WO2019015621A1 - 具有功能复合粒子的纤维布及其制备方法 - Google Patents
具有功能复合粒子的纤维布及其制备方法 Download PDFInfo
- Publication number
- WO2019015621A1 WO2019015621A1 PCT/CN2018/096183 CN2018096183W WO2019015621A1 WO 2019015621 A1 WO2019015621 A1 WO 2019015621A1 CN 2018096183 W CN2018096183 W CN 2018096183W WO 2019015621 A1 WO2019015621 A1 WO 2019015621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber cloth
- particles
- functional
- functional composite
- composite particles
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/12—Making metallic powder or suspensions thereof using physical processes starting from gaseous material
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/26—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/38—Silver; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/223—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/58—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/83—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M16/00—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
- D06M23/08—Processes in which the treating agent is applied in powder or granular form
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
- D06M23/12—Processes in which the treating agent is incorporated in microcapsules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/306—Other specific inorganic materials not covered by A61L27/303 - A61L27/32
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/056—Submicron particles having a size above 100 nm up to 300 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/20—Use of vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
- B22F2301/255—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/20—Nitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/25—Oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/04—Vegetal fibres
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
Definitions
- the invention relates to the technical field of composite materials, in particular to a fiber cloth with functional composite particles and a preparation method thereof.
- the preparation method of the antibacterial dry towel or cloth generally adopts two technical solutions.
- the first technical solution is to woven the antibacterial material into a fiber cloth (silver wire or copper wire), and the second technical solution is to use the antibacterial material.
- the antibacterial particles are made and coated with antibacterial particles on the surface of the fiber cloth by spraying, printing, or PVD technology, so that the fiber cloth has an antibacterial function.
- the drawback of the first technical solution is that it is expensive and the surface of the fiber cloth is not uniform in antibacterial properties.
- the second technical solution because the antibacterial particles are directly coated on the surface of the fiber cloth, causes the antibacterial particles to directly contact the air for a long time, and the surface forms an oxide layer, which cannot maintain the long-lasting antibacterial effect.
- the antibacterial particles coated on the surface of the fiber cloth are subjected to cleaning, such as external force, the antibacterial particles are detached, and the fiber cloth loses the antibacterial effect.
- One of the embodiments of the present invention is to provide a fiber cloth having functional composite particles and a method of preparing the same, in an attempt to solve at least one of the problems existing in the related art, at least to some extent.
- a method of preparing a fiber cloth having functional composite particles comprising the steps of: placing a solid metal block composed of functional metal particles into a crucible by an evaporation condensation process, via heating Evaporating to a vacuum physical vapor deposition (PVD) process furnace for condensation; subsequently depositing a PVD ceramic layer on the outer surface of the functional metal particles in a condensed state by a PVD process to form the functional composite particles; and finally passing the functional composite particles A particle filter screens and accelerates to bombard the fiber cloth to implant the functional composite particles into the fiber cloth.
- PVD vacuum physical vapor deposition
- the particle filter comprises a magnetic field generating device, an electric field generating device, and a baffle, wherein the direction of the magnetic field is substantially perpendicular to the direction of the electric field.
- the electric field generating device is an independent bias power source having a power of between about 5 Kw and about 30 Kw.
- the magnitude of the magnetic field is from about 5 mT to about 1000 mT.
- the electric field has a magnitude of from about 5 KV to about 60 KV.
- the fiber cloth moves at a linear velocity of from 10 m/min to 40 m/min substantially perpendicular to the direction of bombardment of the functional composite particles.
- the screened functional composite particles have a particle size of from about 15 nm to about 500 nm, and the filtered functional composite particles have an energy in the range of from about 5 KeV to about 60 KeV.
- the functional metal particles are antibacterial metal particles, which are Ag metal particles, Zn metal particles, Cu metal particles, or a mixture thereof.
- the PVD ceramic layer comprises a metal oxide, a metal nitride, or a mixture thereof, composed of Zr, Ti, Al, V, Nb, Ta, Y, Fe, Cr, Mo, W, or a combination thereof.
- the PVD ceramic layer is composed of ZrN, TiN, AlTiN, Al 2 O 3 , ZrO 2 , TiO 2 , VN, NbN, TaN, YN, FeN, CrN, MoN, WN, V 2 O 5 a PVD ceramic layer composed of Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , MoO 2 or WO 2 .
- the material of the fiber cloth is selected from the group consisting of cotton, hemp, silk, rayon, and combinations thereof.
- a fiber cloth wherein the fiber of the fiber cloth has functional composite particles therein, wherein the functional composite particle comprises: an inner core, the inner core being composed of functional metal particles, An outer surface; and a shell layer of a physical vapor deposition (PVD) ceramic layer attached to an outer surface of the inner core, wherein the shell layer is a crystalline structure to allow in the inner core
- PVD physical vapor deposition
- the functional composite particles have a distribution density in the fiber cloth of from about 10 6 /cm 2 to about 10 8 /cm 2 .
- FIG. 1 is a schematic view showing the structure of functional composite particles according to an embodiment of the present invention.
- FIG. 2 is a schematic view of a fiber cloth having functional composite particles according to an embodiment of the present invention.
- FIG. 3 is a schematic illustration of functional composite particles passing through a particle screen in accordance with an embodiment of the present invention.
- the terms “substantially”, “substantially”, “substantially” and “about” are used to describe and describe minor variations.
- the term may refer to an example in which an event or situation occurs precisely and an example in which the event or circumstance occurs approximately.
- the term may refer to a range of variation less than or equal to ⁇ 10% of the value, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, Less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
- the difference between the two values is less than or equal to ⁇ 10% of the average of the values (eg, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than Or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%), then the two values can be considered "substantially" the same.
- FIGS. 1-3 are in simplified form and use non-precise scales, and are merely for convenience and clarity of assistance in explaining embodiments of the present invention.
- the functional composite particle 10 includes a core 11 and a shell layer 12, wherein the core 11 is composed of functional metal particles having an outer surface 111.
- the shell 12 is attached to the outer surface 111 of the inner core 11 and is a physical vapor deposited (PVD) ceramic layer composed of a ceramic material.
- PVD physical vapor deposited
- FIGS. 1 and 2 are schematic views showing a fiber cloth having functional composite particles according to an embodiment of the present invention, the fiber cloth 20 is implanted into the functional composite particles 10 in the above embodiment by a charged particle injection method.
- the functional composite particles 10 are located in the slits and pores formed by the fiber-polymerized macromolecules in the fiber cloth 20, wherein the shell layer 12 in the functional composite particles has a crystalline structure and has A grain boundary 121 that provides a passage to the exterior of the shell 12 for the ionic state of the functional metal particles in the inner core 11.
- the functional metal particles in the core 11 can be slowly released to the shell layer 12 via the grain boundary 121 in the form of an ionic state. external.
- the shell 12 wrapped around the outer surface 111 of the inner core 11 can effectively prevent the functional metal particles in the inner core 11 from coming into contact with the outside oxygen, preventing it from being prematurely oxidized.
- an embodiment of the present invention provides a method for preparing a fiber cloth having functional composite particles, which specifically includes the following steps: First, a solid metal block of functional metal particles is formed by an evaporation condensation process. The body is placed in a crucible, condensed by heating to a vacuum physical vapor deposition (PVD) process furnace to form a core 11; then a shell composed of a ceramic material is deposited by a PVD process on the outer surface 111 of the functional metal particles in a condensed state. Layer 12 is formed to form functional composite particles 10. Subsequently, the functional composite particles are passed through a particle filter in a vacuum furnace to screen and accelerate the functional composite particles to bombard the fiber cloth, thereby implanting the functional composite particles into the fiber cloth.
- PVD vacuum physical vapor deposition
- the particle size of the functional metal particles after condensation is affected by the heating power of the heating source.
- an electron gun is used as a heating source to heat a solid metal block composed of functional metal particles, and the current intensity of the electron gun ranges from about 60 A to 300 A.
- the step of forming a PVD ceramic layer by using a PVD process comprises: introducing a nitrogen or oxygen having a purity of about 99.999% in a vacuum physical vapor deposition PVD process furnace at a bias voltage of about 0V-1000V. Under the condition, the target containing the biocompatible ceramic material is opened, the arc current is about 120A-200A, and the outer surface of the functional metal particles in the condensed state is deposited into the PVD ceramic layer by a PVD process.
- Embodiments of the present invention may form the shell 12 using conventional PVD processes using conventional PVD processes.
- the functional composite particles 10 have a particle size ranging from about 15 nm to about 50,000 nm.
- the functional metal particles are antibacterial metal particles, and the antibacterial metal particles include Ag metal particles, Cu metal particles, Zn metal particles, or a mixture thereof.
- the shell layer 12 is a metal oxide, a metal nitride or a metal nitride thereof composed of Zr, Ti, Al, V, Nb, Ta, Y, Fe, Cr, Mo, W or a combination thereof
- the physical vapor deposited ceramic layer of the mixture has a thickness of from about 5 nm to about 20,000 nm and a surface hardness of from 1000 HV to 4500 HV, preferably from 3,000 HV to 4000 HV.
- the shell layer 12 is made of ZrN, TiN, AlTiN, Al 2 O 3 , ZrO 2 , TiO 2 , VN, NbN, TaN, YN, FeN, CrN, MoN, WN, V 2 O. 5.
- a physical vapor deposited ceramic layer composed of Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , MoO 2 or WO 2 .
- the particle sifter includes a magnetic field generating device, an electric field generating device, and a baffle, wherein the direction of the magnetic field is substantially perpendicular to the direction of the electric field.
- the particle filter 30 includes a magnetic field generating device that generates a magnetic field B, an electric field generating device that generates an electric field E, and a baffle having an opening 31. It should be clearly understood by those skilled in the art that although the direction of the magnetic field B in FIG. 3 (vertical entering the direction of the paper) is perpendicular to the direction of the electric field E, in actual operation, there may be some error in the angle between the two, Not necessarily a perfect 90 degrees.
- the magnetic field generating means for generating the magnetic field B comprises any means for generating a magnetic field, which may be, for example, but not limited to, a strong magnet or other electromagnetic means.
- the electric field generating device that generates the electric field E includes any device that can generate an electric field E.
- the electric field device may include, but is not limited to, an independent bias power source, wherein the independent bias power source has a power of about 5 Kw to about 30 Kw.
- the magnetic field B has a magnitude of from about 5 mT to about 1000 mT.
- the electric field has a magnitude of from about 5 kV to about 60 kV.
- the magnetic field is a uniformly oriented magnetic field, and the electric field is an evenly oriented electric field.
- the functional composite particles are capable of accelerating movement in the direction of the electric field E when injected into the particle filter 30 due to a small amount of charge; while the magnetic field B provides a substantially perpendicular to the functional composite particles.
- the centripetal force of the moving direction also referred to as the Lorentz force
- the opening 31 may pass the functional composite particles having a specific motion trajectory through the particle filter 30 and block other functional composite particles. Therefore, only the functional composite particles having a mass M (particle size) and a charged Q (energy) within a suitable range can pass through the particle sifter.
- the opening 31 has an opening size of from about 1 cm to about 2 cm.
- the particle size and energy passing through the accelerator particles can be adjusted to perform screening of the functional composite particles.
- the fiber diameter in the general fiber cloth is in the range of about 10 um to 100 um, for example, the cotton fiber has a particle diameter of about 38 um to 51 um, the hair fiber has a particle diameter of about 64 um to 114 um, and the rayon particles.
- the diameter is about 30 um to 50 um, and the fibers in the fiber cloth are a mixture of an ordered crystalline structure and a disordered amorphous structure. In the amorphous structure, the macromolecular arrangement of the fibers in the fiber cloth is rather confusing, the pile is relatively loose, and there are many gaps.
- the intensity of the electric field E and the magnetic field B in the particle filter is adjusted such that the functional composite particles screened and accelerated by the filter have a particle size of about 15 nm to about 500 nm.
- the energy thereof is in the range of about 5 KeV to about 60 KeV, so that when the functional composite particles passing through the particle filter bombard the fiber cloth, the functional composite particles can pass through the fiber in the fiber cloth a surface barrier of the molecule, and passing through a slit hole of the amorphous structure in the fiber cloth, thereby implanting the inside of the fiber cloth, and after a series of collisions with the fiber macromolecules in the fiber cloth, Firmly embedded in the fibers.
- the functional composite particles screened and accelerated by the filter have a particle size of from about 15 nm to about 100 nm.
- the energy of the functional composite particles is mostly converted into the elastic potential energy of the fiber and a small portion of the thermal energy, since the particle diameter of the incident functional composite particles is much smaller than that of the fiber cloth.
- the particle size of the fiber, the elastic deformation caused by the functional composite particles is much smaller than the elastic limit of the fiber, and thus does not cause a change in the physical properties of the fiber cloth.
- the incident particle flow density of the functional composite particles can be controlled by adjusting the power level of the electric field generating device, and the fiber cloth is set to move forward at a specific speed, thereby controlling the planting per unit area.
- the density of functional composite particles incorporated into the fiber cloth By controlling the density of the functional composite particles implanted in the fiber cloth per unit area within a reasonable range, the fiber cloth has an excellent antibacterial effect without causing the fiber cloth to accumulate excessive heat due to the functional composite particles. Causes the fiber cloth to soften and deform.
- the fiber cloth moves at a linear velocity of from 10 m/min to 40 m/min substantially perpendicular to the bombardment direction of the functional composite particles.
- the functional composite particles have a distribution density in the fiber cloth of from about 10 6 /cm 2 to about 10 8 /cm 2 .
- the functional composite particles may be implanted into a fiber cloth of any material.
- the material of the fiber cloth may be selected from, but not limited to, cotton, hemp, silk, and man-made.
- One or more of the fibers may be selected from, but not limited to, cotton, hemp, silk, and man-made.
- an Ag silver metal block is placed in a crucible, and an Ag silver metal block is heated by an electron gun at a current intensity of 100 A to evaporate it into a physical vapor deposition PVD process furnace maintained under vacuum to form Ag in a condensed state.
- Silver metal particles are heated by an electron gun at a current intensity of 100 A to evaporate it into a physical vapor deposition PVD process furnace maintained under vacuum to form Ag in a condensed state.
- a nitrogen gas having a purity of 99.999% is introduced into a vacuum physical vapor deposition PVD furnace, and a target containing Ti is opened under a bias voltage of 90 V, and an arc current is 150 A, and Ag silver in the condensed state is applied.
- the outer surface of the metal particles adopts a PVD process to deposit a TiN ceramic layer to form charged functional composite silver particles;
- the charged functional composite silver particles are then introduced into a particle filter, wherein the particle filter has a magnetic field size of about 700 mT and its independent bias power source has a power of 10 Kw to form an electric field size of about 20 kV, such that Functional Particles of the Particle Filter
- the composite silver particles have a particle size of from about 50 nm to about 70 nm and an energy in the range of from about 5 KeV to about 60 KeV; the fibrous nonwoven fabric of the cotton material is placed at the opening of the particle filter to cause the fibers
- the surface of the nonwoven fabric is substantially perpendicular to the direction in which the particles are emitted, and the surface of the fiber nonwoven fabric is passed through the opening of the particle filter at a linear velocity of 30 m/min, so that the functional composite silver particles are uniformly driven into the fiber nonwoven fabric.
- a fiber nonwoven fabric having functional composite silver particles having a particle distribution density of about 10 7 /cm 2 was formed on the surface.
- a Cu copper metal block is placed in a crucible, and the Cu copper metal block is heated by an electron gun at an electric current of 130 A to evaporate it into a physical vapor deposition PVD process furnace maintained under vacuum to form Cu in a condensed state. Copper metal particles;
- a nitrogen gas having a purity of 99.999% is introduced into a vacuum physical vapor deposition PVD furnace, and a target containing Ti is opened under a bias voltage of 120 V, and an arc current is 150 A, and Cu copper in the condensed state is obtained.
- the outer surface of the metal particles adopts a PVD process to deposit a TiN ceramic layer to form charged functional composite copper particles;
- the charged functional copper particles are then introduced into a particle filter, wherein the particle filter has a magnetic field size of about 400 mT and its independent bias power source has a power of 15 Kw to form an electric field of about 13 KV, so that
- the functional composite copper particles of the particle filter have a particle size of from about 45 nm to about 80 nm and an energy in the range of from about 5 KeV to about 60 KeV;
- the fibrous nonwoven fabric of the cotton material is placed at the opening of the particle filter to make the fiber
- the surface of the nonwoven fabric is substantially perpendicular to the direction in which the particles are emitted, and the surface of the fiber nonwoven fabric is passed through the opening of the particle filter at a linear velocity of 30 m/min, so that the functional composite copper particles are evenly driven into the fiber nonwoven fabric.
- a fiber nonwoven fabric having functional composite copper particles having a particle distribution density of about 10 7 /cm 2 was formed on the surface.
- a Zn-Zn metal block is placed in a crucible, and an Zn-Zn metal block is heated by an electron gun at a current intensity of 80 A to evaporate it into a physical vapor deposition PVD process furnace maintained under vacuum to form Zn in a condensed state.
- a nitrogen gas having a purity of 99.999% is introduced into a vacuum physical vapor deposition PVD process furnace, and a target containing Ti is opened under a bias voltage of 70 V, and an arc current is 150 A, and the Zn zinc is in the condensed state.
- the outer surface of the metal particles adopts a PVD process to deposit a TiN ceramic layer, thereby forming charged functional composite zinc particles;
- the charged functional composite zinc particles are then introduced into a particle filter, wherein the particle filter has a magnetic field size of about 450 mT and its independent bias power source has a power of 12 Kw to form an electric field size of about 15 kV, such that Functional Particles of the Particle Filter
- the composite zinc particles have a particle size of from about 65 nm to about 90 nm and an energy in the range of from about 5 KeV to about 60 KeV; the fibrous nonwoven fabric of the cotton material is placed at the opening of the particle filter to cause the fibers
- the surface of the nonwoven fabric is substantially perpendicular to the direction in which the particles are emitted, and the surface of the fiber nonwoven fabric is passed through the opening of the particle filter at a linear velocity of 30 m/min, thereby uniformly driving the functional composite zinc particles into the fiber nonwoven fabric.
- a fiber nonwoven fabric having functional composite zinc particles having a particle distribution density of about 10 7 /cm 2 was formed on the surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Nanotechnology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Toxicology (AREA)
- Communicable Diseases (AREA)
- Epidemiology (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Oncology (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Materials For Medical Uses (AREA)
- Physical Vapour Deposition (AREA)
- Powder Metallurgy (AREA)
Abstract
本申请涉及一种具有功能复合粒子的纤维布及其制备方法,所述制备方法包括采用蒸发冷凝工艺将由功能金属粒子组成的固体金属块体放入坩埚中,经由加热蒸发到真空物理气相沉积PVD工艺炉中冷凝;对冷凝状态下的功能金属粒子的外表面采用PVD工艺沉积PVD陶瓷层,以形成所述功能复合粒子;及将所述功能复合粒子通过粒子筛选器筛选及加速以轰击纤维布,从而将所述功能复合粒子植入所述纤维布中,以形成所述具有功能复合粒子的纤维布。本申请的功能复合粒子能够降低内部功能金属粒子与外界氧气的接触并缓慢的施放功能金属粒子的离子态金属离子,延长了功能金属粒子的作用时间。本申请藉由在纤维布中植入功能复合粒子,从而实现具有长效持久的抗菌效果的纤维布。
Description
本申请要求申请号为PCT/CN2017/093391的PCT专利申请案的优先权,所述PCT专利申请案的全文以引用方式并入本文中。
本发明涉及复合材料技术领域,特别涉及具有功能复合粒子的纤维布及其制备方法。
以下说明及实例并不由于其包含于此章节中而被认为是现有技术。
抗菌干巾或布料的制备方法一般是通过两种技术方案,第一种技术方案是将抗菌材料制成丝线(银线或铜线)织入纤维布料中,第二种技术方案是将抗菌材料制成抗菌粒子并通过喷涂,印染,或PVD技术,将抗菌粒子覆涂在纤维布料表面,从而使纤维布料有抗菌功能。
然而,第一种技术方案的缺陷是成本昂贵,纤维布料表面抗菌性能不均匀。而第二种技术方案由于将抗菌粒子直接覆涂在纤维布料表面,会造成抗菌粒子直接长时间与空气接触,表面形成氧化层,无法维持持久长效抗菌。此外,当覆涂在纤维布料表面的抗菌粒子遇到清洗,揉搓等外力作用时,会使得抗菌粒子脱落,进而导致纤维布料失去抗菌效果。
有鉴于此,抗菌干巾或布料的制备方法还有改进的空间。
发明内容
本发明的实施例之一在于提供具有功能复合粒子的纤维布及其制备方法,以试图在至少某种程度上解决至少一种存在于相关领域中的问题。
根据本发明的一实施例,本发明提供了一种制备具有功能复合粒子的纤维布的方法其包含以下步骤:采用蒸发冷凝工艺将由功能金属粒子组成的固体金属块体放入坩埚中,经由加热蒸发到真空物理气相沉积(PVD)工艺炉中冷凝;随后对冷凝状态下的功能金属粒子的外表面采用PVD工艺沉积PVD陶瓷层,以形成所述功能复合粒子;最后将所 述功能复合粒子通过粒子筛选器筛选及加速以轰击纤维布,从而将所述功能复合粒子植入所述纤维布中。
在一些实施例中,所述粒子筛选器包含磁场生成装置、电场生成装置以及档板,其中磁场方向与电场方向大体上垂直。
在一些实施例中,所述电场生成装置为功率为约5Kw-约30Kw的独立偏压电源。
在一些实施例中,所述磁场的大小为约5mT–约1000mT。
在一些实施例中,其中所述电场的大小为约5KV–约60KV。
在一些实施例中,所述纤维布以大体上垂直于所述功能复合粒子的轰击方向的线速度10m/min-40m/min移动。
在一些实施例中,经筛选后的所述功能复合粒子的粒径为约15nm–约500nm,且经筛选后的所述功能复合粒子的能量在约5KeV–约60KeV范围内。
在一些实施例中,所述功能金属粒子是抗菌金属粒子,所述抗菌金属粒子是Ag金属粒子、Zn金属粒子、Cu金属粒子或其混合物。
在一些实施例中,所述PVD陶瓷层包括Zr、Ti、Al、V、Nb、Ta、Y、Fe、Cr、Mo、W或其组合所构成的金属氧化物、金属氮化物或其混合物。
在一些实施例中,所述PVD陶瓷层为由ZrN、TiN、AlTiN、Al
2O
3、ZrO
2、TiO
2、VN、NbN、TaN、YN、FeN、CrN、MoN、WN、V
2O
5、Nb
2O
5、Ta
2O
5、Y
2O
3、Fe
2O
3、Cr2O
3、MoO
2或WO
2构成的PVD陶瓷层。
在一些实施例中,所述纤维布的材料选自棉、麻、丝绸、人造纤维及其组合。
根据本发明的另一实施例,本发明提供一种纤维布,其中所述纤维布的纤维中具有功能复合粒子,其中所述功能复合粒子包括:内核,所述内核由功能金属粒子构成,具有外表面;以及壳层,所述壳层为物理气相沉积(PVD)陶瓷层,所述壳层附着在所述内核的外表面,其中,所述壳层为结晶结构从而允许所述内核中的功能金属粒子的离子态经由晶界缓释至所述壳层外。
在一些实施例中,所述功能复合粒子在所述纤维布中的分布密度为约10
6个/cm
2-约10
8个/cm
2。
本申请实施例的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
在下文中将简要地说明为了描述本申请实施例所需要的附图。显而易见地,下文描 述中的附图仅只是本申请中的部分实施例。对本领域技术人员而言,在不需要创造性劳动的前提下,依然可以根据这些附图中所例示的结构来获得其他实施例的附图。
图1所示是根据本发明一实施例的功能复合粒子的结构示意圖;
图2所示是根据本发明一实施例的具有功能复合粒子的纤维布的示意圖;
图3所示是根据本发明一实施例中的功能复合粒子通过粒子筛检器的示意图。
为更好的理解本发明的精神,以下结合附图和具体实施例对本发明实施例提供的功能复合粒子作进一步详细说明。根据以下说明及权利要求书,本发明实施例的优点和特征将更清楚。
如本文中所使用,术语“大致”、“大体上”、“实质”及“约”用以描述及说明小的变化。当与事件或情形结合使用时,所述术语可指代其中事件或情形精确发生的例子以及其中事件或情形极近似地发生的例子。举例来说,当结合数值使用时,术语可指代小于或等于所述数值的±10%的变化范围,例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%。举例来说,如果两个数值之间的差值小于或等于所述值的平均值的±10%(例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%),那么可认为所述两个数值“大体上”相同。
需说明的是,图1-3中的示意图采用简化形式且使用非精准比例,仅用以方便、明晰地辅助说明本发明实施例。
图1展示了根据本发明一实施例的功能复合粒子的结构示意图,其中,功能复合粒子10包括内核11和壳层12,其中内核11由功能金属粒子构成,具有外表面111。壳层12附着在内核11的外表面111上,是一种由陶瓷材料构成的物理气相沉积(PVD)陶瓷层。
图2展示了本发明一实施例所提供的一种具有功能复合粒子的纤维布的示意图,所述纤维布20是通过带电粒子注入方法,将上述实施例中的功能复合粒子10,植入到所述纤维布20的纤维内部。由图1和图2可看出,所述功能复合粒子10位于纤维布20内的纤维聚合大分子所形成的缝隙和孔洞中,其中所述功能复合粒子中的壳层12为结晶结构并具有晶界121,该晶界121为内核11中的功能金属粒子的离子态提供了通向壳层12外部的通道。在本发明一实施例中,在该功能复合粒子10的使用过程中,由于壳 层为结晶结构,内核11中的功能金属粒子可以以离子态的形式经由晶界121缓慢释放到壳层12的外部。此外,包裹在内核11外表面111的壳层12可以有效阻止内核11中的功能金属粒子与外界的氧气接触,避免其过早地被氧化。通过以离子态的形式缓慢释放所述功能金属粒子以及降低所述功能金属粒子与外界氧气的接触,延长了功能金属粒子的作用时间,从而实现具有长效持久的抗菌效果的纤维布。
为了获得上述具有功能复合粒子的纤维布,本发明一实施例提供了一种制备具有功能复合粒子的纤维布的方法,具体包括以下步骤:首先,采用蒸发冷凝工艺将功能金属粒子的固体金属块体放入坩埚中,经由加热蒸发到真空物理气相沉积(PVD)工艺炉中冷凝,以形成内核11;随后对冷凝状态下的功能金属粒子的外表面111采用PVD工艺沉积由陶瓷材料构成的壳层12,以形成功能复合粒子10。随后,将所述功能复合粒子在真空炉中经过粒子筛选器以对所述功能复合粒子筛选及加速以轰击纤维布,从而将所述功能复合粒子植入所述纤维布中。
在本发明的一实施例中,功能金属粒子冷凝后的粒径受加热源加热功率的影响。
在本发明的一实施例中,使用电子枪作为加热源来加热功能金属粒子组成的固体金属块体,电子枪的电流强度范围为约60A-300A。
在本发明的一实施例中,采用PVD工艺形成PVD陶瓷层的步骤包括:在真空物理气相沉积PVD工艺炉中通入纯度为约99.999%的氮气或氧气,在偏压为约0V-1000V的条件下,打开包含生物可相容陶瓷材料的靶,弧电流为约120A-200A,采用PVD工艺将冷凝状态下的功能金属粒子的外表面沉积PVD陶瓷层。
本发明实施例可通过常规的PVD设备采用常规的PVD工艺形成壳层12。
在本发明一实施例中,所述功能复合粒子10的粒径范围为约15nm–约50000nm。在本发明的一实施例中,所述功能金属粒子是抗菌金属粒子,所述抗菌金属粒子包括Ag金属粒子、Cu金属粒子、Zn金属粒子或其混合物。在本发明的一实施例中,壳层12为由Zr、Ti、Al、V、Nb、Ta、Y、Fe、Cr、Mo、W或其组合所构成的金属氧化物、金属氮化物或其混合物构成的物理气相沉积陶瓷层,其厚度为约5nm–约20000nm,表面硬度为1000HV-4500HV,较佳为3000HV-4000HV。在本发明的一实施例中,壳层12为由ZrN、TiN、AlTiN、Al
2O
3、ZrO
2、TiO
2、VN、NbN、TaN、YN、FeN、CrN、MoN、WN、V
2O
5、Nb
2O
5、Ta
2O
5、Y
2O
3、Fe
2O
3、Cr2O
3、MoO
2或WO
2构成的物理气相沉积陶瓷层。
申请号为PCT/CN2017/093391的PCT专利申请案中例示了数种功能复合粒子10的具体实施例,其全文以引用方式并入本文中。
在本发明一实施例中,所述粒子筛检器包括磁场生成装置、电场生成装置以及档板,其中磁场方向与电场方向大体上垂直。
图3所示是根据本发明一实施例中的功能复合粒子通过粒子筛检器的示意图。如图3所示,在本发明一实施例中,所述粒子筛选器30包括生成磁场B的磁场生成装置、生成电场E的电场生成装置以及具有开口31的档板。本领域技术人员应可清楚理解,虽然图3中磁场B的方向(垂直进入纸面方向)显示与电场E的方向垂直,实际操作中,两者间的夹角存在些许误差是可以允许的,不必然是完美的90度。此外,所述生成磁场B的磁场生成装置包含任何可以生成磁场的装置,举例来说,所述装置可以是,但不限于,强磁铁或其他电磁装置。所述生成电场E的电场生成装置包含任何可以生成电场E的装置。在本发明的一实施例中,所述电场装置可以包括,但不限于,独立偏压电源,其中所述独立偏压电源的功率为约5Kw-约30Kw。在本发明的一实施例中,所述磁场B的大小为约5mT–约1000mT。在本发明的一实施例中,所述电场的大小为约5KV–约60KV。在本发明的一实施例中,所述磁场为定向均匀的磁场,所述电场为定向均匀的电场。
所述功能复合粒子形成后由于带有少量电荷,因此,注入所述粒子筛选器30时能够沿著电场E的方向加速移动;与此同时磁场B提供一个大体上垂直于所述功能复合粒子的移动方向的向心力(也称作洛伦兹力),从而使所述功能复合粒子的运动轨迹发生变化(如图3中虚线T所示)。
向心力F的大小可通过以下公式计算:F=BQV=MV
2/R(1),由公式(1)可知当通过调整电场E及磁场B使粒子速度V及磁场B皆为固定的情况下,粒子的运动半径R(即运动轨迹)与粒子的质量M(粒子粒径)成正比并与其所带电荷Q成反比,通过在所述档板上设置与磁场B的方向大体上平行的开口31,所述开口31可以使具有特定运动轨迹的所述功能复合粒子通过所述粒子筛选器30并阻挡其他功能复合粒子。因此,只有质量M(粒子粒径)和带电荷Q(能量)在合适范围内的所述功能复合粒子才能通过所述粒子筛检器。
在本发明一实施例中,所述开口31的开口大小为约1cm-约2cm。在本发明一实施例中,通过调整外加磁场B和电场E的数值,可以调整通过加速器粒子的粒径和能量,从而进行所述功能复合粒子的筛选。
本申请实施例提供的具有功能复合粒子的纤维布及其制备方法具有以下的特点及优势:
由于一般纤维布中的纤维的粒径在约10um-100um的范围内,举例来说,棉布纤维 的粒径为约38um-51um、毛型纤维的粒径为约64um-114um以及人造纤维的粒径为约30um-50um,且纤维布中的纤维是由有序的晶态结构和无序的非晶态结构组成的混合物。在非晶态结构中,纤维布中的纤维的大分子排列比较混乱,堆砌比较疏松,有较多的缝隙空洞。在本发明一实施例中,通过调整所述粒子筛选器中的电场E与磁场B的强度,以使通过所述筛选器筛选及加速的所述功能复合粒子的粒径为约15nm–约500nm,且其能量在约5KeV–约60KeV范围内,进而使通过所述粒子筛选器的所述功能复合粒子轰击所述纤维布时,所述功能复合粒子能够穿过所述纤维布中的纤维大分子的表面势垒,并通过所述纤维布内的非晶态结构的缝隙孔洞,从而植入所述纤维布的内部,并和所述纤维布中的纤维大分子经过一系列碰撞后,牢牢地镶嵌在所述纤维中。在本发明一实施例中,通过所述筛选器筛选及加速的所述功能复合粒子的粒径为约15nm–约100nm。
在本发明一实施例中,经过碰撞后,所述功能复合粒子能量大部分转化为纤维的弹性势能和少部分热能,由于入射的所述功能复合粒子的粒径远远小于所述纤维布的所述纤维的粒径,所述功能复合粒子引起的弹性形变远远小于所述纤维的弹性极限,因此不会造成所述纤维布的物理性能产生变化。
在本发明一实施例中,可通过调整所述电场生成装置的功率大小来控制所述功能复合粒子的入射粒子流密度,同时设置纤维布以特定的速度运动前移,从而控制单位面积内植入纤维布中的功能复合粒子的密度。藉由将单位面积内植入纤维布中的功能复合粒子的密度控制在合理的范围内,使得纤维布有优秀的抗菌效果的同时,又不会使纤维布因功能复合粒子过多积累热量,造成纤维布软化变形。
在本发明一实施例中,所述纤维布以大体上垂直于所述功能复合粒子的轰击方向的线速度10m/min-40m/min移动。在本发明一实施例中,所述功能复合粒子在所述纤维布中的分布密度为约10
6个/cm
2-约10
8个/cm
2。
在本发明一实施例中,所述功能复合粒子可植入到任意材料的纤维布中,举例来说,所述纤维布的材料可以选自,但不限于,棉、麻、丝绸,和人造纤维中的一种或多种。
以下结合本发明具体的较优实施例以进一步说明本发明具有功能复合粒子的纤维布的制备。
实施例1
首先,将Ag银金属块放入坩埚中,并采用电子枪以电流强度100A加热Ag银金属块以使其蒸发到保持在真空下的物理气相沉积PVD工艺炉中冷凝,从而形成冷凝状态下的Ag银金属粒子;
之后在真空的物理气相沉积PVD工艺炉中导入纯度为99.999%的氮气,通过偏压大小为90V的条件下,打开包含Ti的靶,以弧电流为150A,对所述冷凝状态下的Ag银金属粒子的外表面采用PVD工艺以沉积TiN陶瓷层,从而形成带电的功能复合银粒子;
随后将带有电荷的功能复合银粒子导入粒子筛选器中,其中所述粒子筛选器的磁场大小为约700mT,而其独立偏压电源的功率为10Kw,以形成约20KV的电场大小,使得通过粒子筛选器的功能复合银粒子的粒径为约50nm–约70nm,且其能量在约5KeV–约60KeV范围内;将棉质材料的纤维无纺布放置于离粒子筛选器开口处,使纤维无纺布的表面大体上垂直于粒子射出方向,并以30m/min的线速度使纤维无纺布的表面经过粒子筛选器的开口,从而使功能复合银粒子均匀的打入纤维无纺布的表面上,以形成粒子分布密度为约10
7个/cm
2的具有功能复合银粒子的纤维无纺布。
实施例2
首先,将Cu铜金属块放入坩埚中,并采用电子枪以电流强度130A加热Cu铜金属块以使其蒸发到保持在真空下的物理气相沉积PVD工艺炉中冷凝,从而形成冷凝状态下的Cu铜金属粒子;
之后在真空的物理气相沉积PVD工艺炉中导入纯度为99.999%的氮气,通过偏压大小为120V的条件下,打开包含Ti的靶,以弧电流为150A,对所述冷凝状态下的Cu铜金属粒子的外表面采用PVD工艺以沉积TiN陶瓷层,从而形成带电的功能复合铜粒子;
随后将带有电荷的功能复合铜粒子导入粒子筛选器中,其中所述粒子筛选器的磁场大小为约400mT,而其独立偏压电源的功率为15Kw,以形成约13KV的电场大小,使得通过粒子筛选器的功能复合铜粒子的粒径为约45nm–约80nm,且其能量在约5KeV–约60KeV范围内;将棉质材料的纤维无纺布放置于离粒子筛选器开口处,使纤维无纺布的表面大体上垂直于粒子射出方向,并以30m/min的线速度使纤维无纺布的表面经过粒子筛选器的开口,从而使功能复合铜粒子均匀的打入纤维无纺布的表面上,以形成粒子分布密度为约10
7个/cm
2的具有功能复合铜粒子的纤维无纺布。
实施例3
首先,将Zn锌金属块放入坩埚中,并采用电子枪以电流强度80A加热Zn锌金属 块以使其蒸发到保持在真空下的物理气相沉积PVD工艺炉中冷凝,从而形成冷凝状态下的Zn锌金属粒子;
之后在真空的物理气相沉积PVD工艺炉中导入纯度为99.999%的氮气,通过偏压大小为70V的条件下,打开包含Ti的靶,以弧电流为150A,对所述冷凝状态下的Zn锌金属粒子的外表面采用PVD工艺以沉积TiN陶瓷层,从而形成带电的功能复合锌粒子;
随后将带有电荷的功能复合锌粒子导入粒子筛选器中,其中所述粒子筛选器的磁场大小为约450mT,而其独立偏压电源的功率为12Kw,以形成约15KV的电场大小,使得通过粒子筛选器的功能复合锌粒子的粒径为约65nm–约90nm,且其能量在约5KeV–约60KeV范围内;将棉质材料的纤维无纺布放置于离粒子筛选器开口处,使纤维无纺布的表面大体上垂直于粒子射出方向,并以30m/min的线速度使纤维无纺布的表面经过粒子筛选器的开口,从而使功能复合锌粒子均匀的打入纤维无纺布的表面上,以形成粒子分布密度为约10
7个/cm
2的具有功能复合锌粒子的纤维无纺布。
上文说明摘要整理出数个实施例的特征,这使得所属技术领域中具有通常知识者能够更加理解本申请的多种方面。所属技术领域中具有通常知识者可轻易地使用本申请作为基础,以设计或修改其他组合物,以便实现与此处申请的实施例相同的目的及/或达到相同的优点。所属技术领域中具有通常知识者亦可理解,这些均等的实例并未悖离本申请的精神与范畴,且其可对本申请进行各种改变、替换与修改,而不会悖离本申请的精神与范畴。虽然本文中所揭示的方法已参考以具体次序执行的具体操作加以描述,但应理解,可在不脱离本申请的教示的情况下组合、细分或重新排序这些操作以形成等效方法。因此,除非本文中特别指示,否则操作的次序及分组不是对本申请的限制。
Claims (18)
- 一种制备具有功能复合粒子的纤维布的方法,其包含:采用蒸发冷凝工艺将由功能金属粒子组成的固体金属块体放入坩埚中,经由加热蒸发到真空物理气相沉积PVD工艺炉中冷凝;对冷凝状态下的功能金属粒子的外表面采用PVD工艺沉积PVD陶瓷层,以形成所述功能复合粒子;及将所述功能复合粒子通过粒子筛选器筛选及加速以轰击纤维布,从而将所述功能复合粒子植入所述纤维布中。
- 根据权利要求1所述的方法,其中所述粒子筛选器包含磁场生成装置、电场生成装置以及档板,其中磁场方向与电场方向大体上垂直。
- 根据权利要求2所述的方法,其中所述电场生成装置为功率为约5Kw-约30Kw的独立偏压电源。
- 根据权利要求2所述的方法,其中所述磁场的大小为约5mT-约1000mT。
- 根据权利要求2所述的方法,其中所述电场的大小为约5KV-约60KV。
- 根据权利要求1所述的方法,其中所述纤维布以大体上垂直于所述功能复合粒子的轰击方向的线速度10m/min-40m/min移动。
- 根据权利要求1所述的方法,其中经筛选后的所述功能复合粒子的粒径为约15nm-约500nm,且经筛选后的所述功能复合粒子的能量在约5KeV-约60KeV范围内。
- 根据权利要求1所述的方法,其中所述功能金属粒子是抗菌金属粒子,所述抗菌金属粒子是Ag金属粒子、Zn金属粒子、Cu金属粒子或其混合物。
- 根据权利要求1所述的方法,其中所述PVD陶瓷层包括Zr、Ti、Al、V、Nb、Ta、Y、Fe、Cr、Mo、W或其组合所构成的金属氧化物、金属氮化物或其混合物。
- 根据权利要求9所述的方法,其中所述PVD陶瓷层为由ZrN、TiN、AlTiN、Al 2O 3、ZrO 2、TiO 2、VN、NbN、TaN、YN、FeN、CrN、MoN、WN、V 2O 5、Nb 2O 5、Ta 2O 5、Y 2O 3、Fe 2O 3、Cr 2O 3、MoO 2或WO 2构成的PVD陶瓷层。
- 根据权利要求1所述的方法,其中所述纤维布的材料选自棉、麻、丝绸、人造纤维或其组合。
- 一种纤维布,其中所述纤维布的纤维中具有功能复合粒子,其中所述功能复合粒子包括:内核,所述内核由功能金属粒子构成,具有外表面;以及壳层,所述壳层为物理气相沉积PVD陶瓷层,所述壳层附着在所述内核的外表面,其中,所述壳层为结晶结构从而允许所述内核中的功能金属粒子的离子态经由晶界缓释至所述壳层外。
- 根据权利要求12所述的纤维布,其中所述功能金属粒子是抗菌金属粒子,所述抗菌金属粒子是Ag金属粒子、Zn金属粒子、Cu金属粒子或其混合物。
- 根据权利要求12所述的纤维布,其中所述PVD陶瓷层包括Zr、Ti、Al、V、Nb、Ta、Y、Fe、Cr、Mo、W或其组合所构成的金属氧化物、金属氮化物或其混合物。
- 根据权利要求14所述的纤维布,其中所述PVD陶瓷层为由ZrN、TiN、AlTiN、Al 2O 3、ZrO 2、TiO 2、VN、NbN、TaN、YN、FeN、CrN、MoN、WN、V 2O 5、Nb 2O 5、Ta 2O 5、Y 2O 3、Fe 2O 3、Cr 2O 3、MoO 2或WO 2构成的PVD陶瓷层。
- 根据权利要求12所述的纤维布,其中所述功能复合粒子的粒径为约15nm-约500nm。
- 根据权利要求12所述的纤维布,其中所述功能复合粒子在所述纤维布中的分布密度为约10 6个/cm 2-约10 8个/cm 2。
- 根据权利要求12所述的纤维布,其中所述纤维布的材料选自棉、麻、丝绸、 人造纤维或其组合。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18834856.9A EP3656913A4 (en) | 2017-07-18 | 2018-07-18 | FIBER FABRIC WITH FUNCTIONAL COMPOSITE PARTS AND MANUFACTURING PROCESSES FOR IT |
US16/628,088 US12115585B2 (en) | 2017-07-18 | 2018-07-18 | Fiber cloth having functional composite particles and preparation method therefor |
CN201880047951.0A CN111295475B (zh) | 2017-07-18 | 2018-07-18 | 具有功能复合粒子的纤维布及其制备方法 |
JP2020501351A JP7122368B2 (ja) | 2017-07-18 | 2018-07-18 | 機能性複合粒子を有する繊維布及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2017/093391 | 2017-07-18 | ||
PCT/CN2017/093391 WO2019014854A1 (zh) | 2017-07-18 | 2017-07-18 | 功能复合粒子及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019015621A1 true WO2019015621A1 (zh) | 2019-01-24 |
Family
ID=65014997
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/093391 WO2019014854A1 (zh) | 2017-07-18 | 2017-07-18 | 功能复合粒子及其制备方法 |
PCT/CN2018/096183 WO2019015621A1 (zh) | 2017-07-18 | 2018-07-18 | 具有功能复合粒子的纤维布及其制备方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/093391 WO2019014854A1 (zh) | 2017-07-18 | 2017-07-18 | 功能复合粒子及其制备方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20200199736A1 (zh) |
EP (2) | EP3656488A4 (zh) |
JP (2) | JP6900570B2 (zh) |
CN (2) | CN111491751B (zh) |
WO (2) | WO2019014854A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3656488A4 (en) * | 2017-07-18 | 2021-01-06 | Naxau New Materials Co., LTD. | FUNCTIONAL COMPOSITE PART AND MANUFACTURING PROCESS FOR IT |
CN110238387A (zh) * | 2019-06-25 | 2019-09-17 | 纳狮新材料(浙江)有限公司 | 功能复合粒子及其制备方法 |
CN112872351B (zh) * | 2021-01-13 | 2023-07-14 | 太原理工大学 | 一种混杂协同增强铁基耐磨材料的制备方法 |
KR102701898B1 (ko) * | 2021-10-28 | 2024-09-02 | 중앙대학교 산학협력단 | 바이오 복합체 및 이의 제조방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1082625A (zh) * | 1992-05-19 | 1994-02-23 | 韦斯泰姆技术有限公司 | 医疗器械用的抗菌镀膜 |
CN101054659A (zh) * | 2007-05-15 | 2007-10-17 | 扬州大学 | 多级加速模式下磁控溅射镀膜方法 |
CN205522773U (zh) * | 2016-02-04 | 2016-08-31 | 东莞沙头朝日五金电子制品有限公司 | 一种具有pvd复合膜的金属加工制品 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4851095A (en) * | 1988-02-08 | 1989-07-25 | Optical Coating Laboratory, Inc. | Magnetron sputtering apparatus and process |
JP4822378B2 (ja) * | 2001-02-06 | 2011-11-24 | 株式会社ブリヂストン | 成膜装置および成膜方法 |
US6951666B2 (en) * | 2001-10-05 | 2005-10-04 | Cabot Corporation | Precursor compositions for the deposition of electrically conductive features |
JP4150638B2 (ja) * | 2002-06-28 | 2008-09-17 | 三井金属鉱業株式会社 | 無機酸化物コート金属粉及びその無機酸化物コート金属粉の製造方法 |
DE10309558A1 (de) * | 2003-03-04 | 2004-09-23 | Nanoparc Gmbh | Verbandmaterialien mit modifizierter Oberfläche und Verfahren zu deren Herstellung |
JP4164010B2 (ja) * | 2003-08-26 | 2008-10-08 | 三井金属鉱業株式会社 | 無機超微粒子コート金属粉及びその製造方法 |
US7261940B2 (en) * | 2004-12-03 | 2007-08-28 | Los Alamos National Security, Llc | Multifunctional nanocrystals |
US7498081B2 (en) * | 2005-03-02 | 2009-03-03 | Thw Shwphwed Color Company | Core-shell composite inorganic pigments and method of preparation for crystallizable glass frit compositions |
KR100886084B1 (ko) * | 2005-12-06 | 2009-02-26 | 주식회사 엘지화학 | 코어-쉘 형태의 나노입자 및 그 제조방법 |
US20070207266A1 (en) * | 2006-02-15 | 2007-09-06 | Lemke Harald K | Method and apparatus for coating particulates utilizing physical vapor deposition |
DE102006060057A1 (de) | 2006-12-19 | 2008-06-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Antimikrobiell wirkendes Material sowie Verfahren zum Herstellen eines antimikrobiell wirkenden Materials |
US20120176016A1 (en) * | 2007-09-28 | 2012-07-12 | General Electric Company | Core-shell particulates, articles, and method of making |
WO2010071831A2 (en) * | 2008-12-19 | 2010-06-24 | The Regents Of The University Of California | Structured silver-mesoporous silica nanoparticles having antimicrobial activity |
GB0909183D0 (en) * | 2009-05-28 | 2009-07-08 | Bedi Kathryn J | Coating method |
JP5780960B2 (ja) | 2009-08-12 | 2015-09-16 | 株式会社東芝 | 抗ウイルス性材料とそれを用いた膜および製品 |
US9127515B2 (en) * | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US8425651B2 (en) * | 2010-07-30 | 2013-04-23 | Baker Hughes Incorporated | Nanomatrix metal composite |
JP5389080B2 (ja) * | 2010-08-27 | 2014-01-15 | 株式会社東芝 | 金属含有粒子集合体 |
US8840693B2 (en) * | 2010-10-29 | 2014-09-23 | Baker Hughes Incorporated | Coated particles and related methods |
KR101446318B1 (ko) * | 2012-05-22 | 2014-10-07 | 한국생산기술연구원 | 고기능성 복합 나노입자 및 그 제조방법 |
AU2013308472B2 (en) * | 2012-08-31 | 2017-05-25 | Sloan-Kettering Institute For Cancer Research | Particles, methods and uses thereof |
CN103705294B (zh) * | 2012-09-28 | 2016-03-02 | 上海微创骨科医疗科技有限公司 | 多功能复合药物涂层缓释系统及其制备方法 |
CN103695864B (zh) * | 2014-01-06 | 2016-05-11 | 河北工业大学 | 碳包覆钴金属纳米颗粒的制备方法 |
CN104494229B (zh) | 2014-12-08 | 2016-08-17 | 中国人民解放军装甲兵工程学院 | 一种抗菌耐磨纳米复合涂层及其制备方法 |
CN105965009A (zh) * | 2016-05-17 | 2016-09-28 | 中国石油大学(华东) | 一种磁性碳包覆纳米材料的制备方法 |
CN105861988B (zh) | 2016-06-22 | 2019-04-23 | 中国科学院宁波材料技术与工程研究所 | 一种高硬度抗菌TiSiN/Ag纳米复合功能涂层及其制备方法和应用 |
EP3656488A4 (en) | 2017-07-18 | 2021-01-06 | Naxau New Materials Co., LTD. | FUNCTIONAL COMPOSITE PART AND MANUFACTURING PROCESS FOR IT |
-
2017
- 2017-07-18 EP EP17918160.7A patent/EP3656488A4/en active Pending
- 2017-07-18 WO PCT/CN2017/093391 patent/WO2019014854A1/zh unknown
- 2017-07-18 US US16/628,805 patent/US20200199736A1/en active Pending
- 2017-07-18 CN CN201780093300.0A patent/CN111491751B/zh active Active
- 2017-07-18 JP JP2020501361A patent/JP6900570B2/ja active Active
-
2018
- 2018-07-18 WO PCT/CN2018/096183 patent/WO2019015621A1/zh unknown
- 2018-07-18 CN CN201880047951.0A patent/CN111295475B/zh active Active
- 2018-07-18 EP EP18834856.9A patent/EP3656913A4/en active Pending
- 2018-07-18 JP JP2020501351A patent/JP7122368B2/ja active Active
- 2018-07-18 US US16/628,088 patent/US12115585B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1082625A (zh) * | 1992-05-19 | 1994-02-23 | 韦斯泰姆技术有限公司 | 医疗器械用的抗菌镀膜 |
CN101054659A (zh) * | 2007-05-15 | 2007-10-17 | 扬州大学 | 多级加速模式下磁控溅射镀膜方法 |
CN205522773U (zh) * | 2016-02-04 | 2016-08-31 | 东莞沙头朝日五金电子制品有限公司 | 一种具有pvd复合膜的金属加工制品 |
Non-Patent Citations (3)
Title |
---|
LI, MEI ET AL.: "Antimicrobial Activity of Ag Surfaces Sputtered by Magnetron Sputtering", MATERIALS RESEARCH INNOVATIONS, vol. 18, 31 December 2014 (2014-12-31), pages 875 - 878, XP055565423 * |
See also references of EP3656913A4 |
STRANAK, V. ET AL.: "Ionized Vapor Deposition of Antimicrobial Ti-Cu Films with Controlled Copper Release", THIN SOLID FILMS, vol. 550, 13 November 2013 (2013-11-13), pages 389 - 394, XP055565424 * |
Also Published As
Publication number | Publication date |
---|---|
JP7122368B2 (ja) | 2022-08-19 |
CN111295475B (zh) | 2022-07-26 |
JP6900570B2 (ja) | 2021-07-07 |
EP3656488A4 (en) | 2021-01-06 |
CN111491751B (zh) | 2022-07-26 |
CN111295475A (zh) | 2020-06-16 |
EP3656913A1 (en) | 2020-05-27 |
US20200199736A1 (en) | 2020-06-25 |
US20210156081A1 (en) | 2021-05-27 |
EP3656488A1 (en) | 2020-05-27 |
EP3656913A4 (en) | 2021-01-20 |
JP2020531680A (ja) | 2020-11-05 |
US12115585B2 (en) | 2024-10-15 |
WO2019014854A1 (zh) | 2019-01-24 |
CN111491751A (zh) | 2020-08-04 |
JP2020526682A (ja) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019015621A1 (zh) | 具有功能复合粒子的纤维布及其制备方法 | |
DE60130001T2 (de) | Poröse gettervorrichtungen mit verringertem teilchenverlust und verfahren zu deren herstellung | |
KR20110123909A (ko) | 금속증착 나노섬유 복합체 및 그 제조방법 | |
DE3027572A1 (de) | Verfahren zum herstellen eines berylliumoxid-filmes und nach diesem verfahren hergestellter berylliumoxid- film | |
JP5264168B2 (ja) | 基板を被覆するためのコーティング装置及び被覆方法 | |
US8163106B2 (en) | R-Fe-B based sintered magnet having on the surface thereof vapor deposited film of aluminum or alloy thereof, and method for producing the same | |
Chang et al. | Deposition and characterization of a dual-layer silicon-and silver-containing hydroxyapatite coating via a drop-on-demand technique | |
JPH0765166B2 (ja) | 揮発性クラスタを使用した薄膜の被着方法および装置 | |
AT394643B (de) | Roentgenroehrenanode mit oxidbeschichtung | |
CN106756811A (zh) | 一种高温合金涂层的制备方法 | |
Luo et al. | Tunable microstructures and morphology of zirconium films via an assist of magnetic field in HiPIMS for improved mechanical properties | |
CN104271793A (zh) | 高表面积涂层 | |
JPH03126865A (ja) | 電子ビーム蒸発装置 | |
JP3961158B2 (ja) | 電子ビーム蒸発装置 | |
KR20090123445A (ko) | 습윤성 폴리우레탄 폼 드레싱재의 기능성 은나노 코팅방법 | |
US11103852B2 (en) | Structure and method of manufacturing the same | |
JPS62185875A (ja) | 気相成膜装置 | |
JPS6147221B2 (zh) | ||
JPS62230966A (ja) | 結晶成長装置 | |
JPS61170563A (ja) | 加工物の穴内壁面の表層改質方法および装置 | |
Kubota et al. | Control of hydroxyapatite film orientation by RF magnetron sputtering | |
DE102016213951A1 (de) | Verbesserte Lenkung von Ionen aus einem Plasma auf ein zu beschichtendes Substrat | |
JPS62290865A (ja) | イオンプレ−テイング装置 | |
JPH03162567A (ja) | クラスタイオンビーム蒸着装置 | |
Thomas | Magnetic focusing of ion beams and deposition of hydroxyapatite films with graded crystallinity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18834856 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020501351 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018834856 Country of ref document: EP Effective date: 20200218 |