WO2019022195A1 - インク組成物、フィルム及びディスプレイ - Google Patents

インク組成物、フィルム及びディスプレイ Download PDF

Info

Publication number
WO2019022195A1
WO2019022195A1 PCT/JP2018/028074 JP2018028074W WO2019022195A1 WO 2019022195 A1 WO2019022195 A1 WO 2019022195A1 JP 2018028074 W JP2018028074 W JP 2018028074W WO 2019022195 A1 WO2019022195 A1 WO 2019022195A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
group
mass
solvent
atoms
Prior art date
Application number
PCT/JP2018/028074
Other languages
English (en)
French (fr)
Inventor
将 金坂
剛志 宮本
翔太 内藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2018567771A priority Critical patent/JP6506488B1/ja
Priority to US16/632,938 priority patent/US11584862B2/en
Priority to EP18838670.0A priority patent/EP3660109B1/en
Priority to KR1020207002042A priority patent/KR102112974B1/ko
Priority to CN202110742619.XA priority patent/CN113444394B/zh
Priority to CN201880049454.4A priority patent/CN110997828B/zh
Publication of WO2019022195A1 publication Critical patent/WO2019022195A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/24Lead compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead

Definitions

  • the present invention relates to an ink composition, a film and a display.
  • Priority is claimed on Japanese Patent Application No. 201-146319, filed July 28, 2017, the content of which is incorporated herein by reference.
  • Non-Patent Document 1 In recent years, interest in perovskite compounds having high emission intensity has been increasing as a wavelength conversion material, and for example, an ink composition containing a perovskite compound and PMMA has been reported as an ink composition for producing a wavelength conversion film. (Non-Patent Document 1).
  • Non-Patent Document 1 the cured product of the ink composition described in Non-Patent Document 1 does not necessarily have sufficient solvent resistance.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide an ink composition having high solvent resistance of a cured product while maintaining emission intensity and a film obtained by curing the ink composition. To aim.
  • the embodiment of the present invention includes the inventions of the following [1] to [7].
  • Solvent Formula (a) Z (O2 + O3 + N2 + N3) / (C2 + C3) (O2, N2, C2: the number of O atoms, the number of N atoms, the number of C atoms contained in (2), respectively.
  • O3, N3, C3 the number of O atoms, the number of N atoms, the number of C atoms contained in (3), respectively.
  • A represents a hydrogen atom or a methyl group.
  • Ra represents a methylene group.
  • Rb represents a divalent group represented by any one of the following formulas (b-31) to (b-38), and when there are a plurality of Rb's, Rb's may be the same as or different from each other.
  • Rc represents a monovalent group represented by any one of the following formulas (b-41) to (b-48).
  • the polymer containing the repeating unit represented by the above formula (b-2) has 50% of the repeating units represented by the formula (b-2) with 100 mol% of all repeating units contained in the polymer
  • the display provided with the film as described in [7] [6].
  • FIG. 1 is a cross-sectional view showing an embodiment of a display according to the present invention.
  • the ink composition of the present embodiment is an ink composition containing the following (1) and (2) and may contain the following (3), and the value of Z in the following formula (a) is 0.37 It is characterized by being less than. Moreover, the value of Z in the following formula (a) may be 0.37 or less.
  • (1) Semiconductor nanoparticles containing a perovskite compound (2) curable resin composition (3) solvent formula (a) Z (O2 + O3 + N2 + N3) / (C2 + C3) (O2, N2, C2: the number of O atoms, the number of N atoms, the number of C atoms contained in (2), respectively.
  • O3, N3, C3 the number of O atoms, the number of N atoms, the number of C atoms contained in (3), respectively.
  • O 3, N 3 and C 3 are each zero.
  • the ink composition of the present embodiment may contain at least one selected from the group consisting of the following (1) -2 and (1) -3.
  • the total content ratio of (1), (2) and (3) is 70, where the total mass of the ink composition is 100% by mass from the viewpoint of obtaining good solvent resistance. It is preferable that it is mass% or more, and it is more preferable that it is 80 mass% or more.
  • the ink composition according to the present embodiment has a total content ratio of 70% by mass of the above (1), (2) and (3), where the total mass of the ink composition is 100% by mass. % Or more and 100% or less is preferable, and 80% by mass or more and 100% or less is more preferable.
  • the ink composition according to the present embodiment preferably has a total content of 100% by mass, and the content ratio of (3) is 25% by mass or less, and 20% by mass or less It is more preferable that the content be 10% by mass or less.
  • the content ratio of (3) is 0% by mass to 25% by mass, where the total mass of the ink composition is 100% by mass. Preferably, it is 0 mass% or more and 10 mass% or less.
  • the preferable range of the content rate of the sum total of said (1), (2) and (3) and the preferable range of the content rate of said (3) can be combined arbitrarily.
  • the content ratio of the (3) is 25% by mass or less, where the total mass of the ink composition is 100% by mass, and the above (1), (2) and (3) It is preferable that the total content rate of is 70 mass% or more.
  • the perovskite compound is a compound having a perovskite crystal structure, having A, B and X as constituent components.
  • A is a component located at each vertex of a hexahedron centered on B in the perovskite crystal structure, and is a monovalent cation.
  • X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • B is a metal ion which is a hexahedron having A at its apex and a component located at the center of an octahedron having X at its apex in the perovskite-type crystal structure.
  • the perovskite compound containing A, B and X as a component is not particularly limited as long as it has the effect of the present invention, and is a compound having any of a three-dimensional structure, a two-dimensional structure and a pseudo two-dimensional structure It is also good.
  • the compositional formula of the perovskite compound is represented by ABX (3 + ⁇ ) .
  • the compositional formula of the perovskite compound is represented by A 2 BX (4 + ⁇ ) .
  • is a number that can be appropriately changed according to the charge balance of B, and is ⁇ 0.7 or more and 0.7 or less. From the viewpoint of stabilizing the crystal structure, ⁇ is preferably ⁇ 0.3 or more and 0.3 or less, more preferably ⁇ 0.1 or more and 0.1 or less, and still more preferably 0.
  • the perovskite compound is preferably a perovskite compound represented by the following general formula (P1).
  • the A is a component located at each vertex of the hexahedron centered on the B in the perovskite crystal structure, and is a monovalent cation.
  • the X represents a component located at each vertex of the octahedron centered on the B in the perovskite crystal structure, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • the B is a metal ion which is a hexahedron having the A at the top and a component located at the center of the octahedron having the X at the top in the perovskite crystal structure.
  • A In the perovskite compound, A is a component located at each vertex of the hexahedron centered on B in the perovskite crystal structure, and is a monovalent cation.
  • the monovalent cation includes cesium ion, organic ammonium ion, or amidinium ion.
  • the perovskite compound when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound is generally represented by ABX (3 + ⁇ ) , Has a three-dimensional structure.
  • a in the perovskite compound is preferably cesium ion or organic ammonium ion.
  • organic ammonium ion of A examples include a cation represented by the following general formula (A1).
  • R 6 to R 9 each independently have a hydrogen atom, an alkyl group which may have an amino group as a substituent, or an alkyl group or an amino group as a substituent It also represents a good cycloalkyl group. However, R 6 to R 9 do not simultaneously become a hydrogen atom.
  • the alkyl groups represented by R 6 to R 9 may be each independently linear or branched, and may have an amino group as a substituent.
  • R 6 to R 9 are an alkyl group, the number of carbon atoms is independently usually 1 to 20, preferably 1 to 4, more preferably 1 to 3, and 1 Is more preferred.
  • the cycloalkyl groups represented by R 6 to R 9 may each independently have an alkyl group as a substituent, and may have an amino group.
  • the carbon atom number of the cycloalkyl group represented by R 6 to R 9 is usually independently 3 to 30, preferably 3 to 11, and more preferably 3 to 8.
  • the number of carbon atoms also includes the number of carbon atoms of a substituent.
  • the groups represented by R 6 to R 9 are preferably each independently a hydrogen atom or an alkyl group.
  • a perovskite crystal having a three-dimensional structure with high emission intensity Compounds having a structure can be obtained.
  • the number of carbon atoms of the alkyl group or the cycloalkyl group is 4 or more, a compound having a two-dimensional and / or quasi two-dimensional (quasi-2D) perovskite crystal structure in part or in whole can be obtained.
  • the total number of carbon atoms contained in the alkyl group represented by R 6 to R 9 is preferably 1 to 4, and the total number of carbon atoms contained in the cycloalkyl group represented by R 6 to R 9 is It is preferably 3 to 4.
  • One of R 6 ⁇ R 9 is an alkyl group having 1 to 3 carbon atoms, and more preferably three of R 6 ⁇ R 9 is a hydrogen atom.
  • alkyl group of R 6 to R 9 methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group Neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl Group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3-ethylpentyl group Group, 2,2,3-trimethylbutyl group, n-o
  • the cycloalkyl group of R 6 ⁇ R 9, include those independently R 6 ⁇ exemplified alkyl group having 3 or more carbon atoms in the alkyl group R 9 is to form a ring, as an example, a cyclopropyl group And cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornyl, isobornyl, 1-adamantyl, 2-adamantyl, tricyclodecyl and the like.
  • CH 3 NH 3 + also referred to as methyl ammonium ion
  • C 2 H 5 NH 3 + also referred to as ethyl ammonium ion
  • C 3 H 7 NH 3 + It is also preferable to be a propyl ammonium ion), more preferably CH 3 NH 3 + or C 2 H 5 NH 3 + , and still more preferably CH 3 NH 3 + .
  • amidinium ion represented by A the amidinium ion represented by the following general formula (A2) is mentioned, for example.
  • R 10 R 11 N CH -NR 12 R 13) + ⁇ (A2)
  • R 10 to R 13 each independently have a hydrogen atom, an alkyl group which may have an amino group as a substituent, or an alkyl group or an amino group as a substituent It also represents a good cycloalkyl group.
  • the alkyl groups represented by R 10 to R 13 may be each independently linear or branched, and may have an amino group as a substituent.
  • the carbon atom number of the alkyl group represented by R 10 to R 13 is usually independently 1 to 20, preferably 1 to 4, and more preferably 1 to 3.
  • the cycloalkyl groups represented by R 10 to R 13 may each independently have an alkyl group as a substituent, and may have an amino group.
  • the carbon atom number of the cycloalkyl group represented by R 10 to R 13 is usually independently 3 to 30, preferably 3 to 11, and more preferably 3 to 8.
  • the number of carbon atoms includes the number of carbon atoms of a substituent.
  • alkyl group of R 10 to R 13 include, independently, the alkyl groups exemplified for R 6 to R 9 .
  • alkyl group of R 10 to R 13 an ethyl group and a methyl group are preferable, and a methyl group is more preferable.
  • cycloalkyl group of R 10 to R 13 include each independently the cycloalkyl group exemplified in R 6 to R 9 .
  • the groups represented by R 10 to R 13 are preferably each independently a hydrogen atom or an alkyl group.
  • a perovskite compound having a three-dimensional structure with high emission intensity can be obtained. You can get it.
  • the number of carbon atoms of the alkyl group or the cycloalkyl group is 4 or more, a compound having a two-dimensional and / or quasi two-dimensional (quasi-2D) perovskite crystal structure in part or in whole can be obtained.
  • the total number of carbon atoms contained in the alkyl group represented by R 10 to R 13 is preferably 1 to 4, and the total number of carbon atoms contained in the cycloalkyl group represented by R 10 to R 13 is It is preferably 3 to 4. More preferably, R 10 is an alkyl group having 1 to 3 carbon atoms, and R 11 to R 13 are hydrogen atoms.
  • B in the perovskite crystal structure is a hexahedron having A at the top and a component located at the center of an octahedron with X at the top, which are metal ions.
  • the metal ion of the component B may be one or more metal ions selected from the group consisting of monovalent metal ions, divalent metal ions, and trivalent metal ions.
  • B preferably contains a divalent metal ion, and more preferably contains at least one metal ion selected from the group consisting of lead and tin.
  • X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion .
  • X may be at least one anion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion and thiocyanate ion.
  • X can be suitably selected according to the desired emission wavelength, for example, X can contain a bromide ion.
  • the content ratio of the halide ions can be appropriately selected according to the emission wavelength, and for example, a combination of bromide ion and chloride ion, or bromide ion and iodide It can be in combination with ions.
  • the perovskite compound When the perovskite compound has a three-dimensional structure, it has a three-dimensional network of vertex-sharing octahedrons represented by BX 6 centered on B and having a vertex X.
  • BX 6 When the perovskite compound has a two-dimensional structure, an octahedron represented by BX 6 having B as a center and X as an apex is sharing two-dimensionally linked BX by sharing X of four apexes in the same plane.
  • a structure is formed in which layers of 6 and layers of A are alternately stacked.
  • B is a metal cation capable of octahedral coordination with X.
  • the perovskite structure can be confirmed by an X-ray diffraction pattern.
  • CsPbBr 3 is preferable as a perovskite compound having a three-dimensional perovskite crystal structure represented by ABX (3 + ⁇ ) .
  • a compound having a perovskite crystal structure of a two-dimensional structure which is a perovskite compound and is represented by A 2 BX (4 + ⁇ ) , (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15) NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ 0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ 0), (C 4 H 9 NH 3 ) 2 Pb (1
  • the average particle diameter of (1) contained in the ink composition of this embodiment is not particularly limited as long as the effects of the present invention are obtained.
  • the average particle diameter of (1) is preferably 1 nm or more, more preferably 2 nm or more, from the viewpoint of maintaining the crystal structure of (1) satisfactorily. It is more preferable that it is more than.
  • the average particle diameter of (1) is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and 500 nm or less from the viewpoint of making it difficult to precipitate (1). It is further preferred that The above upper limit value and lower limit value can be arbitrarily combined.
  • the average particle diameter of (1) contained in the ink composition of the present embodiment is not particularly limited, but from the viewpoint of making it difficult to precipitate (1) and the viewpoint of maintaining the crystal structure well.
  • the average particle diameter is preferably 1 nm or more and 10 ⁇ m or less, more preferably 2 nm or more and 1 ⁇ m or less, and still more preferably 3 nm or more and 500 nm or less.
  • the average particle diameter of (1) contained in the ink composition can be measured, for example, by a scanning electron microscope (hereinafter also referred to as SEM) or a transmission electron microscope (hereinafter also referred to as TEM).
  • the Feret diameters of 20 (1) contained in the ink composition are observed by TEM or SEM, and the average Feret diameter which is an average value thereof is calculated. Particle size can be obtained.
  • Ferret diameter means the maximum distance between two parallel straight lines sandwiching an observation target on a TEM or SEM image.
  • the median diameter (D50) of (1) contained in the ink composition of the present embodiment is not particularly limited as long as the effects of the present invention are obtained.
  • the median diameter (D50) of (1) is preferably 3 nm or more, more preferably 4 nm or more, from the viewpoint of (1) maintaining the crystal structure well. More preferably, it is 5 nm or more.
  • the median diameter (D50) of (1) is preferably 5 ⁇ m or less, more preferably 500 nm or less, from the viewpoint of making it difficult to precipitate (1). More preferably, it is 100 nm or less.
  • the median diameter (D50) of (1) contained in the ink composition is preferably 3 nm to 5 ⁇ m, more preferably 4 nm to 500 nm, and 5 nm to 100 nm. Is more preferred.
  • the median diameter (D50) of (1) contained in the ink composition can be measured by, for example, TEM or SEM. Specifically, the Feret diameters of 20 (1) contained in the ink composition are observed by TEM or SEM, and the median diameter (D50) can be determined from their distribution.
  • the content ratio of the perovskite compound to the total mass of the semiconductor nanoparticles of the present embodiment is usually 1 to 100% by mass, preferably 10 to 100% by mass, and more preferably 70 to 100% by mass.
  • the content ratio of (1) to the total mass of the ink composition of the present embodiment is not particularly limited as long as the effects of the present invention are obtained, but it is difficult to aggregate semiconductor nanoparticles containing a perovskite compound, And from the viewpoint of preventing concentration quenching, the content is preferably 50% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less. Further, from the viewpoint of obtaining a good quantum yield, the content ratio of (1) to the total mass of the ink composition is preferably 0.0001% by mass or more, and more preferably 0.0005% by mass or more. Preferably, it is more preferably 0.001% by mass or more.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the content ratio of (1) to the total mass of the ink composition is usually 0.0001 to 50% by mass.
  • the content ratio of (1) with respect to the total mass of the ink composition is preferably 0.0001 to 5% by mass, and more preferably 0.0005 to 2% by mass.
  • the composition in which the content ratio of (1) to the total mass of the ink composition is within the above range is unlikely to cause aggregation of (1), and the light emission property is also exhibited well. Preferred.
  • the content ratio of (2) to the total mass of the ink composition of the present embodiment is not particularly limited as long as the effect of the present invention is obtained, but the solvent resistance of the cured product is maintained while maintaining the emission intensity. It is preferable that it is 99 mass% or less from a viewpoint of raising. Further, from the viewpoint of enhancing the solvent resistance of the cured product while maintaining the emission intensity, the content ratio of (2) to the total mass of the ink composition is preferably 0.1 mass% or more, and 1 mass%. The content is more preferably 10% by mass or more. The above upper limit value and lower limit value can be arbitrarily combined. The content ratio of (2) to the total mass of the ink composition is usually 0.1 to 99 mass%.
  • the content ratio of (2) to the total mass of the ink composition is preferably 1 to 99% by mass, and more preferably 10 to 99% by mass.
  • a composition in which the content ratio of (2) to the total mass of the ink composition is within the above range is preferable in terms of enhancing the solvent resistance of the cured product while maintaining the emission intensity. .
  • the total content ratio of (1) and (2) with respect to the total mass of the ink composition of the present embodiment is not particularly limited as long as the effects of the present invention are obtained. It is preferable that it is 99 mass% or less from a viewpoint of raising the solvent resistance of the above. In addition, from the viewpoint of enhancing the solvent resistance of the cured product while maintaining the emission intensity, the total content ratio of (1) and (2) to the total mass of the ink composition is 0.1 mass% or more. The content is preferably 1% by mass or more, and more preferably 10% by mass or more. The above upper limit value and lower limit value can be arbitrarily combined.
  • the total content of (1) and (2) relative to the total mass of the ink composition is usually 0.1 to 99% by mass.
  • the total content of (1) and (2) based on the total mass of the ink composition is preferably 1 to 99% by mass, and more preferably 10 to 99% by mass.
  • the composition having the total content ratio of (1) and (2) with respect to the total mass of the ink composition within the above range maintains the luminous intensity while maintaining the solvent resistance of the cured product. It is preferable in terms of enhancing the
  • At least a part of the semiconductor nanoparticles containing the perovskite compound may be coated with a (1) -2 capping ligand and / or (1) -3 surface coating material described later.
  • the ink composition of the present embodiment may contain a capping ligand in order to improve the dispersibility of (1) and to improve the light emission characteristics.
  • the ink composition of the present embodiment contains, as a capping ligand, at least one compound or ion selected from the group consisting of ammonia, an amine, and a carboxylic acid, and as a possible form of the compound, salts or ions thereof. May be included.
  • the ink composition of the present embodiment is selected from the group consisting of ammonia, amines, carboxylic acids, salts of ammonia, salts of amines, salts of carboxylic acids, ions of ammonia, ions of amines, and ions of carboxylic acids. It may contain at least one compound or ion. Ammonia, amines, and carboxylic acids and their salts or ions usually act as capping ligands.
  • the “capping ligand” is a compound that has the function of adsorbing on the surface of (1) to stably disperse (1) in the ink composition.
  • an ion or salt (ammonium salt etc.) of ammonia or amine an ammonium cation represented by General Formula (A1 ′) described later, an ammonium salt containing the same, or an ammonium cation represented by General Formula (A1 ′) And amines obtained by removing any one of R 1 to R 4 .
  • a carboxylic acid ion or salt (carboxylate etc.) it is represented by the carboxylate anion represented by general formula (A2 ') mentioned later, the carboxylate containing it, or general formula (A2') Mention may be made of carboxylic acids in which protons are bound to carboxylate anions.
  • the ink composition of the present embodiment may contain either or both of an ammonium salt and the like, and a carboxylate and the like.
  • the capping ligand may be an ammonium cation represented by the general formula (A1 ′), or an ammonium salt containing the same.
  • R 1 to R 3 each represent a hydrogen atom
  • R 4 represents a hydrogen atom or a monovalent hydrocarbon group.
  • the hydrocarbon group represented by R 4 may be a saturated hydrocarbon group (ie, an alkyl group or a cycloalkyl group) or an unsaturated hydrocarbon group.
  • the alkyl group represented by R 4 may be linear or branched.
  • the carbon atom number of the alkyl group represented by R 4 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • the cycloalkyl group represented by R 4 may have an alkyl group as a substituent.
  • the carbon atom number of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms includes the number of carbon atoms of a substituent.
  • the unsaturated hydrocarbon group of R 4 may be linear or branched.
  • the carbon atom number of the unsaturated hydrocarbon group of R 4 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • R 4 is preferably a hydrogen atom, an alkyl group, or an unsaturated hydrocarbon group.
  • unsaturated hydrocarbon group an alkenyl group is preferable.
  • R 4 is preferably an alkenyl group having 8 to 20 carbon atoms.
  • alkyl group of R 4 examples include the alkyl groups exemplified for R 6 to R 9 .
  • cycloalkyl group of R 4 examples include the cycloalkyl groups exemplified for R 6 to R 9 .
  • Preferred examples of such an alkenyl group include, for example, ethenyl group, propenyl group, 3-butenyl group, 2-butenyl group, 2-pentenyl group, 2-hexenyl group, 2-nonenyl group, 2-dodecenyl group, 9 -Octadecenyl group is mentioned.
  • the counter anion is not particularly limited, but preferred examples thereof include halide ions of Br ⁇ , Cl ⁇ , I ⁇ and F ⁇ , and carboxylate ions.
  • an ammonium salt having an ammonium cation represented by the general formula (A1 ′) and a counter anion n-octyl ammonium salt and oleyl ammonium salt are mentioned as preferable examples.
  • the capping ligand may be a carboxylate anion represented by the general formula (A2 ′), or a carboxylate containing the same.
  • R 5 represents a monovalent hydrocarbon group.
  • the hydrocarbon group represented by R 5 may be a saturated hydrocarbon group (that is, an alkyl group, a cycloalkyl group) or an unsaturated hydrocarbon group.
  • the alkyl group represented by R 5 may be linear or branched.
  • the carbon atom number of the alkyl group represented by R 5 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • the cycloalkyl group represented by R 5 may have an alkyl group as a substituent.
  • the carbon atom number of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms also includes the number of carbon atoms of a substituent.
  • the unsaturated hydrocarbon group represented by R 5 may be linear or branched.
  • the carbon atom number of the unsaturated hydrocarbon group represented by R 5 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • R 5 is preferably an alkyl group or an unsaturated hydrocarbon group.
  • unsaturated hydrocarbon group an alkenyl group is preferable.
  • alkyl group of R 5 examples include the alkyl groups exemplified for R 6 to R 9 .
  • cycloalkyl group of R 5 examples include the cycloalkyl groups exemplified for R 6 to R 9 .
  • alkenyl group of R 5 examples include the alkenyl groups exemplified for R 4 . Among these, as the alkenyl group for R 5 , a 9-octadecenyl group is preferable.
  • the carboxylate anion represented by the general formula (A2 ') is preferably an oleate anion.
  • the counter cation is not particularly limited, but preferred examples thereof include alkali metal cations, alkaline earth metal cations and ammonium cations.
  • the ink composition of the present embodiment may contain a surface covering material in order to protect the surface of (1) and improve the light emission characteristics.
  • the surface covering material should just be a material which can coat (1).
  • the surface covering material includes a compound containing a silicon atom. Examples of the compound containing a silicon atom include silicon alkoxides, tetraalkoxide silanes such as tetraethoxysilane and tetramethoxysilane, trialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane and phenyltriethoxysilane, and the like.
  • the compound containing a silicon atom may be a silicon-containing alkoxide compound having an organic functional group. Specifically, mercaptopropyltriethoxysilane, aminopropyltriethoxysilane and the like can be mentioned.
  • the compound containing a silicon atom may be silazane or a modified product thereof.
  • the compound containing a silicon atom is preferably silazane or a modified product thereof.
  • the coverage of (1) of the surface covering material is preferably 1 to 100%, more preferably 3 to 100%, and still more preferably 10 to 100%.
  • the coverage of (1) of the surface covering material can be determined by observing the (1) covered with the surface covering material by TEM, SEM or the like and performing energy dispersive X-ray analysis (EDX).
  • the range of the region where the element derived from the surface covering material exists and the range of the region of the whole particle are obtained by EDX (((range of region where the element derived from surface covering exists) / region of whole particle It can obtain
  • the silazane may be linear, branched or cyclic.
  • silazane may be a low molecule or a polymer (sometimes referred to as polysilazane in this specification).
  • low molecular weight means that the number average molecular weight is less than 600
  • high molecular weight means that the number average molecular weight is 600 or more and 2000 or less.
  • number average molecular weight refers to a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • a low molecular weight silazane represented by the following general formula (B1) or (B2), and a polysilazane having a structural unit represented by the general formula (B3), or a structure represented by the general formula (B4) Is preferred.
  • the silazane may be used after being modified by a method described later and modified with silica.
  • the silazane contained in the composition of the embodiment may be a modified silazane modified by the method described later. Modification means that N is replaced with O in at least a part of Si-N-Si bond contained in silazane to form Si-O-Si bond, and a modified form of silazane is Si- It is a compound containing an O-Si bond.
  • a low molecular weight compound in which at least one N contained in general formula (B1) or (B2) described above is substituted with O and a general formula (B3)
  • the ratio of the number of substituted O to the total amount of N contained in the general formula (B2) is preferably 0.1 to 100%, more preferably 10 to 98%, and 30 to 95%.
  • the ratio of the number of substituted O to the total amount of N contained in the general formula (B3) is preferably 0.1 to 100%, more preferably 10 to 98%, and 30 to 95%. It is further preferred that The ratio of the number of substituted O to the total amount of N contained in the general formula (B4) is preferably 0.1 to 99%, more preferably 10 to 97%, and 30 to 95%. It is further preferred that The modifier of silazane may be one type or a mixture of two or more types.
  • the number of Si atoms, the number of N atoms, and the number of O atoms contained in silazane and its modified substance are nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS), or transmission electron microscopy (TEM) It can be calculated by energy dispersive X-ray analysis (EDX) or the like.
  • EDX energy dispersive X-ray analysis
  • the number of Si atoms, the number of N atoms, and the number of O atoms in the ink composition can be calculated by X-ray photoelectron spectroscopy (XPS).
  • the ratio of the number of O atoms to the number of N atoms contained in the silazane and the modified product thereof measured by the above-mentioned method is preferably 0.1 to 99%, more preferably 10 to 95%, It is more preferable that the content be 90%.
  • At least a portion of the silazane or a modified product thereof may be adsorbed to the perovskite compound contained in the composition, or may be dispersed in the composition.
  • R 14 and R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, or 3 to 20 carbon atoms. And the aryl group having 6 to 20 carbon atoms, or the alkylsilyl group having 1 to 20 carbon atoms.
  • the silyl group may have a substituent such as an amino group.
  • Plural R 15 may be the same or different.
  • low molecular weight silazane represented by the general formula (B1) 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, and 1,1,3, Examples include 1,3,3,3-hexamethyldisilazane.
  • R 14 and R 15 are as defined above.
  • Plural R 14 may be identical or different.
  • Plural R 15 may be the same or different.
  • n 1 represents an integer of 1 or more and 20 or less.
  • n 1 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
  • silazanes represented by the general formula (B2) octamethylcyclotetrasilazane, 2,2,4,4,6,6-hexamethylcyclotrisilazane, and 2,4,6-trimethyl-2 , 4, 6-trivinylcyclotrisilazane.
  • octamethylcyclotetrasilazane and 1,3-diphenyltetramethyldisilazane are preferable, and octamethylcyclotetrasilazane is more preferable.
  • the polysilazane is a polymer compound having a Si—N—Si bond, and is not particularly limited, and examples thereof include a polymer compound having a structural unit represented by the following general formula (B3).
  • the constituent unit represented by the general formula (B3) contained in polysilazane may be one kind or plural kinds.
  • R 14 and R 15 are as defined above. * Represents a bond.
  • the terminal N atom bond may have the same substituent as R 14, and the terminal Si atom bond may have the same substituent as R 15 .
  • Plural R 14 may be identical or different.
  • Plural R 15 may be the same or different.
  • m represents an integer of 2 or more and 10000 or less.
  • the polysilazane having a constitutional unit represented by the general formula (B3) may be, for example, perhydropolysilazane in which all of R 14 and R 15 are hydrogen atoms.
  • polysilazane having a structural unit represented by General Formula (B3) may be, for example, an organopolysilazane in which at least one R 15 is a group other than a hydrogen atom.
  • perhydropolysilazane and organopolysilazane may be selected appropriately, and may be used as a mixture.
  • the polysilazane may have a ring structure in a part of the molecule, and may have, for example, a structure represented by General Formula (B4).
  • * represents a bond.
  • the bond may be bonded to the bond of the constituent unit represented by General Formula (B3).
  • the bond of the structure represented by the general formula (B4) has a structure represented by another general formula (B4) It may be combined with a bond.
  • the bond of the structural unit represented by the general formula (B3) or the bond of an N atom not bonded to the bond of the structure represented by the other general formula (B4) is a substituent similar to R 14
  • the bond of the structural unit represented by the general formula (B3), or the bond of the Si atom not bonded to the bond of the structure represented by the other general formula (B4) may be ,
  • R 15 may have the same substituents.
  • n 2 represents an integer of 1 or more and 10000 or less.
  • n 2 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
  • the silazane or the modified product thereof is not particularly limited, but from the viewpoint of improving the dispersibility and suppressing the aggregation, the organopolysilazane or the modified product thereof is preferable.
  • the organopolysilazane for example, at least one of R 14 and R 15 in the general formula (B3) is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, or 3 to 20 carbon atoms.
  • the organopolysilazane is an organopolysilazane having a constitutional unit represented by the general formula (B3) in which at least one of R 14 and R 15 in the general formula (B3) is a methyl group, or at least at least in the general formula (B4) It is preferable that it is a polysilazane having a structure represented by General Formula (B4) in which one bond is bonded to R 14 or R 15 and at least one of R 14 and R 15 is a methyl group.
  • a general polysilazane is, for example, a structure in which a linear structure and a ring structure such as a 6-membered ring or an 8-membered ring are present.
  • the molecular weight is 600 to 2000 (in terms of polystyrene) in terms of number average molecular weight (Mn), and it may be a liquid or solid substance depending on the molecular weight.
  • the polysilazane may be a commercially available product, and as a commercially available product, NN120-10, NN120-20, NAX120-20, NN110, NAX120, NAX110, NL120A, NL110A, NL150A, NP110, NP140 (AZ Electronic Materials) Ltd.) and AZNN-120-20, Durazane (registered trademark) 1500 Slow Cure, Durazane (registered trademark) 1500 Rapid Cure, Durazane (registered trademark) 1800 (manufactured by Merck Performance Materials, Inc.), and Durazane (registered trademark) Trademarks 1033 (manufactured by Merck Performance Materials, Inc.) and the like.
  • the polysilazane having a constitutional unit represented by the general formula (B3) is preferably AZNN-120-20, Durazane (registered trademark) 1500 Slow Cure, Durazane (registered trademark) 1500 Rapid Cure, more preferably Durazane (registered trademark) Trademark It is 1500 Slow Cure.
  • the ink composition of the present embodiment exhibits excellent light emission characteristics when the value of Z in the following formula (a) is 0.37 or less.
  • Formula (a) Z (O2 + O3 + N2 + N3) / (C2 + C3) (O2, N2, C2: number of O atoms, number of N atoms, number of C atoms contained in (2) respectively.
  • O3, N3, C3 number of O atoms, number of N atoms, number of C atoms contained in (3) respectively .
  • O 2, N 2 and C 2 represent the total mass of (2) with respect to the number of O atoms, the number of N atoms, and the number of C atoms contained in the compounds respectively composed.
  • the average value of O2, N2 and C2 weighted by the proportion (mass%) of the compound to be constituted is taken as 100 mass%.
  • O 3, N 3 and C 3 represent the total mass of (3) with respect to the number of O atoms, the number of N atoms and the number of C atoms contained in each compound
  • the average O3, N3 and C3 weighted by the proportion (mass%) of the compound constituted as 100 mass% is used.
  • O2, N2, C2, O3, N3 and C3 can also be defined as follows.
  • N2 represents the number of types of (2)
  • f n2 represents the proportion (mass%) of the n 2 -th compound, where the total mass of all the compounds contained in (2) is 100 mass%
  • O2 n2 represents the number of O atoms contained in the n2th compound, assuming that the total mass of all the compounds contained in (2) is 100% by mass
  • N2 n2 represents the number of N atoms contained in the n2th compound, where the total mass of all the compounds contained in (2) is 100% by mass
  • C2 n2 represents the number of C atoms contained in the n2-th compound, where the total mass of all the compounds contained in (2) is 100% by mass.
  • n3 represents the number of types of compounds of (3)
  • f n3 represents the proportion (mass%) of the n3 th compound, assuming that the total mass of all the compounds contained in (3) is 100 mass%
  • O 3 n 3 represents the number of O atoms contained in the n 3rd compound, where the total mass of all the compounds contained in (3) is 100% by mass
  • N3 n3 represents the number of N atoms contained in the n3rd compound, where the total mass of all the compounds contained in (3) is 100% by mass
  • C3 n3 represents the number of C atoms contained in the n3rd compound, where the total mass of all the compounds contained in (3) is 100% by mass.
  • the value of Z is preferably 0.27 or less, and more preferably 0.20 or less.
  • the value of Z is preferably 0.01 or more and 0.37 or less, and more preferably 0.01 or more and 0.27 or less. More preferably, it is 0.01 or more and 0.20 or less.
  • a method of measuring the value of Z a method of specifying and calculating the chemical structure of the contained compound using nuclear magnetic resonance spectroscopy (NMR), liquid chromatography, gas chromatography, ultraviolet visible spectroscopy, etc. It can be used.
  • XPS X-ray photoelectron spectroscopy
  • TEM transmission electron microscope
  • elemental analyzer carbon sulfur analyzer
  • oxygen nitrogen hydrogen analyzer fluorescent X ray
  • the number of O atoms, the number of N atoms, and the number of C atoms in the mixture are measured by the above-mentioned measuring method. Is obtained by dividing the sum of the number of O atoms and the number of N atoms by the number of C atoms according to the formula (a).
  • the number of C atoms can be measured by a carbon sulfur analyzer, and the number of O atoms and the number of N atoms can be measured by an oxygen nitrogen hydrogen analyzer or an ion chromatography method.
  • (1) is O atom, N atom, C atom
  • (1) is O atom, N atom, C atom
  • (1) is O atom, N atom, C atom
  • the method of obtaining Z from the mixture of (2) and (3) described above can be employed.
  • (1) contains an O atom, an N atom, or a C atom the atoms contained in (1) are analyzed by chromatography or the like to identify and quantify.
  • the number of O atoms, the number of N atoms, and the number of C atoms in the mixture of (1), (2) and (3) are measured by the method described above, and from these values the number of O atoms and N atoms derived from (1) Z can be obtained by dividing the sum of the number of O atoms and the number of N atoms derived from (2) and (3) obtained by subtracting the number of C atoms by the number of C atoms.
  • the curable resin composition contains a curable resin as a main raw material.
  • the curable resin composition may contain a curing agent and an initiator.
  • the curable resin composition may contain a low molecular weight compound (sometimes referred to herein as a curable resin monomer), and may contain a polymer obtained by polymerizing the low molecular weight compound.
  • the polymer may be an oligomer or a polymer, and is preferably an oligomer.
  • oligomer means a polymer having a total number of repeating of 2 to 20 for all repeating units of the polymer, and the polymer means a polymer having a total number of repeating of 21 or more. Do.
  • a curable resin means a curable monomer and a polymer thereof. 10-95 mass% is preferable with respect to the total mass of curable resin composition, as for the content rate of curable resin contained in curable resin composition, 50-95 mass% is more preferable, and 70-95 mass%. Is more preferred.
  • the content of the curing agent contained in the curable resin composition is preferably 1 to 50% by mass, more preferably 5 to 20% by mass, based on 100% by mass of the total mass of the curable resin contained in the curable resin composition.
  • the content ratio of the initiator contained in the curable resin composition is preferably 0.01% by mass to 20% by mass, based on 100% by mass of the total mass of the curable resin contained in the curable resin composition. % To 5% by mass is more preferable.
  • the curable resin composition contained in the ink composition of the present embodiment is not particularly limited as long as the value of the parameter Z in the entire ink composition is 0.37 or less.
  • the curable resin composition is, for example, a polymer containing a low molecular weight compound represented by the following formula (b-1) and a repeating unit represented by the following formula (b-2) from the viewpoint of maintaining the light emission characteristics.
  • the total content of the low molecular weight compound and the polymer is 50% by mass or more based on 100% by mass, containing at least one selected from the group consisting of
  • the curable resin composition comprises a low molecular weight compound represented by the following formula (b-1) and a polymer containing a repeating unit represented by the following formula (b-2)
  • the total content of the low molecular weight compound and the polymer is preferably 50% by mass or more and 99% by mass or less based on 100% by mass of the total of the low molecular weight compound and the polymer, including at least one selected from the group.
  • the content ratio of the low molecular weight compound represented by the following formula (b-1) is 50% by mass or more, where the total mass of the above (2) is 100% by mass, or It is more preferable that the content rate of the polymer containing the repeating unit represented by b-2) is 50 mass% or more, when the total mass of said (2) is 100 mass%.
  • the content of the low molecular weight compound represented by the following formula (b-1) is 50% by mass, assuming that the total mass of the above (2) is 100% by mass
  • the content ratio of the polymer containing a repeating unit represented by the following formula (b-2) which is 99% by mass or less is 50% by mass or more and 99% by mass based on 100% by mass of the total mass of the above (2) It is more preferable that
  • the polymer containing the repeating unit represented by said Formula (b-2) makes 50 mol% or more of repeating units represented by Formula (b-2) the total repeating unit contained in a polymer as 100 mol% It is preferable that it is a polymer which contains, and it is more preferable that it is a polymer which contains 90 mol% or more.
  • the polymer containing the repeating unit represented by said Formula (b-2) makes 50 mol% or more of repeating units represented by Formula (b-2) the total repeating unit contained in a polymer as 100 mol% It is preferable that it is a polymer which contains 99 mol% or less, and it is more preferable that it is a polymer which contains 90 mol% or more and 99 mol% or less.
  • A represents a hydrogen atom or a methyl group.
  • m1 is an integer of 0 to 20
  • m2 is an integer of 0 to 2
  • m3 is an integer of 0 to 20
  • m4 is an integer of 0 to 2
  • m5 is an integer of 0 to 20
  • Ra represents a methylene group.
  • Rb represents a divalent group represented by any one of the following formulas (b-31) to (b-38), and when there are a plurality of Rb's, Rb's may be the same as or different from each other.
  • Rc represents a monovalent group represented by any one of the following formulas (b-41) to (b-48).
  • Rb is preferably a divalent group represented by any one of formulas (b-32) to (b-35). When there are a plurality of Rb's, Rb's may be the same as or different from each other.
  • Rc is any of the above formulas (b-41), (b-42), (b-44), (b-45) or (b-46) It is preferable that it is a monovalent group represented by ⁇ .
  • m2 is preferably 0 or 1
  • m4 and m5 are preferably 0.
  • Rb is a divalent group represented by any one of the above formulas (b-32) to (b-35)
  • Rc is a monovalent group represented by any one of the above formulas (b-41), (b-42), (b-44), (b-45) or (b-46)
  • m2 is 0 or 1
  • m4 and m5 are 0.
  • the low molecular weight compound represented by (b-1) is preferably a low molecular weight compound represented by any one of the following formulas (b-51) to (b-54) .
  • curable resin monomer for example, (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, melamine (meth) acrylate, polyether (meth) acrylate, polyethylene glycol (meth) Acrylates and multifunctional (meth) acrylates such as glycerol (meth) acrylate can be mentioned.
  • curable resin monomers may be used alone or in combination of two or more. A polymer obtained by polymerizing these curable resin monomers may be used.
  • the curable resin monomer is preferably at least one selected from the group consisting of (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate and polyether (meth) acrylate, and (meth) acrylate and urethane (meth) acrylate It is more preferable that at least one selected from the group consisting of A polymer obtained by polymerizing these curable resin monomers may be used.
  • Examples of (meth) acrylates include vinyl methacrylate, allyl methacrylate, tert-butyl methacrylate, lauryl methacrylate, 2-ethylhexyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, tetrahydrofurfuryl methacrylate, stearyl methacrylate and caprolactone acrylate. .
  • These curable resin monomers may be used alone or in combination of two or more. A polymer obtained by polymerizing these curable resin monomers may be used.
  • the resin composition may contain a curing agent.
  • the curing agent includes a curing agent having a plurality of functional groups.
  • the curing agent having a plurality of functional groups include trimethylolpropane triacrylate, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexaacrylate, and mercapto compounds containing a thiol group.
  • trimethylolpropane triacrylate trimethylolpropane trimethylolpropane trimethacrylate can be used.
  • the resin composition may contain an initiator.
  • the initiator include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone and the like, derivatives thereof, Irgacure 819, Irgacure 651, Irgacure 184 and the like.
  • These initiators may be used together with a sensitizer.
  • the above initiators can also be used as sensitizers.
  • sensitizers such as n-butylamine, triethylamine and tri-n-butylphosphine can be used.
  • the curable resin composition is preferably a thermosetting resin composition that combines a thermosetting resin composition that cures by heating, a photocurable resin composition that cures by light, or both.
  • a photocurable resin composition is more preferable in order to cure in a short time and to improve production efficiency.
  • the light used for curing is not particularly limited, and light of a wavelength such as ultraviolet light or visible light can be used. .
  • Light having a wavelength of 150 to 800 nm is preferred, and light having a wavelength of 200 to 500 nm is more preferred.
  • i-line 365 nm
  • h-line 405 nm
  • g-line g-line
  • An actinic ray having a wavelength of 300 nm or more and 450 nm or less, such as 436 nm) can be preferably used.
  • the exposure dose is 1 ⁇ 5000mJ / cm 2, more preferably 10 ⁇ 2000mJ / cm 2, more preferably 50 ⁇ 500mJ / cm 2.
  • Examples of the photocurable resin to be cured in this manner include styrene, acrylate resin, methacrylate resin, epoxy resin, urethane resin, silicone resin and the like, and known curable resins such as monomers and oligomers which become the respective raw materials.
  • the ink composition of the present invention can contain a solvent in addition to (1) and (2).
  • the solvent is not particularly limited as long as it is a medium in which the parameter Z satisfies a suitable range and (1) can be dispersed.
  • the term "solvent" refers to a substance which is in a liquid state at 1 atm and 25 ° C (except for the above (2)).
  • “dispersed” means that (1) is suspended or suspended in a solvent, and some may be precipitated.
  • organic solvents having a nitrile group such as acetonitrile, isobutyronitrile, propionitrile, methoxyacetonitrile, etc.
  • Organic solvents having a carbonate group such as thylene carbonate and propylene carbonate
  • Organic solvents having a halogenated hydrocarbon group such as methylene chloride and chloroform
  • Hydrocarbons such as n-pentane, cyclohexane, n-hexane, benzene, toluene and xylene
  • the organic solvent having a group is preferable because it has low polarity and is considered to be difficult to dissolve (1), and is preferably an organic solvent having a halogenated hydrocarbon group such as methylene chloride or chloroform; n-pentane, cyclohexane, n-hexane
  • Organic solvents having a hydrocarbon group such as benzene, toluene and xylene are more preferred.
  • Inorganic fine particle additive may be added to the ink composition of the present invention in order to scatter light and improve light emission characteristics.
  • the inorganic fine particles include known inorganic fine particles such as oxides and hydroxides, in view of efficiently absorbing light passing through the composition into the perovskite compound, and without deteriorating the perovskite compound, The oxide is preferable from the viewpoint of reducing the number of defect sites on the surface and reducing the probability of excited electrons trapping at the defect sites.
  • the addition amount of the inorganic fine particle additive is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, and more preferably 1 to 10 with respect to 100 parts by mass of the ink composition. More preferably, it is part by weight.
  • the inorganic fine particles are oxides
  • oxides such as aluminum oxide, zinc oxide, niobium oxide, zirconium oxide, titanium oxide, magnesium oxide and gallium oxide may be mentioned, and aluminum oxide, zinc oxide and niobium oxide may be used, It may be zinc oxide or niobium oxide, or niobium oxide.
  • the inorganic fine particles are aluminum oxide
  • well-known aluminum oxides such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ ⁇ ⁇ ⁇ -alumina, ⁇ -alumina and ⁇ -alumina may be mentioned, and ⁇ -alumina and ⁇ -alumina may also be used. It may be alumina.
  • Examples of the method of measuring the average particle diameter of the inorganic fine particles include a method of observation using a scanning electron microscope (SEM), a TEM, or the like. Furthermore, detailed elemental distribution can be analyzed by EDX measurement using SEM or TEM.
  • SEM scanning electron microscope
  • TEM TEM
  • the shape of the inorganic fine particles is not particularly limited.
  • the particle size of the inorganic fine particle is the size of the outer peripheral part of the particle, and the average size (ferret diameter) measured as the larger one of the vertical and horizontal lengths of the rectangle circumscribing the figure of the outer peripheral part It can be calculated as That is, the average particle diameter of the inorganic fine particles can be obtained, for example, by observing the Feret diameters of 20 inorganic fine particles by TEM and calculating the average Feret diameter which is the average value thereof.
  • the specific surface area of the inorganic fine particles allows light having passed through the composition to be efficiently absorbed by the perovskite compound, and the number of defect sites on the surface is reduced without degrading the perovskite compound, and excited electrons are trapped at the defect sites. from the viewpoint of decreasing the probability, 0.05 m 2 / g or more, preferably 100 m 2 / g or less, 0.1 m 2 / g or more, still more preferably less 30m 2 / g, 0.4m 2 / g or more, 15 m 2 / G or less is most preferable.
  • the specific surface area of the inorganic fine particles can be measured, for example, by the BET method using a specific surface area measuring device (for example, Macsorb manufactured by mountech can be used).
  • a perovskite compound is manufactured by the method of the first embodiment or the second embodiment described below with reference to known documents (Nano Lett. 2015, 15, 3692-3696, ACS Nano, 2015, 9, 453-4 542). Can.
  • a solution g is obtained by dissolving a compound containing the component B and the component X and a compound containing the component A or the component A and the component X in the solvent x; And the step of mixing the obtained solution g with a solvent y having a solubility of the perovskite compound in the solvent in a step of obtaining the solution g lower than the solvent x used in the step of obtaining the solution g.
  • the perovskite compound is precipitated by mixing the solution g with a solvent y whose solubility in the solvent of the perovskite compound is lower than the solvent x used in the step of obtaining the solution g.
  • solubility means the solubility in the temperature which performs the process to mix.
  • the production method preferably includes the step of adding a capping ligand from the viewpoint of stably dispersing the perovskite compound.
  • the capping ligand is preferably added before the mixing step described above, and the capping ligand may be added to a solution g in which the A, B and X components are dissolved, or a perovskite compound May be added to the solvent y lower than the solvent x used in the step of obtaining the solution g, or may be added to both the solvent x and the solvent y.
  • the manufacturing method includes a step of removing coarse particles by a method such as centrifugation or filtration after the above-mentioned mixing step.
  • the size of the coarse particles to be removed by the removing step is preferably 10 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 500 nm or more.
  • the step of mixing the solution g and the solvent y described above (I) may be a step of dropping solution g into solvent y, (II)
  • a step of dropping the solvent y into the solution g may be added, but from the viewpoint of enhancing the dispersibility of (1), it is preferably (I). Stirring at the time of dropping is preferable from the viewpoint of enhancing the dispersibility of (1).
  • the temperature in the step of mixing the solution g and the solvent y but from the viewpoint of securing the ease of precipitation of (1), the temperature is preferably in the range of -20 to 40 ° C, The range of 5 to 30 ° C. is more preferable.
  • the two types of solvents x and y having different solubilities in solvents of the perovskite compounds used in the above-mentioned production method are not particularly limited, and, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2 , Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, triethylene glycol Glycol ethers such as dimethyl ether; N-methyl-2-pyrrolidone, N, N-dimethylformamide, acetamide, N, N-dimethylacetamide and the like organic solvents having
  • the solvent x used in the step of obtaining the solution g included in the production method is preferably a solvent having a high solubility of the perovskite compound in the solvent, for example, methanol, when the step is performed at room temperature (10 ° C. to 30 ° C.).
  • Ethanol 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, Alcohols such as 2,2,2-trifluoroethanol and 2,2,3,3-tetrafluoro-1-propanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol mono ether Ether acetate, glycol ethers such as triethylene glycol dimethyl ether; and dimethyl sulfoxide; N- methyl-2-pyrrolidone, N, N- dimethylformamide, acetamide, N, organic solvents having an amide group such as N- dimethylacetamide.
  • a solvent having a low solubility of the perovskite compound in the solvent is preferable, for example, methyl formate when the step is performed at room temperature (10 ° C. to 30 ° C.)
  • Esters such as ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate; ⁇ -butyrolactone, acetone, dimethyl ketone, diisobutyl ketone, ketones such as cyclopentanone, cyclohexanone, methylcyclohexanone etc .; diethyl ether Methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydr
  • the difference in solubility is preferably (100 ⁇ g / 100 g of solvent) to (90 g / 100 g of solvent), more preferably (1 mg / 100 g of solvent) to (90 g / 100 g of solvent).
  • the mixing step at room temperature (10 ° C.
  • the solvent x used in the step of obtaining a solution is An organic solvent having an amide group such as N, N-dimethylacetamide or dimethyl sulfoxide, and the solvent used in the mixing step is an organic solvent having a halogenated hydrocarbon group such as methylene chloride or chloroform; n-pentane, cyclohexane It is preferable that it is an organic solvent having a hydrocarbon group such as n-hexane, benzene, toluene, xylene and the like.
  • the perovskite compound As a method of taking out the perovskite compound from the obtained dispersion liquid containing the perovskite compound, there is a method of recovering only the perovskite compound by performing solid-liquid separation.
  • the above-mentioned solid-liquid separation method include a method such as filtration and a method utilizing evaporation of a solvent.
  • the method of producing the perovskite compound is Adding and dissolving the B component, the X component and the A component in a high temperature solvent z to obtain a solution h; And the step of cooling the obtained solution h. More specifically, the step of obtaining a solution h by adding a compound containing the component B and the component X and a compound containing the component A or the component A and the component X to the solvent z at high temperature and dissolving it is obtained And cooling the solution h.
  • the step of adding the compound containing component B and component X and the compound containing component A or component A and component X to a solvent z at high temperature to dissolve to obtain solution h comprises the compound containing component B and component X and
  • the step of obtaining a solution h by adding a component A or a compound containing the component A and the component X to the solvent z and raising the temperature may be used.
  • the perovskite compound according to the present invention can be precipitated according to the difference in solubility due to the difference in temperature to produce the perovskite compound according to the present invention.
  • the production method preferably includes the step of adding a capping ligand from the viewpoint of stably dispersing the perovskite compound.
  • the capping ligand is preferably included in solution h prior to the cooling step described above.
  • the production method preferably includes the step of removing coarse particles by a technique such as centrifugation or filtration after the above-mentioned cooling step.
  • the size of the coarse particles to be removed by the removal step is preferably 10 ⁇ m or more, more preferably 1 ⁇ m or more, and still more preferably 500 nm or more.
  • the high-temperature solvent z may be a solvent at a temperature at which the compound containing the component B and the component X and the compound containing the component A or the component A and the component X dissolve, for example, 60 to 600 It is preferably a solvent of ° C., more preferably a solvent of 80 to 400 ° C.
  • the temperature for cooling is preferably ⁇ 20 to 50 ° C., and more preferably ⁇ 10 to 30 ° C.
  • the cooling rate is preferably 0.1 to 1500 ° C./minute, and more preferably 10 to 150 ° C./minute.
  • the solvent z used in the production method is not particularly limited as long as it can dissolve the compound containing the component B and the component X and the compound containing the component A or the component A and the component X.
  • the perovskite compound As a method of taking out the perovskite compound from the obtained dispersion liquid containing the perovskite compound, there is a method of recovering only the perovskite compound by performing solid-liquid separation.
  • the above-mentioned solid-liquid separation method include a method such as filtration and a method utilizing evaporation of a solvent.
  • Method for modifying silazane examples include known methods such as a method of modifying by irradiating vacuum ultraviolet rays with an excimer lamp or the like, and a method of humidifying with water or the like. Among them, modification treatment by humidification treatment is preferable from the viewpoint of forming a stronger protective layer.
  • the wavelength of ultraviolet light used in the method of irradiating ultraviolet light is usually 10 to 400 nm, preferably 10 to 350 nm, and more preferably 100 to 180 nm.
  • a light source which generates an ultraviolet-ray a metal halide lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc lamp, a carbon arc lamp, an excimer lamp, UV laser beam etc. are mentioned, for example.
  • the method of the humidification treatment may be a method of reacting water vapor and silazane.
  • the silazane in the ink composition When the silazane in the ink composition is to be modified by a humidification process, for example, the composition may be allowed to stand or stirred for a certain period of time under the temperature and humidity conditions described later.
  • Stirring is preferable from the viewpoint of enhancing the dispersibility of silazane contained in the ink composition.
  • the temperature in the humidification treatment may be any temperature at which the reforming proceeds sufficiently, for example, preferably 5 to 150 ° C., more preferably 10 to 100 ° C., and further preferably 15 to 80 ° C. More preferable.
  • the humidity in the humidification treatment may be any humidity that can sufficiently supply water to the silazane in the ink composition, for example, 30% to 100%, preferably 40% to 95%, more preferably 60% to 90%. It is.
  • humidity refers to the relative humidity at the temperature at which the humidification process is performed.
  • the time required for the humidification treatment may be any time as long as reforming proceeds sufficiently, and is, for example, 10 minutes to 1 week, preferably 1 hour to 5 days, more preferably 12 hours to 3 days.
  • Z can be made a predetermined value (0.37 or less) by appropriately adjusting the composition formulas (2) and (3) to be used and the amount used.
  • composition of the embodiment of the present invention can be manufactured.
  • composition of this invention is not limited to what is manufactured by the manufacturing method of the composition of the following embodiment.
  • the temperature is not particularly limited, but from the viewpoint of uniform mixing, it is preferably in the range of 0 ° C. to 100 ° C., and is in the range of 10 ° C. to 80 ° C. It is more preferable that
  • the method for producing a composition further comprising a (1) -2 capping ligand comprises (1) and (1), except that (1) -2 is mixed in any of the steps included in the above-mentioned production method.
  • a method similar to the method of manufacturing the composition containing 2) or the method of manufacturing the composition containing (1), (2) and (3) can be used.
  • (1) -2 is included in the method for producing a perovskite compound having A, B and X of the above-mentioned component (1) as constituent components.
  • they are mixed in any of the steps.
  • the method for producing a composition further comprising (1) -3 a surface covering material is the same as (1) and (2) except that (1) -3 is mixed in any of the steps included in the above-mentioned production method.
  • (1), (2) and (3) can be used in the same manner as the method for producing the composition.
  • the ink composition of the present embodiment can be used as an ink.
  • a film can be obtained using the ink composition of the present embodiment.
  • a film is formed by applying the ink composition of the present embodiment to a substrate using a known method such as a gravure coater, dip coater, reverse coater, wire bar coater, die coater, ink jet method, and curing treatment. can do.
  • the coating amount is suitably 0.1 to 500 ⁇ m as a wet film thickness, preferably 0.5 to 300 ⁇ m.
  • the dry film thickness is an average film thickness of 0.1 to 200 ⁇ m, preferably 20 to 150 ⁇ m.
  • the film according to the present invention is a resin composition film obtained by applying an ink composition containing the above (1) and (2) and then curing it.
  • the content ratio of (3) is 30% by mass or less, where the total mass of the ink composition is 100% by mass, and the above (1), (2) and It is a film which consists of an ink composition whose total content rate of 3) is 70 mass% or more.
  • One aspect of the present invention is that the total content of the ink composition is 100% by mass, and the content ratio of the above (3) is 25% by mass or less, and the total of the above (1), (2) and (3) It is a film which consists of an ink composition whose content rate is 70 mass% or more.
  • the shape of the film is not particularly limited, and may be any shape such as a sheet or a bar.
  • bar-like shape means, for example, a shape having anisotropy.
  • the thickness of the film may be 0.01 ⁇ m to 1000 mm, may be 0.1 ⁇ m to 10 mm, and may be 1 ⁇ m to 1 mm. In the present specification, the thickness of the film can be obtained by measuring at any three points with a micrometer and calculating the average value thereof.
  • the film may be a single layer or multiple layers. In the case of multiple layers, the compositions of the same type of embodiment may be used in each layer, or the compositions of different types of embodiments may be used.
  • the film can also be a film formed on a substrate, for example, by the method (i) to (iii) for producing a laminated structure described later. Also, the film can be obtained by peeling it from the substrate.
  • the laminated structure according to the present invention has a plurality of layers, at least one of which is the above-mentioned film.
  • a layer other than the above-mentioned film among a plurality of layers which a lamination structure has arbitrary layers, such as a substrate, a barrier layer, and a light scattering layer, are mentioned.
  • the shape of the film to be laminated is not particularly limited, and may be any shape such as a sheet or a bar.
  • substrate Although there is no restriction
  • substrate is mentioned.
  • the substrate is not particularly limited, but may be a film, and is preferably transparent from the viewpoint of taking out the emitted light.
  • a polymer such as polyethylene terephthalate or a known substrate such as glass can be used.
  • the above-mentioned film may be provided on a substrate.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the laminated structure of the present embodiment.
  • the film 10 of the present embodiment is provided between the first substrate 20 and the second substrate 21 in the first laminated structure 1 a.
  • the film 10 is sealed by a sealing layer 22.
  • a first substrate 20, a second substrate 21, and a film 10 according to the present embodiment located between the first substrate 20 and the second substrate 21;
  • Stack structure 1a is a cross-sectional view schematically showing the structure of the laminated structure of the present embodiment.
  • the film 10 of the present embodiment is provided between the first substrate 20 and the second substrate 21 in the first laminated structure 1 a.
  • the film 10 is sealed by a sealing layer 22.
  • a first substrate 20, a second substrate 21, and a film 10 according to the present embodiment located between the first substrate 20 and the second substrate 21;
  • a barrier layer is mentioned.
  • a barrier layer may be included from the viewpoint of protecting the aforementioned composition from the water vapor in the open air and the air in the atmosphere.
  • the barrier layer is not particularly limited, but is preferably a transparent barrier layer from the viewpoint of extracting emitted light.
  • a polymer such as polyethylene terephthalate or a known barrier layer such as a glass film can be used.
  • a light-scattering layer Although there is no restriction
  • the light emitting device according to the present invention can be obtained by combining the film or the laminated structure of the embodiment of the present invention with a light source.
  • a light-emitting device is a device that emits light by causing a composition or a laminated structure to emit light by irradiating light emitted from a light source to a film or a laminated structure provided in a subsequent stage.
  • the layers other than the film, the substrate, the barrier layer, and the light scattering layer described above include a light reflecting member, a brightness enhancing portion, a prism sheet, a light guide plate, and an element
  • An optional layer such as a media material layer may be mentioned.
  • One aspect of the present invention is a light emitting device 2 in which a prism sheet 50, a light guide plate 60, the first laminated structure 1a, and a light source 30 are laminated in this order.
  • the light source constituting the light emitting device according to the present invention is not particularly limited, but from the viewpoint of emitting the semiconductor nanoparticles containing the perovskite compound in the film or the laminated structure described above, a light source having an emission wavelength of 600 nm or less Is preferred.
  • a light source well-known light sources, such as light emitting diodes (LED), such as a blue light emitting diode, a laser, and EL, can be used, for example.
  • a light reflection member is mentioned.
  • a light reflection member may be included from the viewpoint of irradiating the light of the light source toward the composition or the laminated structure.
  • the light reflecting member is not particularly limited, but may be a reflective film.
  • a reflective film for example, a known reflective film such as a reflective mirror, a film of reflective particles, a reflective metal film or a reflector can be used.
  • a brightness enhancer may be included from the perspective of reflecting a portion of the light back towards the direction in which the light was transmitted.
  • the prism sheet typically has a base portion and a prism portion.
  • the base portion may be omitted depending on the adjacent members.
  • the prism sheet can be bonded to an adjacent member via any appropriate adhesive layer (for example, an adhesive layer, an adhesive layer).
  • the prism sheet is configured by juxtaposing a plurality of unit prisms that are convex on the side (rear side) opposite to the viewing side. By arranging the convex portion of the prism sheet to the back side, light transmitted through the prism sheet can be easily condensed.
  • the convex portion of the prism sheet when the convex portion of the prism sheet is disposed toward the back side, less light is reflected without being incident on the prism sheet as compared with the case where the convex portion is disposed toward the viewing side, and the display is high in luminance. You can get
  • Light guide plate Although there is no restriction
  • the light guide plate for example, a light guide plate in which a lens pattern is formed on the back side, a prism shape or the like is formed on the back side and / or the viewing side so that light from the lateral direction can be deflected in the thickness direction. Any suitable light guide plate may be used, such as a light guide plate.
  • Media material layer between elements There is no particular limitation on the layer which may be possessed by the laminated structure constituting the light emitting device according to the present invention, but a layer consisting of one or more medium materials on the optical path between adjacent elements (layers) Media material layers between elements).
  • the media material layer there is no particular limitation on one or more media contained in the media material layer between elements, but vacuum, air, gas, optical material, adhesive, optical adhesive, glass, polymer, solid, liquid, gel, curing Material, Optical bonding material, Index matching or index mismatching material, Index gradient material, Cladding or anti-cladding material, Spacer, Silica gel, Brightness enhancing material, Scattering or diffusing material, Reflective or anti-reflective material, Wavelength selection
  • the light-transmissive material, the wavelength-selective anti-reflective material, the color filter, or a suitable medium known in the art is included.
  • the composition of the present invention is placed in a glass tube or the like and sealed, and this is disposed between the blue light emitting diode as a light source and the light guide plate along the end face (side face) of the light guide plate Backlight (on-edge type backlight), which converts blue light to green light or red light
  • E2 A sheet of the composition of the present invention is formed into a sheet, and a film obtained by sealing the sheet between two barrier films is placed on the light guide plate, and blue light is placed on the end face (side face) of the light guide plate Backlight (surface mount type backlight) that converts blue light emitted to the sheet from the diode through the light guide plate into green light and red light
  • E3 A backlight (on-chip type backlight) in which the composition of the present invention is dispersed in a resin or the like and
  • the composition of the embodiment of the present invention is molded and disposed at the subsequent stage of the blue light emitting diode as a light source to convert blue light into green light and red light. Lighting that emits white light.
  • the display 3 of the present embodiment includes a liquid crystal panel 40 and the light emitting device 2 described above from the viewing side in this order.
  • the light emitting device 2 includes the second stacked structure 1 b and the light source 30.
  • the second stacked structure 1 b further includes a prism sheet 50 and a light guide plate 60 in addition to the first stacked structure 1 a described above.
  • the display may further comprise any suitable other member.
  • One aspect of the present invention is a liquid crystal display 3 in which a liquid crystal panel 40, a prism sheet 50, a light guide plate 60, the first laminated structure 1a, and a light source 30 are laminated in this order.
  • the liquid crystal panel typically includes a liquid crystal cell, a viewing side polarizing plate disposed on the viewing side of the liquid crystal cell, and a back side polarizing plate disposed on the back side of the liquid crystal cell.
  • the viewing side polarizing plate and the back side polarizing plate may be arranged such that their absorption axes are substantially orthogonal or parallel.
  • the liquid crystal cell has a pair of substrates, and a liquid crystal layer as a display medium sandwiched between the substrates.
  • one substrate is provided with a color filter and a black matrix
  • the other substrate is provided with a switching element for controlling the electro-optical characteristics of liquid crystal and a scanning line for applying a gate signal to this switching element.
  • a signal line for providing a source signal, and a pixel electrode and a counter electrode.
  • the distance between the substrates (cell gap) can be controlled by a spacer or the like.
  • an alignment film made of polyimide can be provided on the side of the substrate in contact with the liquid crystal layer.
  • the polarizing plate typically has a polarizer and protective layers disposed on both sides of the polarizer.
  • the polarizer is typically an absorptive polarizer. Any appropriate polarizer may be used as the polarizer.
  • a dichroic substance such as iodine or a dichroic dye is adsorbed to a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, or an ethylene / vinyl acetate copolymer-based partially saponified film.
  • Polyene-based oriented films such as those uniaxially stretched, dewatered products of polyvinyl alcohol, dehydrochlorinated products of polyvinyl chloride, and the like.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine to a polyvinyl alcohol-based film and uniaxially stretching the film is particularly preferable because the polarization dichroic ratio is high.
  • the ink composition of the present invention can be used, for example, as a material of a light emitting layer of an LED.
  • LED containing the ink composition of the present invention for example, the ink composition of the present invention and conductive particles such as ZnS are mixed and laminated in a film, an n-type transport layer is laminated on one side, and the other side is A p-type transport layer is stacked, and by passing a current, particles of (1) and (2) in which holes of the p-type semiconductor and electrons of the n-type semiconductor are included in the composition of the junction surface Among them, there is a method of emitting light by canceling the charge.
  • the composition of the present invention can be used as an electron transporting material contained in the active layer of a solar cell.
  • the configuration of the solar cell is not particularly limited.
  • a fluorine-doped tin oxide (FTO) substrate for example, a fluorine-doped tin oxide (FTO) substrate, a titanium oxide dense layer, a porous aluminum oxide layer, an active layer containing the composition of the present invention, Hole transport layer such as', 7,7'-tetrakis (N, N'-di-p-methoxyphenylamine) -9,9'-spirobifluorene (Spiro-MeOTAD) and a silver (Ag) electrode in this order There is a solar cell.
  • FTO fluorine-doped tin oxide
  • titanium oxide dense layer for example, a titanium oxide dense layer, a porous aluminum oxide layer, an active layer containing the composition of the present invention, Hole transport layer such as', 7,7'-tetrakis
  • the titanium oxide dense layer has a function of electron transport, an effect of suppressing the roughness of FTO, and a function of suppressing reverse electron transfer.
  • the porous aluminum oxide layer has a function of improving the light absorption efficiency.
  • the composition of the present invention contained in the active layer has functions of charge separation and electron transport.
  • a method of manufacturing a laminated structure As a method of manufacturing a laminated structure, (I) when the ink composition contains (3), a step of applying the ink composition of the present invention on a substrate, a step of removing a solvent, and a step of curing the curable resin composition It may be included. (Ii) When the ink composition does not contain (3), there is also a method comprising the steps of applying the ink composition of the present invention onto a substrate and curing the curable resin composition good. (Iii) It may be a step of bonding a film made of the ink composition of the present invention to a substrate.
  • the step of coating on the substrate included in the production method of (i) and (ii) is not particularly limited, but a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, Known coating and coating methods such as a die coating method can be used.
  • Any adhesive can be used in the step of bonding to the substrate, which is included in the manufacturing method of (iii).
  • the adhesive is not particularly limited as long as it does not dissolve the compounds of (1) and (2), and known adhesives can be used.
  • the method for producing a laminated structure may further include the step of laminating an arbitrary film to the laminated structure obtained in (i) to (iii).
  • an arbitrary film to laminate a reflective film and a diffusion film are mentioned, for example.
  • Any adhesive can be used in the step of laminating the film.
  • the above-mentioned adhesive is not particularly limited as long as it does not dissolve the compounds of (1) and (2), and known adhesives can be used.
  • ⁇ Method of manufacturing light emitting device> For example, a manufacturing method including the above-mentioned light source and the process of installing the above-mentioned composition or laminated structure on the optical path of the latter part from a light source is mentioned.
  • the luminescence intensity of the ink composition of the present invention was measured under an excitation light of 450 nm at room temperature under the atmosphere using an absolute PL quantum yield measurement apparatus (C9920-02 manufactured by Hamamatsu Photonics Co., Ltd.). The intensity of excitation light was 5 ⁇ 10 7 .
  • the solvent resistance of the ink composition of the present embodiment can be evaluated by the following curability test.
  • the UV ozone treatment was performed for 15 minutes on a 1 inch ⁇ 1 inch, 0.7 mm thick glass substrate.
  • the ink compositions of Examples 1 to 6 and Comparative Example 4 were drop cast on a glass substrate.
  • a structure in which four glass slides of 26 mm ⁇ 76 mm and a thickness of 1 mm were stacked was disposed on both sides of the drop-cast glass substrate.
  • an aluminum plate of 50 mm ⁇ 20 mm ⁇ 0.35 mm in thickness was placed on the structure in a bridging manner.
  • Example 1 0.814 g of cesium carbonate, 40 mL of a solvent for 1-octadecene, and 2.5 mL of oleic acid were mixed.
  • the cesium carbonate solution was prepared by stirring with a magnetic stirrer and heating at 150 ° C. for 1 hour while flowing nitrogen.
  • 0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. After stirring with a magnetic stirrer and heating at a temperature of 120 ° C. for 1 hour while flowing nitrogen, 2 mL of oleic acid and 2 mL of oleylamine were added to prepare a lead bromide dispersion.
  • the lead bromide dispersion was heated to a temperature of 160 ° C.
  • 1.6 mL of the above cesium carbonate solution was added.
  • the reaction vessel was immersed in ice water to lower the temperature to room temperature to obtain a dispersion.
  • the dispersion was centrifuged at 10000 rpm for 5 minutes to obtain a perovskite compound as a precipitate.
  • the obtained perovskite compound was dispersed in 5 mL of toluene to obtain a dispersion liquid containing the perovskite compound and a solvent.
  • 0.29 mL of a dispersion containing a perovskite compound and a solvent was centrifuged at 10000 rpm for 10 minutes to obtain a precipitate.
  • 2.64 mL of lauryl methacrylate (pure chemical) was added and stirred to obtain a lauryl methacrylate dispersion.
  • TMPTM trimethylolpropane trimethylolpropane trimethacrylate
  • a photo initiator 9.0 mg of Irgacure 819, 18.3 mg of Irgacure 651
  • the value of Z in the formula (a) was 0.15.
  • the obtained ink composition was stirred with a magnetic stirrer for 15 minutes. Then, the luminescence intensity was measured. The light emission intensity was 4.5 ⁇ 10 6 .
  • the ink composition was drop cast onto a glass substrate, and the area of half of the cast glass substrate was irradiated with ultraviolet light.
  • the irradiation conditions were an illuminance of 10 mW / cm 2 and an irradiation time of 90 seconds.
  • the portion irradiated with ultraviolet light was cured, and the portion not irradiated with ultraviolet light was removed by toluene rinse.
  • Example 2 As in Example 1, a dispersion containing a perovskite compound and a solvent was obtained. 0.52 mL of a dispersion containing a perovskite compound and a solvent was centrifuged at 10000 rpm for 10 minutes to obtain a precipitate. To the precipitate, 2.64 mL of tert-butyl methacrylate (Tokyo Kasei Kogyo Co., Ltd.) was added and stirred to obtain a tert-butyl methacrylate dispersion.
  • tert-butyl methacrylate Tokyo Kasei Kogyo Co., Ltd.
  • an ink composition was obtained by adding 0.58 mL of TMPTM and a photoinitiator (16.3 mg of Irgacure 819, 32.3 mg of Irgacure 651) to the tert-butyl methacrylate dispersion.
  • the value of Z in the formula (a) was 0.26.
  • the obtained ink composition was stirred with a magnetic stirrer for 15 minutes. Then, the luminescence intensity was measured. The light emission intensity was 3.8 ⁇ 10 6 .
  • the ink composition was drop cast onto a glass substrate, and the area of half of the cast glass substrate was irradiated with ultraviolet light.
  • the irradiation conditions were an illuminance of 10 mW / cm 2 and an irradiation time of 90 seconds.
  • the portion irradiated with ultraviolet light was cured, and the portion not irradiated with ultraviolet light was removed by toluene rinse.
  • Example 3 As in Example 1, a dispersion containing a perovskite compound and a solvent was obtained. 0.62 mL of a dispersion containing the perovskite compound and a solvent was centrifuged at 10,000 rpm for 10 minutes to obtain a precipitate. To the precipitate, 2.64 mL of allyl methacrylate (Tokyo Kasei Co., Ltd.) was added and stirred to obtain an allyl methacrylate dispersion.
  • allyl methacrylate Tokyo Kasei Co., Ltd.
  • an ink composition was obtained by adding 0.69 mL of TMPTM and a photoinitiator (19.1 mg of Irgacure 819, 38.9 mg of Irgacure 651) to the allyl methacrylate dispersion.
  • the value of Z in the formula (a) was 0.29.
  • the obtained ink composition was stirred with a magnetic stirrer for 15 minutes. Then, the luminescence intensity was measured. The light emission intensity was 3.5 ⁇ 10 6 .
  • the ink composition was drop cast onto a glass substrate, and only half of the area of the glass substrate was irradiated with ultraviolet light.
  • the irradiation conditions were as follows: illuminance 10 mW / cm 2 and irradiation time 120 seconds. The portion irradiated with ultraviolet light was cured, and the portion not irradiated with ultraviolet light was removed by toluene rinse.
  • Example 4 As in Example 1, a dispersion containing a perovskite compound and a solvent was obtained. 0.71 mL of a dispersion containing a perovskite compound and a solvent was centrifuged at 10000 rpm for 10 minutes to obtain a precipitate. To the precipitate, 2.64 mL of vinyl methacrylate (Tokyo Kasei Co., Ltd.) was added and stirred to obtain a vinyl methacrylate dispersion. Then, an ink composition was obtained by adding 0.71 mL of TMPTM and a photoinitiator (21.9 mg of Irgacure 819, 44.0 mg of Irgacure 651) to the vinyl methacrylate dispersion. In the ink composition, the value of Z in the formula (a) was 0.33. The obtained ink composition was stirred with a magnetic stirrer for 15 minutes. Then, the luminescence intensity was measured. The light emission intensity was 3.3 ⁇ 10 6 .
  • the ink composition was drop cast onto a glass substrate, and the area of half of the cast glass substrate was irradiated with ultraviolet light.
  • the irradiation conditions were as follows: illuminance 10 mW / cm 2 and irradiation time 180 seconds. The portion irradiated with ultraviolet light was cured, and the portion not irradiated with ultraviolet light was removed by toluene rinse.
  • Example 5 0.814 g of cesium carbonate, 40 mL of a solvent for 1-octadecene, and 2.5 mL of oleic acid were mixed.
  • the cesium carbonate solution was prepared by stirring with a magnetic stirrer and heating at 150 ° C. for 1 hour while flowing nitrogen.
  • 0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. After stirring with a magnetic stirrer and heating at a temperature of 120 ° C. for 1 hour while flowing nitrogen, 2 mL of oleic acid and 2 mL of oleylamine were added to prepare a lead bromide dispersion.
  • an organopolysilazane (Durazane 1500 Slow Cure, manufactured by Merck Performance Materials, Inc.) was mixed with 3 mL of a dispersion containing a perovskite compound and a solvent.
  • the dispersion containing the perovskite compound and the solvent was reformed for 1 day while stirring with a stirrer at 25 ° C. and 80% humidity.
  • the mixed dispersion was drop cast onto a glass substrate, and the area of half of the cast glass substrate was irradiated with ultraviolet light.
  • the irradiation conditions were an illuminance of 10 mW / cm 2 and an irradiation time of 90 seconds.
  • the portion irradiated with ultraviolet light was cured, and the portion not irradiated with ultraviolet light was removed by toluene rinse.
  • Comparative Example 1 0.814 g of cesium carbonate, 40 mL of a solvent for 1-octadecene, and 2.5 mL of oleic acid were mixed.
  • the cesium carbonate solution was prepared by stirring with a magnetic stirrer and heating at 150 ° C. for 1 hour while flowing nitrogen.
  • 0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. After stirring with a magnetic stirrer and heating at a temperature of 120 ° C. for 1 hour while flowing nitrogen, 2 mL of oleic acid and 2 mL of oleylamine were added to prepare a lead bromide dispersion.
  • the average Feret diameter (average particle diameter) of the perovskite compound was 11 nm.
  • the obtained perovskite compound was dispersed in 5 mL of toluene to obtain a dispersion liquid containing the perovskite compound and a solvent. 0.80 mL of a dispersion containing a perovskite compound and a solvent was centrifuged at 10000 rpm for 10 minutes to obtain a precipitate.
  • Comparative Example 2 As in Comparative Example 1, a dispersion containing a perovskite compound and a solvent was obtained. 0.45 mL of the dispersion containing the perovskite compound and the solvent was centrifuged at 10000 rpm for 10 minutes to obtain a precipitate. To the precipitate, 2.64 mL of ethylene glycol dimethacrylate (Tokyo Kasei Co., Ltd.) was added and stirred to obtain an ethylene glycol dimethacrylate dispersion.
  • ethylene glycol dimethacrylate Tokyo Kasei Co., Ltd.
  • an ink composition was obtained by adding 0.50 mL of TMPTM and a photoinitiator (13.9 mg of Irgacure 819, 27.7 mg of Irgacure 651) to an ethylene glycol dimethacrylate dispersion.
  • the value of Z in the formula (a) was 0.39.
  • the obtained ink composition was stirred with a magnetic stirrer for 15 minutes. Then, the luminescence intensity was measured. The light emission intensity was 1.0 ⁇ 10 5 .
  • Comparative Example 3 As in Comparative Example 1, a dispersion containing a perovskite compound and a solvent was obtained. 0.61 mL of a dispersion containing the perovskite compound and a solvent was centrifuged at 10000 rpm for 10 minutes to obtain a precipitate. To the precipitate, 2.64 mL of Karenz MOI (chemical name: 2-isocyanatoethyl methacrylate) (Showa Denko) was added, and the mixture was stirred to obtain a Kalens MOI dispersion.
  • Karenz MOI chemical name: 2-isocyanatoethyl methacrylate
  • an ink composition was obtained by adding 0.63 mL of TMPTM and a photoinitiator (18.7 mg of Irgacure 819, 37.0 mg of Irgacure 651) to the Karenz MOI dispersion.
  • the value of Z in the formula (a) was 0.56.
  • the obtained ink composition was stirred with a magnetic stirrer for 15 minutes. Then, the luminescence intensity was measured. The light emission intensity was 7.4 ⁇ 10 5 .
  • Comparative Example 4 0.814 g of cesium carbonate, 40 mL of a solvent for 1-octadecene, and 2.5 mL of oleic acid were mixed.
  • the cesium carbonate solution was prepared by stirring with a magnetic stirrer and heating at 150 ° C. for 1 hour while flowing nitrogen.
  • 0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. After stirring with a magnetic stirrer and heating at a temperature of 120 ° C. for 1 hour while flowing nitrogen, 2 mL of oleic acid and 2 mL of oleylamine were added to prepare a lead bromide dispersion.
  • the lead bromide dispersion was heated to a temperature of 160 ° C.
  • 1.6 mL of the above cesium carbonate solution was added.
  • the reaction vessel was immersed in ice water to lower the temperature to room temperature to obtain a dispersion.
  • the dispersion was centrifuged at 10000 rpm for 5 minutes to obtain a perovskite compound as a precipitate.
  • the methacrylic resin (PMMA, manufactured by Sumitomo Chemical Co., Ltd., Sumipex / methacrylic resin, MH, molecular weight about 120,000, specific gravity 1.2 g / mL) is 16.5% by mass based on the total mass of the methacrylic resin and toluene
  • the mixture was heated at 60 ° C. for 3 hours to obtain a solution in which the polymer was dissolved.
  • a PMMA-toluene dispersion (ink composition) was prepared by mixing 0.1 mL of the dispersion containing the above-mentioned perovskite compound and solvent with 5.83 mL (toluene 5.10 ml, PMMA 0.73 ml) in which the above-mentioned polymer was dissolved. Got).
  • the value of Z in the formula (a) was 0.05.
  • the mixed dispersion was drop cast onto a glass substrate, and the area of half of the cast glass substrate was irradiated with ultraviolet light.
  • the irradiation conditions were an illuminance of 10 mW / cm 2 and an irradiation time of 300 seconds.
  • the ultraviolet light irradiated portion was not cured, and both the ultraviolet light unirradiated portion and the ultraviolet light irradiated portion were removed by rinsing with toluene.
  • Example 6 0.814 g of cesium carbonate, 40 mL of a solvent for 1-octadecene, and 2.5 mL of oleic acid were mixed.
  • the cesium carbonate solution was prepared by stirring with a magnetic stirrer and heating at 150 ° C. for 1 hour while flowing nitrogen.
  • 0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. After stirring with a magnetic stirrer and heating at a temperature of 120 ° C. for 1 hour while flowing nitrogen, 2 mL of oleic acid and 2 mL of oleylamine were added to prepare a lead bromide dispersion.
  • the lead bromide dispersion was heated to a temperature of 160 ° C.
  • 1.6 mL of the above cesium carbonate solution was added.
  • the reaction vessel was immersed in ice water to lower the temperature to room temperature to obtain a dispersion.
  • the dispersion was centrifuged at 10000 rpm for 5 minutes to obtain a dispersion containing a perovskite compound and a solvent as a precipitate.
  • An ink composition of 20% by mass was obtained.
  • the value of Z in the formula (a) was 0.19.
  • the obtained ink composition was stirred with a magnetic stirrer for 15 minutes. Then, the luminescence intensity was measured. The light emission intensity was 4.4 ⁇ 10 6 .
  • the ink composition was drop cast onto a glass substrate, and half of the area of the glass substrate was irradiated with ultraviolet light.
  • the irradiation conditions were an illuminance of 10 mW / cm 2 and an irradiation time of 90 seconds.
  • the portion irradiated with ultraviolet light was cured, and the portion not irradiated with ultraviolet light was removed by toluene rinse.
  • the present invention it is possible to provide an ink composition having high light emission characteristics and good solvent resistance, a film comprising the composition, and a display using the composition. Therefore, the ink composition of the present invention, a film comprising the composition, and a display using the composition can be suitably used in light-emitting applications.

Abstract

本発明は、(1)ペロブスカイト化合物を含む半導体ナノ粒子及び(2)硬化性樹脂組成物を含み、(3)溶媒を含んでいてもよいインク組成物に関する前記インク組成物は、式(a) Z=(O2+O3+N2+N3)/(C2+C3)におけるZの値が0.37以下であり、前記O2、N2、C2はそれぞれ前記(2)に含まれるO原子数、N原子数、C原子数を表し、前記O3、N3、C3はそれぞれ前記(3)に含まれるO原子数、N原子数、C原子数を表す。

Description

インク組成物、フィルム及びディスプレイ
 本発明は、インク組成物、フィルム及びディスプレイに関する。
 本願は、2017年7月28日に、日本に出願された特願2017-146319号に基づき、優先権を主張し、その内容をここに援用する。
 近年、波長変換材料として、高い発光強度を有するペロブスカイト化合物に対する関心が高まっており、例えば、波長変換フィルムを作製するためのインク組成物として、ペロブスカイト化合物とPMMAとを含むインク組成物が報告されている(非特許文献1)。
Nano Lett.2015,15,3692-3696
 しかしながら、非特許文献1に記載されたインク組成物の硬化物は、必ずしも耐溶剤性が十分ではない。
 本発明は、上記課題に鑑みてなされたものであって、発光強度を維持しつつ、硬化物の耐溶剤性が高いインク組成物及びそのインク組成物を硬化してなるフィルムを提供することを目的とする。
 すなわち、本発明の実施形態は、下記[1]~[7]の発明を包含する。
[1]下記(1)及び(2)を含み、下記(3)を含んでいてもよいインク組成物であって、下記式(a)におけるZの値が0.37以下であるインク組成物。
 (1)ペロブスカイト化合物を含む半導体ナノ粒子
 (2)硬化性樹脂組成物
 (3)溶媒
 式(a) Z=(O2+O3+N2+N3)/(C2+C3)
 (O2、N2、C2:それぞれ(2)に含まれるO原子数、N原子数、C原子数。
 O3、N3、C3:それぞれ(3)に含まれるO原子数、N原子数、C原子数。
ただし、インク組成物が(3)を含まない場合、O3、N3、C3は、それぞれゼロである。)
[2]前記(2)が、下記式(b-1)で表される低分子化合物及び下記式(b―2)で表される繰り返し単位を含む重合体からなる群より選ばれる少なくとも一種を含み、前記低分子化合物及び重合体の合計の含有割合は、前記(2)の総質量を100質量%として50質量%以上である[1]に記載のインク組成物。
Figure JPOXMLDOC01-appb-C000004
(式(b-1)及び(b-2)中、Aは水素原子又はメチル基を表す。
 m1は0~20の整数、m2は0~2の整数、m3は0~20の整数、m4は0~2の整数、m5は0~20の整数を表し、m1~m5の合計は20以下である。
 Raはメチレン基を表す。
 Rbは下記式(b-31)~(b-38)のいずれかで表される2価の基を表し、Rbが複数ある場合、Rbは互いに同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000005
Rcは下記式(b-41)~(b-48)のいずれかで表される1価の基を表す。
Figure JPOXMLDOC01-appb-C000006
[3]前記式(b―2)で表される繰り返し単位を含む重合体が、前記重合体が含む全ての繰り返し単位を100モル%として式(b―2)で表される繰り返し単位を50モル%以上含む重合体である[2]に記載のインク組成物。
[4]前記(2)が光硬化性樹脂組成物である[1]~[3]のいずれか一つに記載の組成物。
[5]インク組成物の総質量を100質量%として、前記(3)の含有割合が25質量%以下であり、前記(1)、(2)及び(3)の合計の含有割合が70質量%以上である[1]~[4]のいずれか一つに記載の組成物。
[6][4]に記載の組成物を硬化してなるフィルム。
[7][6]に記載のフィルムを備えるディスプレイ。
 本発明によれば、発光特性及び耐溶剤性が高いインク組成物を提供することができる。
本発明に係る積層構造体の一実施形態を示す断面図である。 本発明に係るディスプレイの一実施形態を示す断面図である。
<インク組成物>
 本実施形態のインク組成物は、下記(1)及び(2)を含み、下記(3)を含んでいてもよいインク組成物であって、下記式(a)におけるZの値が0.37未満であることを特徴とする。また、下記式(a)におけるZの値は、0.37以下であってもよい
 (1)ペロブスカイト化合物を含む半導体ナノ粒子
 (2)硬化性樹脂組成物
 (3)溶媒
 式(a) Z=(O2+O3+N2+N3)/(C2+C3)
 (O2、N2、C2:それぞれ(2)に含まれるO原子数、N原子数、C原子数。
 O3、N3、C3:それぞれ(3)に含まれるO原子数、N原子数、C原子数。
ただし、インク組成物が(3)を含まない場合、O3、N3、C3は、それぞれゼロである。)
 本実施形態のインク組成物は、下記(1)-2及び(1)-3からなる群より選ばれる少なくとも一種を含んでいてもよい。
(1)-2 キャッピング配位子
(1)-3 表面被覆材
 本実施形態のインク組成物は、良好な耐溶剤性を得る観点で、インク組成物の総質量を100質量%として、前記(1)、(2)及び(3)の合計の含有割合が70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 本発明の一つの側面としては、本実施形態のインク組成物は、インク組成物の総質量を100質量%として、前記(1)、(2)及び(3)の合計の含有割合が70質量%以上100%以下であることが好ましく、80質量%以上100%以下であることがより好ましい。
 本実施形態のインク組成物は、揮散性の観点で、インク組成物の総質量を100質量%として、前記(3)の含有割合が25質量%以下であることが好ましく、20質量%以下であるより好ましく、10質量%以下であることがさらに好ましい。
 本発明の一つの側面としては、本実施形態のインク組成物は、インク組成物の総質量を100質量%として、前記(3)の含有割合が0質量%以上25%質量以下であることが好ましく、0質量%以上10質量%以下であることがより好ましい。
 前記(1)、(2)及び(3)の合計の含有割合の好ましい範囲と、前記(3)の含有割合の好ましい範囲とは、任意に組み合わせることができる。
 例えば、本実施形態のインク組成物は、インク組成物の総質量を100質量%として、前記(3)の含有割合が25質量%以下であり、前記(1)、(2)及び(3)の合計の含有割合が70質量%以上であることが好ましい。
<<(1)ペロブスカイト化合物を含む半導体ナノ粒子>>
 ペロブスカイト化合物は、A、B及びXを構成成分とする、ペロブスカイト型結晶構造を有する化合物である。
 本発明において、Aは、ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
 Xは、ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分を表し、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。
 Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する6面体及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。
 A、B及びXを構成成分とするペロブスカイト化合物としては、本発明の効果を有する限り、特に限定されず、3次元構造、2次元構造、疑似2次元構造のいずれの構造を有する化合物であってもよい。
 3次元構造の場合、ペロブスカイト化合物の組成式は、ABX(3+δ)で表される。
 2次元構造の場合、ペロブスカイト化合物の組成式は、ABX(4+δ)で表される。
 ここで、δは、Bの電荷バランスに応じて適宜変更が可能な数であり、-0.7以上0.7以下である。結晶構造を安定させる観点から、δは、-0.3以上0.3以下が好ましく、-0.1以上0.1以下がより好ましく、0がさらに好ましい。
 ペロブスカイト化合物は、下記一般式(P1)で表されるペロブスカイト化合物であることが好ましい。
 ABX(3+δ) (-0.7≦δ≦0.7) …(P1)
 前記Aは、ペロブスカイト型結晶構造において、前記Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
 前記Xは、ペロブスカイト型結晶構造において、前記Bを中心とする8面体の各頂点に位置する成分を表し、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上の陰イオンである。
 前記Bは、ペロブスカイト型結晶構造において前記Aを頂点に配置する6面体及び前記Xを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。
(A)
 ペロブスカイト化合物中、Aは前記ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。1価の陽イオンとしては、セシウムイオン、有機アンモニウムイオン、又はアミジニウムイオンが挙げられる。ペロブスカイト化合物において、Aがセシウムイオン、炭素原子数が3以下の有機アンモニウムイオン、又は炭素原子数が3以下のアミジニウムイオンである場合、一般的にペロブスカイト化合物は、ABX(3+δ)で表される、3次元構造を有する。
ペロブスカイト化合物中のAはセシウムイオン、又は有機アンモニウムイオンが好ましい。
 Aの有機アンモニウムイオンとして具体的には、下記一般式(A1)で表される陽イオンが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 一般式(A1)中、R~Rは、それぞれ独立に、水素原子、置換基としてアミノ基を有していてもよいアルキル基、又は置換基としてアルキル基又はアミノ基を有していてもよいシクロアルキル基を表す。但し、R~Rが同時に水素原子となることはない。
 R~Rで表されるアルキル基は、それぞれ独立に、直鎖状であっても、分岐鎖状であってもよく、置換基としてアミノ基を有していてもよい。
 R~Rがアルキル基である場合、炭素原子数は、それぞれ独立に、通常1~20であり、1~4であることが好ましく、1~3であることがより好ましく、1であることがさらに好ましい。
 R~Rで表されるシクロアルキル基は、それぞれ独立に、置換基としてアルキル基を有していてもよく、アミノ基を有していてもよい。
 R~Rで表されるシクロアルキル基の炭素原子数は、それぞれ独立に、通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数も含む。
 R~Rで表される基としては、それぞれ独立に、水素原子又はアルキル基であることが好ましい。
 一般式(A1)に含まれ得るアルキル基及びシクロアルキル基の数を少なくすること、並びにアルキル基及びシクロアルキル基の炭素原子数を小さくすることにより、発光強度が高い3次元構造のペロブスカイト型結晶構造を有する化合物を得ることができる。
 アルキル基又はシクロアルキル基の炭素原子数が4以上の場合、2次元、及び/又は擬似2次元(quasi―2D)のペロブスカイト型結晶構造を一部あるいは全体に有する化合物を得ることができる。2次元のペロブスカイト型結晶構造が無限大に積層すると3次元のペロブスカイト型結晶構造と同等になる(参考文献:P.P.Boixら、J.Phys.Chem.Lett.2015,6,898-907など)。
 R~Rで表されるアルキル基に含まれる炭素原子数の合計は1~4であることが好ましく、R~Rで表されるシクロアルキル基に含まれる炭素原子数の合計は3~4であることが好ましい。R~Rのうちの1つが炭素原子数1~3のアルキル基であり、R~Rのうちの3つが水素原子であることがより好ましい。
 R~Rのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できる。
 この中でもR~Rのアルキル基としては、エチル基、メチル基が好ましく、メチル基がより好ましい。
 R~Rのシクロアルキル基としては、それぞれ独立にR~Rのアルキル基で例示した炭素原子数3以上のアルキル基が環を形成したものが挙げられ、一例として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等を例示できる。
 Aで表される有機アンモニウムイオンとしては、CHNH (メチルアンモニウムイオンともいう。)、CNH (エチルアンモニウムイオンともいう。)、又はCNH (プロピルアンモニウムイオンともいう。)であることが好ましく、CHNH 、又はCNH であることより好ましく、CHNH であることがさらに好ましい。
 Aで表されるアミジニウムイオンとしては、例えば、下記一般式(A2)で表されるアミジニウムイオンが挙げられる。
(R1011N=CH-NR1213・・・(A2)
 一般式(A2)中、R10~R13は、それぞれ独立に、水素原子、置換基としてアミノ基を有していてもよいアルキル基、又は置換基としてアルキル基又はアミノ基を有していてもよいシクロアルキル基を表す。
 R10~R13で表されるアルキル基は、それぞれ独立に、直鎖状であっても、分岐鎖状であってもよく、置換基としてアミノ基を有していてもよい。
 R10~R13で表されるアルキル基の炭素原子数は、それぞれ独立に、通常1~20であり、1~4であることが好ましく、1~3であることがより好ましい。
 R10~R13で表されるシクロアルキル基は、それぞれ独立に、置換基としてアルキル基を有していてもよく、アミノ基を有していてもよい。
 R10~R13で表されるシクロアルキル基の炭素原子数は、それぞれ独立に、通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。
 R10~R13のアルキル基の具体例としては、それぞれ独立に、R~Rにおいて例示したアルキル基が挙げられる。
 この中でもR10~R13のアルキル基としては、エチル基、メチル基が好ましく、メチル基がより好ましい。
 R10~R13のシクロアルキル基の具体例としては、それぞれ独立に、R~Rにおいて例示したシクロアルキル基が挙げられる。
 R10~R13で表される基としては、それぞれ独立に、水素原子又はアルキル基が好ましい。
 一般式(A2)に含まれる、アルキル基及びシクロアルキル基の数を少なくすること、並びにアルキル基及びシクロアルキル基の炭素原子数を小さくすることにより、発光強度が高い3次元構造のペロブスカイト化合物を得ることができる。
 アルキル基又はシクロアルキル基の炭素原子数が4以上の場合、2次元、及び/又は擬似2次元(quasi―2D)のペロブスカイト型結晶構造を一部あるいは全体に有する化合物を得ることができる。
10~R13で表されるアルキル基に含まれる炭素原子数の合計は1~4であることが好ましく、R10~R13で表されるシクロアルキル基に含まれる炭素原子数の合計は3~4であることが好ましい。R10が炭素原子数1~3のアルキル基であり、R11~R13が水素原子であることがより好ましい。
(B)
 ペロブスカイト化合物中、Bは前記ペロブスカイト型結晶構造において、Aを頂点に配置する6面体及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。B成分の金属イオンは1価の金属イオン、2価の金属イオン、及び3価の金属イオンからなる群より選ばれる1種類以上からなる金属イオンであってよい。Bは2価の金属イオンを含むことが好ましく、鉛、又はスズからなる群より選ばれる少なくとも一種の金属イオンを含むことがより好ましい。
(X)
 ペロブスカイト化合物中、Xは前記ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分を表し、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。
Xは、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンであってよい。
 Xは、所望の発光波長に応じて適宜選択することができるが、例えば、Xは臭化物イオンを含むことができる。
 Xが2種以上のハロゲン化物イオンである場合、前記ハロゲン化物イオンの含有比率は、発光波長により適宜選ぶことができ、例えば、臭化物イオンと塩化物イオンとの組み合わせ、又は、臭化物イオンとヨウ化物イオンとの組み合わせとすることができる。
 ペロブスカイト化合物が3次元構造の場合、Bを中心とし、頂点をXとする、BXで表される頂点共有八面体の三次元ネットワークを有する。
 ペロブスカイト化合物が2次元構造の場合、Bを中心とし、頂点をXとする、BXで表される八面体が同一平面の4つの頂点のXを共有することにより、2次元的に連なったBXからなる層とAからなる層が交互に積層された構造を形成する。
 BはXに対して八面体配位をとることができる金属カチオンである。
 本明細書において、ペロブスカイト構造は、X線回折パターンにより確認することができる。
 前記3次元構造のペロブスカイト型結晶構造を有する化合物の場合、X線回折パターンにおいて、通常、2θ=12~18°の位置に(hkl)=(001)に由来するピーク、又は2θ=18~25°の位置に(hkl)=(110)に由来するピークが確認される。2θ=13~16°の位置に、(hkl)=(001)に由来するピークが、又は2θ=20~23°の位置に、(hkl)=(110)に由来するピークが確認されることがより好ましい。
 前記2次元構造のペロブスカイト型結晶構造を有する化合物の場合、X線回折パターンにおいて、通常、2θ=1~10°の位置に、(hkl)=(002)由来のピークが確認され、2θ=2~8°の位置に、(hkl)=(002)由来のピークが確認されることがより好ましい。
 ペロブスカイト化合物であって、ABX(3+δ)で表される、3次元構造のペロブスカイト型の結晶構造を有する化合物の具体例としては、CHNHPbBr、CHNHPbCl、CHNHPbI、CHNHPbBr(3-y)(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、(HN=CH-NH)PbBr、(HN=CH-NH)PbCl、(HN=CH-NH)PbI
 CHNHPb(1-a)CaBr(0<a≦0.7)、CHNHPb(1-a)SrBr(0<a≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CHNHPb(1-a)BaBr(0<a≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CHNHPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CHNHPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CHNHPb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、CsPbBr、CsPbCl、CsPbI、CsPbBr(3-y)(0<y<3)、CsPbBr(3-y)Cl(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、CHNHPb(1-a)ZnBr(0<a≦0.7)、CHNHPb(1-a)AlBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)CoBr(0<a≦0.7)、CHNHPb(1-a)MnBr(0<a≦0.7)、CHNHPb(1-a)MgBr(0<a≦0.7)、CsPb(1-a)ZnBr(0<a≦0.7)、CsPb(1-a)AlBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CsPb(1-a)CoBr(0<a≦0.7)、CsPb(1-a)MnBr(0<a≦0.7)、CsPb(1-a)MgBr(0<a≦0.7)、CHNHPb(1-a)ZnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)ZnBr(3-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)Cl(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)MnBr(3-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)Cl(0<a≦0.7,0<y<3)、(HN=CH-NH)ZnBr(0<a≦0.7)、(HN=CH-NH)MgBr(0<a≦0.7)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)(0<a≦0.7,0<y<3)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)Cl(0<a≦0.7,0<y<3)等が好ましいものとして挙げられる。
 本発明の一つの側面としては、ペロブスカイト化合物であって、ABX(3+δ)で表される、3次元構造のペロブスカイト型の結晶構造を有する化合物としてはCsPbBrが好ましい。
 ペロブスカイト化合物であって、ABX(4+δ)で表される、2次元構造のペロブスカイト型の結晶構造を有する化合物の具体例としては、(CNH)PbBr、(CNH)PbCl、(CNH)PbI、(C15NH)PbBr、(C15NH)PbCl、(C15NH)PbI、(CNH)Pb(1-a)LiBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(CNH)Pb(1-a)NaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(CNH)Pb(1-a)RbBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(C15NH)Pb(1-a)NaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(C15NH)Pb(1-a)LiBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(C15NH)Pb(1-a)RbBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(CNH)Pb(1-a)NaBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNH)Pb(1-a)LiBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNH)Pb(1-a)RbBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNH)Pb(1-a)NaBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNH)Pb(1-a)LiBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNH)Pb(1-a)RbBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNH)PbBr、(C15NH)PbBr、(CNH)PbBr(4-y)Cl(0<y<4)、(CNH)PbBr(4-y)(0<y<4)、(CNH)Pb(1-a)ZnBr(0<a≦0.7)、(CNH)Pb(1-a)MgBr(0<a≦0.7)、(CNH)Pb(1-a)CoBr(0<a≦0.7)、(CNH)Pb(1-a)MnBr(0<a≦0.7)、(C15NH)Pb(1-a)ZnBr(0<a≦0.7、)、(C15NH)Pb(1-a)MgBr(0<a≦0.7)、(C15NH)Pb(1-a)CoBr(0<a≦0.7)、(C15NH)Pb(1-a)MnBr(0<a≦0.7)、(CNH)Pb(1-a)ZnBr(4-y)(0<a≦0.7,0<y<4)、(CNH)Pb(1-a)MgBr(4-y)(0<a≦0.7,0<y<4)、(CNH)Pb(1-a)CoBr(4-y)(0<a≦0.7,0<y<4)、(CNH)Pb(1-a)MnBr(4-y)(0<a≦0.7,0<y<4)、(CNH)Pb(1-a)ZnBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNH)Pb(1-a)MgBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNH)Pb(1-a)CoBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNH)Pb(1-a)MnBr(4-y)Cl(0<a≦0.7,0<y<4)等が好ましいものとして挙げられる。
 本実施形態のインク組成物に含まれる、(1)の平均粒径は、本発明の効果を有する限り、特に限定されるものではない。本実施形態のインク組成物においては、良好に(1)の結晶構造を維持させる観点から、(1)の平均粒径が1nm以上であることが好ましく、2nm以上であることがより好ましく、3nm以上であることがさらに好ましい。また、本実施形態のインク組成物においては、(1)を沈降させにくくする観点から、(1)の平均粒径が10μm以下であることが好ましく、1μm以下であることがより好ましく、500nm以下であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 本実施形態のインク組成物に含まれる、(1)の平均粒径は、特に限定されるものではないが、(1)を沈降させにくくする観点、及び良好に結晶構造を維持させる観点から、平均粒径が1nm以上10μm以下であることが好ましく、2nm以上1μm以下であることがより好ましく、3nm以上500nm以下であることがさらに好ましい。
 インク組成物に含まれる(1)の平均粒径は、例えば、走査型電子顕微鏡(以下、SEMともいう。)、又は透過型電子顕微鏡(以下、TEMともいう。)により測定することができる。具体的には、TEM、又はSEMにより、前記インク組成物中に含まれる20個の(1)のフェレー径を観察し、それらの平均値である平均のフェレー径を算出することにより、前記平均粒径を得ることができる。本明細書において「フェレー径」とは、TEM、又はSEM画像上において、観察対象を挟む2本の平行な直線の最大距離を意味する。
 本実施形態のインク組成物に含まれる、(1)のメディアン径(D50)は、本発明の効果を有する限り、特に限定されるものではない。本実施形態のインク組成物においては、(1)が結晶構造を良好に保つ観点から、(1)のメディアン径(D50)が3nm以上であることが好ましく、4nm以上であることがより好ましく、5nm以上であることがさらに好ましい。また、本実施形態のインク組成物においては、(1)を沈降させにくくする観点から、(1)のメディアン径(D50)が5μm以下であることが好ましく、500nm以下であることがより好ましく、100nm以下であることがさらに好ましい。
 本発明の別の側面としては、インク組成物に含まれる、(1)のメディアン径(D50)が3nm~5μmであることが好ましく、4nm~500nmであることがより好ましく、5nm~100nmであることがさらに好ましい。
 本明細書において、インク組成物に含まれる、(1)のメディアン径(D50)は、例えばTEM、SEMにより測定することができる。具体的には、TEM、又はSEMにより、前記インク組成物中に含まれる、20個の(1)のフェレー径を観察し、それらの分布から、前記メディアン径(D50)を求めることができる。
 本実施形態の半導体ナノ粒子の総質量に対するペロブスカイト化合物の含有割合は、通常1~100質量%であり、10~100質量%であることが好ましく、70~100質量%であることがより好ましい。
 本実施形態のインク組成物の総質量に対する(1)の含有割合は、本発明の効果を有する限り、特に限定されるものではないが、ペロブスカイト化合物を含む半導体ナノ粒子を凝集させにくくする観点、及び濃度消光を防ぐ観点から、50質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。また、良好な量子収率を得る観点から、インク組成物の総質量に対する(1)の含有割合は、0.0001質量%以上であることが好ましく、0.0005質量%以上であることがより好ましく、0.001質量%以上であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 インク組成物の総質量に対する(1)の含有割合は、通常、0.0001~50質量%である。
 インク組成物の総質量に対する(1)の含有割合は、0.0001~5質量%であることが好ましく、0.0005~2質量%であることがより好ましい。
 本実施形態のインク組成物において、インク組成物の総質量に対する(1)の含有割合が上記範囲内である組成物は、(1)の凝集が生じ難く、発光性も良好に発揮される点で好ましい。
 本実施形態のインク組成物の総質量に対する(2)の含有割合は、本発明の効果を有する限り、特に限定されるものではないが、発光強度を維持しつつ、硬化物の耐溶剤性を高める観点から、99質量%以下であることが好ましい。また、発光強度を維持しつつ、硬化物の耐溶剤性を高める観点から、インク組成物の総質量に対する(2)の含有割合は、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 インク組成物の総質量に対する(2)の含有割合は、通常、0.1~99質量%である。
 インク組成物の総質量に対する(2)の含有割合は、1~99質量%であることが好ましく、10~99質量%であることがより好ましい。
 本実施形態のインク組成物において、インク組成物の総質量に対する(2)の含有割合が上記範囲内である組成物は、発光強度を維持しつつ、硬化物の耐溶剤性を高める点で好ましい。
 本実施形態のインク組成物の総質量に対する(1)及び(2)の合計含有割合は、本発明の効果を有する限り、特に限定されるものではないが、発光強度を維持しつつ、硬化物の耐溶剤性を高める観点から、99質量%以下であることが好ましい。また、発光強度を維持しつつ、硬化物の耐溶剤性を高める観点から、インク組成物の総質量に対する(1)及び(2)の合計含有割合は、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 インク組成物の総質量に対する(1)及び(2)の合計含有割合は、通常、0.1~99質量%である。
 インク組成物の総質量に対する(1)及び(2)の合計含有割合は、1~99質量%であることが好ましく、10~99質量%であることがより好ましい。
 本実施形態のインク組成物において、インク組成物の総質量に対する(1)及び(2)の合計含有割合が上記範囲内である組成物は、発光強度を維持しつつ、硬化物の耐溶剤性を高める点で好ましい。
 (1)ペロブスカイト化合物を含む半導体ナノ粒子の少なくとも一部は、後述する(1)-2キャッピング配位子及び/又は(1)-3表面被覆材により被覆されていてもよい。
<<(1)-2 キャッピング配位子>>
 本実施形態のインク組成物は、(1)の分散性を向上させ、発光特性を向上させるために、キャッピング配位子を含んでいてもよい。
 本実施形態のインク組成物は、キャッピング配位子として、アンモニア、アミン、及びカルボン酸並びに、前記化合物がとり得る形態として、これらの塩又はイオンからなる群から選ばれる少なくとも一種の化合物又はイオンを含んでいてもよい。
 すなわち、本実施形態のインク組成物は、アンモニア、アミン、カルボン酸、アンモニアの塩、アミンの塩、カルボン酸の塩、アンモニアのイオン、アミンのイオン、及びカルボン酸のイオンからなる群から選ばれる少なくとも一種の化合物又はイオンを含んでいてもよい。
 アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンは、通常、キャッピング配位子として作用する。「キャッピング配位子」とは、(1)の表面に吸着して、(1)をインク組成物中に安定して分散させる作用を有する化合物である。アンモニア又はアミンのイオン若しくは塩(アンモニウム塩等)としては、後述する一般式(A1’)で表されるアンモニウムカチオンと、それを含むアンモニウム塩、若しくは一般式(A1’)で表されるアンモニウムカチオンから、R~Rのいずれか1つの基を除くことにより得られるアミンが挙げられる。カルボン酸のイオン又は塩(カルボン酸塩等)としては、後述する一般式(A2’)で表されるカルボキシレートアニオンと、それを含むカルボン酸塩、若しくは一般式(A2’)で表されるカルボキシレートアニオンにプロトンが結合したカルボン酸が挙げられる。本実施形態のインク組成物は、アンモニウム塩等、及びカルボン酸塩等のいずれか一方を含んでいてもよく、両方を含んでいてもよい。
 キャッピング配位子は、一般式(A1’)で表されるアンモニウムカチオン、又はそれを含むアンモニウム塩であってもよい。
Figure JPOXMLDOC01-appb-C000008
 一般式(A1’)中、R~Rは、水素原子を表し、Rは、水素原子、又は1価の炭化水素基を表す。Rで表される炭化水素基は、飽和炭化水素基(すなわち、アルキル基、又はシクロアルキル基)であってもよく、不飽和炭化水素基であってもよい。
 Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。
 Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。
 Rで表されるシクロアルキル基は、置換基としてアルキル基を有していてもよい。シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。
 Rの不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
 Rの不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。
 Rは、水素原子、アルキル基、又は不飽和炭化水素基であることが好ましい。不飽和炭化水素基としては、アルケニル基が好ましい。Rは、炭素原子数8~20のアルケニル基であることが好ましい。
 Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
 Rのアルケニル基としては、R~Rにおいて例示した前記直鎖状又は分岐鎖状のアルキル基において、いずれか一つの炭素原子間の単結合(C-C)が、二重結合(C=C)に置換されたものが例示でき、二重結合の位置は限定されない。
 このようなアルケニル基の好ましいものとしては、例えば、エテニル基、プロペニル基、3-ブテニル基、2-ブテニル基、2-ペンテニル基、2-ヘキセニル基、2-ノネニル基、2-ドデセニル基、9-オクタデセニル基が挙げられる。
 アンモニウムカチオンが塩を形成する場合、カウンターアニオンとしては、特に制限は無いがBr、Cl、I、Fのハロゲン化物イオンや、カルボキシレートイオンなどが好ましい例として挙げられる。
 一般式(A1’)で表されるアンモニウムカチオンと、カウンターアニオンとを有するアンモニウム塩としては、n-オクチルアンモニウム塩、オレイルアンモニウム塩が好ましい例として挙げられる。
 キャッピング配位子は、一般式(A2’)で表されるカルボキシレートアニオン、又はそれを含むカルボン酸塩であってもよい。
―CO -・・・(A2’)
 一般式(A2’)中、Rは、一価の炭化水素基を表す。Rで表される炭化水素基は、飽和炭化水素基(すなわち、アルキル基、シクロアルキル基)であってもよく、不飽和炭化水素基であってもよい。
 Rで表されるアルキル基は、直鎖状であっても分岐鎖状であってもよい。Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。
 Rで表されるシクロアルキル基は、置換基としてアルキル基を有していてもよい。シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数も含む。
 Rで表される不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
 Rで表される不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。
 Rはアルキル基又は不飽和炭化水素基であることが好ましい。不飽和炭化水素基としては、アルケニル基が好ましい。
 Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
 Rのアルケニル基の具体例としては、Rにおいて例示したアルケニル基が挙げられる。
 この中でもRのアルケニル基としては、9-オクタデセニル基が好ましい。
 一般式(A2’)で表されるカルボキシレートアニオンは、オレイン酸アニオンが好ましい。
 カルボキレートアニオンが塩を形成する場合、カウンターカチオンとしては、特に制限は無いが、アルカリ金属カチオン、アルカリ土類金属カチオン、アンモニウムカチオンなどが好ましい例として挙げられる。
<<(1)-3 表面被覆材>>
 本実施形態のインク組成物は、(1)の表面を保護し、発光特性を向上させるために、表面被覆材を含んでいてもよい。表面被覆材は、(1)を被覆することができる材料であればよい。
 表面被覆材としてはケイ素原子を含有する化合物が挙げられる。
 ケイ素原子を含有する化合物としては、シリコンアルコキシド、テトラエトキシシラン、テトラメトキシシランといったテトラアルコキシドシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシランなどのトリアルコキシシランなどをあげることができる。
 ケイ素原子を含有する化合物は、有機官能基を有する含ケイ素アルコキシド化合物であってもよい。具体的にはメルカプトプロピルトリエトキシシラン、アミノプロピルトリエトキシシランなどが挙げられる。
 ケイ素原子を含有する化合物は、シラザン又はその改質体であってもよい。
ケイ素原子を含有する化合物は、シラザン又はその改質体であることが好ましい。
 表面被覆材の(1)の被覆率としては、1~100%であることが好ましく、3~100%であることがより好ましく、10~100%であることがさらに好ましい。
 表面被覆材の(1)の被覆率は、表面被覆材で被覆された(1)をTEM、SEM等で観察し、エネルギー分散型X線分析(EDX)を行うことにより求めることができる。具体的には、EDXにより、表面被覆材由来の元素が存在する領域の範囲と、粒子全体の領域の範囲を求め、((表面被覆材由来の元素が存在する領域の範囲/粒子全体の領域の範囲)×100)を計算することにより求めることができる。
 シラザンは、直鎖状、分岐鎖状、又は環状のいずれであってもよい。また、シラザンは、低分子であっても、高分子(本明細書では、ポリシラザンと記載することがある。)であってもよい。
 本明細書において「低分子」とは、数平均分子量が600未満であることを意味し、「高分子」とは、数平均分子量が600以上2000以下であることを意味する。
 本明細書において「数平均分子量」とは、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。
 例えば、下記の一般式(B1)又は(B2)で表される低分子のシラザン、及び、一般式(B3)で表される構成単位、又は一般式(B4)で表される構造を有するポリシラザンであることが好ましい。
 シラザンは、後述する方法で改質してシリカ変性させて用いてもよい。
 実施形態の組成物に含まれるシラザンは、後述する方法により改質された、シラザンの改質体であってもよい。
 改質とは、シラザンに含まれる少なくとも一部のSi-N-Si結合において、NをOで置換し、Si-O-Si結合を形成させることをいい、シラザンの改質体は、Si-O-Si結合を含む化合物である。
 シラザンの改質体としては、例えば、上述した、一般式(B1)、又は(B2)に含まれる少なくとも1つのNが、Oで置換された低分子の化合物、及び、一般式(B3)で表される構成単位を有するポリシラザンに含まれる少なくとも1つのNがOで置換された高分子の化合物、又は一般式(B4)で表される構造を有するポリシラザンに含まれる少なくとも1つのNがOで置換された高分子の化合物が好ましい。
 一般式(B2)に含まれるNの総量に対する、置換されたOの数の割合は0.1~100%であることが好ましく、10~98%であることがより好ましく、30~95%であることがさらに好ましい。
 一般式(B3)に含まれるNの総量に対する、置換されたOの数の割合は0.1~100%であることが好ましく、10~98%であることがより好ましく、30~95%であることがさらに好ましい。
 一般式(B4)に含まれるNの総量に対する、置換されたOの数の割合は0.1~99%であることが好ましく、10~97%であることがより好ましく、30~95%であることがさらに好ましい。
 シラザンの改質体は1種類であっても2種類以上の混合物であってもよい。
 シラザン及びその改質体に含まれるSi原子数、N原子数、O原子数は、核磁気共鳴分光法(NMR)、X線光電子分光法(XPS)、又は透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分析(EDX)等で算出することができる。
 特に好ましい方法としては、X線光電子分光法(XPS)によって、インク組成物中のSi原子数、N原子数、O原子数を測定することで、算出することができる。
 上述の方法によって測定されるシラザン及びその改質体に含まれるN原子数に対するO原子数の割合は0.1~99%であることが好ましく、10~95%であることがより好ましく、30~90%であることがさらに好ましい。
 シラザン、又はその改質体の少なくとも一部は、組成物に含まれるペロブスカイト化合物に吸着していてもよく、組成物中に分散していてもよい。
Figure JPOXMLDOC01-appb-C000009
 一般式(B1)中、R14及び複数のR15は、それぞれ独立して、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基を表す。炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基は、アミノ基などの置換基を有していてもよい。複数あるR15は、同一であってもよく、異なっていてもよい。
 一般式(B1)で表される低分子のシラザンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジフェニルテトラメチルジシラザン、及び1,1,1,3,3,3-ヘキサメチルジシラザンが挙げられる。
Figure JPOXMLDOC01-appb-C000010
 一般式(B2)中、R14、及びR15は上記同様である。
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
 nは1以上20以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。
 一般式(B2)で表される低分子のシラザンとしては、オクタメチルシクロテトラシラザン、2,2,4,4,6,6-ヘキサメチルシクロトリシラザン、及び2,4,6-トリメチル-2,4,6-トリビニルシクロトリシラザンが挙げられる。
 低分子のシラザンとしては、オクタメチルシクロテトラシラザン、及び1,3-ジフェニルテトラメチルジシラザンが好ましく、オクタメチルシクロテトラシラザンがより好ましい。
 ポリシラザンは、Si-N-Si結合を有する高分子化合物であり、特に制限されないが、例えば、下記の一般式(B3)で表される構成単位を有する高分子化合物が挙げられる。ポリシラザンに含まれる一般式(B3)で表される構成単位は、一種であっても、複数種であってもよい。
Figure JPOXMLDOC01-appb-C000011
 一般式(B3)中、R14、及びR15は、上記同様である。
 *は、結合手を表す。末端のN原子の結合手は、R14と同様の置換基を有していてもよく、末端のSi原子の結合手は、R15と同様の置換基を有していてもよい。
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
 mは、2以上10000以下の整数を表す。
 一般式(B3)で表される構成単位を有するポリシラザンは、例えば、R14、及びR15のすべてが水素原子であるパーヒドロポリシラザンでもよい。
 また、一般式(B3)で表される構成単位を有するポリシラザンは、例えば、少なくとも1つのR15が水素原子以外の基であるオルガノポリシラザンであってもよい。用途に応じて、適宜にパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
 ポリシラザンは、分子内の一部に環構造を有していてもよく、例えば、一般式(B4)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000012
 一般式(B4)中、*は、結合手を表す。
 結合手は、一般式(B3)で表される構成単位の結合手と結合していてもよい。ポリシラザンが、分子内に複数の一般式(B4)で表される構造を含む場合、一般式(B4)で表される構造の結合手は、他の一般式(B4)で表される構造の結合手と結合していてもよい。
 一般式(B3)で表される構成単位の結合手、又は他の一般式(B4)で表される構造の結合手と結合していないN原子の結合手は、R14と同様の置換基を有していてもよく、一般式(B3)で表される構成単位の結合手、又は他の一般式(B4)で表される構造の結合手と結合していないSi原子の結合手は、R15と同様の置換基を有していてもよい。
 nは、1以上10000以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。
 シラザン又はその改質体は、特に制限は無いが、分散性を向上させ、凝集を抑制できる観点からオルガノポリシラザン、又はその改質体が好ましい。オルガノポリシラザンは、例えば、一般式(B3)中のR14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基である、一般式(B3)で表される構成単位を有するオルガノポリシラザンであってもよく、一般式(B4)中の少なくとも1つの結合手がR14又はR15と結合し、前記R14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基である、一般式(B4)で表される構造を含むオルガノポリシラザンであってもよい。
 オルガノポリシラザンは、一般式(B3)中のR14及びR15の少なくとも1つがメチル基である一般式(B3)で表される構成単位を有するオルガノポリシラザン、又は、一般式(B4)中の少なくとも1つの結合手がR14又はR15と結合し、前記R14及びR15の少なくとも1つがメチル基である一般式(B4)で表される構造を有するポリシラザンであることが好ましい。
 一般的なポリシラザンは、例えば、直鎖構造と、6員環、又は8員環等の環構造とが存在した構造である。前述したようにその分子量は数平均分子量(Mn)で600~2000(ポリスチレン換算)であり、分子量によって液体又は固体の物質でありうる。前記ポリシラザンは、市販品を使用してもよく、市販品としては、NN120-10、NN120-20、NAX120-20、NN110、NAX120、NAX110、NL120A、NL110A、NL150A、NP110、NP140(AZエレクトロニックマテリアルズ株式会社製)並びに、AZNN-120-20、Durazane(登録商標) 1500 Slow Cure、Durazane(登録商標) 1500 Rapid Cure、Durazane(登録商標) 1800(メルクパフォーマンスマテリアルズ株式会社製)、及びDurazane(登録商標) 1033(メルクパフォーマンスマテリアルズ株式会社製)等が挙げられる。
 一般式(B3)で表される構成単位を有するポリシラザンは、好ましくはAZNN-120-20、Durazane(登録商標) 1500 Slow Cure、Durazane(登録商標) 1500 Rapid Cureであり、より好ましくはDurazane(登録商標) 1500 Slow Cureである。
<<パラメータZ>>
 本実施形態のインク組成物は、下記式(a)におけるZの値が0.37以下であることで、優れた発光特性を示す。
 式(a) Z=(O2+O3+N2+N3)/(C2+C3)
 (O2、N2、C2:それぞれ(2)に含まれるO原子数、N原子数、C原子数。O3、N3、C3:それぞれ(3)に含まれるO原子数、N原子数、C原子数。)
 (2)が複数種類の化合物から構成される場合、O2、N2及びC2は、それぞれ構成される化合物に含まれるO原子数、N原子数、C原子数に対し、(2)の総質量を100質量%として、構成される化合物の割合(質量%)で重み付けした平均のO2、N2及びC2の値とする。
 (3)が複数種類の化合物から構成される場合、O3、N3及びC3は、それぞれ構成される化合物に含まれるO原子数、N原子数、C原子数に対し、(3)の総質量を100質量%として、構成される化合物の割合(質量%)で重み付けした平均のO3、N3及びC3とする。
 すなわち、O2、N2、C2、O3、N3及びC3は、以下のように定義することもできる。
Figure JPOXMLDOC01-appb-M000013
(n2は、(2)の種類の数を表し、
 fn2は、(2)に含まれる全ての化合物の総質量を100質量%として、n2番目の化合物の割合(質量%)を表し、
 O2n2は、(2)に含まれる全ての化合物の総質量を100質量%として、n2番目の化合物に含まれるO原子数を表し、
 N2n2は、(2)に含まれる全ての化合物の総質量を100質量%として、n2番目の化合物に含まれるN原子数を表し、
 C2n2は、(2)に含まれる全ての化合物の総質量を100質量%として、n2番目の化合物に含まれるC原子数を表す。
 n3は、(3)の化合物の種類の数を表し、
 fn3は、(3)に含まれる全ての化合物の総質量を100質量%として、n3番目の化合物の割合(質量%)を表し、
 O3n3は、(3)に含まれる全ての化合物の総質量を100質量%として、n3番目の化合物に含まれるO原子数を表し、
 N3n3は、(3)に含まれる全ての化合物の総質量を100質量%として、n3番目の化合物に含まれるN原子数を表し、
 C3n3は、(3)に含まれる全ての化合物の総質量を100質量%として、n3番目の化合物に含まれるC原子数を表す。)
 本実施形態のインク組成物において、Zの値は0.27以下であることが好ましく、0.20以下であることがより好ましい。
 本発明の一つの側面としては、本実施形態のインク組成物において、Zの値は0.01以上0.37以下であることが好ましく、0.01以上0.27以下であることがより好ましく、0.01以上0.20以下であることがさらに好ましい。
 Zが前記範囲内であることにより、本実施形態のインク組成物を重合する際に、ペロブスカイト化合物の表面の劣化を抑制しつつ、硬化することができるため、発光特性が高い状態で耐溶剤性が得られると考えられる。
 Zの値の測定方法としては、核磁気共鳴分光法(NMR)、液体クロマトグラフィー、ガスクロマトグラフィー、紫外可視分光、といった方法を用いて含有される化合物の化学構造を特定して算出する方法を用いることができる。
 また、X線光電子分光法(XPS)、又は透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分析(EDX)、元素分析装置、炭素硫黄分析装置、酸素窒素水素分析装置、蛍光X線装置等を用いた元素分析法、イオンクロマトグラフィー法、滴定法、ポーラログラフィー法、重量分析法といった手法を用いて元素の含有量を測定して算出する方法を用いることもできる。
 これらの測定方法は単独で使用してもよいし、複数組み合わせて使用してもよい。
 (2)と(3)がすでに混合された(2)と(3)の混合物からZを得る方法としては、上述の測定方法により、前記混合物中のO原子数、N原子数、C原子数を求め、前記式(a)に従い、O原子数とN原子数の和をC原子数で除することにより得る方法が例として挙げられる。この場合、C原子数は炭素硫黄分析装置、O原子数及びN原子数は、酸素窒素水素分析装置又はイオンクロマトグラフィー法により測定することができる。
 (1)と(2)と(3)がすでに混合された(1)と(2)と(3)の混合物からZを得る方法としては、(1)がO原子、N原子、C原子を含まない場合は、前述の(2)と(3)の混合物からZを得る方法を採用することができる。(1)がO原子、N原子、C原子を含む場合、(1)に含まれる原子をクロマトグラフィーなどにより分析し、同定及び定量を行う。(1)と(2)と(3)の混合物中のO原子数、N原子数、C原子数を上述の方法で測定し、これらの値から(1)由来のO原子数、N原子数、C原子数を差し引くことにより求めた(2)と(3)由来のO原子数とN原子数の和をC原子数で除することによりZを得ることできる。
<<(2)硬化性樹脂組成物>>
 硬化性樹脂組成物は、主原料として硬化性樹脂を含む。硬化性樹脂組成物は、硬化剤及び開始剤を含んでいてもよい。
 硬化性樹脂組成物は、低分子化合物(本明細書において、硬化性樹脂モノマーと記載することがある。)を含んでいてもよく、低分子化合物が重合した重合体を含んでいてもよい。重合体は、オリゴマーであってもポリマーであってもよく、オリゴマーであることが好ましい。ここで、オリゴマーとは、重合体が有する全ての繰り返し単位について、繰り返し数の合計が2~20である重合体を意味し、ポリマーとは、繰り返し数の合計が21以上である重合体を意味する。
 本明細書において、硬化性樹脂とは、硬化性モノマー及びその重合体を意味する。
 硬化性樹脂組成物に含まれる硬化性樹脂の含有割合は、硬化性樹脂組成物の総質量に対して、10~95質量%が好ましく、50~95質量%がより好ましく、70~95質量%がさらに好ましい。
 硬化性樹脂組成物に含まれる硬化剤の含有割合は、硬化性樹脂組成物に含まれる硬化性樹脂の総質量を100質量%として、1~50質量%が好ましく、5~20質量%がより好ましい。
 硬化性樹脂組成物に含まれる開始剤の含有割合は、硬化性樹脂組成物に含まれる前記硬化性樹脂総質量を100質量%として、0.01質量%~20質量%が好ましく、0.01質量%~5質量%がより好ましい。
 本実施形態のインク組成物に含まれる硬化性樹脂組成物は、インク組成物全体で前記パラメータZの値が0.37以下であることを満たすものであれば特に限定されるものではない。
 硬化性樹脂組成物は、発光特性を維持する観点で、例えば、下記式(b-1)で表される低分子化合物及び下記式(b―2)で表される繰り返し単位を含む重合体からなる群より選ばれる少なくとも一種を含み、前記低分子化合物及び重合体の合計の含有割合は、前記(2)の総質量を100質量%として50質量%以上であることが好ましい。
 本発明の一つの側面としては、硬化性樹脂組成物は、下記式(b-1)で表される低分子化合物及び下記式(b―2)で表される繰り返し単位を含む重合体からなる群より選ばれる少なくとも一種を含み、前記低分子化合物及び重合体の合計の含有割合は、前記(2)の総質量を100質量%として50質量%以上99質量%以下であることが好ましい。
 前記硬化性樹脂組成物は、下記式(b-1)で表される低分子化合物の含有割合が、前記(2)の総質量を100質量%として50質量%以上であること又は下記式(b―2)で表される繰り返し単位を含む重合体の含有割合が、前記(2)の総質量を100質量%として50質量%以上であることがより好ましい。
 本発明の一つの側面としては、硬化性樹脂組成物は、下記式(b-1)で表される低分子化合物の含有割合が、前記(2)の総質量を100質量%として50質量%以上99質量%以下であること又は下記式(b―2)で表される繰り返し単位を含む重合体の含有割合が、前記(2)の総質量を100質量%として50質量%以上99質量%以下であることがより好ましい。
 前記式(b―2)で表される繰り返し単位を含む重合体は、重合体に含まれる全ての繰り返し単位を100モル%として式(b―2)で表される繰り返し単位を50モル%以上含む重合体であることが好ましく、90モル%以上含む重合体であることがより好ましい。
 前記式(b―2)で表される繰り返し単位を含む重合体は、重合体に含まれる全ての繰り返し単位を100モル%として式(b―2)で表される繰り返し単位を50モル%以上99モル%以下含む重合体であることが好ましく、90モル%以上99モル%以下含む重合体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(b-1)及び(b-2)中、Aは水素原子又はメチル基を表す。
 m1は0~20の整数、m2は0~2の整数、m3は0~20の整数、m4は0~2の整数、m5は0~20の整数を表し、m1~m5の合計は20以下である。
 Raはメチレン基を表す。
 Rbは下記式(b-31)~(b-38)のいずれかで表される2価の基を表し、Rbが複数ある場合、Rbは互いに同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000015
 Rcは下記式(b-41)~(b-48)のいずれかで表される1価の基を表す。
Figure JPOXMLDOC01-appb-C000016
 式(b-1)及び(b-2)中、Rbは、前記式(b-32)~(b-35)のいずれかで表される2価の基であることが好ましい。Rbが複数ある場合、Rbは互いに同一であっても異なっていてもよい。
 式(b-1)及び(b-2)中、Rcは、前記式(b-41)、(b-42)、(b-44)、(b-45)又は(b-46)のいずれかで表される一価の基であることが好ましい。
 式(b-1)及び(b-2)中、m2は0又は1であり、m4及びm5は0であることが好ましい。
 式(b-1)及び(b-2)中、
 Rbが、前記式(b-32)~(b-35)のいずれかで表される2価の基であり、
 Rcが、前記式(b-41)、(b-42)、(b-44)、(b-45)又は(b-46)のいずれかで表される一価の基であり、
 m2が0又は1であり、m4及びm5が0であることが好ましい。
 発光特性を維持する観点で、(b-1)で表される低分子化合物は、下記式(b-51)~(b-54)のいずれかで表される低分子化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 硬化性樹脂モノマーとしては、例えば、(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、メラミン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、グリセロール(メタ)アクリレート等の多官能(メタ)アクリレートが挙げられる。
 これらの硬化性樹脂モノマーは単独で使用しても複数種類を混合して使用してもよい。
 これらの硬化性樹脂モノマーを重合させた重合体を使用してもよい。
 硬化性樹脂モノマーは、(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート及びポリエーテル(メタ)アクリレートからなる群より選ばれる少なくとも一種が好ましく、(メタ)アクリレート及びウレタン(メタ)アクリレートからなる群より選ばれる少なくとも一種がより好ましい。これらの硬化性樹脂モノマーを重合させた重合体を使用してもよい。
 (メタ)アクリレートとしては、ビニルメタクリレート、アリルメタクリレート、tert-ブチルメタクリレート、ラウリルメタクリレート、2-エチルヘキシルアクリレート、イソボルニルアクリレート、2-ヒドロキシプロピルアクリレート、テトラヒドロフルフリルメタクリレート、ステアリルメタクリレート、カプロラクトンアクリレートが挙げられる。
 これらの硬化性樹脂モノマーは単独で使用しても複数種類を混合して使用してもよい。
 これらの硬化性樹脂モノマーを重合させた重合体を使用してもよい。
・硬化剤
 前記樹脂組成物は、硬化剤を含んでいてもよい。硬化剤としては、複数の官能基を有する硬化剤が挙げられる。複数の官能基を有する硬化剤としては、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、チオール基を含有するメルカプト化合物等が挙げられる。トリメチロールプロパントリアクリレートとしては、トリメチロールプロパントリメチロールプロパントリメタクリラートを使用することができる。
・開始剤
 前記樹脂組成物は、開始剤を含んでいてもよい。開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体やIrgacure819,Irgacure651,Irgacure184等を挙げる事ができる。これらの開始剤は増感剤と共に使用しても良い。上記開始剤も増感剤として使用できる。また、エポキシアクリレート系の開始剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。
硬化性樹脂組成物は、加熱により硬化する熱硬化性樹脂組成物、光により硬化する光硬化性樹脂組成物又はその両方を兼ね備えた熱光硬化性樹脂組成物であることが好ましい。短時間で硬化させ生産効率を高める為には光硬化性樹脂組成物がより好ましい。
 硬化性樹脂組成物として、光硬化性樹脂組成物又は熱光硬化性樹脂組成物を採用する場合、硬化に用いる光としては特に限定はなく紫外光、可視光といった波長の光を用いることができる。150~800nmの波長を持つ光が好ましく、200~500nmの波長を持つ光が更に好ましい。その光源としては低圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、発光ダイオード(LED)光源、エキシマレーザー発生装置などを用いることができ、i線(365nm)、h線(405nm)、g線(436nm)などの300nm以上450nm以下の波長を有する活性光線が好ましく使用できる。また、必要に応じて長波長カットフィルター、短波長カットフィルター、バンドパスフィルターのような分光フィルターを通して照射光を調整することもできる。露光量は1~5000mJ/cm2であることが好ましく、より好ましくは10~2000mJ/cm2であり、さらに好ましくは、50~500mJ/cm2である。
 このように硬化される光硬化性樹脂としては、スチレン、アクリレート樹脂、メタクリレート樹脂、エポキシ樹脂、ウレタン樹脂、シリコン樹脂等及びそれぞれの原料となるモノマーやオリゴマー等の公知の硬化性樹脂が挙げられる。
<<(3)溶媒>>
 本発明のインク組成物は(1)、(2)の他に溶媒を含むことができる。溶媒は、パラメータZが好適な範囲を満たし、(1)を分散させることができる媒体であれば特に限定されない。
 本明細書において「溶媒」とは、1気圧、25℃において液体状態をとる物質のことをいう(但し、前記(2)を除く)。
 本明細書において「分散している」とは、(1)が、溶媒に浮遊あるいは懸濁している状態のことをいい、一部は沈降していてもよい。
 溶媒としては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒;ジメチルスルホキシド等が挙げられる。
 これらの中でもメチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒は、極性が低く、(1)を溶解し難いと考えられるため好ましく、塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒がより好ましい。
<<無機微粒子添加物(散乱材)>>
 本発明のインク組成物に、光を散乱させ発光特性を向上させるために無機微粒子を添加しても良い。無機微粒子としては、例えば、酸化物、水酸化物などの公知の無機微粒子が挙げられ、組成物中を通過する光を効率的にペロブスカイト化合物に吸収させる観点、及びペロブスカイト化合物を劣化させずに、表面の欠陥サイト数を減少させ、励起した電子が欠陥サイトにトラップする確率を減少させる観点から、酸化物が好ましい。
 前記無機微粒子添加物の添加量は、インク組成物100質量部に対して、0.1~30質量部であることが好ましく、0.5~20質量部であることがより好ましく、1~10質量部であることがさらに好ましい。
 無機微粒子が酸化物の場合、酸化アルミニウム、酸化亜鉛、酸化ニオブ、酸化ジルコニウム、酸化チタン、酸化マグネシウム、及び酸化ガリウムなどの公知の酸化物が挙げられ、酸化アルミニウム、酸化亜鉛、酸化ニオブでもよく、酸化亜鉛、酸化ニオブでもよく、酸化ニオブでもよい。
 無機微粒子が酸化アルミニウムである場合、αアルミナ、γアルミナ、θアルミナ、δアルミナ、ηアルミナ、κアルミナ及びχアルミナなどの公知の酸化アルミ二ウムが挙げられ、αアルミナ、γアルミナでもよく、αアルミナでもよい。
 無機微粒子の平均粒径としては組成物中を通過する光を効率的にペロブスカイト化合物に吸収させる観点、及びペロブスカイト化合物を劣化させずに表面の欠陥サイト数を減少させ、励起した電子が欠陥サイトにトラップする確率を減少させる観点から、150nm以上30μm以下が好ましく、160nm以上10μm以下がさらに好ましく、170nm以上4μm以下がもっとも好ましい。
 無機微粒子の平均粒径を測定する方法としては、例えば、走査型電子顕微鏡(SEM)、又はTEMなどを用いて観察する方法が挙げられる。さらに、SEM、又はTEMを用いたEDX測定によって、詳細な元素分布を解析することができる。
 無機微粒子の形状は特に制限は無い。無機微粒子の粒径とは粒子の外周部の大きさであり、その外周部の図形に外接する長方形の縦及び横の長さのうち、大きい方として測定した際の平均の大きさ(フェレー径)として算出することが出来る。すなわち、無機微粒子の平均粒径は、例えば、TEMにより、20個の無機微粒子のフェレー径を観察し、それらの平均値である平均のフェレー径を算出することにより得ることができる。
 無機微粒子の比表面積は組成物中を通過した光を効率的にペロブスカイト化合物に吸収させる観点、及びペロブスカイト化合物を劣化させずに表面の欠陥サイト数を減少させ、励起した電子が欠陥サイトにトラップする確率を減少させる観点から、0.05m/g以上、100m/g以下が好ましく、0.1m/g以上、30m/g以下がさらに好ましく、0.4m/g以上、15m/g以下がもっとも好ましい。
 無機微粒子の比表面積は、例えば、比表面積測定装置(例えば、Macsorb、mountech製が使用できる)を用いてBET法により測定することができる。
<インク組成物の製造方法>
 以下、本発明における組成物の製造方法に関し、実施形態を示して説明する。実施形態のインク組成物の製造方法によれば、本実施形態のインク組成物を製造可能である。なお、本発明の組成物は、以下の実施形態のインク組成物の製造方法によって製造されるものに限定されるものではない。
<<(1)ペロブスカイト化合物の製造方法>>
 ペロブスカイト化合物は、既知文献(Nano Lett. 2015, 15, 3692-3696、ACSNano,2015,9,4533-4542)を参考に、以下に述べる第1実施形態又は第2実施形態の方法によって製造することができる。
(A、B、及びXを構成成分とするペロブスカイト化合物の製造方法の第1実施形態)
 例えば、本発明に係るペロブスカイト化合物の製造方法としては、
 B成分、X成分、及びA成分を溶媒xに溶解させ溶液gを得る工程と、
 得られた溶液gと、ペロブスカイト化合物の溶媒に対する溶解度が溶液gを得る工程で用いた溶媒xよりも低い溶媒yとを混合する工程とを含む製造方法が挙げられる。
 より具体的には、B成分及びX成分を含む化合物と、A成分、又はA成分及びX成分を含む化合物とを溶媒xに溶解させ、溶液gを得る工程と、
 得られた溶液gと、ペロブスカイト化合物の溶媒に対する溶解度が溶液gを得る工程で用いた溶媒xよりも低い溶媒yとを混合する工程とを含む製造方法が挙げられる。
 溶液gと、ペロブスカイト化合物の溶媒に対する溶解度が溶液gを得る工程で用いた溶媒xよりも低い溶媒yとを混合することによりペロブスカイト化合物が析出する。
 以下、B成分及びX成分を含む化合物と、A成分、又はA成分及びX成分を含む化合物とを溶媒xに溶解させ、溶液gを得る工程と、得られた溶液gと、ペロブスカイト化合物の溶媒に対する溶解度が溶液gを得る工程で用いた溶媒xよりも低い溶媒yとを混合する工程とを含む製造方法について説明する。
 なお、溶解度とは、混合する工程を行う温度における溶解度を意味する。
 前記製造方法は、ペロブスカイト化合物を安定して分散できる観点から、キャッピング配位子を加える工程を含んでいることが好ましい。キャッピング配位子は、前述の混合する工程の前に添加することが好ましく、A成分、B成分、及びX成分を溶解させた溶液gにキャッピング配位子を添加してもよいし、ペロブスカイト化合物の溶媒に対する溶解度が溶液gを得る工程で用いた溶媒xよりも低い溶媒yに添加してもよく、溶媒x、及び溶媒yの両方に添加してもよい。
 前記製造方法は、前述の混合する工程のあと、遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいることが好ましい。前記除去する工程によって除去する粗大粒子のサイズは、好ましくは10μm以上、より好ましくは1μm以上、さらに好ましくは500nm以上である。
 前述の、溶液gと、溶媒yとを混合する工程は、
(I)溶液gを、溶媒yに滴下する工程であってもよく、
(II)溶液gに、溶媒yを滴下する工程であってもよいが、(1)の分散性を高める観点から(I)であることが好ましい。
 滴下する際には攪拌を行うことが(1)の分散性を高める観点から好ましい。
 溶液gと、溶媒yとを混合する工程において、温度には特に制限は無いが、(1)の析出し易さを確保する観点から、-20~40℃の範囲であることが好ましく、-5~30℃の範囲であることがより好ましい。
 前記製造方法で用いるペロブスカイト化合物の溶媒に対する溶解度の異なる2種類の溶媒x、及びyとしては、特に限定されるものではないが、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒、ジメチルスルホキシドからなる群より選ばれる2種の溶媒が挙げられる。
 前記製造方法に含まれる、溶液gを得る工程で用いる溶媒xとしては、ペロブスカイト化合物の溶媒に対する溶解度が高い溶媒が好ましく、例えば、室温(10℃~30℃)で前記工程を行う場合、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;ジメチルスルホキシドが挙げられる。
 前記製造方法に含まれる、混合する工程で用いる溶媒yとしては、ペロブスカイト化合物の溶媒に対する溶解度が低い溶媒が好ましく、例えば、室温(10℃~30℃)で前記工程を行う場合、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒が挙げられる。
 溶解度の異なる2種類の溶媒において、溶解度の差は(100μg/溶媒100g)~(90g/溶媒100g)であることが好ましく、(1mg/溶媒100g)~(90g/溶媒100g)であることがより好ましい。溶解度の差を(100μg/溶媒100g)~(90g/溶媒100g)にする観点から、例えば、室温(10℃~30℃)で混合する工程を行う場合、溶液を得る工程で用いる溶媒xが、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒やジメチルスルホキシドであり、混合する工程で用いる溶媒yが塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒であることが好ましい。
 得られたペロブスカイト化合物を含む分散液から、ペロブスカイト化合物を取り出す方法としては、固液分離を行うことでペロブスカイト化合物のみを回収する方法が挙げられる。
 前述の固液分離方法は、ろ過などの方法や、溶媒の蒸発を利用した方法などが挙げられる。
(A、B、及びXを構成成分とするペロブスカイト化合物の製造方法の第2実施形態)
 ペロブスカイト化合物の製造方法は、
 B成分、X成分及びA成分を高温の溶媒zに添加して溶解させ溶液hを得る工程と、
 得られた溶液hを冷却する工程とを含む製造方法であってもよい。
 より具体的には、B成分及びX成分を含む化合物と、A成分、又はA成分及びX成分を含む化合物とを高温の溶媒zに添加して溶解させ溶液hを得る工程と、 得られた溶液hを冷却する工程とを含む製造方法が挙げられる。
 B成分及びX成分を含む化合物と、A成分、又はA成分及びX成分を含む化合物とを高温の溶媒zに添加して溶解させ溶液hを得る工程は、B成分及びX成分を含む化合物と、A成分、又はA成分及びX成分を含む化合物とを溶媒zに添加後、昇温することで溶液hを得る工程であってもよい。
 前記製造方法では、温度の差による溶解度の差によって本発明に係るペロブスカイト化合物を析出させ、本発明に係るペロブスカイト化合物を製造することができる。
 前記製造方法は、ペロブスカイト化合物を安定して分散できる観点から、キャッピング配位子を加える工程を含んでいることが好ましい。キャッピング配位子は、前述の冷却する工程の前に溶液hに含まれていることが好ましい。
 前記製造方法は、前述の冷却する工程のあと、遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいることが好ましい。前記除去工程によって除去する粗大粒子のサイズは、好ましくは10μm以上、より好ましくは1μm以上、さらに好ましくは500nm以上である。
 ここで、高温の溶媒zとは、B成分及びX成分を含む化合物と、A成分、又はA成分及びX成分を含む化合物とが、溶解する温度の溶媒であればよく、例えば、60~600℃の溶媒であることが好ましく、80~400℃の溶媒であることがより好ましい。
 冷却する温度としては、-20~50℃であることが好ましく、-10~30℃であることがより好ましい。
 冷却速度としては、0.1~1500℃/分であることが好ましく、10~150℃/分であることがより好ましい。
 前記製造方法に用いる溶媒zとしては、B成分及びX成分を含む化合物と、A成分、又はA成分及びX成分を含む化合物とを溶解しうる溶媒であれば、特に限定されるものではないが、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒;ジメチルスルホキシド、1-オクタデセンが挙げられる。
 得られたペロブスカイト化合物を含む分散液から、ペロブスカイト化合物を取り出す方法としては、固液分離を行うことでペロブスカイト化合物のみを回収する方法が挙げられる。
 前述の固液分離方法は、ろ過などの方法や、溶媒の蒸発を利用した方法などが挙げられる。
[シラザンを改質する方法]
 シラザンを改質する方法としては、エキシマランプ等による真空紫外線を照射して改質する方法や、水等で加湿処理する方法等の公知の改質方法が挙げられる。中でも加湿処理による改質処理が、より強固な保護層を形成する観点から好ましい。
 紫外線を照射する方法で用いられる紫外線の波長は、通常10~400nmであり、10~350nmが好ましく、100~180nmがより好ましい。紫外線を発生させる光源としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UVレーザー光等が挙げられる。
 加湿処理の方法は、水蒸気と、シラザンとを反応させる方法であればよい。
 インク組成物中のシラザンを、加湿処理により改質する場合、例えば、後述する温度、及び湿度条件下で一定の時間、組成物を静置、又は攪拌してもよい。
 インク組成物に含まれるシラザンの分散性を高める観点から、攪拌することが好ましい。
 加湿処理における温度は、十分に改質が進行する温度であればよく、例えば、5~150℃であることが好ましく、10~100℃であることがより好ましく、15~80℃であることがさらに好ましい。
 加湿処理における湿度は、インク組成物中のシラザンに十分に水分が供給される湿度であればよく、例えば30%~100%、好ましくは、40%~95%、より好ましくは60%~90%である。
 本明細書において「湿度」とは加湿処理を行う温度における相対湿度を意味する。
 加湿処理に要する時間は、十分に改質が進行する時間であればよく、例えば10分間以上1週間以下、好ましくは、1時間以上5日間以下、より好ましくは12時間以上3日間以下である。
 本実施形態において、使用する(2)、(3)の組成式、並びに使用量を適宜調整することによって、前記Zを所定の値(0.37以下)とすることができる。
<組成物の製造方法>
 以下、本発明における組成物の製造方法に関し、実施形態を示して説明する。本実施形態の組成物の製造方法によれば、本発明に係る実施形態の組成物を製造可能である。なお、本発明の組成物は、以下の実施形態の組成物の製造方法によって製造されるものに限定されるものではない。
 (1)及び(2)を含む組成物の製造方法としては、(1)及び(2)を混合する工程を含む製造方法であることが好ましい。
 また、(1)、(2)及び(3)を含む組成物の製造方法としては、(1)及び(2)を混合する工程と、(1)及び(2)の混合物と、(3)を混合する工程とを含む製造方法であることが好ましい。
 上述の製造方法に含まれる混合する工程では、攪拌を行うことが分散性を高める観点から好ましい。
 上述の製造方法に含まれる混合する工程において、温度には特に制限は無いが、均一に混合する観点から、0℃以上100℃以下の範囲であることが好ましく、10℃以上80℃以下の範囲であることがより好ましい。
 組成物がさらに(1)-2 キャッピング配位子を含む組成物の製造方法は、上述した製造方法に含まれるいずれかの工程で(1)-2を混合する以外は、(1)及び(2)を含む組成物、又は(1)、(2)及び(3)を含む組成物の製造方法の製造方法と同様の方法とすることができる。
 本実施形態においては、(1)の分散性を高める観点から、(1)-2は、上述の(1)成分のA、B、及びXを構成成分とするペロブスカイト化合物の製造方法に含まれるいずれかの工程で混合されることが好ましい。例えば、下記製造方法(a1)又は製造方法(a2)により製造することが好ましい。
 製造方法(a1):B成分及びX成分を含む化合物と、A成分、又はA成分及びX成分を含む化合物と、(2)と、(1)-2とを溶媒xに溶解させ、溶液gを得る工程と、得られた溶液gと、ペロブスカイト化合物の溶媒に対する溶解度が、溶液gを得る工程で用いた溶媒x成分よりも低い溶媒yとを混合する工程とを含む製造方法。
 製造方法(a2):B成分及びX成分を含む化合物と、A成分、又はA成分及びX成分を含む化合物と、(2)と、(1)-2と、高温の溶媒zと混合することでzに(1)、(2)及び(1)-2を溶解させ溶液hを得る工程と、得られた溶液hを冷却する工程とを含む製造方法。
 組成物がさらに(1)-3 表面被覆材を含む組成物の製造方法は、上述した製造方法に含まれるいずれかの工程で(1)-3を混合する以外は、(1)及び(2)を含む組成物、又は(1)、(2)及び(3)を含む組成物の製造方法の製造方法と同様の方法とすることができる。
 <フィルム>
本実施形態のインク組成物は、インクとして使用することができる。具体的には、本実施形態のインク組成物を用いてフィルムを得ることができる。
 例えば、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、本実施形態のインク組成物を基板に塗布して、硬化処理することでフィルムを形成することができる。塗布量はウェット膜厚として0.1~500μmが適当で、好ましくは、0.5~300μmである。また、ドライ膜厚としては平均膜厚0.1~200μm、好ましくは20~150μmである。 
 本発明に係るフィルムは、前記(1)及び(2)を含むインク組成物を塗布したのち硬化して得られる樹脂組成物フィルムである。
 例えば、本実施形態のインク組成物であって、インク組成物の総質量を100質量%として、前記(3)の含有割合が30質量%以下であり、前記(1)、(2)及び(3)の合計の含有割合が70質量%以上であるインク組成物からなるフィルムである。
 本発明の一つの側面は、インク組成物の総質量を100質量%として、前記(3)の含有割合が25質量%以下であり、前記(1)、(2)及び(3)の合計の含有割合が70質量%以上であるインク組成物からなるフィルムである。
 フィルムの形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。本明細書において、「バー状の形状」とは、例えば、異方性を有する形状を意味する。異方性を有する形状としては、各辺の長さが異なる板状の形状が例示される。
 フィルムの厚みは、0.01μm~1000mmであってもよく、0.1μm~10mmであってもよく、1μm~1mmであってもよい。
 本明細書において、前記フィルムの厚さは、マイクロメータにより任意の3点おいて測定し、その平均値を算出することにより得ることができる。
 フィルムは、単層であってもよく、複層であってもよい。複層の場合、各層は同一の種類の実施形態の組成物が用いられていてもよく、互いに異なる種類の実施形態の組成物が用いられていてもよい。
 フィルムは、例えば、後述の積層構造体の製造方法(i)~(iii)により、基板上に形成されたフィルムを得ることもできる。また、フィルムは基板から剥がして得ることができる。
 <積層構造体>
 本発明に係る積層構造体は、複数の層を有し、少なくとも一層が、上述のフィルムである。
 積層構造体が有する複数の層のうち、上述のフィルム以外の層としては、基板、バリア層、光散乱層等の任意の層が挙げられる。
 積層されるフィルムの形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。
(基板)
 本発明に係る積層構造体が有していてもよい層としては、特に制限は無いが、基板が挙げられる。
 基板は、特に制限はないが、フィルムであってもよく、発光した光を取り出す観点から、透明なものが好ましい。基板としては、例えば、ポリエチレンテレフタレートなどのポリマーや、ガラスなどの公知の基材を用いることができる。
 例えば、積層構造体において、上述のフィルムを、基板上に設けていてもよい。
 図1は、本実施形態の積層構造体の構成を模式的に示す断面図である。第1の積層構造体1aは、第1の基板20及び第2の基板21の間に、本実施形態のフィルム10が設けられている。フィルム10は、封止層22によって封止されている。
 本発明の一つの側面は、第1の基板20と、第2の基板21と、第1の基板20と第2の基板21との間に位置する本実施形態に係るフィルム10と、封止層22と、を有する積層構造体であって、前記封止層が、前記フィルム10の前記第1の基板20、及び第2の基板21と接していない面上に配置されることを特徴とする積層構造体1aである。
(バリア層)
 本発明に係る積層構造体が有していてもよい層としては、特に制限は無いが、バリア層が挙げられる。外気の水蒸気、及び大気中の空気から前述の組成物を保護する観点から、バリア層を含んでいても良い。
 バリア層は、特に制限は無いが、発光した光を取り出す観点から、透明なバリア層が好ましい。バリア層としては、例えば、ポリエチレンテレフタレートなどのポリマーや、ガラス膜などの公知のバリア層を用いることができる。
(光散乱層)
 本発明に係る積層構造体が有していてもよい層としては、特に制限は無いが、光散乱層が挙げられる。入射した光を有効に利用する観点から、光散乱層を含んでいてもよい。
 光散乱層は、特に制限は無いが、発光した光を取り出す観点から、透明なものが好ましい。光散乱層としては、シリカ粒子などの光散乱粒子や、増幅拡散フィルムなどの公知の光散乱層を用いることができる。
<発光装置>
 本発明に係る発光装置は、本発明の実施形態のフィルム又は積層構造体と、光源とを合せることで得ることができる。発光装置は、光源から発光した光を、後段に設置したフィルム又は積層構造体に照射することで、組成物又は積層構造体を発光させ、光を取り出す装置である。前記発光装置における積層構造体が有する複数の層のうち、上述のフィルム、基板、バリア層、光散乱層以外の層としては、光反射部材、輝度強化部、プリズムシート、導光板、要素間の媒体材料層等の任意の層が挙げられる。
 本発明の一つの側面は、プリズムシート50と、導光板60と、前記第1の積層構造体1aと、光源30と、がこの順に積層された発光装置2である。
(光源)
 本発明に係る発光装置を構成する光源は、特に制限は無いが、前述のフィルム、又は積層構造体中のペロブスカイト化合物を含む半導体ナノ粒子を発光させるという観点から、600nm以下の発光波長を有する光源が好ましい。光源としては、例えば、青色発光ダイオードなどの発光ダイオード(LED)、レーザー、ELなどの公知の光源を用いることができる。
(光反射部材)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、光反射部材が挙げられる。光源の光を前記の組成物、又は積層構造体に向かって照射する観点から、光反射部材を含んでいても良い。光反射部材は、特に制限は無いが、反射フィルムであっても良い。
 反射フィルムとしては、例えば、反射鏡、反射粒子のフィルム、反射金属フィルムや反射体などの公知の反射フィルムを用いることができる。
(輝度強化部)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、輝度強化部が挙げられる。光の一部分を、光が伝送された方向に向かって反射して戻す観点から、輝度強化部を含んでいても良い。
(プリズムシート)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、プリズムシートが挙げられる。プリズムシートは、代表的には、基材部とプリズム部とを有する。なお、基材部は、隣接する部材に応じて省略してもよい。プリズムシートは、任意の適切な接着層(例えば、接着剤層、粘着剤層)を介して隣接する部材に貼り合わせることができる。プリズムシートは、視認側とは反対側(背面側)に凸となる複数の単位プリズムが並列されて構成されている。プリズムシートの凸部を背面側に向けて配置することにより、プリズムシートを透過する光が集光されやすくなる。また、プリズムシートの凸部を背面側に向けて配置すれば、凸部を視認側に向けて配置する場合と比較して、プリズムシートに入射せずに反射する光が少なく、輝度の高いディスプレイを得ることができる。
(導光板)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、導光板が挙げられる。導光板としては、例えば、横方向からの光を厚さ方向に偏向可能となるよう、背面側にレンズパターンが形成された導光板、背面側及び/又は視認側にプリズム形状等が形成された導光板などの任意の適切な導光板が用いることができる。
(要素間の媒体材料層)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、隣接する要素(層)間の光路上に1つ以上の媒体材料からなる層(要素間の媒体材料層)が挙げられる。
 要素間の媒体材料層に含まれる1つ以上の媒体には、特に制限は無いが、真空、空気、ガス、光学材料、接着剤、光学接着剤、ガラス、ポリマー、固体、液体、ゲル、硬化材料、光学結合材料、屈折率整合又は屈折率不整合材料、屈折率勾配材料、クラッディング又は抗クラッディング材料、スペーサー、シリカゲル、輝度強化材料、散乱又は拡散材料、反射又は抗反射材料、波長選択性材料、波長選択性抗反射材料、色フィルター、又は前記技術分野で既知の好適な媒体、が含まれる。
 本発明に係る発光装置の具体例としては、例えば、ELディスプレイや液晶ディスプレイ用の波長変換材料を備えたものが挙げられる。
 具体的には、
 (E1)本発明の組成物をガラスチューブ等の中に入れて封止し、これを導光板の端面(側面)に沿うように、光源である青色発光ダイオードと導光板の間に配置して、青色光を緑色光や赤色光に変換するバックライト(オンエッジ方式のバックライト)、
 (E2)本発明の組成物をシート化し、これを2枚のバリアーフィルムで挟んで封止したフィルムを、導光板の上に設置して、導光板の端面(側面)に置かれた青色発光ダイオードから導光板を通して前記シートに照射される青色の光を緑色光や赤色光に変換するバックライト(表面実装方式のバックライト)、
 (E3)本発明の組成物を、樹脂等に分散させて青色発光ダイオードの発光部近傍に設置し、照射される青色の光を緑色光や赤色光に変換するバックライト(オンチップ方式のバックライト)、及び
 (E4)本発明の組成物を、レジスト中に分散させて、カラーフィルター上に設置し、光源から照射される青色の光を緑色光や赤色光に変換するバックライト
が挙げられる。
 また、本発明に係る発光装置の具体例としては、本発明の実施形態の組成物を成形し、光源である青色発光ダイオードの後段に配置して、青色光を緑色光や赤色光に変換して白色光を発する照明が挙げられる。
<ディスプレイ>
 図2に示すように、本実施形態のディスプレイ3は、液晶パネル40と、前述の発光装置2とを視認側からこの順に備える。発光装置2は、第2の積層構造体1bと光源30とを備える。第2の積層構造体1bは、前述の第1の積層構造体1aに加え、プリズムシート50と、導光板60と、をさらに備えたものである。ディスプレイは、任意の適切なその他の部材をさらに備えていてもよい。
 本発明の一つの側面は、液晶パネル40と、プリズムシート50と、導光板60と、前記第1の積層構造体1aと、光源30と、がこの順に積層された液晶ディスプレイ3である。
(液晶パネル)
 上記液晶パネルは、代表的には、液晶セルと、前記液晶セルの視認側に配置された視認側偏光板と、前記液晶セルの背面側に配置された背面側偏光板とを備える。視認側偏光板及び背面側偏光板は、それぞれの吸収軸が実質的に直交又は平行となるようにして配置され得る。
(液晶セル)
 液晶セルは、一対の基板と、前記基板間に挟持された表示媒体としての液晶層とを有する。一般的な構成においては、一方の基板に、カラーフィルター及びブラックマトリクスが設けられており、他方の基板に、液晶の電気光学特性を制御するスイッチング素子と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線と、画素電極及び対向電極とが設けられている。上記基板の間隔(セルギャップ)は、スペーサー等によって制御できる。上記基板の液晶層と接する側には、例えば、ポリイミドからなる配向膜等を設けることができる。
(偏光板)
 偏光板は、代表的には、偏光子と、偏光子の両側に配置された保護層とを有する。偏光子は、代表的には、吸収型偏光子である。
 上記偏光子としては、任意の適切な偏光子が用いられる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く、特に好ましい。
 本発明のインク組成物の用途としては、例えば、発光ダイオード(LED)用の波長変換材料が挙げられる。
<LED>
 本発明のインク組成物は、例えば、LEDの発光層の材料として用いることができる。
 本発明のインク組成物を含むLEDとしては、例えば、本発明のインク組成物とZnSなどの導電性粒子を混合して膜状に積層し、片面にn型輸送層を積層し、もう片面にp型輸送層を積層した構造をしており、電流を流すことで、p型半導体の正孔と、n型半導体の電子が接合面の組成物に含まれる(1)及び(2)の粒子中で電荷を打ち消すことで発光する方式が挙げられる。
<太陽電池>
 本発明の組成物は、太陽電池の活性層に含まれる電子輸送性材料として利用することができる。
 前記太陽電池としては、構成は特に限定されないが、例えば、フッ素ドープされた酸化スズ(FTO)基板、酸化チタン緻密層、多孔質酸化アルミニウム層、本発明の組成物を含む活性層、2,2’,7,7’-tetrakis(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene(Spiro-MeOTAD)などのホール輸送層、及び、銀(Ag)電極をこの順で有する太陽電池が挙げられる。
 酸化チタン緻密層は、電子輸送の機能、FTOのラフネスを抑える効果、及び、逆電子移動を抑制する機能を有する。
 多孔質酸化アルミニウム層は、光吸収効率を向上させる機能を有する。
 活性層に含まれる、本発明の組成物は、電荷分離及び電子輸送の機能を有する。
<積層構造体の製造方法>
積層構造体の製造方法としては、
 (i)インク組成物が(3)を含む場合は、本発明のインク組成物を基板上に塗工する工程と、溶媒を除去する工程と、硬化性樹脂組成物を硬化させる工程と、を含む方法であってもよく、
(ii)インク組成物が(3)を含まない場合は、本発明のインク組成物を基板上に塗工する工程と、硬化性樹脂組成物を硬化させる工程と、を含む方法であっても良い。
(iii)本発明のインク組成物からなるフィルムを基板に張り合わせる工程であっても良い。
 (i)、(ii)の製造方法に含まれる、基板上に塗工する工程は、特に制限は無いが、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法などの、公知の塗布、塗工方法を用いることができる。
 (iii)の製造方法に含まれる、基板に張り合わせる工程では、任意の接着剤を用いることができる。
 接着剤は、(1)、及び(2)の化合物を溶解しない物であれば特に制限は無く、公知の接着剤を用いることができる。
 積層構造体の製造方法は、(i)~(iii)で得られた積層構造体に、さらに、任意のフィルムを張り合わせる工程を含んでいてもよい。
 張り合わせる任意のフィルムとしては、例えば、反射フィルム、拡散フィルムが挙げられる。
 フィルムを張り合わせる工程では、任意の接着剤を用いることができる。
 上述の接着剤は、(1)、及び(2)の化合物を溶解しない物であれば特に制限は無く、公知の接着剤を用いることができる。
<発光装置の製造方法>
 例えば、前述の光源と、光源から後段の光路上に前述の組成物、又は積層構造体を設置する工程とを含む製造方法が挙げられる。
 なお、本発明の技術範囲は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<<発光強度の測定>>
 本発明のインク組成物の発光強度は、絶対PL量子収率測定装置(浜松ホトニクス株式会社製、C9920-02)を用いて、励起光450nm、室温、大気下で測定した。励起光の強度は5×10であった。
 <<硬化性試験>>
 本実施形態のインク組成物の耐溶剤性は、以下の硬化性試験により評価することができる。
 1インチ×1インチ、厚さ0.7mmのガラス基板にUVオゾン処理を15分間行った。ガラス基板に実施例1~6、比較例4のインク組成物をドロップキャストした。
 次に、ドロップキャストしたガラス基板の両脇に26mm×76mm、厚さ1mmのスライドガラスを4枚積み上げた構造物を配置した。
 次に、構造物を土台として、構造物上に50mm×20mm×厚さ0.35mmのアルミニウム板を橋渡す形で配置した。この際、ドロップキャストした面の半分はアルミニウム板の影になるように、残りの半分はアルミニウム板の影にならないように設置した。これにより、ガラス基板の半面側に紫外線が照射され、もう半面には紫外線が照射されない。
 次に、上方から紫外光照射装置(ウシオライティング社製 スポットキュアSP-9)を用いて紫外光を照射した。紫外光照射した後、ガラス基板ごとトルエン液(和光純薬)に浸漬した。浸漬した後は、ガラス基板を取り出し、トルエンを揮発させた。耐溶剤性の判断は、トルエン液の浸漬後に硬化物が保持しているかどうかで判断し、目視で行った。
[実施例1]
 炭酸セシウム0.814gと、1-オクタデセンの溶媒40mLと、オレイン酸2.5mLとを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、及びオレイルアミン2mLを添加して臭化鉛分散液を調整した。
 臭化鉛分散液を160℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温し、分散液を得た。
 次いで、分散液を10000rpm、5分間遠心分離し、沈殿物としてペロブスカイト化合物を得た。
 前記ペロブスカイト化合物のX線回折パターンをX線回折測定装置(XRD、Cu Kα線、X’pert PRO MPD、スペクトリス社製)で測定した所、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト型結晶構造を有していることを確認した。
 TEM(日本電子株式会社製、JEM-2200FS)で20個のペロブスカイト化合物のフェレー径を観察した結果、ペロブスカイト化合物の平均のフェレー径(平均粒子径)は11nmであった。
 得られたペロブスカイト化合物をトルエン5mLに分散させ、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 ペロブスカイト化合物及び溶媒を含む分散液0.29mLを、10000rpm、10分間遠心分離し、沈殿物を得た。
 沈殿物にラウリルメタクリレート(純正化学)2.64mLを添加し、攪拌してラウリルメタクリレート分散液を得た。次いで、ラウリルメタクリレート分散液にトリメチロールプロパントリメチロールプロパントリメタクリラート(TMPTM)0.32mLと、光開始剤(Irgacure819を9.0mg、Irgacure651を18.3mg)とを加えることで、インク組成物を得た。
 インク組成物において、前記式(a)におけるZの値は0.15であった。
 得られたインク組成物をマグネチックスターラーで15分間攪拌した。
 次いで、発光強度を測定した。発光強度は、4.5×10であった。
 さらに、前記インク組成物をガラス基板上へドロップキャストし、キャストされたガラス基板の半分の面積に対し紫外光を照射した。照射条件は、照度10mW/cm、照射時間90秒間とした。紫外光照射部分は硬化し、紫外光未照射部はトルエンリンスで除去された。
[実施例2]
 実施例1と同様に、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 ペロブスカイト化合物及び溶媒を含む分散液0.52mLを、10000rpm、10分間遠心分離し、沈殿物を得た。
 沈殿物に、tert-ブチルメタクリレート(東京化成)2.64mLを添加し、攪拌してtert-ブチルメタクリレート分散液を得た。次いで、tert-ブチルメタクリレート分散液にTMPTM0.58mLと、光開始剤(Irgacure819を16.3mg、Irgacure651を32.3mg)とを加えることでインク組成物を得た。
 インク組成物において、前記式(a)におけるZの値は0.26であった。
 得られたインク組成物をマグネチックスターラーで15分間攪拌した。
 次いで、発光強度を測定した。発光強度は、3.8×10であった。
 さらに、前記インク組成物をガラス基板上へドロップキャストし、キャストされたガラス基板の半分の面積に対し紫外光を照射した。照射条件は、照度10mW/cm、照射時間90秒間とした。紫外光照射部分は硬化し、紫外光未照射部はトルエンリンスで除去された。
[実施例3]
 実施例1と同様に、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 ペロブスカイト化合物及び溶媒を含む分散液0.62mLを、10000rpm、10分間遠心分離し、沈殿物を得た。
 沈殿物に、アリルメタクリレート(東京化成)2.64mLを添加し、攪拌してアリルメタクリレート分散液を得た。次いで、アリルメタクリレート分散液にTMPTM0.69mLと、光開始剤(Irgacure819を19.1mg、Irgacure651を38.9mg)とを加えることでインク組成物を得た。
 インク組成物において、前記式(a)におけるZの値は0.29であった。
 得られたインク組成物をマグネチックスターラーで15分間攪拌した。
 次いで、発光強度を測定した。発光強度は、3.5×10であった。
 さらに、前記インク組成物をガラス基板上へドロップキャストし、ガラス基板の半分の面積に対しだけ紫外光を照射した。照射条件は、照度10mW/cm、照射時間120秒間の条件とした。紫外光照射部分は硬化し、紫外光未照射部はトルエンリンスで除去された。
[実施例4]
 実施例1と同様に、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 ペロブスカイト化合物及び溶媒を含む分散液0.71mLを、10000rpm、10分間遠心分離し、沈殿物を得た。
 沈殿物に、ビニルメタクリレート(東京化成)2.64mLを添加し、攪拌してビニルメタクリレート分散液を得た。次いで、ビニルメタクリレート分散液にTMPTM0.71mLと、光開始剤(Irgacure819を21.9mg、Irgacure651を44.0mg)とを加えることでインク組成物を得た。
 インク組成物において、前記式(a)におけるZの値は0.33であった。
 得られたインク組成物をマグネチックスターラーで15分間攪拌した。
 次いで、発光強度を測定した。発光強度は、3.3×10であった。
 さらに、前記インク組成物をガラス基板上へドロップキャストし、キャストされたガラス基板の半分の面積に対し紫外光を照射した。照射条件は、照度10mW/cm、照射時間180秒間の条件とした。紫外光照射部分は硬化し、紫外光未照射部はトルエンリンスで除去された。
[実施例5]
 炭酸セシウム0.814gと、1-オクタデセンの溶媒40mLと、オレイン酸2.5mLとを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、及びオレイルアミン2mLを添加して臭化鉛分散液を調整した。
 臭化鉛分散液を160℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温し、分散液を得た。
 次いで、分散液を10000rpm、を5分間遠心分離し、沈殿物としてペロブスカイト化合物を得た。
 前記ペロブスカイト化合物のX線回折パターンをX線回折測定装置(XRD、Cu Kα線、X’pert PRO MPD、スペクトリス社製)で測定した所、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト型結晶構造を有していることを確認した。
 TEM(日本電子株式会社製、JEM-2200FS)で20個のペロブスカイト化合物のフェレー径を観察した結果、ペロブスカイト化合物の平均のフェレー径(平均粒子径)は11nmであった。
 得られたペロブスカイト化合物をトルエン5mLに分散させ、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 次いで、ペロブスカイト化合物及び溶媒を含む分散液3mLに、オルガノポリシラザン(Durazane 1500 Slow Cure、メルクパフォーマンスマテリアルズ株式会社製)を600μL混合した。
 ペロブスカイト化合物及び溶媒を含む分散液を25℃、80%の湿度条件で、スターラーで攪拌しながら、1日間改質処理した。
 上述の改質処理した分散液0.29mLを、10000rpm、10分間遠心分離し、沈殿物を得た。
 沈殿物にラウリルメタクリレート(純正化学)2.64mLを添加し、攪拌してラウリルメタクリレート分散液を得た。次いで、ラウリルメタクリレート分散液にTMPTM0.32mLと、光開始剤(Irgacure819を8.8mg、Irgacure651を17.7mg)とを加えることでインク組成物を得た。
 インク組成物において、前記式(a)におけるZの値は0.15であった。
 得られたインク組成物をマグネチックスターラーで15分間攪拌した。
 次いで、発光強度を測定した。発光強度は、4.5×10であった。
 さらに、前記混合分散液をガラス基板上へドロップキャストし、キャストされたガラス基板の半分の面積に対し紫外光を照射した。照射条件は、照度10mW/cm、照射時間90秒間とした。紫外光照射部分は硬化し、紫外光未照射部はトルエンリンスで除去された。
[比較例1]
 炭酸セシウム0.814gと、1-オクタデセンの溶媒40mLと、オレイン酸2.5mLとを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、及びオレイルアミン2mLを添加して臭化鉛分散液を調整した。
 臭化鉛分散液を160℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温し、分散液を得た。
 次いで、分散液を10000rpm、を5分間遠心分離し、沈殿物としてペロブスカイト化合物を得た。
 前記ペロブスカイト化合物のX線回折パターンをX線回折測定装置(XRD、Cu Kα線、X’pert PRO MPD、スペクトリス社製)で測定した所、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト型結晶構造を有していることを確認した。
 TEM(日本電子株式会社製、JEM-2200FS)で20個のペロブスカイト化合物のフェレー径を観察した結果、ペロブスカイト化合物の平均のフェレー径(平均粒子径)は11nmであった。
 得られたペロブスカイト化合物をトルエン5mLに分散させ、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 ペロブスカイト化合物及び溶媒を含む分散液0.80mLを、10000rpm、10分間遠心分離し、沈殿物を得た。
 沈殿物にメチルメタクリレート(東京化成)2.64mLを添加し、攪拌してメチルメタクリレート分散液を得た。次いで、メチルメタクリレート分散液にTMPTM0.88mLと、光開始剤(Irgacure819を24.7mg、Irgacure651を49.4mg)とを加え、インク組成物を得た。
 インク組成物において、前記式(a)におけるZの値は0.38であった。
 得られたインク組成物をマグネチックスターラーで15分間攪拌した。
 次いで、発光強度を測定した。発光強度は、2.5×10であった。
[比較例2]
 比較例1と同様に、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 ペロブスカイト化合物及び溶媒を含む分散液0.45mLを、10000rpm、10分間遠心分離し、沈殿物を得た。
 沈殿物に、エチレングリコールジメタクリレート(東京化成)2.64mLを添加し、攪拌してエチレングリコールジメタクリレート分散液を得た。次いで、エチレングリコールジメタクリレート分散液にTMPTMを0.50mLと、光開始剤(Irgacure819を13.9mg、Irgacure651を27.7mg)とを加えることでインク組成物を得た。
 インク組成物において、前記式(a)におけるZの値は0.39であった。
 得られたインク組成物をマグネチックスターラーで15分間攪拌した。
 次いで、発光強度を測定した。発光強度は、1.0×10であった。
[比較例3]
 比較例1と同様に、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 ペロブスカイト化合物及び溶媒を含む分散液0.61mLを、10000rpm、10分間遠心分離し、沈殿物を得た。
 沈殿物に、カレンズMOI(化学名:2-イソシアナトエチルメタクリレート)(昭和電工)2.64mLを添加し、攪拌してカレンズMOI分散液を得た。次いで、カレンズMOI分散液にTMPTM0.63mLと、光開始剤(Irgacure819を18.7mg、Irgacure651を37.0mg)とを加えることでインク組成物を得た。
 インク組成物において、前記式(a)におけるZの値は0.56であった。
 得られたインク組成物をマグネチックスターラーで15分間攪拌した。
 次いで、発光強度を測定した。発光強度は、7.4×10であった。
[比較例4]
 炭酸セシウム0.814gと、1-オクタデセンの溶媒40mLと、オレイン酸2.5mLとを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、及びオレイルアミン2mLを添加して臭化鉛分散液を調整した。
 臭化鉛分散液を160℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温し、分散液を得た。
 次いで、分散液を10000rpm、5分間遠心分離し、沈殿物としてペロブスカイト化合物を得た。
 前記ペロブスカイト化合物のX線回折パターンをX線回折測定装置(XRD、Cu Kα線、X’pert PRO MPD、スペクトリス社製)で測定した所、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト型結晶構造を有していることを確認した。
 TEM(日本電子株式会社製、JEM-2200FS)で20個のペロブスカイト化合物のフェレー径を観察した結果、ペロブスカイト化合物の平均のフェレー径(平均粒子径)は11nmであった。
 得られたペロブスカイト化合物をトルエン5mLに分散させ、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 上述の分散液500μLを分取して、トルエン4.5mLに再分散させることで、ペロブスカイト化合物及び溶媒を含む分散液を得た。
 次いで、メタクリル樹脂(PMMA、住友化学社製、スミペックス・メタクリル樹脂、MH、分子量約12万、比重1.2g/mL)がメタクリル樹脂とトルエンの総質量に対して16.5質量%となるように、メタクリル樹脂と、トルエンとを混合した後、60℃、3時間加熱して、重合体が溶解した溶液を得た。
 上記のペロブスカイト化合物及び溶媒を含む分散液0.1mLと、上記の重合体が溶解した溶液5.83mL(トルエン5.10ml、PMMA0.73ml)とを混合し、PMMA-トルエン分散液(インク組成物)を得た。
 インク組成物において、前記式(a)におけるZの値は0.05あった。
 前記混合分散液をガラス基板上へドロップキャストし、キャストされたガラス基板の半分の面積に対し紫外光を照射した。照射条件は、照度10mW/cm、照射時間300秒間とした。紫外光照射部分は硬化せず、紫外光未照射部と紫外光照射部の両方ともトルエンのリンスで除去された。
 [実施例6]
 炭酸セシウム0.814gと、1-オクタデセンの溶媒40mLと、オレイン酸2.5mLとを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、及びオレイルアミン2mLを添加して臭化鉛分散液を調整した。
 臭化鉛分散液を160℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温し、分散液を得た。
 次いで、分散液を10000rpm、5分間遠心分離し、沈殿物としてペロブスカイト化合物及び溶媒を含む分散液を得た。
 ペロブスカイト化合物及び溶媒を含む分散液0.29mLを、10000rpm、10分間遠心分離し、沈殿物を分離することで、沈殿物を得た。
 沈殿物にラウリルメタクリレート(純正化学)2.10mLを添加し、攪拌してラウリルメタクリレート分散液を得た。次いで、ラウリルメタクリレート分散液にTMPTM0.25mLと、光開始剤(Irgacure819を7.0mg、Irgacure651を14.1mg)とを加え、更にトルエンを0.61mL加えることで、溶媒であるトルエンの含有割合が20質量%のインク組成物を得た。
 インク組成物において、前記式(a)におけるZの値は0.19であった。
 得られたインク組成物をマグネチックスターラーで15分間攪拌した。
 次いで、発光強度を測定した。発光強度は、4.4×10であった。
 さらに、前記インク組成物をガラス基板上へドロップキャストし、ガラス基板の半分の面積に対し紫外光を照射した。照射条件は、照度10mW/cm、照射時間90秒間とした。紫外光照射部分は硬化し、紫外光未照射部はトルエンリンスで除去された。
Figure JPOXMLDOC01-appb-T000018
 本発明によれば、発光特性が高く、良好な耐溶剤性を有するインク組成物、前記組成物からなるフィルム及び前記組成物を用いたディスプレイを提供することが可能となる。
 したがって、本発明のインク組成物、前記組成物からなるフィルム、及び前記組成物を用いたディスプレイは、発光用途において好適に使用することができる。
1a…第1の積層構造体、1b…第2の積層構造体、10…フィルム、20…第1の基板、21…第2の基板、22…封止層、2…発光装置、3…ディスプレイ、30…光源、40…液晶パネル、50…プリズムシート、60…導光板

Claims (7)

  1.  下記(1)及び(2)を含み、下記(3)を含んでいてもよいインク組成物であって、下記式(a)におけるZの値が0.37以下であるインク組成物。
     (1)ペロブスカイト化合物を含む半導体ナノ粒子
     (2)硬化性樹脂組成物
     (3)溶媒
     式(a) Z=(O2+O3+N2+N3)/(C2+C3)
     (O2、N2、C2:それぞれ(2)に含まれるO原子数、N原子数、C原子数。
     O3、N3、C3:それぞれ(3)に含まれるO原子数、N原子数、C原子数。
    ただし、インク組成物が(3)を含まない場合、O3、N3、C3は、それぞれゼロである。)
  2.  前記(2)が、下記式(b-1)で表される低分子化合物及び下記式(b―2)で表される繰り返し単位を含む重合体からなる群より選ばれる少なくとも一種を含み、前記低分子化合物及び重合体の合計の含有割合は、前記(2)の総質量を100質量%として50質量%以上である請求項1に記載のインク組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(b-1)及び(b-2)中、Aは水素原子又はメチル基を表す。
     m1は0~20の整数、m2は0~2の整数、m3は0~20の整数、m4は0~2の整数、m5は0~20の整数を表し、m1~m5の合計は20以下である。
     Raはメチレン基を表す。
     Rbは下記式(b-31)~(b-38)のいずれかで表される2価の基を表し、Rbが複数ある場合、Rbは互いに同一であっても異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000002
    Rcは下記式(b-41)~(b-48)のいずれかで表される1価の基を表す。
    Figure JPOXMLDOC01-appb-C000003
  3.  前記式(b―2)で表される繰り返し単位を含む重合体が、前記重合体が含む全ての繰り返し単位を100モル%として式(b―2)で表される繰り返し単位を50モル%以上含む重合体である請求項2に記載のインク組成物。
  4.  前記(2)が光硬化性樹脂組成物である請求項1~3のいずれか一項に記載の組成物。
  5.  インク組成物の総質量を100質量%として、前記(3)の含有割合が25質量%以下であり、前記(1)、(2)及び(3)の合計の含有割合が70質量%以上である請求項1~4のいずれか一項に記載の組成物。
  6.  請求項4に記載の組成物を硬化してなるフィルム。
  7.  請求項6に記載のフィルムを備えるディスプレイ。
PCT/JP2018/028074 2017-07-28 2018-07-26 インク組成物、フィルム及びディスプレイ WO2019022195A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018567771A JP6506488B1 (ja) 2017-07-28 2018-07-26 インク組成物、フィルム及びディスプレイ
US16/632,938 US11584862B2 (en) 2017-07-28 2018-07-26 Ink composition, film, and display
EP18838670.0A EP3660109B1 (en) 2017-07-28 2018-07-26 Ink composition, film, and display
KR1020207002042A KR102112974B1 (ko) 2017-07-28 2018-07-26 잉크 조성물, 필름 및 디스플레이
CN202110742619.XA CN113444394B (zh) 2017-07-28 2018-07-26 墨液组合物、膜和显示器
CN201880049454.4A CN110997828B (zh) 2017-07-28 2018-07-26 墨液组合物、膜和显示器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-146319 2017-07-28
JP2017146319 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019022195A1 true WO2019022195A1 (ja) 2019-01-31

Family

ID=65040554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028074 WO2019022195A1 (ja) 2017-07-28 2018-07-26 インク組成物、フィルム及びディスプレイ

Country Status (7)

Country Link
US (1) US11584862B2 (ja)
EP (1) EP3660109B1 (ja)
JP (1) JP6506488B1 (ja)
KR (1) KR102112974B1 (ja)
CN (2) CN110997828B (ja)
TW (1) TWI714870B (ja)
WO (1) WO2019022195A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090566A1 (ja) * 2018-10-31 2020-05-07 住友化学株式会社 硬化性組成物、膜、積層体及び表示装置
WO2020090567A1 (ja) * 2018-10-31 2020-05-07 住友化学株式会社 硬化性組成物、膜、積層体及び表示装置
JP2021006493A (ja) * 2019-06-28 2021-01-21 東洋インキScホールディングス株式会社 半導体ナノ粒子、インク組成物及び印刷物
JPWO2021230031A1 (ja) * 2020-05-13 2021-11-18
WO2022107599A1 (ja) * 2020-11-19 2022-05-27 Dic株式会社 インクジェット用インク組成物及びその硬化物、光変換層、カラーフィルタ並びに発光素子
WO2022107602A1 (ja) * 2020-11-18 2022-05-27 Dic株式会社 分散体、光変換層、カラーフィルタ及び発光素子
EP4083149A4 (en) * 2019-12-26 2023-07-05 Sumitomo Chemical Company, Limited LIGHT SENSITIVE COMPOSITION
JP7430829B2 (ja) 2022-06-15 2024-02-13 アファンタマ アクチェンゲゼルシャフト 無機分離層を有する色変換フィルム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210152058A (ko) * 2020-06-04 2021-12-15 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN116390997A (zh) 2020-10-15 2023-07-04 Dic株式会社 含纳米结晶的组合物、油墨组合物、光转换层及发光元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172213A1 (ja) * 2012-05-18 2013-11-21 株式会社村田製作所 インクジェット用インク、印刷方法およびセラミック電子部品
US20150075397A1 (en) * 2013-09-13 2015-03-19 Nanoco Technologies Ltd. Quantum Dot Ink Formulation for Heat Transfer Printing Applications
US20170009090A1 (en) * 2015-07-06 2017-01-12 University Of Massachusetts Ferroelectric nanocomposite based dielectric inks for reconfigurable rf and microwave applications
WO2017020137A1 (en) * 2015-07-31 2017-02-09 Nanograde Ag Luminescent crystals and manufacturing thereof
JP2017146319A (ja) 2016-02-15 2017-08-24 キヤノン株式会社 ミラー駆動装置を有する撮像装置
WO2018028869A1 (en) 2016-08-11 2018-02-15 Avantama Ag Luminescent crystals and manufacturing thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200727467A (en) * 2005-11-23 2007-07-16 Ifire Technology Corp Colour conversion and optical enhancement layers for electroluminescent displays
TWI336953B (en) * 2006-03-29 2011-02-01 Pioneer Corp Organic electroluminescent display panel and manufacturing method thereof
US20100239871A1 (en) * 2008-12-19 2010-09-23 Vorbeck Materials Corp. One-part polysiloxane inks and coatings and method of adhering the same to a substrate
JP5682956B2 (ja) * 2009-02-13 2015-03-11 学校法人東京工芸大学 画像表示装置および有機エレクトロルミネッセンス素子
DE102009035673B4 (de) * 2009-07-30 2021-02-18 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Verfahren zur Herstellung dünner Filme und deren Verwendung
US20130059135A1 (en) * 2010-08-16 2013-03-07 Lg Chem Ltd Printing composition and a printing method using the same
US9323108B2 (en) * 2011-12-13 2016-04-26 Hitachi Chemical Company, Ltd. Liquid curable resin composition, method for manufacturing image display device using same, and image display device
JP6079118B2 (ja) 2012-10-10 2017-02-15 コニカミノルタ株式会社 発光層形成用インク組成物、発光素子の作製方法及びエレクトロルミネッセンスデバイス
WO2014109355A1 (ja) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 光電変換素子の製造方法
KR102168385B1 (ko) * 2013-03-29 2020-10-21 토요잉크Sc홀딩스주식회사 안료 조성물 및 컬러필터
EP2953177B1 (en) * 2014-05-30 2017-01-25 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic device
WO2016048115A1 (ko) * 2014-09-26 2016-03-31 주식회사 엘지화학 자외선 경화형 잉크 조성물, 이를 이용한 디스플레이 기판의 베젤 패턴의 제조방법 및 이에 의하여 제조된 베젤 패턴
KR101838583B1 (ko) * 2015-05-29 2018-03-15 울산과학기술원 인듐갈륨계 금속 질화물의 양자점 및 이를 포함하는 콜로이드 분산액
EP3168278B2 (en) 2015-10-28 2022-02-09 Samsung Electronics Co., Ltd. Quantum dots, production methods thereof, and electronic devices including the same
JP7014718B2 (ja) * 2015-12-23 2022-02-01 アファンタマ アクチェンゲゼルシャフト ディスプレイデバイス
WO2018220165A1 (en) * 2017-06-02 2018-12-06 Nexdot Method for obtaining encapsulated nanoparticles
CN110799626B (zh) * 2017-06-23 2023-02-28 住友化学株式会社 组合物、膜、层叠结构体、发光装置、显示器及组合物的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172213A1 (ja) * 2012-05-18 2013-11-21 株式会社村田製作所 インクジェット用インク、印刷方法およびセラミック電子部品
US20150075397A1 (en) * 2013-09-13 2015-03-19 Nanoco Technologies Ltd. Quantum Dot Ink Formulation for Heat Transfer Printing Applications
US20170009090A1 (en) * 2015-07-06 2017-01-12 University Of Massachusetts Ferroelectric nanocomposite based dielectric inks for reconfigurable rf and microwave applications
WO2017020137A1 (en) * 2015-07-31 2017-02-09 Nanograde Ag Luminescent crystals and manufacturing thereof
JP2017146319A (ja) 2016-02-15 2017-08-24 キヤノン株式会社 ミラー駆動装置を有する撮像装置
WO2018028869A1 (en) 2016-08-11 2018-02-15 Avantama Ag Luminescent crystals and manufacturing thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Permabond UV681", SAFETY DATA SHEET, 29 March 2016 (2016-03-29), XP055747467
ACSNANO, vol. 9, 2015, pages 4533 - 4542
NANO LETT., vol. 15, 2015, pages 3692 - 3696
P. P. BOIX ET AL., J. PHYS. CHEM. LETT., vol. 6, 2015, pages 898 - 907
PROTESESCU ET AL.: "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3 , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut", NANO LETTERS, vol. 15, 2015, pages 3692 - 3696, XP055570565
PROTESESCU, L. ET AL.: "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X=Cl, Br, and I):Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut", NANO LETTERS, vol. 15, no. 6, 10 June 2015 (2015-06-10), pages 3692 - 3696, XP055570565 *
See also references of EP3660109A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090566A1 (ja) * 2018-10-31 2020-05-07 住友化学株式会社 硬化性組成物、膜、積層体及び表示装置
WO2020090567A1 (ja) * 2018-10-31 2020-05-07 住友化学株式会社 硬化性組成物、膜、積層体及び表示装置
JP2021006493A (ja) * 2019-06-28 2021-01-21 東洋インキScホールディングス株式会社 半導体ナノ粒子、インク組成物及び印刷物
EP4083149A4 (en) * 2019-12-26 2023-07-05 Sumitomo Chemical Company, Limited LIGHT SENSITIVE COMPOSITION
EP4227374A3 (en) * 2019-12-26 2023-10-25 Sumitomo Chemical Company, Limited Photosensitive composition
JPWO2021230031A1 (ja) * 2020-05-13 2021-11-18
WO2021230031A1 (ja) * 2020-05-13 2021-11-18 Dic株式会社 発光粒子含有樹脂組成物、その製造方法、光変換層および発光素子
JP7184222B2 (ja) 2020-05-13 2022-12-06 Dic株式会社 発光粒子含有樹脂組成物、その製造方法、光変換層および発光素子
KR20230009874A (ko) 2020-05-13 2023-01-17 디아이씨 가부시끼가이샤 발광 입자 함유 수지 조성물, 그의 제조 방법, 광 변환층 및 발광 소자
WO2022107602A1 (ja) * 2020-11-18 2022-05-27 Dic株式会社 分散体、光変換層、カラーフィルタ及び発光素子
WO2022107599A1 (ja) * 2020-11-19 2022-05-27 Dic株式会社 インクジェット用インク組成物及びその硬化物、光変換層、カラーフィルタ並びに発光素子
JP7430829B2 (ja) 2022-06-15 2024-02-13 アファンタマ アクチェンゲゼルシャフト 無機分離層を有する色変換フィルム

Also Published As

Publication number Publication date
TW201910446A (zh) 2019-03-16
EP3660109A1 (en) 2020-06-03
KR20200014430A (ko) 2020-02-10
US20200239713A1 (en) 2020-07-30
CN110997828B (zh) 2021-07-20
KR102112974B1 (ko) 2020-05-19
EP3660109A4 (en) 2021-04-14
CN113444394A (zh) 2021-09-28
CN113444394B (zh) 2022-08-05
TWI714870B (zh) 2021-01-01
US11584862B2 (en) 2023-02-21
JPWO2019022195A1 (ja) 2019-07-25
EP3660109B1 (en) 2023-12-27
CN110997828A (zh) 2020-04-10
JP6506488B1 (ja) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6506488B1 (ja) インク組成物、フィルム及びディスプレイ
JP6332522B1 (ja) 組成物、および組成物の製造方法
JP7244421B2 (ja) 組成物、フィルム、積層構造体、発光装置、及びディスプレイ
TWI758502B (zh) 組成物、膜、積層構造體、發光裝置、顯示器及組成物的製造方法
CN111655818A (zh) 组合物、膜、层叠体结构、发光装置和显示器
CN111670240A (zh) 组合物、膜、层叠体结构、发光装置和显示器
WO2020179490A1 (ja) 組成物、フィルム、積層構造体、発光装置及びディスプレイ
JP7453744B2 (ja) 組成物、フィルム、積層構造体、発光装置及びディスプレイ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018567771

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207002042

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018838670

Country of ref document: EP