(trapping) 또는 포착(scavenging)실험을 수행하였다.
포집 또는 포착실험은 포착제(scavengers) 화합물, 즉, 수산화 라디칼, 정공 및 초산화(superoxide) 라디칼 각각에 대해 즉 0.2 M t-부틸 알코올(tert-butyl alcohol; TBA), 0.2 M 탄산수소나트륨(sodium hydrogen carbonate, NaHCO3) 및 1 mM p-벤조퀴논 (p-benzoquinone; 이하 'BZQ')을 사용하였고, UV 조사 전에 염료용액에 첨가하였다.
염료분해과정의 광촉매 메커니즘을 분석하기 위해 주성분인 반응성물질을 포집제 또는 포착제를 첨가하여 확인하였다.
TBA, NaHCO3, 및 BZQ을 첨가하였을 때, 특히 BZQ(1 mM)와 TBA(0.2 M)를 첨가한 후 RhB의 분해가 감속되었는데, 이는 UV 조사 하에서 초산화(O2 ·-) 라디칼과 수산화 라디칼(·OH)이 RhB의 분해에 관여하는 주요 활성산화종이라는 것을 의미한다(도 19(c) 참조).
또한, 광분해과정에서 정공(hVB +)의 역할도 있다.
상기 결과를 바탕으로, 본 발명에 따라 제조된 sZG 나노복합체 광촉매에 대한 염료의 광분해메카니즘은 하기 수학식 12 내지 수학식 20으로 나타낼 수 있다(도 21 참조).
[수학식 12]
Figure PCTKR2017008024-appb-I000012
[수학식 13]
Figure PCTKR2017008024-appb-I000013
[수학식 14]
Figure PCTKR2017008024-appb-I000014
[수학식 15]
Figure PCTKR2017008024-appb-I000015
[수학식 16]
Figure PCTKR2017008024-appb-I000016
[수학식 17]
Figure PCTKR2017008024-appb-I000017
[수학식 18]
Figure PCTKR2017008024-appb-I000018
[수학식 19]
Figure PCTKR2017008024-appb-I000019
[수학식 20]
Figure PCTKR2017008024-appb-I000020
UV 여기 하에서 촉매 표면에서 일어나는 전자전달과정은 진공 대비 에너지 수준(E, eV vs. 진공)을 기반으로 설명되었으며, 대전된 전하운반체가 그래핀이 존재할 때 효율적으로 분리되는 구체적인 증거를 부분적으로 제시하였다(도 21 참조).
촉매가 UV에 노출되면, 전자는 원자가띠로부터 전도띠로 여기되어 정공 (positive hole)을 남긴다(수학식 12 참조).
근본적으로, 광발생된 전자 및 정공은 쉽게 재결합하여 안정한 에너지 상태에 도달한다.
반면에, 환원된 산화그래핀(-4.42 eV)의 일 함수는 전도띠에서 산화아연 나노입자의 전위보다 더 음이기 때문에(ECB= -4.36 eV vs. 진공), 산화아연 나노입자의 전도띠에서 여기된 전자(e- CB)는 환원된 산화그래핀 박판으로 옮겨질 것이다(수학식 13 참조).
산화환원전위(O2/O2 ·-)[(E0 (O2/O2 ·-) = -4.45 eV vs 진공)는 산화아연 나노입자 전도띠의 위치와 환원된 산화그래핀의 일 함수보다 낮기 때문에 환원된 산화그래핀 표면 상의 전자 및 산화아연 나노입자 표면 상의 전자의 일부는 수용액의 용존산소를 감소시켜 초산화(O2 ·-) 라디칼을 형성한다(수학식 14, 및 수학식 15 참조).
또한 산화아연 나노입자의 원자가띠에서 광생성된 정공의 산화환원전위(EVB= -7.21 eV vs. 진공)가 표면에 흡수된 H2O를 산화하는 데에 필요로 하는 전위보다 더 음이기 때문에 광 여기 하에서 발생된 정공은 염료분자를 직접 산화시켜 CO2, H2O 및 기타 중간체와 같은 독성이 없는 화합물로 변환시키고, 용액에서 H2O 분자와 상호작용하여 분해과정을 돕는 ·OH 라디칼을 형성한다.
그 결과, 광유도된 전자-정공 쌍의 분리가 현저하게 개선되어 광분해과정에서 일어나는 일련의 반응에 참여하는 전자 및 정공의 수를 증가시켰다.
<실험예 8> 재사용성 테스트 분석
광촉매의 재사용성을 평가하기 위해, 10 ppm MB 용액에 sZG 나노복합체 광촉매(1.0 g/ℓ)를 첨가하고 광촉매 분해반응을 15회 반복하여 재사용성을 분석하였다.
각 광촉매 분해반응을 수행한 후, 처리된 MB 용액으로부터 사용된 sZG 나노복합체 광촉매를 분리하고, 탈이온수로 세척한 후 다음 광분해반응이 진행되기 전에 실온의 진공오븐에서 건조시켜 재사용하였다.
15회 광촉매 분해반응이 완료된 후, 사용된 sZG 나노복합체 광촉매의 표면 형태 및 구조를 조사하였다.
1회 광분해반응 후 99.4% 및 15회 광분해반응 후 96.0%의 분해효율을 얻었고, 15회 사용 후 광촉매 분해효율의 감소폭이 미미함을 알 수 있는 바, 이를 통해 장시간 동안 sZG 나노복합체 광촉매를 사용할 수 있는 가능성이 있음을 보여준다(도 20d 참조).
광분해반응 전 및 15회 반복하여 광분해반응 후 sZG 나노복합체 광촉매의 형태를 나타낸 SEM 이미지를 참조하면 15회 반복하여 사용하였음에도 불구하고 상대적으로 안정한 상태를 유지하였다(도 22 참조).
일반적으로 염료분해반응에서 산화아연 촉매의 광안정성에 대한 제한은 하기 수학식 21에 따른 광부식 현상과 관련이 있다.
[수학식 21]
Figure PCTKR2017008024-appb-I000021
산화아연 나노입자 부착된 환원된 산화그래핀 나노복합체가 장기간의 UV 조사 하에서도 높은 안정성을 갖는 이유는 환원된 산화그래핀 표면에 흡착된 염료분자에 의해 광유발된 정공이 산화아연 나노입자의 고체-용액(solid-solution) 계면으로 이동하는 대신에 효율적으로 소모되기 때문이다(수학식 21 참조).
따라서 환원된 산화그래핀의 도입은 높은 광촉매성능을 위해 전자-정공 쌍을 효과적으로 분리할 뿐만 아니라 산화아연 나노입자와 환원된 산화그래핀 간의 강한 상승작용으로 인해 촉매수명도 향상시킬 수 있다.
<실험예 9> 전기화학 임피던스 스펙트럼(EIS) 분석
EIS 분석은 광촉매시스템의 광발생된 전하 및 이들의 분리효율에 대한 이동거동을 분석하는 강력한 도구이다.
전기화학임피던스분광법(Electrochemical impedance spectroscopy; 이하 'EIS')은 Autolab PGSTAT302 N (Metrohm) 기기를 사용하여 종래의 3-전극 셀 시스템에서 수행되었다.
Ag/AgCl 전극 및 백금(Pt) 전극을 기준전극 및 상대전극으로 각각 사용하였으며, 또한 5 mM K3[Fe(CN)6]에 0.5 M 황산나트륨이 포함되어 있는 전해액을 사용하였다.
작동전극은 불소-산화주석(fluorine-tin oxide; 이하 'FTO') 유리(활성 영역, 1 cm × 1 cm)에 준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 드롭-캐스팅(drop-casting) 법으로 부착하여 제조하였다.
구체적으로, 준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 2 mg을 에탄올 1 ㎖와 나피온(Nafion, 바인더) 10 ㎕와 혼합하여 슬러리(균질)를 만들었다.
이어서 이 균질 혼합물 15 ㎕를 FTO 유리 위에 드롭-캐스팅법으로 부착한 후 주변 조건 하에서 24시간 동안 건조하여 작동전극을 제조하였다.
시료의 임피던스 스펙트럼은 105 Hz (높은 주파수) 내지 0.01 Hz(낮은 주파수)의 주파수 범위에서 기록되었다.
광전류는 Autolab PGSTAT302 N(Metrohm) 기기에서 0.5 V(vs. SEC)로 측정하였다.
준비한 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매는 EIS 분석에서 이용된 동일한 절차로 불소-산화주석(fluorine-tin oxide; 이하 'FTO')유리(활성영역, 1 cm × 1 cm) 위에 드롭-캐스팅(drop-casting)법으로 부착하여 작동전극을 제조하였다.
종래의 3-전극 셀 시스템을 1 M Na2SO4 전해액에 침지시켰다.
10 W UV 램프(λ = 254 nm)를 광원으로 사용하여 몇 번의 300초 동안의 온-오프(on-off) 광조사 순환(cycle) 하에서의 광전류 응답을 측정하였다.
작동전극은 1cm × 1cm의 동일한 조명영역(illuminated area)을 가진다.
임피던스 특성의 기초로 랜들등가회로(Randles equilibrium circuit)를 이용하였고, 여기서 Rs와 Rct는 각각 벌크용액저항과 전하이동저항을 의미한다.
나이퀴스트(Nyquist) 선도에서, 높은 주파수에서의 반원(semicircle)은 고체상태 계면의 저항과 전하이동저항과 관련이 있다.
작은 반원은 표면의 낮은 저항을 나타낸다.
sZG 나노복합체 광촉매의 나이퀴스트(Nyquist) 선도에서 반원은 rZG 나노복합체 광촉매 및 dZG 나노복합체 광촉매보다 작게 나타났다. 이는 sZG 나노복합체 광촉매가 가장 작은 전하이동저항(Rct-sZG = 363.1Ω, Rct-dZG = 483.7Ω 및 Rct -rZG = 713 Ω)을 가짐을 의미한다(도 23a 참조).
sZG 나노복합체 광촉매는 광발생된 전하의 가장 빠른 계면이동과 나노복합체 광촉매의 계면에서 전자-정공 쌍의 가장 효과적인 재조합 방지을 통해 결과적으로 염료분해과정에서 가장 빠른 속도상수를 유도한다.
광전류 과도응답(photocurrent transient response)을 측정함으로써 산화아연 나노입자와 환원된 산화그래핀 간의 전자상호작용뿐만 아니라 각각의 나노복합체 광촉매에서 광유발된 전자-정공 쌍의 분리효율을 분석하였다.
온-오프 순환을 통해 FTO 전극에 부착한 후 UV 조사 하에서 rZG 나노복합체 광촉매, dZG 나노복합체 광촉매 및 sZG 나노복합체 광촉매에 대해 광전류 측정을 수행하였다(도 23b 참조).
sZG 나노복합체 광촉매가 부착된 전극의 광전류(2.03 μA)는 각각 rZG 나노복합체 광촉매가 부착된 전극(0.75 μA)과 dZG 나노복합체 광촉매가 부착된 전극(1.46 μA)보다 약 3배 및 1.4배 높았는데, 이는 광유도된 전자-정공의 분리효율이 가장 높다는 것을 의미하고, 이는 산화아연 나노입자와 환원된 산화그래핀 간의 전자상호작용의 결과로서 EIS 분석 및 광촉매활성 분석결과와 잘 일치한다.
광전류는 반도체에서 환원된 산화그래핀 표면 및 FTO로의 광여기된 전자의 이동에 의해 발생하므로, 이것은 산화아연 나노입자의 구형구조와 환원된 산화그래핀의 존재가 광유도된 전하의 효과적인 분리 및 대규모이동을 촉진하는데 중요한 역할을 한다는 것을 나타낸다.
광흡수, 전하수송, 대전된 전하운송캐리어(charged carriers)의 분리효율 및 비표면적의 향상은 제조된 촉매의 광촉매활성의 향상에 기여하는 핵심 요소이고, 산화아연 나노입자와 환원된 산화그래핀의 효과적인 조합에 의해 달성될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (14)

  1. 환원된 산화그래핀; 및
    상기 환원된 산화그래핀 상에 부착된 산화아연 나노입자
    를 포함하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매.
  2. 청구항 1에 있어서,
    상기 산화아연 나노입자는,
    나노구형, 나노육각판, 또는 나노막대 중 어느 하나의 나노형상을 갖는 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매.
  3. 청구항 2에 있어서,
    상기 나노구형의 나노형상을 갖는 산화아연 나노입자는 평균직경이 5 내지 30 nm 인 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매.
  4. 청구항 2에 있어서,
    상기 나노육각판의 나노형상을 갖는 산화아연 나노입자는 평균직경이 100 내지 400 nm이고, 평균두께가 두께 10 내지 30 nm 인 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매.
  5. 청구항 2에 있어서,
    상기 나노막대의 나노형상을 갖는 산화아연 나노입자는 평균직경이 20 내지 200 nm 인 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매.
  6. 산화그래핀 현탁액에 아연전구체를 첨가한 후 교반하여 제1교반물을 준비하는 단계;
    상기 제1교반물을 원심분리하여 수득한 제1침전물을 건조하는 단계;
    상기 건조된 제1침전물을 열처리하여 산화아연 씨앗(ZnO seeds)이 부착된 환원된 산화그래핀 나노복합체를 준비하는 단계;
    상기 나노복합체를 무수에탄올과 산화아연 씨앗 성장용매에 첨가하는 단계;
    상기 나노복합체가 첨가된 산화아연 씨앗 성장용매에 아연전구체와 환원제를 첨가하고 교반하여 제2교반물을 준비하는 단계;
    상기 제2교반물을 열처리한 후 냉각시키고 원심분리하여 제2침전물을 수득하는 단계; 및
    상기 제2침전물을 세척한 후 건조하여 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매를 제조하는 단계;를 포함하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법.
  7. 청구항 6에 있어서,
    상기 아연전구체는,
    초산아연(zinc acetate), 질산아연(zinc nitrate), 황산아연(zinc sulfate), 인산아연(zinc phosphate), 불화아연(zinc fluoride), 염화아연(zinc chloride) 및 요오드화아연(zinc iodate)으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법.
  8. 청구항 6에 있어서,
    상기 제1교반물을 원심분리하여 수득한 제1침전물을 건조하는 단계는,
    제1교반물을 10,000 내지 15,000 rpm으로 원심분리하여 수득한 제1침전물을 20 내지 30℃에서 건조하는 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법.
  9. 청구항 6에 있어서,
    상기 산화아연 씨앗이 부착된 환원된 산화그래핀 나노복합체를 준비하는 단계는,
    상기 건조된 제1침전물을 250 내지 350℃에서 30 내지 90분 동안 열처리하는 단계인 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법.
  10. 청구항 6에 있어서,
    상기 산화아연 씨앗 성장용매는,
    무수에탄올, 탈이온수 또는 이들의 조합으로 이루어진 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법.
  11. 청구항 10에 있어서,
    상기 무수에탄올과 탈이온수로 이루어진 산화아연 씨앗 성장용매는,
    무수에탄올과 탈이온수가 1 : (0 ~ ∞)의 부피비로 이루어진 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법.
  12. 청구항 6에 있어서,
    상기 환원제는,
    헥사메틸렌테트라민(HMTA)인 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법.
  13. 청구항 6에 있어서,
    상기 제2침전물을 수득하는 단계는,
    제2교반물을 100 내지 110℃에서 12 내지 36시간 동안 열처리한 후 냉각시키고 6,500 내지 7,500 rpm에서 3 내지 10분 동안 원심분리 하여 제2침전물을 수득하는 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법.
  14. 청구항 6에 있어서,
    상기 산화아연 나노입자는,
    나노구형, 나노육각판, 또는 나노막대 중 어느 하나의 나노형상을 갖는 것을 특징으로 하는, 산화아연 나노입자가 부착된 환원된 산화그래핀 나노복합체 광촉매 제조방법.
PCT/KR2017/008024 2017-07-25 2017-07-25 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법 WO2019022268A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0094222 2017-07-25
KR1020170094222A KR101972563B1 (ko) 2017-07-25 2017-07-25 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2019022268A1 true WO2019022268A1 (ko) 2019-01-31

Family

ID=65041227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008024 WO2019022268A1 (ko) 2017-07-25 2017-07-25 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101972563B1 (ko)
WO (1) WO2019022268A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110420646A (zh) * 2019-07-31 2019-11-08 湘潭大学 一种石墨烯/硫化铜锌复合光催化剂的制备方法
CN110841678A (zh) * 2019-10-11 2020-02-28 沈阳化工大学 一种g-C3N4/Cu5FeS4可见光的光催化剂制备方法
CN111185197A (zh) * 2020-02-26 2020-05-22 湘潭大学 一种石墨烯/硫化铜锌花状微米球光催化剂的制备方法
CN111905807A (zh) * 2020-07-06 2020-11-10 安徽理工大学 一种高瞬时光电流纳米TiO2/聚苯胺/石墨烯复合材料及其制备方法
CN112209476A (zh) * 2020-10-21 2021-01-12 新疆大学 一种应用低维氧化锌纳米材料进行压电催化降解有机染料的方法
CN112642426A (zh) * 2020-12-23 2021-04-13 上海聚治新材料科技有限公司 一种贵金属/石墨烯担载锰锌基弱光光触媒的制备方法
CN113181919A (zh) * 2021-04-27 2021-07-30 吉林化工学院 一种纤维状钛酸钴与氮化碳复合的光催化剂的制备及应用
CN113262645A (zh) * 2021-05-14 2021-08-17 江南大学 一种自清洁复合超滤膜及其制备方法
US11305262B2 (en) * 2019-06-11 2022-04-19 Imam Abdulrahman Bin Faisal University Photocatalyst nanocomposite
CN114740063A (zh) * 2022-02-16 2022-07-12 陕西化工研究院有限公司 采用电化学检测肼的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806857A (zh) * 2019-02-21 2019-05-28 重庆大学 一种纳米氧化锌光催化复合材料及其制备方法
KR102302940B1 (ko) * 2019-12-04 2021-09-16 단국대학교 천안캠퍼스 산학협력단 첨가제를 사용하지 않는 금속 도핑 광촉매 나노입자의 제조방법
KR102320127B1 (ko) 2020-05-06 2021-11-01 광운대학교 산학협력단 카본 나이트라이드 나노복합체 기반의 광촉매 및 그 제조 방법
KR102408883B1 (ko) 2021-10-22 2022-06-14 한방바이오 주식회사 수경재배 인삼잎 추출물을 포함하는 나노복합체 및 이의 용도
CN114950561B (zh) * 2022-04-11 2023-05-05 山东大学 一种co2光还原催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130099196A1 (en) * 2011-10-20 2013-04-25 University Of Kansas Semiconductor-Graphene Hybrids Formed Using Solution Growth
KR20150035052A (ko) * 2013-09-27 2015-04-06 한국과학기술연구원 그래핀-산화아연 복합체 제조방법 및 이를 이용하여 제조한 압전 소자
KR20150131833A (ko) * 2014-05-16 2015-11-25 한국과학기술원 산화 아연-그래핀 산화물 복합체 및 그 제조 방법
KR20160063226A (ko) * 2014-11-26 2016-06-03 한양대학교 산학협력단 금속 산화물-탄소 복합 입자인 가시광 감응형 광촉매 및 이의 제조 방법
CN105921112A (zh) * 2016-07-09 2016-09-07 厦门烯成石墨烯科技有限公司 一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212711B1 (ko) 2009-12-17 2012-12-14 한양대학교 산학협력단 산화아연 나노로드 - 그래핀 박막의 하이브리드 구조체 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130099196A1 (en) * 2011-10-20 2013-04-25 University Of Kansas Semiconductor-Graphene Hybrids Formed Using Solution Growth
KR20150035052A (ko) * 2013-09-27 2015-04-06 한국과학기술연구원 그래핀-산화아연 복합체 제조방법 및 이를 이용하여 제조한 압전 소자
KR20150131833A (ko) * 2014-05-16 2015-11-25 한국과학기술원 산화 아연-그래핀 산화물 복합체 및 그 제조 방법
KR20160063226A (ko) * 2014-11-26 2016-06-03 한양대학교 산학협력단 금속 산화물-탄소 복합 입자인 가시광 감응형 광촉매 및 이의 제조 방법
CN105921112A (zh) * 2016-07-09 2016-09-07 厦门烯成石墨烯科技有限公司 一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU XUN ET AL: "Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation", APPLIED SURFACE SCIENCE, vol. 258, no. 17, 26 February 2012 (2012-02-26), pages 6204 - 6211, XP028416342, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2012.02.131 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11707734B2 (en) 2019-06-11 2023-07-25 Imam Abdulrahman Bin Faisal University Method for making a photocatalyst nanocomposite
US11833490B1 (en) 2019-06-11 2023-12-05 Imam Abdulrahman Bin Faisal University Green synthesis method for making a photocatalyst nanocomposite
US11305262B2 (en) * 2019-06-11 2022-04-19 Imam Abdulrahman Bin Faisal University Photocatalyst nanocomposite
US11779907B2 (en) 2019-06-11 2023-10-10 Imam Abdulrahman Bin Faisal University Method for making a gold/zinc/graphene oxide photocatalyst composite
CN110420646A (zh) * 2019-07-31 2019-11-08 湘潭大学 一种石墨烯/硫化铜锌复合光催化剂的制备方法
CN110841678A (zh) * 2019-10-11 2020-02-28 沈阳化工大学 一种g-C3N4/Cu5FeS4可见光的光催化剂制备方法
CN111185197A (zh) * 2020-02-26 2020-05-22 湘潭大学 一种石墨烯/硫化铜锌花状微米球光催化剂的制备方法
CN111905807A (zh) * 2020-07-06 2020-11-10 安徽理工大学 一种高瞬时光电流纳米TiO2/聚苯胺/石墨烯复合材料及其制备方法
CN112209476A (zh) * 2020-10-21 2021-01-12 新疆大学 一种应用低维氧化锌纳米材料进行压电催化降解有机染料的方法
CN112642426A (zh) * 2020-12-23 2021-04-13 上海聚治新材料科技有限公司 一种贵金属/石墨烯担载锰锌基弱光光触媒的制备方法
CN112642426B (zh) * 2020-12-23 2023-09-12 上海聚治新材料科技有限公司 一种贵金属/石墨烯担载锰锌基弱光光触媒的制备方法
CN113181919A (zh) * 2021-04-27 2021-07-30 吉林化工学院 一种纤维状钛酸钴与氮化碳复合的光催化剂的制备及应用
CN113181919B (zh) * 2021-04-27 2022-06-07 吉林化工学院 一种纤维状钛酸钴与氮化碳复合的光催化剂的制备及应用
CN113262645A (zh) * 2021-05-14 2021-08-17 江南大学 一种自清洁复合超滤膜及其制备方法
CN114740063A (zh) * 2022-02-16 2022-07-12 陕西化工研究院有限公司 采用电化学检测肼的方法

Also Published As

Publication number Publication date
KR101972563B1 (ko) 2019-04-25
KR20190011549A (ko) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2019022268A1 (ko) 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법
WO2017018834A1 (ko) 2차원 전이금속 디칼코지나이드 박막의 제조 방법
WO2021149996A1 (ko) 규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2012064102A2 (ko) 그래핀 피복 강판 및 이의 제조 방법
WO2020080637A1 (ko) 3개의 전이금속을 함유하는 프러시안 블루 유사체에서 유래되고 크기가 제어된 공극을 포함하는 금속유기구조체 기반 수전해 촉매 및 그 제조방법.
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2010085104A9 (ko) 전극 활물질인 음이온 부족형 리튬 전이금속 인산화합물, 그 제조방법, 및 그를 이용한 전기화학 소자
WO2018070726A1 (ko) 리튬 화합물의 제조 방법
WO2017179900A1 (ko) 그래핀 섬유 및 그 제조 방법
WO2020022676A1 (ko) 고전도성 밸브 금속산화물을 포함하는 나노섬유 복합체의 제조방법 및 이에 따라 제조된 나노섬유 복합체
WO2019035503A1 (ko) 질소 도핑된 그래핀 양자점 제조방법, 질소 도핑된 그래핀 양자점 및 질소 도핑된 그래핀 양자점을 포함하는 태양전지
WO2018124459A1 (ko) 페로브스카이트 화합물 및 그 제조방법, 페로브스카이트 화합물을 포함하는 태양전지 및 그 제조방법
WO2019004781A1 (ko) 페로브스카이트 태양전지
WO2021049811A1 (ko) 이산화티타늄 복합체, 이의 제조 방법, 및 이를 포함하는 광촉매
WO2021246544A1 (ko) 규소계-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2021075874A1 (ko) 양극 활물질, 및 그 제조 방법
WO2021194149A1 (ko) 다공성 실리콘 및 이를 포함하는 이차전지 음극 활물질 제조 방법
Kim et al. Facile dry surface cleaning of graphene by UV treatment
WO2021066285A1 (ko) 세륨팔라듐 고용체에 담지된 팔라듐을 포함하는 메탄의 산화이량화 반응용 촉매 및 이를 이용한 산화이량화 방법
WO2023096443A1 (ko) 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질
WO2021025541A1 (ko) 이산화탄소 환원 기능을 갖는 금속산화물-탄소질화물 복합 나노섬유 및 그 제조 방법
WO2021194043A1 (ko) 표면에 기능기를 함유하는 금속 산화물을 포함하는 펜톤 반응 시스템용 촉매 및 이를 이용한 펜톤 반응 시스템
WO2015167229A1 (ko) 페로브스카이트 태양전지 및 그의 제조 방법
WO2022005064A1 (ko) 다공성 실리콘옥시카바이드 제조용 중간체, 이의 제조방법, 이로부터 제조된 다공성 실리콘옥시카바이드를 음극활물질로 포함하는 리튬 이차전지
WO2023017870A1 (ko) 환원된 그래핀옥사이드 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919005

Country of ref document: EP

Kind code of ref document: A1