CN105921112A - 一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法 - Google Patents

一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法 Download PDF

Info

Publication number
CN105921112A
CN105921112A CN201610539351.9A CN201610539351A CN105921112A CN 105921112 A CN105921112 A CN 105921112A CN 201610539351 A CN201610539351 A CN 201610539351A CN 105921112 A CN105921112 A CN 105921112A
Authority
CN
China
Prior art keywords
metal
graphene
oxide
nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610539351.9A
Other languages
English (en)
Inventor
王振中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Xichen Graphene Technology Co Ltd
Original Assignee
Xiamen Xichen Graphene Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Xichen Graphene Technology Co Ltd filed Critical Xiamen Xichen Graphene Technology Co Ltd
Priority to CN201610539351.9A priority Critical patent/CN105921112A/zh
Publication of CN105921112A publication Critical patent/CN105921112A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,包括如下步骤:1)取氧化石墨烯于反应釜中,设压力为5×10‑4‑10‑3Pa,温度为200‑700℃,等离子体产生的微波功率为300‑500W,预先通入一段时间的O2,在氧化石墨烯微粒表面形成均匀密集的成核点;2)在惰性气氛中利用激光光源脉冲冲击金属靶材,金属靶材气化形成金属脉冲气源通入至反应釜中,在等离子体作用下,金属脉冲气源与氧化石墨烯微粒表面的O2发生化学反应,形成纳米金属氧化物因子均匀充分的负载在氧化石墨烯微粒表面,得到石墨烯基纳米金属氧化物光催化吸附材料;其中,所述纳米金属氧化物为半导体纳米金属氧化物。得到的石墨烯基纳米金属氧化物光催化吸附材料具有高活性和高吸附性。

Description

一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法
技术领域
本发明涉及到净化吸附材料制备的技术领域,特别涉及到一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法。
背景技术
随着城市化和工业化的进程越来越快,特别是改革开放以来,城市化和工业化都进入了一个高潮,而随之而来的是一系列导致城市不可持续发展的环境污染问题,特别是空气污染和水污染已经成为人类生存的重大威胁,成为人类健康、经济和社会可持续发展的重大障碍。特别是近些年来,人们对家居环境的追求,对室内装潢的要求越来越高,但是装修材料中的甲苯甲醛及其他挥发性有机物质,使室内空气污染严重,引发呼吸道疾病与生理机能障碍,以及眼鼻等粘膜组织受到刺激而患病等危害。
现有技术中因为活性炭呈毛细结构,具有很强的吸附能力,所以多采用竹炭等活性炭包吸附污染气体,净化空气,保持空气清新。但由于活性炭在使用过程中,常会过量的吸附污染气体,转换成吸附物质,覆在活性炭表面,使活性炭失活。
石墨烯是单原子厚度的二维碳原子晶体具有独特的电子,物理和化学性质。其独特的二维结构,使得石墨烯成为一个非常理想的纳米粒子的载体来制备石墨烯基的复合材料,现有技术中,制备石墨烯基的纳米复合材料多采用凝胶-溶胶法或者液相复合法,如专利201410355247.5公开了一种石墨烯/二氧化钛光催化复合材料及其制备方法,以钛源经过溶胶-凝胶法和水热处理制备得到二氧化钛纳米颗粒,再通过液相复合氧化石墨烯溶液,经过超声、干燥、加热、冷却得到石墨烯/二氧化钛光催化复合材料,该方法制备的光催化吸附剂以三维石墨烯骨架和纳米二氧化钛颗粒组成,所述石墨烯具有大孔结构,所述二氧化钛为介孔二氧化钛,大孔和介孔相互连通,所述纳米二氧化钛颗粒分散于石墨烯纳米片上,所述纳米二氧化钛颗粒填充于所述石墨烯的大孔内,方法制备的光催化剂较纯的二氧化钛,具有高活性、高吸附性。但是采用上述方法,二氧化钛纳米片很难均匀充分的分布在石墨烯片的表面,石墨烯片表面部分区域团聚有大量的纳米颗粒,部分区域又没有纳米颗粒分布,从而导致复合材料的光催化吸附活性降低。
发明内容
本发明的目的在于一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,纳米金属氧化物因子均匀充分的负载在氧化石墨烯表面,避免了纳米金属氧化物因子在氧化石墨烯表面发生团聚的问题,使纳米金属氧化物因子与氧化石墨烯相互作用,具有高活性和高吸附性。
为此,本发明采用以上技术方案:
一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,包括如下步骤:
1)取氧化石墨烯于反应釜中,设压力为5×10-4-10-3Pa,温度为200-700℃,等离子体产生的微波功率为300-500W,预先通入一段时间的O2,在氧化石墨烯微粒表面形成均匀密集的成核点;
2)在惰性气氛中利用激光光源脉冲冲击金属靶材,金属靶材气化形成金属脉冲气源通入至反应釜中,在等离子体作用下,金属脉冲气源与氧化石墨烯微粒表面的O2发生化学反应,形成纳米金属氧化物因子均匀充分的负载在氧化石墨烯微粒表面,得到石墨烯基纳米金属氧化物光催化吸附材料;
优选的,所述纳米金属氧化物为半导体纳米金属氧化物。
优选的,所述O2的通入时间为20min-80min。
优选的,所述惰性气氛为Ar气氛。
优选的,所述激光光源能量为50-200mJ/pulse,频率为2-10HZ,每个脉冲时间为5-20ns,间隔时间为5-20ns。
优选的,所述金属脉冲气源通入的时间为5-20min。
优选的,所述纳米金属氧化物因子的直径为5-500nm。
优选的,所述金属靶材为Ti、Zn、Fe或者W,所述半导体纳米金属氧化物为纳米TiO2、ZnO、Fe2O3或者WO3
优选的,所述氧化石墨烯为Hummers法制备得到的。
本发明采用以上技术方案,利用激光光源脉冲冲击金属靶材,金属靶材气化形成金属脉冲气源通入至反应釜中,与氧化石墨烯微粒表面的O2发生化学反应,形成纳米金属氧化物因子均匀充分的负载在氧化石墨烯微粒表面,避免了避免了纳米金属氧化物因子在氧化石墨烯表面发生团聚的问题,利用了氧化石墨烯比表面积大的特点,最大量的负载纳米金属氧化物因子,使纳米金属氧化物因子与氧化石墨烯相互作用,具有高活性和高吸附性,以及吸附稳定性和长久性。
附图说明
图1为本发明得到石墨烯基纳米金属氧化物光催化吸附材料颗粒的结构示意图。
图2为本发明激光光源脉冲冲击方式示意图。
具体实施方式
为了使本发明的目的、特征和优点更加的清晰,以下结合附图及实施例,对本发明的具体实施方式做出更为详细的说明,在下面的描述中,阐述了很多具体的细节以便于充分的理解本发明,但是本发明能够以很多不同于描述的其他方式来实施。因此,本发明不受以下公开的具体实施的限制。
一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,包括如下步骤:
1)取氧化石墨烯于反应釜中,设压力为5×10-4-10-3Pa,温度为200-700℃,等离子体产生的微波功率为300-500W,预先通入一段时间的O2,在氧化石墨烯微粒表面形成均匀密集的成核点;
2)在惰性气氛中利用激光光源脉冲冲击金属靶材,金属靶材气化形成金属脉冲气源通入至反应釜中,在等离子体作用下,金属脉冲气源与氧化石墨烯微粒表面的O2发生化学反应,形成纳米金属氧化物因子1均匀充分的负载在氧化石墨烯微粒0表面,如图1所示,得到石墨烯基纳米金属氧化物光催化吸附材料;
其中,所述纳米金属氧化物为半导体纳米金属氧化物。
其中,所述O2的通入时间为20min-80min。
其中,所述惰性气氛为Ar气氛。
其中,所述激光光源能量为50-200mJ/pulse,频率为2-10HZ,每个脉冲时间为5-20ns,间隔时间为5-20ns,其方式如图2所示。
其中,所述金属脉冲气源通入的时间为5-20min。
其中,所述纳米金属氧化物因子的直径为5-500nm。
其中,所述金属靶材为Ti、Zn、Fe或者W,所述半导体纳米金属氧化物为纳米TiO2、ZnO、Fe2O3或者WO3
其中,所述氧化石墨烯为Hummers法制备得到的。
实施例一
一种石墨烯基纳米TiO2光催化吸附材料的制备方法,包括如下步骤:
1)取氧化石墨烯于反应釜中,设压力为5×10-4-10-3Pa,温度为200-700℃,等离子体产生的微波功率为300-500W,预先通入一段时间的O2,在氧化石墨烯微粒表面形成均匀密集的成核点;
2)在惰性气氛中利用激光光源脉冲冲击Ti靶材,Ti靶材气化形成Ti脉冲气源通入至反应釜中,在等离子体作用下,Ti脉冲气源与氧化石墨烯微粒表面的O2发生化学反应,形成纳米TiO2因子均匀充分的负载在氧化石墨烯微粒表面,得到墨烯基纳米TiO2光催化吸附材料。
其中,所述O2的通入时间为20min-80min。
其中,所述惰性气氛为Ar气氛。
其中,所述激光光源能量为50-200mJ/pulse,频率为2-10HZ,每个脉冲时间为5-20ns,间隔时间为5-20ns。
其中,所述Ti脉冲气源通入的时间为5-20min。
其中,所述纳米TiO2因子的直径为5-500nm。
其中,所述氧化石墨烯为Hummers法制备得到的。
采用上述方法得到的石墨烯基纳米TiO2光催化吸附材料,以去除甲醛气体为例,其吸附平均率可达到99.2%。
实施例二
一种石墨烯基纳米ZnO光催化吸附材料的制备方法,包括如下步骤:
1)取氧化石墨烯于反应釜中,设压力为5×10-4-10-3Pa,温度为200-700℃,等离子体产生的微波功率为300-500W,预先通入一段时间的O2,在氧化石墨烯微粒表面形成均匀密集的成核点;
2)在惰性气氛中利用激光光源脉冲冲击Zn靶材,Zn靶材气化形成Zn脉冲气源通入至反应釜中,在等离子体作用下,Zn脉冲气源与氧化石墨烯微粒表面的O2发生化学反应,形成纳米ZnO因子均匀充分的负载在氧化石墨烯微粒表面,得到墨烯基纳米ZnO光催化吸附材料。
其中,所述O2的通入时间为20min-80min。
其中,所述惰性气氛为Ar气氛。
其中,所述激光光源能量为50-200mJ/pulse,频率为2-10HZ,每个脉冲时间为5-20ns,间隔时间为5-20ns。
其中,所述Zn脉冲气源通入的时间为5-20min。
其中,所述纳米ZnO因子的直径为5-500nm。
其中,所述氧化石墨烯为Hummers法制备得到的。
采用上述方法得到的石墨烯基纳米ZnO光催化吸附材料以去除甲醛气体为例,其吸附平均率可达到98.7%。
实施例三
一种石墨烯基纳米Fe2O3光催化吸附材料的制备方法,包括如下步骤:
1)取氧化石墨烯于反应釜中,设压力为5×10-4-10-3Pa,温度为200-700℃,等离子体产生的微波功率为300-500W,预先通入一段时间的O2,在氧化石墨烯微粒表面形成均匀密集的成核点;
2)在惰性气氛中利用激光光源脉冲冲击Fe靶材,Fe靶材气化形成Zn脉冲气源通入至反应釜中,在等离子体作用下,Fe脉冲气源与氧化石墨烯微粒表面的O2发生化学反应,形成纳米Fe2O3因子均匀充分的负载在氧化石墨烯微粒表面,得到墨烯基纳米Fe2O3光催化吸附材料。
其中,所述O2的通入时间为20min-80min。
其中,所述惰性气氛为Ar气氛。
其中,所述激光光源能量为50-200mJ/pulse,频率为2-10HZ,每个脉冲时间为5-20ns,间隔时间为5-20ns。
其中,所述Fe脉冲气源通入的时间为5-20min。
其中,所述纳米Fe2O3因子的直径为5-500nm。
其中,所述氧化石墨烯为Hummers法制备得到的。
采用上述方法得到的石墨烯基纳米Fe2O3光催化吸附材料以去除环境污水中Cr为例,其吸附平均率可达到98.3%。
实施例四
一种石墨烯基纳米WO3光催化吸附材料的制备方法,包括如下步骤:
1)取氧化石墨烯于反应釜中,设压力为5×10-4-10-3Pa,温度为200-700℃,等离子体产生的微波功率为300-500W,预先通入一段时间的O2,在氧化石墨烯微粒表面形成均匀密集的成核点;
2)在惰性气氛中利用激光光源脉冲冲击W靶材,W靶材气化形成Zn脉冲气源通入至反应釜中,在等离子体作用下,W脉冲气源与氧化石墨烯微粒表面的O2发生化学反应,形成纳米WO3因子均匀充分的负载在氧化石墨烯微粒表面,得到墨烯基纳米WO3光催化吸附材料。
其中,所述O2的通入时间为20min-80min。
其中,所述惰性气氛为Ar气氛。
其中,所述激光光源能量为50-200mJ/pulse,频率为2-10HZ,每个脉冲时间为5-20ns,间隔时间为5-20ns。
其中,所述W脉冲气源通入的时间为5-20min。
其中,所述纳米WO3因子的直径为5-500nm。
其中,所述氧化石墨烯为Hummers法制备得到的。
采用上述方法得到的石墨烯基纳米WO3光催化吸附材料以去除环境污水中亚甲基蓝为例,其吸附平均率可达到97.8%。
综上,本发明利用激光光源脉冲冲击金属靶材,金属靶材气化形成金属脉冲气源通入至反应釜中,与氧化石墨烯微粒表面的O2发生化学反应,形成纳米金属氧化物因子均匀充分的负载在氧化石墨烯微粒表面,避免了避免了纳米金属氧化物因子在氧化石墨烯表面发生团聚的问题,利用了氧化石墨烯比表面积大的特点,尽可能负载纳米金属氧化物因子,使纳米金属氧化物因子与氧化石墨烯相互作用,具有高活性和高吸附性,以及吸附稳定性和长久性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,其特征在于:包括如下步骤:
1)取氧化石墨烯于反应釜中,设压力为5×10-4-10-3Pa,温度为200-700℃,等离子体产生的微波功率为300-500W,预先通入一段时间的O2,在氧化石墨烯微粒表面形成均匀密集的成核点;
2)在惰性气氛中利用激光光源脉冲冲击金属靶材,金属靶材气化形成金属脉冲气源通入至反应釜中,在等离子体作用下,金属脉冲气源与氧化石墨烯微粒表面的O2发生化学反应,形成纳米金属氧化物因子均匀充分的负载在氧化石墨烯微粒表面,得到石墨烯基纳米金属氧化物光催化吸附材料;
其中,所述纳米金属氧化物为半导体纳米金属氧化物。
2.根据权利要求1所述的一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,其特征在于:所述O2的通入时间为20min-80min。
3.根据权利要求1所述的一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,其特征在于:所述惰性气氛为Ar气氛。
4.根据权利要求1所述的一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,其特征在于:所述激光光源能量为50-200mJ/pulse,频率为2-10HZ,每个脉冲时间为5-20ns,间隔时间为5-20ns。
5.根据权利要求1所述的一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,其特征在于:所述金属脉冲气源通入的时间为5-20min。
6.根据权利要求1所述的一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,其特征在于:所述纳米金属氧化物因子的直径为5-500nm。
7.根据权利要求1所述的一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,其特征在于:所述金属靶材为Ti、Zn、Fe或者W,所述半导体纳米金属氧化物为纳米TiO2、ZnO、Fe2O3或WO3
8.根据权利要求1所述的一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法,其特征在于:所述氧化石墨烯为Hummers法制备得到的。
CN201610539351.9A 2016-07-09 2016-07-09 一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法 Pending CN105921112A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610539351.9A CN105921112A (zh) 2016-07-09 2016-07-09 一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610539351.9A CN105921112A (zh) 2016-07-09 2016-07-09 一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法

Publications (1)

Publication Number Publication Date
CN105921112A true CN105921112A (zh) 2016-09-07

Family

ID=56827277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610539351.9A Pending CN105921112A (zh) 2016-07-09 2016-07-09 一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法

Country Status (1)

Country Link
CN (1) CN105921112A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022268A1 (ko) * 2017-07-25 2019-01-31 영남대학교 산학협력단 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법
CN112723855A (zh) * 2019-10-14 2021-04-30 武汉大学 石墨烯-陶瓷复合电极阵列的激光雕刻制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737185A (zh) * 1999-12-23 2006-02-22 西南交通大学 用等离子体浸没离子注入方法在材料表面形成TiO2-x薄膜的方法及其应用
CN101255544A (zh) * 2008-03-21 2008-09-03 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737185A (zh) * 1999-12-23 2006-02-22 西南交通大学 用等离子体浸没离子注入方法在材料表面形成TiO2-x薄膜的方法及其应用
CN101255544A (zh) * 2008-03-21 2008-09-03 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李泽斌: "等离子体浸没离子注入技术在ZnO薄膜p型改性方面的应用研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
陈龙武 等: "TiO2功能薄膜的制备及影响其光催化活性的因素", 《功能材料》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022268A1 (ko) * 2017-07-25 2019-01-31 영남대학교 산학협력단 높은 광촉매 특성을 갖는 형상이 제어된 산화아연 나노입자/환원된 산화그래핀 나노복합체 광촉매 및 이의 제조방법
CN112723855A (zh) * 2019-10-14 2021-04-30 武汉大学 石墨烯-陶瓷复合电极阵列的激光雕刻制备方法及其应用
CN112723855B (zh) * 2019-10-14 2022-03-04 武汉大学 石墨烯-陶瓷复合电极阵列的激光雕刻制备方法及其应用

Similar Documents

Publication Publication Date Title
Lu et al. Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment
Xie et al. Solar‐inspired water purification based on emerging 2D materials: status and challenges
He et al. 3D BiOI–GO composite with enhanced photocatalytic performance for phenol degradation under visible-light
Leong et al. Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds
Wang et al. A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres
Ardizzone et al. Tailored anatase/brookite nanocrystalline TiO2. The optimal particle features for liquid-and gas-phase photocatalytic reactions
Lv et al. Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {0 0 1} facets
Qin et al. One-step fabrication of TiO2/Ti foil annular photoreactor for photocatalytic degradation of formaldehyde
Huang et al. Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light
CN106086820B (zh) 一种负载有纳米银的氟化石墨烯复合材料的制备方法
Preeyanghaa et al. Complete removal of Tetracycline by sonophotocatalysis using ultrasound-assisted hierarchical graphitic carbon nitride nanorods with carbon vacancies
Imoisili et al. Microwave-assisted sol–gel synthesis of TiO2-mixed metal oxide nanocatalyst for degradation of organic pollutant
Tang et al. Citrate/urea/solvent mediated self-assembly of (BiO) 2CO3 hierarchical nanostructures and their associated photocatalytic performance
JP2013035251A (ja) 立体造形物、立体造形物の製造方法、及び、立体造形物を製造するための液状組成物
Liu et al. Controlled synthesis of ordered mesoporous TiO2-supported on activated carbon and pore-pore synergistic photocatalytic performance
Kang et al. A novel and facile synthesis of Ag-doped TiO2 nanofiber for airborne virus/bacteria inactivation and VOC elimination under visible light
CN106669605A (zh) 一种多孔碳吸附剂及其制备方法和应用
CN106311304A (zh) 一种紫外光及可见光催化复合纳米材料及其制备和应用
CN105921112A (zh) 一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法
CN106219604A (zh) 一种制备多级孔结构二氧化钛的制备方法及其光催化应用
Grodziuk et al. Photocatalytic activity of nanostructured composites based on layered niobates and C3N4 in the hydrogen evolution reaction from electron donor solutions under visible light
Ji et al. Titanium mesh-supported TiO2 nano-film for the photocatalytic degradation of ethylene under a UV-LED
CN206229202U (zh) 一种基于石墨烯的吸附包
JP2011088037A (ja) 溶射材料の製造方法及び溶射皮膜の製造方法
CN105312072B (zh) 生物质灰渣基N-TiO2/N-碳纳米管光触媒净水材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160907