CN106086820B - 一种负载有纳米银的氟化石墨烯复合材料的制备方法 - Google Patents

一种负载有纳米银的氟化石墨烯复合材料的制备方法 Download PDF

Info

Publication number
CN106086820B
CN106086820B CN201610594377.3A CN201610594377A CN106086820B CN 106086820 B CN106086820 B CN 106086820B CN 201610594377 A CN201610594377 A CN 201610594377A CN 106086820 B CN106086820 B CN 106086820B
Authority
CN
China
Prior art keywords
fluorinated graphene
composite material
nano silver
passed
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610594377.3A
Other languages
English (en)
Other versions
CN106086820A (zh
Inventor
王振中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen G-Cvd Graphene Technology Co Ltd
Original Assignee
Xiamen G-Cvd Graphene Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen G-Cvd Graphene Technology Co Ltd filed Critical Xiamen G-Cvd Graphene Technology Co Ltd
Priority to CN201610594377.3A priority Critical patent/CN106086820B/zh
Publication of CN106086820A publication Critical patent/CN106086820A/zh
Application granted granted Critical
Publication of CN106086820B publication Critical patent/CN106086820B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种负载有纳米银的氟化石墨烯复合材料的制备方法,包括如下步骤:1)将石墨烯薄膜至于PECVD反应室中,设压力为5×10‑4‑10‑3Pa,温度为200‑600℃,等离子体产生的微波功率为300‑500W,以氩气为载体,通入氟气,反应1‑20h,得到氟化石墨烯薄膜;2)将得到的氟化石墨烯薄膜转移至原子沉积腔室中,采用惰性气体除气20min‑30min,调节超真空反应腔的真空度为10‑6‑10‑7Pa,调节温度为400℃‑700℃;3)以银为靶材,通过电子束轰击蒸发形成银反应气源,通入到沉积腔室中,时间为20‑100ns,再通入惰性载气50‑200ns,重复步骤5‑20min,交替通入银反应气源和惰性载气,在氟化石墨烯薄膜上生长形成纳米银,得到负载有纳米银的氟化石墨烯复合材料。本发明得到的复合材料具有优良性能。

Description

一种负载有纳米银的氟化石墨烯复合材料的制备方法
技术领域
本发明涉及到复合材料制备的技术领域,特别涉及到一种负载有纳米银的氟化石墨烯复合材料的制备方法。
背景技术
随着城市化和工业化的进程越来越快,特别是改革开放以来,城市化和工业化都进入了一个高潮,而随之而来的是一系列导致城市不可持续发展的环境污染问题,特别是空气污染和水污染已经成为人类生存的重大威胁,成为人类健康、经济和社会可持续发展的重大障碍。特别是近些年来,人们对家居环境的追求,对室内装潢的要求越来越高,但是装修材料中的甲苯甲醛及其他挥发性有机物质,使室内空气污染严重,引发呼吸道疾病与生理机能障碍,以及眼鼻等粘膜组织受到刺激而患病等危害。
现有技术中因为活性炭呈毛细结构,具有很强的吸附能力,所以多采用竹炭等活性炭包吸附污染气体,净化空气,保持空气清新。但由于活性炭在使用过程中,常会过量的吸附污染气体,转换成吸附物质,覆在活性炭表面,使活性炭失活。
纳米银具有优良的比表面积活性及催化性能,对抗菌及光催化吸附污染气体等领域都起到了极其广泛的应用。墨烯是单原子厚度的二维碳原子晶体具有独特的电子,物理和化学性质。其独特的二维结构,使得石墨烯成为一个非常理想的纳米粒子的载体来制备石墨烯基的复合材料,用石墨烯负载纳米银粒子,存在于石墨烯层间的纳米银粒子可以起到分离邻近石墨烯片层,防止石墨烯发生团聚的作用。专利201410540914.7公开了一种石墨烯负载纳米银复合材料的制备方法,利用氧化石墨烯、银氨为原料,直接采用市面上可以出售的芦荟胶作为还原剂,在不添加任何稳定剂/分散剂的条件下,一步法制得纳米银负载石墨烯复合材料,具有工艺简单、原料来源广泛、反应温和、绿色环保等优点。但是该方法的到纳米银很难均匀充分的分布在石墨烯片的表面,石墨烯片表面部分区域团聚有大量的纳米颗粒,部分区域又没有纳米颗粒分布,从而导致复合材料的催化活性的有效比表面积降低。
发明内容
本发明的目的在于提出一种负载有纳米银的氟化石墨烯复合材料的制备方法,利用氟掺杂功能化石墨烯,能够诱导更多带正电的纳米银负载在石墨烯表面,提高了石墨烯对纳米银的负载率,同时形成稳定的复合材料,具有高活性和高吸附性,并能保持吸附稳定性和长久性,且制备成本低,无污染,符合绿色环保的目的。
为此,本发明采用以下技术方案:
一种负载有纳米银的氟化石墨烯复合材料的制备方法,包括如下步骤:
1)将石墨烯薄膜置于PECVD反应室中,设压力为5×10-4-10-3Pa,温度为200-600℃,等离子体产生的微波功率为300-500W,以氩气为载体,通入氟气,反应1-20h,得到氟化石墨烯薄膜;
2)将得到的氟化石墨烯薄膜转移至原子沉积腔室中,采用惰性气体除气20min-30min,调节超真空反应腔的真空度为10-6-10-7Pa,调节温度为400℃-700℃;
3)以银为靶材,通过电子束轰击蒸发形成银反应气源,通入到沉积腔室中,时间为20-100ns,再通入惰性载气50-200ns,重复步骤5-20min,交替通入银反应气源和惰性载气,在氟化石墨烯薄膜上生长形成纳米银,得到负载有纳米银的氟化石墨烯复合材料。
优选的,所述石墨烯薄膜的厚度为0.34-3.5nm,即1-10层。
优选的,所述通入氟气的流量为10-50sccm。
优选的,所述氟化石墨烯的氟的质量分数为0.1%-10%。
优选的,所述惰性气体为氦气或者氩气,其通入流量为10-100sccm。
优选的,所述电子束束流70-150mA。
优选的,所述银反应气源的通入流量为1-10sccm。
优选的,所述方法还包括将得到的负载有纳米银的氟化石墨烯复合材料在真空腔中以小于10℃/min的速率降温至室温后取出。
本发明采用以上技术方案,利用气相沉积法制备氟化石墨烯,得到的氟化石墨烯掺杂均匀,能够诱导更多带正电的纳米银负载在石墨烯表面,提高了石墨烯对纳米银的负载率,采用原子沉积法在氟化石墨烯表面沉积纳米银,可以避免纳米银在氟化石墨烯表面发生团聚,可形成稳定的复合材料,具有高活性和高吸附性,并能保持吸附稳定性和长久性,且制备成本低,无污染,符合绿色环保的目的。
附图说明
图1为本发明负载有纳米银的氟化石墨烯复合材料的制备方法流程示意图。
图2为本发明银反应气源和惰性载气通入方式示意图。
具体实施方式
为了使本发明的目的、特征和优点更加的清晰,以下结合附图及实施例,对本发明的具体实施方式做出更为详细的说明,在下面的描述中,阐述了很多具体的细节以便于充分的理解本发明,但是本发明能够以很多不同于描述的其他方式来实施。因此,本发明不受以下公开的具体实施的限制。
一种负载有纳米银的氟化石墨烯复合材料的制备方法,如图1所示,包括如下步骤:
1)将石墨烯薄膜置于PECVD反应室中,设压力为5×10-4-10-3Pa,温度为200-600℃,等离子体产生的微波功率为300-500W,以氩气为载体,通入氟气,反应1-20h,得到氟化石墨烯薄膜;
2)将得到的氟化石墨烯薄膜转移至原子沉积腔室中,采用惰性气体除气20min-30min,调节超真空反应腔的真空度为10-6-10-7Pa,调节温度为400℃-700℃;
3)以银为靶材,通过电子束轰击蒸发形成银反应气源,通入到沉积腔室中,时间为20-100ns,再通入惰性载气50-200ns,重复步骤5-20min,交替通入银反应气源和惰性载气,如图2所示,在氟化石墨烯薄膜上生长形成纳米银,得到负载有纳米银的氟化石墨烯复合材料。
其中,所述石墨烯薄膜的厚度为0.34-3.5nm,即1-10层。
其中,所述通入氟气的流量为10-50sccm。
其中,所述氟化石墨烯的氟的质量分数为0.1%-10%。
其中,所述惰性气体为氦气或者氩气,其通入流量为10-100sccm。
其中,所述电子束束流70-150mA。
其中,所述银反应气源的通入流量为1-10sccm。
其中,所述方法还包括将得到的负载有纳米银的氟化石墨烯复合材料在真空腔中以小于10℃/min的速率降温至室温后取出。
本发明利用气相沉积法制备氟化石墨烯,得到的氟化石墨烯掺杂均匀,能够诱导更多带正电的纳米银负载在石墨烯表面,提高了石墨烯对纳米银的负载率,采用原子沉积法在氟化石墨烯表面沉积纳米银,可以避免纳米银在氟化石墨烯表面发生团聚,可形成稳定的复合材料,具有高活性和高吸附性,并能保持吸附稳定性和长久性,且制备成本低,无污染,符合绿色环保的目的。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种负载有纳米银的氟化石墨烯复合材料的制备方法,其特征在于:包括如下步骤:
1)将石墨烯薄膜置于PECVD反应室中,设压力为5×10-4-10-3Pa,温度为200-600℃,等离子体产生的微波功率为300-500W,以氩气为载体,通入氟气,反应1-20h,得到氟化石墨烯薄膜;
2)将得到的氟化石墨烯薄膜转移至原子沉积腔室中,采用惰性气体除气20min-30min,调节超真空反应腔的真空度为10-6-10-7Pa,调节温度为400℃-700℃;
3)以银为靶材,通过电子束轰击蒸发形成银反应气源,通入到沉积腔室中,时间为20-100ns,再通入惰性载气50-200ns,重复步骤5-20min,交替通入银反应气源和惰性载气,在氟化石墨烯薄膜上生长形成纳米银,得到负载有纳米银的氟化石墨烯复合材料。
2.根据权利要求1所述的一种负载有纳米银的氟化石墨烯复合材料的制备方法,其特征在于,所述石墨烯薄膜的厚度为0.34-3.5nm,即1-10层。
3.根据权利要求1所述的一种负载有纳米银的氟化石墨烯复合材料的制备方法,其特征在于,所述通入氟气的流量为10-50sccm。
4.根据权利要求1所述的一种负载有纳米银的氟化石墨烯复合材料的制备方法,其特征在于,所述氟化石墨烯的氟的质量分数为0.1%-10%。
5.根据权利要求1所述的一种负载有纳米银的氟化石墨烯复合材料的制备方法,其特征在于,所述惰性气体为氦气或者氩气,其通入流量为10-100sccm。
6.根据权利要求1所述的一种负载有纳米银的氟化石墨烯复合材料的制备方法,其特征在于,所述电子束束流70-150mA。
7.根据权利要求1所述的一种负载有纳米银的氟化石墨烯复合材料的制备方法,其特征在于,所述银反应气源的通入流量为1-10sccm。
8.根据权利要求1所述的一种负载有纳米银的氟化石墨烯复合材料的制备方法,其特征在于,所述方法还包括将得到的负载有纳米银的氟化石墨烯复合材料在真空腔中以小于10℃/min的速率降温至室温后取出。
CN201610594377.3A 2016-07-26 2016-07-26 一种负载有纳米银的氟化石墨烯复合材料的制备方法 Active CN106086820B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610594377.3A CN106086820B (zh) 2016-07-26 2016-07-26 一种负载有纳米银的氟化石墨烯复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610594377.3A CN106086820B (zh) 2016-07-26 2016-07-26 一种负载有纳米银的氟化石墨烯复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106086820A CN106086820A (zh) 2016-11-09
CN106086820B true CN106086820B (zh) 2019-01-11

Family

ID=57450533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610594377.3A Active CN106086820B (zh) 2016-07-26 2016-07-26 一种负载有纳米银的氟化石墨烯复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106086820B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694516A (zh) * 2017-10-13 2018-02-16 南京旭羽睿材料科技有限公司 一种负载纳米银的石墨烯复合材料制备工艺
CN107761054B (zh) * 2017-10-31 2019-03-01 湖南国盛石墨科技有限公司 一种负载有纳米银的微晶石墨烯复合材料及其制备方法和应用
CN107841739A (zh) * 2017-11-20 2018-03-27 湖南金裕环保科技有限公司 氟化石墨烯表面处理剂、制备方法及其使用方法
CN111748781B (zh) * 2020-06-18 2022-08-16 九牧厨卫股份有限公司 一种复合抗菌靶材及其制备方法和应用
CN112255281B (zh) * 2020-10-20 2021-06-01 山东大学 基于单原子层氟化石墨烯的电子氨气传感器的制备方法
CN112723349B (zh) * 2020-12-24 2021-08-31 广东工业大学 一种氟化石墨烯的温和放电制备方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530910A (zh) * 2010-12-22 2012-07-04 海洋王照明科技股份有限公司 氟化石墨烯的制备方法
CN104148666A (zh) * 2014-07-26 2014-11-19 哈尔滨工业大学 一种纳米银修饰石墨烯的方法
CN104308177A (zh) * 2014-10-14 2015-01-28 钱景 一种石墨烯负载纳米银复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530910A (zh) * 2010-12-22 2012-07-04 海洋王照明科技股份有限公司 氟化石墨烯的制备方法
CN104148666A (zh) * 2014-07-26 2014-11-19 哈尔滨工业大学 一种纳米银修饰石墨烯的方法
CN104308177A (zh) * 2014-10-14 2015-01-28 钱景 一种石墨烯负载纳米银复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pd、Ag沉积对石墨烯电子结构的影响研究;张焕林;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20140315(第03期);全文

Also Published As

Publication number Publication date
CN106086820A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106086820B (zh) 一种负载有纳米银的氟化石墨烯复合材料的制备方法
CN104759253B (zh) 一种用于重金属富集或去除水中的污染物的石墨烯海绵及其制备方法
Van Nang et al. Controllable synthesis of high-quality graphene using inductively-coupled plasma chemical vapor deposition
Lee et al. High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane
Kim et al. Enhanced C2H5OH sensing characteristics of nano-porous In2O3 hollow spheres prepared by sucrose-mediated hydrothermal reaction
Mathew et al. Mega-electron-volt proton irradiation on supported and suspended graphene: A Raman spectroscopic layer dependent study
CN102887508A (zh) 一种高强度氧化石墨烯气凝胶的制备方法
Liu et al. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect
Hsueh et al. Deposition of platinum on oxygen plasma treated carbon nanotubes by atomic layer deposition
Hao et al. Three-dimensional graphene and its composite for gas sensors
CN105289685B (zh) 一种用于空气净化的表面等离子共振增强光催化剂及其制备方法和应用
Karumuri et al. Tuning the surface wettability of carbon nanotube carpets in multiscale hierarchical solids
Abdelkader-Fernández et al. Hydrogen cold plasma for the effective reduction of graphene oxide
Wang et al. In2S3 nanoflakes grounded in Bi2WO6 nanoplates: A novel hierarchical heterojunction catalyst anchored on W mesh for efficient elimination of toluene
Kim et al. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons
Gupta et al. Mechanisms of plasma-assisted catalyzed growth of carbon nanofibres: a theoretical modeling
Zhang et al. An effective formaldehyde gas sensor based on oxygen-rich three-dimensional graphene
Karanjikar et al. Utilization of graphene and its derivatives for air & water filtration: A review
Zhang et al. Highly efficient field emission from ZnO nanorods and nanographene hybrids on a macroporous electric conductive network
CN109957784A (zh) 一种微波化学气相沉积制备二氧化硅/石墨烯纳米复合材料的方法及其产品
Wang et al. Nickel skeleton three-dimensional nitrogen doped graphene nanosheets/nanoscrolls as promising supercapacitor electrodes
Lei et al. Thermo-catalytic decomposition of formaldehyde: a novel approach to produce mesoporous ZnO for enhanced photocatalytic activities
CN105921112A (zh) 一种石墨烯基纳米金属氧化物光催化吸附材料的制备方法
Guo et al. Efficient one-pot synthesis of peapod-like hollow carbon nanomaterials for utrahigh drug loading capacity
Fathi et al. Hexavalent chromium adsorption from aqueous solutions using nanoporous graphene/Fe3O4 (NPG/Fe3O4: modeling and optimization)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant