WO2019015444A1 - 一种多联机系统除霜控制方法 - Google Patents

一种多联机系统除霜控制方法 Download PDF

Info

Publication number
WO2019015444A1
WO2019015444A1 PCT/CN2018/092161 CN2018092161W WO2019015444A1 WO 2019015444 A1 WO2019015444 A1 WO 2019015444A1 CN 2018092161 W CN2018092161 W CN 2018092161W WO 2019015444 A1 WO2019015444 A1 WO 2019015444A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
indoor units
pls
opening degree
indoor unit
Prior art date
Application number
PCT/CN2018/092161
Other languages
English (en)
French (fr)
Inventor
禚百田
时斌
程绍江
张锐钢
张万英
Original Assignee
青岛海尔空调电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to EP18834714.0A priority Critical patent/EP3657103B1/en
Priority to US16/631,332 priority patent/US11320185B2/en
Publication of WO2019015444A1 publication Critical patent/WO2019015444A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02332Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary

Definitions

  • the invention belongs to the technical field of air conditioners, and in particular relates to a multi-line system defrosting control method.
  • the outdoor unit is connected to a plurality of indoor units.
  • Each indoor unit can be individually switched.
  • the indoor unit has an expansion valve. By controlling the opening degree of the expansion valve, the flow rate of the refrigerant entering the indoor unit heat exchanger is adjusted to realize the exchange of cold heat with the outside.
  • the heating mode is usually switched to the cooling mode. All indoor units are turned on or off according to the cooling process, and the opening degree of the indoor unit expansion valve is executed according to the uniform opening degree. In this case, the temperature of the indoor unit room that is turned on is rapidly decreased, and the user satisfaction is lowered.
  • the invention provides a multi-line system defrosting control method, which solves the problem that the temperature of the indoor unit room is drastically decreased during defrosting, and improves user satisfaction.
  • a multi-line system defrosting control method the multi-line system includes an outdoor unit and a plurality of indoor units, and an expansion valve is disposed on each connecting line between the indoor unit and the outdoor unit;
  • the control method includes:
  • Off_HP indicates the total number of powers of all the indoor units that are turned off
  • Off_PLS indicates the opening degree of the expansion valve of the indoor unit that is turned off
  • offLimitMaxPLS indicates the maximum setting opening of the expansion valve of the shutdown indoor unit
  • ALL_HP indicates the total number of capabilities of all indoor units
  • Avg_PLS indicates that the average opening degree is set.
  • the expansion valve opening degree of all indoor units is the set average opening degree, the system satisfies the defrosting requirement.
  • the determining whether the expansion valve of all the indoor units is turned off and the expansion valve opening degree of all the shutdown indoor units are ⁇ the maximum setting opening degree offLimitMaxPLS, whether the defrosting requirement is met, specifically: determining whether the condition is satisfied (Off_HP) *offLimitMaxPLS) ⁇ ALL_HP*Avg_PLS.
  • control method further includes:
  • On_PLS (ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS)/On_HP;
  • On_HP indicates the total number of powers of all the indoor units that are turned on
  • On_PLS indicates the opening degree of the expansion valve of the indoor unit.
  • control method further includes: the indoor unit includes an ordinary indoor unit and a VIP indoor unit;
  • NormalOn_PLS (ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS)/NormalOn_HP;
  • NormalOn_HP indicates the total number of powers of all common indoor units
  • NormalOn_PLS indicates the expansion valve opening of the ordinary opening indoor unit
  • onLimitMaxPLS indicates the maximum setting opening of the expansion valve of the ordinary starting indoor unit.
  • the determination is that when all the expansion valves of the shutdown indoor unit are the maximum set opening degree offLimitMaxPLS, the expansion valve opening degrees of all the ordinary opening indoor units are ⁇ the maximum set opening degree onLimitMaxPLS, and all the VIP opening indoor units are expanded. Whether the defrosting requirements are met when the valves are closed; specifically:
  • the expansion valve opening degrees of all the ordinary opening indoor units are ⁇ the maximum setting opening degree onLimitMaxPLS, and the expansion valves of all the VIP starting indoor units are closed. Does not meet the defrosting requirements;
  • VIP_HP indicates the total number of capabilities of all VIP boot indoor units
  • VIP_PLS indicates the expansion valve opening of the VIP indoor unit.
  • the advantages and positive effects of the present invention are: the multi-line system defrosting control method of the present invention, when the expansion valves of all the indoor units are turned off, and the expansion valve opening degrees of all the shutdown indoor units are ⁇ maximum Set the opening degree, when the system meets the defrosting requirements, control the expansion valve of all the indoor units to be turned off, solve the problem that the temperature of the indoor unit room is drastically decreased during defrosting, improve the user satisfaction; control the expansion valve of the indoor unit
  • Figure 1 is a block diagram of the structure of a multi-line system
  • FIG. 2 is a flow chart of an embodiment of a multi-line system defrosting control method proposed by the present invention
  • FIG. 3 is a flow chart of still another embodiment of the multi-line system defrosting control method proposed by the present invention.
  • the multi-line system includes an outdoor unit and a plurality of indoor units, and an expansion valve is disposed on each of the connecting lines of the indoor unit and the outdoor unit.
  • the expansion valve is generally disposed on the liquid pipe of the indoor unit to regulate the flow rate of the refrigerant flowing into the indoor unit.
  • Each indoor unit liquid pipe is connected to the liquid pipe of the outdoor unit.
  • an expansion valve 1 is disposed on the liquid pipe of the indoor unit 1
  • an expansion valve 2 is disposed on the liquid pipe of the indoor unit 2
  • an expansion valve 3 is disposed on the liquid pipe of the indoor unit 3.
  • an expansion valve N is placed on the liquid pipe of the indoor unit N.
  • the opening steps of the expansion valves of all indoor units are equal.
  • the expansion valves of all indoor units are in the closed state at the 0 step; the full opening state at the 500 steps, that is, the fully open state.
  • the diameter of the expansion valve is different, and the larger the capacity of the indoor unit, the larger the diameter of the expansion valve of the indoor unit.
  • the multi-line system defrosting control method of this embodiment mainly includes the following steps, as shown in FIG. 2 .
  • Step S11 It is judged whether or not the defrosting condition is reached.
  • a temperature sensor is arranged on the heat exchanger of the outdoor unit to collect the temperature of the heat exchanger of the outdoor unit. When the collected temperature ⁇ the set temperature, the defrosting condition is reached, and the defrosting is started; otherwise, the defrosting condition is not reached.
  • the multi-line system is operating normally.
  • step S12 is performed.
  • Step S12 judging whether the system meets the defrosting requirement when the expansion valves of all the indoor units are turned off and the expansion valve opening degrees of all the shutdown indoor units are ⁇ the maximum set opening degree offLimitMaxPLS.
  • step S13 is performed.
  • Off_HP indicates the total number of powers of all the indoor units that are turned off, that is, the sum of the number of powers of all the indoor units that are turned off.
  • offLimitMaxPLS indicates the maximum setting opening of the expansion valve of the shutdown indoor unit.
  • ALL_HP indicates the total number of powers of all indoor units, that is, the sum of the number of horsepower of all indoor units.
  • Avg_PLS indicates that the average opening degree is set.
  • the expansion valve opening degree of all indoor units is the set average opening degree, the system satisfies the defrosting requirement.
  • Avg_PLS is obtained through pre-test; specifically, during the test, the expansion valves controlling all indoor units (including the start-up and shutdown indoor units) are the same opening degree.
  • the outdoor unit heat exchanger is completed.
  • the frost indicates that the system meets the defrosting requirement and achieves the defrosting effect at this opening degree.
  • the opening degree of the expansion valve is the set average opening degree. For example, when all the indoor units have an expansion valve opening of 150 steps, and the outdoor unit heat exchanger completes the defrosting within a set time (for example, 5 minutes), the average opening degree is set to 150 steps.
  • the expansion valve controls the amount of refrigerant flowing through the indoor heat exchanger, when the amount of refrigerant is too large, the heat exchange with the room is insufficient, and the ideal state of absorbing the heat of the indoor unit to the outdoor unit for defrosting is not achieved. Defrost effect. When the defrosting is not clean, the heating operation is performed again, and the outdoor unit will soon become frosted again, and the heating effect is getting worse. Therefore, while satisfying the defrosting requirement, the opening degree of the expansion valve of the indoor unit should be as small as possible, the smaller the opening degree of the expansion valve, the smaller the heat of absorbing the room of the indoor unit, and the temperature change of the room is not obvious.
  • the expansion valve of the shutdown indoor unit is fully opened, that is, the opening degree of the expansion valve is fully open, the capacity of the indoor unit heat exchanger is not considered at this time, and the outdoor unit can be completely defrost;
  • the opening degree of the expansion valve is fully open, the refrigerant cannot fully absorb the heat of the indoor environment temperature, and more liquid refrigerant does not evaporate and directly flows into the compressor, causing the compressor to perform liquid compression, and the compressor is easily damaged. Therefore, in this embodiment, when all the expansion valves of the indoor unit are turned off, and the expansion valves of all the indoor units are all set to the maximum opening degree to meet the defrosting requirement, the expansion valve of the indoor unit is also required to be calculated.
  • the opening degree Off_PLS is set instead of directly setting the opening degree to the maximum setting opening degree offLimitMaxPLS, so as to reduce the expansion valve opening degree of the shutdown indoor unit while satisfying the defrosting requirement, and avoid the defrosting effect caused by insufficient heat exchange. Poor and other issues.
  • Off_PLS indicates the opening degree of the expansion valve of the indoor unit that is turned off.
  • the opening degree of the expansion valve of all the shutdown indoor units is ⁇ the maximum setting opening degree, and when the system meets the defrosting requirement, all the starting are controlled.
  • the expansion valve of the indoor unit is closed, which solves the problem that the temperature of the indoor unit in the indoor unit is drastically decreased during defrosting, and improves the user satisfaction;
  • the opening of the expansion valve should be minimized to avoid damage to the compressor and affect the defrosting effect.
  • the expansion valve opening degree of each indoor unit is dynamically calculated during the defrosting process, the influence of the defrosting on the booting room is minimized, and the defrosting effect of the outdoor unit is ensured.
  • step S14 is performed.
  • On_HP indicates the total number of powers of all the indoor units that are turned on;
  • On_PLS indicates the opening degree of the expansion valve of the indoor unit.
  • the expansion valve opening degree of the shutdown indoor unit reaches the maximum setting opening degree offLimitMaxPLS and the defrosting requirement cannot be satisfied, it is necessary to control the expansion valve of the opening indoor unit to open.
  • the indoor unit includes a general indoor unit and a VIP indoor unit. In the case of heating and defrosting, it is preferred to ensure that the room temperature of the VIP indoor unit is not affected.
  • Step S15 If the expansion valves of all the indoor units are turned off and the expansion valve opening of all the indoor units is ⁇ the maximum setting opening offLimitMaxPLS, the defrosting requirement is not met, ie (Off_HP*offLimitMaxPLS) ⁇ ALL_HP*Avg_PLS, then Step S15, see FIG.
  • Step S15 judging that when all the expansion valves of the shutdown indoor unit are the maximum set opening degree offLimitMaxPLS, the expansion valve opening degrees of all the ordinary opening indoor units are ⁇ the maximum setting opening degree onLimitMaxPLS, and the expansion valves of all the VIP starting indoor units are closed. Whether the defrosting requirements are met.
  • step S16 If yes, that is, when (Off_HP*offLimitMaxPLS+NormalOn_HP*onLimitMaxPLS) ⁇ ALL_HP*Avg_PLS, the defrosting requirement can be satisfied without opening the expansion valve of the VIP opening indoor unit, and step S16 is performed.
  • step S17 If no, that is, when (Off_HP*offLimitMaxPLS+NormalOn_HP*onLimitMaxPLS) ⁇ ALL_HP*Avg_PLS, the expansion valve of the VIP indoor unit is required to be opened to satisfy the defrosting request, and step S17 is performed.
  • NormalOn_HP indicates the total capacity of all ordinary indoor units
  • NormalOn_PLS indicates the expansion valve opening of the ordinary opening indoor unit
  • onLimitMaxPLS indicates the maximum setting opening of the expansion valve of the ordinary opening indoor unit.
  • all the expansion valves of the ordinary opening indoor unit are ⁇ the maximum setting opening onLimitMaxPLS, which can meet the defrosting requirements, in order to minimize the ordinary opening indoor unit
  • Step S17 controlling the opening degree of the expansion valve of all the shutdown indoor units to be the maximum setting opening degree offLimitMaxPLS; controlling the opening degree of the expansion valve of all the ordinary opening indoor units to be the maximum setting opening degree onLimitMaxPLS;
  • VIP_HP indicates the total capacity of all VIP indoor units
  • VIP_PLS indicates the expansion valve opening of the VIP indoor unit.
  • the expansion valve of all the shutdown indoor units When relying on the expansion valve of all the shutdown indoor units to reach the maximum setting opening offLimitMaxPLS, the expansion valve of all common starting indoor units reaches the maximum setting opening onLimitMaxPLS, and can not meet the defrosting requirements, in order to minimize the VIP opening indoor unit
  • the frost requirement reduces the impact on the room temperature of the VIP indoor unit.
  • the maximum setting opening of the expansion valve of the shutdown indoor unit is within the range of values, which can fully utilize the shutdown indoor unit for heat exchange defrosting, and avoid excessive opening of the valve, causing compressor fluid to compress and damage the compressor.
  • the maximum setting opening degree of the expansion valve of the ordinary starting indoor unit is within the range of the value, and the heat exchange defrosting is performed by using the ordinary starting indoor unit, and the excessive opening degree is avoided, which causes the temperature of the room of the ordinary starting indoor unit to drop greatly.
  • the opening is 500 steps
  • the Avg_PLS is 150 steps
  • the offLimitMaxPLS is 300 steps
  • the onLimitMaxPLS is 225 steps.
  • the user comfort firstly satisfies the VIP booting indoor unit during the defrosting process, and secondly considers the ordinary booting indoor unit.
  • the temperature influence on the room of the indoor unit can be avoided to the utmost extent, and the satisfaction of the user is improved.
  • VIP_PLS can be set to 0. Only when the opening degree of all ordinary open indoor units and shutdown indoor unit expansion valves reaches the maximum opening degree, and the system cannot guarantee the defrosting effect, the expansion valve of the VIP starting indoor unit will be opened. To ensure normal defrosting effect.
  • Case 3 The user added 1# and 5# to the VIP indoor unit.
  • Off_HP 0.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种多联机系统除霜控制方法,多联机系统包括室外机和多个室内机,在每个室内机与室外机的连接管路上均设置有膨胀阀;当所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度,系统满足除霜要求时,控制所有开机室内机的膨胀阀关闭,解决了除霜时开机室内机房间温度急剧下降的问题,提高了用户满意度;控制关机室内机的膨胀阀开度为Off_PLS=ALL_HP*Avg_PLS/Off_HP;在满足除霜要求的同时,尽量减小膨胀阀的开度,避免损坏压缩机以及影响除霜效果。

Description

一种多联机系统除霜控制方法 技术领域
本发明属于空调技术领域,具体地说,是涉及一种多联机系统除霜控制方法。
背景技术
多联机系统中,通常室外机连接多个室内机。每个室内机可以单独开关,室内机有一个膨胀阀,通过控制膨胀阀的开度来调节进入室内机换热器的冷媒流量,实现与外界的冷热量交换。
在制热运行时,室外机环境温度较低时,室外机换热器容易结霜,影响换热效果,需要进行除霜,除霜结束后再进行正常的制热。除霜时,通常是将制热模式切换为制冷模式,所有室内机无论是开机还是关机,都按照制冷处理,室内机膨胀阀开度按照统一开度执行。这种情况下导致开机的室内机房间温度迅速下降,降低用户满意度。
发明内容
本发明提供了一种多联机系统除霜控制方法,解决了除霜时开机室内机房间温度急剧下降的问题,提高用户满意度。
为解决上述技术问题,本发明采用下述技术方案予以实现:
一种多联机系统除霜控制方法,所述多联机系统包括室外机和多个室内机,在每个室内机与室外机的连接管路上均设置有膨胀阀;
所述控制方法包括:
判断是否达到除霜条件;
若是,则判断当所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,是否满足除霜要求;
若是,则控制所有开机室内机的膨胀阀关闭,控制所有关机室内机的膨胀阀开度为Off_PLS=ALL_HP*Avg_PLS/Off_HP;
其中,
Off_HP表示所有关机室内机的总能力匹数;
Off_PLS表示关机室内机的膨胀阀开度;
offLimitMaxPLS表示关机室内机的膨胀阀最大设定开度;
ALL_HP表示所有室内机的总能力匹数;
Avg_PLS表示设定平均开度,当所有室内机的膨胀阀开度均为该设定平均开度时,系统满足除霜要求。
进一步的,所述判断当所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,是否满足除霜要求,具体包括:判断是否满足(Off_HP*offLimitMaxPLS)≥ALL_HP*Avg_PLS。
又进一步的,所述控制方法还包括:
若所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,不满足除霜要求,则
控制所有关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS;
控制所有开机室内机的膨胀阀开度为On_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS)/On_HP;
其中,
On_HP表示所有开机室内机的总能力匹数;
On_PLS表示开机室内机的膨胀阀开度。
更进一步的,所述控制方法还包括:将室内机包括普通室内机和VIP室内机;
若所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,不满足除霜要求,则
判断当所有关机室内机的膨胀阀均为最大设定开度offLimitMaxPLS、所有 普通开机室内机的膨胀阀开度均≤最大设定开度onLimitMaxPLS、所有VIP开机室内机的膨胀阀均关闭时,是否满足除霜要求;
若是,则控制所有关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS;
控制所有普通开机室内机的膨胀阀开度为NormalOn_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS)/NormalOn_HP;
控制所有VIP开机室内机的膨胀阀关闭;
其中,
NormalOn_HP表示所有普通开机室内机的总能力匹数;
NormalOn_PLS表示普通开机室内机的膨胀阀开度;
onLimitMaxPLS表示普通开机室内机的膨胀阀最大设定开度。
再进一步的,所述判断当所有关机室内机的膨胀阀均为最大设定开度offLimitMaxPLS、所有普通开机室内机的膨胀阀开度均≤最大设定开度onLimitMaxPLS、所有VIP开机室内机的膨胀阀均关闭时,是否满足除霜要求;具体包括:
判断是否满足(Off_HP*offLimitMaxPLS)+(NormalOn_HP*onLimitMaxPLS)≥ALL_HP*Avg_PLS。
优选的,若所有关机室内机的膨胀阀均为最大设定开度offLimitMaxPLS、所有普通开机室内机的膨胀阀开度均≤最大设定开度onLimitMaxPLS、所有VIP开机室内机的膨胀阀均关闭时,不满足除霜要求;则
控制所有关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS;
控制所有普通开机室内机的膨胀阀开度为最大设定开度onLimitMaxPLS;
控制所有VIP开机室内机的膨胀阀开度为VIP_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS-NormalOn_HP*onLimitMaxPLS)/VIP_HP;
其中,
VIP_HP表示所有VIP开机室内机的总能力匹数;
VIP_PLS表示VIP开机室内机的膨胀阀开度。
进一步的,所述关机室内机的膨胀阀最大设定开度offLimitMaxPLS=K1*Avg_PLS,2≤K1≤3。
又进一步的,K1=2。
更进一步的,所述普通开机室内机的膨胀阀最大设定开度onLimitMaxPLS=K2*Avg_PLS,1≤K2<2。
再进一步的,K2=1.5。
与现有技术相比,本发明的优点和积极效果是:本发明的多联机系统除霜控制方法,当所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度,系统满足除霜要求时,控制所有开机室内机的膨胀阀关闭,解决了除霜时开机室内机房间温度急剧下降的问题,提高了用户满意度;控制关机室内机的膨胀阀开度为Off_PLS=ALL_HP*Avg_PLS/Off_HP;在满足除霜要求的同时,尽量减小膨胀阀的开度,避免损坏压缩机以及影响除霜效果。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
图1是多联机系统的结构框图;
图2是本发明所提出的多联机系统除霜控制方法的一个实施例的流程图;
图3是本发明所提出的多联机系统除霜控制方法的又一个实施例的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
多联机系统包括室外机和多个室内机,在每个室内机与室外机的连接管路上均设置有膨胀阀。膨胀阀一般布设在室内机的液管上,调节流入室内机的冷 媒流量。每个室内机液管与室外机的液管连接。例如,参见图1所示,在室内机1的液管上布设有膨胀阀1,在室内机2的液管上布设有膨胀阀2,在室内机3的液管上布设有膨胀阀3,……,在室内机N的液管上布设有膨胀阀N。
所有室内机的膨胀阀的开度步数是相等的,例如,所有室内机的膨胀阀均在0步时为关闭状态;500步时为满开度状态,即全开状态。但是,膨胀阀的口径是不同的,室内机的能力匹数越大,该室内机的膨胀阀的口径越大。
本实施例的多联机系统除霜控制方法,主要包括下述步骤,参见图2所示。
步骤S11:判断是否达到除霜条件。
在室外机的换热器上布设有温度传感器,采集室外机换热器的温度,当采集到的温度≤设定温度时,即达到除霜条件,开始除霜;否则,没达到除霜条件,多联机系统正常运行。
若达到除霜条件,则控制四通阀换向,制热模式转为制冷模式,所有室内风机关闭,并执行步骤S12。
步骤S12:判断当所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,系统是否满足除霜要求。
若满足除霜要求(即实现除霜效果),则执行步骤S13。
在本实施例中,通过判断是否满足(Off_HP*offLimitMaxPLS)≥ALL_HP*Avg_PLS,来判断是否满足除霜要求。室内机能力匹数不同,在相同的膨胀阀开度下,冷媒流量不同,对除霜的效果不同,因此,在该判断式中,考虑到了室内机的能力匹数,更加合理地判断是否满足除霜要求。
Off_HP表示所有关机室内机的总能力匹数,即所有关机室内机的能力匹数之和。offLimitMaxPLS表示关机室内机的膨胀阀最大设定开度。
ALL_HP表示所有室内机的总能力匹数,即所有室内机的能力匹数之和。Avg_PLS表示设定平均开度,当所有室内机的膨胀阀开度均为该设定平均开度时,系统满足除霜要求。Avg_PLS通过预先的试验获得;具体来说,在试验过程中,控制所有室内机(包括开机和关机室内机)的膨胀阀均为同一开度,若 设定时间内,室外机换热器完成除霜,说明在该开度下,系统满足除霜要求,实现除霜效果,此时膨胀阀的开度即为设定平均开度。例如,所有的室内机的膨胀阀开度为150步时,在设定时间(如5分钟)内,室外机换热器完成除霜,则设定平均开度为150步。
步骤S13:控制所有开机室内机的膨胀阀关闭,控制所有关机室内机的膨胀阀开度为Off_PLS=ALL_HP*Avg_PLS/Off_HP。
由于膨胀阀控制流经室内机换热器的冷媒量,当冷媒量过大时,与房间的换热不充分,达不到吸收室内机房间热量提供给室外机进行除霜的理想状态,影响除霜效果。除霜不净时,再次进行制热运转,室外机很快又会结霜,制热效果越来越差。因此,在满足除霜要求的同时,室内机膨胀阀开度要尽量小,膨胀阀开度越小,吸收室内机房间的热量就越小,房间的温度变化就不明显。如果把关机室内机的膨胀阀全部打开,也就是膨胀阀的开度为全开,此时并未考虑室内机换热器的能力大小,也没有考虑室外机能否完全除霜;当关机室内机膨胀阀的开度为全开时,冷媒无法全部吸收室内机环境温度热量,较多的液态冷媒不会蒸发,直接流入压缩机,导致压缩机进行液压缩,压缩机易损坏。因此,在本实施例中,当所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀均为最大设定开度即可满足除霜要求时,也需要计算关机室内机的膨胀阀开度Off_PLS,而不是直接将开度设为最大设定开度offLimitMaxPLS,以使得在满足除霜要求的同时,尽量减小关机室内机的膨胀阀开度,避免换热不足导致的除霜效果差等问题。Off_PLS表示关机室内机的膨胀阀开度。
因此,当(Off_HP*offLimitMaxPLS)≥ALL_HP*Avg_PLS时,控制开机室内机的膨胀阀关闭,控制关机室内机的膨胀阀开度为Off_PLS=ALL_HP*Avg_PLS/Off_HP,而且,Off_PLS≤offLimitMaxPLS。
本实施例的多联机系统除霜控制方法,当所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度,系统满足除霜要求时,控制所有开机室内机的膨胀阀关闭,解决了除霜时开机室内机房间温度急剧下降的 问题,提高了用户满意度;控制所有关机室内机的膨胀阀开度为Off_PLS=ALL_HP*Avg_PLS/Off_HP;在满足除霜要求的同时,尽量减小膨胀阀的开度,避免损坏压缩机以及影响除霜效果。
本实施例的除霜控制方法,根据室内机的开关机情况,除霜过程中动态计算各室内机的膨胀阀开度,尽量减少除霜对开机房间的影响,并保证室外机除霜效果。
在本实施例中,若所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀均≤最大设定开度offLimitMaxPLS时,不满足除霜要求,即(Off_HP*offLimitMaxPLS)<ALL_HP*Avg_PLS时,则执行步骤S14。
步骤S14:控制所有关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS;控制所有开机室内机的膨胀阀开度为On_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS)/On_HP。其中,On_HP表示所有开机室内机的总能力匹数;On_PLS表示开机室内机的膨胀阀开度。
因此,当仅靠关机室内机的膨胀阀开度达到最大设定开度offLimitMaxPLS已不能满足除霜要求时,需要控制开机室内机的膨胀阀打开。为了尽量避免影响开机室内机的房间温度,并尽量充分利用关机室内机,因此控制关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS,然后平均分配开机室内机的膨胀阀开度On_PLS,即On_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS)/On_HP;从而既满足除霜要求,又尽量降低对开机室内机房间温度的影响。
作为本实施例的另一种优选设计方案,室内机包括普通室内机和VIP室内机。在制热除霜时,优先保证VIP开机室内机的房间温度不受影响。
若所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,不满足除霜要求,即(Off_HP*offLimitMaxPLS)<ALL_HP*Avg_PLS时,则执行步骤S15,参见图3所示。
步骤S15:判断当所有关机室内机的膨胀阀均为最大设定开度offLimitMaxPLS、所有普通开机室内机的膨胀阀开度均≤最大设定开度 onLimitMaxPLS、所有VIP开机室内机的膨胀阀均关闭时,是否满足除霜要求。
在本实施例中,通过判断是否满足(Off_HP*offLimitMaxPLS)+(NormalOn_HP*onLimitMaxPLS)≥ALL_HP*Avg_PLS,来判断是否满足除霜要求。室内机能力匹数不同,在相同的膨胀阀开度下,冷媒流量不同,对除霜的效果不同,因此,在该判断式中,考虑到了室内机的能力匹数,更加合理地判断是否满足除霜要求。
若是,即当(Off_HP*offLimitMaxPLS+NormalOn_HP*onLimitMaxPLS)≥ALL_HP*Avg_PLS时,无需VIP开机室内机的膨胀阀打开,即可满足除霜要求,执行步骤S16。
若否,即当(Off_HP*offLimitMaxPLS+NormalOn_HP*onLimitMaxPLS)<ALL_HP*Avg_PLS时,需要VIP开机室内机的膨胀阀打开,才可满足除霜要求,执行步骤S17。
步骤S16:控制所有关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS;控制所有普通开机室内机的膨胀阀开度为NormalOn_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS)/NormalOn_HP;控制所有VIP开机室内机的膨胀阀关闭。
其中,NormalOn_HP表示所有普通开机室内机的总能力匹数;NormalOn_PLS表示普通开机室内机的膨胀阀开度;onLimitMaxPLS表示普通开机室内机的膨胀阀最大设定开度。
当依靠所有关机室内机的膨胀阀达到最大设定开度offLimitMaxPLS、所有普通开机室内机的膨胀阀均≤最大设定开度onLimitMaxPLS,即可满足除霜要求时,为尽量减小普通开机室内机的膨胀阀开度,降低对普通开机室内机房间温度的影响,控制普通开机室内机的膨胀阀开度为NormalOn_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS)/NormalOn_HP,从而实现既满足除霜要求,又降低对普通开机室内机房间温度的影响,同时又避免了对VIP开机室内机的影响。
步骤S17:控制所有关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS;控制所有普通开机室内机的膨胀阀开度为最大设定开度onLimitMaxPLS;
控制所有VIP开机室内机的膨胀阀开度为VIP_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS-NormalOn_HP*onLimitMaxPLS)/VIP_HP。
其中,VIP_HP表示所有VIP开机室内机的总能力匹数;VIP_PLS表示VIP开机室内机的膨胀阀开度。
当依靠所有关机室内机的膨胀阀达到最大设定开度offLimitMaxPLS、所有普通开机室内机的膨胀阀达到最大设定开度onLimitMaxPLS,也无法满足除霜要求时,为尽量减小VIP开机室内机的膨胀阀开度,降低对VIP开机室内机房间温度的影响,控制VIP开机室内机的膨胀阀开度为VIP_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS-NormalOn_HP*onLimitMaxPLS)/VIP_HP,从而实现既满足除霜要求,又降低对VIP开机室内机房间温度的影响。
在本实施例中,关机室内机的膨胀阀最大设定开度offLimitMaxPLS要小于膨胀阀全开时的开度,offLimitMaxPLS=K1*Avg_PLS,2≤K1≤3。关机室内机的膨胀阀最大设定开度在该取值范围内,既能充分利用关机室内机进行换热除霜,又避免阀开度过大导致压缩机液压缩,损坏压缩机。作为本实施例的一种优选设计方案,K1=2,即offLimitMaxPLS=2*Avg_PLS,既充分利用关机室内机进行除霜,保证除霜效果,又避免压缩机液压缩、损坏压缩机。
在本实施例中,普通开机室内机的膨胀阀最大设定开度onLimitMaxPLS要小于膨胀阀全开时的开度,onLimitMaxPLS=K2*Avg_PLS,1≤K2<2。普通开机室内机的膨胀阀最大设定开度在该取值范围内,既利用普通开机室内机进行换热除霜,又避免开度过大导致普通开机室内机房间温度下降较大。作为本实施例的一种优选设计方案,K2=1.5,即onLimitMaxPLS=1.5*Avg_PLS,既利用普通开机室内机进行除霜,保证除霜效果,又避免对普通开机室内机房间温度 影响较大。
例如,膨胀阀全开时的开度为500步,Avg_PLS为150步,则offLimitMaxPLS为300步,onLimitMaxPLS为225步。
本实施例的除霜控制方法,在除霜过程中用户舒适感优先满足VIP开机室内机,其次考虑普通开机室内机。在保证除霜效果的前提下,最大限度的避免对开机室内机房间的温度影响,提升用户的满意度,
除霜过程中各室内机膨胀阀开度的计算公式为:
(VIP_HP*VIP_PLS)+(NormalOn_HP*NormalOn_PLS)+(Off_HP*Off_PLS)=ALL_HP*Avg_PLS。
一般情况下VIP_PLS可设定为0,只有在所有普通开机室内机、关机室内机膨胀阀开度都达到最大开度,系统也无法保证除霜效果时,VIP开机室内机的膨胀阀才会打开,以保证正常的除霜效果。
下面,以8台室内机为例,对多联机控制方法的具体步骤进行详细的描述。
表一:
内机编号 1# 2# 3# 4# 5# 6# 7# 8#
能力匹数HP 2 1 3 2.5 2 1.5 3 5
VIP标志
所有室内机的总能力匹数ALL_HP=2+1+3+2.5+2+1.5+3+5=20。
设定Avg_PLS=150,onLimitMaxPLS=225,offLimitMaxPLS=300。
ALL_HP*Avg_PLS=20*150。
情形一:
内机编号 1# 2# 3# 4# 5# 6# 7# 8#
开关标志 ON OFF OFF OFF ON ON ON OFF
膨胀阀开度 0 261 261 261 0 0 0 261
所有关机室内机的总能力匹数Off_HP=1+3+2.5+5=11.5,(即2#、3#、4#、8#室内机能力匹数之和)。
所有普通开机室内机的总能力匹数NormalOn_HP=2+2+1.5=5.5,(即1#、5#、6#室内机能力匹数之和)。
所有VIP开机室内机的总能力匹数VIP_HP=3,(只计算开机的内机7#,关机的2#不算)。
由于11.5*300>20*150,依靠关机室内机打开膨胀阀即可满足除霜要求,因此VIP_PLS=0,NormalOn_PLS=0,Off_PLS=(20*150)/11.5=261<300。
也就是说,当VIP_PLS=0,NormalOn_PLS=0时,Off_PLS=(20*150)/11.5=261<300,满足系统除霜要求,并保证了VIP开机室内机和普通开机室内机的效果,不会因为除霜导致房间温度迅速下降。
情形二、
内机编号 1# 2# 3# 4# 5# 6# 7# 8#
开关标志 ON OFF ON OFF ON ON ON OFF
膨胀阀开度 53 300 53 300 53 300 0 300
所有关机室内机的总能力匹数Off_HP=1+2.5+5=8.5,(即2#、4#、8#室内机能力匹数之和)。
所有普通开机室内机的总能力匹数NormalOn_HP=2+3+2+1.5=8.5,(即1#、3#、5#、6#室内机能力匹数之和)。
所有VIP开机室内机的总能力匹数VIP_HP=3,(即7#室内机能力匹数)。
由于8.5*300<20*150,8.5*300+8.5*225>20*150,依靠关机室内机和普通开机室内机打开膨胀阀即可满足除霜要求,因此,VIP_PLS=0,Off_PLS=300,NormalOn_PLS=((20*150)-(8.5*300))/8.5=53<225。
也就是说,当VIP_PLS=0,NormalOn_PLS=0时,Off_PLS=(20*150)/8.5=353>300,超过最大设定开度,不能满足系统除霜要求,需要打开普通开机室内机的膨胀阀,只能优先保证VIP开机室内机的房间温度不受除霜影响。重新计算后VIP_PLS=0,Off_PLS=300,NormalOn_PLS=((20*150)-(8.5*300))/8.5=53<225。
情形三:用户增加了1#、5#为VIP室内机。
内机编号 1# 2# 3# 4# 5# 6# 7# 8#
能力匹数HP 2 1 3 2.5 2 1.5 3 5
VIP标志
开关标志 ON ON ON ON ON ON ON ON
膨胀阀开度 38 38 225 225 38 225 38 225
所有关机室内机的总能力匹数Off_HP=0。
所有普通开机室内机的总能力匹数NormalOn_HP=3+2.5+1.5+5=12;(即3#、4#、6#、8#室内机能力匹数之和)。
所有VIP开机室内机的总能力匹数VIP_HP=2+1+2+3=8,(即1#、2#、5#、7#室内机能力匹数之和)。
由于12*225<20*150,依靠普通开机室内机打开膨胀阀无法满足除霜要求,还需要VIP开机室内机打开膨胀阀,因此,NormalOn_PLS=225,VIP_PLS=((20*150)-(12*225))/8=38。
也就是说,当VIP_PLS=0,Off_PLS=300,NormalOn_PLS=(20*150)/12=250>225,超过最大设定开度,不能满足系统除霜要求,或者普通开机室内机的房间温度下降很明显,需要打开VIP开机室内机的膨胀阀予以平衡。重新计算后Off_PLS=300,NormalOn_PLS=225,VIP_PLS=((20*150)-(12*225))/8=38。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种多联机系统除霜控制方法,所述多联机系统包括室外机和多个室内机,在每个室内机与室外机的连接管路上均设置有膨胀阀;其特征在于:
    所述控制方法包括:
    判断是否达到除霜条件;
    若是,则判断当所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,是否满足除霜要求;
    若是,则控制所有开机室内机的膨胀阀关闭,控制所有关机室内机的膨胀阀开度为Off_PLS=ALL_HP*Avg_PLS/Off_HP;
    其中,
    Off_HP表示所有关机室内机的总能力匹数;
    Off_PLS表示关机室内机的膨胀阀开度;
    offLimitMaxPLS表示关机室内机的膨胀阀最大设定开度;
    ALL_HP表示所有室内机的总能力匹数;
    Avg_PLS表示设定平均开度,当所有室内机的膨胀阀开度均为该设定平均开度时,系统满足除霜要求。
  2. 根据权利要求1所述的控制方法,其特征在于:所述判断当所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,是否满足除霜要求,具体包括:
    判断是否满足(Off_HP*offLimitMaxPLS)≥ALL_HP*Avg_PLS。
  3. 根据权利要求1所述的控制方法,其特征在于:所述控制方法还包括:
    若所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,不满足除霜要求,则
    控制所有关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS;
    控制所有开机室内机的膨胀阀开度为On_PLS=(ALL_HP*Avg_PLS- Off_HP*offLimitMaxPLS)/On_HP;
    其中,
    On_HP表示所有开机室内机的总能力匹数;
    On_PLS表示开机室内机的膨胀阀开度。
  4. 根据权利要求1所述的控制方法,其特征在于:所述控制方法还包括:将室内机包括普通室内机和VIP室内机;
    若所有开机室内机的膨胀阀均关闭、所有关机室内机的膨胀阀开度均≤最大设定开度offLimitMaxPLS时,不满足除霜要求,则
    判断当所有关机室内机的膨胀阀均为最大设定开度offLimitMaxPLS、所有普通开机室内机的膨胀阀开度均≤最大设定开度onLimitMaxPLS、所有VIP开机室内机的膨胀阀均关闭时,是否满足除霜要求;
    若是,则控制所有关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS;
    控制所有普通开机室内机的膨胀阀开度为NormalOn_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS)/NormalOn_HP;
    控制所有VIP开机室内机的膨胀阀关闭;
    其中,
    NormalOn_HP表示所有普通开机室内机的总能力匹数;
    NormalOn_PLS表示普通开机室内机的膨胀阀开度;
    onLimitMaxPLS表示普通开机室内机的膨胀阀最大设定开度。
  5. 根据权利要求4所述的控制方法,其特征在于:所述判断当所有关机室内机的膨胀阀均为最大设定开度offLimitMaxPLS、所有普通开机室内机的膨胀阀开度均≤最大设定开度onLimitMaxPLS、所有VIP开机室内机的膨胀阀均关闭时,是否满足除霜要求;具体包括:
    判断是否满足(Off_HP*offLimitMaxPLS)+(NormalOn_HP*onLimitMaxPLS)≥ALL_HP*Avg_PLS。
  6. 根据权利要求4所述的控制方法,其特征在于:若所有关机室内机的膨胀阀均为最大设定开度offLimitMaxPLS、所有普通开机室内机的膨胀阀开度均≤最大设定开度onLimitMaxPLS、所有VIP开机室内机的膨胀阀均关闭时,不满足除霜要求;则
    控制所有关机室内机的膨胀阀开度为最大设定开度offLimitMaxPLS;
    控制所有普通开机室内机的膨胀阀开度为最大设定开度onLimitMaxPLS;
    控制所有VIP开机室内机的膨胀阀开度为VIP_PLS=(ALL_HP*Avg_PLS-Off_HP*offLimitMaxPLS-NormalOn_HP*onLimitMaxPLS)/VIP_HP;
    其中,
    VIP_HP表示所有VIP开机室内机的总能力匹数;
    VIP_PLS表示VIP开机室内机的膨胀阀开度。
  7. 根据权利要求1所述的控制方法,其特征在于:所述关机室内机的膨胀阀最大设定开度offLimitMaxPLS=K1*Avg_PLS,2≤K1≤3。
  8. 根据权利要求7所述的控制方法,其特征在于:K1=2。
  9. 根据权利要求4所述的控制方法,其特征在于:所述普通开机室内机的膨胀阀最大设定开度onLimitMaxPLS=K2*Avg_PLS,1≤K2<2。
  10. 根据权利要求9所述的控制方法,其特征在于:K2=1.5。
PCT/CN2018/092161 2017-07-19 2018-06-21 一种多联机系统除霜控制方法 WO2019015444A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18834714.0A EP3657103B1 (en) 2017-07-19 2018-06-21 Defrosting control method for multi-split system
US16/631,332 US11320185B2 (en) 2017-07-19 2018-06-21 Defrosting control method for multi-split system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710588909.7 2017-07-19
CN201710588909.7A CN107461877B (zh) 2017-07-19 2017-07-19 一种多联机系统除霜控制方法

Publications (1)

Publication Number Publication Date
WO2019015444A1 true WO2019015444A1 (zh) 2019-01-24

Family

ID=60546914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092161 WO2019015444A1 (zh) 2017-07-19 2018-06-21 一种多联机系统除霜控制方法

Country Status (4)

Country Link
US (1) US11320185B2 (zh)
EP (1) EP3657103B1 (zh)
CN (1) CN107461877B (zh)
WO (1) WO2019015444A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107461877B (zh) * 2017-07-19 2020-12-08 青岛海尔空调电子有限公司 一种多联机系统除霜控制方法
CN109506401A (zh) * 2018-11-09 2019-03-22 珠海格力电器股份有限公司 一种多联机热泵的化霜控制方法、系统及存储介质
JP7209816B2 (ja) * 2019-04-18 2023-01-20 三菱電機株式会社 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置
CN110319536A (zh) * 2019-07-02 2019-10-11 宁波奥克斯电气股份有限公司 一种多联机空调系统的除霜控制方法、装置及多联机空调系统
CN112665117B (zh) * 2019-10-16 2022-06-14 广东美的制冷设备有限公司 多联机化霜方法、装置、多联机空调系统及可读存储介质
CN113294890B (zh) * 2021-05-07 2022-07-08 宁波奥克斯电气股份有限公司 空调机组的化霜控制方法、装置及空调机组
CN113203184B (zh) * 2021-05-21 2022-03-18 宁波奥克斯电气股份有限公司 一种化霜控制方法、空调、计算机可读存储介质
CN114216212A (zh) * 2021-12-10 2022-03-22 珠海格力电器股份有限公司 一种多联机空调器的制热除霜控制方法、多联机空调器
CN114963406A (zh) * 2022-05-23 2022-08-30 南京天加环境科技有限公司 一种提高长连管机组运行可靠性的控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179969A (ja) * 1998-12-15 2000-06-30 Matsushita Refrig Co Ltd 多室型空気調和機
CN104061651A (zh) * 2013-03-20 2014-09-24 珠海格力电器股份有限公司 多联机空调、多联机化霜控制系统及多联机化霜控制方法
CN104266423A (zh) * 2014-09-11 2015-01-07 珠海格力电器股份有限公司 空调多联机系统及除霜方法
CN104596032A (zh) * 2014-12-31 2015-05-06 广东美的制冷设备有限公司 空调器及其除霜控制方法
CN105674648A (zh) * 2016-04-01 2016-06-15 珠海格力电器股份有限公司 一种多联机空调系统制热除霜控制方法
CN106091505A (zh) * 2016-08-16 2016-11-09 广东美的暖通设备有限公司 空调器的除霜控制方法、除霜控制装置和空调器
CN106322580A (zh) * 2016-08-16 2017-01-11 广东美的暖通设备有限公司 多联机空调系统及其除霜控制方法和除霜控制装置
CN107461877A (zh) * 2017-07-19 2017-12-12 青岛海尔空调电子有限公司 一种多联机系统除霜控制方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285393A (ja) * 1995-04-17 1996-11-01 Matsushita Refrig Co Ltd 多室型空気調和装置
CN1104605C (zh) * 2000-06-02 2003-04-02 海尔集团公司 一拖多空调器改进的制冷系统
JP2002147879A (ja) * 2000-11-14 2002-05-22 Hitachi Ltd 多室形空気調和機およびその除霜制御方法
JP5258197B2 (ja) * 2007-01-16 2013-08-07 三菱電機株式会社 空気調和システム
JP5341622B2 (ja) * 2009-06-04 2013-11-13 日立アプライアンス株式会社 空気調和機
CN102003853B (zh) * 2010-12-20 2012-06-06 哈尔滨工业大学 多联机相变蓄能热液除霜系统
CN102997368B (zh) * 2012-12-10 2015-04-08 宁波奥克斯电气有限公司 多压缩机并联多联机智能除霜控制方法
NO2990737T3 (zh) * 2013-04-26 2018-10-27
JP5549771B1 (ja) * 2013-09-12 2014-07-16 株式会社富士通ゼネラル 空気調和装置
JP2015117847A (ja) * 2013-12-17 2015-06-25 日立アプライアンス株式会社 空気調和装置
CN104748464A (zh) * 2013-12-25 2015-07-01 珠海格力电器股份有限公司 空调系统的多联机化霜方法及装置和空调器
CN103912958B (zh) * 2014-04-10 2017-12-01 安徽美芝精密制造有限公司 空调系统的控制方法、控制装置和空调系统
CN104236186A (zh) * 2014-09-30 2014-12-24 宁波奥克斯电气有限公司 热泵多联机的除霜控制方法
JP6249932B2 (ja) * 2014-12-04 2017-12-20 三菱電機株式会社 空調システム
CN105987483A (zh) * 2015-02-05 2016-10-05 佛山市禾才科技服务有限公司 一种新型的空调除霜控制系统
CN104792075A (zh) * 2015-04-28 2015-07-22 广东美的暖通设备有限公司 一种三管制多联机空调系统回油或化霜控制方法及其系统
US10808976B2 (en) * 2016-05-16 2020-10-20 Mitsubishi Electric Corporation Air-conditioning apparatus
CN106403081B (zh) * 2016-09-07 2019-08-27 广东美的暖通设备有限公司 多联机及其控制方法
CN106524557B (zh) * 2016-11-07 2018-09-07 广东美的暖通设备有限公司 多联机系统及其除霜时的防回液控制方法
JP6451798B1 (ja) * 2017-07-31 2019-01-16 ダイキン工業株式会社 空気調和装置
JP6575625B1 (ja) * 2018-03-22 2019-09-18 株式会社富士通ゼネラル 空気調和機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179969A (ja) * 1998-12-15 2000-06-30 Matsushita Refrig Co Ltd 多室型空気調和機
CN104061651A (zh) * 2013-03-20 2014-09-24 珠海格力电器股份有限公司 多联机空调、多联机化霜控制系统及多联机化霜控制方法
CN104266423A (zh) * 2014-09-11 2015-01-07 珠海格力电器股份有限公司 空调多联机系统及除霜方法
CN104596032A (zh) * 2014-12-31 2015-05-06 广东美的制冷设备有限公司 空调器及其除霜控制方法
CN105674648A (zh) * 2016-04-01 2016-06-15 珠海格力电器股份有限公司 一种多联机空调系统制热除霜控制方法
CN106091505A (zh) * 2016-08-16 2016-11-09 广东美的暖通设备有限公司 空调器的除霜控制方法、除霜控制装置和空调器
CN106322580A (zh) * 2016-08-16 2017-01-11 广东美的暖通设备有限公司 多联机空调系统及其除霜控制方法和除霜控制装置
CN107461877A (zh) * 2017-07-19 2017-12-12 青岛海尔空调电子有限公司 一种多联机系统除霜控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3657103A4 *

Also Published As

Publication number Publication date
US11320185B2 (en) 2022-05-03
US20200208890A1 (en) 2020-07-02
CN107461877B (zh) 2020-12-08
EP3657103B1 (en) 2023-05-10
CN107461877A (zh) 2017-12-12
EP3657103A1 (en) 2020-05-27
EP3657103A4 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2019015444A1 (zh) 一种多联机系统除霜控制方法
WO2018223927A1 (zh) 空调装置及其控制方法
CN107289578B (zh) 空调器及其除霜控制方法
CN109959120B (zh) 空调器的除霜方法及空调器
WO2022121351A1 (zh) 一种空调化霜控制方法、装置、存储介质及空调
CN104061705A (zh) 双级压缩空调系统及其控制方法
EP1793179A4 (en) MULTI-AIR CONDITIONING
CN104729163A (zh) 空调系统及其化霜控制方法
WO2018233457A1 (zh) 空调及其室外机除霜方法
CN111089335A (zh) 一种空调及其方法、装置和存储介质
WO2016016918A1 (ja) 空気調和装置
CN107023950B (zh) 空调器不停机除霜运行方法
JP3149688B2 (ja) 空気調和装置のデフロスト運転制御装置
CN109405101B (zh) 一种双风路中央空调机组及其控制方法
WO2020098302A1 (zh) 一种除霜系统、除霜方法及空调器
CN214223244U (zh) 一种多联机空调
CN104879950A (zh) 空调一体机系统及其控制方法
CN108800451B (zh) 空调器除霜控制方法
CN108692425B (zh) 空调器除霜控制方法
CN107023917B (zh) 空调冰箱一体机及其运行控制方法
WO2015166576A1 (ja) 空気調和装置
WO2021052193A1 (zh) 多联机空调系统中室外机均衡结霜的控制方法
WO2019227911A1 (zh) 室外机及空调系统
CN112577153A (zh) 空调机组控制方法、装置、空调机组及存储介质
CN112833480A (zh) 空气调节系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018834714

Country of ref document: EP

Effective date: 20200219