WO2019014854A1 - 功能复合粒子及其制备方法 - Google Patents

功能复合粒子及其制备方法 Download PDF

Info

Publication number
WO2019014854A1
WO2019014854A1 PCT/CN2017/093391 CN2017093391W WO2019014854A1 WO 2019014854 A1 WO2019014854 A1 WO 2019014854A1 CN 2017093391 W CN2017093391 W CN 2017093391W WO 2019014854 A1 WO2019014854 A1 WO 2019014854A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional
metal
particle
metal particles
particles
Prior art date
Application number
PCT/CN2017/093391
Other languages
English (en)
French (fr)
Inventor
袁安素
Original Assignee
纳狮新材料股份有限公司
嘉兴奥德医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳狮新材料股份有限公司, 嘉兴奥德医疗技术有限公司 filed Critical 纳狮新材料股份有限公司
Priority to EP17918160.7A priority Critical patent/EP3656488A4/en
Priority to JP2020501361A priority patent/JP6900570B2/ja
Priority to PCT/CN2017/093391 priority patent/WO2019014854A1/zh
Priority to US16/628,805 priority patent/US20200199736A1/en
Priority to CN201780093300.0A priority patent/CN111491751B/zh
Priority to CN201880047951.0A priority patent/CN111295475B/zh
Priority to JP2020501351A priority patent/JP7122368B2/ja
Priority to US16/628,088 priority patent/US12115585B2/en
Priority to EP18834856.9A priority patent/EP3656913A4/en
Priority to PCT/CN2018/096183 priority patent/WO2019015621A1/zh
Publication of WO2019014854A1 publication Critical patent/WO2019014854A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/38Silver; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material

Definitions

  • the invention relates to the technical field of composite materials, in particular to functional composite particles and a preparation method thereof.
  • Biocompatible ceramics not only has the mechanical compatibility and stability of ceramics, but also has affinity and biological activity with biological tissues. It can be used for biological, medical, chemical, etc. related to human or animal body. field. However, a single biocompatible ceramic has certain limitations in practical applications. For example, when biocompatible ceramics are applied to artificial joints, bacterial infections are more likely to occur, and more severely, local complications of the bones are caused.
  • the patent CN10293614A incorporates a certain amount of metallic silver powder into a ceramic raw material, and is sintered in a normal oxygen or aerobic environment to form a ceramic capable of releasing silver ions, thereby achieving a certain antibacterial effect.
  • too high temperature makes the metallic silver difficult to be in a fixed position, resulting in uneven distribution of metallic silver and ceramic materials in the finished product, and silver in a high temperature state is easily oxidized by oxygen in the environment. Loss of the antibacterial effect of silver ions.
  • the bonding strength between the metallic silver and the ceramic material is weak, and during the specific use, the release time of the silver ions is relatively short, and it is difficult to achieve a durable antibacterial effect.
  • one of the objects of the present invention is to provide a functional composite particle and a preparation method thereof.
  • a functional composite particle includes a core and a shell layer composed of functional metal particles and having an outer surface; the shell layer is a physical vapor deposition PVD composed of a biocompatible ceramic material a ceramic layer attached to an outer surface of the inner core, wherein the outer shell is in a crystalline structure to allow the ionic state of the functional metal particles in the inner core to be released out of the shell through the grain boundary.
  • the shell layer is a physical vapor deposition PVD composed of a biocompatible ceramic material a ceramic layer attached to an outer surface of the inner core, wherein the outer shell is in a crystalline structure to allow the ionic state of the functional metal particles in the inner core to be released out of the shell through the grain boundary.
  • Another embodiment of the present invention provides a method of preparing functional composite particles, comprising the steps of: using evaporation
  • the condensation process places a solid metal block composed of functional metal particles into a crucible, and is condensed by heating to a vacuum physical vapor deposition PVD process furnace; the outer surface of the functional metal particles in a condensed state is deposited by a PVD process from a biocompatible phase.
  • a PVD ceramic layer composed of a ceramic material.
  • Another embodiment of the present invention also provides the use of functional composite particles for coating a surface of a metal, cloth, ceramic or plastic or for implantation in metal, cloth, ceramic or plastic.
  • the biocompatible ceramic material is wrapped on the outer surface of the functional metal particle having a specific function by a physical vapor deposition PVD process to form a functional composite particle, and on the one hand, the coating structure of the functional composite particle can be avoided.
  • the functional metal particles are oxidized by the external oxygen.
  • the ionic state of the functional metal particles can be sustainedly released through the grain boundaries of the shell layer, thereby prolonging the action time of the functional metal particles.
  • FIG. 1 is a metallographic image of a functional composite particle in accordance with an embodiment of the present invention
  • Figure 3 is a partially enlarged image of a metallographic image of the functional composite particles shown in Figure 1;
  • FIG. 4 is a schematic view showing the structure of functional composite particles according to an embodiment of the present invention.
  • FIGS. 1-3 are metallographic images taken by using an electron microscope.
  • the schematic diagram in FIG. 4 is in a simplified form and uses a non-precise scale, and is only for convenience and clarity to assist in the description of the embodiments of the present invention.
  • Figure 1 shows a metallographic image of a functional composite particle in accordance with an embodiment of the present invention.
  • 2 is a metallographic image of another functional composite particle in accordance with an embodiment of the present invention.
  • Fig. 3 is a partially enlarged image of a metallographic image of the functional composite particles shown in Fig. 1.
  • 4 is a schematic view showing the structure of functional composite particles according to an embodiment of the present invention.
  • the functional composite particle 10 includes a core 11 and a shell 12, wherein the core 11 is composed of functional metal particles having an outer surface 111.
  • the shell 12 is attached to the outer surface 111 of the inner core 11 and is a physical vapor deposited PVD ceramic layer composed of a biocompatible ceramic material.
  • the functional metal particles of the inner core 11 have a particle diameter of 5 nm to 5 mm
  • the shell layer 12 is composed of a biocompatible ceramic layer composed of a metal oxide composed of Zr, Ti or Al, one of metal nitrides or a mixture thereof, having a thickness of 5 nm to 50000 nm, preferably 50 nm to 5000 nm, and a surface hardness of 1000 HV to 4,500 HV. It is preferably 3000 HV-4000 HV.
  • the shell layer 12 is a biocompatible ceramic layer composed of ZrN, TiN, AlTiN or Al 2 O 3 .
  • the functional metal particles of the inner core 11 are antibacterial metal particles, which are Ag metal particles, Zn metal particles, Cu metal particles or a mixture thereof.
  • the functional metal particles of the core 11 are growth promoting metal particles, and the growth promoting metal particles are Ca metal particles, K metal particles, Mg metal particles, or a mixture thereof.
  • the shell layer 12 is a crystalline structure and has a grain boundary 121 that provides a passage to the exterior of the shell layer 12 for the ionic state of the functional metal particles in the inner core 11.
  • the functional metal particles in the core 11 are slowly released to the outside of the shell layer 12 via the grain boundaries 121 in the form of an ionic state.
  • the functional composite particle provided by the present invention, the shell layer 12 wrapped on the outer surface 111 of the inner core 11 can effectively prevent the functional metal particles in the inner core 11 from contacting with the outside oxygen to prevent it from being prematurely oxidized.
  • the core 11 The functional metal particles in the film can also be slowly released through the grain boundary 121 of the shell layer 12, prolonging the action time of the functional metal particles.
  • the preparation method of the functional composite particles 10 shown in FIGS. 1 to 4 includes the following steps:
  • a solid metal block composed of functional metal particles is placed in a crucible, and condensed by heating to a vacuum physical vapor deposition PVD process furnace to form a core 11 having an outer surface 111;
  • a PVD ceramic layer composed of a biocompatible ceramic material is deposited on the outer surface 111 of the functional metal particles (core 11) in a condensed state by a PVD process to form a shell layer 12 which is a crystalline structure and has a grain boundary 121. And allowing the ionic state of the functional metal particles in the core 11 to be released to the outside of the shell layer 11 via the grain boundaries 121.
  • the particle size of the functional metal particles after condensation is affected by the heating power of the heating source.
  • an electron gun is used as a heating source to heat a solid metal block composed of functional metal particles.
  • the current intensity of the electron gun ranges from 60 A to 300 A, preferably from 150 A to 250 A.
  • the step of forming a PVD ceramic layer by using a PVD process comprises: introducing a nitrogen or oxygen having a purity of 99.999% in a vacuum physical vapor deposition PVD process furnace under a bias voltage of 0V-1000V.
  • the target containing the biocompatible ceramic material is opened, the arc current is 120A-200A, and the outer surface of the functional metal particles in the condensed state is deposited into the PVD ceramic layer by a PVD process.
  • Embodiments of the present invention may form the shell 12 using conventional PVD processes using conventional PVD processes.
  • the types of functional metal particles are different, and the corresponding functional composite particles have different functions. Capability.
  • Ag metal particles, Zn metal particles, Cu metal particles or a mixture thereof correspond to antibacterial functional composite particles
  • Ca metal particles, K metal particles, Mg metal particles or a mixture thereof correspond to growth promoting functional composite particles.
  • the functional composite particles can be further coated on the surface of metal, cloth (pure cotton, non-woven fabric, etc.), ceramic or plastic.
  • the functional composite particles may be coated on the surface of a metal product such as an orthopedic device, a artificial stent or an artificial joint to form an antibacterial coating or a growth promoting coating; the antibacterial coating may be applied on the surface of the plastic product; An antimicrobial coating or the like is formed on the surface of the nonwoven fabric.
  • functional composite particles can be implanted in metals, fabrics, ceramics or plastics to directly form products with specific functions.
  • the Ag metal block is placed in a crucible by an evaporation condensation process, and is evaporated by an electron gun at a current intensity of 200 A to a vacuum physical vapor deposition PVD process furnace;
  • Nitrogen gas with a purity of 99.999% is introduced into the vacuum PVD process furnace, and the target containing Ti is opened under the bias voltage of 80V-100V.
  • the arc current is 120A-200A, and the Ag metal particles in the condensed state are treated by the PVD process.
  • TiN deposited on the surface of the outer ceramic layer to form a particle diameter d shown in FIG. 11 is a TiN-Ag composite powder particles of 68nm.
  • the Cu metal block is placed in a crucible by an evaporation condensation process, and is evaporated by an electron gun at a current intensity of 200 A to be condensed in a vacuum physical vapor deposition PVD process furnace;
  • Nitrogen gas with a purity of 99.999% is introduced into the vacuum PVD process furnace, and the target containing Ti is opened under the bias voltage of 80V-100V.
  • the arc current is 120A-200A, and the Cu metal particles in the condensed state are treated by the PVD process.
  • a TiN ceramic layer was deposited on the outer surface to form a TiN-Cu composite particle powder having a particle diameter d 2 of 154 nm as shown in FIG.
  • the Zn metal block is placed in a crucible by an evaporation condensation process, and is evaporated by an electron gun at a current intensity of 200 A to be condensed in a vacuum physical vapor deposition PVD process furnace;
  • the Mg metal block is placed in a crucible by an evaporation condensation process, and is evaporated by an electron gun at a current intensity of 200 A to a vacuum physical vapor deposition PVD process furnace;
  • a vacuum of 99.999% is introduced into the vacuum PVD process furnace, and a target containing a mixture of AlTi is opened at a bias voltage of 80V-100V.
  • the arc current is 120A-200A, and the Mg in the condensed state is PVD.
  • An AlTiN ceramic layer is deposited on the outer surface of the metal particles to form an AlTiN-Mg composite particle powder having a growth promoting effect.
  • the functional composite particles obtained in the above Examples 1-2 were respectively coated on the surface of a plastic article as a sample of the following antibacterial effect test. At the same time, another identical plastic article was taken and the surface was not coated with a functional composite as a control. Test method: Refer to ISO22196:2011.
  • the antibacterial activity value in the table is the antibacterial activity value of the sample relative to the control.
  • the coated plastic apparently has higher antibacterial properties than the plastic which is not coated with the functional composite particles provided in Examples 1-2 of the present invention.
  • the biocompatible ceramic material is wrapped on the outer surface of the functional metal particle having a specific function by a PVD process to form a functional composite particle, and the ionic state of the functional metal particle in the functional composite particle is realized through the grain boundary of the shell layer. Slow release, thus extending the action time of functional metal particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Materials For Medical Uses (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种功能复合粒子及其制备方法。所述功能复合粒子(10)包括:内核(11),该内核(11)由功能金属粒子构成,具有外表面(111);以及壳层(12),该壳层(12)为生物可相容陶瓷材料构成的物理气相沉积PVD陶瓷层,壳层(12)附着在内核(11)的外表面(111),其中,壳层(12)为结晶结构从而允许内核(11)中的功能金属粒子的离子态经由晶界(121)缓释至壳层(12)外。通过PVD工艺将生物可相容陶瓷材料包裹在具有特定功能的功能金属粒子外表面(111)以形成功能复合粒子(10),该功能复合粒子(10)中的功能金属粒子的离子态经由壳层(12)的晶界(121)实现缓释,从而延长了功能金属粒子的作用时间。

Description

功能复合粒子及其制备方法 技术领域
本发明涉及复合材料技术领域,特别涉及功能复合粒子及其制备方法。
背景技术
生物可相容陶瓷(Biocompatible ceramics)不仅具有陶瓷的力学相容性和稳定性,同时与生物组织之间具有亲和性和生物活性,可用于与人体或动物体相关的生物、医用、化学等领域。但是,单一的生物可相容陶瓷在实际应用中存在着一定的局限性。例如,当生物可相容陶瓷应用于人工关节时,容易引发细菌感染,更严重地,会导致骨骼局部的并发症。
将具有特定功能的金属粒子与生物可相容陶瓷结合是一种解决上述生物可相容陶瓷局限性的思路。例如,专利CN10293614A在陶瓷原料中掺入定量的金属银粉末,在常氧或增氧环境下烧结形成能够释放银离子的陶瓷,达到一定的抗菌作用。但是,在陶瓷的烧结过程中,过高的温度会使金属银很难处在固定位置,造成金属银与陶瓷材料在成品中分布不均匀,并且高温状态下的银也容易被环境中的氧气氧化,丧失银离子的抗菌作用。此外,金属银与陶瓷材料之间的结合力较弱,在具体的使用过程中,银离子的释放时间相对较短,难以达到持久的抗菌效果。
因此,现有的生物可相容陶瓷还有改进的空间。
发明内容
为改善现有生物可相容陶瓷的性能,提高其生物安全性和特定功能性,本发明的目的之一在于提供一种功能复合粒子及其制备方法。
根据本发明的一实施例,一种功能复合粒子,其包括内核和壳层,该内核由功能金属粒子构成并具有一外表面;该壳层为生物可相容陶瓷材料构成的物理气相沉积PVD陶瓷层,该壳层附着在该内核的外表面,其中,该壳层为结晶结构从而允许该内核中的功能金属粒子的离子态能通过晶界缓释至该壳层外。
本发明的另一实施例提供了功能复合粒子的制备方法,其包括如下步骤:采用蒸发 冷凝工艺将由功能金属粒子组成的固体金属块体放入坩埚中,经由加热蒸发到真空物理气相沉积PVD工艺炉中冷凝;对冷凝状态下的功能金属粒子的外表面采用PVD工艺沉积由生物可相容陶瓷材料构成的PVD陶瓷层。
本发明的另一实施例还提供了功能复合粒子的用途,其中该功能复合粒子用于涂覆金属、布料、陶瓷或塑料的表面或植入在金属、布料、陶瓷或塑料中。
在本发明实施例中,通过物理气相沉积PVD工艺将生物可相容陶瓷材料包裹在具有特定功能的功能金属粒子外表面,形成功能复合粒子,一方面功能复合粒子的这种包覆结构可以避免功能金属粒子被外界的氧气氧化,另一方面,功能金属粒子的离子态可经由壳层的晶界实现缓释,从而延长了功能金属粒子的作用时间。
附图说明
图1所示是根据本发明一实施例的一功能复合粒子的金相图像;
图2所示是根据本发明一实施例的另一功能复合粒子的金相图像;
图3所示是图1所示的功能复合粒子的金相图像的局部放大图像;
图4所示是根据本发明一实施例的功能复合粒子的结构示意图。
具体实施方式
为更好的理解本发明的精神,以下结合附图和具体实施例对本发明实施例提供的功能复合粒子作进一步详细说明。根据以下说明及权利要求书,本发明实施例的优点和特征将更清楚。
需说明的是,图1-图3是使用电子显微镜拍摄得到的金相图像,图4中的示意图采用简化形式且使用非精准比例,仅用以方便、明晰地辅助说明本发明实施例。
具体地,图1所示是根据本发明一实施例的一功能复合粒子的金相图像。图2所示是根据本发明一实施例的另一功能复合粒子的金相图像。图3所示是图1所示的功能复合粒子的金相图像的局部放大图像。图4所示是根据本发明一实施例的功能复合粒子的结构示意图。
结合图1-图4,功能复合粒子10包括内核11和壳层12,其中内核11由功能金属粒子构成,具有外表面111。壳层12附着在内核11的外表面111上,是一种由生物可相容陶瓷材料构成的物理气相沉积PVD陶瓷层。
在本发明的一实施例中,内核11的功能金属粒子的粒径为5nm-5mm,壳层12为由 Zr、Ti或Al构成的金属氧化物、金属氮化物中的一种或其混合物构成的生物可兼容陶瓷层,其厚度为5nm-50000nm,较佳为50nm-5000nm,表面硬度为1000HV-4500HV,较佳为3000HV-4000HV。
在本发明的一实施例中,壳层12为由ZrN、TiN、AlTiN或Al2O3构成的生物可相容陶瓷层。
在本发明的一实施例中,内核11的功能金属粒子是抗菌金属粒子,该抗菌金属粒子是Ag金属粒子、Zn金属粒子、Cu金属粒子或其混合物。
在本发明的另一实施例中,内核11的功能金属粒子是生长促进金属粒子,该生长促进金属粒子是Ca金属粒子、K金属粒子、Mg金属粒子或其混合物。
由图3和图4可看出,壳层12为结晶结构并具有晶界121,该晶界121为内核11中的功能金属粒子的离子态提供了通向壳层12外部的通道。在该功能复合粒子的使用过程中,由于壳层为结晶结构,内核11中的功能金属粒子会以离子态的形式经由晶界121缓慢释放到壳层12的外部。本发明提供的该功能复合粒子,包裹在内核11外表面111的壳层12可以有效阻止内核11中的功能金属粒子与外界的氧气接触,避免其过早地被氧化,另一方面,内核11中的功能金属粒子还可以通过壳层12的晶界121实现缓慢释放,延长了功能金属粒子的作用时间。
图1-图4所示的功能复合粒子10的制备方法包括如下步骤:
采用蒸发冷凝工艺将由功能金属粒子组成的固体金属块体放入坩埚中,经由加热蒸发到真空物理气相沉积PVD工艺炉中冷凝以形成内核11,该内核11具有外表面111;
对冷凝状态下的功能金属粒子(内核11)的外表面111采用PVD工艺沉积由生物可相容陶瓷材料构成的PVD陶瓷层以形成壳层12,该壳层12为结晶结构并具有晶界121,并且允许内核11中的功能金属粒子的离子态经由晶界121缓释至壳层11外。
在本发明的一实施例中,功能金属粒子冷凝后的粒径受加热源加热功率的影响。在本发明的一实施例中,使用电子枪作为加热源来加热功能金属粒子组成的固体金属块体,电子枪的电流强度范围为60A-300A,较佳为150A-250A。
在本发明的一实施例中,采用PVD工艺形成PVD陶瓷层的步骤包括:在真空物理气相沉积PVD工艺炉中通入纯度为99.999%的氮气或氧气,在偏压为0V-1000V的条件下,打开包含生物可相容陶瓷材料的靶,弧电流为120A-200A,采用PVD工艺将冷凝状态下的功能金属粒子的外表面沉积PVD陶瓷层。
本发明实施例可通过常规的PVD设备采用常规的PVD工艺形成壳层12。
本发明实施例中功能金属粒子的种类不同,对应获得的功能复合粒子具有不同的功 能性。例如,Ag金属粒子、Zn金属粒子、Cu金属粒子或其混合物对应于抗菌功能复合粒子;Ca金属粒子、K金属粒子、Mg金属粒子或其混合物对应于生长促进功能复合粒子。
功能复合粒子可以进一步涂覆在金属、布料(纯棉、无纺布等)、陶瓷或塑料的表面。举例来说,功能复合粒子可涂覆在骨科器械、人工支架或人工关节等金属产品的表面形成抗菌涂层或生长促进涂层;可涂覆在塑料产品表面形成抗菌涂层;亦可涂覆在无纺布表面形成抗菌涂层等。
此外,功能复合粒子还可以植入在金属、布料、陶瓷或塑料中,直接形成具有特定功能的产品。
以下结合本发明的部分更优选实施例对其作进一步说明。
实施例1
采用蒸发冷凝工艺将Ag金属块体放入坩埚中,经由电子枪以电流强度200A加热蒸发到真空物理气相沉积PVD工艺炉中冷凝;
在真空PVD工艺炉中通入纯度为99.999%的氮气,在偏压为80V-100V的条件下,打开包含Ti的靶,弧电流为120A-200A,采用PVD工艺将冷凝状态下的Ag金属粒子的外表面沉积TiN陶瓷层,从而形成如图1所示粒径d1为68nm的TiN-Ag复合粒子粉末。
实施例2
采用蒸发冷凝工艺将Cu金属块体放入坩埚中,经由电子枪以电流强度200A加热蒸发到真空物理气相沉积PVD工艺炉中冷凝;
在真空PVD工艺炉中通入纯度为99.999%的氮气,在偏压为80V-100V的条件下,打开包含Ti的靶,弧电流为120A-200A,采用PVD工艺将冷凝状态下的Cu金属粒子的外表面沉积TiN陶瓷层,从而形成如图2所示粒径d2为154nm的TiN-Cu复合粒子粉末。
实施例3
采用蒸发冷凝工艺将Zn金属块体放入坩埚中,经由电子枪以电流强度200A加热蒸发到真空物理气相沉积PVD工艺炉中冷凝;
在真空PVD工艺炉中通入纯度为99.999%的氧气,在偏压为80V-100V的条件下, 打开包含Al的靶,弧电流为120A-200A,采用PVD工艺将冷凝状态下的Zn金属粒子的外表面沉积TiN陶瓷层,从而形成具有生长促进效果的TiN-Zn复合粒子粉末。
实施例4
采用蒸发冷凝工艺将Mg金属块体放入坩埚中,经由电子枪以电流强度200A加热蒸发到真空物理气相沉积PVD工艺炉中冷凝;
在真空PVD工艺炉中通入纯度为99.999%的氮气,在偏压为80V-100V的条件下,打开包含AlTi的混合物的靶,弧电流为120A-200A,采用PVD工艺将冷凝状态下的Mg金属粒子的外表面沉积AlTiN陶瓷层,从而形成具有生长促进效果的AlTiN-Mg复合粒子粉末。
分别将上述实施例1-2中获得的功能复合粒子涂覆在塑料制品的表面,作为以下抗菌效果实验的样品。同时,取另一相同的塑料制品,表面不涂覆功能复合材料,作为对照样。测试方法:参考ISO22196:2011。
实验数据请参见表一和表二。
表一
Figure PCTCN2017093391-appb-000001
表二
Figure PCTCN2017093391-appb-000002
注:表格中的抗菌活性值为样品相对于对照样的抗菌活性值。
由表1-2可知,相较于没有涂覆本发明实施例1-2提供的功能复合粒子的塑料,经涂覆的塑料显然具有更高的抗菌性能。
本发明实施例通过PVD工艺将生物可相容陶瓷材料包裹在具有特定功能的功能金属粒子外表面以形成功能复合粒子,该功能复合粒子中的功能金属粒子的离子态经由壳层的晶界实现缓释,从而延长了功能金属粒子的作用时间。
本发明的技术内容及技术特点已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰。因此,本发明的保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求书所涵盖。

Claims (14)

  1. 一种功能复合粒子,其包括:
    内核,所述内核由功能金属粒子构成,具有外表面;以及
    壳层,所述壳层为生物可相容陶瓷材料构成的物理气相沉积PVD陶瓷层,所述壳层附着在所述内核的外表面,
    其中,所述壳层为结晶结构从而允许所述内核中的功能金属粒子的离子态经由晶界缓释至所述壳层外。
  2. 根据权利要求1所述的功能复合粒子,其中所述功能金属粒子是抗菌金属粒子,所述抗菌金属粒子是Ag金属粒子、Zn金属粒子、Cu金属粒子或其混合物。
  3. 根据权利要求1所述的功能复合粒子,其中所述功能金属粒子是生长促进金属粒子,所述生长促进金属粒子是Ca金属粒子、K金属粒子、Mg金属粒子或其混合物。
  4. 根据权利要求1所述的功能复合粒子,其中所述功能金属粒子的粒径为5nm-5mm。
  5. 根据权利要求1所述的功能复合粒子,其中所述PVD陶瓷层为由Zr、Ti或Al构成的金属氧化物、金属氮化物中的一种或其混合物构成的生物可相容陶瓷层。
  6. 根据权利要求1所述的功能复合粒子,其中所述PVD陶瓷层为由ZrN、TiN、AlTiN或Al2O3构成的生物可相容陶瓷层。
  7. 根据权利要求1所述的功能复合粒子,其中所述PVD陶瓷层的厚度为5nm-50000nm,表面硬度为1000HV-4500HV。
  8. 一种功能复合粒子的制备方法,其包括如下步骤:
    采用蒸发冷凝工艺将由功能金属粒子组成的固体金属块体放入坩埚中,经由加热蒸发到真空物理气相沉积PVD工艺炉中冷凝;
    对冷凝状态下的功能金属粒子的外表面采用PVD工艺沉积由生物可相容陶瓷材料构成的PVD陶瓷层。
  9. 根据权利要求8所述的功能复合粒子的制备方法,其中所述功能金属粒子是 抗菌金属粒子,所述抗菌金属粒子是Ag金属粒子、Zn金属粒子、Cu金属粒子或其混合物。
  10. 根据权利要求8所述的功能复合粒子的制备方法,其中所述功能金属粒子是生长促进金属粒子,所述生长促进金属粒子是Ca金属粒子、K金属粒子、Mg金属粒子或其混合物。
  11. 根据权利要求8所述的功能复合粒子的制备方法,其中所述PVD陶瓷层为由ZrN、TiN、AlTiN或Al2O3构成的生物可相容陶瓷层。
  12. 根据权利要求8所述的功能复合粒子的制备方法,其中藉由调整加热功率改变所述功能金属粒子冷凝后的粒径。
  13. 根据权利要求8所述的功能复合粒子的制备方法,其中采用PVD工艺形成所述PVD陶瓷层的步骤包括:在真空物理气相沉积PVD工艺炉中通入纯度为99.999%的氮气或氧气,在偏压为0V-1000V的条件下,打开包含生物可相容陶瓷材料的靶,弧电流为120A-200A,采用PVD工艺将冷凝状态下的所述功能金属粒子的外表面沉积所述PVD陶瓷层。
  14. 一种根据权利要求1-7中任一权利要求所述的功能复合粒子的用途,其用于涂覆金属、布料、陶瓷或塑料的表面或植入在金属、布料、陶瓷或塑料中。
PCT/CN2017/093391 2017-07-18 2017-07-18 功能复合粒子及其制备方法 WO2019014854A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP17918160.7A EP3656488A4 (en) 2017-07-18 2017-07-18 FUNCTIONAL COMPOSITE PART AND MANUFACTURING PROCESS FOR IT
JP2020501361A JP6900570B2 (ja) 2017-07-18 2017-07-18 機能性複合粒子及びその製造方法
PCT/CN2017/093391 WO2019014854A1 (zh) 2017-07-18 2017-07-18 功能复合粒子及其制备方法
US16/628,805 US20200199736A1 (en) 2017-07-18 2017-07-18 Functional composite particles and the preparation method thereof
CN201780093300.0A CN111491751B (zh) 2017-07-18 2017-07-18 功能复合粒子及其制备方法
CN201880047951.0A CN111295475B (zh) 2017-07-18 2018-07-18 具有功能复合粒子的纤维布及其制备方法
JP2020501351A JP7122368B2 (ja) 2017-07-18 2018-07-18 機能性複合粒子を有する繊維布及びその製造方法
US16/628,088 US12115585B2 (en) 2017-07-18 2018-07-18 Fiber cloth having functional composite particles and preparation method therefor
EP18834856.9A EP3656913A4 (en) 2017-07-18 2018-07-18 FIBER FABRIC WITH FUNCTIONAL COMPOSITE PARTS AND MANUFACTURING PROCESSES FOR IT
PCT/CN2018/096183 WO2019015621A1 (zh) 2017-07-18 2018-07-18 具有功能复合粒子的纤维布及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093391 WO2019014854A1 (zh) 2017-07-18 2017-07-18 功能复合粒子及其制备方法

Publications (1)

Publication Number Publication Date
WO2019014854A1 true WO2019014854A1 (zh) 2019-01-24

Family

ID=65014997

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/093391 WO2019014854A1 (zh) 2017-07-18 2017-07-18 功能复合粒子及其制备方法
PCT/CN2018/096183 WO2019015621A1 (zh) 2017-07-18 2018-07-18 具有功能复合粒子的纤维布及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096183 WO2019015621A1 (zh) 2017-07-18 2018-07-18 具有功能复合粒子的纤维布及其制备方法

Country Status (5)

Country Link
US (2) US20200199736A1 (zh)
EP (2) EP3656488A4 (zh)
JP (2) JP6900570B2 (zh)
CN (2) CN111491751B (zh)
WO (2) WO2019014854A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238387A (zh) * 2019-06-25 2019-09-17 纳狮新材料(浙江)有限公司 功能复合粒子及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019014854A1 (zh) * 2017-07-18 2019-01-24 纳狮新材料股份有限公司 功能复合粒子及其制备方法
CN112872351B (zh) * 2021-01-13 2023-07-14 太原理工大学 一种混杂协同增强铁基耐磨材料的制备方法
KR102701898B1 (ko) * 2021-10-28 2024-09-02 중앙대학교 산학협력단 바이오 복합체 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107590A1 (en) * 2010-10-27 2012-05-03 Zhiyue Xu Nanomatrix carbon composite
CN103038005A (zh) * 2010-07-30 2013-04-10 贝克休斯公司 纳米基质金属复合材料
CN103695864A (zh) * 2014-01-06 2014-04-02 河北工业大学 碳包覆钴金属纳米颗粒的制备方法
CN103703208A (zh) * 2011-06-22 2014-04-02 贝克休斯公司 涂覆的颗粒和相关方法
CN104684398A (zh) * 2012-08-31 2015-06-03 索隆-基特林癌症研究协会 粒子、方法以及其用途
CN105965009A (zh) * 2016-05-17 2016-09-28 中国石油大学(华东) 一种磁性碳包覆纳米材料的制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851095A (en) * 1988-02-08 1989-07-25 Optical Coating Laboratory, Inc. Magnetron sputtering apparatus and process
US5681575A (en) 1992-05-19 1997-10-28 Westaim Technologies Inc. Anti-microbial coating for medical devices
JP4822378B2 (ja) * 2001-02-06 2011-11-24 株式会社ブリヂストン 成膜装置および成膜方法
US6951666B2 (en) * 2001-10-05 2005-10-04 Cabot Corporation Precursor compositions for the deposition of electrically conductive features
JP4150638B2 (ja) * 2002-06-28 2008-09-17 三井金属鉱業株式会社 無機酸化物コート金属粉及びその無機酸化物コート金属粉の製造方法
DE10309558A1 (de) * 2003-03-04 2004-09-23 Nanoparc Gmbh Verbandmaterialien mit modifizierter Oberfläche und Verfahren zu deren Herstellung
JP4164010B2 (ja) * 2003-08-26 2008-10-08 三井金属鉱業株式会社 無機超微粒子コート金属粉及びその製造方法
US7261940B2 (en) * 2004-12-03 2007-08-28 Los Alamos National Security, Llc Multifunctional nanocrystals
US7498081B2 (en) * 2005-03-02 2009-03-03 Thw Shwphwed Color Company Core-shell composite inorganic pigments and method of preparation for crystallizable glass frit compositions
TWI307646B (en) * 2005-12-06 2009-03-21 Lg Chemical Ltd Core-shell type nanoparticles and method for preparing the same
US20070207266A1 (en) * 2006-02-15 2007-09-06 Lemke Harald K Method and apparatus for coating particulates utilizing physical vapor deposition
DE102006060057A1 (de) 2006-12-19 2008-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Antimikrobiell wirkendes Material sowie Verfahren zum Herstellen eines antimikrobiell wirkenden Materials
CN101054659A (zh) * 2007-05-15 2007-10-17 扬州大学 多级加速模式下磁控溅射镀膜方法
US20120176016A1 (en) * 2007-09-28 2012-07-12 General Electric Company Core-shell particulates, articles, and method of making
US20120021034A1 (en) * 2008-12-19 2012-01-26 The Regents Of The University Of California Structured silver-mesoporous silica nanoparticles having antimicrobial activity
GB0909183D0 (en) * 2009-05-28 2009-07-08 Bedi Kathryn J Coating method
WO2011018899A1 (ja) 2009-08-12 2011-02-17 株式会社 東芝 抗ウイルス性材料とそれを用いた膜、繊維および製品
JP5389080B2 (ja) * 2010-08-27 2014-01-15 株式会社東芝 金属含有粒子集合体
KR101446318B1 (ko) * 2012-05-22 2014-10-07 한국생산기술연구원 고기능성 복합 나노입자 및 그 제조방법
CN103705294B (zh) * 2012-09-28 2016-03-02 上海微创骨科医疗科技有限公司 多功能复合药物涂层缓释系统及其制备方法
CN104494229B (zh) 2014-12-08 2016-08-17 中国人民解放军装甲兵工程学院 一种抗菌耐磨纳米复合涂层及其制备方法
CN205522773U (zh) * 2016-02-04 2016-08-31 东莞沙头朝日五金电子制品有限公司 一种具有pvd复合膜的金属加工制品
CN105861988B (zh) 2016-06-22 2019-04-23 中国科学院宁波材料技术与工程研究所 一种高硬度抗菌TiSiN/Ag纳米复合功能涂层及其制备方法和应用
WO2019014854A1 (zh) 2017-07-18 2019-01-24 纳狮新材料股份有限公司 功能复合粒子及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038005A (zh) * 2010-07-30 2013-04-10 贝克休斯公司 纳米基质金属复合材料
US20120107590A1 (en) * 2010-10-27 2012-05-03 Zhiyue Xu Nanomatrix carbon composite
CN103703208A (zh) * 2011-06-22 2014-04-02 贝克休斯公司 涂覆的颗粒和相关方法
CN104684398A (zh) * 2012-08-31 2015-06-03 索隆-基特林癌症研究协会 粒子、方法以及其用途
CN103695864A (zh) * 2014-01-06 2014-04-02 河北工业大学 碳包覆钴金属纳米颗粒的制备方法
CN105965009A (zh) * 2016-05-17 2016-09-28 中国石油大学(华东) 一种磁性碳包覆纳米材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656488A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238387A (zh) * 2019-06-25 2019-09-17 纳狮新材料(浙江)有限公司 功能复合粒子及其制备方法

Also Published As

Publication number Publication date
US12115585B2 (en) 2024-10-15
CN111491751B (zh) 2022-07-26
EP3656488A4 (en) 2021-01-06
US20210156081A1 (en) 2021-05-27
JP7122368B2 (ja) 2022-08-19
JP2020531680A (ja) 2020-11-05
WO2019015621A1 (zh) 2019-01-24
EP3656488A1 (en) 2020-05-27
US20200199736A1 (en) 2020-06-25
CN111295475B (zh) 2022-07-26
JP6900570B2 (ja) 2021-07-07
EP3656913A4 (en) 2021-01-20
CN111491751A (zh) 2020-08-04
CN111295475A (zh) 2020-06-16
EP3656913A1 (en) 2020-05-27
JP2020526682A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
WO2019014854A1 (zh) 功能复合粒子及其制备方法
Pradhaban et al. Antibacterial effects of silver–zirconia composite coatings using pulsed laser deposition onto 316L SS for bio implants
RU2131269C1 (ru) Модифицированный материал, модифицированный антимикробный материал, способ получения модифицированного материала, способ формирования антимикробного покрытия на устройстве и медицинское устройство, которое предполагается использовать в контакте с электролитом на основе спирта или воды, имеющее на своей поверхности антимикробное покрытие
Choi et al. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate
Geng et al. The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium
US6017553A (en) Anti-microbial materials
Huang et al. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content
Kizuki et al. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys
Sygnatowicz et al. Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films
US7435443B2 (en) Method to prevent low temperature degradation of zirconia
Huang et al. Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium
Nawaz et al. Multifunctional stratified composite coatings by electrophoretic deposition and RF co-sputtering for orthopaedic implants
Sunil et al. Surface functionalized titanium with enhanced bioactivity and antimicrobial properties through surface engineering strategies for bone implant applications
Kaliaraj et al. Silver-ceria stabilized zirconia composite coatings on titanium for potential implant applications
CN108411260A (zh) 一种Ti-Si-Ag-N纳米复合抗菌涂层及其制备方法
US9649338B2 (en) Use of silver-containing layers at implant surfaces
Elayaraja et al. Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique
Choy et al. In situ synthesis of osteoconductive biphasic ceramic coatings on Ti6Al4V substrate by laser-microwave hybridization
Lee et al. Formation of silver incorporated calcium phosphate film for medical applications
JP2011510173A (ja) コーティングされた医療用骨インプラントを製造する方法およびそれにより製造した医療用骨インプラント
Takahashi et al. Characterization and in vitro evaluation of biphasic calcium pyrophosphate–tricalciumphosphate radio frequency magnetron sputter coatings
KR20060056093A (ko) 은을 함유하는 인산칼슘 필름 및 그의 제조방법
Alias et al. Effect of temperature ramp rate on the morphology, phase and adhesion strength of Ag-Ta2O5 thin film
Fu et al. Enhanced bacteriostatic properties of Ti alloys by surface nitriding
Wang et al. Chemical composition and biocompatibility of Ti–Ag–O films prepared by ion beam assisted deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017918160

Country of ref document: EP

Effective date: 20200218