WO2019013516A1 - 원편광판 - Google Patents

원편광판 Download PDF

Info

Publication number
WO2019013516A1
WO2019013516A1 PCT/KR2018/007785 KR2018007785W WO2019013516A1 WO 2019013516 A1 WO2019013516 A1 WO 2019013516A1 KR 2018007785 W KR2018007785 W KR 2018007785W WO 2019013516 A1 WO2019013516 A1 WO 2019013516A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
less
liquid crystal
retardation
retardation layer
Prior art date
Application number
PCT/KR2018/007785
Other languages
English (en)
French (fr)
Inventor
김선국
박문수
김신영
윤혁
허은수
정종현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880046192.6A priority Critical patent/CN110914722B/zh
Priority to US16/629,545 priority patent/US11314007B2/en
Priority to JP2019571642A priority patent/JP7009702B2/ja
Publication of WO2019013516A1 publication Critical patent/WO2019013516A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • C09K19/3497Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom the heterocyclic ring containing sulfur and nitrogen atoms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/24Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing nitrogen-to-nitrogen bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • G02B5/3091Birefringent or phase retarding elements for use in the UV
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present application relates to a circularly polarizing plate.
  • a so-called circularly polarizing plate basically including a polarizer and a retardation layer can be used for preventing reflection of external light by the reflective electrode in the organic light emitting device.
  • Patent Document 1 discloses a method of arranging a circularly polarizing plate on the transparent electrode side in an organic light emitting device.
  • a representative method is a method of adding an ultraviolet absorbing agent or a light stabilizer to a protective film laminated to protect the polarizer, as shown in Patent Document 2.
  • the conventional method of adding an ultraviolet absorber or a light stabilizer to the protective film is to block ultraviolet rays in a wavelength range of about 380 nm to 400 nm, , There is no technology that recognizes the necessity of shielding ultraviolet rays in the above range.
  • the circularly polarizing plate when the circularly polarizing plate is applied to an organic light emitting device in particular, light having a wavelength in the range of 380 to 400 nm, which can not be blocked by the conventional technique, adversely affects the durability of the organic light emitting device. Further, the light of the wavelength within the above-mentioned range reflected by the reflective electrode because it is not blocked by the circularly polarizing plate may adversely affect the health of the observer.
  • a method of incorporating an ultraviolet absorber or a light stabilizer having a maximum absorption wavelength in the range in the protective film or other circular polarizer plate may be considered.
  • the wavelength range blocked by the ultraviolet absorber or the light stabilizer can not be precisely adjusted, light in the visible light region of a short wavelength can be blocked by the circularly polarizing plate, which may affect the display quality have.
  • the ultraviolet absorber or the light stabilizer is contained in the layer formed by the liquid crystal compound, the components may adversely affect the durability of the whole circular polarizer.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 8-321381
  • Patent Document 2 Korean Patent No. 1742845
  • the present application relates to a circular polarizer.
  • the present application discloses a circular polarizing plate having self-excellent durability, while selectively shielding light in an ultraviolet ray region that may affect the durability of the apparatus and the like without affecting the display performance of the display device such as color and image quality, And to provide the user with a service.
  • An exemplary circular polarizer includes a polarizer and a retardation layer.
  • the retardation layer may be laminated on one side of the polarizer.
  • 1 shows an exemplary circular polarizer including a polarizer 101 and a retardation layer 102 which are sequentially stacked.
  • the polarizer and / or retardation layer are designed to have optical properties controlled in the ultraviolet region, particularly at a wavelength within a range of 380 nm to 400 nm or within a certain range.
  • the present application can provide a circularly polarizing plate conforming to the object of the present application by designing the retardation layer so as to selectively block the ultraviolet ray region of a specific wavelength without applying an additive such as an ultraviolet absorber or a light stabilizer.
  • the circular polarizing plate of the present application is capable of securing its own stable durability while effectively shielding ultraviolet rays that affect the durability of the apparatus by such a design, .
  • polarizer means a film, sheet or element having a polarization function.
  • a polarizer is a functional device capable of extracting light that vibrates in one direction from incident light that vibrates in various directions.
  • an absorption type linear polarizer can be used.
  • a poly (vinyl alcohol) (PVA) polarizer is known.
  • PVA poly (vinyl alcohol)
  • a known polarizer can be used as the polarizer.
  • a known PVA (poly (vinyl alcohol)) polarizer a polarizer having the following characteristics can be applied.
  • a polarizer having a single transmittance (Ts) for light with a wavelength of 390 nm of not less than 20% or not more than 60% may be used.
  • the transmittance of the polarizer with respect to light having a wavelength of 390 nm is 59% or less, 58% or less, 57% or less, 56% or less, 55% or less, 54% or less, 53% or less, 52% Or less, 50% or less, 49% or less, 48% or less, 47% or less, 46% or less, 45% or less, 44% or less, 43% or less, 42% or less, 41% or less or 40% , 22% or more, 23% or more, 24% or more, or 25% or more.
  • the simple transmittance of the polarizer can be measured using, for example, a spectrometer (V7100, manufactured by Jasco). For example, air is set to the base line while the polarizer sample (without the upper and lower protective film) is mounted on the apparatus, and the transmittance of each of the polarizers is adjusted in a state in which the axis of the polarizer sample is vertically and horizontally aligned with the axis of the reference polarizer. After measurement, the unit transmittance can be calculated.
  • V7100 spectrometer
  • Polarizers whose basic transmittance to light of 390 nm wavelength is controlled within the above range can be combined with the retardation layer described later to impart appropriate UV blocking properties to the circularly polarizing plate and stably maintain durability.
  • a linear absorption polarizer based on PVA exhibits the above-described simple transmittance.
  • PVA linear absorption polarizer can be applied.
  • the PVA polarizer generally comprises a PVA film or sheet and an anisotropic material such as a dichroic dye or iodine adsorbed on the PVA film or sheet.
  • the PVA film or sheet can be obtained by, for example, gelling polyvinyl acetate.
  • the polyvinyl acetate include homopolymers of vinyl acetate; And copolymers of vinyl acetate and other monomers, and the like.
  • the other monomers copolymerized with vinyl acetate there may be mentioned one kind or more of unsaturated carboxylic acid compounds, olefinic compounds, vinyl ether compounds, unsaturated sulfonic acid compounds and acrylamide compounds having an ammonium group.
  • the degree of gelation of polyvinyl acetate is generally about 85 mol% to about 100 mol% or 98 mol% to 100 mol%.
  • the polymerization degree of the linearly polarized polyvinyl alcohol may generally be from about 1,000 to about 10,000 or from about 1,500 to about 5,000.
  • the PVA polarizer is produced by a dyeing process and a stretching process on a PVA film or sheet. If necessary, the manufacturing process of the polarizer may further include a swelling, crosslinking, cleaning and / or drying process.
  • the dyeing process may be performed by immersing the PVA film or sheet in a treatment tank containing iodine and potassium iodide to adsorb iodine, which is an anisotropic water-absorbing material, to a PVA film or sheet. It is possible to control the mass transmittance by adjusting the concentration of iodine and potassium iodide in the treatment tank.
  • the PVA film or sheet is immersed in a dyeing solution or a crosslinking solution containing iodide such as iodine (I 2 ), KI and / or boric acid compound (boric acid or borate salt), and in this process, an anisotropic
  • iodide such as iodine (I 2 ), KI and / or boric acid compound (boric acid or borate salt)
  • boric acid compound borate salt
  • the species of an iodine compound which may be present in the staining solution is iodide might be a - a I derived from the iodine (I 2) -, I 2 , I 3 - or I 5 (M + I) have.
  • I < - &gt has an absorption wavelength range of about 190 nm to 260 nm, no influence of coloring effect, I 2 has an absorption wavelength range of about 400 nm to 500 nm, I 3 - has an absorption wavelength range of about 250 nm to 400 nm, color tone is mainly yellow, I 5 - of the linear structure is not observed in the absorption wavelength range, the influence of color is not great, 5 - has an absorption wavelength range of about 500 nm to 900 nm, and the color tone is mainly blue.
  • the dyeing solution is generally an iodine solution which is an aqueous solution in which iodide is formed through iodine and iodide as a solubilizing aid, and a boric acid compound is added to the aqueous solution for the crosslinking process.
  • concentration of iodine and iodide added to the aqueous solution thus, the species and ratio of iodine compounds formed in the dye solution can be determined.
  • iodide compound for example, potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide or titanium iodide may be used.
  • the concentration of iodide in the dyeing solution used in the dyeing step is at least about 1.5% by weight and the concentration of iodine (I 2 ) 0.05 to 20% by weight.
  • the concentration of the iodide may be in the range of about 20 wt% or less, 18 wt% or less, 16 wt% or less, 14 wt% or less, 12 wt% or less, 10 wt% or less, 8 wt% .
  • the concentration of iodine is 19 wt% or less, 18 wt% or less, 17 wt% or less, 16 wt% or less, 15 wt% or less, 14 wt% or less, 13 wt% or less, 12 wt% or less, 11 Not more than 10 weight%, not more than 9 weight%, not more than 8 weight%, not more than 7 weight%, not more than 6 weight%, not more than 5 weight%, not more than 4 weight%, not more than 3 weight%, not more than 2 weight% Or less by weight.
  • the concentration of iodide and / or iodine in the dyeing solution is adjusted to the above range, the species and concentration of the iodine compound in the dyeing solution can be formed so that the basic transmittance for light having a wavelength of 390 nm falls within the above-mentioned range .
  • the concentration of the dyeing solution applied in the dyeing process is adjusted as described above, and other processes can be carried out according to generally known methods.
  • the dyeing process can also be carried out according to a known method, except that the concentration of the dyeing solution is controlled as described above.
  • a PVA film or sheet in a dyeing process, can be dipped into a dyeing solution as described above.
  • the temperature of the dyeing solution is usually 20 to 50 ⁇ , 25 to 40 ⁇
  • the immersing time is usually 10 to 300 seconds or 20 to 240 seconds, but is not limited thereto.
  • a crosslinking process may be performed during the production of the polarizer.
  • the crosslinking step can be carried out using, for example, a crosslinking agent such as a boron compound.
  • a crosslinking agent such as a boron compound.
  • the order of such a crosslinking step is not particularly limited, and can be performed, for example, with a dyeing and / or drawing process, or separately.
  • the crosslinking process can be carried out simultaneously with dyeing.
  • Such a crosslinking step may be carried out plural times.
  • the boron compound boric acid or borax may be used.
  • the boron compound can be generally used in the form of an aqueous solution or a mixed solution of water and an organic solvent, and usually an aqueous solution of boric acid is used.
  • the boric acid concentration in the boric acid aqueous solution can be selected in an appropriate range in consideration of the degree of crosslinking and the heat resistance thereof.
  • An iodinated compound such as potassium iodide can also be contained in an aqueous boric acid solution or the like.
  • the crosslinking step can be carried out by immersing the PVA film or sheet in an aqueous boric acid solution or the like.
  • the treatment temperature is usually 25 ° C or higher, 30 ° C to 85 ° C or 30 ° C to 60 ° C, and the treatment time is usually 5 seconds to 800 seconds or 8 seconds to 500 seconds, It is not.
  • the stretching process is generally performed by uniaxial stretching. Such stretching may be performed together with the dyeing and / or crosslinking process.
  • the drawing method is not particularly limited, and for example, a wet drawing method can be applied. In this wet stretching method, for example, stretching is generally performed after dyeing, but stretching may be performed together with crosslinking, and may be performed plural times or in multiple stages.
  • An iodinated compound such as potassium iodide may be contained in the treatment liquid applied to the wet drawing method.
  • the treatment temperature is usually 25 ° C or higher, 30 ° C to 85 ° C or 50 ° C to 70 ° C, and the treatment time is usually 10 seconds to 800 seconds or 30 seconds to 500 seconds, but is not limited thereto .
  • the total draw ratio during stretching can be adjusted in consideration of the orientation characteristics and the like, and the total draw ratio may be 3 to 10 times, 4 to 8 times, or 5 to 7 times, based on the original length of the PVA film or sheet
  • the present invention is not limited thereto.
  • the total draw ratio may mean the cumulative draw ratio including the draw in each step in the case of involving the draw even in the swelling step other than the drawing step.
  • Such a total draw ratio can be adjusted in consideration of the orientation, workability, or the possibility of breakage of the drawability.
  • the swelling process may be performed prior to performing the process. It is possible to clean the PVA film or the surface of the sheet by swelling or to clean the anti-blocking agent, thereby reducing irregularities such as uneven dyeing.
  • the main component of the treatment liquid is water, and if necessary, it may contain a small amount of an additive such as an iodide compound such as potassium iodide or a surfactant, or an alcohol.
  • an additive such as an iodide compound such as potassium iodide or a surfactant, or an alcohol.
  • the treatment temperature in the swelling process is usually about 20 ⁇ to 45 ⁇ or about 20 ⁇ to 40 ⁇ , but is not limited thereto. Since the swelling deviations can cause staining deviations, the process parameters can be adjusted so that the occurrence of such swelling deviations is suppressed as much as possible.
  • Proper stretching can also be performed in the swelling process.
  • the stretching magnification may be 6.5 times or less, 1.2 to 6.5 times, 2 times to 4 times, or 2 times to 3 times, based on the original length of the PVA film.
  • the stretching in the swelling process can control the stretching in the stretching process performed after the swelling process to be small and the stretching failure of the film can be controlled.
  • metal ion treatment can be performed. This treatment is carried out, for example, by immersing the PVA film in an aqueous solution containing a metal salt. This allows the metal ions to be contained in the analyzer.
  • the color tone of the PVA polarizer can be controlled by controlling the kind or ratio of metal ions.
  • the metal ion which can be applied include metal ions of transition metals such as cobalt, nickel, zinc, chromium, aluminum, copper, manganese or iron, and the adjustment of the color tone may be possible have.
  • the washing step may proceed.
  • a cleaning process can be performed by a solution of iodine compound such as potassium iodide.
  • washing with water and washing with the iodine compound solution may be combined, or a solution in which a liquid alcohol such as methanol, ethanol, isopropyl alcohol, butanol or propanol is blended may also be used.
  • a liquid alcohol such as methanol, ethanol, isopropyl alcohol, butanol or propanol is blended
  • the polarizer can be manufactured by performing a drying process.
  • the drying step for example, it may be carried out at an appropriate temperature for a suitable time in consideration of the required moisture content and the like, and such conditions are not particularly limited.
  • the polarizer produced in this manner may comprise a PVA film or sheet and an anisotropic absorbent material which is adsorptively oriented on the PVA film or sheet.
  • the anisotropic absorbent material may be iodine, and such a polarizer may be referred to as an iodine PVA polarizer in the present application.
  • the kind of the polarizers applicable in the present application is not limited to the above, and among the various known polarizers, light having a wavelength of 390 nm Any kind of polarizer can be applied in the present application as far as the group transmittance to the above-mentioned range falls within the above-mentioned range.
  • a retardation layer is present on one side of the polarizer.
  • the retardation layer itself has blocking ability or absorbing ability against ultraviolet rays in a predetermined wavelength range.
  • the retardation layer may have a transmittance for light at wavelengths of 385 nm, 390 nm, 395 nm, and / or 400 nm within a predetermined range.
  • the retardation layer may have a transmittance of 3% or less with respect to light having a wavelength of 385 nm.
  • the transmittance is 2.9% or less, 2.8% or less, 2.7% or less, 2.6% or less, 2.5% or less, 2.4% or less, 2.3% or less, 2.2% or less, 2.1% or less, 2.0% or less, 1.9% , 1.8% or less, 1.7% or less, 1.6% or less, 1.5% or less or 1.4% or less.
  • the transmittance may be 0% or more, 0.1% or more, 0.2% or more, 0.3% or more, 0.4% or more, 0.5% or more, 0.6% or more, 0.7% or more, 0.8% or more, 0.9% or more, 1.0% , 1.1% or more, 1.2% or more, 1.3% or more, 1.4% or more, 1.5% or more, 1.6% or more or 1.65% or more.
  • the retardation layer may have a transmittance of 15% or less with respect to light having a wavelength of 390 nm.
  • the transmittance is 14% or less, 13% or less, 12% or less, 11% or less, 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, Or 3.5% or less.
  • the transmittance may be 0% or more, 0.1% or more, 0.2% or more, 0.3% or more, 0.4% or more, 0.5% or more, 0.6% or more, 0.7% or more, 0.8% or more, 0.9% or more, At least 1.5%, at least 2%, at least 2.5%, at least 2.6%, at least 2.7%, at least 2.8%, at least 2.9%, at least 3.1%, at least 3.2%, at least 3.3%, at least 3.4% Or more.
  • the retardation layer may have a transmittance of 25% or less with respect to light having a wavelength of 395 nm.
  • the transmittance is 24% or less, 23% or less, 22% or less, 21% or less, 20% or less, 19% or less, 18% or less, 17% or less, 16% or less, Or less, 12% or less, 11% or less, 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less or 3.5% or less.
  • the transmittance may be 0% or more, 0.1% or more, 0.2% or more, 0.3% or more, 0.4% or more, 0.5% or more, 0.6% or more, 0.7% or more, 0.8% or more, 0.9% or more, More than 2.5%, more than 3%, more than 3.5%, more than 4%, more than 4.5%, more than 5%, more than 5.5%, more than 6% , At least 8%, at least 8.5%, at least 9%, or at least 9.5%.
  • the retardation layer may have a transmittance of 40% or less with respect to light having a wavelength of 400 nm.
  • the transmittance is 39.5%, 39.5%, 38.5%, 38%, 37.5%, 37%, 36.5%, 36%, 35.5%, 35% 31.5%, 31%, 30%, 29.5%, 29%, 28.5%, 28%, 27.5%, 33.5% Or less or 27% or less.
  • the transmittance may be 0% or more, 0.1% or more, 0.2% or more, 0.3% or more, 0.4% or more, 0.5% or more, 0.6% or more, 0.7% or more, 0.8% or more, 0.9% or more, More than 2.5%, more than 3%, more than 3.5%, more than 4%, more than 4.5%, more than 5%, more than 5.5%, more than 6% Or more, 8% or more, 8.5% or more, 9% or more, 9.5% or more, 10% or more, 10.5% or more, 11% or more, 11.5% or more, 12% or more, 12.5% or more, 13% or more, 14% or more, 15% or more, 15.5% or more, 16% or more, 16.5% or more, 17% or more, 17.5% or more, 18% or more, 18.5% or more, 19% or more, 19.5% , 20.5%, 21%, 21.5%, 22%, 22.5%, 23%, 23.5%, 24%, 24.5%, or 25%
  • the transmittance of the retardation layer can be measured using, for example, a spectrometer (N & K analyzer, N & K Technologies, INC).
  • the transmittance of the retardation layer can be measured after the sample of the retardation layer is placed on a substrate which does not exhibit an absorption peak at a wavelength of preferably at least 380 nm.
  • a liquid crystal alignment film or the like may be present.
  • the type of the substrate that does not exhibit the absorption peak at a wavelength of 380 nm or more is not particularly limited and may be, for example, an NRT base film or a TAC (triacetyl cellulose) base film (transmittance at 385 nm: 90.8% Transmittance: 91.1%, transmittance at 395 nm: 91.2%, or transmittance at 400 nm: 91.4%).
  • NRT base film or a TAC (triacetyl cellulose) base film
  • TAC triacetyl cellulose
  • the retardation layer having the transmittance property designed as described above can ensure that the circularly polarizing plate has a stable durability while exhibiting a blocking property against light having a wavelength in the range of 380 to 400 nm.
  • this effect can be further improved in combination with the above-mentioned polarizer. That is, when the transmittance of the polarizer and / or the transmittance of the retardation do not satisfy the above-mentioned range, the ultraviolet shielding ability of the circularly polarizing plate, particularly the shielding rate against light in the range of 380 to 400 nm, And the retardation layer, and the durability of the circularly polarizing plate may be deteriorated.
  • the ultraviolet blocking ability of the retardation layer can be realized without introducing a separate ultraviolet absorber or light stabilizer into the retardation layer. Therefore, in one example, the retardation layer may not include an ultraviolet absorber or a light stabilizer, for example, an ultraviolet absorber or a light stabilizer having a maximum absorption wavelength in the range of 385 nm to 400 nm. That is, in the case where the retardation layer is constituted by appropriately blending the quasi-dispersion polymerizable liquid crystal compound and the reverse dispersion polymerizable liquid crystal compound as described later, the structural characteristics of the individual polymerizable liquid crystal compounds are complementary to each other, It is possible to secure the desired ultraviolet ray absorptivity without applying a xenobiotic tablet or the like. By not applying the ultraviolet absorber and the light stabilizer in this way, it is possible to form a retardation layer having excellent durability that does not cause defective alignment of the liquid crystal due to the additive and bleeding-out phenomenon after formation of the retardation layer.
  • the retardation layer having the ultraviolet blocking ability can be realized by designing an inverse wavelength characteristic in a manner to be described later.
  • the retardation layer may be a layer having a refractive index relationship according to any one of the following expressions (1) to (3).
  • nx > ny and nz > ny
  • nx, ny and nz are refractive indices in the x-axis direction (slow axis direction), the refractive index in the y-axis direction (fast axis direction)
  • the x-axis direction means the slow axis direction on the surface of the retardation layer 100 in the form of a film or sheet
  • the y-axis direction is a planar direction in the plane direction perpendicular to the x- (In the fast axis direction)
  • the z axis direction may mean the direction of the normal of the plane formed by the x axis and the y axis, for example, the thickness direction.
  • refractive index herein is the refractive index for light at a wavelength of about 550 nm.
  • the retardation layer included in the circularly polarizing plate may have, for example, a phase retardation within a range capable of having a quarter-wave retardation characteristic.
  • n wavelength phase delay characteristic means a characteristic that the incident light can be phase-delayed by n times the wavelength of the incident light within at least a part of the wavelength range.
  • the 1/4 wavelength phase delay characteristic may be a characteristic that converts incident linearly polarized light into elliptically polarized light or circularly polarized light and conversely converts incident linearly polarized light or circularly polarized light into linearly polarized light.
  • the phase difference layer may have a phase difference of 90 nm to 300 nm for light with a wavelength of 550 nm.
  • the phase retardation may be at least 100 nm, at least 105 nm, at least 110 nm, at least 115 nm, at least 120 nm, at least 125 nm, or at least 130 nm.
  • the phase retardation may be 290 nm or less, 280 nm or less, 270 nm or less, 260 nm or less, 250 nm or less, 240 nm or less, 230 nm or less, 220 nm or less, 210 nm or less, 200 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less or 145 nm or less.
  • phase retardation is a value determined according to the following equation (4)
  • retardation in the thickness direction is a value determined according to the following equation (5).
  • Rin d x (nx - ny)
  • Rin is the phase retardation
  • Rth is the retardation in the thickness direction
  • nx, ny and nz are as defined in the above formulas 1 to 3
  • d is the thickness of the retardation layer.
  • the range of retardation in the thickness direction determined according to the formula 5 with respect to the retardation layer is not particularly limited and may be within a range of about -200 nm to 200 nm, for example.
  • the retardation in the thickness direction may be -190 nm or more, -180 nm or more, -170 nm or more, -160 nm or more, -150 nm or more, -140 nm or more, -130 nm or more, -90 nm, -80 nm or more, -70 nm or more, -60 nm or more, -50 nm or more, -40 nm or more, -30 nm or more, -20 nm or more, or -10 nm.
  • the retardation in the thickness direction may be 190 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, 110 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less or 10 nm or less.
  • the retardation layer may be a layer satisfying the following expression (6).
  • R (450) is the phase difference of the phase difference layer with respect to the light having the wavelength of 450 nm
  • R (550) is the phase difference of the phase difference layer with respect to the light having the wavelength of 550 nm, plane retardation of the retardation layer with respect to light having a wavelength of 20 nm.
  • the plane phase difference with respect to light having a wavelength of 450 nm is expressed as nx and ny in Equation 4, and the refractive index with respect to light having a wavelength of 450 nm is applied.
  • the phase difference with respect to the light having a wavelength of 550 nm Is a refractive index for light of a wavelength of 550 nm as nx and ny in Equation 4 and a refractive index for light of 650 nm as nx and ny in Equation 4 is applied to a wavefront retardation for light of a wavelength of 650 nm.
  • the retardation layer satisfying the expression (6) is a retardation layer having a so-called reverse wavelength dispersion. Such a retardation layer can exhibit a designed phase delay characteristic in a wide wavelength range.
  • R (450) / R (550) may be in the range of 0.6 to 0.99.
  • R (450) / R (550) is at least 0.61, at least 0.62, at least 0.63, at least 0.64, at least 0.65, at least 0.66, at least 0.67, at least 0.69, at least 0.70, at least 0.71, at least 0.72, 0.74 or more, 0.75 or more, 0.76 or more, 0.77 or more, 0.78 or more, 0.79 or more, 0.80 or more, 0.81 or more, 0.82 or more, 0.83 or more, 0.84 or more, 0.85 or more, 0.86 or more, 0.87 or more, 0.88 or more, .
  • R (450) / R (550) is 0.98 or less, 0.97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, 0.92 or less, 0.91 or less, 0.90 or less, 0.89 or less, , 0.86 or less, or 0.85 or less.
  • R (650) / R (550) in the expression (6) may be in the range of 1.00 to 1.19.
  • the R (650) / R (550) may be about 1.18 or less, 1.17 or less, 1.16 or less, 1.15 or less, 1.14 or less, 1.13 or less, 1.12 or less, 1.11 or less, 1.1 or less or 1.08 or less.
  • R (650) / R (550) in Equation 6 may be 1.01 or more, 1.02 or more, 1.03 or more, 1.04 or more, 1.05 or more, 1.06 or more, 1.07 or more, 1.08 or more or 1.09 or more.
  • the method of adjusting R (450) / R (550) and / or R (650) / R (550) of the retardation layer to the above range is not particularly limited, but in the present application, In order to secure a desired ultraviolet shielding ability, two types of polymerizable liquid crystal compounds having different reverse wavelength characteristics as described above can be used as described later.
  • the retardation layer may be laminated on one side of the polarizer so that the slow axis and the absorption axis of the polarizer form an angle within a range of about 30 to 60 degrees.
  • the angle may be greater than or equal to 35 degrees or greater than or equal to 40 degrees in another example, and may be less than or equal to 55 degrees or less than or equal to 50 degrees.
  • the retardation layer a known material can be used without particular limitation, as long as it has the transmittance characteristic and the phase retardation.
  • a stretched polymer layer or a liquid crystal layer obtained by stretching a polymer film capable of imparting optical anisotropy by stretching in a suitable manner can be used.
  • a liquid crystal layer or a cured layer of a polymerizable liquid crystal compound can be used.
  • stretched polymer layer examples include polyolefins such as polyethylene and polypropylene, cyclic olefin polymers such as polynorbornene (COP), polyvinyl chloride, polyacrylonitrile, polysulfone, acrylic resin , Polyesters such as polycarbonate and polyethylene terephthalate, cellulose ester polymers such as polyacrylate, polyvinyl alcohol or TAC (triacetyl cellulose), copolymers of two or more monomers among the monomers forming the polymer, and the like A polymer layer can be used.
  • polyolefins such as polyethylene and polypropylene
  • cyclic olefin polymers such as polynorbornene (COP), polyvinyl chloride, polyacrylonitrile, polysulfone, acrylic resin .
  • Polyesters such as polycarbonate and polyethylene terephthalate
  • cellulose ester polymers such as polyacrylate, polyvinyl alcohol or TAC (triacetyl cellulose), cop
  • retardation layer various known materials as described above can be used. However, generally known retardation layers satisfy the above-mentioned characteristics, in particular, the transmittance characteristics with respect to light having a wavelength of 385 nm, 390 nm, 395 nm or 400 nm Often not.
  • the oriented polymer layer when the oriented polymer layer is to be applied as a retardation layer, it may be necessary to add an additive having an appropriate absorption property to the above-mentioned wavelength at the time of production of the polymer layer.
  • liquid crystal polymer layer or a cured layer of a polymerizable liquid crystal composition as a retardation layer in order to secure a desired transmittance characteristic in the above-mentioned wavelength range, and in particular, a polymerizable liquid crystal compound having specific reverse wavelength characteristics It is advantageous to apply a cured layer of the polymerizable liquid crystal composition.
  • the retardation layer may include at least a polymerized unit of a retardation-imparting polymerizable liquid crystal compound and a polymerization unit of an inversely-dispersible polymerizable liquid crystal compound described later.
  • polymerization unit means a unit in which each polymerizable liquid crystal compound is formed by polymerization or curing as described later.
  • a retardation layer can be produced by mixing two or more polymerizable liquid crystal compounds so as to satisfy the above-mentioned characteristic (6).
  • R (450) / R for example, a back-dispersed polymerizable liquid crystal compound described later
  • a polymerizable liquid crystal compound having a high R (450) / R (550) for example, Compound
  • the term " polymerizable liquid crystal compound " may mean a compound containing a moiety capable of exhibiting liquid crystallinity, for example, a mesogen skeleton, and further containing at least one polymerizable functional group .
  • Such polymerizable liquid crystal compounds are variously known under the so-called RM (Reactive Mesogen).
  • the polymerizable liquid crystal compound may be contained in the polymerized form in the cured layer, that is, the polymerized unit described above. This is because the liquid crystal compound is polymerized to form a skeleton such as a main chain or side chain of the liquid crystal polymer in the cured layer Or the like.
  • the polymerizable liquid crystal compound may be a monofunctional or multifunctional polymerizable liquid crystal compound.
  • the monofunctional polymerizable liquid crystal compound is a compound having one polymerizable functional group
  • the multifunctional polymerizable liquid crystal compound may mean a compound containing two or more polymerizable functional groups.
  • the polyfunctional polymerizable liquid crystal compound has from 2 to 10, from 2 to 8, from 2 to 6, from 2 to 5, from 2 to 4, from 2 to 3 Or two or three.
  • a polymerizable liquid crystal composition prepared by compounding such a polymerizable liquid crystal compound with other components such as an initiator, a stabilizer and / or a non-polymerizable liquid crystal compound is cured in a state oriented on the alignment film, Layer is formed.
  • the above-mentioned transmittance characteristics can be secured by controlling the properties of the polymerizable liquid crystal compound used in such a known process.
  • the cured layer of the polymerizable liquid crystal composition comprising the above-mentioned reversed-wavelength polymerizable liquid crystal compound is applied in order to suitably secure the aforementioned transmittance characteristics in one example.
  • reverse wavelength polymerizable liquid crystal compound as used herein means a polymerizable liquid crystal compound in which the liquid crystal layer (cured layer) formed by curing the polymerizable liquid crystal compound alone exhibits reverse wavelength dispersion characteristics, Means the characteristic described in Equation (6).
  • liquid crystal compounds having a R (450) / R (550) of the formula 6 within the range of 0.6 to 0.99 can be applied in the present application.
  • R (450) / R (550) of the inversely dispersed polymerizable liquid crystal compound is 0.61 or more, 0.62 or more, 0.63 or more, 0.64 or more, 0.65 or more, 0.66 or more, 0.67 or more, 0.69 or more, 0.74 or more, 0.75 or more, 0.76 or more, 0.77 or more, 0.78 or more, 0.79 or more, 0.80 or more, 0.81 or more, 0.82 or more, 0.83 or more, 0.84 or more, 0.85 or more, 0.86 or more, 0.87 or more, 0.88 or more, 0.89 or more, or 0.90 or more.
  • R (450) / R (550) is 0.98 or less, 0.97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, 0.92 or less, 0.91 or less, 0.90 or less, 0.89 or less, , 0.86 or less, or 0.85 or less.
  • R (650) / R (550) in the formula 6 may be within the range of 1.00 to 1.19.
  • the R (650) / R (550) may be 1.18 or less, 1.17 or less, 1.16 or less, 1.15 or less, 1.14 or less, 1.13 or less, 1.12 or less, 1.11 or less, 1.1 or less or 0.08 or less.
  • R (650) / R (550) may be 1.01 or more, 1.02 or more, 1.03 or more, 1.04 or more, 1.05 or more, 1.06 or more, 1.07 or more, 1.08 or more or 1.09 or more.
  • the present inventors have found that, in the case of a polymerizable liquid crystal compound in which the value of R (450) / R (550) is in the above-mentioned range, , It was confirmed that the above-described transmittance characteristics were effectively satisfied by red shift of the UV absorption wavelength region.
  • R (450) / R (550) is at least 0.6, at least 0.61, at least 0.62, at least 0.63, at least 0.64, at least 0.65, at least 0.66, at least 0.67, at least 0.68, at least 0.69, at least 0.70, 0.72 or more, 0.73 or more, 0.74 or more, 0.75 or more, 0.76 or more, 0.77 or more, or 0.78 or more.
  • the birefringence of the polymerizable liquid crystal compound is known to be mainly determined by a molecular conjugation structure, differential oscillator strength, and order parameters, etc.
  • Most of the polymerizable liquid crystal compounds have a highly conjugated shape in the long axis direction.
  • the polymerizable liquid crystal compound designed to have the reverse dispersion property is mostly T Or major axis (long axis) having a molecular shape in the H form has a large phase difference and a small dispersion value, and an axis perpendicular thereto has a small phase difference and a large dispersion value.
  • the present inventors have found that the polymerizable liquid crystal compounds designed so that the range of R (450) / R (550) falls within the above-mentioned range satisfy the transmittance characteristics required in the present application And the red shifts in the appropriate range.
  • the inventors of the present invention have found that the retardation polymerizable liquid crystal compound having the following structure exhibits a desired ultraviolet light shielding ability when mixed with the quasi disperse polymerizable liquid crystal compound and has retardation characteristics (R (450) / R (550) (650) / R (550)) can be effectively designed according to purposes.
  • R 1 in the general formula ( 1) is a substituent of the following general formula (2) or (3), and R 2 to R 6 are each independently hydrogen, an alkyl group, an alkoxy group, a cyano group, In the above, at least two or more of R 2 to R 6 are substituents of the following formula (4) or substituents of the following formula (5).
  • any one of R 2 and R 3 and R 5 and R 6 in the general formula (1) may be a substituent of the following general formula (4) or (5).
  • a 1 and A 2 are each independently an oxygen atom or a single bond
  • L 1 and L 2 are each independently -C ( ⁇ O) -O-, -OC ( ⁇ O) - or an alkylene group
  • Cyc is an arylene group or a cycloalkylene group
  • P is a polymerizable functional group.
  • L 3 and L 4 in the general formula (3) are each an alkylene group, n is a number within a range of 1 to 4, and P is a polymerizable functional group or a hydrogen atom.
  • a 3 and A 4 are each an oxygen atom, an alkylene group or a single bond
  • L 5 and L 6 are each independently -C ( ⁇ O) -O-, -OC ( ⁇ O)
  • Cyc is an arylene group
  • P is a polymerizable functional group.
  • a 6 are each independently an oxygen atom or a single bond
  • Cy1 is a cycloalkylene group
  • Cy2 is an arylene group
  • P is a polymerizable functional group.
  • alkyl group, alkoxy group or alkylene group in the formulas (1) to (5) represents a straight or branched alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, an alkoxy group Or an alkylene group, which may optionally be substituted by one or more substituents.
  • the arylene group may be an arylene group having 6 to 12 carbon atoms or may be a phenylene group.
  • the cycloalkylene group in the above formulas (1) to (5) is a cycloalkylene group having 3 to 12 carbon atoms or 3 to 9 carbon atoms, or may be a cyclohexylene group.
  • a 1 may be a single bond
  • L 1 may be -C ( ⁇ O) -O- or -OC ( ⁇ O) -
  • a 2 may be an oxygen atom
  • L 2 May be an alkylene group having 3 or more carbon atoms, 4 or more, or 5 or more carbon atoms.
  • the carbon number of the L 2 alkylene group may be 12 or less or 8 or less.
  • L 3 and L 4 each independently represent an alkylene group having 1 to 4 carbon atoms, and n is a number within a range of 1 to 3, a number within a range of 1 to 2, And P may be a polymerizable functional group.
  • the number of units of [OL 4 ] in the formula (3) is 2 or more, the number of carbon atoms of the alkylene group of L 4 in each unit may be the same or different.
  • L 3 and L 4 each independently represent an alkylene group having 1 to 4 carbon atoms, and n is a number within a range of 1 to 3 or a number within a range of 1 to 2, And P may be a hydrogen atom.
  • the number of units of [OL 4 ] in the formula (3) is 2 or more, the number of carbon atoms of the alkylene group of L 4 in each unit may be the same or different.
  • a 5 may be an oxygen atom
  • L 7 may be an alkylene group having 1 to 4 carbon atoms
  • a 6 may be a single bond
  • a 7 may be an oxygen atom
  • L 9 may be an alkylene group having 3 or more carbon atoms, 4 or more, or 5 or more carbon atoms.
  • the carbon number of the alkylene group of L 9 may be 12 or less or 8 or less.
  • the inventors of the present invention have confirmed that the polymerizable liquid crystal compound as described above can effectively satisfy desired physical properties by a conjugated structure realized by a unique T-structure and N-N bond.
  • the type of the polymerizable functional group in the above formula is not particularly limited and may be, for example, an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group.
  • the use of a compound wherein R 1 is a substituent of the above formula (3) and at least two or more of R 2 to R 6 are substituents of the above formula (5) is used as the inverse dispersion polymerizable liquid crystal compound Can be advantageous.
  • R 1 is a is R 1 in the formula (3) in a liquid crystal compound with the general formula 1 P is a polymerizable functional group P in the formula (3) can be used by mixing the liquid crystal compound is a hydrogen atom, in which case The mixing ratio is determined according to the desired reverse wavelength characteristics (R (450) / R (550) and / or R (650) / R (550)).
  • the polymerization unit of the above-mentioned reversed-wavelength polymerizable liquid crystal compound may be contained in the cured layer (liquid crystal layer) in a proportion of 40 wt% or more based on the weight of the polymerized units of the entire polymerizable liquid crystal compound.
  • the ratio is at least about 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80% Or more, 80 wt% or more, or 95 wt% or more.
  • the retardation layer (liquid crystal layer) is a polymerizable liquid crystal compound, which may contain only a polymerized unit of the liquid crystal compound of the above formula (1), but from the viewpoint of realization of appropriate physical properties, the retardation polymerizable liquid crystal compound It is advantageous.
  • the ratio may be less than 100 wt% or less than 100 wt%.
  • the polymerizable liquid crystal composition and / or the polymerizable liquid crystal compound having the R (450) / R (550) value within the above range may be added in the cured layer to control the overall optical properties.
  • the purified liquid crystal compound may have a R (650) / R (550) in the range of about 0.8 to 0.99, about 0.85 to about 0.99, about 0.9 to about 0.99, or about 0.91 to about 0.99 in Formula 6.
  • the above-mentioned quasi-dispersion polymerizable liquid crystal compounds are variously known.
  • Korean Patent Registration No. 1729819 Korean Registration No. 1640670, Korean Registration No. 1557202, Korean Registration No. 1472187
  • polymeric liquid crystal compounds known from Japanese Patent No. 1460862, Korean Patent No. 1191124, Korean Patent No. 1191125 and Korean Patent No. 1191129.
  • R 1 to R 10 are each independently selected from the group consisting of hydrogen, halogen, alkyl group, alkoxy group, alkoxycarbonyl group, An nitro group, or a substituent of the following formula (7).
  • two adjacent substituents of R 1 to R 5 or two neighboring substituents of R 6 to R 10 in the above structure may be bonded to each other to constitute a benzene ring substituted with -LAP.
  • the alkylene of A may be an alkylene group having 1 or more carbon atoms, 2 or more, 3 or 4 or more, and the number of carbon atoms of the alkylene group may be 20 or less, 16 or less, 12 or less or 8 or less.
  • the polymerizable functional group P may be an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group.
  • B is a single bond
  • R 11 to R 15 are each independently hydrogen, halogen, alkyl group, alkoxy group, alkoxycarbonyl group, Nitro, or -LAP, or two neighboring substituents of R 11 to R 15 may be bonded to each other to constitute a benzene ring substituted with -LAP.
  • the structure of Formula 7 has a naphthalene structure in which -LAP is substituted.
  • the remaining substituents may be the above-mentioned hydrogen, halogen, alkyl group, alkoxy group, alkoxycarbonyl group, cyano group or nitro group .
  • any one of R 7 to R 9 in the formula (6), for example, R 8 may be a compound represented by the above formula (7).
  • a compound having a naphthalene structure to the right of B in the formula (7) can be used by forming benzene in which R 12 and R 13 or R 13 and R 14 are substituted with the -LAP in the formula (7).
  • the ratio of the above-mentioned quasi-dispersion polymerizable liquid crystal compound in the cured layer (liquid crystal layer) is such that the transmittance characteristic of the cured layer (liquid crystal layer) is kept within a desired range, and R (450) / R (550) value and the like can be maintained within a desired range.
  • the above-mentioned quasi-dispersion polymerizable liquid crystal compound may be contained in a proportion of 0 to 60 wt%, or 0 wt% to 60 wt%.
  • the ratio may be about 55 wt% or less, 50 wt% or less, 45 wt% or less, 40 wt% or less, 35 wt% or less, 30 wt% or less, 25 wt% or less, 20 wt% or less, Or less, or 10 wt% or less, or 5 wt% or less.
  • the cured layer liquid crystal layer
  • the cured layer can exhibit suitable reverse dispersion characteristics and transmittance characteristics.
  • the ratio of the above-mentioned quasi-dispersible polymerizable liquid crystal compound in the above polymerizable liquid crystal composition may be within the range in which the above-mentioned finely dispersed polymerizable liquid crystal compound can be present in the above-mentioned range in the formed cured layer.
  • the cured layer may contain three or more polymerizable liquid crystal compounds, for example, three to ten, three to eight, three to six, three to five, and three polymerizable functional groups To 4 or 3 polymerizable liquid crystal compounds.
  • the polymerizable liquid crystal compound having three or more functional groups as described above may be the above-mentioned inversely dispersed or quasi-dispersible polymerizable liquid crystal compound.
  • the proportion of polymerized units of the polymerizable liquid crystal compound in the cured layer (liquid crystal layer) is not particularly limited, but may be, for example, 30% by weight or more, 40% by weight or more, 100% by weight or less, .
  • the cured layer (liquid crystal layer) containing polymerized units of the polymerizable liquid crystal compound having three or more functional groups in such a ratio can exhibit more excellent durability.
  • the conversion ratio of the polymerizable liquid crystal compound in the cured layer (liquid crystal layer) of the polymerizable liquid crystal composition containing the polymerizable liquid crystal compound described above that is, the proportion of the polymerizable liquid crystal compound converted into the polymerized state in the initial monomer state, For example, about 50% by weight to about 100% by weight.
  • the conversion may be from about 60 to 100% by weight or from about 70 to 100% by weight in another example. At such a conversion rate, the cured layer (liquid crystal layer) can exhibit better durability.
  • the retardation layer of the present invention realizes a desired ultraviolet ray absorbing ability through application of a normal dispersion of a specific structure and a reverse dispersion polymerizable liquid crystal compound without using an ultraviolet absorber or a light stabilizer as described above, .
  • the retardation layer may have an absolute value of the retardation change ratio according to the following formula A of about 17% or less, about 16.5% or less, about 16% or less, or about 15.5% or less.
  • the rate of phase difference change may be about 0% or more, 2% or more, 4% or more, 6% or more, 8% or more, 10% or more, 12% or more or 14% or more.
  • Phase difference change rate 100 x (Ra - Ri) / Ri
  • Ri in Equation A is the initial in-plane retardation of the retardation layer with respect to a wavelength of 550 nm
  • Ra is in-plane retardation with respect to the wavelength of 550 nm of the retardation layer after the endurance condition.
  • the durability condition described above is to maintain the retardation layer at 85 DEG C, and specifically, the retardation change ratio can be measured by the method disclosed in the following embodiments.
  • the holding time at the endurance condition may be 50 hours or more, 100 hours or more, 150 hours or more, 200 hours or more or 250 hours or more.
  • the holding time may be about 300 hours or less in other examples.
  • the circular polarizer of the present application may have various other structures as long as it basically includes the polarizer and the retardation layer.
  • the circularly polarizing plate may include an additional layer (hereinafter referred to as outer layer) laminated on the opposite surface of the polarizer facing the retardation layer.
  • outer layer laminated on the opposite surface of the polarizer facing the retardation layer.
  • 3 is an example of a case where the outer layer 301 is formed on the upper side of the polarizer 101.
  • Examples of the type of the outer layer include, but are not limited to, a polarizer protective film, a hard coating layer, a retardation film, an antireflection layer, or a liquid crystal coating layer.
  • the specific type of each constitution used as the outer layer is not particularly limited and various kinds of films used in the industry for constituting an optical film such as a polarizing plate can be used without limitation.
  • the outer layer may be an optical film having a phase retardation of 10 nm or less with respect to a wavelength of 550 nm.
  • the optical film may be a protective film of the polarizer.
  • the protective film various films known in the art can be applied.
  • the outer layer may also be a retardation layer having a quarter-wave phase delay characteristic.
  • a retardation layer can be constituted by using a phase difference film or a liquid crystal coating layer among the above-mentioned outer layers. Therefore, the circularly polarizing plate may further include an optical film (retardation layer) laminated on the opposite surface of the polarizer facing the retardation layer, the retardation layer having a plane retardation with respect to a wavelength of 550 nm within a range of 90 nm to 300 nm .
  • the phase retardation of the retardation layer may be 100 nm or more, 105 nm or more, 110 nm or more, 115 nm or more, 120 nm or more, 125 nm or more or 130 nm or more in other examples.
  • the phase retardation may be 290 nm or less, 280 nm or less, 270 nm or less, 260 nm or less, 250 nm or less, 240 nm or less, 230 nm or less, 220 nm or less, 210 nm or less, 200 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less or 145 nm or less.
  • the above-mentioned outer layer may be a single layer or a multi-layer structure.
  • a single layer structure of the polarizer protective film or a single layer structure of a retardation film having the quarter-wave phase retardation characteristic may be exemplified.
  • the multi-layer structure And / or a structure in which a hard coating layer, a liquid crystal coating layer and / or an antireflection layer having a 1/4 wavelength phase retardation property are formed on a retardation film can be exemplified.
  • the hard coating layer, the liquid crystal having a quarter- The coating layer and the antireflection layer may have any one of them or two or more layers may exist in multiple layers.
  • the circularly polarizing plate may further include an additional layer (hereinafter referred to as a lower layer) laminated on the opposite side of the surface of the retardation layer facing the polarizer.
  • a lower layer laminated on the opposite side of the surface of the retardation layer facing the polarizer.
  • 4 is an example of a case where the lower layer 401 is formed on the upper part of the retardation layer 102.
  • the outer layer 301 as shown in FIG. 3 may be added. 4 an outer layer such as a hard coating layer and a low reflection layer may be present outside the polarizer 101 in a state where the lower layer 401 is present, and a protective film may be provided on one side or both sides of the polarizer 101 It may exist.
  • a retardation layer As a kind of the lower layer, a retardation layer, a pressure-sensitive adhesive layer for adhering the circular polarizer to another element, an adhesive layer, or a protective film or release film for protecting the pressure-sensitive adhesive layer or the adhesive layer can be exemplified.
  • the layer satisfying the refractive index relationship of the following formula 7 or 8 may be applied. With the addition of such a layer, desired properties can be exhibited also for the light incident on the circularly polarizing plate in the oblique direction.
  • nx ny ⁇ nz
  • nx > ny and nz > ny
  • Nx, ny and nz in the above formulas 7 and 8 are as defined in the above formulas 1 to 3.
  • the circularly polarizing plate may further include an optical film which is a lower retardation layer and is present under the retardation layer and whose retardation in the thickness direction is within a range of 10 to 400 nm.
  • the optical film may be a retardation layer satisfying the refractive index relationship of the expression (7) or (8).
  • the upper limit of the retardation in the thickness direction of the optical film may be from 370 nm or less, 350 nm or less, 330 nm or less, 300 nm or less, 270 nm or 250 nm or 240 nm or 230 nm or 220 nm or 200 nm or 190 nm or 180 nm or less nm, 170 nm, 160 nm, 155 nm, 150 nm, 130 nm, 120 nm, 110 nm, 100 nm, 80 nm or 70 nm.
  • the lower limit of the retardation in the thickness direction of the optical film may be 5 nm, 10 nm, 20 nm, 40 nm, 50 nm, 90 nm, 100 nm, 110 nm, 120 nm or 150 nm in other examples. It is possible to provide a circularly polarizing plate having excellent reflection and luminosity characteristics, in particular, reflection characteristics and luminosity characteristics at an oblique angle, by adjusting the retardation in the thickness direction of the optical film as described above.
  • the phase retardation thereof is, for example, more than 0 nm, 300 nm or less, 290 nm or less, 280 nm or less, 270 nm or less, 250 nm or less, 240 nm or less, 230 nm or less, 220 nm or less, 210 nm or less, 200 nm or less, 190 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less, Or less, 120 nm or less, 110 nm or less, 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less or 10 nm or less have.
  • the optical film may be arranged such that its slow axis is perpendicular or horizontal to the absorption axis of the polarizer.
  • the terms vertical, orthogonal, horizontal, or parallel as used herein mean substantially vertical, orthogonal, horizontal, or parallel to the extent that the desired effect is not impaired. Therefore, each of the above terms may include an error within ⁇ 15 °, within ⁇ 10 °, within ⁇ 5 °, or within ⁇ 3 °, for example.
  • the slow axis may be arranged such that the absorption axis of the polarizer can be an angle within a range of about 30 to 60 degrees.
  • the angle may be greater than or equal to 35 degrees or greater than or equal to 40 degrees in another example, and may be less than or equal to 55 degrees or less than or equal to 50 degrees.
  • a separate layer may or may not exist between the polarizer and the retardation layer.
  • a polarizer and a retardation layer are directly attached.
  • a layer for adhering the polarizer and the retardation layer for example, , An adhesive layer and / or a primer layer, and the like.
  • the birefringent layer may not exist at least between the polarizer and the retardation layer.
  • the birefringent layer means a layer having at least one of a phase retardation and a thickness retardation of 10 nm or more.
  • FIG. 5 is an example of a case where a separate layer (intermediate layer) 501 exists between the polarizer 101 and the retardation layer 102.
  • FIG. The above-mentioned polarizer protective film or retardation layer may be exemplified as the above-mentioned intermediate layer.
  • the outer layer 301 of the structure of FIG. 3 and / or the lower layer 401 of the structure of FIG. 4 may also be present.
  • a circularly polarizing plate is provided between the polarizer and the retardation layer, and has a phase retardation of 5 nm or less with respect to a wavelength of 550 nm and a retardation in the thickness direction with respect to a wavelength of 550 nm of -60 nm to 0 nm
  • the optical film may further include an optical film, which may be, for example, a protective film of a polarizer.
  • the circularly polarizing plate is an optical element that exists between the polarizer and the retardation layer and has an in-plane retardation with respect to a wavelength of 550 nm of 10 nm or less and a thickness retardation with respect to a wavelength of 550 nm of 40 nm to 400 nm Film may be further included.
  • Such an optical film may be a retardation layer and may be, for example, a layer satisfying the refractive index relationship of any one of the above formulas 1 to 3, 7 and 8, a spray-aligned liquid crystal cured layer or a tilt-aligned liquid crystal cured layer .
  • the circularly polarizing plate may further include an optically anisotropic layer having a retardation layer existing between the polarizer and the retardation layer and having a Nz of -4.0 or less or a retardation layer satisfying the following equation have.
  • Nz (nx-nz) / (nx-ny)
  • nx ny ⁇ nz
  • nx is the refractive index in the slow axis direction of the retardation layer
  • ny is the refractive index in the fast axis direction of the retardation layer
  • nz is the refractive index in the thickness direction of the retardation layer.
  • the optically anisotropic layer may further include a retardation layer whose Nz value in the formula (9) is in the range of 0.8 to 1.2, and the in-plane slow axis is parallel or orthogonal to the absorption axis of the polarizer.
  • the retardation layer having Nz of -4.0 or less, or satisfying the equation 10 in the formula (9) is adjacent to the polarizer in comparison with the retardation layer having an Nz value in the range of 0.8 to 1.2 in the formula (9)
  • In-plane slow axis of the retardation layer whose Nz value of the retardation layer is in the range of 0.8 to 1.2 can be arranged parallel to the absorption axis of the polarizer.
  • the retardation layer having the Nz value in the range of 0.8 to 1.2 in the above formula (9) is adjacent to the polarizer in comparison with the retardation layer in which the Nz of the formula (9) is -4.0 or less or the formula (10) Plane retardation value of the retardation layer whose value is in the range of 0.8 to 1.2 may be orthogonal to the absorption axis of the polarizer.
  • the retardation layer having the Nz value in the range of 0.8 to 1.2 in the formula (9) is adjacent to the polarizer in comparison with the retardation layer in which the Nz of the formula (9) is -4.0 or less or the formula (10) Plane retardation axis of the retardation layer within the range of 0.8 to 1.2 may be parallel to the absorption axis of the polarizer.
  • the retardation layer having Nz of -4.0 or less or satisfying the equation 10 in the formula 9 is adjacent to the polarizer in comparison with the retardation layer having the Nz value of the formula 9 within the range of 0.8 to 1.2, Plane retardation value of the retardation layer whose value is in the range of 0.8 to 1.2 may be arranged orthogonal to the absorption axis of the polarizer.
  • the retardation in the thickness direction of the retardation layer having Nz of -4.0 or less or the formula 10 is in the range of 30 nm to 200 nm, and the Nz value of Eq. 9 may be -4.0 or less .
  • the retardation of the retardation layer having the Nz value of the formula (9) within the range of 0.8 to 1.2 may be in the range of 30 nm to 180 nm for the light having the wavelength of 550 nm.
  • the circularly polarizing plate may further include a retardation layer which exists between the polarizer and the retardation layer and satisfies the following expression (11).
  • nx > ny and nz > ny
  • nx is the refractive index in the slow axis direction of the retardation layer
  • ny is the refractive index in the fast axis direction of the retardation layer
  • nz is the refractive index in the thickness direction of the retardation layer.
  • the in-plane retardation of the retardation layer is in the range of 70 to 200 nm, and the in-plane slow axis can be parallel or orthogonal to the absorption axis of the polarizer.
  • Nz of the retardation layer according to the formula (9) may be in the range of -0.2 to 0.8.
  • the circularly polarizing plate may further include a retardation layer having a plurality of optical axes varying in inclination angle along the thickness direction between the polarizer and the retardation layer, for example, a spray-aligned liquid crystal hardening layer.
  • the projection of all the optical axes of the retardation layer onto the plane may be parallel or orthogonal to the absorption axis of the polarizer.
  • the cured layer may include a liquid crystal material having a refractive index anisotropy of 0.03 to 0.2.
  • the liquid crystal curing layer may include rod-shaped liquid crystal molecules or may include disk-shaped liquid crystal molecules.
  • the optical axis of the retardation layer is formed such that the inclination angle is 70 to 90 degrees on one surface of the retardation layer and the inclination angle is 0 to 20 degrees on the other surface facing the retardation layer. As shown in Fig.
  • the inclination angle of the optical axis of the retardation layer is 70 to 90 degrees on both surfaces of the retardation layer, and the optical axis is in the thickness direction As shown in FIG.
  • the inclination angle of the optical axis of the retardation layer is 0 to 20 degrees on both surfaces of the retardation layer, and the optical axis is set to 40 to 90 degrees in the middle in the thickness direction As shown in FIG.
  • the inclination angle of the optical axis of the retardation layer is 70 to 90 degrees on both surfaces of the retardation layer and the optical axis is in the thickness direction As shown in FIG.
  • the inclination angle of the optical axis of the retardation layer is 0 to 20 degrees on both surfaces of the retardation layer, and the optical axis is in the thickness direction As shown in FIG.
  • the circularly polarizing plate may further include a retardation layer, for example, a tilt-aligned liquid crystal hardening layer having an optical axis inclined uniformly along the thickness direction between the polarizer and the retardation layer.
  • a retardation layer for example, a tilt-aligned liquid crystal hardening layer having an optical axis inclined uniformly along the thickness direction between the polarizer and the retardation layer.
  • the projection of the retardation layer onto the plane of the optical axis can be parallel to the absorption axis of the polarizer.
  • the retardation layer as the liquid crystal hardening layer may include liquid crystal molecules having an anisotropy of refractive index within the range of 0.03 to 0.2.
  • the liquid crystal molecules may be rod-shaped liquid crystal molecules, for example, nematic liquid crystals.
  • the inclination angle of the optical axis of the retardation layer may be in the range of 25 to 65 degrees, and the thickness may be in the range of 0.35 to 2.2 ⁇ ⁇ .
  • the inclination angle of the optical axis of the retardation layer may be in the range of 35 degrees to 50 degrees, and the thickness may be 0.4 mu m to 2.2 mu m.
  • the liquid crystal molecules may be disk-shaped liquid crystal molecules in another example, for example, a discotic liquid crystal.
  • the inclination angle of the optical axis of the retardation layer may be in the range of 10 degrees to 35 degrees, and the thickness thereof may be in the range of 1 mu m to 3 mu m.
  • An exemplary display device may include the circular polarizer plate.
  • the specific kind of the display device including the circularly polarizing plate is not particularly limited.
  • the apparatus may be, for example, a liquid crystal display device such as a reflection type or transflective type liquid crystal display, an organic light emitting device or the like.
  • the arrangement of the circularly polarizing plate in the display device is not particularly limited, and for example, a known type may be employed.
  • a circularly polarizing plate can be used as any one circularly polarizing plate among the circularly polarizing plates of a liquid crystal panel in order to prevent anti-bending of outside light and ensure visibility.
  • the organic light emitting device when the circular polarizer is applied to the organic light emitting device, the organic light emitting device includes a reflective electrode, a transparent electrode, an organic layer interposed between the reflective electrode and the transparent electrode, the organic layer having a light emitting layer, A polarizing plate may be present outside the reflective or transparent electrode and a retardation film may be disposed closer to the reflective or transparent electrode than the polarizer.
  • a circular polarizer excellent in durability which can be applied to a display device such as an organic light-emitting display device and which can shield the harmful ultraviolet rays appropriately while minimizing the blocking of light in the visible light region affecting the image quality .
  • Figures 1 and 3-5 are schematic diagrams of an exemplary circular polarizer structure.
  • 6 to 7 are graphs showing the transmittance of the embodiment or comparative example.
  • Figs. 8 to 13 are graphs showing changes in phase difference in the embodiment or the comparative example.
  • a polymerizable liquid crystal composition was prepared using LC1057 liquid crystal of BASF Corporation and a liquid crystal compound of the following formula (A) as a polydisperse liquid crystal compound.
  • the ratio of the R (450) / R (550) to the R (650) / R (550) is about 1.09 to 1.11
  • the liquid crystal compound has a level of R (450) / R (550) of about 0.84 to 0.86 and a level of R (650) / R (550) of about 1.01 to 1.03.
  • the R 450, R 550 and R 650 are respectively a retardation value of 450 nm, a retardation value of 450 nm, and a retardation value of 450 nm, which are measured with respect to the retardation layer formed by using the above-mentioned normal dispersion polymerizable liquid crystal compound or the polymerizable liquid crystal compound of the above formula (A) Plane retardation for light at 550 nm and 650 nm wavelengths.
  • the in-plane retardation can be measured by a known method.
  • the in-plane retardation can be measured by a polarization measurement method using Axoscan (Axometrics), which is a birefringence meter.
  • the method of forming the retardation layer by using the polymerizable liquid crystal compound alone is the same as the method described in the following embodiments, except that the polymerizable liquid crystal compound is applied alone.
  • the above-mentioned quasi-dispersion polymerizable liquid crystal compound and the back-dispersion polymerizable liquid crystal compound of the formula (A) are mixed in a weight ratio (inverse dispersion polymerizable liquid crystal: normal dispersion polymerizable liquid crystal) of about 94: 6 to 95: 5, About 5 parts by weight of a radical photoinitiator (BASF, Irgacure 907) relative to 100 parts by weight of the total of the compounds was blended in a cyclopentanone to prepare a polymerizable liquid crystal composition A.
  • BASF radical photoinitiator
  • the compound of formula (A) was synthesized in the following manner. Under a nitrogen atmosphere, 17.7 g of a compound of the following formula (A1) and 100 ml of tetrahydrofuran were placed in a reaction vessel. 103 ml of 0.9 mol / L borane-tetrahydrofuran complex was added dropwise while cooling with ice, and the mixture was stirred for 1 hour. After adding 5% hydrochloric acid dropwise, the mixture was extracted with ethyl acetate and washed with brine. Dried over sodium sulfate, and the solvent was distilled off to obtain 14.9 g of a compound represented by the following general formula (A2).
  • Polymerizable liquid crystal composition B was prepared in the same manner as in Production Example 1, except that a liquid crystal compound of the following formula (B) was used as the inversely dispersed polymerizable liquid crystal compound.
  • R (450) / R (550) is about 0.81 to 0.83 and R (650) / R (550) is about 1.01 to 1.03.
  • the R (450), R (550) and R (650) may be added to the retardation layer formed using the polymerizable liquid crystal compound of Formula (B) alone at 450 nm, 550 nm and 650 nm Plane phase difference.
  • the compound of the formula (B) is obtained by reacting a compound represented by the following formula (A9) in the same manner as in Preparation Example 1, and then hydrogenating the hydrogen atom attached to the nitrogen atom of the compound represented by the formula (A9) to 2- [2- (methoxyethoxy) ] Ethyl group. NMR confirmed results of the obtained compound of formula (B) are described below.
  • an ultraviolet absorber having a maximum absorption wavelength range of about 380 to 390 nm (Orient Chemical Industries, BONASORB UA- 3912) was applied to prepare a polymerizable liquid crystal composition.
  • the inverse dispersion polymerizable liquid crystal compound of formula (A), the photoinitiator and the ultraviolet absorber are blended in a cyclopentanone in a weight ratio (inverse dispersion polymerizable liquid crystal compound: photoinitiator: ultraviolet absorber) of 20: 1: C.
  • a photo alignment film was formed on the NRT base film of FujiFilm.
  • a known composition for forming a photo-alignment film of a cinnamate series was applied on the NRT base film to a thickness of about 100 nm and irradiated with linearly polarized ultraviolet light at about 300 mW / cm 2 .
  • the retardation layer is irradiated for about 10 seconds the liquid crystal composition
  • a polymerizable ultraviolet ray after coating and alignment along the lower alignment layer to a dry thickness of about 1 ⁇ m degree is disposed on the optical alignment of about 300 mW / cm 2 .
  • the in-plane retardation of the retardation layer with respect to light having a wavelength of 550 nm was about 146.0 nm.
  • R (450) / R (550) of the formed retardation layer was about 0.85 to 0.87 and R (650) / R (550) was about 1.01 to 1.05.
  • the prepared retardation layer was attached as a polarizer to one side of a known iodine PVA (poly (vinyl alcohol)) polarizer (LG Chem) to produce a circular polarizer.
  • a known iodine PVA poly (vinyl alcohol)
  • LG Chem iodine polarizer
  • general UV curable adhesives used for lamination of optical films were applied.
  • a retardation layer was formed in the same manner as in Example 1, except that the polymerizable liquid crystal composition B was used instead of the polymerizable liquid crystal composition A.
  • the in-plane retardation of the retardation layer with respect to light having a wavelength of 550 nm was about 144.5 nm.
  • R (450) / R (550) of the formed retardation layer was about 0.82 to 0.85 and R (650) / R (550) was about 1.01 to 1.05.
  • a circularly polarizing plate was prepared in the same manner as in Example 1, using the prepared retardation layer.
  • a retardation layer was formed in the same manner as in Example 1, except that the polymerizable liquid crystal composition C was used instead of the polymerizable liquid crystal composition A.
  • the in-plane retardation of the prepared retardation layer with respect to light having a wavelength of 550 nm was about 131.7 nm.
  • R (450) / R (550) of the formed retardation layer was about 0.84 to 0.86 and R (650) / R (550) was about 1.01 to 1.03.
  • a circularly polarizing plate was prepared in the same manner as in Example 1, using the prepared retardation layer.
  • a retardation layer was formed in the same manner as in Example 1, except that the polymerizable liquid crystal composition D was used in place of the polymerizable liquid crystal composition A.
  • the in-plane retardation of the retardation layer with respect to light having a wavelength of 550 nm was about 140.7 nm.
  • R (450) / R (550) of the formed retardation layer was about 0.81 to 0.83 and R (650) / R (550) was about 1.01 to 1.03.
  • a circularly polarizing plate was prepared in the same manner as in Example 1, using the prepared retardation layer.
  • the present invention can secure an excellent ultraviolet shielding property without applying an ultraviolet absorber.
  • each retardation layer prepared in Examples and Comparative Examples was evaluated.
  • the durability was evaluated by maintaining each of the retardation layers prepared in Examples and Comparative Examples at about 85 ° C (durability condition) for 250 hours, and then measuring the in-plane retardation (based on 550 nm wavelength) The phase difference (based on 550 nm wavelength) was compared and evaluated.
  • Figs. 10 and 11 are measurement results for Example 1
  • Figs. 12 and 13 are measurement results for Comparative Examples 1 and 2, respectively.
  • Example 1 146.0 nm 123.8 nm -15.2%
  • Example 2 144.5 nm 123.8 nm -14.8% Comparative Example 1 131.7 nm 101.7 nm -22.8% Comparative Example 2 140.7 nm 113.6 nm -19.3%
  • the retardation layer according to the present application has an excellent ultraviolet ray absorbing ability without using an ultraviolet absorber or a light stabilizer, and also shows excellent results in terms of durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 출원은, 원편광판 및 그 용도에 대한 것이다. 본 출원에서는, 유기발광표시 장치 등의 디스플레이 장치에 적용되어 유해 자외선을 적절하게 차단하면서도, 화질에 영향을 주는 가시광 영역의 광의 차단은 최소화할 수 있고, 또한 내구성이 우수한 원편광판을 제공할 수 있다.

Description

원편광판
본 출원은 2017년 7월 10일자 제출된 대한민국 특허출원 제10-2017-0087122호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은, 원편광판에 관한 것이다.
편광자 및 위상차층을 기본적으로 포함하는 소위 원편광판은, 유기발광장치에서 반사 전극에 의한 외광 반사의 방지를 위해서 사용될 수 있다. 예를 들면, 특허문헌 1에서는 유기발광장치에서 투명 전극측에 원편광판을 배치하는 방법이 개시되어 있다.
원편광판과 같은 광학 필름에 자외선 차단 기능을 부여하기 위한 기술들이 알려져 있으며, 대표적인 방식은 특허문헌 2에 나타난 것처럼 편광자를 보호하기 위해 적층되는 보호 필름에 자외선 흡수제 또는 광안정제를 첨가하는 방식이다.
그렇지만, 보호 필름에 자외선 흡수제 또는 광안정제를 부가하는 기존 방식은 파장이 약 380 nm 미만의 범위의 자외선의 차단은 이루어지지만, 380 nm 내지 400 nm 범위의 자외선의 차단은 효율적으로 이루어지지 않으며, 현재까지 알려진 기술 중에서 상기 범위의 자외선의 차단의 필요성을 인식하고 있는 기술도 존재하지 않는다.
그렇지만, 원편광판이 특히 유기발광장치에 적용되는 경우에 상기 종래 기술에서는 차단되지 못하는 380 내지 400 nm 범위의 파장의 광은 유기발광장치의 내구성이 악영향을 미친다. 또한, 원편광판에 의해 차단되지 못해 반사 전극에 의해 반사된 상기 범위의 파장의 광은 관찰자의 건강에도 악영향을 미칠 수 있다.
단순하게 상기 380 nm 내지 400 nm 범위의 파장의 광을 차단하기 위해서는, 해당 범위에서 최대 흡수 파장을 가지는 자외선 흡수제나 광안정제를 보호 필름이나 기타 원편광판의 구성에 포함시키는 방법을 생각할 수 있다. 그렇지만, 상기 자외선 흡수제나 광안정제가 차단하는 파장 범위를 정밀하게 조정하지 못하면, 단파장의 가시광 영역의 광까지 원편광판에 의해 차단될 수 있고, 이는 색감의 변화를 일으키는 등 디스플레이 품질에 영향을 줄 수 있다. 또한, 액정 화합물에 의해 형성되는 층에 자외선 흡수제나 광안정제를 포함시키게 되면, 해당 성분들이 전체적인 원편광판의 내구성에 악영향을 줄 수 있다.
<선행기술문헌>
<특허문헌>
(특허문헌 1) 일본공개특허 평8-321381호
(특허문헌 2) 한국등록특허 제1742845호
본 출원은, 원편광판에 대한 것이다. 본 출원에서는 디스플레이 장치의 색감이나 화질 등의 표시 성능에 영향을 주지 않으면서, 상기 장치의 내구성 등에 영향을 줄 수 있는 자외선 영역의 광을 선택적이고, 효과적으로 차단하면서도, 자체적으로 우수한 내구성을 가지는 원편광판을 제공하는 것을 하나의 목적으로 한다.
예시적인 원편광판은, 편광자 및 위상차층을 포함한다. 상기 위상차층은, 상기 편광자의 일측에 적층되어 있을 수 있다. 도 1은, 순차 적층되어 있는 편광자(101) 및 위상차층(102)을 포함하는 예시적인 원편광판을 나타낸다.
본 출원의 원편광판에서는 편광자 및/또는 위상차층은 자외선 영역의 광, 특히 380 nm 내지 400 nm의 범위 내의 어느 한 파장 또는 일정 범위 내의 파장에서 제어된 광학 특성을 가지도록 설계된다. 특히 본 출원에서는 자외선 흡수제나 광안정제 등의 첨가제를 적용하지 않고도 상기 위상차층이 특정 파장의 자외선 영역을 선택적으로 차단할 수 있도록 설계함으로써, 본 출원의 목적에 합치하는 원편광판을 제공할 수 있다.
본 출원의 원편광판은, 상기와 같은 설계에 의해서 장치의 내구성에 영향을 주는 자외선을 선택적으로 효과적으로 차단하면서도, 자체적으로 안정적인 내구성을 확보할 수 있고, 디스플레이 장치에 적용되어 그 표시 품질도 우수하게 유지할 수 있다.
본 명세서에서 용어 편광자는 편광 기능을 가지는 필름, 시트 또는 소자를 의미한다. 편광자는 여러 방향으로 진동하는 입사광으로부터 한쪽 방향으로 진동하는 광을 추출할 수 있는 기능성 소자이다.
본 출원에서 편광자로는, 흡수형 선편광자를 사용할 수 있다. 이러한 편광자로는, PVA(poly(vinyl alcohol)) 편광자가 알려져 있다. 기본적으로 본 출원에서는 편광자로는 공지의 편광자를 사용할 수 있다. 일 예시에서는 공지의 PVA(poly(vinyl alcohol)) 편광자로서, 하기 특성을 가지는 편광자가 적용될 수 있다.
본 출원에서는 적용되는 편광자로는 390 nm 파장의 광에 대한 단체 투과율(Ts, single transmittance)이 20% 이상이거나, 또는 60% 이하인 편광자가 사용될 수 있다. 상기 390 nm 파장의 광에 대한 편광자의 단체 투과율은 다른 예시에서 59% 이하, 58% 이하, 57% 이하, 56% 이하, 55% 이하, 54% 이하, 53% 이하, 52% 이하, 51% 이하, 50% 이하, 49% 이하, 48% 이하, 47% 이하, 46% 이하, 45% 이하, 44% 이하, 43% 이하, 42% 이하, 41% 이하 또는 40% 이하이거나, 21% 이상, 22% 이상, 23% 이상, 24% 이상 또는 25% 이상일 수 있다.
상기 편광자의 단체 투과율은, 예를 들면, 스펙트러미터(V7100, Jasco社제)를 사용하여 측정할 수 있다. 예를 들면, 편광자 시료(상부 및 하부 보호 필름 불포함)를 기기에 거치한 상태에서 air를 base line으로 설정하고, 편광자 시료의 축을 기준 편광자의 축과 수직 및 수평으로 정렬한 상태에서 각각의 투과율을 측정한 후에 단체 투과율을 계산할 수 있다.
390 nm 파장의 광에 대한 단체 투과율이 상기 범위로 제어된 편광자는 후술하는 위상차층과 조합되어 원편광판에 적절한 자외선 차단 특성을 부여하고, 안정적으로 내구성이 유지되도록 할 수 있다.
통상적으로 PVA(poly(vinyl alcohol))계 선형 흡수형 편광자는 위와 같은 단체 투과율을 나타내며, 본 출원에서는 이러한 PVA계 선형 흡수형 편광자가 적용될 수 있지만, 상기와 같은 단체 투과율을 나타내는 한 적용될 수 있는 편광자의 종류는 상기에 제한되지 않는다.
PVA 편광자는, 일반적으로 PVA 필름 또는 시트 및 상기 PVA 필름 또는 시트에 흡착 배향된 이색성 색소 또는 요오드와 같은 이방 흡수성 물질을 포함한다.
PVA 필름 또는 시트는, 예를 들면, 폴리비닐아세테이트를 겔화하여 얻을 수 있다. 폴리비닐아세테이트로는, 비닐 아세테이트의 단독 중합체; 및 비닐 아세테이트 및 다른 단량체의 공중합체 등이 예시될 수 있다. 상기에서 비닐 아세테이트와 공중합되는 다른 단량체로는, 불포화 카복실산 화합물, 올레핀 화합물, 비닐에테르 화합물, 불포화 술폰산 화합물 및 암모늄기를 가지는 아크릴아미드 화합물 등의 일종 또는 이종 이상이 예시될 수 있다.
폴리비닐아세테이트의 겔화도는, 일반적으로 약 85몰% 내지 약 100몰% 또는 98몰% 내지 100몰% 정도이다. 선편광자의 폴리비닐알코올의 중합도는, 일반적으로 약 1,000 내지 약 10,000 또는 약 1,500 내지 약 5,000일 수 있다.
PVA 편광자는, PVA 필름 또는 시트에, 염색 공정과 연신 공정을 거쳐 제조된다. 필요한 경우에 상기 편광자의 제조 공정은 팽윤, 가교, 세정 및/또는 건조 공정을 추가로 포함할 수 있다.
예를 들어, 상기에서 염색 공정은 이방 흡수성 물질인 요오드를 PVA 필름 또는 시트에 흡착시키기 위한 공정으로서, 요오드 및 요오드화 칼륨을 포함하는 처리조 내에 상기 PVA 필름 또는 시트를 침지시켜 수행할 수 있는데, 이 과정에서 처리조 내의 요오드 및 요오드화 칼륨의 농도를 조절하는 방식으로 상기 단체 투과율의 조절이 가능하다.
염색 공정에서 PVA 필름 또는 시트는 요오드(I2), KI 등의 요오드화물 및/또는 붕산 화합물(붕산 또는 붕산염) 등을 포함하는 염색액 또는 가교액에 침지되고, 이 과정에서 요오드 등의 이방 흡수성 물질이 PVA 필름 또는 시트에 흡착된다. 따라서, 상기 과정에서 염색액 내의 상기 화합물의 농도에 따라서 편광자에 흡착되는 이방 흡수성 물질의 종류 내지는 양이 결정되고, 그에 따라 편광자의 특정 파장의 광에 대한 흡수율과 투과율이 결정될 수 있다.
예를 들면, 상기 염색액에 존재할 수 있는 요오드 화합물의 종은 요오드화물(M+I-)과 요오드(I2)에서 유래된 I-, I2, I3 - 또는 I5 - 등이 있을 수 있다. 그런데, 상기 화합물 중에서 I-는 흡수 파장 범위가 약 190 nm 내지 260 nm이고, 색감 영향은 크지 않으며, I2는 흡수 파장 범위가 약 400 nm 내지 500 nm이고, 색감은 주로 레드(red)이며, I3 -는 흡수 파장 범위가 약 250 nm 내지 400 nm이고, 색감은 주로 옐로우(Yellow)이며, 선형 구조의 I5 -는 흡수 파장 범위가 관측되지 않고, 색감 영향은 크지 않으며, 굽은 구조의 I5 -는 흡수 파장 범위가 약 500 nm 내지 900 nm이고, 색감은 주로 블루(blue)이다.
따라서, 염색액 내에 형성된 상기 요오드 화합물의 종의 비율을 제어함으로써 390 nm 파장의 광에 대한 단체 투과율의 제어가 가능하다.
염색액은 일반적으로 요오드와 용해 보조제인 요오드화물을 통해 요오드 이온을 형성한 수용액인 요오드 용액이고, 상기 수용액에 가교 공정을 위해 붕산 화합물이 추가되기도 하는데, 상기 수용액에 첨가되는 요오드 및 요오드화물의 농도에 따라서 해당 염색액 내에서 형성되는 요오드 화합물의 종과 비율이 결정될 수 있다. 요오드화 화합물로는, 예를 들어 요오드화칼륨, 요오드화리튬, 요오드화나트륨, 요오드화아연, 요오드화알루미늄, 요오드화납, 요오드화구리, 요오드화바륨, 요오드화칼슘, 요오드화주석 또는 요오드화티탄 등이 사용될 수 있다.
본 출원의 조건인 390 nm 파장의 광에 대한 투과율을 만족하는 편광자의 제작을 위해서, 상기 염색 공정에서 적용되는 염색액 내의 요오드화물의 농도가 약 1.5 중량% 이상이고, 요오드(I2)의 농도가 0.05 내지 20 중량% 정도가 되도로 조절할 수 있다. 상기 요오드화물의 농도는 다른 예시에서 약 20중량% 이하, 18 중량% 이하, 16 중량% 이하, 14 중량% 이하, 12 중량% 이하, 10 중량% 이하, 8 중량% 이하 또는 약 7 중량% 이하 정도일 수 있다. 또한 상기 요오드의 농도는 다른 예시에서 19 중량% 이하, 18 중량% 이하, 17 중량% 이하, 16 중량% 이하, 15 중량% 이하, 14 중량% 이하, 13 중량% 이하, 12 중량% 이하, 11 중량% 이하, 10 중량% 이하, 9 중량% 이하, 8 중량% 이하, 7 중량% 이하, 6 중량% 이하, 5 중량% 이하, 4 중량% 이하, 3 중량% 이하, 2 중량% 이하 또는 1 중량% 이하 정도일 수 있다.
염색액 내의 요오드화물 및/또는 요오드의 농도를 상기 범위로 조절하면, 염색액 내의 요오드 화합물의 종 및 그 농도가 390 nm 파장의 광에 대한 단체 투과율이 전술한 범위에 속할 수 있도록 형성될 수 있다.
본 출원에 적용되는 편광자의 제작을 위해서 염색 공정에서 적용되는 염색액의 농도가 상기와 같이 조절되고, 그 외의 공정은 일반적으로 알려진 방식에 따라서 수행될 수 있다. 또한, 염색 공정도 염색액의 농도가 상기와 같이 제어되는 것 외에는 공지의 방식에 따라서 수행될 수 있다.
예를 들어, 염색 공정에서는 PVA 필름 또는 시트를 상기와 같이 조절된 염색액 내에 침지시킬 수 있다. 염색 공정에서 염색액의 온도는 통상적으로 20℃ 내지 50℃, 25℃ 내지 40℃ 정도이고, 침지 시간은 통상적으로 10초 내지 300초 또는 20초 내지 240초 정도이지만, 이에 제한되는 것은 아니다.
상기 편광자의 제조 과정에서는 가교 공정이 수행될 수도 있다. 상기 가교 공정은, 예를 들면, 붕소 화합물과 같은 가교제를 사용하여 수행할 수 있다. 이러한 가교 공정의 순서는 특별히 제한되지 않으며, 예를 들면, 염색 및/또는 연신 공정과 함께 수행하거나, 별도로 진행할 수 있다. 예를 들면, 상기 언급한 염색액 내에 추가적으로 가교제를 배합하는 경우에 염색과 동시에 가교 공정이 진행될 수 있다. 이러한 가교 공정은 복수 회 실시할 수도 있다. 상기 붕소 화합물로는 붕산 또는 붕사 등이 사용될 수 있다. 붕소 화합물은, 수용액 또는 물과 유기 용매의 혼합 용액의 형태로 일반적으로 사용될 수 있고, 통상적으로는 붕산 수용액이 사용된다. 붕산 수용액에서의 붕산 농도는, 가교도와 그에 따른 내열성 등을 고려하여 적정 범위로 선택될 수 있다. 붕산 수용액 등에도 요오드화칼륨 등의 요오드화 화합물을 함유시킬 수 있다.
가교 공정은, 상기 PVA 필름 또는 시트를 붕산 수용액 등에 침지함으로써 수행할 수 있는데. 이 과정에서 처리 온도는 통상적으로 25℃ 이상, 30℃ 내지 85℃ 또는 30℃ 내지 60℃ 정도의 범위이고, 처리 시간은 통상적으로 5초 내지 800초간 또는 8초 내지 500초간 정도이지만, 이에 제한되는 것은 아니다.
연신 공정은, 일반적으로 1 축 연신으로 수행한다. 이러한 연신은, 상기 염색 및/또는 가교 공정과 함께 수행할 수도 있다. 연신 방법은 특별히 제한되지 않으며, 예를 들면, 습윤식 연신 방식이 적용될 수 있다. 이러한 습윤식 연신 방법에서는, 예를 들어, 염색 후 연신을 수행하는 것이 일반적이나, 연신은 가교와 함께 수행될 수 있으며, 복수회 또는 다단으로 수행할 수도 있다.
습윤식 연신 방법에 적용되는 처리액에 요오드화칼륨 등의 요오드화 화합물을 함유시킬 수 있다. 연신에서 처리 온도는 통상적으로 25℃ 이상, 30℃ 내지 85℃ 또는 50℃ 내지 70℃의 범위 내 정도이고, 처리 시간은 통상 10초 내지 800초 또는 30초 내지 500초간이지만, 이에 제한되는 것은 아니다.
연신 과정에서 총 연신 배율은 배향 특성 등을 고려하여 조절할 수 있고, PVA 필름 또는 시트의 원래 길이를 기준으로 총 연신 배율이 3배 내지 10배, 4배 내지 8배 또는 5배 내지 7배 정도일 수 있지만, 이에 제한되는 것은 아니다. 상기에서 총 연신 배율은 연신 공정 이외의 팽윤 공정 등에 있어서도 연신을 수반하는 경우에는, 각 공정에 있어서의 연신을 포함한 누적 연신 배율을 의미할 수 있다. 이러한 총 연신 배율은, 배향성, 가공성 내지는 연신 절단 가능성 등을 고려하여 조절될 수 있다.
상기 염색, 가교 및 연신에 추가로 상기 공정을 수행하기 전에 팽윤 공정을 수행할 수도 있다. 팽윤에 의해서 PVA 필름 또는 시트 표면의 오염이나 블로킹 방지제를 세정할 수 있고, 또한 이에 의해 염색 편차 등의 불균일을 줄일 수 있는 효과도 있다.
팽윤 공정에서는 통상적으로 물, 증류수 또는 순수 등이 사용될 수 있다. 당해 처리액의 주성분은 물이고, 필요하다면, 요오드화칼륨 등의 요오드화 화합물 또는 계면 활성제 등과 같은 첨가물이나, 알코올 등이 소량 포함되어 있을 수 있다. 이 과정에서도 공정 변수의 조절을 통해 전술한 광차단율의 조절이 가능할 수 있다.
팽윤 과정에서의 처리 온도는 통상적으로 20℃ 내지 45℃ 또는 20℃ 내지 40℃ 정도이지만 이에 제한되지 않는다. 팽윤 편차는 염색 편차를 유발할 수 있기 때문에 이러한 팽윤 편차의 발생이 가능한 억제되도록 공정 변수가 조절될 수 있다.
팽윤 공정에서도 적절한 연신이 수행될 수 있다. 연신 배율은, PVA 필름의 원래 길이를 기준으로 6.5배 이하, 1.2 내지 6.5배, 2배 내지 4배 또는 2배 내지 3배 정도일 수 있다. 팽윤 과정에서의 연신은, 팽윤 공정 후에 수행되는 연신 공정에서의 연신을 작게 제어할 수 있고, 필름의 연신 파단이 발생하지 않도록 제어할 수 있다.
편광자의 제조 과정에서는 금속 이온 처리가 수행될 수 있다. 이러한 처리는, 예를 들면, 금속염을 함유하는 수용액에 PVA 필름을 침지함으로써 실시한다. 이를 통해 평관자 내에 금속 이온을 함유시킬 수 있는데. 이 과정에서 금속 이온의 종류 내지는 비율을 조절함으로써도 PVA 편광자의 색조 조절이 가능하다. 적용될 수 있는 금속 이온으로는, 코발트, 니켈, 아연, 크롬, 알루미늄, 구리, 망간 또는 철 등의 전이 금속의 금속 이온이 예시될 수 있고, 이 중 적절한 종류의 선택에 의해 색조의 조절이 가능할 수도 있다.
염색, 가교 및 연신 후에 세정 공정이 진행될 수 있다. 이러한 세정 공정은, 요오드화칼륨 등의 요오드 화합물 용액에 의해 수행할 수 있다.
이러한 물에 의한 세정과 요오드 화합물 용액에 의한 세정은 조합될 수도 있으며, 메탄올, 에탄올, 이소프로필알코올, 부탄올 또는 프로판올 등의 액체 알코올을 배합한 용액도 사용될 수도 있다.
이러한 공정을 거친 후에 건조 공정을 수행하여 편광자를 제조할 수 있다. 건조 공정에서는, 예를 들면, 요구되는 수분율 등을 고려하여 적절한 온도에서 적절한 시간 동안 수행될 수 있고, 이러한 조건은 특별히 제한되지 않는다.
상기와 같은 방식으로 제조된 편광자는, PVA 필름 또는 시트 및 상기 PVA 필름 또는 시트상에 흡착 배향되어 있는 이방 흡수성 물질을 포함할 수 있다. 상기에서 이방 흡수성 물질은 요오드일 수 있으며, 이러한 편광자는 본 출원에서 요오드계 PVA 편광자로 호칭될 수 있다.
본 출원에 적용되는 편광자에 대하여 공지된 편광자 중에서 요오드계 PVA 편광자를 위주로 위 내용을 기술하였으나, 본 출원에서 적용 가능한 편광자의 종류가 상기에 제한되는 것은 아니며, 공지된 다양한 편광자 중에서 390 nm 파장의 광에 대한 단체 투과율이 상기 언급한 범위에 속하는 것이라면 어떠한 종류의 편광자도 본 출원에서 적용될 수 있다.
원편광판에서 상기 편광자의 일측에는 위상차층이 존재한다. 본 출원에서는 상기 위상차층은, 그 자체로서 소정 파장 범위의 자외선에 대한 차단능 내지는 흡수능을 가진다. 예를 들면, 상기 위상차층은, 385 nm, 390 nm, 395 nm 및/또는 400 nm 파장의 광에 대한 투과율이 소정 범위 내에 있을 수 있다.
예를 들면, 상기 위상차층은, 385nm 파장의 광에 대한 투과율이 3% 이하일 수 있다. 상기 투과율은 다른 예시에서, 2.9% 이하, 2.8% 이하, 2.7% 이하, 2.6% 이하, 2.5% 이하, 2.4% 이하, 2.3% 이하, 2.2% 이하, 2.1% 이하, 2.0% 이하, 1.9% 이하, 1.8% 이하, 1.7% 이하, 1.6% 이하, 1.5% 이하 또는 1.4% 이하일 수 있다. 상기 투과율은 다른 예시에서 0% 이상, 0.1% 이상, 0.2% 이상, 0.3% 이상, 0.4% 이상, 0.5% 이상, 0.6% 이상, 0.7% 이상, 0.8% 이상, 0.9% 이상, 1.0% 이상, 1.1% 이상, 1.2% 이상, 1.3% 이상, 1.4% 이상, 1.5% 이상, 1.6% 이상 또는 1.65% 이상일 수 있다.
예를 들면, 상기 위상차층은, 390 nm의 파장의 광에 대한 투과율이 15% 이하일 수 있다. 상기 투과율은, 다른 예시에서 14% 이하, 13% 이하, 12% 이하, 11% 이하, 10% 이하, 9% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하 또는 3.5% 이하일 수 있다. 상기 투과율은 다른 예시에서 0% 이상, 0.1% 이상, 0.2% 이상, 0.3% 이상, 0.4% 이상, 0.5% 이상, 0.6% 이상, 0.7% 이상, 0.8% 이상, 0.9% 이상, 1% 이상, 1.5% 이상, 2% 이상, 2.5% 이상, 2.6% 이상, 2.7% 이상, 2.8% 이상, 2.9% 이상, 3.1% 이상, 3.2% 이상, 3.3% 이상, 3.4% 이상, 3.5% 이상 또는 3.6% 이상일 수 있다.
예를 들면, 상기 위상차층은, 395 nm의 파장의 광에 대한 투과율이 25% 이하일 수 있다. 상기 투과율은, 다른 예시에서 24% 이하, 23% 이하, 22% 이하, 21% 이하, 20% 이하, 19% 이하, 18% 이하, 17% 이하, 16% 이하, 15, 14% 이하, 13% 이하, 12% 이하, 11% 이하, 10% 이하, 9% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하 또는 3.5% 이하일 수 있다. 상기 투과율은 다른 예시에서 0% 이상, 0.1% 이상, 0.2% 이상, 0.3% 이상, 0.4% 이상, 0.5% 이상, 0.6% 이상, 0.7% 이상, 0.8% 이상, 0.9% 이상, 1% 이상, 1.5% 이상, 2% 이상, 2.5% 이상, 3% 이상, 3.5% 이상, 4% 이상, 4.5% 이상, 5% 이상, 5.5% 이상, 6% 이상, 6.5% 이상, 7% 이상, 7.5% 이상, 8% 이상, 8.5% 이상, 9% 이상 또는 9.5% 이상일 수 있다.
예를 들면, 상기 위상차층은 400 nm의 파장의 광에 대한 투과율이 40% 이하일 수 있다. 상기 투과율은, 다른 예시에서 39.5% 이하, 39% 이하, 38.5% 이하, 38% 이하, 37.5% 이하, 37% 이하, 36.5% 이하, 36% 이하, 35.5% 이하, 35% 이하, 34.5% 이하, 34% 이하, 33.5% 이하, 33% 이하, 32.5% 이하, 32% 이하, 31.5% 이하, 31% 이하, 30% 이하, 29.5% 이하, 29% 이하, 28.5% 이하, 28% 이하, 27.5% 이하 또는 27% 이하 정도일 수 있다. 상기 투과율은 다른 예시에서 0% 이상, 0.1% 이상, 0.2% 이상, 0.3% 이상, 0.4% 이상, 0.5% 이상, 0.6% 이상, 0.7% 이상, 0.8% 이상, 0.9% 이상, 1% 이상, 1.5% 이상, 2% 이상, 2.5% 이상, 3% 이상, 3.5% 이상, 4% 이상, 4.5% 이상, 5% 이상, 5.5% 이상, 6% 이상, 6.5% 이상, 7% 이상, 7.5% 이상, 8% 이상, 8.5% 이상, 9% 이상, 9.5% 이상, 10% 이상, 10.5% 이상, 11% 이상, 11.5% 이상, 12% 이상, 12.5% 이상, 13% 이상, 13.5% 이상, 14% 이상, 14.5% 이상, 15% 이상, 15.5% 이상, 16% 이상, 16.5% 이상, 17% 이상, 17.5% 이상, 18% 이상, 18.5% 이상, 19% 이상, 19.5% 이상, 20% 이상, 20.5% 이상, 21% 이상, 21.5% 이상, 22% 이상, 22.5% 이상, 23% 이상, 23.5% 이상, 24% 이상, 24.5% 이상 또는 25% 이상 정도일 수 있다.
상기 위상차층의 투과율은, 예를 들면, 스펙트로미터(N&K analyzer, N&K Technologies, INC)를 사용하여 측정할 수 있다. 예를 들면, 상기 위상차층의 투과율은, 해당 위상차층 시료를 가급적 380 nm 이상의 파장에서 흡수 피크를 나타내지 않는 기재상에 위치시킨 후에 측정할 수 있으며, 이 때 상기 기재 및 위상차층의 사이에는 공지의 액정 배향막 등이 존재할 수도 있다. 상기에서 380 nm 이상의 파장에서 흡수 피크를 나타내지 않는 기재의 종류는 특별히 제한되지 않고, 예를 들면, NRT 기재 필름 또는 TAC(Triacetyl cellulose) 기재 필름(385 nm에 대한 투과율: 90.8%, 390 nm에 대한 투과율: 91.1%, 395 nm에 대한 투과율: 91.2% 또는 400 nm에 대한 투과율: 91.4%) 등이 있다. 예를 들면, 상기 기재상에 위상차층을 위치시킨 후에 air를 baseline으로 설정한 후에 위상차층 시료의 기준축(slow axis)과 수직 및 수평으로 정렬한 상태에서 각각의 투과율을 측정한 후에 투과율을 계산하였다.
투과율 특성이 상기와 같이 설계된 위상차층은, 원편광판이 380 내지 400 nm 범위의 파장의 광에 대한 차단 특성을 나타내면서도 안정적인 내구성을 보유하도록 할 수 있다.
특히 상기 효과는 전술한 편광자와 조합되어 더욱 개선될 수 있다. 즉, 편광자의 단체 투과율 및/또는 위상차의 투과율이 상기 언급된 범위를 만족하지 않는 경우에 원편광판의 자외선 차단능, 특히 380 내지 400 nm 범위의 광에 대한 차단율이 저하되거나, 혹은 자외선 차단능이 편광자 및 위상차층 중 어느 하나에 과다하게 부여되어 원편광판의 내구성이 떨어질 수 있다.
본 출원에서는 또한 상기와 같은 위상차층의 자외선 차단능을 위상차층에 별도의 자외선 흡수제나 광안정제 등을 도입하지 않고도 구현할 수 있다. 따라서, 일 예시에서 상기 위상차층은, 자외선 흡수제나 광안정제, 예를 들면, 최대 흡수 파장이 385 nm 내지 400 nm의 범위 내에 있는 자외선 흡수제나 광안정제를 포함하지 않을 수 있다. 즉, 후술하는 바와 같이 위상차층을, 정분산 중합성 액정 화합물과 역분산 중합성 액정 화합물을 적절하게 배합시켜 구성하는 경우에는, 상기 개개의 중합성 액정 화합물의 구조적 특징이 서로 보완되어, 자외선 흡수제나 광안정제 등을 적용하지 않고도, 목적하는 자외선 흡수성을 확보할 수 있다. 이와 같이 자외선 흡수제와 광안정제를 적용하지 않는 것에 의해서 상기 첨가제에 의한 액정의 배향 불량이나 위상차층의 형성 후의 블리딩 아웃 현상 등을 유발하지 않는 내구성이 우수한 위상차층을 형성할 수 있다.
일 예시에서 상기 자외선 차단능을 가지는 위상차층은, 후술하는 바와 같은 방식으로 역파장 특성을 설계함으로써 구현할 수 있다.
상기 위상차층은, 하기 수식 1 내지 3 중 어느 하나에 따른 굴절률 관계를 가지는 층일 수 있다.
[수식 1]
nx > ny = nz
[수식 2]
nx > ny > nz
[수식 3]
nx > ny 및 nz > ny
수식 1 내지 3에서 nx, ny 및 nz는 각각 x축 방향(지상축 방향)의 굴절률, y축 방향(진상축 방향)의 굴절률 및 z축 방향(두께 방향)의 굴절률이고, 이러한 정의는 특별히 달리 규정하지 않는 한 본 명세서에서 동일하게 적용될 수 있다. 상기에서 x축 방향은, 예를 들면, 도 2에 나타난 바와 같이, 필름 또는 시트 형태의 위상차층(100)의 면상의 지상축 방향을 의미하고, y축 방향은 상기 x축에 수직한 면상 방향(진상축 방향)을 의미하며, z축 방향은, 상기 x축과 y축에 의해 형성되는 평면의 법선의 방향, 예를 들면 두께 방향을 의미할 수 있다.
특별히 달리 규정하지 않는 한, 본 명세서에서 용어 굴절률은 약 550 nm 파장의 광에 대한 굴절률이다.
상기 위상차층은, 원편광판에 포함되는 위상차층은, 예를 들면, 1/4 파장 위상 지연 특성을 가질 수 있는 범위의 면상 위상차를 가질 수 있다. 본 명세서에서 용어 n 파장 위상 지연 특성은, 적어도 일부의 파장 범위 내에서, 입사 광을 그 입사 광의 파장의 n배만큼 위상 지연시킬 수 있는 특성을 의미한다. 1/4 파장 위상 지연 특성은, 입사된 선편광을 타원편광 또는 원편광으로 변환시키고, 반대로 입사된 타원 편광 또는 원편광을 선편광으로 변환시키는 특성일 수 있다. 하나의 예시에서 위상차층은, 550 nm의 파장의 광에 대한 면상 위상차가 90 nm 내지 300 nm의 범위 내일 수 있다. 상기 면상 위상차는 다른 예시에서 100 nm 이상, 105 nm 이상, 110 nm 이상, 115 nm 이상, 120 nm 이상, 125 nm 이상 또는 130 nm 이상일 수 있다. 또한, 상기 면상 위상차는 290 nm 이하, 280 nm 이하, 270 nm 이하, 260 nm 이하, 250 nm 이하, 240 nm 이하, 230 nm 이하, 220 nm 이하, 210 nm 이하, 200 nm 이하, 190 nm 이하, 180 nm 이하, 170 nm 이하, 160 nm 이하, 150 nm 이하 또는 145 nm 이하일 수 있다.
본 명세서에서 용어 면상 위상차는 하기 수식 4에 따라 정해지는 값이고, 두께 방향 위상차는 하기 수식 5에 따라 정해지는 값이다.
[수식 4]
Rin = d × (nx - ny)
[수식 5]
Rth = d × (nz - ny)
수식 4 및 5에서 Rin은 면상 위상차이고, Rth는 두께 방향 위상차이며, nx, ny 및 nz는 상기 수식 1 내지 3에서 정의된 바와 같고, d는 위상차층의 두께이다.
상기 위상차층에 대해서 상기 수식 5에 따라 구해지는 두께 방향 위상차의 범위는 특별히 제한되지 않고, 예를 들면, 약 -200 nm 내지 200 nm의 범위 내일 수 있다. 상기 두께 방향 위상차는 다른 예시에서 -190 nm 이상, -180 nm 이상, -170 nm 이상, -160 nm 이상, -150 nm 이상, -140 nm 이상, -130 nm 이상, -120 nm 이상, -110 nm 이상, -100 nm 이상, -90 nm 이상, -80 nm 이상, -70 nm 이상, -60 nm 이상, -50 nm 이상, -40 nm 이상, -30 nm 이상, -20 nm 이상 또는 -10 nm 이상일 수 있다. 또한, 상기 두께 방향 위상차는 다른 예시에서 190 nm 이하, 180 nm 이하, 170 nm 이하, 160 nm 이하, 150 nm 이하, 140 nm 이하, 130 nm 이하, 120 nm 이하, 110 nm 이하, 100 nm 이하, 90 nm 이하, 80 nm 이하, 70 nm 이하, 60 nm 이하, 50 nm 이하, 40 nm 이하, 30 nm 이하, 20 nm 이하 또는 10 nm 이하일 수 있다.
일 예시에서 상기 위상차층은, 하기 수식 6을 만족하는 층일 수 있다.
[수식 6]
R(450)/R(550) < R(650)/R(550)
수식 6에서 R(450)은, 450 nm의 파장의 광에 대한 위상차층의 면상 위상차이고, R(550)은 550 nm의 파장의 광에 대한 위상차층의 면상 위상차이며, R(650)은 650 nm의 파장의 광에 대한 위상차층의 면상 위상차이다.
상기 각 면상 위상차는 상기 수식 4에 따르며, 단 450 nm 파장의 광에 대한 면상 위상차는 수식 4에서 nx 및 ny로서 450 nm 파장의 광에 대한 굴절률이 적용되고, 550 nm 파장의 광에 대한 면상 위상차는 수식 4에서 nx 및 ny로서 550 nm 파장의 광에 대한 굴절률이 적용되며, 650 nm 파장의 광에 대한 면상 위상차는 수식 4에서 nx 및 ny로서 650 nm 파장의 광에 대한 굴절률이 적용된다.
수식 6을 만족하는 위상차층은 소위 역 파장 분산 특성(reverse wavelength dispersion)을 가지는 위상차층이다. 이러한 위상차층은 넓은 파장 범위에서 설계된 위상 지연 특성을 나타낼 수 있다.
수식 6을 만족하는 위상차층에서 R(450)/R(550) 및/또는 R(650)/R(550)를 조절함으로써 보다 우수한 효과의 원편광판을 제공할 수 있다. 일 예시에서 상기 수식 6에서 R(450)/R(550)은, 0.6 내지 0.99의 범위 내일 수 있다. R(450)/R(550)은, 다른 예시에서 0.61 이상, 0.62 이상, 0.63 이상, 0.64 이상, 0.65 이상, 0.66 이상, 0.67 이상, 0.69 이상, 0.70 이상, 0.71 이상, 0.72 이상, 0.73 이상, 0.74 이상, 0.75 이상, 0.76 이상, 0.77 이상, 0.78 이상, 0.79 이상, 0.80 이상, 0.81 이상, 0.82 이상, 0.83 이상, 0.84 이상, 0.85 이상, 0.86 이상, 0.87 이상, 0.88 이상, 0.89 이상 또는 0.90 이상일 수 있다. 상기 R(450)/R(550)은, 다른 예시에서 0.98 이하, 0.97 이하, 0.96 이하, 0.95 이하, 0.94 이하, 0.93 이하, 0.92 이하, 0.91 이하, 0.90 이하, 0.89 이하, 0.88 이하, 0.87 이하, 0.86 이하 또는 0.85 이하일 수 있다. 수식 6의 R(650)/R(550)은, 1.00 내지 1.19의 범위 내일 수 있다. 상기 R(650)/R(550)은, 1.18 이하, 1.17 이하, 1.16 이하, 1.15 이하, 1.14 이하, 1.13 이하, 1.12 이하, 1.11 이하, 1.1 이하 또는 1.08 이하 정도일 수 있다. 수식 6의 R(650)/R(550)은, 다른 예시에서 1.01 이상, 1.02 이상, 1.03 이상, 1.04 이상, 1.05 이상, 1.06 이상, 1.07 이상, 1.08 이상 또는 1.09 이상일 수 있다.
위상차층의 R(450)/R(550) 및/또는 R(650)/R(550)을 상기 범위로 조절하는 방식은 특별히 제한되지 않지만, 본 출원에서는, 자외선 흡수제나 광안정제가 포함되지 않는 경우에도 목적하는 자외선 차단능을 확보하기 위해서 후술하는 바와 같이 상기와 같은 역파장 특성을 서로 다른 2종의 중합성 액정 화합물을 사용해서 구현할 수 있다.
상기 위상차층은 그 지상축(slow axis)과 상기 편광자의 흡수축이 약 30도 내지 60도의 범위 내의 각도를 이룰 수 있도록 편광자의 일측에 적층되어 있을 수 있다. 상기 각도는 다른 예시에서 35도 이상 또는 40도 이상일 수 있고, 또한 55도 이하 또는 50도 이하일 수 있다.
위상차층으로는 상기 투과율 특성과 면상 위상차를 가지는 것이라면, 특별한 제한 없이 공지의 소재가 사용될 수 있다.
예를 들어, 연신에 의해 광학 이방성을 부여할 수 있는 고분자 필름을 적절한 방식으로 연신한 연신 고분자층 또는 액정층을 사용할 수 있다. 액정층으로는, 액정 고분자층 또는 중합성 액정 화합물의 경화층을 사용할 수 있다.
상기에서 연신 고분자층으로는, 예를 들면, 폴리에틸렌 또는 폴리프로필렌 등의 폴리올레핀, 폴리노르보넨 등의 고리형 올레핀 폴리머(COP: Cycloolefin polymer), 폴리염화비닐, 폴리아크릴로니트릴, 폴리설폰, 아크릴 수지, 폴리카보네이트, 폴리에틸렌테레프탈레이트 등의 폴리에스테르, 폴리아크릴레이트, 폴리비닐알코올 또는 TAC(Triacetyl cellulose) 등의 셀룰로오스 에스테르계 폴리머이나 상기 폴리머를 형성하는 단량체 중에서 2종 이상의 단량체의 공중합체 등을 포함하는 고분자층을 사용할 수 있다.
위상차층으로는 상기와 같이 다양한 공지의 소재를 사용할 수 있으나, 일반적으로 공지되어 있는 위상차층은 상기 언급한 특성, 특히 385 nm, 390 nm, 395 nm 또는 400 nm 파장의 광에 대한 투과율 특성을 만족하지 않는 경우가 많다.
따라서, 예를 들어, 상기 연신 고분자층을 위상차층으로 적용하고자 할 때에는 고분자층의 제조 시에 상기 언급된 파장에 대해서 적절한 흡수 특성을 가지는 첨가제를 첨가하는 공정 등이 필요할 수 있다.
상기 언급된 파장 범위에서 목적하는 투과율 특성을 확보하기 위해서는 위상차층으로서 액정 고분자층 또는 중합성 액정 조성물의 경화층을 적용하는 것이 유리하고, 특히 후술하는 특정 역파장 특성을 가지는 중합성 액정 화합물을 포함하는 중합성 액정 조성물의 경화층을 적용하는 것이 유리하다.
따라서, 상기 위상차층은, 적어도 후술하는 정분산 중합성 액정 화합물의 중합 단위와 역시 후술하는 역분산 중합성 액정 화합물의 중합 단위를 포함할 수 있다. 상기에서 중합 단위는, 후술하는 것과 같이 각각의 중합성 액정 화합물들이 중합 내지 경화하여 형성되는 단위를 의미한다.
예를 들면, 본 출원에서는, 2종 이상의 중합성 액정 화합물을 혼합하여 상기 수식 6의 특성이 만족되도록 위상차층을 제작할 수 있으며, 예를 들면, R(450)/R(550)이 낮은 수치를 나타내는 중합성 액정 화합물(예를 들면, 후술하는 역분산 중합성 액정 화합물)과 R(450)/R(550)이 높은 수치를 나타내는 중합성 액정 화합물(예를 들면, 후술하는 정분산 중합성 액정 화합물)을 조합하여 상기 수식 6의 특성을 만족시킬 수 있다.
본 명세서에서 용어 「중합성 액정 화합물」은, 액정성을 나타낼 수 있는 부위, 예를 들면, 메소겐(mesogen) 골격 등을 포함하고, 또한 중합성 관능기를 하나 이상 포함하는 화합물을 의미할 수 있다. 이러한 중합성 액정 화합물들은 소위 RM(Reactive Mesogen)이라는 명칭으로 다양하게 공지되어 있다. 상기 중합성 액정 화합물은, 상기 경화층 내에서 중합된 형태, 즉 전술한 중합 단위로 포함되어 있을 수 있고, 이는 상기 액정 화합물이 중합되어 경화층 내에서 액정 고분자의 주쇄 또는 측쇄와 같은 골격을 형성하고 있는 상태를 의미할 수 있다.
상기 중합성 액정 화합물은 단관능성 또는 다관능성 중합성 액정 화합물일 수 있다. 상기에서 단관능성 중합성 액정 화합물은, 중합성 관능기를 1개 가지는 화합물이고, 다관능성 중합성 액정 화합물은, 중합성 관능기를 2개 이상 포함하는 화합물을 의미할 수 있다. 하나의 예시에서 다관능성 중합성 액정 화합물은 중합성 관능기를 2개 내지 10개, 2개 내지 8개, 2개 내지 6개, 2개 내지 5개, 2개 내지 4개, 2개 내지 3개 또는 2개 또는 3개 포함할 수 있다.
상기와 같은 중합성 액정 화합물을, 예를 들면 개시제, 안정제 및/또는 비중합성 액정 화합물 등의 다른 성분과 배합하여 제조된 중합성 액정 조성물을 배향막상에서 배향시킨 상태로 경화시켜 복굴절이 발현된 상기 경화층을 형성하는 것은 공지이고, 본 출원에서는 이와 같은 공지의 과정에서 사용되는 중합성 액정 화합물의 특성을 제어하여 전술한 투과율 특성을 확보할 수 있다.
일 예시에서 전술한 투과율 특성을 적절하게 확보하기 위해서는 상기 역파장 중합성 액정 화합물을 포함하는 중합성 액정 조성물의 경화층이 적용되는 것이 유리하다. 상기에서 역파장 중합성 액정 화합물은, 상기 중합성 액정 화합물을 단독으로 경화시켜 형성한 액정층(경화층)이 역파장 분산 특성을 나타내는 중합성 액정 화합물을 의미하고, 이 때 역파장 분산 특성은 상기 수식 6에 기술된 특성을 의미한다.
본 출원에서는 특히 상기 역파장 중합성 액정 화합물 중에서도 수식 6의 R(450)/R(550)은, 0.6 내지 0.99의 범위 내인 액정 화합물을 적용할 수 있다. 상기 역분산 중합성 액정 화합물의 R(450)/R(550)은, 다른 예시에서 0.61 이상, 0.62 이상, 0.63 이상, 0.64 이상, 0.65 이상, 0.66 이상, 0.67 이상, 0.69 이상, 0.70 이상, 0.71 이상, 0.72 이상, 0.73 이상, 0.74 이상, 0.75 이상, 0.76 이상, 0.77 이상, 0.78 이상, 0.79 이상, 0.80 이상, 0.81 이상, 0.82 이상, 0.83 이상, 0.84 이상, 0.85 이상, 0.86 이상, 0.87 이상, 0.88 이상, 0.89 이상 또는 0.90 이상일 수 있다. 상기 R(450)/R(550)은, 다른 예시에서 0.98 이하, 0.97 이하, 0.96 이하, 0.95 이하, 0.94 이하, 0.93 이하, 0.92 이하, 0.91 이하, 0.90 이하, 0.89 이하, 0.88 이하, 0.87 이하, 0.86 이하 또는 0.85 이하일 수 있다. 또한, 상기 역파장 중합성 액정 화합물은, 수식 6의 R(650)/R(550)가, 1.00 내지 1.19의 범위 내일 수 있다. 상기 R(650)/R(550)은, 1.18 이하, 1.17 이하, 1.16 이하, 1.15 이하, 1.14 이하, 1.13 이하, 1.12 이하, 1.11 이하, 1.1 이하 또는 0.08 이하 정도일 수 있다. 상기 R(650)/R(550)은, 다른 예시에서 1.01 이상, 1.02 이상, 1.03 이상, 1.04 이상, 1.05 이상, 1.06 이상, 1.07 이상, 1.08 이상 또는 1.09 이상 정도일 수도 있다. 본 발명자들은 다양하게 공지된 중합성 액정 화합물 중에서도 특히 R(450)/R(550)의 값이 상기 언급한 범위에 있는 중합성 액정 화합물의 경우, 후술하는 것과 같이 정분산 중합성 액정 화합물과 배합되는 경우에, UV 흡수 파장 영역이 red shift하여 전술한 투과율 특성이 효과적으로 만족되는 것을 확인하였다. 상기 R(450)/R(550)은 일 예시에서 0.6 이상, 0.61 이상, 0.62 이상, 0.63 이상, 0.64 이상, 0.65 이상, 0.66 이상, 0.67 이상, 0.68 이상, 0.69 이상, 0.70 이상, 0.71 이상, 0.72 이상, 0.73 이상, 0.74 이상, 0.75 이상, 0.76 이상, 0.77 이상 또는 0.78 이상일 수도 있다.
이러한 현상은 상기 범위의 R(450)/R(550)를 가지도록 디자인된 역파장 중합성 액정 화합물의 고유의 분자 구조에 기인하는 것으로 판단된다.
즉, 중합성 액정 화합물의 복굴절은, 주로 분자 공액(Molecular Conjugation) 구조, differential oscillator strength, 및 오더 파라미터(order parameter) 등에 의해 결정되는 것으로 알려져 있으며, 중합성 액정 화합물이 높은 복굴절을 나타내기 위해서는 주축 방향으로 큰 전자밀도가 필요하기 때문에 대부분의 중합성 액정 화합물은 장축 방향으로 고도로 공액화(highly conjugation)된 형상을 가지고 있다.
그런데, 중합성 액정 화합물이 역분산 특성을 나타내도록 하기 위해서는, 장축과 그에 수직하는 축간의 복굴절성을 조율하는 것이 필요하고, 이에 따라 역분산 특성을 가지도록 디자인된 중합성 액정 화합물은, 대부분 T 또는 H 형태의 분자 형상을 가지면서 주축(장축)은, 큰 위상차와 작은 분산값을 가지고, 그에 수직하는 축은 작은 위상차와 큰 분산값을 가지는 형태이다.
그런데, 자외선 영역인 180 nm 내지 400 nm의 범위의 광을 흡수하는 전자 전이(electronic transition, π → π*)는 공액화 길이(conjugation length)가 길수록 더 장파장으로 이동(shift)하기 때문에, 역분산 특성을 가지도록 디자인된 중합성 액정 화합물은, 음의 복굴절부가 고도로 공액화(highly conjugation)되기 때문에, 자외선 흡수 파장 영역이 보다 장파장으로 이동하는 red shift 현상이 일어나게 된다.
본 발명자들은 상기와 같은 특성의 역파장 중합성 액정 화합물 중에서도 특히 R(450)/R(550)의 범위가 상기 언급된 범위가 되도록 디자인된 중합성 액정 화합물이 본 출원에서 요구하는 투과율 특성을 만족할 수 있는 적합한 범위의 red shift를 나타내고 있음을 확인하였다.
본 발명자들은 특히 하기 구조의 역분산 중합성 액정 화합물의 경우, 정분산 중합성 액정 화합물과 혼합되었을 때에 목적하는 자외선 차단능을 나타내면서, 또한 그 위상차 특성(R(450)/R(550) 및 R(650)/R(550))도 목적에 따라서 효과적으로 설계될 수 있다는 점을 확인하였다.
[화학식 1]
Figure PCTKR2018007785-appb-I000001
화학식 1에 R1은, 하기 화학식 2 또는 화학식 3의 치환기이고, R2 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기, 시아노기, 하기 화학식 4의 치환기 또는 하기 화학식 5의 치환기이다. 또한, 상기에서 R2 내지 R6 중 적어도 2개 이상 또는 2개는 하기 화학식 4의 치환기 또는 하기 화학식 5의 치환기이다.
예를 들어, 화학식 1에서 R2 및 R3 중 어느 하나와 R5 및 R6 중 어느 하나는 하기 화학식 4 또는 5의 치환기일 수 있다.
[화학식 2]
Figure PCTKR2018007785-appb-I000002
화학식 2에서 A1 및 A2는 각각 독립적으로 산소 원자 또는 단일 결합이고, L1 및 L2는 각각 독립적으로 -C(=O)-O-, -O-C(=O)- 또는 알킬렌기이며, Cyc는 아릴렌기 또는 사이클로알킬렌기이고, P는 중합성 관능기이다.
[화학식 3]
Figure PCTKR2018007785-appb-I000003
화학식 3에서 L3 및 L4는 각각 알킬렌기이고, n은 1 내지 4의 범위 내의 수이며, P는 중합성 관능기 또는 수소 원자이다.
[화학식 4]
Figure PCTKR2018007785-appb-I000004
화학식 4에서 A3 및 A4는, 산소 원자, 알킬렌기 또는 단일 결합이고, L5 및 L6는 각각 독립적으로 -C(=O)-O-, -O-C(=O)- 또는 알킬렌기이며, Cyc는 아릴렌기이고, P는 중합성 관능기이다.
[화학식 5]
Figure PCTKR2018007785-appb-I000005
화학식 5에서 A5, A6, A7은 각각 독립적으로 산소 원자 또는 단일 결합이고, L7, L8 및 L9은 각각 독립적으로 -C(=O)-O-, -O-C(=O)- 또는 알킬렌기이며, Cy1은 사이클로알킬렌기이고, Cy2는 아릴렌기이며, P는 중합성 관능기이다.
상기 화학식 1 내지 5에서 용어 단일 결합은 해당 부위에 별도의 원자가 없는 경우이며, 예를 들어, 화학식 2에서 A2가 단일 결합이라면, A2에는 별도의 원자가 존재하지 않고, Cyc가 L2에 직접 연결된 구조가 구현될 수 있다.
상기 화학식 1 내지 5에서 용어 알킬기, 알콕시기 또는 알킬렌기는, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 직쇄 또는 분지쇄형의 알킬기, 알콕시기 또는 알킬렌기일 수 있고, 상기는 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
또한, 상기 화학식 1 내지 5에서 아릴렌기는, 탄소수 6 내지 12의 아릴렌기이거나, 혹은 페닐렌기일 수 있다.
또한, 상기 화학식 1 내지 5에서 사이클로알킬렌기는, 탄소수 3 내지 12 또는 탄소수 3 내지 9의 사이클로알킬렌기이거나, 사이클로헥실렌기일 수 있다.
화학식 2의 치환기에서는 A1은 단일 결합일 수 있고, L1은, -C(=O)-O- 또는 -O-C(=O)-일 수 있으며, A2는 산소 원자일 수 있고, L2는 탄소수 3 이상, 4 이상 또는 5 이상의 알킬렌기일 수 있다. 상기 L2의 알킬렌기의 탄소수는 12 이하 또는 8 이하일 수 있다.
상기 화학식 3의 하나의 예시에서는 L3 및 L4는 각각 독립적으로 탄소수 1 내지 4의 알킬렌기일 수 있고, n은 1 내지 3의 범위 내의 수 또는 1 내지 2의 범위 내의 수이거나, 2일 수 있으며, P는 중합성 관능기일 수 있다. 또한, 상기 경우에 화학식 3에서 [O-L4]의 단위가 2개 이상인 경우에는 각 단위 내의 L4의 알킬렌기의 탄소수는 동일하거나 상이할 수 있다.
또한, 상기 화학식 3의 다른 예시에서는 L3 및 L4는 각각 독립적으로 탄소수 1 내지 4의 알킬렌기일 수 있고, n은 1 내지 3의 범위 내의 수 또는 1 내지 2의 범위 내의 수이거나, 2일 수 있으며, P는 수소 원자일 수 있다. 또한, 상기 경우에 화학식 3에서 [O-L4]의 단위가 2개 이상인 경우에는 각 단위 내의 L4의 알킬렌기의 탄소수는 동일하거나 상이할 수 있다.
화학식 4에서 A3는 단일 결합이거나, 탄소수 1 내지 4의 알킬렌기일 수 있고, L5는 -C(=O)-O- 또는 -O-C(=O)-일 수 있으며, A4는 산소 원자일 수 있으며, L6는 탄소수 3 이상, 4 이상 또는 5 이상의 알킬렌기일 수 있다. 상기 L6의 알킬렌기의 탄소수는 12 이하 또는 8 이하일 수 있다.
화학식 5에서 A5는 산소 원자일 수 있고, L7은 탄소수 1 내지 4의 알킬렌기일 수 있으며, A6는 단일 결합일 수 있고, L8은 -C(=O)-O- 또는 -O-C(=O)-일 수 있으며, A7은 산소 원자일 수 있고, L9은, 탄소수 3 이상, 4 이상 또는 5 이상의 알킬렌기일 수 있다. 상기 L9의 알킬렌기의 탄소수는 12 이하 또는 8 이하일 수 있다.
본 발명자들은 상기와 같은 중합성 액정 화합물은, 특유의 T형 구조와 N-N 결합을 중심으로 구현되는 공액화 구조에 의해서 목적하는 물성을 효과적으로 만족시킬 수 있다는 점을 확인하였다.
상기 화학식에서 중합성 관능기의 종류는 특별히 제한되지 않으며, 예를 들면, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기일 수 있다.
일 예시에서는 역분산 중합성 액정 화합물로서, 상기 화학식 1에 R1이, 상기 화학식 3의 치환기이고, R2 내지 R6 중 적어도 2개 이상 또는 2개는 상기 화학식 5의 치환기인 화합물의 사용이 유리할 수 있다.
필요하다면, 상기 화학식 1에서 R1이 상기 화학식 3에서 P가 중합성 관능기인 액정 화합물과 상기 화학식 1에서 R1이 상기 화학식 3에서 P가 수소 원자인 액정 화합물을 혼합하여 사용할 수 있고, 이러한 경우에 혼합 비율은 목적하는 역파장 특성(R(450)/R(550) 및/또는 R(650)/R(550))에 따라 정해지는 것으로서 특별하게 제한되는 것은 아니다.
상기 역파장 중합성 액정 화합물의 중합 단위는 경화층(액정층) 내에 전체 중합성 액정 화합물의 중합 단위의 중량을 기준으로 40중량% 이상의 비율로 포함되어 있을 수 있다. 상기 비율은 다른 예시에서 약 45 중량% 이상, 50 중량% 이상, 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상, 80 중량% 이상 또는 95 중량% 이상일 수도 있다. 상기 위상차층(상기 액정층)은 중합성 액정 화합물로서, 상기 화학식 1의 액정 화합물의 중합 단위만을 포함할 수 있지만, 적절한 물성의 구현의 관점에서는 후술하는 정분산 중합성 액정 화합물이 함께 포함되는 것이 유리하다. 따라서, 상기 비율은 100 중량% 이하 또는 100 중량% 미만일 수 있다.
상기 중합성 액정 조성물 및/또는 경화층(액정층)은 상기 역분산 중합성 액정 화합물에 추가로 수식 1에서 R(450)/R(550)이 1.04 내지 1.25, 1.04 내지 1.15 또는 1.06 내지 1.15의 범위 내에 있는 중합성 액정 화합물(이하, 정분산 중합성 액정 화합물)을 추가로 포함할 수 있다. 상기 언급된 R(450)/R(550)을 가지는 역분산 중합성 액정 화합물의 적용은, 경화층(액정층)이 목적하는 투과율 특성을 나타내게 하는 측면에서는 유리하지만, R(450)/R(550)값이 다소 낮은 측면이 있어서 경화층(액정층)이 전체적으로 역분산 특성을 나타내도록 함에 있어서는 불리하다. 따라서, 이러한 불리함의 극복을 위해서 중합성 액정 조성물 및/또는 경화층 내에 R(450)/R(550)값이 상기 범위 내에 있는 중합성 액정 화합물을 추가하여 전체적인 광학 특성을 조절할 수 있다. 상기 정분산 액정 화합물은 수식 6에서 R(650)/R(550)이 약 0.8 내지 0.99, 약 0.85 내지 0.99, 약 0.9 내지 0.99 또는 약 0.91 내지 0.99의 범위 내일 수 있다.
상기와 같은 정분산 중합성 액정 화합물은 다양하게 공지되어 있으며, 예를 들면, 한국등록특허 제1729819호, 한국등록특허 제1640670호, 한국등록특허 제1557202호, 한국등록특허 제1472187호, 한국등록특허 제1460862호, 한국등록특허 제1191124호, 한국등록특허 제1191125호 및/또는 한국등록특허 제1191129호 등에서 공지되어 있는 중합성 액정 화합물을 사용할 수 있다.
상기와 같은 정분산 중합성 액정 화합물로는, 공지의 다양한 소재를 사용할 수 있지만, 이미 기술한 역분산 중합성 액정 화합물과의 혼화성이나, 그 역분산 중합성 액정 화합물의 자외선 흡수성을 보완하여 목적하는 물성을 확보하기 위해서 하기 화학식 6으로 표시되는 것을 사용하는 것이 유리할 수 있다.
[화학식 6]
Figure PCTKR2018007785-appb-I000006
화학식 6에서 A는 단일 결합, -C(=O)O- 또는 -OC(=O)-이고, R1 내지 R10은, 각각 독립적으로 수소, 할로겐, 알킬기, 알콕시기, 알콕시카보닐기, 시아노기, 니트로기 또는 하기 화학식 7의 치환기일 수 있다. 또한, 다른 예시에서는 상기 구조에서 R1 내지 R5 중 이웃하는 2개의 치환기 또는 R6 내지 R10 중 이웃하는 2개의 치환기는 서로 결합되어서 -L-A-P로 치환된 벤젠 고리를 구성할 수 있다. 예를 들어, R1 내지 R5 중 이웃하는 2개의 치환기가 상기 -L-A-P로 치환된 벤젠을 형성한다면, 상기 화학식 6에서 A를 기준으로 왼쪽은 -L-A-P로 치환된 나프탈렌 구조가 구현될 수 있고, R6 내지 R10 중 이웃하는 2개의 치환기가 상기 -L-A-P로 치환된 벤젠을 형성한다면, 상기 화학식 6에서 A를 기준으로 오른쪽은 -L-A-P로 치환된 나프탈렌 구조가 구현될 수 있다. 상기에서 L은, -C(=O)O-, -OC(=O)- 또는 -OC(=O)O-일 수 있고, A는 알킬렌기일 수 있으며, P는 중합성 관능기일 수 있다. 상기에서 A의 알킬렌은 탄소수 1 이상, 2 이상, 3 이상 또는 4 이상의 알킬렌기일 수 있고, 상기 알킬렌기의 탄소수는 20 이하, 16 이하, 12 이하 또는 8 이하일 수 있다. 또한, 상기에서 중합성 관능기 P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기일 수 있다. 상기에서 R1 내지 R5 중 이웃하는 2개의 치환기 또는 R6 내지 R10 중 이웃하는 2개의 치환기는 서로 결합되어서 상기 벤젠 고리를 구성하는 경우에 나머지 치환기는 전술한 수소, 할로겐, 알킬기, 알콕시기, 알콕시카보닐기, 시아노기 또는 니트로기일 수 있다.
[화학식 7]
Figure PCTKR2018007785-appb-I000007
화학식 7에서 B는 단일 결합, -C(=O)O- 또는 -OC(=O)-이고, R11 내지 R15는, 각각 독립적으로 수소, 할로겐, 알킬기, 알콕시기, 알콕시카보닐기, 시아노기, 니트로기 또는 상기 -L-A-P이거나, R11 내지 R15 중 이웃하는 2개의 치환기는 서로 결합되어서 -L-A-P로 치환된 벤젠 고리를 구성할 수 있다. 이러한 경우에는 상기 화학식 7의 구조는 -L-A-P가 치환된 나프탈렌 구조를 가진다. 상기에서 R11 내지 R15 중 이웃하는 2개의 치환기는 서로 결합되어서 상기 벤젠 고리를 구성하는 경우에 나머지 치환기는 전술한 수소, 할로겐, 알킬기, 알콕시기, 알콕시카보닐기, 시아노기 또는 니트로기일 수 있다.
상기 화학식 6 및 7에서 단일 결합의 의미는 상기 화학식 1 내지 5의 경우와 같고, 알킬기 및 알콕시기의 의미도 상기 화학식 1 내지 5의 경우와 같다.
하나의 예시에서는 상기 정분산 중합성 액정 화합물로는, 상기 화학식 6에서 R2 및 R3 또는 R3 및 R4가 상기 -L-A-P로 치환된 벤젠을 형성함으로써, 상기 화학식 6의 A의 왼쪽이 나프탈렌 구조를 이루는 화합물이 사용될 수 있다.
상기 정분산 중합성 액정 화합물로는, 상기 화학식 6에서 R7 내지 R9 중 어느 하나, 예를 들면, R8이 상기 화학식 7인 화합물이 사용될 수도 있다. 이러한 경우에 상기 화학식 7에서는 R12 및 R13 또는 R13 및 R14가 상기 -L-A-P로 치환된 벤젠을 형성함으로써, 상기 화학식 7의 B의 오른쪽이 나프탈렌 구조를 이루는 화합물이 사용될 수 있다.
상기와 같은 정분산 중합성 액정 화합물의 경화층(액정층) 내에서의 비율은 경화층(액정층)의 투과율 특성이 목적하는 범위로 유지되면서 경화층(액정층) 전체의 R(450)/R(550)값 등의 광학 특성이 목적하는 범위로 유지될 수 있는 한 특별히 제한되지 않는다. 예를 들면, 상기 정분산 중합성 액정 화합물은 0 내지 60 중량%의 비율 또는 0 중량% 초과이면서 60 중량% 이하의 비율로 포함되어 있을 수 있다. 상기 비율은 다른 예시에서 약 55 중량% 이하, 50 중량% 이하, 45 중량% 이하, 40 중량% 이하, 35 중량% 이하, 30 중량% 이하, 25 중량% 이하, 20 중량% 이하, 15 중량% 이하, 10 중량% 이하 또는 5 중량% 이하 정도일 수도 있다. 이러한 범위에서 경화층(액정층)이 적합한 역분산 특성과 투과율 특성을 나타낼 수 있다. 따라서, 상기 중합성 액정 조성물 내에서 상기 정분산 중합성 액정 화합물의 비율은 형성된 경화층 내에 상기 정분산 중합성 액정 화합물이 상기 언급된 범위로 존재할 수 있는 범위 내일 수 있다.
상기 경화층(액정층)은, 3관능 이상의 중합성 액정 화합물, 예를 들면, 중합성 관능기를 3개 내지 10개, 3개 내지 8개, 3개 내지 6개, 3개 내지 5개, 3개 내지 4개 또는 3개 가지는 중합성 액정 화합물의 중합 단위를 포함할 수 있다. 상기와 같은 3관능 이상의 중합성 액정 화합물은 상기 언급한 역분산 또는 정분산 중합성 액정 화합물일 수 있다. 경화층(액정층) 내에서 상기 중합성 액정 화합물의 중합 단위의 비율은 특별히 제한되지 않지만, 예를 들면, 30 중량% 이상 또는 40 중량% 이상일 수 있고, 100 중량% 이하이거나, 100 중량% 미만일 수 있다. 이와 같은 비율로 3관능 이상의 중합성 액정 화합물의 중합 단위를 포함하는 경화층(액정층)은, 보다 우수한 내구성을 나타낼 수 있다.
이상 기술한 중합성 액정 화합물을 포함하는 중합성 액정 조성물의 경화층(액정층)에서 상기 중합성 액정 화합물의 전환율, 즉 최초 모노머 상태에서 중합된 상태로 전환된 중합성 액정 화합물의 비율은, 예를 들면, 50 중량% 내지 100 중량% 정도일 수 있다. 상기 전환율은 다른 예시에서 약 60 내지 100 중량% 또는 약 70 내지 100 중량% 정도일 수 있다. 이와 같은 전환율에서 경화층(액정층)은, 보다 우수한 내구성을 나타낼 수 있다.
특히 본 출원의 상기 위상차층은, 전술한 바와 같이 자외선 흡수제 내지는 광안정제를 사용하지 않고, 특정한 구조의 정분산 및 역분산 중합성 액정 화합물의 적용을 통해 목적하는 자외선 흡수능을 구현하기 때문에 우수한 내구성을 나타낼 수 있다.
예를 들면, 상기 위상차층은, 하기 수식 A에 따른 위상차 변화율의 절대값이 약 17% 이하, 약 16.5% 이하, 약 16% 이하 또는 약 15.5% 이하일 수 있다. 상기 위상차 변화율은 다른 예시에서 약 0% 이상, 2% 이상, 4% 이상, 6% 이상, 8% 이상, 10% 이상, 12% 이상 또는 14% 이상일 수 있다.
[수식 A]
위상차 변화율 = 100 × (Ra - Ri)/Ri
수식 A에서 Ri는 상기 위상차층의 550 nm 파장에 대한 초기 면내 위상차이며, Ra는 내구 조건 후의 상기 상기 위상차층의 550 nm 파장에 대한 면내 위상차이다.
상기에서 내구 조건은, 85℃에서 상기 위상차층을 유지하는 것이고, 구체적으로 상기 위상차 변화율은 후술하는 실시예 개시 방법으로 측정할 수 있다. 상기에서 내구 조건에서의 유지 시간은 50 시간 이상, 100 시간 이상, 150 시간 이상, 200 시간 이상 또는 250 시간 이상일 수 있다. 상기 유지 시간은 다른 예시에서 약 300 시간 이하 정도일 수도 있다.
본 출원의 원편광판은, 상기 편광자와 위상차층을 기본적으로 포함하는 한, 기타 다양한 구조를 가질 수 있다.
예를 들면, 상기 원편광판은, 상기 편광자의 상기 위상차층을 향하는 면의 반대면에 적층되어 있는 추가적인 층(이하, 외곽층)을 포함할 수 있다. 도 3은 편광자(101)의 상부에 상기 외곽층(301)이 형성되어 있는 경우의 예시이다.
외곽층의 종류로는, 편광자 보호 필름, 하드코팅층, 위상차 필름, 반사 방지층 또는 액정 코팅층 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 상기 외곽층으로 사용되는 각 구성의 구체적인 종류는 특별히 제한되지 않으며, 예를 들면, 업계에서 편광판 등의 광학 필름을 구성하기 위해서 사용되는 다양한 종류의 필름 등이 제한 없이 사용될 수 있다.
예를 들면, 상기 외곽층은, 550 nm 파장에 대한 면상 위상차가 10 nm 이하인 광학 필름일 수 있다. 상기 광학 필름은, 상기 편광자의 보호 필름일 수 있다. 상기 보호 필름으로는 업계에서 공지된 다양한 필름이 적용될 수 있다.
상기 외곽층은 또한 1/4 파장 위상 지연 특성을 가지는 리타데이션층일 수 있다. 이러한 리타데이션층은 전술한 외곽층 중에서 위상차 필름이나 액정 코팅층을 사용하여 구성할 수 있다. 따라서, 상기 원편광판은, 상기 편광자의 위상차층을 향하는 면의 반대면에 적층되어 있고, 550 nm 파장에 대한 면상 위상차가 90 nm 내지 300nm의 범위 내인 광학 필름(리타데이션층)을 추가로 포함할 수 있다. 상기 리타데이션층의 면상 위상차는 다른 예시에서 100 nm 이상, 105 nm 이상, 110 nm 이상, 115 nm 이상, 120 nm 이상, 125 nm 이상 또는 130 nm 이상일 수 있다. 또한, 상기 면상 위상차는 290 nm 이하, 280 nm 이하, 270 nm 이하, 260 nm 이하, 250 nm 이하, 240 nm 이하, 230 nm 이하, 220 nm 이하, 210 nm 이하, 200 nm 이하, 190 nm 이하, 180 nm 이하, 170 nm 이하, 160 nm 이하, 150 nm 이하 또는 145 nm 이하일 수 있다.
상기 언급된 외곽층은 단일층이거나 다층 구조일 수 있다. 단일층 구조의 예시로는 상기 편광자 보호 필름의 단층 구조 또는 상기 1/4 파장 위상 지연 특성을 가지는 리타데이션층인 위상차 필름의 단층 구조 등이 예시될 수 있고, 다층 구조로는 상기 편광자 보호 필름 및/또는 위상차 필름상에 하드코팅층, 1/4 파장 위상 지연 특성을 가지는 액정 코팅층 및/또는 반사 방지층이 형성되어 있는 구조가 예시될 수 있고, 상기 하드코팅층, 1/4 파장 위상 지연 특성을 가지는 액정 코팅층 및 반사 방지층 등은 그 중 어느 한 층이 존재하거나 2층 이상이 다층으로 존재할 수도 있다.
상기 원편광판은, 또한, 상기 위상차층의 상기 편광자를 향하는 면의 반대면에 적층되어 있는 추가적인 층(이하, 하부층)을 포함할 수 있다. 도 4는 위상차층(102)의 상부에 상기 하부층(401)이 형성되어 있는 경우의 예시이다. 도 4와 같은 경우에도 도 3과 같은 외곽층(301)이 추가될 수 있다. 예를 들면, 도 4와 같이 하부층(401)이 존재하는 상태에서 편광자(101)의 외측에는 하드코팅층이나 저반사층 등의 외곽층이 존재할 수 있고, 편광자(101)의 일측 또는 양측에는 보호 필름이 존재할 수도 있다.
하부층의 종류로는, 리타데이션층이나, 상기 원편광판을 다른 요소에 부착하기 위한 점착제층, 접착제층 또는 상기 점착제층 또는 접착제층을 보호하는 보호 필름 내지는 이형 필름이 예시될 수 있다.
하부층으로 리타데이션층이 사용되는 경우에 상기 층으로는 하기 수식 7 또는 8의 굴절률 관계를 만족하는 층이 적용될 수 있다. 이와 같은 층의 추가로 인해서 원편광판이 경사 방향으로 입사되는 광에 대해서도 목적하는 특성을 나타내도록 할 수 있다.
[수식 7]
nx = ny < nz
[수식 8]
nx > ny 및 nz > ny
상기 수식 7 및 8에서 nx, ny 및 nz는 상기 수식 1 내지 3에서 정의한 바와 같다.
상기 원편광판은, 상기 하부층인 리타데이션층으로서, 상기 위상차층의 하부에 존재하고, 두께 방향 위상차가 10 내지 400 nm의 범위 내인 광학 필름을 추가로 포함할 수 있다. 상기 광학 필름은 상기 수식 7 또는 8의 굴절률 관계를 만족하는 리타데이션층일 수 있다.
상기 광학 필름의 두께 방향 위상차의 상한은 다른 예시에서 370nm 이하, 350 nm 이하, 330 nm 이하, 300 nm 이하, 270 nm, 250 nm, 240 nm, 230 nm, 220 nm, 200 nm, 190 nm, 180 nm, 170 nm, 160 nm, 155 nm, 150 nm, 130 nm, 120 nm, 110 nm, 100 nm, 80 nm 또는 70 nm일 수 있다. 또한, 상기 광학 필름의 두께 방향 위상차의 하한은, 다른 예시에서 5 nm, 10 nm, 20 nm, 40 nm, 50 nm, 90 nm, 100 nm, 110 nm, 120 nm 또는 150 nm일 수 있다. 광학 필름의 두께 방향 위상차를 상기와 같이 조절하여 반사 특성 및 시감 특성, 특히 경사각에서 반사 특성과 시감 특성이 우수한 원편광판을 제공할 수 있다.
상기 광학 필름이 상기 수식 8을 만족하는 광학 필름인 경우에 그 면상 위상차는, 예를 들면, 0 nm를 초과하고, 300 nm 이하, 290 nm 이하, 280 nm 이하, 270 nm 이하, 260 nm 이하, 250 nm 이하, 240 nm 이하, 230 nm 이하, 220 nm 이하, 210 nm 이하, 200 nm 이하, 190 nm 이하, 180 nm 이하, 170 nm 이하, 160 nm 이하, 150 nm 이하, 140 nm 이하, 130 nm 이하, 120 nm 이하, 110 nm 이하, 100 nm 이하, 90 nm 이하, 80 nm 이하, 70 nm 이하, 60 nm 이하, 50 nm 이하, 40 nm 이하, 30 nm 이하, 20 nm 이하 또는 10 nm 이하일 수 있다.
또한, 상기 광학 필름이 상기 수식 8을 만족하는 광학 필름인 경우에 그 지상축은 상기 편광자의 흡수축과 수직 또는 수평이 되도록 광학 필름이 배치될 수 있다. 본 명세서에서 용어 수직, 직교, 수평 또는 평행은, 목적하는 효과를 손상시키지 않은 범위에서의 실질적인 수직, 직교, 수평 또는 평행을 의미한다. 따라서, 상기 각 용어는, 예를 들면, ±15도 이내, ±10도 이내, ±5도 이내 또는 ±3도 이내의 오차를 포함할 수 있다.
다른 예시에서 상기 광학 필름이 상기 수식 8을 만족하는 광학 필름인 경우에 그 지상축은 상기 편광자의 흡수축가 약 30도 내지 60도의 범위 내의 각도를 이룰 수 있도록 배치될 수도 있다. 상기 각도는 다른 예시에서 35도 이상 또는 40도 이상일 수 있고, 또한 55도 이하 또는 50도 이하일 수 있다.
원편광판에서 상기 편광자와 위상차층의 사이에는 별도의 층이 존재하거나 혹은 존재하지 않을 수 있다.
상기에서 편광자와 위상차층의 사이에 별도의 층이 존재하지 않는 경우는 편광자와 위상차층이 직접 부착되어 있는 경우로서, 이 경우에는 상기 편광자와 위상차층을 접착하기 위한 층, 예를 들면, 점착제층, 접착제층 및/또는 프라이머층 등을 제외하고는 다른 층이 존재하지 않을 수 있다.
또한, 상기 편광자와 위상차층의 사이에 별도의 층이 존재하거나 존재하지 않는 경우에도 적어도 상기 편광자와 위상차층의 사이에 복굴절층은 존재하지 않을 수 있다. 이러한 경우에 상기 복굴절층은 그 면상 위상차 및 두께 방향 위상차 중 적어도 하나가 10 nm 이상인 층을 의미한다.
도 5는, 상기 편광자(101)와 위상차층(102)의 사이에 별도의 층(중간층)(501)이 존재하는 경우의 예시이다. 상기 중간층으로는 전술한 편광자 보호 필름이나 리타데이션층이 예시될 수 있다. 도 5의 구조에서도 도시되어 있지는 않지만, 도 3의 구조의 외곽층(301) 및/또는 도 4의 구조의 하부층(401)이 존재할 수도 있다.
예를 들면, 원편광판은, 상기 편광자와 상기 위상차층의 사이에 존재하며, 550 nm 파장에 대한 면상 위상차가 5 nm 이하이고, 550 nm 파장에 대한 두께 방향 위상차가 -60nm 내지 0 nm의 범위 내인 광학 필름을 추가로 포함할 수 있고, 이러한 광학 필름은 예를 들면 편광자의 보호 필름일 수 있다.
다른 예시에서 원편광판은, 상기 편광자와 상기 위상차층의 사이에 존재하며, 550 nm 파장에 대한 면상 위상차가 10 nm 이하이고, 550 nm 파장에 대한 두께 방향 위상차가 40 nm 내지 400 nm의 범위 내인 광학 필름을 추가로 포함할 수 있다. 이러한 광학 필름은 리타데이션층일 수 있고, 예를 들면, 상기 수식 1 내지 3, 7 및 8 중 어느 하나의 굴절률 관계를 만족하는 층이거나, 스프레이 배향된 액정 경화층 또는 틸트 배향된 액정 경화층일 수 있다.
일 예시에서 상기 원편광판은, 상기 편광자와 위상차층의 사이에 존재하며, 하기 수식 9의 Nz가 -4.0 이하이거나 또는 하기 수식 10을 만족하는 리타데이션층을 가지는 광학 이방성층을 추가로 포함할 수 있다.
[수식 9]
Nz = (nx-nz)/(nx-ny)
[수식 2]
nx = ny < nz
수식 9 및 10에서 nx는 리타데이션층의 지상축 방향의 굴절률이고, ny는 리타데이션층의 진상축 방향의 굴절률이며, nz는 리타데이션층의 두께 방향의 굴절률이다.
또한, 상기의 경우, 광학 이방성층은 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내이고, 면내 지상축은 편광자의 흡수축과 평행 또는 직교하는 리타데이션층을 추가로 포함할 수도 있다.
예를 들면, 상기 수식 9의 Nz가 -4.0 이하이거나 또는 수식 10을 만족하는 리타데이션층은 상기 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내인 리타데이션층에 비하여 편광자에 인접하고, 상기 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내인 리타데이션층의 면내 지상축은 상기 편광자의 흡수축과 평행하게 배치될 수 있다.
또한, 상기 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내인 리타데이션층은 상기 수식 9의 Nz가 -4.0 이하이거나 또는 수식 10을 만족하는 리타데이션층에 비하여 편광자에 인접하고, 상기 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내인 리타데이션층의 면내 지상축은 상기 편광자의 흡수축과 직교할 수도 있다.
또한, 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내인 리타데이션층은 상기 수식 9의 Nz가 -4.0 이하이거나 또는 수식 10을 만족하는 리타데이션층에 비하여 편광자에 인접하고, 상기 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내인 리타데이션층의 면내 지상축은 상기 편광자의 흡수축과 평행할 수도 있다.
또한, 상기 수식 9의 Nz가 -4.0 이하이거나 또는 수식 10을 만족하는 리타데이션층은 상기 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내인 리타데이션층에 비하여 편광자에 인접하고, 상기 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내인 리타데이션층의 면내 지상축은 상기 편광자의 흡수축과 직교하게 배치될 수도 있따.
상기의 경우, 상기 수식 9의 Nz가 -4.0 이하이거나 또는 수식 10을 만족하는 리타데이션층의 두께 방향 위상차는 30nm 내지 200 nm의 범위 내이며, 상기 수식 9의 Nz 값은, -4.0 이하일 수 있다.
또한, 상기에서 수식 9의 Nz 값이 0.8 내지 1.2의 범위 내인 리타데이션층의 550 nm 파장의 광에 대한 면상 위상차는 30 nm 내지 180 nm의 범위 내일 수 있다.
다른 예시에서 원편광판은, 편광자와 위상차층의 사이에 존재하며, 하기 수식 11을 만족하는 리타데이션층을 추가로 포함할 수 있다.
[수식 11]
nx > ny 및 nz > ny
수식 11에서 nx는 리타데이션층의 지상축 방향의 굴절률이고, ny는 리타데이션층의 진상축 방향의 굴절률이며, nz는 리타데이션층의 두께 방향의 굴절률이다.
상기의 경우 리타데이션층의 면상 위상차는 70 내지 200 nm의 범위 내이고, 그 면내 지상축은 편광자의 흡수축과 평행하거나 혹은 직교할 수 있다. 또한, 상기 리타데이션층의 상기 수식 9에 따른 Nz는 -0.2 내지 0.8의 범위 내일 수 있다.
다른 예시에서 원편광판은, 편광자와 위상차층의 사이에 두께 방향을 따라 경사각이 변화하는 복수의 광축을 가지는 리타데이션층, 예를 들면, 스프레이 배향된 액정 경화층을 추가로 포함할 수 있다.
상기 리타데이션층의 모든 광축의 평면으로의 투영은 상기 편광자의 흡수축과 평행 또는 직교를 이룰 수 있다.
상기 리타데이션층이 액정 경화층인 경우에 상기 경화층은, 굴절률 이방성이 0.03 내지 0.2인 액정 물질을 포함할 수 있다.
또한, 상기 액정 경화층은, 막대 형상의 액정 분자를 포함하거나, 디스크 형상의 액정 분자를 포함할 수 있다.
상기의 경우에 리타데이션층의 광축은, 상기 리타데이션층의 하나의 표면에서 경사각이 70도 내지 90도이고, 그와 대향하는 다른 하나의 표면에서 경사각이 0도 내지 20도가 되도록 상기 리타데이션층의 두께 방향을 따라 점진적으로 변화하고 있을 수 있다.
막대 형상의 액정 분자를 포함하는 경우에 리타데이션층의 광축의 경사각은 리타데이션층의 양 표면에서 각각 70도 내지 90도이고, 두께 방향의 중간부에서 0도 내지 70도가 되도록 상기 광축이 두께 방향을 따라 점진적으로 변화하고 있을 수 있다.
막대 형상의 액정 분자를 포함하는 경우에 리타데이션층의 광축의 경사각은 리타데이션층의 양 표면에서 각각 0도 내지 20도이고, 두께 방향의 중간부에서 40도 내지 90도가 되도록 상기 광축이 두께 방향을 따라 점진적으로 변화하고 있을 수 있다.
디스크 형상의 액정 분자를 포함하는 경우에 리타데이션층의 광축의 경사각은 리타데이션층의 양 표면에서 각각 70도 내지 90도이고, 두께 방향의 중간부에서 0도 내지 30도가 되도록 상기 광축이 두께 방향을 따라 점진적으로 변화하고 있을 수 있다.
디스크 형상의 액정 분자를 포함하는 경우에 리타데이션층의 광축의 경사각은 리타데이션층의 양 표면에서 각각 0도 내지 20도이고, 두께 방향의 중간부에서 20도 내지 50도가 되도록 상기 광축이 두께 방향을 따라 점진적으로 변화하고 있을 수 있다.
또한, 다른 예시에서 원편광판은, 편광자와 위상차층의 사이에 두께 방향을 따라 일정하게 경사진 광축을 가지는 리타데이션층, 예를 들면, 틸트 배향된 액정 경화층을 추가로 포함할 수 있다.
상기에서 리타데이션층의 광축의 평면으로의 투영은 상기 편광자의 흡수축과 평행을 이룰 수 있다.
액정 경화층인 상기 리타데이션층은 굴절률 이방성이 0.03 내지 0.2 의 범위 내인 액정 분자를 포함할 수 있다.
또한, 상기 액정 분자는 막대 형상의 액정 분자, 예를 들면, 네마틱 액정일 수 있따.
상기의 경우 리타데이션층의 광축의 경사각은 25도 내지 65도의 범위 내이고, 두께는 0.35㎛내지 2.2㎛의 범위 내일 수 있다.
또한, 다른 예시에서 상기 리타데이션층의 광축의 경사각은 35도 내지 50도의 범위 내이고, 두께는 0.4㎛ 내지 2.2㎛일 수 있다.
상기 액정 분자는 다른 예시에서 디스크 형상의 액정 분자, 예를 들면, 디스코틱 액정일 수 있다.
이러한 경우, 상기 리타데이션층의 광축의 경사각은 10도 내지 35도의 범위 내이고, 두께는 1㎛ 내지 3㎛의 범위 내일 수 있다.
본 출원은 또한 디스플레이 장치에 대한 것이다. 예시적인 디스플레이 장치는, 상기 원편광판을 포함할 수 있다.
원편광판을 포함하는 디스플레이 장치의 구체적인 종류는 특별히 제한되지 않는다. 상기 장치는, 예를 들면, 반사형 또는 반투과반사형 액정 표시장치(Liquid Crystal Display)와 같은 액정 표시장치이거나, 유기발광 장치(Organic Light Emitting Device) 등일 수 있다.
디스플레이 장치에서 원편광판의 배치 형태는 특별히 제한되지 않고, 예를 들면 공지의 형태가 채용될 수 있다. 예를 들어, 반사형 액정 표시장치에서 원편광판은, 외부 광의 반시 방지 및 시인성의 확보를 위하여 액정 패널의 원편광판 중에서 어느 하나의 원편광판으로 사용될 수 있다.
또한 유기발광장치에 상기 원편광판이 적용되는 경우 상기 유기발광장치는, 반사 전극, 투명 전극, 상기 반사 전극과 투명 전극의 사이에 개재되고, 발광층을 가지는 유기층 및 상기 원편광판을 포함하고, 상기 원편광판이 상기 반사 또는 투명 전극의 외측에 존재하며, 편광자에 비하여 위상차 필름이 상기 반사 또는 투명 전극에 가깝게 배치되어 있을 수 있다.
본 출원에서는, 유기발광표시 장치 등의 디스플레이 장치에 적용되어 유해 자외선을 적절하게 차단하면서도, 화질에 영향을 주는 가시광 영역의 광의 차단은 최소화할 수 있고, 또한 내구성이 우수한 원편광판을 제공할 수 있다.
도 1 및 3 내지 5는 예시적인 원편광판 구조의 모식도이다.
도 2는 축 관계를 설명하기 위한 도면이다.
도 6 내지 7은 실시예 또는 비교예의 투과율을 나타내는 그래프이다.
도 8 내지 13은 실시예 또는 비교예의 위상차 변화를 나타내는 그래프이다.
<부호의 설명>
101: 편광자
102: 위상차층
100: 위상차층, 리타데이션층, 위상차 필름, 광학 필름
301: 외곽층
401: 하부층
501: 중간층
이하 실시예 및 비교예를 통하여 본 출원을 구체적으로 설명하지만 본 출원의 범위가 하기 투과율 가변 장치에 의해 제한되는 것은 아니다.
제조예 1. 중합성 액정 조성물 A의 제조
정분산 중합성 액정 화합물로서, BASF社의 LC1057 액정과 역분산 중합성 액정 화합물로서, 하기 화학식 A의 액정 화합물을 사용하여 중합성 액정 조성물을 제조하였다. 상기 정분산 중합성 액정 화합물은 R(450)/R(550)이 약 1.09 내지 1.11 정도의 수준이고, R(650)/R(550)이 약 0.93 내지 0.95 정도의 수준이며, 상기 화학식 A의 액정 화합물은 R(450)/R(550)이 약 0.84 내지 0.86 정도의 수준이고, R(650)/R(550)이 약 1.01 내지 1.03 정도의 수준이다. 상기 R(450), R(550) 및 R(650)은, 각각 상기 정분산 중합성 액정 화합물 또는 상기 화학식 A의 중합성 액정 화합물을 단독으로 사용하여 형성한 위상차층에 대해서 측정한 450 nm, 550 nm 및 650 nm 파장의 광에 대한 면내 위상차이다. 상기 면내 위상차는, 공지의 방식으로 측정할 수 있는데, 예를 들면, 복굴절 계측기인 Axoscan(Axometrics社)를 사용하여 편광 측정 방식으로 측정할 수 있다. 상기 중합성 액정 화합물을 단독으로 사용하여 위상차층을 형성하는 방식은 중합성 액정 화합물이 단독으로 적용되는 것을 제외하면, 하기 실시예에 기재된 방식과 같다. 상기 정분산 중합성 액정 화합물 및 화학식 A의 역분산 중합성 액정 화합물을 대략 94:6 내지 95:5의 중량 비율(역분산 중합성 액정:정분산 중합성 액정)로 혼합하고, 상기 중합성 액정 화합물 합계 100 중량부 대비 약 5 중량부의 라디칼 광개시제(BASF社, Irgacure907)를 용매(cyclopentanone) 내에서 배합하여 중합성 액정 조성물 A를 제조하였다.
[화학식 A]
Figure PCTKR2018007785-appb-I000008
상기에서 화학식 A의 화합물은 하기의 방식으로 합성하였다. 질소 분위기 하, 반응 용기에 하기 화학식 A1의 화합물 17.7g 및 테트라히드로퓨란 100ml를 넣었다. 빙냉하면서 0.9mol/L 보란-테트라히드로퓨란 착체 103ml를 적하하고 1시간 교반했다. 5% 염산을 적하한 후, 아세트산에틸로 추출하고, 식염수로 세정했다. 황산나트륨으로 건조시키고, 용매를 증류 제거함에 의해, 하기 화학식 A2로 표시되는 화합물 14.9g을 얻었다. 질소 분위기 하, 반응 용기에 화학식 A2로 표시되는 화합물 14.9g, 피리딘 7.2g, 디클로로메탄 150ml를 더했다. 빙냉하면서 메탄설포닐클로리드 8.8g을 적하하고 실온에서 3시간 교반했다. 물에 붓고, 5% 염산 및 식염수로 순차 세정했다. 칼럼 크로마토그래피(실리카겔, 헥산/아세트산에틸) 및 재결정(아세톤/헥산)에 의해 정제를 행하여, 화학식 A3로 표시되는 화합물 16.3g을 얻었다(하기 화학식 A3에서 Ms는 메탄설포닐기이다.). 질소 분위기 하, 반응 용기에 화학식 A4로 표시되는 화합물 2.5g, 화학식 A3로 표시되는 화합물 10.6g, 탄산칼륨 7.5g, N,N-디메틸포름아미드 70ml를 더하고 90℃에서 3일간 가열 교반했다. 물에 붓고, 톨루엔으로 추출하고 식염수로 세정했다. 칼럼 크로마토그래피(실리카겔, 톨루엔) 및 재결정(아세톤/메탄올)에 의해 정제를 행하여, 화학식 A5로 표시되는 화합물 7.7g을 얻었다. 반응 용기에 화학식 A5로 표시되는 화합물 7.7g, 디클로로메탄 150ml, 트리플루오로아세트산 100ml를 더하고 교반했다. 용매를 증류 제거한 후, 얻어진 고체를 물로 세정하고 건조시킴에 의해, 화학식 A6로 표시되는 화합물 5.5g을 얻었다.
질소 분위기 하, 반응 용기에 화학식 A6로 표시되는 화합물 5.5g, 화학식 A7으로 표시되는 화합물 6.9g, N,N-디메틸아미노피리딘 0.8g, 디클로로메탄 200ml를 더했다. 빙냉하면서 디이소프로필카르보디이미드 4.1g을 적하하고 실온에서 10시간 교반했다. 석출물을 여과에 의해 제거한 후, 여과액을 1% 염산, 물 및 식염수로 순차 세정했다. 재결정(디클로로메탄/메탄올)을 행한 후, 칼럼 크로마토그래피(실리카겔, 디클로로메탄) 및 재결정(디클로로메탄/메탄올)에 의해 정제를 행하여, 화학식 A8로 표시되는 화합물 8.4g을 얻었다.
30ml의 3구 플라스크에 화학식 A8로 표시되는 화합물 1.4g, 2-히드라지노벤조티아졸 0.35g, 테트라히드로퓨란 5ml를 더하고, 25℃에서 9시간 교반했다. 그 후, 물 50ml를 더하고, 아세트산에틸 30ml로 2회 추출했다. 얻어진 유기상을 황산나트륨으로 건조했다. 황산나트륨을 여과 후, 감압 농축했다. 얻어진 잔사를 실리카겔 칼럼 크로마토그래피(헥산/아세트산에틸=2/1)로 정제했다. 얻어진 조생성물(粗生成物)을 아세톤/메탄올을 사용해서 재침전을 행했다. 이 결정을 여과, 건조함으로써 하기 화학식 A9으로 표시되는 화합물을 0.98g 얻었다. 이어서 화학식 A9으로 표시되는 화합물의 질소 원자에 부착된 수소 원자를 2-[2-(2-아크릴로일옥시에톡시)에톡시]에틸기로 치환하여 상기 화학식 A의 화합물을 얻었다. 얻어진 화학식 A의 화합물의 NMR 확인 결과는 하기에 기재하였다.
[화학식 A1]
Figure PCTKR2018007785-appb-I000009
[화학식 A2]
Figure PCTKR2018007785-appb-I000010
[화학식 A3]
Figure PCTKR2018007785-appb-I000011
[화학식 A4]
Figure PCTKR2018007785-appb-I000012
[화학식 A5]
Figure PCTKR2018007785-appb-I000013
[화학식 A6]
Figure PCTKR2018007785-appb-I000014
[화학식 A7]
Figure PCTKR2018007785-appb-I000015
[화학식 A8]
Figure PCTKR2018007785-appb-I000016
[화학식 A9]
Figure PCTKR2018007785-appb-I000017
<NMR 결과>
1H NMR(CDCl3)δ 1.19-1.29(m, 4H), 1.41-1.82(m, 22H), 1.91(m, 2H), 2.08(m, 4H), 2.24(m, 4H), 2.53(m, 2H), 3.62(m, 3H), 3.67(m, 2H), 3.84-3.90(m, 5H), 3.94(t, 4H), 4.15-4.19(m, 6H), 4.53(t, 2H), 5.76(dd, 1H), 5.82(dd, 2H), 6.08(dd, 1H), 6.12(dd, 2H), 6.37(dd, 1H), 6.40(dd, 2H), 6.84-6.90(m, 6H), 6.95-6.98(m, 4H), 7.14(t, 1H), 7.32(t, 1H), 7.53(d, 1H), 7.65(d, 1H), 7.69(d, 1H), 8.34(s, 1H)ppm.
제조예 2. 중합성 액정 조성물 B의 제조
역분산 중합성 액정 화합물로서, 하기 화학식 B의 액정 화합물을 적용한 것을 제외하고는 제조예 1과 동일하게 중합성 액정 조성물 B를 제조하였다. 상기 화학식 B의 액정 화합물은 R(450)/R(550)이 약 0.81 내지 0.83 수준 정도이고, R(650)/R(550)이 약 1.01 내지 1.03 정도의 수준이다. 상기 R(450), R(550) 및 R(650)은, 상기 화학식 B의 중합성 액정 화합물을 단독으로 사용하여 형성한 위상차층에 대해서 측정한 450 nm, 550 nm 및 650 nm 파장의 광에 대한 면내 위상차이다.
[화학식 B]
Figure PCTKR2018007785-appb-I000018
상기에서 화학식 B의 화합물은, 제조예 1과 동일하게 하기 화학식 A9으로 표시되는 화합물을 얻은 후에 화학식 A9으로 표시되는 화합물의 질소 원자에 부착된 수소 원자를 2-[2-(메톡시에톡시)]에틸기로 치환하여 얻었다. 얻어진 화학식 B의 화합물의 NMR 확인 결과는 하기에 기재하였다.
<NMR 결과>
1H NMR(CDCl3)δ 1.22-1.28(m, 4H), 1.44-1.47(m, 8H), 1.60-1.82(m, 12H), 1.90(m, 2H), 2.07(t, 4H), 2.24(d, 4H), 2.53(m, 2H), 3.30(s, 3H), 3.50(t, 2H), 3.66(t, 2H), 3.85-3.89(m, 6H), 3.93(t, 4H), 4.17(t, 4H), 4.53(t, 2H), 5.82(d, 2H), 6.13(q, 2H), 6.40(d, 2H), 6.83-6.90(m, 6H), 6.95-6.98(m, 4H), 7.14(t, 1H), 7.32(t, 1H), 7.52(t, 1H), 7.67(t, 2H), 8.33(s, 1H)ppm.
제조예 3. 중합성 액정 조성물 C의 제조
상기 제조예 1의 화학식 A의 역분산 중합성 액정 화합물과 제조예 1에서 사용한 것과 동일한 광개시제 및 자외선 흡수제로서, 최대 흡수 파장 범위가 약 380 내지 390 nm 내인 자외선 흡수제(Orient Chemical Industries社, BONASORB UA-3912)를 적용하여 중합성 액정 조성물을 제조하였다. 화학식 A의 역분산 중합성 액정 화합물, 광개시제 및 상기 자외선 흡수제를 20:1:1의 중량 비율(역분산 중합성 액정 화합물:광개시제:자외선 흡수제)로 용매(cyclopentanone) 내에서 배합하여 중합성 액정 조성물 C를 제조하였다.
제조예 4. 중합성 액정 조성물 D의 제조
화학식 A의 역분산 중합성 액정 화합물, 광개시제 및 상기 자외선 흡수제의 배합을 20:1:0.6의 중량 비율(역분산 중합성 액정 화합물:광개시제:자외선 흡수제)로 한 것을 제외하고는 제조예 3의 경우와 동일하게 중합성 액정 조성물 D를 제조하였다.
실시예 1.
위상차층의 제조
FujiFilm社의 NRT 기재 필름상에 광배향막을 형성하였다. 공지의 신나메이트계열의 광배향막 형성용 조성물을 상기 NRT 기재 필름상에 약 100 nm 정도의 두께로 도포한 후에 선편광된 자외선을 약 300 mW/cm2로 조사하여 형성하였다. 이어서 중합성 액정 조성물 A를 상기 광배향막상에 약 1 ㎛ 정도의 건조 두께가 되도록 도포하고, 하부 배향막을 따라서 배향시킨 후에 자외선을 약 300 mW/cm2로 약 10초간 조사하여 위상차층을 형성하였다. 상기 위상차층의 550 nm 파장의 광에 대한 면내 위상차는 약 146.0 nm 정도였다. 상기 형성된 위상차층의 R(450)/R(550)이 약 0.85 내지 0.87 수준 정도이고, R(650)/R(550)이 약 1.01 내지 1.05 정도였다.
원편광판의 제조
상기 제조된 위상차층을 편광자로서, 공지의 요오드계 PVA(poly(vinyl alcohol)) 편광자(LG화학社)의 일면에 부착하여 원편광판을 제조하였다. 부착에는 광학 필름의 적층에 사용되는 일반적인 자외선 경화형 접착제를 적용하였다.
실시예 2.
위상차층의 제조
중합성 액정 조성물 A 대신 중합성 액정 조성물 B를 적용한 것을 제외하면, 실시예 1에서와 동일하게 위상차층을 형성하였다. 상기 위상차층의 550 nm 파장의 광에 대한 면내 위상차는 약 144.5 nm 정도였다. 상기 형성된 위상차층의 R(450)/R(550)이 약 0.82 내지 0.85 수준 정도이고, R(650)/R(550)이 약 1.01 내지 1.05 정도였다.
원편광판의 제조
상기 제조된 위상차층을 사용하여 실시예 1과 동일하게 원편광판을 제조하였다.
비교예 1.
위상차층의 제조
중합성 액정 조성물 A 대신 중합성 액정 조성물 C를 적용한 것을 제외하면, 실시예 1에서와 동일하게 위상차층을 형성하였다. 상기 제조된 위상차층의 550 nm 파장의 광에 대한 면내 위상차는 약 131.7 nm 정도였다. 상기 형성된 위상차층의 R(450)/R(550)이 약 0.84 내지 0.86 수준 정도이고, R(650)/R(550)이 약 1.01 내지 1.03 수준 정도였다.
원편광판의 제조
상기 제조된 위상차층을 사용하여 실시예 1과 동일하게 원편광판을 제조하였다.
비교예 2.
위상차층의 제조
중합성 액정 조성물 A 대신 중합성 액정 조성물 D를 적용한 것을 제외하면, 실시예 1에서와 동일하게 위상차층을 형성하였다. 상기 위상차층의 550 nm 파장의 광에 대한 면내 위상차는 약 140.7 nm 정도였다. 상기 형성된 위상차층의 R(450)/R(550)이 약 0.81 내지 0.83 수준 정도이고, R(650)/R(550)이 약 1.01 내지 1.03 수준 정도였다.
원편광판의 제조
상기 제조된 위상차층을 사용하여 실시예 1과 동일하게 원편광판을 제조하였다.
평가 1. 자외선 흡수 특성의 비교.
실시예 및 비교예에서 제조된 각 위상차층에 대해서 자외선 흡수 특성을 비교하였다. 자외선 흡수 특성은 300 nm 이상의 파장 영역에서 흡수 피크를 나타내지 않는 NRT 기재상에 각 실시예 및 비교예에 나타난 방법으로 배향막과 액정층(위상차층)을 순차로 형성한 시편에 대해서 N&K UV Spectrometer(HP社)를 사용하여 파장별로 평가하였다. 도 6 및 7은, 각각 실시예 1에 대한 측정 결과이고, 도 8 및 9는 각각 비교예 1 및 2에 대한 측정 결과이다. 구체적인 파장별 투과율은 하기 표 1에 정리하였다.
투과율(단위: %)
385nm 390nm 395nm 400nm
실시예1 1.7 3.7 10.4 27.0
실시예2 1.7 3.8 10.5 27.2
비교예1 0.5 0.9 2.6 7.0
비교예2 0.7 1.6 4.3 11.6
표 1로부터 본 출원에 의해서 자외선 흡수제를 적용하지 않고도 우수한 자외선 차단 특성을 확보할 수 있는 것을 확인할 수 있다.
평가 2. 내구성 평가.
실시예 및 비교예에서 제조된 각 위상차층에 대해서 내구성을 평가하였다. 내구성은, 실시예 및 비교예에서 제조된 각 위상차층을 약 85℃의 조건(내구 조건)에서 250 시간 동안 유지한 후, 상기 조건에서 유지하기 전의 면내 위상차(550 nm 파장 기준)와 유지 후의 면내 위상차(550 nm 파장 기준)를 비교하여 평가하였다. 도 10 및 11은, 각각 실시예 1에 대한 측정 결과이고, 도 12 및 13은 각각 비교예 1 및 2에 대한 측정 결과이다.
면내 위상차(550 nm 파장 기준)
내구조건 유지 전 내구조건 유지 후 변화량
실시예1 146.0nm 123.8nm -15.2%
실시예2 144.5nm 123.8nm -14.8%
비교예1 131.7nm 101.7nm -22.8%
비교예2 140.7nm 113.6nm -19.3%
표 2의 결과에 의해서 본 출원에 따른 위상차층의 경우에는 자외선 흡수제 내지 광안정제를 사용하지 않고도 우수한 자외선 흡수능을 가지고, 또한 그 결과 내구성 측면에서도 우수한 결과를 나타내는 점을 확인할 수 있다.

Claims (18)

  1. 편광자; 및 상기 편광자의 일면에 형성된 위상차층을 포함하고,
    상기 위상차층은, 정분산 중합성 액정 화합물의 중합 단위 및 역분산 중합성 액정 화합물의 중합 단위를 포함하며,
    상기 위상차층은, 385 nm의 파장의 광에 대한 투과율이 3% 이하인 자외선 흡수성을 가지고,
    상기 위상차층은, 하기 수식 A에 따른 위상차 변화율의 절대값이 17% 이하인 원편광판:
    [수식 A]
    위상차 변화율 = 100 × (Ra - Ri)/Ri
    수식 A에서 Ri는 상기 위상차층의 550 nm 파장에 대한 초기 면내 위상차이며, Ra는 내구 조건 후의 상기 상기 위상차층의 550 nm 파장에 대한 면내 위상차이고, 상기 내구 조건은 상기 위상차층을 85℃의 온도에서 50 시간 이상 방치하는 조건이다.
  2. 편광자; 및 상기 편광자의 일면에 형성된 위상차층을 포함하고,
    상기 위상차층은, 정분산 중합성 액정 화합물의 중합 단위 및 역분산 중합성 액정 화합물의 중합 단위를 포함하며,
    상기 위상차층은, 385 nm의 파장의 광에 대한 투과율이 3% 이하인 자외선 흡수성을 가지고, 최대 흡수 파장이 385 nm 내지 400 nm의 범위 내에 있는 자외선 흡수제를 포함하지 않는 원편광판.
  3. 제 1 항 또는 제 2 항에 있어서, 편광자는, 390 nm 파장에서의 단체 투과율이 20% 내지 60%의 범위 내에 있는 선형 편광자인 원편광판.
  4. 제 1 항 또는 제 2 항에 있어서, 위상차층은, 390 nm의 파장의 광에 대한 투과율이 15% 이하인 원편광판.
  5. 제 1 항 또는 제 2 항에 있어서, 위상차층은, 395 nm의 파장의 광에 대한 투과율이 25% 이하인 원편광판.
  6. 제 1 항 또는 제 2 항에 있어서, 위상차층은, 400 nm의 파장의 광에 대한 투과율이 40% 이하인 원편광판.
  7. 제 1 항 또는 제 2 항에 있어서, 위상차층의 450 nm 파장의 광에 대한 면상 위상차(R(450))와 550 nm 파장의 광에 대한 면상 위상차(R(550))의 비율(R(450)/R(550))이 0.6 내지 0.99의 범위 내인 원편광판.
  8. 제 1 항 또는 제 2 항에 있어서, 위상차층의 650 nm 파장의 광에 대한 면상 위상차(R(650))와 550 nm 파장의 광에 대한 면상 위상차(R(550))의 비율(R(650)/R(550))이 1.00 내지 1.19의 범위 내인 원편광판.
  9. 제 1 항 또는 제 2 항에 있어서, 정분산 중합성 액정 화합물은, 하기 화학식 6으로 표시되는 원편광판:
    [화학식 6]
    Figure PCTKR2018007785-appb-I000019
    화학식 6에서 A는 단일 결합, -C(=O)O- 또는 -OC(=O)-이고, R1 내지 R10은, 각각 독립적으로 수소, 할로겐, 알킬기, 알콕시기, 알콕시카보닐기, 시아노기, 니트로기 또는 하기 화학식 7의 치환기이거나, R1 내지 R5 중 이웃하는 2개의 치환기 또는 R6 내지 R10 중 이웃하는 2개의 치환기는 서로 결합되어서 -L-A-P로 치환된 벤젠 고리를 구성하고, 상기 L은, -C(=O)O-, -OC(=O)- 또는 -OC(=O)O-이고, A는 알킬렌기이며, P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기이다:
    [화학식 7]
    Figure PCTKR2018007785-appb-I000020
    화학식 7에서 B는 단일 결합, -C(=O)O- 또는 -OC(=O)-이고, R11 내지 R15는, 각각 독립적으로 수소, 할로겐, 알킬기, 알콕시기, 알콕시카보닐기, 시아노기, 니트로기 또는 -L-A-P이거나, R11 내지 R15 중 이웃하는 2개의 치환기는 서로 결합되어서 -L-A-P로 치환된 벤젠 고리를 구성하고, 상기 L은, -C(=O)O-, -OC(=O)- 또는 -OC(=O)O-이고, A는 알킬렌기이며, P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기이다.
  10. 제 1 항 또는 제 2 항에 있어서, 역분산 중합성 액정 화합물은, 하기 화학식 1로 표시되는 원편광판:
    [화학식 1]
    Figure PCTKR2018007785-appb-I000021
    화학식 1에 R1은, 하기 화학식 2 또는 화학식 3의 치환기이고, R2 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기, 시아노기, 하기 화학식 4의 치환기 또는 하기 화학식 5의 치환기이다. 또한, 상기에서 R2 내지 R6 중 적어도 2개 이상 또는 2개는 하기 화학식 4의 치환기 또는 하기 화학식 5의 치환기이다:
    [화학식 2]
    Figure PCTKR2018007785-appb-I000022
    화학식 2에서 A1 및 A2는 각각 독립적으로 산소 원자 또는 단일 결합이고, L1 및 L2는 각각 독립적으로 -C(=O)-O-, -O-C(=O)- 또는 알킬렌기이며, Cyc는 아릴렌기 또는 사이클로알킬렌기이고, P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기이다:
    [화학식 3]
    Figure PCTKR2018007785-appb-I000023
    화학식 3에서 L3 및 L4는 각각 알킬렌기이고, n은 1 내지 4의 범위 내의 수이며, P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기 또는 수소 원자이다:
    [화학식 4]
    Figure PCTKR2018007785-appb-I000024
    화학식 4에서 A3 및 A4는, 산소 원자, 알킬렌기 또는 단일 결합이고, L5 및 L6는 각각 독립적으로 -C(=O)-O-, -O-C(=O)- 또는 알킬렌기이며, Cyc는 아릴렌기이고, P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기이다:
    [화학식 5]
    Figure PCTKR2018007785-appb-I000025
    화학식 5에서 A5, A6, A7은 각각 독립적으로 산소 원자 또는 단일 결합이고, L7, L8 및 L9은 각각 독립적으로 -C(=O)-O-, -O-C(=O)- 또는 알킬렌기이며, Cy1은 사이클로알킬렌기이고, Cy2는 아릴렌기이며, P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기이다.
  11. 제 1 항에 있어서, 위상차층은, 전체 중합성 액정 화합물의 중합 단위에서 역파장 중합성 액정 화합물의 중합 단위를 40 중량% 이상 포함하는 원편광판.
  12. 제 1 항에 있어서, 위상차층은, 전체 중합성 액정 화합물의 중합 단위에서 3관능 이상의 중합성 액정 화합물의 중합 단위를 30 중량% 이상 포함하는 원편광판.
  13. 제 1 항 또는 제 2 항에 있어서, 편광자의 위상차층을 향하는 면의 반대면에 적층되어 있고, 550 nm 파장에 대한 면상 위상차가 10 nm 이하인 광학 필름을 추가로 포함하는 원편광판.
  14. 제 1 항 또는 제 2 항에 있어서, 편광자의 위상차층을 향하는 면의 반대면에 적층되어 있고, 550 nm 파장에 대한 면상 위상차가 90 nm 내지 300nm의 범위 내인 광학 필름을 추가로 포함하는 원편광판.
  15. 제 1 항 또는 제 2 항에 있어서, 편광자와 위상차층의 사이에 존재하며, 550 nm 파장에 대한 면상 위상차가 5 nm 이하이고, 550 nm 파장에 대한 두께 방향 위상차가 -60nm 내지 0 nm의 범위 내인 광학 필름을 추가로 포함 하는 원편광판.
  16. 제 1 항 또는 제 2 항에 있어서, 편광자와 위상차층의 사이에 존재하며, 550 nm 파장에 대한 면상 위상차가 10 nm 이하이고, 550 nm 파장에 대한 두께 방향 위상차가 40 nm 내지 400 nm의 범위 내인 광학 필름을 추가로 포함하는 원편광판.
  17. 제 1 항 또는 제 2 항에 있어서, 위상차층의 하부에 존재하고, 두께 방향 위상차가 10 내지 400 nm의 범위 내인 광학 필름을 추가로 포함하는 원편광판.
  18. 반사 전극, 투명 전극, 상기 반사 전극과 투명 전극의 사이에 개재되고, 발광층을 가지는 유기층 및 제 1 항의 원편광판을 포함하고, 상기 원편광판이 상기 반사 또는 투명 전극의 외측에 존재하며, 편광자에 비하여 위상차층이 상기 반사 또는 투명 전극에 가깝게 배치되어 있는 유기발광표시장치.
PCT/KR2018/007785 2017-07-10 2018-07-10 원편광판 WO2019013516A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880046192.6A CN110914722B (zh) 2017-07-10 2018-07-10 圆偏光板
US16/629,545 US11314007B2 (en) 2017-07-10 2018-07-10 Circularly polarizing plate
JP2019571642A JP7009702B2 (ja) 2017-07-10 2018-07-10 円偏光板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170087122 2017-07-10
KR10-2017-0087122 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019013516A1 true WO2019013516A1 (ko) 2019-01-17

Family

ID=65001454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007785 WO2019013516A1 (ko) 2017-07-10 2018-07-10 원편광판

Country Status (5)

Country Link
US (1) US11314007B2 (ko)
JP (1) JP7009702B2 (ko)
KR (1) KR102063046B1 (ko)
CN (1) CN110914722B (ko)
WO (1) WO2019013516A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022504598A (ja) * 2019-02-19 2022-01-13 エルジー・ケム・リミテッド 偏光板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318724B1 (ko) 2018-11-02 2021-10-28 주식회사 엘지화학 적층 필름
JP7462597B2 (ja) * 2020-12-24 2024-04-05 住友化学株式会社 円偏光板、光学積層体及び画像表示装置
CN117343078A (zh) 2021-11-25 2024-01-05 北京夏禾科技有限公司 有机电致发光材料和器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017887B1 (ko) * 2003-01-10 2011-03-04 닛토덴코 가부시키가이샤 광대역 콜레스테릭 액정 필름, 그 제조 방법, 원편광판,직선 편광자, 조명 장치 및 액정 표시 장치
JP2013083956A (ja) * 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd 位相差フィルム、偏光板、および画像表示装置
JP2013097873A (ja) * 2011-10-28 2013-05-20 Konica Minolta Advanced Layers Inc 有機エレクトロルミネッセンス表示装置
KR20160117469A (ko) * 2014-02-04 2016-10-10 스미또모 가가꾸 가부시키가이샤 편광판 및 표시 장치
KR20170061078A (ko) * 2015-11-25 2017-06-02 스미또모 가가꾸 가부시끼가이샤 액정 조성물

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321381A (ja) 1995-05-26 1996-12-03 Chisso Corp 有機電界発光素子
EP1201726A3 (en) * 2000-09-19 2002-12-04 MERCK PATENT GmbH Polymer beads
JP2003165807A (ja) * 2001-11-30 2003-06-10 Sumitomo Chem Co Ltd 光散乱シート用樹脂組成物及びそれの液晶表示分野への使用
JP4008417B2 (ja) 2003-01-10 2007-11-14 日東電工株式会社 広帯域コレステリック液晶フィルム、その製造方法、円偏光板、直線偏光子、照明装置および液晶表示装置
KR100601916B1 (ko) 2003-11-21 2006-07-14 주식회사 엘지화학 양의 이축성 위상차 필름을 이용한 시야각 보상필름을포함하는 면상 스위칭 액정 표시장치
JP4833205B2 (ja) 2004-07-07 2011-12-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 2軸フィルムii
WO2007072651A1 (ja) 2005-12-21 2007-06-28 Konica Minolta Opto, Inc. 光学用セルロースエステルフィルム、該光学用セルロースエステルフィルムを用いる偏光板及び液晶表示装置
TW200811492A (en) * 2006-07-12 2008-03-01 Nitto Denko Corp Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same
GB2444081B (en) * 2006-11-24 2011-05-11 Ocuity Ltd Manufacture of a birefringent liquid crystal component
KR20100014893A (ko) 2007-04-09 2010-02-11 아사히 가라스 가부시키가이샤 위상차판 및 그 제조 방법
JP5061066B2 (ja) * 2007-09-07 2012-10-31 富士フイルム株式会社 ポリマーフィルム、偏光板保護フィルム、偏光板及び液晶表示装置
JP2009103900A (ja) * 2007-10-23 2009-05-14 Nitto Denko Corp 積層光学フィルム、液晶パネルおよび液晶表示装置
JP5204616B2 (ja) 2007-10-24 2013-06-05 日東電工株式会社 偏光板、光学フィルムおよび画像表示装置
KR20090101620A (ko) 2008-03-24 2009-09-29 주식회사 엘지화학 시야각 보상필름 일체형 편광판 및 이를 포함하는ips-lcd
KR20140004095A (ko) * 2010-11-09 2014-01-10 크리소프틱스 케이케이 네가티브 분산 지연 플레이트 및 무색성 원형 편광자
JP6056758B2 (ja) * 2011-09-13 2017-01-11 コニカミノルタ株式会社 有機el表示装置
JP2013152390A (ja) 2012-01-26 2013-08-08 Konica Minolta Inc セルロースエステル、その製造方法、光学フィルム、偏光板及び液晶表示装置
EP2927741B1 (en) 2012-11-29 2022-01-05 LG Chem, Ltd. Optical film
KR101742845B1 (ko) 2013-09-30 2017-06-01 주식회사 엘지화학 자외선 차단 기능이 우수한 광학 필름 및 이를 포함하는 편광판
KR101436441B1 (ko) 2013-07-23 2014-09-02 동우 화인켐 주식회사 반사 방지용 편광판 및 이를 포함하는 화상표시장치
KR101787807B1 (ko) 2014-02-13 2017-10-18 주식회사 엘지화학 폴리이미드계 필름 및 이의 제조방법
JP6276393B2 (ja) * 2014-05-01 2018-02-07 富士フイルム株式会社 有機el表示装置
JP6259925B2 (ja) 2014-09-30 2018-01-10 富士フイルム株式会社 円偏光板、表示装置
KR101765998B1 (ko) * 2014-10-31 2017-08-08 주식회사 엘지화학 위상차 필름 및 이의 제조방법
WO2016114255A1 (ja) 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及び光学異方体
JP6460128B2 (ja) 2015-01-16 2019-01-30 Dic株式会社 位相差板及び円偏光板
US11697695B2 (en) 2015-01-16 2023-07-11 Dic Corporation Polymerizable composition and optically anisotropic body using same
CN107250851A (zh) 2015-02-19 2017-10-13 柯尼卡美能达株式会社 偏振片及偏振片的制造方法
EP3267429A4 (en) 2015-03-03 2018-12-12 Uk Choi Color creation device and color creation method for creating improved color by increasing linear polarization tendency
KR102646460B1 (ko) 2015-07-24 2024-03-11 스미또모 가가꾸 가부시끼가이샤 조성물 및 표시 장치
JP6403029B2 (ja) * 2015-09-01 2018-10-10 Dic株式会社 粉体混合物
KR20170077817A (ko) 2015-12-28 2017-07-06 스미또모 가가꾸 가부시끼가이샤 광학 적층체
CN110462465A (zh) 2017-03-24 2019-11-15 日本瑞翁株式会社 液晶组合物、液晶固化膜及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017887B1 (ko) * 2003-01-10 2011-03-04 닛토덴코 가부시키가이샤 광대역 콜레스테릭 액정 필름, 그 제조 방법, 원편광판,직선 편광자, 조명 장치 및 액정 표시 장치
JP2013083956A (ja) * 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd 位相差フィルム、偏光板、および画像表示装置
JP2013097873A (ja) * 2011-10-28 2013-05-20 Konica Minolta Advanced Layers Inc 有機エレクトロルミネッセンス表示装置
KR20160117469A (ko) * 2014-02-04 2016-10-10 스미또모 가가꾸 가부시키가이샤 편광판 및 표시 장치
KR20170061078A (ko) * 2015-11-25 2017-06-02 스미또모 가가꾸 가부시끼가이샤 액정 조성물

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022504598A (ja) * 2019-02-19 2022-01-13 エルジー・ケム・リミテッド 偏光板の製造方法
JP7391338B2 (ja) 2019-02-19 2023-12-05 エルジー・ケム・リミテッド 偏光板の製造方法
US11975500B2 (en) 2019-02-19 2024-05-07 Lg Chem, Ltd. Method for manufacturing polarizing plate

Also Published As

Publication number Publication date
CN110914722B (zh) 2022-03-08
CN110914722A (zh) 2020-03-24
US20210011210A1 (en) 2021-01-14
US11314007B2 (en) 2022-04-26
KR102063046B1 (ko) 2020-01-07
JP2020525837A (ja) 2020-08-27
KR20190006455A (ko) 2019-01-18
JP7009702B2 (ja) 2022-01-26

Similar Documents

Publication Publication Date Title
WO2020091549A1 (ko) 적층 필름
WO2019013516A1 (ko) 원편광판
WO2009091225A2 (en) Composition for liquid crystal alignment layer, preparation method of liquid crystal alignment layer using the same, and optical film comprising the liquid crystal alignment layer
WO2010053298A2 (ko) 유방성 크로모닉 액정 조성물, 유방성 크로모닉 액정 코팅막의 제조방법 및 그로 인해 제조된 유방성 크로모닉 액정 코팅막
WO2020091550A1 (ko) 편광판
WO2015016456A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2015008925A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2014116076A1 (ko) 액정 소자
WO2010002198A9 (ko) 점착제 조성물, 편광판용 보호 필름, 편광판 및 액정표시장치
WO2012008814A2 (ko) 액정 필름
WO2017034338A1 (ko) 액정셀
WO2013094969A2 (ko) 편광판 및 이를 구비한 화상표시장치
WO2020111864A1 (ko) 광학 적층체
WO2013051831A2 (ko) 배향막 형성용 조성물, 그로부터 제조된 배향막 및 위상차 필름
WO2014193072A1 (ko) 자외선 차단 기능이 우수한 광학 필름 및 이를 포함하는 편광판
WO2020149574A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2019013520A1 (ko) 원편광판
WO2015046713A1 (ko) 편광판
WO2019059692A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2020105810A1 (ko) 셀룰로오스 에스테르 위상차 필름
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2017171272A1 (ko) 컬러필터 및 이를 포함하는 화상표시장치
WO2017171271A1 (ko) 필름 터치 센서 및 이를 포함하는 터치 스크린 패널
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832286

Country of ref document: EP

Kind code of ref document: A1