CN106524557B - 多联机系统及其除霜时的防回液控制方法 - Google Patents

多联机系统及其除霜时的防回液控制方法 Download PDF

Info

Publication number
CN106524557B
CN106524557B CN201610978531.7A CN201610978531A CN106524557B CN 106524557 B CN106524557 B CN 106524557B CN 201610978531 A CN201610978531 A CN 201610978531A CN 106524557 B CN106524557 B CN 106524557B
Authority
CN
China
Prior art keywords
threshold
pressure
heat
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610978531.7A
Other languages
English (en)
Other versions
CN106524557A (zh
Inventor
汤昌靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
Guangdong Midea HVAC Equipment Co Ltd
Original Assignee
Midea Group Co Ltd
Guangdong Midea HVAC Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, Guangdong Midea HVAC Equipment Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201610978531.7A priority Critical patent/CN106524557B/zh
Publication of CN106524557A publication Critical patent/CN106524557A/zh
Priority to PCT/CN2017/084224 priority patent/WO2018082282A1/zh
Priority to US16/121,643 priority patent/US11131485B2/en
Application granted granted Critical
Publication of CN106524557B publication Critical patent/CN106524557B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种多联机系统及其除霜时的防回液控制方法,其中,所述方法包括以下步骤:当多联机系统制热运行时,实时检测压缩机的排气压力、回气压力和排气温度;如果室外机接收到化霜指令,则向分流装置和多个室内机中的制热室内机发送除霜信号,并在四通阀第一次换向前通过分流装置控制节流元件关闭且持续预设时间以降低回到室外机的冷媒量,以及在多联机系统除霜运行时根据排气压力、回气压力和排气温度对节流元件的开度进行调节。根据本发明的方法,能够避免除霜过程中压缩机出现回液风险,大大提高了系统的安全可靠性。

Description

多联机系统及其除霜时的防回液控制方法
技术领域
本发明涉及空调技术领域,特别涉及一种多联机系统除霜时的防回液控制方法和一种多联机系统。
背景技术
多联机系统普遍使用于四季中的制冷制热,当多联机系统制热运行时,系统将热量从室外转移到室内,室外换热器当作蒸发器,室内机当作冷凝器,利用压缩机高温排气在室内侧与空气换热冷凝,将热量传送给室内空气,经节流装置后回到室外机与室外空气换热后蒸发。
当室外机环境温度低于冰点时,室外空气中的水蒸汽将在蒸发器表面凝结并结霜。蒸发器的结霜加大了表面与空气间的传热热阻,增加了流动阻力,使得通过蒸发器的空气流量减少,换热效率明显降低,导致室外环境和制冷剂之间的换热量下降,出风温度衰减。特别是在一些低温高湿度工况下,室外换热器结霜较为严重,冷媒在室外换热器中的蒸发效果逐渐变差,更多的液态冷媒逐渐回到低压气液分离器中,系统工作状况恶化,严重时导致系统回液。因此,多联机系统在制热运行时,应设置条件适时采取除霜措施。
目前除霜模式常采用四通阀换向将系统切换为制冷模式,将室外换热器转换为冷凝器,室内机转换为蒸发器,利用压缩机的高温气态冷媒将室外换热器的霜化掉。然而,由于多联机冷媒充注量较大,且室外机与室内机通常距离很远,导致系统追加冷媒量也较大。在制热模式和主制热模式下,当外侧工况较为恶劣时,室外换热器结霜很快,特别是一些低温高湿度及冰雪覆盖下,室外换热器的蒸发效果变差,系统的冷媒会逐渐地积存至压缩机吸气口的储液罐即低压气液分离器中,占据低压气液分离器大部分容积,导致进入化霜前,低压气液分离器的液位已经较高。四通阀第一次切换,将系统转为制冷逆向循环,室内机和管路部分的液态冷媒可能瞬间回到压缩机吸气口的低压气液分离器内,从而导致压缩机出现回液风险。因此,目前的多联机系统难以在保证系统安全可靠运行的前提下进行除霜控制。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明的一个目的在于提出一种多联机系统除霜时的防回液控制方法,能够避免除霜过程中压缩机出现回液风险,大大提高了系统的安全可靠性。
本发明的第二个目的在于提出一种多联机系统。
为达到上述目的,本发明第一方面实施例提出了一种多联机系统除霜时的防回液控制方法,其中,所述多联机系统包括室外机、分流装置和多个室内机,其中,所述分流装置包括第一换热组件、第二换热组件、设置在所述第二换热组件的第一换热流路的出口与所述第二换热组件的第二换热流路的入口之间的节流元件,所述第一换热组件的第一换热流路的出口与所述第二换热组件的第一换热流路的入口相连通,所述第一换热组件的第二换热流路的入口与所述第二换热组件的第二换热流路的出口相连通,所述第一换热组件的第二换热流路的出口连通到所述室外机,所述室外机包括压缩机和四通阀,所述方法包括以下步骤:当所述多联机系统制热运行时,实时检测所述压缩机的排气压力、回气压力和排气温度;如果所述室外机接收到化霜指令,则向所述分流装置和所述多个室内机中的制热室内机发送除霜信号,并在所述四通阀第一次换向前通过所述分流装置控制所述节流元件关闭且持续预设时间以降低回到所述室外机的冷媒量,以及在所述多联机系统除霜运行时根据所述排气压力、所述回气压力和所述排气温度对所述节流元件的开度进行调节。
根据本发明实施例的多联机系统除霜时的防回液控制方法,在多联机系统制热运行时,如果接收到化霜指令,则可在四通阀第一次换向前通过关闭节流元件一段时间来降低回到室外机的冷媒量,并在除霜运行时根据排气压力、回气压力和排气温度对节流元件的开度进行调节,从而不仅能够保证除霜的有效进行,还能够避免除霜过程中压缩机出现回液风险,大大提高了系统的安全可靠性。
另外,根据本发明上述实施例提出的多联机系统除霜时的防回液控制方法还可以具有如下附加的技术特征:
具体地,在所述多联机系统除霜运行时根据所述排气压力、所述回气压力和所述排气温度对所述节流元件的开度进行调节,包括:分别对所述排气压力、所述回气压力和所述排气温度进行判断;当所述排气压力大于等于第一高压阈值且小于第三高压阈值、或者所述回气压力小于第一低压阈值且大于等于第三低压阈值、或者所述排气温度大于等于第一温度阈值且小于第三温度阈值时,所述分流装置控制所述节流元件增大预设开度;当所述排气压力小于第二高压阈值、所述回气压力大于等于第二低压阈值且所述排气温度小于第二温度阈值时,所述分流装置控制所述节流元件减小预设开度,其中,所述第一高压阈值大于所述第二高压阈值且小于所述第三高压阈值,所述第一低压阈值大于所述第三低压阈值且小于第二低压阈值,所述第一温度阈值大于所述第二温度阈值且小于所述第三温度阈值;当所述排气压力大于等于所述第三高压阈值、或者所述回气压力小于所述第三低压阈值、或者所述排气温度大于等于所述第三温度阈值时,所述分流装置控制所述节流元件打开至预设的最大开度。
进一步地,所述第二换热组件的第一换热流路的出口与所述第一换热组件的第二换热流路的出口之间还设置电控阀,其中,在所述四通阀第一次换向前所述分流装置控制所述电控阀关闭且持续所述预设时间,并在多联机系统除霜运行时,如果所述排气压力大于等于第一高压阈值且小于第三高压阈值、或者所述回气压力小于第一低压阈值且大于等于第三低压阈值、或者所述排气温度大于等于第一温度阈值且小于第三温度阈值,所述分流装置控制所述电控阀保持关闭状态;如果所述排气压力小于第二高压阈值、所述回气压力大于等于第二低压阈值且所述排气温度小于第二温度阈值,所述分流装置继续控制所述电控阀保持关闭状态;如果所述排气压力大于等于所述第三高压阈值、或者所述回气压力小于所述第三低压阈值、或者所述排气温度大于等于所述第三温度阈值,所述分流装置则控制所述电控阀打开。
根据本发明的一个实施例,所述节流元件为电子膨胀阀,所述电控阀为电磁阀。
根据本发明的一个实施例,当所述多联机系统制热运行时,所述多联机系统以主制热模式或纯制热模式进行工作。
为达到上述目的,本发明第二方面实施例提出了一种多联机系统,该系统包括:多个室内机;室外机,所述室外机包括压缩机和四通阀;分流装置,所述分流装置包括第一换热组件、第二换热组件、设置在所述第二换热组件的第一换热流路的出口与所述第二换热组件的第二换热流路的入口之间的节流元件,所述第一换热组件的第一换热流路的出口与所述第二换热组件的第一换热流路的入口相连通,所述第一换热组件的第二换热流路的入口与所述第二换热组件的第二换热流路的出口相连通,所述第一换热组件的第二换热流路的出口连通到所述室外机;检测模块,所述检测模块用于在所述多联机系统制热运行时,实时检测所述压缩机的排气压力、回气压力和排气温度,其中,所述室外机在接收到化霜指令时,向所述分流装置和所述多个室内机中的制热室内机发送除霜信号,所述分流装置在所述四通阀第一次换向前控制所述节流元件关闭且持续预设时间以降低回到所述室外机的冷媒量,并在所述多联机系统除霜运行时根据所述排气压力、所述回气压力和所述排气温度对所述节流元件的开度进行调节。
根据本发明实施例的多联机系统,在制热运行时,如果室外机接收到化霜指令,则分流装置可在四通阀第一次换向前通过关闭节流元件一段时间来降低回到室外机的冷媒量,并在除霜运行时根据排气压力、回气压力和排气温度对节流元件的开度进行调节,从而不仅能够保证除霜的有效进行,还能够避免除霜过程中压缩机出现回液风险,大大提高了系统的安全可靠性。
另外,根据本发明上述实施例提出的多联机系统还可以具有如下附加的技术特征:
具体地,所述分流装置用于分别对所述排气压力、所述回气压力和所述排气温度进行判断,其中,当所述排气压力大于等于第一高压阈值且小于第三高压阈值、或者所述回气压力小于第一低压阈值且大于等于第三低压阈值、或者所述排气温度大于等于第一温度阈值且小于第三温度阈值时,所述分流装置控制所述节流元件增大预设开度;当所述排气压力小于第二高压阈值、所述回气压力大于等于第二低压阈值且所述排气温度小于第二温度阈值时,所述分流装置控制所述节流元件减小预设开度,其中,所述第一高压阈值大于所述第二高压阈值且小于所述第三高压阈值,所述第一低压阈值大于所述第三低压阈值且小于第二低压阈值,所述第一温度阈值大于所述第二温度阈值且小于所述第三温度阈值;当所述排气压力大于等于所述第三高压阈值、或者所述回气压力小于所述第三低压阈值、或者所述排气温度大于等于所述第三温度阈值时,所述分流装置控制所述节流元件打开至预设的最大开度。
进一步地,所述第二换热组件的第一换热流路的出口与所述第一换热组件的第二换热流路的出口之间还设置电控阀,其中,在所述四通阀第一次换向前所述分流装置控制所述电控阀关闭且持续所述预设时间,并在多联机系统除霜运行时,如果所述排气压力大于等于第一高压阈值且小于第三高压阈值、或者所述回气压力小于第一低压阈值且大于等于第三低压阈值、或者所述排气温度大于等于第一温度阈值且小于第三温度阈值,所述分流装置控制所述电控阀保持关闭状态;如果所述排气压力小于第二高压阈值、所述回气压力大于等于第二低压阈值且所述排气温度小于第二温度阈值,所述分流装置继续控制所述电控阀保持关闭状态;如果所述排气压力大于等于所述第三高压阈值、或者所述回气压力小于所述第三低压阈值、或者所述排气温度大于等于所述第三温度阈值,所述分流装置则控制所述电控阀打开。
根据本发明的一个实施例,所述节流元件为电子膨胀阀,所述电控阀为电磁阀。
根据本发明的一个实施例,当所述多联机系统制热运行时,所述多联机系统以主制热模式或纯制热模式进行工作。
附图说明
图1为根据本发明实施例的多联机系统除霜时的防回液控制方法的流程图;
图2为根据本发明一个实施例的多联机系统的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图来描述本发明实施例的多联机系统及其除霜时的防回液控制方法。
图1为根据本发明实施例的多联机系统除霜时的防回液控制方法的流程图。
其中,参照图2,本发明实施例的多联机系统可包括室外机、分流装置和多个室内机,其中,分流装置包括第一换热组件、第二换热组件、设置在第二换热组件的第一换热流路的出口与第二换热组件的第二换热流路的入口之间的节流元件EXV2,第一换热组件的第一换热流路的出口与第二换热组件的第一换热流路的入口相连通,第一换热组件的第二换热流路的入口与第二换热组件的第二换热流路的出口相连通,第一换热组件的第二换热流路的出口连通到室外机,室外机包括压缩机和四通阀。在本发明的具体实施例中,节流元件EXV2可为电子膨胀阀。
如图1所示,本发明实施例的多联机系统除霜时的防回液控制方法可包括以下步骤:
S1,当多联机系统制热运行时,实时检测压缩机的排气压力、回气压力和排气温度。
S2,如果室外机接收到化霜指令,则向分流装置和多个室内机中的制热室内机发送除霜信号,并在四通阀第一次换向前通过分流装置控制节流元件关闭且持续预设时间以降低回到室外机的冷媒量,以及在多联机系统除霜运行时根据排气压力、回气压力和排气温度对节流元件的开度进行调节。
在本发明的一个实施例中,当多联机系统制热运行时,多联机系统以主制热模式或纯制热模式进行工作。
其中,参照图2,该多联机系统包括四个室内机,以纯制热模式进行工作为例,当多联机系统以纯制热模式进行工作时,四通阀的第一端口a和第四端口d相连通,第二端口b和第三端口c相连通。压缩机出口高温高压的气态冷媒通过油分离器、四通阀和单向阀F10进入分流装置的高压气液分离器,然后经过制热电磁阀SVH1-SVH4进入室内机进行制热。室内机出口的液态冷媒经单向阀RV1-RV4分别流过第二换热组件、节流元件EXV2和第一换热组件,然后经单向阀F9进入室外机的室外换热器蒸发。在经室外换热器蒸发后,冷媒可通过单向阀F5以及四通阀进入室外机的低压气液分离器,以返回到压缩机。
而当多联机系统除霜运行时,多联机系统中冷媒流路相当于制冷运行时的冷媒流路。以纯制冷模式为例,参照图2,此时四通阀进行第一次换向,其第一端口a和第二端口b相连通,第四端口d和第三端口c相连通。压缩机出口高温高压的气态冷媒通过油分离器和四通阀后经单向阀F1直接进入室外换热器,以融去室外换热器上覆盖的霜。然后大部分冷媒经单向阀F6进入分流装置的高压气液分离器,依次经过第一换热组件、另一节流元件EXV1、第二换热组件、单向阀RV5-RV8后进入室内机,再经过制冷电磁阀SVC1-SVC4回到室外机。还有一部分冷媒经节流元件EXV2回室外机。其中,在室外机中,冷媒可经单向阀F8和四通阀进入低压气液分离器,以返回到压缩机。
在本发明的实施例中,可在四通阀第一次换向前控制节流元件EXV2关闭且持续预设时间,由此,可降低进入室外机低压气液分离器的冷媒量,以防止低压气液分离器中过多的冷媒回液至压缩机中,导致压缩机液压缩。
在多联机系统除霜运行时,可分别对排气压力PC、回气压力PE和排气温度TP进行判断。
当排气压力PC大于等于第一高压阈值A1且小于第三高压阈值A3、或者回气压力PE小于第一低压阈值B1且大于等于第三低压阈值B3、或者排气温度TP大于等于第一温度阈值C1且小于第三温度阈值C3时,分流装置控制节流元件EXV2增大预设开度。
当排气压力PC小于第二高压阈值A2、回气压力PE大于等于第二低压阈值B2且排气温度TP小于第二温度阈值C2时,分流装置控制节流元件EXV2减小预设开度。
当排气压力PC大于等于第三高压阈值A3、或者回气压力PE小于第三低压阈值B3、或者排气温度TP大于等于第三温度阈值C3时,分流装置控制节流元件EXV2打开至预设的最大开度。其中,第一高压阈值A1大于第二高压阈值A2且小于第三高压阈值A3,第一低压阈值B1大于第三低压阈值B3且小于第二低压阈值B2,第一温度阈值C1大于第二温度阈值C2且小于第三温度阈值C3。据此对节流元件EXV2的开度进行调节,直至化霜完成。
其中,A1-A3、B1-B3和C1-C3的具体数值可根据多联机系统中的冷媒量、压缩机的性能和低压气液分离器的规格等具体实施条件而设定。
由此,在除霜运行时,可持续根据排气压力、回气压力和排气温度对节流元件EXV2的开度进行调节,直至除霜完成。通过控制节流元件EXV2减小开度,能够防止冷媒过多,压缩机回液的情况发生;通过控制节流元件EXV2增大开度,能够防止冷媒过少,压缩机缺冷媒的情况发生,还能够提高化霜速度。
另外,参照图2,在本发明的一个实施例中,第二换热组件的第一换热流路的出口与第一换热组件的第二换热流路的出口之间还可设置电控阀SVM。其中,电控阀SVM可以为电磁阀。在制热运行时,室内机出口的液态冷媒还可经单向阀RV1-RV4分别流过第二换热组件和电控阀SVM,然后经单向阀F9进入室外机的室外换热器。在除霜运行时,一部分冷媒还可经电控阀SVM回室外机。因此,通过对电控阀SVM的控制,也能够控制冷媒流量。
具体地,在本发明的一个实施例中,在四通阀第一次换向前还可控制电控阀SVM关闭且持续预设时间,并在多联机系统除霜运行时,如果排气压力PC大于等于第一高压阈值A1且小于第三高压阈值A3、或者回气压力PE小于第一低压阈值B1且大于等于第三低压阈值B3、或者排气温度TP大于等于第一温度阈值C1且小于第三温度阈值C3,分流装置控制电控阀SVM保持关闭状态。如果排气压力PC小于第二高压阈值A2、回气压力PE大于等于第二低压阈值B2且排气温度TP小于第二温度阈值C2,分流装置继续控制电控阀SVM保持关闭状态。如果排气压力PC大于等于第三高压阈值A3、或者回气压力PE小于第三低压阈值B3、或者排气温度TP大于等于第三温度阈值C3,分流装置则控制电控阀SVM打开。
也就是说,在包括电控阀的多联机系统中,可依照上述对排气压力、所述回气压力和所述排气温度的判断结果同时对节流元件EXV2和电控阀SVM进行控制,以通过控制冷媒流量来控制低压气液分离器中的冷媒量,防止其过多或过少。
根据本发明实施例的多联机系统除霜时的防回液控制方法,在多联机系统制热运行时,如果接收到化霜指令,则可在四通阀第一次换向前通过关闭节流元件一段时间来降低回到室外机的冷媒量,并在除霜运行时根据排气压力、回气压力和排气温度对节流元件的开度进行调节,从而不仅能够保证除霜的有效进行,还能够避免除霜过程中压缩机出现回液风险,大大提高了系统的安全可靠性。
为实现上述实施例提出的多联机系统除霜时的防回液控制方法,本发明还提出一种多联机系统。
如图2所示,本发明实施例的多联机系统,包括多个室内机10、室外机20和分流装置30。
其中,室外机20包括压缩机21和四通阀22。分流装置30包括第一换热组件31、第二换热组件32、设置在第二换热组件32的第一换热流路的出口与第二换热组件32的第二换热流路的入口之间的节流元件EXV2,第一换热组件31的第一换热流路的出口与第二换热组件32的第一换热流路的入口相连通,第一换热组件31的第二换热流路的入口与第二换热组件32的第二换热流路的出口相连通,第一换热组件31的第二换热流路的出口连通到室外机20。其中,节流元件EXV2可为电子膨胀阀。
本发明实施例的多联机系统还可包括检测模块(图2中未标出),检测模块用于在多联机系统制热运行时,实时检测压缩机21的排气压力、回气压力和排气温度。
在本发明的实施例中,室外机20在接收到化霜指令时,向分流装置30和多个室内机10中的制热室内机发送除霜信号,分流装置30在四通阀22第一次换向前控制节流元件EXV2关闭且持续预设时间以降低回到室外机20的冷媒量,并在多联机系统除霜运行时根据排气压力、回气压力和排气温度对节流元件EXV2的开度进行调节。在本发明的一个实施例中,室内机10、室外机20和分流装置30可分别具有单独的控制器,以进行信息的交互和系统控制,也可通过集成在一起的控制器统一对室内机10、室外机20和分流装置30进行控制。
在本发明的一个实施例中,当多联机系统制热运行时,多联机系统以主制热模式或纯制热模式进行工作。
其中,如图2所示,该多联机系统包括四个室内机10,以纯制热模式进行工作为例,当多联机系统以纯制热模式进行工作时,四通阀22的第一端口a和第四端口d相连通,第二端口b和第三端口c相连通。压缩机21出口高温高压的气态冷媒通过油分离器23、四通阀22和单向阀F10进入分流装置30的高压气液分离器33,然后经过制热电磁阀SVH1-SVH4进入室内机10进行制热。室内机10出口的液态冷媒经单向阀RV1-RV4分别流过第二换热组件32、节流元件EXV2和第一换热组件31,然后经单向阀F9进入室外机20的室外换热器24蒸发。在经室外换热器24蒸发后,冷媒可通过单向阀F5以及四通阀22进入室外机20的低压气液分离器25,以返回到压缩机21。
而当多联机系统除霜运行时,多联机系统中冷媒流路相当于制冷运行时的冷媒流路。以纯制冷模式为例,参照图2,此时四通阀22进行第一次换向,其第一端口a和第二端口b相连通,第四端口d和第三端口c相连通。压缩机21出口高温高压的气态冷媒通过油分离器23和四通阀22后经单向阀F1直接进入室外换热器24,以融去室外换热器24上覆盖的霜。然后大部分冷媒经单向阀F6进入分流装置30的高压气液分离器33,依次经过第一换热组件31、另一节流元件EXV1、第二换热组件32、单向阀RV5-RV8后进入室内机10,再经过制冷电磁阀SVC1-SVC4回到室外机20。还有一部分冷媒经节流元件EXV2回室外机20。其中,在室外机20中,冷媒可经单向阀F8和四通阀进入低压气液分离器25,以返回到压缩机21。
在本发明的实施例中,分流装置30可在四通阀22第一次换向前控制节流元件EXV2关闭且持续预设时间,由此,可降低进入室外机20的低压气液分离器25的冷媒的量,以防止低压气液分离器25中过多的冷媒回液至压缩机21中,导致压缩机21液压缩。
在多联机系统除霜运行时,分流装置30可分别对排气压力PC、回气压力PE和排气温度TP进行判断。当排气压力PC大于等于第一高压阈值A1且小于第三高压阈值A3、或者回气压力PE小于第一低压阈值B1且大于等于第三低压阈值B3、或者排气温度TP大于等于第一温度阈值C1且小于第三温度阈值C3时,分流装置30控制节流元件EXV2增大预设开度。当排气压力PC小于第二高压阈值A2、回气压力PE大于等于第二低压阈值B2且排气温度TP小于第二温度阈值C2时,分流装置30控制节流元件EXV2减小预设开度。当排气压力PC大于等于第三高压阈值A3、或者回气压力PE小于第三低压阈值B3、或者排气温度TP大于等于第三温度阈值C3时,分流装置30控制节流元件EXV2打开至预设的最大开度。其中,第一高压阈值A1大于第二高压阈值A2且小于第三高压阈值A3,第一低压阈值B1大于第三低压阈值B3且小于第二低压阈值B2,第一温度阈值C1大于第二温度阈值C2且小于第三温度阈值C3。据此对节流元件EXV2的开度进行调节,直至化霜完成。
其中,A1-A3、B1-B3和C1-C3的具体数值可根据多联机系统中的冷媒量、压缩机21的性能和低压气液分离器25的规格等具体实施条件而设定。
由此,在除霜运行时,分流装置30可持续根据排气压力、回气压力和排气温度对节流元件EXV2的开度进行调节,直至除霜完成。通过控制节流元件EXV2减小开度,能够防止冷媒过多,压缩机21回液的情况发生;通过控制节流元件EXV2增大开度,能够防止冷媒过少,压缩机21缺冷媒的情况发生,还能够提高化霜速度。
另外,如图2所示,在本发明的一个实施例中,第二换热组件32的第一换热流路的出口与第一换热组件31的第二换热流路的出口之间还可设置电控阀SVM。其中,电控阀SVM可以为电磁阀。在制热运行时,室内机10出口的液态冷媒还可经单向阀RV1-RV4分别流过第二换热组件32和电控阀SVM,然后经单向阀F9进入室外机20的室外换热器。在除霜运行时,一部分冷媒还可经电控阀SVM回室外机20。因此,通过对电控阀SVM的控制,也能够控制冷媒流量。
具体地,在本发明的一个实施例中,在四通阀22第一次换向前分流装置30还可控制电控阀SVM关闭且持续预设时间,并在多联机系统除霜运行时,如果排气压力PC大于等于第一高压阈值A1且小于第三高压阈值A3、或者回气压力PE小于第一低压阈值B1且大于等于第三低压阈值B3、或者排气温度TP大于等于第一温度阈值C1且小于第三温度阈值C3,分流装置30控制电控阀SVM保持关闭状态。如果排气压力PC小于第二高压阈值A2、回气压力PE大于等于第二低压阈值B2且排气温度TP小于第二温度阈值C2,分流装置30继续控制电控阀SVM保持关闭状态。如果排气压力PC大于等于第三高压阈值A3、或者回气压力PE小于第三低压阈值B3、或者排气温度TP大于等于第三温度阈值C3,分流装置30则控制电控阀SVM打开。
也就是说,在包括电控阀的多联机系统中,可依照上述对排气压力、所述回气压力和所述排气温度的判断结果同时对节流元件EXV2和电控阀SVM进行控制,以通过控制冷媒流量来控制低压气液分离器中的冷媒量,防止其过多或过少。
根据本发明实施例的多联机系统,在制热运行时,如果室外机接收到化霜指令,则分流装置可在四通阀第一次换向前通过关闭节流元件一段时间来降低回到室外机的冷媒量,并在除霜运行时根据排气压力、回气压力和排气温度对节流元件的开度进行调节,从而不仅能够保证除霜的有效进行,还能够避免除霜过程中压缩机出现回液风险,大大提高了系统的安全可靠性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

1.一种多联机系统除霜时的防回液控制方法,其特征在于,所述多联机系统包括室外机、分流装置和多个室内机,其中,所述分流装置包括第一换热组件、第二换热组件、设置在所述第二换热组件的第一换热流路的出口与所述第二换热组件的第二换热流路的入口之间的节流元件,所述第一换热组件的第一换热流路的出口与所述第二换热组件的第一换热流路的入口相连通,所述第一换热组件的第二换热流路的入口与所述第二换热组件的第二换热流路的出口相连通,所述第一换热组件的第二换热流路的出口连通到所述室外机,所述室外机包括压缩机和四通阀,所述方法包括以下步骤:
当所述多联机系统制热运行时,实时检测所述压缩机的排气压力、回气压力和排气温度;
如果所述室外机接收到化霜指令,则向所述分流装置和所述多个室内机中的制热室内机发送除霜信号,并在所述四通阀第一次换向前通过所述分流装置控制所述节流元件关闭且持续预设时间以降低回到所述室外机的冷媒量,以及在所述多联机系统除霜运行时根据所述排气压力、所述回气压力和所述排气温度对所述节流元件的开度进行调节,其中,在所述多联机系统除霜运行时根据所述排气压力、所述回气压力和所述排气温度对所述节流元件的开度进行调节,包括:
分别对所述排气压力、所述回气压力和所述排气温度进行判断;
当所述排气压力大于等于第一高压阈值且小于第三高压阈值、或者所述回气压力小于第一低压阈值且大于等于第三低压阈值、或者所述排气温度大于等于第一温度阈值且小于第三温度阈值时,所述分流装置控制所述节流元件增大预设开度;
当所述排气压力小于第二高压阈值、所述回气压力大于等于第二低压阈值且所述排气温度小于第二温度阈值时,所述分流装置控制所述节流元件减小预设开度,其中,所述第一高压阈值大于所述第二高压阈值且小于所述第三高压阈值,所述第一低压阈值大于所述第三低压阈值且小于第二低压阈值,所述第一温度阈值大于所述第二温度阈值且小于所述第三温度阈值;
当所述排气压力大于等于所述第三高压阈值、或者所述回气压力小于所述第三低压阈值、或者所述排气温度大于等于所述第三温度阈值时,所述分流装置控制所述节流元件打开至预设的最大开度。
2.根据权利要求1所述的方法,其特征在于,所述第二换热组件的第一换热流路的出口与所述第一换热组件的第二换热流路的出口之间还设置电控阀,其中,在所述四通阀第一次换向前所述分流装置控制所述电控阀关闭且持续所述预设时间,并在多联机系统除霜运行时,
如果所述排气压力大于等于第一高压阈值且小于第三高压阈值、或者所述回气压力小于第一低压阈值且大于等于第三低压阈值、或者所述排气温度大于等于第一温度阈值且小于第三温度阈值,所述分流装置控制所述电控阀保持关闭状态;
如果所述排气压力小于第二高压阈值、所述回气压力大于等于第二低压阈值且所述排气温度小于第二温度阈值,所述分流装置继续控制所述电控阀保持关闭状态;
如果所述排气压力大于等于所述第三高压阈值、或者所述回气压力小于所述第三低压阈值、或者所述排气温度大于等于所述第三温度阈值,所述分流装置则控制所述电控阀打开。
3.根据权利要求1或2所述的方法,其特征在于,所述节流元件为电子膨胀阀,所述电控阀为电磁阀。
4.根据权利要求1所述的方法,其特征在于,当所述多联机系统制热运行时,所述多联机系统以主制热模式或纯制热模式进行工作。
5.一种多联机系统,其特征在于,包括:
多个室内机;
室外机,所述室外机包括压缩机和四通阀;
分流装置,所述分流装置包括第一换热组件、第二换热组件、设置在所述第二换热组件的第一换热流路的出口与所述第二换热组件的第二换热流路的入口之间的节流元件,所述第一换热组件的第一换热流路的出口与所述第二换热组件的第一换热流路的入口相连通,所述第一换热组件的第二换热流路的入口与所述第二换热组件的第二换热流路的出口相连通,所述第一换热组件的第二换热流路的出口连通到所述室外机;
检测模块,所述检测模块用于在所述多联机系统制热运行时,实时检测所述压缩机的排气压力、回气压力和排气温度;
其中,所述室外机在接收到化霜指令时,向所述分流装置和所述多个室内机中的制热室内机发送除霜信号,所述分流装置在所述四通阀第一次换向前控制所述节流元件关闭且持续预设时间以降低回到所述室外机的冷媒量,并在所述多联机系统除霜运行时根据所述排气压力、所述回气压力和所述排气温度对所述节流元件的开度进行调节,并且,所述分流装置用于分别对所述排气压力、所述回气压力和所述排气温度进行判断,其中,
当所述排气压力大于等于第一高压阈值且小于第三高压阈值、或者所述回气压力小于第一低压阈值且大于等于第三低压阈值、或者所述排气温度大于等于第一温度阈值且小于第三温度阈值时,所述分流装置控制所述节流元件增大预设开度;
当所述排气压力小于第二高压阈值、所述回气压力大于等于第二低压阈值且所述排气温度小于第二温度阈值时,所述分流装置控制所述节流元件减小预设开度,其中,所述第一高压阈值大于所述第二高压阈值且小于所述第三高压阈值,所述第一低压阈值大于所述第三低压阈值且小于第二低压阈值,所述第一温度阈值大于所述第二温度阈值且小于所述第三温度阈值;
当所述排气压力大于等于所述第三高压阈值、或者所述回气压力小于所述第三低压阈值、或者所述排气温度大于等于所述第三温度阈值时,所述分流装置控制所述节流元件打开至预设的最大开度。
6.根据权利要求5所述的多联机系统,其特征在于,所述第二换热组件的第一换热流路的出口与所述第一换热组件的第二换热流路的出口之间还设置电控阀,其中,在所述四通阀第一次换向前所述分流装置控制所述电控阀关闭且持续所述预设时间,并在多联机系统除霜运行时,
如果所述排气压力大于等于第一高压阈值且小于第三高压阈值、或者所述回气压力小于第一低压阈值且大于等于第三低压阈值、或者所述排气温度大于等于第一温度阈值且小于第三温度阈值,所述分流装置控制所述电控阀保持关闭状态;
如果所述排气压力小于第二高压阈值、所述回气压力大于等于第二低压阈值且所述排气温度小于第二温度阈值,所述分流装置继续控制所述电控阀保持关闭状态;
如果所述排气压力大于等于所述第三高压阈值、或者所述回气压力小于所述第三低压阈值、或者所述排气温度大于等于所述第三温度阈值,所述分流装置则控制所述电控阀打开。
7.根据权利要求5或6所述的多联机系统,其特征在于,所述节流元件为电子膨胀阀,所述电控阀为电磁阀。
8.根据权利要求5所述的多联机系统,其特征在于,当所述多联机系统制热运行时,所述多联机系统以主制热模式或纯制热模式进行工作。
CN201610978531.7A 2016-11-07 2016-11-07 多联机系统及其除霜时的防回液控制方法 Active CN106524557B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610978531.7A CN106524557B (zh) 2016-11-07 2016-11-07 多联机系统及其除霜时的防回液控制方法
PCT/CN2017/084224 WO2018082282A1 (zh) 2016-11-07 2017-05-12 多联机系统及其除霜时的防回液控制方法
US16/121,643 US11131485B2 (en) 2016-11-07 2018-09-05 Multi-split system and liquid return prevention control method thereof during defrosting of multi-split system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610978531.7A CN106524557B (zh) 2016-11-07 2016-11-07 多联机系统及其除霜时的防回液控制方法

Publications (2)

Publication Number Publication Date
CN106524557A CN106524557A (zh) 2017-03-22
CN106524557B true CN106524557B (zh) 2018-09-07

Family

ID=58349548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610978531.7A Active CN106524557B (zh) 2016-11-07 2016-11-07 多联机系统及其除霜时的防回液控制方法

Country Status (3)

Country Link
US (1) US11131485B2 (zh)
CN (1) CN106524557B (zh)
WO (1) WO2018082282A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106524557B (zh) * 2016-11-07 2018-09-07 广东美的暖通设备有限公司 多联机系统及其除霜时的防回液控制方法
CN106524336B (zh) * 2016-11-07 2019-04-30 广东美的暖通设备有限公司 多联机系统及其防回液控制方法
JP2018091536A (ja) * 2016-12-01 2018-06-14 株式会社デンソー 冷凍サイクル装置
CN107461877B (zh) * 2017-07-19 2020-12-08 青岛海尔空调电子有限公司 一种多联机系统除霜控制方法
CN107560117A (zh) * 2017-08-22 2018-01-09 珠海格力电器股份有限公司 空调系统及其控制方法
CN107975989A (zh) * 2017-11-16 2018-05-01 广东美的暖通设备有限公司 多联机空调系统的化霜控制方法
CN110094831B (zh) * 2019-04-10 2021-12-28 青岛海尔空调电子有限公司 多联机空调及其除霜控制方法
CN109990517B (zh) * 2019-04-15 2019-11-05 宁波工程学院 空调器智能快速除霜及保护控制方法
CN111425992B (zh) * 2020-04-13 2021-03-26 珠海格力电器股份有限公司 一种空调化霜控制方法、装置、存储介质及空调
CN114110928A (zh) * 2020-08-28 2022-03-01 广东美的制冷设备有限公司 化霜控制方法、空调器及计算机可读存储介质
CN114696400A (zh) * 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 充电仓和电连接移动的控制方法
CN112902488A (zh) * 2021-02-09 2021-06-04 珠海格力电器股份有限公司 一种热泵系统的化霜控制方法及其热泵系统
CN113418274A (zh) * 2021-06-25 2021-09-21 珠海格力电器股份有限公司 空调器的化霜控制方法、装置、处理器及空调器
CN113701372A (zh) * 2021-08-17 2021-11-26 美的集团武汉制冷设备有限公司 一种温度调节设备的控制方法、装置、设备和存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610402B2 (ja) * 1994-08-08 2005-01-12 ヤマハ発動機株式会社 熱ポンプ装置
JP2003240310A (ja) * 2002-02-20 2003-08-27 Hitachi Ltd 空気調和機及びそれに用いられる室外機
JP2006300371A (ja) * 2005-04-18 2006-11-02 Daikin Ind Ltd 空気調和機
KR20070088911A (ko) * 2006-02-27 2007-08-30 엘지전자 주식회사 공기조화기의 제어방법
JP6402661B2 (ja) * 2015-03-20 2018-10-10 ダイキン工業株式会社 冷凍装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统
CN105115199B (zh) * 2015-07-06 2017-10-31 广东美的暖通设备有限公司 多联机系统的冷媒分流控制方法和装置
CN105318454B (zh) * 2015-11-13 2018-04-10 清华大学 一种空气源多联式空调热泵系统及其运行方法
CN105805975B (zh) * 2016-03-23 2019-01-18 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN106524557B (zh) * 2016-11-07 2018-09-07 广东美的暖通设备有限公司 多联机系统及其除霜时的防回液控制方法

Also Published As

Publication number Publication date
US11131485B2 (en) 2021-09-28
CN106524557A (zh) 2017-03-22
WO2018082282A1 (zh) 2018-05-11
US20190063793A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
CN106524557B (zh) 多联机系统及其除霜时的防回液控制方法
CN211739592U (zh) 连续制热的空调系统
CN106524336B (zh) 多联机系统及其防回液控制方法
JP5595140B2 (ja) ヒートポンプ式給湯・空調装置
CN107559955B (zh) 多联机系统及其低温控制方法
CN108105912B (zh) 多联机系统及其防冷媒偏流控制方法、控制装置
US11175082B2 (en) Refrigeration cycle apparatus with heat storage for use during defrost
US20110113805A1 (en) Air conditioner
CN104807258B (zh) 空调系统及其的蓄热除霜装置、方法
US20200370808A1 (en) Heat Pump System and Control Method Therefor
CN107084561A (zh) 空调器及其除霜控制方法
US20070074523A1 (en) Refrigerating apparatus
KR102082881B1 (ko) 냉난방 동시형 멀티 공기조화기
JP2011080733A (ja) 空気調和機
CN109982877A (zh) 车辆热泵系统
CN106705515A (zh) 空调系统和空调
JP4622901B2 (ja) 空気調和装置
KR102399237B1 (ko) 공기조화기 및 그 제어방법
JP4023387B2 (ja) 冷凍装置
KR101899220B1 (ko) 공기 조화기
CN105805975B (zh) 多联机系统及其制热节流元件的控制方法
CN105841292B (zh) 多联机系统及其补液控制方法
CN106288532A (zh) 换热器组件、冷风机、制冷机组及其控制方法
KR101100009B1 (ko) 공기 조화 시스템
CN105333639B (zh) 多联机系统及其室外机组件、控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant