CN110420646A - 一种石墨烯/硫化铜锌复合光催化剂的制备方法 - Google Patents

一种石墨烯/硫化铜锌复合光催化剂的制备方法 Download PDF

Info

Publication number
CN110420646A
CN110420646A CN201910705292.1A CN201910705292A CN110420646A CN 110420646 A CN110420646 A CN 110420646A CN 201910705292 A CN201910705292 A CN 201910705292A CN 110420646 A CN110420646 A CN 110420646A
Authority
CN
China
Prior art keywords
graphene
copper sulfide
catalyst
zinc
composite photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910705292.1A
Other languages
English (en)
Inventor
朱启安
张凯旋
胡耐根
蒋叔立
黎平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201910705292.1A priority Critical patent/CN110420646A/zh
Publication of CN110420646A publication Critical patent/CN110420646A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种石墨烯/硫化铜锌复合光催化剂的制备方法。该方法是先将氧化石墨烯加入到去离子水中,超声剥离,再加入可溶性的锌盐与可溶性的铜盐,搅拌,然后加入硫脲,搅拌溶解后,在60~100℃搅拌回流1~3小时;反应完成后,自然冷却到室温,分离洗涤,干燥后得石墨烯/硫化铜锌复合光催化剂。本发明制备的产品复合效果好,比表面积大,抗光腐蚀能力强,可见光光催化活性高,能充分利用太阳光对环境污染物进行光催化降解。该方法不需使用有机溶剂,绿色环保,具有生产工艺简单、生产过程安全、反应参数容易控制和易于实现大规模工业化生产的优点。

Description

一种石墨烯/硫化铜锌复合光催化剂的制备方法
技术领域
本发明涉及一种复合材料的制备,特别涉及一种石墨烯/硫化铜锌复合光催化剂的方法。
背景技术
随着工业的迅速发展,环境污染问题日趋严重,利用半导体多相光催化技术来降解环境污染物受到了人们的日益重视。半导体多相光催化技术有两个突出的优点:第一,半导体多相光催化技术是可以在低温条件下反应的技术,可以在室温下将环境中的有机污染物分解成无毒无害的二氧化碳和水等无机物;第二,多相光催化技术可以直接使用太阳光来催化活化光催化剂,使用成本低、适应范围广。以上这些特点使这项技术更具有研究意义和应用前景。
由于半导体光催化材料能利用太阳光对有机污染物进行光催化降解,而太阳能具有廉价、清洁、可再生等优点,因此半导体光催化材料的研究受到了人们的普遍关注。但目前使用的半导体光催化材料还存在以下缺点:(1)传统的光催化材料如TiO2等能带间隙较大(3.2eV),只能响应占太阳光总能量3~5%的紫外光,这在很大程度降低了太阳能的利用效率,使光催化材料光催化活性的提高受到限制;(2)可见光光催化材料如CdS、CuS、Sb2S3、Bi2S3等虽能吸收可见光,但在光催化过程中光生电子-空穴对容易复合,因而降低了其光催化效率,且这些金属硫化物半导体材料在光催化过程中不稳定、容易产生光腐蚀。但是,若在其中掺入其它金属离子制备成多元金属硫化物则能提高其稳定性。由于Zn2+与Cu2+具有相近的离子半径(Zn2+与Cu2+的离子半径分别为),若在CuS中掺入Zn2+,Zn2+即能取代六方相CuS晶体中的Cu2+而形成取代固溶体ZnxCu1-xS(硫化铜锌),这样不但能提高ZnxCu1-xS的稳定性,而且能提高其能带间隙(其对光的吸收仍然在可见光范围),使其对污染物的氧化降解能力更强。
石墨烯是一种具有sp2杂化单原子层碳材料,其中存在的大π键使得π电子能够自由移动,使其具有极高的电子迁移率[200000cm2/(V·s)],若将其与ZnxCu1-xS等半导体材料复合即可促进光生电子-空穴对的分离,阻止光生电子-空穴对的复合,从而提高半导体材料的光催化活性。另外,石墨烯拥有巨大的比表面积(2630m2/g),在光催化过程中能吸附反应物而使反应物在其表面富集,提高了反应物的浓度,从而提高了光催化反应的速率。
因此,本发明以氧化石墨烯(GO)、硫脲(Tu)、可溶性的锌盐及铜盐为原料,水为溶剂,用回流法制备了石墨烯/硫化铜锌复合光催化剂。在反应过程中,Cu2+与硫脲先形成配合物[但Zn2+与硫脲的配位能力很弱,Cu(Tu)2 2+与Zn(Tu)2 2+的稳定常数分别为2.51×1015和59],此时带有正电荷的Cu(Tu)2 2+、Zn2+[包括生成的少量的不稳定的Zn(Tu)2 2+]吸附在带负电的石墨烯片层上,然后,在回流、加热的条件下Cu(Tu)2 2+分解而形成六方相的CuS晶核(ZnS的溶度积常数比CuS的溶度积常数大,此时不会形成ZnS的晶核),由于的半径与的半径相近,在晶体生长过程中,Zn2+便会进入六方相CuS的晶格内部部分取代Cu2+而形成取代固溶体ZnxCu1-xS,同时氧化石墨烯被硫脲还原成石墨烯(RGO),ZnxCu1-xS与石墨烯复合而得到石墨烯/硫化铜锌[RGO/ZnxCu1-xS(0.1≤x≤0.2)]复合光催化剂。由于ZnxCu1-xS微米棒与石墨烯的复合,因此能利用石墨烯电子迁移率高、导电能力强的特点,促进光生电子-空穴对的分离,提高其光催化效率。同时,在CuS中掺入Zn2+制备成多元金属硫化物ZnxCu1-xS后能有效提高光催化剂的稳定性,抑制光腐蚀。通过对复合光催化剂的可见光光催化性能进行考察,结果表明,产品不但对可见光具有强的吸收,具有较高的可见光光催化活性,能充分利用太阳光对环境污染物进行光催化降解,而且其抗光腐蚀能力强、稳定性高。
发明内容
本发明的目的在于提供一种生产过程绿色环保、成本低廉、生产工艺简单、材料复合效果好、产品稳定性高和可见光光催化活性高的石墨烯/硫化铜锌复合光催化剂的制备方法。
本发明的目的是通过如下方式实现的:
一种石墨烯/硫化铜锌复合光催化剂,该催化剂记为RGO/ZnxCu1-xS,其中,0.1≤x≤0.2,制备方法包括如下步骤:
(1)将氧化石墨烯GO加入到去离子水中,超声剥离1~3小时,配制成0.5~2mg/mL的氧化石墨烯-去离子水分散液;
(2)按硫化铜锌ZnxCu1-xS中锌与铜的物质的量之比即x:(1-x)将可溶性的锌盐与可溶性的铜盐分别加入到步骤(1)所得氧化石墨烯-去离子水分散液中,搅拌溶解,可溶性的锌盐与可溶性的铜盐的用量是每毫升分散液中加入Zn2+与Cu2+总的物质的量为0.02~0.04mmol,继续搅拌30~60分钟,得混合液;
(3)在混合液中加入硫脲,加入硫脲的物质的量为Zn2+与Cu2+总物质的量的2~4倍,搅拌溶解;然后,在60~100℃搅拌回流1~3小时;
(4)反应完成后,自然冷却到室温,离心分离,将所得沉淀分别用去离子水和无水乙醇交替超声洗涤,干燥后得石墨烯/硫化铜锌复合光催化剂,即RGO/ZnxCu1-xS。
进一步地,所述的可溶性的锌盐是硫酸锌、氯化锌或硝酸锌中的一种。
进一步地,所述的可溶性的铜盐是氯化铜、硝酸铜或硫酸铜中的一种。
本发明的有益效果在于:
(1)本发明通过回流法制备石墨烯/硫化铜锌[RGO/ZnxCu1-xS(0.1≤x≤0.2)]复合光催化剂,该制备方法具有生产工艺简单、生产过程安全、反应参数容易控制和易于实现大规模工业化生产的优点。且由于采用水为溶剂,避免了有机溶剂的大量使用,不但降低了生产成本,而且符合绿色合成的环保理念。
(2)本发明制备的石墨烯/硫化铜锌复合光催化剂,具有如下优点:①比表面积大,对可见光的吸收能力强;②电子迁移率高,光生电子-空穴对不容易复合;③在六角相的CuS中掺杂Zn2+不但提高了其能带间隙,增加了对污染物的氧化降解能力,而且掺杂Zn2+后制得的硫化铜锌属多元金属硫化物,在光催化过程中抗光腐蚀能力强。因此,该复合光催化剂的可见光光催化活性高,稳定性高,能充分利用太阳光及室内自然光对环境污染物进行光催化降解,效率高,成本低。
附图说明
图1为实施例1制备的石墨烯/硫化铜锌复合光催化剂的X-射线衍射(XRD)图。
图2为实施例1制备的石墨烯/硫化铜锌复合光催化剂的扫描电子显微镜(SEM)图。
图3为对比例制备的硫化铜锌的扫描电子显微镜(SEM)图。
图4为对比例制备的硫化铜锌及石墨烯/硫化铜锌复合光催化剂的光催化降解效果图。其中e为硫化铜锌,a、b、c、d分别为实施例4、实施例1、实施例2、实施例3制备的石墨烯/硫化铜锌复合光催化剂,横坐标表示降解时间,纵坐标表示降解率。
具体实施方式
下面通过实施例对本发明作进一步的说明,但本发明的保护范围不受所举之例的限制。
实施例1
(1)将90mg的氧化石墨烯加入到60mL的去离子水中,超声剥离2.5小时,配制成1.5mg/mL的氧化石墨烯-去离子水分散液;
(2)称取0.276g CuCl2·2H2O和0.054g Zn(NO3)2·6H2O分别加入到氧化石墨烯-去离子水分散液中(相当于每毫升分散液中加入Zn2+与Cu2+总的物质的量为0.03mmol,其中Cu2 +0.027mmol,Zn2+0.003mmol,即x取值为0.1),搅拌溶解,然后继续搅拌50分钟,得混合液;
(3)在混合液中加入0.479g硫脲(其物质的量为Zn2+与Cu2+总物质的量的3.5倍),搅拌溶解;然后,在60℃搅拌回流2小时;
(4)反应完成后,自然冷却到室温,离心分离,将所得沉淀分别用去离子水和无水乙醇交替超声洗涤,干燥后得RGO/Zn0.1Cu0.9S复合光催化剂产品。
所得产品的X-射线衍射(XRD)谱图如图1所示(实施例1至实施例4所得产品的X-射线衍射谱图基本一致)。将图1与CuS的标准谱图(JCPDS No.78-0876)对照知,其所有衍射峰都与六方相CuS的标准谱图相吻合,没有ZnS或石墨烯的衍射峰,这是由于一方面具有相近的离子半径,掺杂的Zn2+会部分取代CuS中Cu2+的位置而形成六方相的取代固溶体Zn0.1Cu0.9S,从而使Zn0.1Cu0.9S具有与CuS相同的六方相晶体结构,产品中没有ZnS的杂质;另一方面在石墨烯的片层间插入了Zn0.1Cu0.9S微米棒,使石墨烯的片层间距不均匀,从而影响了片层的有序堆砌,使得石墨烯片层的堆砌是无序的,因而看不到石墨烯的衍射峰。
产品的扫描电子显微镜(SEM)图如图2所示。由图2可以看出,产品中的Zn0.1Cu0.9S微米棒负载在石墨烯片层的表面或插入到石墨烯片层之间,二者能很好地复合,石墨烯片层具有明显的褶皱;Zn0.1Cu0.9S微米棒长3~7μm(微米),直径0.2~0.5μm。
实施例2
(1)将60mg的氧化石墨烯加入到60mL的去离子水中,超声剥离2小时,配制成1mg/mL的氧化石墨烯-去离子水分散液;
(2)称取0.273g CuCl2·2H2O和0.115g ZnSO4·7H2O分别加入到氧化石墨烯-去离子水分散液中(相当于每毫升分散液中加入Zn2+与Cu2+总的物质的量为0.033mmol,其中Cu2+0.0264mmol,Zn2+0.0066mmol,即x取值为0.2),搅拌溶解,然后继续搅拌30分钟,得混合液;
(3)在混合液中加入0.456g硫脲(其物质的量为Zn2+与Cu2+总物质的量的3倍),搅拌溶解;然后,在100℃搅拌回流1.5小时;
(4)反应完成后,自然冷却到室温,离心分离,将所得沉淀分别用去离子水和无水乙醇交替超声洗涤,干燥后得RGO/Zn0.2Cu0.8S复合光催化剂产品。
实施例3
(1)将30mg的氧化石墨烯加入到60mL的去离子水中,超声剥离1小时,配制成0.5mg/mL的氧化石墨烯-去离子水分散液;
(2)称取0.255g CuSO4·5H2O和0.054g Zn(NO3)2·6H2O分别加入到氧化石墨烯-去离子水分散液中(相当于每毫升分散液中加入Zn2+与Cu2+总的物质的量为0.02mmol,其中Cu2 +0.017mmol,Zn2+0.003mmol,即x取值为0.15),搅拌溶解,然后继续搅拌45分钟,得混合液;
(3)在混合液中加入0.365g硫脲(其物质的量为Zn2+与Cu2+总物质的量的4倍),搅拌溶解;然后,在100℃搅拌回流1小时;
(4)反应完成后,自然冷却到室温,离心分离,将所得沉淀分别用去离子水和无水乙醇交替超声洗涤,干燥后得RGO/Zn0.15Cu0.85S复合光催化剂产品。
实施例4
(1)将120mg的氧化石墨烯加入到60mL的去离子水中,超声剥离3小时,配制成2mg/mL的氧化石墨烯-去离子水分散液;
(2)称取0.522g Cu(NO3)2·3H2O和0.033g ZnCl2分别加入到氧化石墨烯-去离子水分散液中(相当于每毫升分散液中加入Zn2+与Cu2+总的物质的量为0.04mmol,其中Cu2+0.036mmol,Zn2+0.004mmol,即x取值为0.1),搅拌溶解,然后继续搅拌60分钟,得混合液;
(3)在混合液中加入0.365g硫脲(其物质的量为Zn2+与Cu2+总物质的量的2倍),搅拌溶解;然后,在80℃搅拌回流3小时;
(4)反应完成后,自然冷却到室温,离心分离,将所得沉淀分别用去离子水和无水乙醇交替超声洗涤,干燥后得RGO/Zn0.1Cu0.9S复合光催化剂产品。
对比例
为将石墨烯/硫化铜锌复合材料与硫化铜锌的光催化性能进行对比研究,除了不加氧化石墨烯(GO)外,用制备复合材料相同的方法制备硫化铜锌,其具体步骤为:
(1)称取0.276g CuCl2·2H2O和0.054g Zn(NO3)2·6H2O分别加入到60mL去离子水中(相当于每毫升去离子水中加入Zn2+与Cu2+总的物质的量为0.03mmol,其中Cu2+0.027mmol,Zn2+0.003mmol,即x取值为0.1),搅拌溶解,得Cu2+与Zn2+的混合溶液;
(2)在混合溶液中加入0.479g硫脲(其物质的量为Zn2+与Cu2+总物质的量的3.5倍),搅拌溶解;然后,在60℃搅拌回流2小时;
(3)反应完成后,自然冷却到室温,离心分离,将所得沉淀分别用去离子水和无水乙醇交替超声洗涤,干燥后得Zn0.1Cu0.9S。
所得Zn0.1Cu0.9S的扫描电子显微镜(SEM)图如图3所示,由图3可见,Zn0.1Cu0.9S是由宽0.4~0.6μm、厚0.3~0.5μm、长1.6~14.5μm的长方体状微米棒和由纳米片构成的直径0.6~1.2μm的微米花组成的。
可见光光催化性能测试:
将0.1g光催化剂加入到100mL 20mg/L的亚甲基蓝(MB)溶液中,然后加入2.4mL质量分数为30%的H2O2,避光超声分散5分钟,再在暗处磁力搅拌30分钟,使亚甲基蓝在催化剂表面达到吸附平衡。取5mL样液离心分离除去催化剂粉末后,用紫外-可见分光光度计测试其在664nm(亚甲基蓝的最大吸收波长)处的吸光度并作为被降解液的初始吸光度A0。随后,以35W氙灯为光源进行可见光光催化降解实验(氙灯的顶端距液面15cm),同时磁力搅拌,每隔5分钟取样液5mL,离心分离去掉催化剂固体后,取上层清液在相同波长处测试其吸光度Ax,并据此计算出亚甲基蓝溶液的降解率。
光催化降解效果如图4所示。由图4能够看出,硫化铜锌(e,对应于对比例)的光催化降解效果明显不如实施例4、实施例1、实施例2、实施例3制备的石墨烯/硫化铜锌复合光催化剂(分别对应于a、b、c、d),而实施例4所得催化剂(a)的可见光光催化活性是最高的,在35W氙灯下,经40分钟降解,亚甲基蓝的降解率可达96.2%。

Claims (3)

1.一种石墨烯/硫化铜锌复合光催化剂的制备方法,该催化剂记为RGO/ZnxCu1-xS,其中,0.1≤x≤0.2,其特征在于,制备方法包括如下步骤:
(1)将氧化石墨烯GO加入到去离子水中,超声剥离1~3小时,配制成0.5~2mg/mL的氧化石墨烯-去离子水分散液;
(2)按硫化铜锌ZnxCu1-xS中锌与铜的物质的量之比即x:(1-x)将可溶性的锌盐与可溶性的铜盐分别加入到步骤(1)所得氧化石墨烯-去离子水分散液中,搅拌溶解,可溶性的锌盐与可溶性的铜盐的用量是每毫升分散液中加入Zn2+与Cu2+总的物质的量为0.02~0.04mmol,继续搅拌30~60分钟,得混合液;
(3)在混合液中加入硫脲,加入硫脲的物质的量为Zn2+与Cu2+总的物质的量的2~4倍,搅拌溶解;然后,在60~100℃搅拌回流1~3小时;
(4)反应完成后,自然冷却到室温,离心分离,将所得沉淀分别用去离子水和无水乙醇交替超声洗涤,干燥后得石墨烯/硫化铜锌复合光催化剂,即RGO/ZnxCu1-xS。
2.根据权利要求1所述的石墨烯/硫化铜锌复合光催化剂的制备方法,其特征在于,所述的可溶性的锌盐是硫酸锌、氯化锌或硝酸锌中的一种。
3.根据权利要求1所述的石墨烯/硫化铜锌复合光催化剂的制备方法,其特征在于,所述的可溶性的铜盐是氯化铜、硝酸铜或硫酸铜中的一种。
CN201910705292.1A 2019-07-31 2019-07-31 一种石墨烯/硫化铜锌复合光催化剂的制备方法 Pending CN110420646A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910705292.1A CN110420646A (zh) 2019-07-31 2019-07-31 一种石墨烯/硫化铜锌复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910705292.1A CN110420646A (zh) 2019-07-31 2019-07-31 一种石墨烯/硫化铜锌复合光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN110420646A true CN110420646A (zh) 2019-11-08

Family

ID=68413650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910705292.1A Pending CN110420646A (zh) 2019-07-31 2019-07-31 一种石墨烯/硫化铜锌复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110420646A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111185197A (zh) * 2020-02-26 2020-05-22 湘潭大学 一种石墨烯/硫化铜锌花状微米球光催化剂的制备方法
CN111450850A (zh) * 2020-03-27 2020-07-28 肇庆市华师大光电产业研究院 一种四元铋基硫族壳-核纳米球及其制备方法和应用
CN112569966A (zh) * 2020-12-15 2021-03-30 湘潭大学 一种石墨烯/硫化铜锌花状微米球超结构可见光催化剂的制备方法
CN115487850A (zh) * 2022-10-28 2022-12-20 南京工程学院 一种光热催化复合材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316694A (zh) * 2013-07-11 2013-09-25 吉林大学 一种Zn0.8Cd0.2S和石墨烯复合材料的制备方法
CN103611549A (zh) * 2013-11-21 2014-03-05 电子科技大学 铜锌锡硫/氧化石墨烯复合半导体光催化剂的制备方法
CN103752303A (zh) * 2014-01-09 2014-04-30 华南师范大学 一种半导体/氧化石墨烯空心球复合光催化剂的光化学制备方法
CN105233842A (zh) * 2015-10-14 2016-01-13 上海理工大学 多元金属硫化物/石墨烯复合可见光催化剂的制备方法
CN107552072A (zh) * 2017-10-23 2018-01-09 南昌航空大学 一种石墨烯‑CuInS2纳米复合光催化剂
CN108273521A (zh) * 2018-03-26 2018-07-13 湘潭大学 一种由纳米片构成的硫化铜锌花状微米球超结构可见光催化剂的制备方法
CN109174127A (zh) * 2018-09-18 2019-01-11 张玉英 一种光解水制备燃料电池用氢的复合光催化剂及制备方法
WO2019022268A1 (ko) * 2017-07-25 2019-01-31 영남대학교 산학협력단 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316694A (zh) * 2013-07-11 2013-09-25 吉林大学 一种Zn0.8Cd0.2S和石墨烯复合材料的制备方法
CN103611549A (zh) * 2013-11-21 2014-03-05 电子科技大学 铜锌锡硫/氧化石墨烯复合半导体光催化剂的制备方法
CN103752303A (zh) * 2014-01-09 2014-04-30 华南师范大学 一种半导体/氧化石墨烯空心球复合光催化剂的光化学制备方法
CN105233842A (zh) * 2015-10-14 2016-01-13 上海理工大学 多元金属硫化物/石墨烯复合可见光催化剂的制备方法
WO2019022268A1 (ko) * 2017-07-25 2019-01-31 영남대학교 산학협력단 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법
CN107552072A (zh) * 2017-10-23 2018-01-09 南昌航空大学 一种石墨烯‑CuInS2纳米复合光催化剂
CN108273521A (zh) * 2018-03-26 2018-07-13 湘潭大学 一种由纳米片构成的硫化铜锌花状微米球超结构可见光催化剂的制备方法
CN109174127A (zh) * 2018-09-18 2019-01-11 张玉英 一种光解水制备燃料电池用氢的复合光催化剂及制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111185197A (zh) * 2020-02-26 2020-05-22 湘潭大学 一种石墨烯/硫化铜锌花状微米球光催化剂的制备方法
CN111450850A (zh) * 2020-03-27 2020-07-28 肇庆市华师大光电产业研究院 一种四元铋基硫族壳-核纳米球及其制备方法和应用
CN112569966A (zh) * 2020-12-15 2021-03-30 湘潭大学 一种石墨烯/硫化铜锌花状微米球超结构可见光催化剂的制备方法
CN115487850A (zh) * 2022-10-28 2022-12-20 南京工程学院 一种光热催化复合材料及其制备方法和应用
CN115487850B (zh) * 2022-10-28 2023-10-24 南京工程学院 一种光热催化复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Kubiak et al. Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline
Guo et al. Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: a discussion on photocatalysis mechanism
Wang et al. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr (VI) coexistence environment
Li et al. Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole
Zhu et al. Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area “high-speed channels” for photocatalytic oxidation of 2, 4-dichlorophenol under visible light
CN110420646A (zh) 一种石墨烯/硫化铜锌复合光催化剂的制备方法
Zhang et al. Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants
Ruan et al. A Z-scheme mechanism of the novel ZnO/CuO nn heterojunction for photocatalytic degradation of Acid Orange 7
Zhang et al. Construction of a novel BON-Br-AgBr heterojunction photocatalysts as a direct Z-scheme system for efficient visible photocatalytic activity
Qi et al. Preparation and photocatalytic activity of Ag-modified GO-TiO2 mesocrystals under visible light irradiation
Su et al. Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation
Yang et al. Visible-light-driven photocatalytic degradation of 4-CP and the synergistic reduction of Cr (VI) on one-pot synthesized amorphous Nb2O5 nanorods/graphene heterostructured composites
Fu et al. Construction of hierarchical CuBi2O4/Bi/BiOBr ternary heterojunction with Z-scheme mechanism for enhanced broad-spectrum photocatalytic activity
Jiang et al. Facile in-situ Solvothermal Method to synthesize double shell ZnIn2S4 nanosheets/TiO2 hollow nanosphere with enhanced photocatalytic activities
Ren et al. Fabrication of Ag2O/TiO2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method
Dong et al. Synthesis of g-C3N4/BiVO4 heterojunction composites for photocatalytic degradation of nonylphenol ethoxylate
Wang et al. Improved photocatalytic reduction of Cr (VI) by molybdenum disulfide modified with conjugated polyvinyl alcohol
Zhao et al. In situ preparation of highly stable polyaniline/W18O49 hybrid nanocomposite as efficient visible light photocatalyst for aqueous Cr (VI) reduction
Xu et al. Novel broad spectrum light responsive PPy/hexagonal-SnS2 photocatalyst for efficient photoreduction of Cr (VI)
Yang et al. Self-assembly Z-scheme heterostructured photocatalyst of Ag 2 O@ Ag-modified bismuth vanadate for efficient photocatalytic degradation of single and dual organic pollutants under visible light irradiation
Mousavi-Kamazani et al. Solvent-free synthesis of Cu-Cu2O nanocomposites via green thermal decomposition route using novel precursor and investigation of its photocatalytic activity
Zhang et al. Enhanced photocatalytic activity of CdS/SnS2 nanocomposite with highly-efficient charge transfer and visible light utilization for selective reduction of 4-nitroaniline
Zhou et al. W/Mo co-doped BiVO4 for photocatalytic treatment of polymer-containing wastewater in oilfield
Altin CuO-TiO2/graphene ternary nanocomposite for highly efficient visible-light-driven photocatalytic degradation of bisphenol A
Xing et al. Efficient degradation of tetracycline over vacancy-modified Cu-doped Bi2O2S via peroxymonosulfate activation and photocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191108