WO2019010965A1 - 有机电致发光显示面板及制备方法以及显示装置 - Google Patents

有机电致发光显示面板及制备方法以及显示装置 Download PDF

Info

Publication number
WO2019010965A1
WO2019010965A1 PCT/CN2018/075022 CN2018075022W WO2019010965A1 WO 2019010965 A1 WO2019010965 A1 WO 2019010965A1 CN 2018075022 W CN2018075022 W CN 2018075022W WO 2019010965 A1 WO2019010965 A1 WO 2019010965A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel
organic electroluminescent
display panel
units
Prior art date
Application number
PCT/CN2018/075022
Other languages
English (en)
French (fr)
Inventor
王辉锋
张旺
方金钢
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/076,420 priority Critical patent/US11114636B2/en
Publication of WO2019010965A1 publication Critical patent/WO2019010965A1/zh
Priority to US17/395,179 priority patent/US11765920B2/en
Priority to US18/446,065 priority patent/US20230389349A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an organic electroluminescence display panel, a method of fabricating the same, and a display device.
  • Organic Electroluminescent Display (Represented by Organic Light Emitting Diode (OLED)) Compared with liquid crystal display (LCD), it has self-luminous, high luminous efficiency, low power consumption, fast response, and viewing angle. Wide, bright, colorful, thin and light, is considered the next generation of display technology.
  • a tandem OLED display panel In order to improve the performance of the OLED display panel, a tandem OLED display panel is proposed.
  • the organic functional layer of the tandem OLED display panel can be a Fine Metal Mask (FMM) or an Open Mask (Open Mask). ).
  • the open mask cover is low in cost and simple in process with respect to the fine metal mask cover.
  • a tandem OLED display panel generally includes a substrate 01, an anode layer 02 disposed on the substrate 01, and a pixel defining layer 03 defining a pixel unit, and a cathode layer 04, an anode layer 02 and a cathode layer 04.
  • a stack of organic electroluminescent units covering the anode layer 02 and the pixel defining layer 03 is provided, the stack may include at least two organic electroluminescent units 05 arranged in series and disposed adjacent to the organic electroluminescent unit 05
  • the charge generating layer covers the entire display region (ie, the same layer of charge generating layer is continuous between each pixel unit and adjacent pixel units), and the charge generating layer has a large lateral conductivity. Therefore, it is easy to cause pixel crosstalk problems.
  • Embodiments of the present disclosure provide an organic electroluminescence display panel, a preparation method, and a display device for avoiding pixel crosstalk problems caused by lateral conduction of a charge generation layer.
  • An organic electroluminescent display panel provided by an embodiment of the present disclosure includes: a substrate, an anode layer disposed on the substrate, and a pixel defining layer defining a pixel unit, and a cathode covering the anode layer and the pixel defining layer a layer, at least two series-connected organic electroluminescent units covering the anode layer and the pixel defining layer are disposed between the anode layer and the cathode layer, and each adjacent organic electroluminescent unit is disposed between a charge generating layer; wherein the pixel defining layer between adjacent pixel units is provided with a groove, and each layer of the charge generating layer is disconnected at the groove, and the cathode layer is in the The groove is continuous.
  • An organic electroluminescence display panel provided by an embodiment of the present disclosure includes: a substrate, an anode layer disposed on the substrate, and a pixel defining layer defining a pixel unit, and a cathode layer covering the anode layer and the pixel defining layer Between the anode layer and the cathode layer, at least two organic electroluminescent units connected in series covering the anode layer and the pixel defining layer are disposed, and each adjacent organic electroluminescent unit is disposed between a charge generating layer; wherein a recess is provided in the pixel defining layer between adjacent pixel units, and each layer of the charge generating layer is disconnected at the recess, and the cathode layer is in the recess
  • the grooves are continuous, since the cathode layer is continuous at the grooves, this ensures that the pixels can be normally lit, and each layer of charge generation layers is broken at the grooves, thereby preventing lateral conduction of charges to adjacent pixel units, thereby The problem of
  • the grooves between adjacent pixel units are shared.
  • the spacing between adjacent pixel units can be reduced, so that the aperture ratio of the organic electroluminescent display panel can be increased.
  • the groove extends through the pixel defining layer in a thickness direction.
  • the recess includes two oppositely disposed side walls, wherein at least one of the side walls has a protrusion that projects toward the other side wall.
  • the projection of the top of the protrusion at the projection of the substrate to the bottom of the groove and the sidewall of the protrusion is projected at a distance of 0.1-5 ⁇ m at the substrate.
  • the organic electroluminescent unit is N, an integer of N ⁇ 2, and the height of the protrusion top of the groove to the bottom of the groove is greater than the side close to the anode layer (N) -1) the sum of the thickness of the organic electroluminescent unit and the thickness of all of the charge generating layers, and less than the thickness of the N of the organic electroluminescent units, the thickness of all of the charge generating layers, and The sum of the thicknesses of the cathode layers.
  • each of the organic electroluminescent units includes, in order from the anode layer side to the cathode layer side, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the embodiment of the present disclosure further provides a display device comprising: the organic electroluminescent display panel provided by any embodiment of the present disclosure.
  • the display device provided by the embodiment of the present disclosure, it is possible to ensure that the pixel can be normally lit and the lateral conduction of the charge to the adjacent pixel unit, thereby avoiding the pixel crosstalk problem caused by the lateral conduction of the charge generating layer.
  • the embodiment of the present disclosure further provides a method for fabricating an organic electroluminescent display panel, comprising: forming an anode layer on a substrate; forming a pixel defining layer defining a pixel unit on the substrate on which the anode layer is formed; Forming a groove in the pixel defining layer between adjacent pixel units; forming at least two series connected to the anode layer and the pixel defining layer on the substrate on which the pixel defining layer is formed An electroluminescent unit, and a charge generating layer is formed between each adjacent organic electroluminescent unit; wherein each of the layers of the charge generating layer is disconnected at the recess; at the farthest from the substrate A cathode layer covering the anode layer and the pixel defining layer is formed on the organic electroluminescent unit; wherein the cathode layer is continuous at the groove.
  • an improved organic electroluminescence display panel which can prevent lateral conduction of charges to adjacent pixel units, thereby avoiding occurrence of pixel crosstalk problems due to lateral conduction of the charge generation layer.
  • the organic electroluminescent unit is N, an integer of N ⁇ 2, and the pixel defining layer defining the pixel unit is formed on the substrate on which the anode layer is formed, and specifically includes:
  • a limiting layer between adjacent pixel units on the substrate on which the anode layer is formed; wherein the height of the limiting layer is greater than (N-1) of the sides near the anode layer a sum of a thickness of the organic electroluminescent unit and a thickness of all of the charge generating layers, and less than a thickness of the N of the organic electroluminescent units, a thickness of all of the charge generating layers, and a thickness of the cathode layer a pixel defining layer defining a pixel unit on the substrate on which the limiting layer is formed; the pixel defining layer includes an opening on the limiting layer and partially exposing the limiting layer; Removing the limiting layer to form a groove between adjacent pixel units in the pixel defining layer; the groove includes two oppositely disposed sidewalls, wherein at least one sidewall has a convex side to the other side The protrusion of the wall.
  • forming the limiting layer specifically comprises: forming a limiting layer using a SiO 2 material.
  • the removing the limiting layer includes: performing dry etching on the limiting layer by using CF 4 to remove the limiting layer.
  • forming the limiting layer comprises: forming a limiting layer by using a metal material. Before removing the limiting layer, the method further comprises: crystallizing the anode layer. The removing the limiting layer comprises: wet etching the limiting layer with a metal etching solution to remove the limiting layer.
  • forming the limiting layer comprises: forming a limiting layer by using a positive rubber material.
  • Forming the pixel defining layer specifically includes: forming a pixel defining layer by using a negative adhesive material.
  • the removing the limiting layer comprises: exposing the positive-glue limiting layer when exposing the negative-adhesive pixel defining layer; and peeling the exposed limiting layer by using a positive gel stripping solution.
  • the forming the organic electroluminescent unit comprises: sequentially preparing a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer along one side of the anode layer to the cathode layer side.
  • the forming the organic electroluminescent unit comprises: preparing an organic electroluminescent unit by using an open mask evaporation.
  • the forming the charge generating layer comprises: preparing a charge generating layer by an open mask evaporation.
  • the forming the cathode layer comprises: preparing the cathode layer by evaporation using an open mask.
  • an organic electroluminescence display panel comprising: a substrate; an anode layer disposed on the substrate; and a pixel defining layer defining a pixel unit, wherein a space between adjacent pixel units a recess in the pixel defining layer; a stack of organic electroluminescent units over the anode layer and the pixel defining layer, the stack comprising at least two organic electroluminescent units and disposed adjacent to each other a charge generating layer between the organic electroluminescent units; and a cathode layer over the stack; wherein respective respective charge generating layers of adjacent pixel units are disconnected at the recess, wherein The cathode layer is continuous at the groove.
  • the grooves between adjacent pixel cells are shared by the adjacent pixel cells. In some embodiments, the recess extends through the pixel defining layer in a thickness direction of the pixel defining layer.
  • the groove includes two oppositely disposed side walls, wherein at least one of the side walls has a first portion and a second portion that projects from the first portion to the other side wall.
  • the projection of the second portion adjacent the other sidewall on the substrate is projected onto the projection of the substrate at the intersection of the bottom of the corresponding groove and the first portion. The distance is 0.1-5 ⁇ m.
  • the stack comprises N organic electroluminescent units, N being an integer ⁇ 2.
  • N an integer ⁇ 2
  • a height of a lower edge of the end of the second portion of the recess to a bottom of the recess is greater than a defined layer in the pixel
  • the sum of the thickness of (N-1) of the organic electroluminescent units on the side of the anode layer and the thickness of all of the charge generating layers, and less than N of the organic electroluminescent units The thickness, the sum of all the thicknesses of the charge generating layer and the thickness of the cathode layer.
  • each of the organic electroluminescent units includes, in order from the anode layer side to the cathode layer side, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • a display device comprising: the organic electroluminescent display panel according to any of the embodiments.
  • an organic electroluminescence display panel comprising: forming an anode layer for a pixel unit and a pixel defining layer for defining a pixel unit on a substrate, wherein, adjacent Forming a groove in the pixel defining layer between the pixel units; forming a stack of organic electroluminescent units on the anode layer and the pixel defining layer, the stack comprising at least two organic electroluminescent units and a charge generating layer between adjacent organic electroluminescent units, wherein respective ones of the adjacent pixel units are disconnected at the recess; and the stacked substrate is formed thereon A cathode layer is formed thereon, wherein the cathode layer is continuous at the groove.
  • the stack comprises N organic electroluminescent units, N being an integer ⁇ 2.
  • forming the anode layer for the pixel unit on the substrate and the pixel defining layer for defining the pixel unit include: forming an anode layer for the pixel unit on the substrate; and on the substrate A position corresponding to the groove to be formed forms a stopper layer, wherein a height of the stopper layer is set to be larger than a thickness of (N-1) of the organic electroluminescent units to be formed on the anode layer And a sum of thicknesses of all of the charge generating layers, and smaller than a thickness of N of the organic electroluminescent units to be formed, a thickness of all of the charge generating layers, and a thickness of the cathode layer; forming Defining a pixel defining layer of a pixel unit, the pixel defining layer including an opening on the limiting layer and partially exposing the limiting layer; and removing the limiting layer to
  • the projection of the second portion adjacent the other sidewall on the substrate is projected onto the projection of the substrate at the intersection of the bottom of the corresponding groove and the first portion.
  • the distance is 0.1-5 ⁇ m.
  • the recess extends through the pixel defining layer in a thickness direction of the pixel defining layer.
  • forming the capping layer comprises forming the capping layer with a SiO 2 material. In some embodiments, removing the limiting layer comprises dry etching the limiting layer with CF 4 to remove the limiting layer.
  • forming the limiting layer comprises forming the limiting layer with a metallic material.
  • removing the limiting layer comprises: wet etching the limiting layer with a metal etching solution to remove the limiting layer.
  • the method may further include: crystallization treatment of the anode layer before removing the limiting layer.
  • forming the capping layer comprises forming the capping layer with a positive gel material. In some embodiments, forming the pixel defining layer comprises forming the pixel defining layer with a negative bonding material. In some embodiments, removing the limiting layer comprises: exposing a limiting layer formed by the positive bonding material when exposing a pixel defining layer formed by the negative adhesive material; and peeling exposure by using a positive stripping solution The limiting layer.
  • the organic electroluminescent unit includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection prepared in this order from one side of the anode layer to the side of the cathode layer.
  • a hole injection layer a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection prepared in this order from one side of the anode layer to the side of the cathode layer.
  • the organic electroluminescent unit is prepared using evaporation using an open mask.
  • the charge generating layer is prepared using evaporation using an open mask.
  • the cathode layer is prepared using evaporation using an open mask.
  • FIG. 1 is a schematic structural view of a tandem OLED display panel in the prior art
  • FIG. 2 is a schematic structural diagram of an organic electroluminescence display panel according to an embodiment of the present disclosure
  • FIG. 3 is a top plan view of a pixel defining layer in an organic electroluminescent display panel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of another organic electroluminescent display panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an organic electroluminescent unit in an organic electroluminescence display panel according to an embodiment of the present disclosure
  • FIG. 6 illustrates a method of fabricating an organic electroluminescent display panel in accordance with some embodiments of the present disclosure
  • FIG. 7(a)-7(c) are schematic views showing a structure formed by main steps of a method of fabricating an organic electroluminescence display panel according to some embodiments of the present disclosure
  • FIG. 8 is a schematic flow chart of a method for fabricating an organic electroluminescence display panel according to an embodiment of the present disclosure
  • 9(a) to 9(h) are schematic views showing structures formed in a process flow for preparing an organic electroluminescence display panel according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide an organic electroluminescence display panel, a method of fabricating the same, and a display device that can alleviate or avoid the occurrence of pixel crosstalk problems due to lateral conduction of the charge generation layer.
  • FIG. 2 shows a schematic structural view of an organic electroluminescence display panel according to an embodiment of the present disclosure.
  • FIG. 3 illustrates a top view of a pixel defining layer in an organic electroluminescent display panel in accordance with an embodiment of the present disclosure.
  • an organic electroluminescent display panel may include a substrate 11 , an anode layer 12 disposed on the substrate 11 , and a pixel defining layer 14 defining the pixel unit 13 , and a cathode layer 15.
  • a stack of organic electroluminescent cells covering the anode layer 12 and the pixel defining layer 14 is provided between the anode layer 12 and the cathode layer 15.
  • the stack includes at least two organic electroluminescent units 16 arranged in series.
  • the figure shows an example including two organic electroluminescent units, wherein two organic electroluminescent units 16 connected in series are the first organic electroluminescent unit 1601 on the side close to the substrate 11 and the side away from the substrate 11 respectively.
  • the stack further includes a charge generation layer 17 disposed between adjacent organic electroluminescent units 16.
  • a groove 18 is provided in the pixel defining layer 14 between adjacent pixel units 13.
  • the charge generation layer 17 is broken at the groove 18, and the cathode layer 15 is continuous at the groove 18.
  • the stack in each pixel unit in the embodiment shown in Figure 2 includes only two organic electroluminescent units.
  • the respective charge generating layers of the respective adjacent pixel units are disconnected at the grooves.
  • the cathode layer is configured to be continuous at the groove. In this way, adjacent pixel units can share the cathode layer, thereby simplifying the structure, reducing manufacturing steps, and reducing manufacturing costs.
  • the recess 18 can surround the pixel unit 13 one turn, as shown in FIG.
  • the recess 18 can also surround the pixel unit 13 a plurality of turns.
  • the groove 18 may not be disposed near the edge side of the pixel unit 13. The present disclosure is not limited to the embodiments mentioned herein.
  • each layer of the charge generating layer 17 is disconnected at the groove 18, so that the pixel can be normally lit and the charge laterally avoided. Conduction to the adjacent pixel unit 13 can avoid the occurrence of pixel crosstalk problems due to the lateral conduction of the charge generating layer 17.
  • the recesses 18 between adjacent pixel units 13 are shared by adjacent pixel units.
  • the grooves 18 between adjacent pixel units 13 may also be partially shared, and portions are not shared.
  • a groove 18 that surrounds one turn may be disposed around the pixel unit 13
  • a groove 18 shared with the adjacent pixel unit 13 may be disposed outside the ring groove 18 surrounding the unit.
  • the recess 18 can be disposed in the middle of the pixel defining layer 14 between adjacent pixel units 13. In some embodiments, the recess 18 can be disposed through the pixel defining layer 14, such as shown in FIG. 2, through the pixel defining layer 14 in the thickness direction of the pixel defining layer 14. Of course, in other embodiments, the recesses 18 may not extend through the pixel defining layer 14 as long as each layer of the charge generating layer 17 can be broken at the recess 18.
  • the size of the groove may be set according to parameters (eg, size (thickness, etc.) material, etc.) of the organic light emitting unit (or stack thereof) in the pixel unit to be formed, for example, in some embodiments, as long as it is guaranteed
  • Each of the charge generation layers 17 can be broken at the recess 18, and the cathode layer 15 can be continuous at the recess 18, as shown in FIG. It should be understood herein that by keeping the cathode layer continuous, it is possible to avoid additionally providing separate wiring for the cathode layer of the individual pixel unit, thereby simplifying the structure and process.
  • the recess 18 includes two oppositely disposed side walls, at least one of which has a protrusion 19 that projects toward the other side wall.
  • both side walls have protrusions 19 that are convex toward opposite side walls (shown in phantom in FIG. 2), as shown in FIG.
  • the side wall of the groove may have a first portion and a second portion (i.e., the protrusion 19) that protrudes from the first portion to the opposite other side wall.
  • the first part can intersect the bottom of the groove.
  • the top of the protrusion 19 (ie, the end of the protrusion adjacent the other side wall) is projected at the bottom of the substrate 11 to the bottom of the groove 18 and the side wall of the protrusion 19
  • the distance L 1 of the line (i.e., the intersection of the bottom of the groove and the first portion) on the substrate 11 may be 0.1 - 5 ⁇ m as shown in FIG.
  • the stack in each pixel unit, may include N organic electroluminescent units 16, N being an integer greater than or equal to 2 ( ⁇ 2).
  • the height of the protrusion 19 on the sidewall in the recess 18 adjacent the lower edge of the opposite side wall to the bottom of the recess 18 is set to be larger than the anode layer adjacent to the pixel defining layer
  • the thickness of the organic electroluminescent unit 16, the sum of the thicknesses of all the charge generating layers 17 and the thickness of the cathode layer 15 is the sum.
  • the end of the protrusion 19 corresponding to the side wall of the recess 18 (ie, the end close to the opposite side wall)
  • the height H to the bottom of the groove 18 is set to be larger than the sum H 1 of the thickness of one organic electroluminescent unit 16 formed on the side close to the anode layer 12 and the thickness of one charge generating layer 17, and less than 2 a thickness of the organic electroluminescent unit 16, a layer thickness of the charge generating layer 17 and the cathode layer 15 and the thickness H 2, as shown in FIG.
  • the stack includes three organic electroluminescent units 16 and two charge generating layers 17, the ends of the protrusions 19 of the side walls of the recess 18 (i.e., near the ends of the opposite side walls)
  • the height to the bottom of the recess 18 is set to be larger than the sum of the thicknesses of the two organic electroluminescent units 16 on the side close to the anode layer 12 and the thicknesses of the two charge generating layers 17, and less than three organic electroluminescent units
  • the thickness of 16 the sum of the thicknesses of the two charge generation layers 17 and the thickness of the cathode layer 15.
  • each of the organic electroluminescent units 16 may sequentially include a hole injection layer (HIL) 161 and a hole transport layer (HTL) in a direction from the anode layer 12 side to the cathode layer 15 side. 162.
  • HIL hole injection layer
  • HTL hole transport layer
  • EML electron transport layer
  • EIL electron injection layer
  • the organic electroluminescent unit 16 can include a hole transport layer, a light emitting layer, and an electron transport layer.
  • the organic electroluminescent unit 16 may be of any structure in the prior art, and the embodiment of the present disclosure is not particularly limited to the structure of the organic electroluminescent unit.
  • FIG. 6 illustrates a method of fabricating an organic electroluminescent display panel in accordance with some embodiments of the present disclosure.
  • 7(a)-7(c) are schematic views showing a structure formed by main steps of a method of fabricating an organic electroluminescence display panel according to some embodiments of the present disclosure.
  • a method of fabricating an organic electroluminescence display panel may include the following steps.
  • step S101 an anode layer for a pixel unit and a pixel defining layer for defining a pixel unit are formed on a substrate, wherein a groove is disposed in the pixel defining layer between adjacent pixel units, as shown in FIG. 7 a) shown.
  • a stack of organic electroluminescent units on the anode layer and the pixel defining layer comprising at least two organic electroluminescent units and between adjacent organic electroluminescent units
  • the charge generating layer is as shown in Fig. 7(b).
  • the respective charge generating layers of the respective adjacent pixel cells are disconnected at the grooves.
  • step S105 a cathode layer is formed on the substrate on which the stack is formed, as shown in Fig. 7(c).
  • the cathode layer is continuous at the groove.
  • FIG. 8 is a flow chart showing a method of fabricating an organic electroluminescence display panel according to a more specific embodiment of the present disclosure. Referring to FIG. 8 , an embodiment of the present disclosure further provides a method for fabricating an organic electroluminescence display panel, including the following steps.
  • step S201 an anode layer is formed on the substrate.
  • step S203 a pixel defining layer defining a pixel unit is formed on the substrate on which the anode layer is formed.
  • a groove is provided in the pixel defining layer between adjacent pixel units.
  • a stack of organic electroluminescent cells is formed on the anode layer and the pixel defining layer.
  • the stack comprises at least two organic electroluminescent units connected in series.
  • a charge generating layer is disposed between adjacent organic electroluminescent units. Each of the layers of the charge generating layer is broken at the groove.
  • a cathode layer is formed.
  • a cathode layer is formed on the substrate on which the stack is formed. That is, the cathode layer covers the stack of pixel cells and the cathode layer is continuous at the grooves. As shown in the figure, the cathode layer is on the organic electroluminescent unit farthest from the substrate.
  • the preparation method shown in FIG. 8 is merely exemplary and not intended to limit the invention.
  • the anode layer and the pixel defining layer having the recess therein may be formed on the substrate in a different process or in a different process sequence.
  • the stack in the pixel unit includes N of the organic electroluminescent units and N-1 charge generating layers.
  • the step of forming an anode layer on the substrate and a pixel defining layer for defining the pixel unit may include:
  • a height of the limiting layer is set to be larger than N organic electroluminescent units to be formed on the anode layer (N-1) the sum of the thickness of the organic electroluminescent unit and the thickness of all of the charge generating layers, and less than the thickness of the N of the organic electroluminescent units, all of the charge generating layers The sum of the thickness and the thickness of the cathode layer;
  • a pixel defining layer defining a pixel unit on the substrate on which the limiting layer is formed, the pixel defining layer including an opening on the limiting layer and partially exposing the limiting layer;
  • the stop layer is removed to form the recess in the pixel defining layer, the recess including two oppositely disposed sidewalls, wherein at least one sidewall has a protrusion that protrudes toward the other sidewall.
  • the forming the limiting layer may specifically include: forming a limiting layer by using a SiO 2 material.
  • the removing the limiting layer may include: performing dry etching on the limiting layer by using CF 4 to remove the limiting layer.
  • the forming the limiting layer may further include: forming a limiting layer by using a metal material.
  • the method may further include: crystallization treatment of the anode layer before removing the limiting layer.
  • the removing the limiting layer may further include: performing a wet etching on the limiting layer by using a metal etching solution to remove the limiting layer.
  • the forming the limiting layer may further include: forming a limiting layer by using a positive rubber material.
  • Forming the pixel defining layer may specifically include: forming a pixel defining layer by using a negative adhesive material.
  • the removing the limiting layer may further include: exposing the limiting layer formed by the positive rubber material when exposing the pixel defining layer formed by the negative adhesive material; and stripping the exposure limit by using the positive rubber stripping liquid Bit layer.
  • the forming the organic electroluminescent unit may specifically include:
  • a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer were sequentially prepared in the direction from the anode layer side to the cathode layer side.
  • the forming the organic electroluminescent unit may specifically include: preparing the organic electroluminescent unit by evaporation using an open mask.
  • the forming the charge generating layer may specifically include: preparing a charge generating layer by evaporation using an open mask.
  • the forming the cathode layer may specifically include: preparing a cathode layer by evaporation using an open mask.
  • the groove is formed to penetrate the pixel defining layer in a thickness direction of the pixel defining layer.
  • an end of the second portion of the sidewall adjacent the other sidewall is projected onto the substrate to the bottom of the corresponding groove and the intersection of the first portion is on the substrate The projected distance is 0.1-5 ⁇ m.
  • an anode layer 12 is formed on the substrate 11.
  • the material of the anode layer 12 can be metal, ITO or a mixture thereof.
  • a stopper layer 73 surrounding each pixel unit is formed on the substrate 11 on which the anode layer 12 is formed using a SiO 2 material.
  • a SiO 2 film layer may be deposited on the substrate 11 on which the anode layer 12 is formed by plasma enhanced chemical vapor deposition (PECVD), and then the SiO 2 film layer may be etched to form a stopper layer.
  • the SiO 2 film layer can be patterned by, for example, exposure, development, dry etching, photoresist stripping process, thereby obtaining a stopper layer 73 surrounding each pixel unit.
  • the limiting layer may be formed of a metal material or an organic material such as a photoresist.
  • a pixel defining layer 14 defining pixel cells is formed on the substrate 11 on which the finite layer 73 is formed.
  • the pixel defining layer 14 includes an opening 75.
  • the opening 75 is located on the limiting layer 73 and partially exposes the limiting layer 73.
  • the stop layer 73 is removed.
  • the limiting layer 73 may be dry etched using CF 4 (carbon tetrafluoride) to remove the limiting layer 73.
  • the groove 18 is formed in the pixel defining layer 14.
  • the anode layer which may be formed of, for example, ITO
  • the metal removing liquid may be used to remove the metal stopper layer.
  • the anode layer can withstand the metal removal liquid and is thus retained.
  • a suitable solution for example, a suitable developer
  • a suitable developer may be used to remove the photoresist stopper layer.
  • the recess 18 can be configured to surround each pixel unit.
  • the recess 18 can include two oppositely disposed side walls, each having a projection 19 that projects toward the opposite side wall (as shown by the dashed box in Figure 9(d)).
  • a first organic electroluminescent unit 1601 is formed on the substrate 11 on which the pixel defining layer 14 is formed.
  • the first organic electroluminescent unit 1601 may be deposited on the substrate 11 on which the pixel defining layer 14 is formed by using an Open mask.
  • a charge generating layer 17 is formed on the first organic electroluminescent unit 1601.
  • the charge generating layer 17 may be deposited on the first organic electroluminescent unit 1601 by using an Open mask.
  • a second organic electroluminescent unit 1602 is formed on the charge generating layer 17.
  • the second organic electroluminescent unit 1602 is formed by evaporation on the charge generating layer 17 using an Open mask.
  • a cathode layer 15 is formed on a substrate on which a second organic electroluminescent unit 1602 (that is, a stack in which an organic electroluminescence unit is formed) is formed.
  • a second organic electroluminescent unit 1602 that is, a stack in which an organic electroluminescence unit is formed
  • the cathode layer 15 is deposited by evaporation on a substrate using an Open mask.
  • the height of the limiting layer 73 (and thus the height of the corresponding groove formed, or the lower edge of the protrusion of the sidewall of the groove from the bottom of the groove) is set to be larger than
  • the sum of the thickness of one organic electroluminescent unit 1601 and the thickness of the charge generating layer 17 is smaller than the thickness of the first organic electroluminescent unit 1601, the thickness of the charge generating layer 17, the thickness of the second organic electroluminescent unit 1602, and The sum of the thicknesses of the cathode layers 15. In this way, the charge generation layer 17 can be broken at the groove 18 and the cathode layer 15 can be continuous at the groove 18.
  • each of the first organic electroluminescent unit 1601 and the second organic electroluminescent unit 1602 may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the present disclosure also contemplates a display device comprising: an organic electroluminescent display panel according to any of the embodiments of the present disclosure.
  • the display device may include, but is not limited to, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, any product or component having a display function.
  • the organic electroluminescence display panel the method of fabricating the same, and the display device of the embodiments of the present disclosure, it is possible to prevent lateral conduction of charges to adjacent pixel cells, thereby avoiding occurrence of pixel crosstalk problems due to lateral conduction of the charge generation layer.

Abstract

一种有机电致发光显示面板及制备方法以及显示装置,其可以减轻或避免因电荷产生层横向导电而导致出现像素串扰问题。有机电致发光显示面板包括:基板(11);设置于基板上的阳极层(12)和界定像素单元的像素界定层(14),其中相邻像素单元之间的像素界定层中设有凹槽(18);在阳极层和像素界定层之上的有机电致发光单元(16)的堆叠,堆叠包括至少两个有机电致发光单元以及设置在彼此相邻的有机电致发光单元之间的电荷产生层(17);以及在堆叠之上的阴极层(15);其中,相邻像素单元各自的相应电荷产生层在凹槽处均断开,阴极层在凹槽处连续。

Description

有机电致发光显示面板及制备方法以及显示装置
相关申请的交叉引用
本申请要求于2017年7月12提交的中国专利申请No.201710567312.4的优先权,并通过引用将其全文并入在此。
技术领域
本公开涉及显示技术领域,特别是涉及一种有机电致发光显示面板及制备方法以及显示装置。
背景技术
有机电致发光显示面板(Organic Electroluminescent Display,以有机发光二极管(OLED)为代表)相对于液晶显示屏(Liquid Crystal Display,LCD),具有自发光、发光效率高、功耗低、反应快、视角广、亮度高、色彩艳、轻薄等优点,被认为是下一代显示技术。
为了改善OLED显示面板的性能,提出了串联式OLED显示面板,目前制备串联式OLED显示面板的有机功能层可采用精细金属掩模罩(Fine Metal Mask,FMM)或开放式掩模罩(Open Mask)。开放式掩模罩相对于精细金属掩模罩成本低,工艺简单。如图1所示,串联式OLED显示面板,一般包括:基板01,设置于基板01上的阳极层02和界定像素单元的像素界定层03,以及阴极层04,阳极层02和阴极层04之间设有覆盖阳极层02和像素界定层03的有机电致发光单元的堆叠,所述堆叠可以包括至少两个串联设置的有机电致发光单元05以及设置在相邻有机电致发光单元05之间电荷产生层06。在上述串联式OLED显示面板中,电荷产生层覆盖整个显示区(即同层电荷产生层在每个像素单元和与其相邻的像素单元之间是连续的),且电荷产生层横向导电率大,从而容易导致出现像素串扰问题。
基于此,如何避免因电荷产生层横向导电而导致出现像素串扰问题,是本领域技术人员亟待解决的技术问题。
发明内容
本公开实施例提供了一种有机电致发光显示面板及制备方法、显示装置,用以避免因电荷产生层横向导电而导致出现像素串扰问题。
本公开实施例提供的一种有机电致发光显示面板包括:基板,设置于所述基板上的阳极层和界定像素单元的像素界定层,以及覆盖所述阳极层和所述像素界定层的阴极层,所述阳极层和所述阴极层之间设有覆盖所述阳极层和所述像素界定层的至少两个串联的有机电致发光单元,每个相邻有机电致发光单元之间设有电荷产生层;其中,相邻像素单元之间的所述像素界定层中设有凹槽,每一层所述电荷产生层在所述凹槽处均断开,所述阴极层在所述凹槽处连续。
本公开实施例提供的有机电致发光显示面板,包括:基板,设置于所述基板上的阳极层和界定像素单元的像素界定层,以及覆盖所述阳极层和所述像素界定层的阴极层,所述阳极层和所述阴极层之间设有覆盖所述阳极层和所述像素界定层的至少两个串联的有机电致发光单元,每个相邻有机电致发光单元之间设有电荷产生层;其中,相邻像素单元之间的所述像素界定层中设有凹槽,每一层所述电荷产生层在所述凹槽处均断开,所述阴极层在所述凹槽处连续,由于阴极层在凹槽处连续,这样保证了像素能够正常点亮,并且每一层电荷产生层在凹槽处均断开,这样可以避免电荷横向传导到相邻像素单元,从而可以避免因电荷产生层横向导电而导致出现像素串扰问题。
在一些实施例中,相邻像素单元之间的所述凹槽共用。
由于相邻像素单元之间的凹槽共用,这样可以减少相邻像素单元之间的间距,从而可以增大有机电致发光显示面板的开口率。
在一些实施例中,所述凹槽在厚度方向贯穿所述像素界定层。在一些实施例中,所述凹槽包括两相对设置的侧壁,其中至少一侧壁具有凸向另一侧壁的突起部。在一些实施例中,所述突起部顶部在所述基板的投影到所述凹槽底部与该突起部所在的侧壁的交线在所述基板的投影的距离为0.1-5μm。
在一些实施例中,所述有机电致发光单元为N个,N≥2的整数,所述凹槽的突起部顶部到所述凹槽底部的高度大于靠近所述阳极层一侧的(N-1)个所述有机电致发光单元的厚度和所有的所述电荷产生层的厚度之和,且小于N个所述有机电致发光单元的厚度、所有的所述电荷产生层的厚度和所述阴极层的厚度之和。
在一些实施例中,每个所述有机电致发光单元沿阳极层一侧至阴极层一侧依次包括:空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
本公开实施例还提供了一种显示装置包括:本公开任意实施例提供的有机电致发光显示面板。
根据本公开实施例提供的显示装置,可以既保证像素能够正常点亮,又可以避免电荷 横向传导到相邻像素单元,从而可以避免因电荷产生层横向导电而导致出现像素串扰问题。
本公开实施例还提供了一种有机电致发光显示面板的制备方法包括:在基板上形成阳极层;在形成有所述阳极层的所述基板上形成界定像素单元的像素界定层;其中,相邻像素单元之间的所述像素界定层中设有凹槽;在形成有所述像素界定层的所述基板上形成覆盖所述阳极层和所述像素界定层的至少两个串联的有机电致发光单元,且每个相邻有机电致发光单元之间形成有电荷产生层;其中,每一层所述电荷产生层在所述凹槽处均断开;在距离所述基板最远的有机电致发光单元上形成覆盖所述阳极层和所述像素界定层的阴极层;其中,所述阴极层在所述凹槽处连续。
根据本公开实施例的制备方法,可以提供改进的有机电致发光显示面板,其可以避免电荷横向传导到相邻像素单元,从而可以避免因电荷产生层横向导电而导致出现像素串扰问题。
在一些实施例中,所述有机电致发光单元为N个,N≥2的整数,所述在形成有所述阳极层的所述基板上形成界定像素单元的像素界定层,具体包括:
在形成有所述阳极层的所述基板上的相邻像素单元之间形成限位层;其中,所述限位层的高度大于靠近所述阳极层一侧的(N-1)个所述有机电致发光单元的厚度和所有的所述电荷产生层的厚度之和,且小于N个所述有机电致发光单元的厚度、所有的所述电荷产生层的厚度和所述阴极层的厚度之和;在形成有所述限位层的所述基板上形成界定像素单元的像素界定层;所述像素界定层包括位于所述限位层上且部分暴露出所述限位层的开口;移除所述限位层,以在所述像素界定层中形成位于相邻像素单元之间凹槽;所述凹槽包括两相对设置的侧壁,其中至少一侧壁具有凸向另一侧壁的突起部。
在一些实施例中,形成限位层具体包括:采用SiO2材料形成限位层。移除所述限位层,具体包括:采用CF 4对所述限位层进行干法刻蚀,以移除所述限位层。
在一些实施例中,形成限位层,具体包括:采用金属材料形成限位层。在移除所述限位层之前,该方法还包括:对所述阳极层进行晶化处理。移除所述限位层,具体包括:采用金属刻蚀液对所述限位层进行湿法刻蚀,以移除所述限位层。
在一些实施例中,形成限位层,具体包括:采用正胶材料形成限位层。形成像素界定层,具体包括:采用负胶材料形成像素界定层。移除所述限位层,具体包括:在曝光所述负胶像素界定层时曝光所述正胶限位层;采用正胶剥离液剥离曝光的所述限位层。
在一些实施例中,所述形成有机电致发光单元,具体包括:沿阳极层一侧至阴极层一侧依次制备空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
在一些实施例中,所述形成有机电致发光单元,具体包括:采用开放式掩模罩蒸镀制备有机电致发光单元。
在一些实施例中,所述形成电荷产生层,具体包括:采用开放式掩模罩蒸镀制备电荷产生层。
在一些实施例中,所述形成阴极层,具体包括:采用开放式掩模罩蒸镀制备阴极层。
根据本公开的另一方面,提供了一种有机电致发光显示面板,包括:基板;设置于所述基板上的阳极层和界定像素单元的像素界定层,其中相邻像素单元之间的所述像素界定层中设有凹槽;在所述阳极层和所述像素界定层之上的有机电致发光单元的堆叠,所述堆叠包括至少两个有机电致发光单元以及设置在彼此相邻的有机电致发光单元之间的电荷产生层;以及在所述堆叠之上的阴极层;其中,相邻像素单元各自的相应电荷产生层在所述凹槽处均断开,其中,所述阴极层在所述凹槽处连续。
在一些实施例中,相邻像素单元之间的所述凹槽为所述相邻像素单元所共用。在一些实施例中,所述凹槽在所述像素界定层的厚度方向上贯穿所述像素界定层。
在一些实施例中,所述凹槽包括两个相对设置的侧壁,其中至少一个侧壁具有第一部分和从第一部分向另一侧壁突起的第二部分。在一些实施例中,所述第二部分的靠近所述另一侧壁的端部在所述基板上的投影到对应的凹槽的底部与该第一部分的交线在所述基板的投影的距离为0.1-5μm。
在一些实施例中,在每个像素单元中,所述堆叠包括N个有机电致发光单元,N为≥2的整数。在一些实施例中,在与该像素单元相关的像素界定层中,所述凹槽的第二部分的所述端部的下沿到该凹槽的底部的高度,大于在所述像素界定层的靠近所述阳极层一侧上的(N-1)个所述有机电致发光单元的厚度和所有的所述电荷产生层的厚度之和,且小于N个所述有机电致发光单元的厚度、所有的所述电荷产生层的厚度和所述阴极层的厚度之和。
在一些实施例中,每个所述有机电致发光单元在从阳极层一侧至阴极层一侧依次包括:空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
根据本公开另一方面,还提供了一种显示装置,包括:如任一项实施例所述的有机电致发光显示面板。
根据本公开另一方面,还提供了一种有机电致发光显示面板的制备方法,包括:在基板上形成用于像素单元的阳极层和用于界定像素单元的像素界定层,其中,相邻像素单元之间的所述像素界定层中设有凹槽;在所述阳极层和所述像素界定层上形成有机电致发光单元的堆叠,所述堆叠包括至少两个有机电致发光单元以及在相邻的有机电致发光单元之 间的电荷产生层,其中,相邻像素单元各自的相应电荷产生层在所述凹槽处均断开;以及在其上形成了所述堆叠的衬底上形成阴极层,其中所述阴极层在所述凹槽处连续。
在一些实施例中,在每个像素单元中,所述堆叠包括N个有机电致发光单元,N为≥2的整数。在一些实施例中,所述在基板上形成用于像素单元的阳极层和用于界定像素单元的像素界定层包括:在基板上形成用于像素单元的阳极层;在所述基板上的与要形成的凹槽对应的位置形成限位层,其中,所述限位层的高度被设置为大于要在所述阳极层上形成的(N-1)个所述有机电致发光单元的厚度和所有的所述电荷产生层的厚度之和,且小于要形成的N个所述有机电致发光单元的厚度、所有的所述电荷产生层的厚度和所述阴极层的厚度之和;形成界定像素单元的像素界定层,所述像素界定层包括位于所述限位层上且部分暴露出所述限位层的开口;以及移除所述限位层,以在所述像素界定层中形成所述凹槽,其中,所述凹槽包括两个相对设置的侧壁,其中至少一个侧壁具有第一部分和从第一部分向另一侧壁突起的第二部分。
在一些实施例中,所述第二部分的靠近所述另一侧壁的端部在所述基板上的投影到对应的凹槽的底部与该第一部分的交线在所述基板的投影的距离为0.1-5μm。在一些实施例中,所述凹槽在所述像素界定层的厚度方向上贯穿所述像素界定层。
在一些实施例中,形成限位层包括采用SiO 2材料形成所述限位层。在一些实施例中,移除所述限位层包括:采用CF 4对所述限位层进行干法刻蚀,以移除所述限位层。
在一些实施例中,形成限位层包括:采用金属材料形成所述限位层。在一些实施例中,移除所述限位层包括:采用金属刻蚀液对所述限位层进行湿法刻蚀,以移除所述限位层。在移除所述限位层之前,该方法还可以包括:对所述阳极层进行晶化处理。
在一些实施例中,形成限位层包括:采用正胶材料形成限位层。在一些实施例中,形成像素界定层包括:采用负胶材料形成像素界定层。在一些实施例中,移除所述限位层包括:在曝光所述负胶材料形成的像素界定层时也曝光所述正胶材料形成的限位层;以及采用正胶剥离液剥离曝光的所述限位层。
在一些实施例中,所述有机电致发光单元包括:在从阳极层一侧至阴极层一侧的方向依次制备的空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
在一些实施例中,采用利用开放式掩模罩的蒸镀制备所述有机电致发光单元。在一些实施例中,采用利用开放式掩模罩的蒸镀制备电荷产生层。在一些实施例中,采用利用开放式掩模罩的蒸镀制备阴极层。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点 将会变得清楚。
附图说明
图1为现有技术中串联式OLED显示面板的结构示意图;
图2为本公开实施例提供的一种有机电致发光显示面板的结构示意图;
图3为本公开实施例提供的有机电致发光显示面板中像素界定层的俯视图;
图4为本公开实施例提供的另一种有机电致发光显示面板的结构示意图;
图5为本公开实施例提供的有机电致发光显示面板中有机电致发光单元的结构示意图;
图6示出了根据本公开一些实施例的有机电致发光显示面板的制备方法;
图7(a)-7(c)示出了根据本公开一些实施例的有机电致发光显示面板的制备方法的主要步骤所形成的结构的示意图;
图8为本公开实施例提供的有机电致发光显示面板的制备方法的流程示意图;
图9(a)~图9(h)为本公开实施例提供的有机电致发光显示面板的制备工艺流程中所形成的结构的示意图。
具体实施方式
本公开实施例提供了有机电致发光显示面板及制备方法以及显示装置,其可以以减轻或避免因电荷产生层横向导电而导致出现像素串扰问题。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,本公开附图中各层的厚度和形状不反映真实比例,目的只是示意说明本公开内容。
图2示出了根据本公开实施例的一种有机电致发光显示面板的结构示意图。图3示出了根据本公开实施例的有机电致发光显示面板中像素界定层的俯视图。参见图2、图3,根据本公开的一些实施例的有机电致发光显示面板可以包括:基板11,设置于基板11上的阳极层12和界定像素单元13的像素界定层14,以及阴极层15,在阳极层12和阴极层15之间设有覆盖阳极层12和像素界定层14的有机电致发光单元的堆叠。所述堆叠包括至少两 个串联设置的有机电致发光单元16。图中示出了包括2个有机电致发光单元的例子,其中两个串联的有机电致发光单元16分别为靠近基板11一侧的第一有机电致发光单元1601和远离基板11一侧的第二有机电致发光单元1602。所述堆叠还包括设置在相邻有机电致发光单元16之间的电荷产生层17。相邻像素单元13之间的像素界定层14中设有凹槽18。
另外,如图2中所示,电荷产生层17在凹槽18处均断开,阴极层15在凹槽18处连续。这里应理解,图2所示的实施例中每个像素单元中的堆叠仅包括两个有机电致发光单元。对于堆叠包括超过两个的有机电致发光单元的情况,相邻像素单元各自的相应电荷产生层在所述凹槽处均断开。例如,在像素单元中堆叠包括三个的有机电致发光单元和设置在相邻的有机电致发光单元之间的两个CGL的情况下,相邻像素单元之间这两层电荷产生层在所述凹槽处均断开。另外,在本公开的实施例中,阴极层被配置为在所述凹槽处连续。如此,相邻的像素单元可以共用阴极层,从而可以使得结构简化,减少制造步骤,降低制造成本。
在一些实施例中,凹槽18可以环绕像素单元13一圈,如图3中所示。凹槽18也可环绕像素单元13多圈。另外,在一些实施例中,对于有机电致发光显示面板的边缘的像素单元13,靠近像素单元13边缘一侧还可以不设置凹槽18。本公开不限于这里所提及的实施例。
上述的有机电致发光显示面板,由于阴极层15在凹槽18处连续,每一层电荷产生层17在凹槽18处均断开,这样可以保证像素能够正常点亮,还可以避免电荷横向传导到相邻像素单元13,从而可以避免因电荷产生层17横向导电而导致出现像素串扰问题。
在一些实施方式中,为了增大有机电致发光显示面板的开口率,如图2所示,相邻像素单元13之间的凹槽18为相邻像素单元所共用。当然,相邻像素单元13之间的凹槽18也可部分共用,部分不共用。例如,可以在像素单元13的周围设置环绕一圈的凹槽18,再在环绕该单元的该圈凹槽18外设置与相邻像素单元13共用的凹槽18。
在一些实施方式中,如图2所示,凹槽18可以设置在相邻像素单元13之间的像素界定层14的中部。在一些实施方式中,凹槽18可以被设置为贯穿像素界定层14,例如如图2所示,在像素界定层14的厚度方向上贯穿像素界定层14。当然,在其他的实施例中,凹槽18也可以不贯穿像素界定层14,只要能保证每一层电荷产生层17在凹槽18处均可以断开。应理解,凹槽的尺寸可以根据要形成的像素单元中的有机发光单元(或其堆叠)的参数(例如尺寸(厚度等)材料等)来设置,例如,在一些实施例中,只要能保证每一层电荷产生层17在凹槽18处均可以断开,阴极层15可以在凹槽18处连续即可,如图4所示。 这里应理解,保持阴极层连续,可以避免额外地为单独像素单元的阴极层提供单独的布线,从而简化了结构和工艺。
在一些实施方式中,凹槽18包括两相对设置的侧壁,其中至少一侧壁具有凸向另一侧壁的突起部19。在一些实施例中,两侧壁均具有凸向相对侧壁的突起部19(如图2中虚线框所示),如图2所示。换而言之,凹槽的侧壁可以具有第一部分和从第一部分向相对的另一侧壁突起的第二部分(也即,突起部19)。第一部分可以与凹槽的底部相交。
在一些实施方式中,突起部19的顶部(也即,突起部的靠近相对的另一侧壁的端部)在基板11的投影到凹槽18底部与该突起部19所在的侧壁的交线(也即,凹槽底部和所述第一部分的交线)在基板11的投影的距离L 1可以为0.1-5μm,如图2所示。在一些实施方式中,在各像素单元中,堆叠可以包括N个有机电致发光单元16,N为大于等于2(≥2)的整数。在一些实施例中,凹槽18中的侧壁上的突起部19靠近相对的另一侧壁的端部的下沿到凹槽18底部的高度被设置为大于在像素界定层的靠近阳极层12一侧上(或者,在阳极层12上)形成的堆叠中的(N-1)个有机电致发光单元16的厚度和所有的电荷产生层17的厚度之和,且小于所述N个有机电致发光单元16的厚度、所有的电荷产生层17的厚度和阴极层15的厚度之和。
例如,若像素单元中堆叠包括两个有机电致发光单元16和一个电荷产生层,则对应凹槽18的侧壁的突起部19的端部(也即,靠近相对的另一侧壁的端部)到凹槽18底部的高度H被设置为大于靠近阳极层12一侧上形成的1个有机电致发光单元16的厚度和一层电荷产生层17的厚度之和H 1,且小于2个有机电致发光单元16的厚度、一层电荷产生层17的厚度和阴极层15的厚度之和H 2,如图2所示。类似的,若堆叠包括三个有机电致发光单元16和两个电荷产生层17,则凹槽18的侧壁的突起部19的端部(也即,靠近相对的另一侧壁的端部)到凹槽18底部的高度被设置为大于靠近阳极层12一侧的2个有机电致发光单元16的厚度和两层电荷产生层17的厚度之和,且小于3个有机电致发光单元16的厚度、两层电荷产生层17的厚度和阴极层15的厚度之和。
在一些实施方式中,每个有机电致发光单元16在从阳极层12一侧至阴极层15一侧的方向上依次可以包括:空穴注入层(HIL)161、空穴传输层(HTL)162、发光层(EML)163、电子传输层(ETL)164、电子注入层(EIL)165,如图5所示。应理解,本公开并不限于此。在其他的实施中,可以以不同的顺序来设置这些功能层,或者也可以省略其中的某层,或者增加额外的层。
例如,在一些实施例中,有机电致发光单元16可以包括:空穴传输层、发光层、电子 传输层。有机电致发光单元16可以为现有技术中的任意一种结构,本公开实施例对于有机电致发光单元的结构并无特别的限制。
下面说明根据本公开实施例的有机电致发光显示面板的制备方法。
图6示出了根据本公开一些实施例的有机电致发光显示面板的制备方法。图7(a)–7(c)示出了根据本公开一些实施例的有机电致发光显示面板的制备方法的主要步骤所形成的结构的示意图。
根据本公开的一些实施例,有机电致发光显示面板的制备方法可以包括以下步骤。
在步骤S101,在基板上形成用于像素单元的阳极层和用于界定像素单元的像素界定层,其中,相邻像素单元之间的所述像素界定层中设有凹槽,如图7(a)所示。
在步骤S103,在所述阳极层和所述像素界定层上形成有机电致发光单元的堆叠,所述堆叠包括至少两个有机电致发光单元以及在相邻的有机电致发光单元之间的电荷产生层,如图7(b)所示。这里,相邻像素单元各自的相应电荷产生层在所述凹槽处均断开。
在步骤S105,在其上形成了所述堆叠的衬底上形成阴极层,如图7(c)所示。这里,所述阴极层在所述凹槽处连续。
图8示出了根据本公开更具体的实施例提供的有机电致发光显示面板的制备方法的流程示意图。参见图8,本公开实施例还提供了一种有机电致发光显示面板的制备方法,包括如下步骤。
在步骤S201,在基板上形成阳极层。
在步骤S203,在形成有所述阳极层的所述基板上形成界定像素单元的像素界定层。相邻像素单元之间的所述像素界定层中设有凹槽。
在步骤S205,在所述阳极层和所述像素界定层上形成有机电致发光单元的堆叠。所述堆叠包括至少两个串联的有机电致发光单元。相邻有机电致发光单元之间设置有电荷产生层。每一层所述电荷产生层在所述凹槽处均断开。
在步骤S207,形成阴极层。这里,在其上形成了所述堆叠的衬底上形成阴极层。也即,阴极层覆盖像素单元的堆叠,并所述阴极层在所述凹槽处连续。如图中所示,阴极层在距离所述基板最远的有机电致发光单元上。
应理解,图8所示的制备方法仅仅是示例性,而不是对本发明的限制。例如,在其他实施例中,可以以不同的工艺或不同的工艺顺序,来在基板上形成阳极层和其中设有凹槽 的像素界定层。
在一些实施方式中,在每个像素单元中具有N个所述有机电致发光单元为N个,N为≥2的整数。也即,像素单元中的所述堆叠包括N个所述有机电致发光单元和N-1个电荷产生层。在这种情况下,在基板上形成阳极层和用于界定像素单元的像素界定层的步骤,在一些更具体的实施例中,可以包括:
在基板上形成用于像素单元的阳极层;
在所述基板上的与要形成的凹槽对应的位置形成限位层,其中,所述限位层的高度被设置为大于在所述阳极层上要形成的N个有机电致发光单元中的(N-1)个所述有机电致发光单元的厚度和所有的所述电荷产生层的厚度之和,且小于N个所述有机电致发光单元的厚度、所有的所述电荷产生层的厚度和所述阴极层的厚度之和;
在形成有所述限位层的所述基板上形成界定像素单元的像素界定层,所述像素界定层包括位于所述限位层上且部分暴露出所述限位层的开口;
移除所述限位层,以在所述像素界定层中形成所述凹槽,所述凹槽包括两相对设置的侧壁,其中至少一侧壁具有凸向另一侧壁的突起部。
在一些实施方式中,上述形成限位层具体可以包括:采用SiO 2材料形成限位层。上述移除所述限位层,具体可以包括:采用CF 4对所述限位层进行干法刻蚀,以移除所述限位层。
在另一些实施方式中,上述形成限位层具体还可以包括:采用金属材料形成限位层。在移除所述限位层之前,该方法还可以包括:对所述阳极层进行晶化处理。上述移除所述限位层,具体还可以包括:采用金属刻蚀液对所述限位层进行湿法刻蚀,以移除所述限位层。
在另一些实施方式中,上述形成限位层具体还可以包括:采用正胶材料形成限位层。形成像素界定层具体可以包括:采用负胶材料形成像素界定层。上述移除所述限位层,具体还可以包括:在曝光所述负胶材料形成的像素界定层时曝光所述正胶材料形成的限位层;采用正胶剥离液剥离曝光的所述限位层。
在一些实施方式中,上述形成有机电致发光单元具体可以包括:
在从阳极层一侧至阴极层一侧的方向依次制备空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
在一些实施方式中,上述形成有机电致发光单元具体可以包括:采用利用开放式掩模罩的蒸镀制备有机电致发光单元。
在一些实施方式中,上述形成电荷产生层具体可以包括:采用利用开放式掩模罩的蒸 镀制备电荷产生层。
在一些实施方式中,上述形成阴极层具体可以包括:采用利用开放式掩模罩的蒸镀制备阴极层。
应理解,上述各实施例的制造方法或步骤仅仅是示例性的,本公开并不限于此。
在一些实施例中,所述凹槽被形成为在所述像素界定层的厚度方向上贯穿所述像素界定层。在一些实施例中,侧壁的所述第二部分的靠近所述另一侧壁的端部在所述基板上的投影到对应的凹槽的底部与该第一部分的交线在所述基板的投影的距离为0.1-5μm。
下面以有机电致发光单元为2个,凹槽在厚度方向贯穿像素界定层的有机电致发光显示面板为例,结合附图9(a)~9(h)来具体说明本公开实施例提供的有机电致发光显示面板的制备工艺流程。
参见图9(a),在基板11上形成阳极层12。阳极层12材料可以为金属、ITO或其混合物。
参见图9(b),采用SiO 2材料在形成有阳极层12的基板11上形成环绕每一个像素单元的限位层73。例如,可以通过等离子体增强化学气相沉积(PECVD)在形成有阳极层12的基板11上沉积SiO 2膜层,然后可以对该SiO 2膜层进行蚀刻,来形成限位层。例如,可以通过例如曝光、显影、干刻、光刻胶剥离工艺,将SiO 2膜层图案化,从而得到环绕每一个像素单元的限位层73。在其它的实施例中,限位层可以由金属材料形成,或者光刻胶等有机材料来形成。
参见图9(c),在形成有限位层73的基板11上形成界定像素单元的像素界定层14。像素界定层14包括开口75。开口75位于限位层73上且部分暴露出限位层73。
参见图9(d),移除限位层73。例如,对于采用SiO2形成的限位层,可以采用CF 4(四氟化碳)对限位层73进行干法刻蚀,从而移除限位层73。从而,在像素界定层14中形成凹槽18。如前所述的,在限位层由金属材料形成时,可以对阳极层(其可以由例如ITO形成)进行晶化,之后可以利用金属去除液来去除金属的限位层。阳极层可以耐受该金属去除液,从而被保留。另外,如前所述的,在利用光刻胶形成限位层的情况下,可以利用适当的溶液(例如,适当的显影液)来去除光刻胶限位层。
在一些实施例中,凹槽18可以被配置为环绕每一个像素单元。在一些实施例中,凹槽18可以包括两相对设置的侧壁,两侧壁均具有凸向相对侧壁的突起部19(如图9(d)中虚线框所示)。
参见图9(e),在形成有像素界定层14的基板11上形成第一有机电致发光单元1601。例如,可以采用Open mask在形成有像素界定层14的基板11上蒸镀制备第一有机电致发光单元1601。
参见图9(f),在第一有机电致发光单元1601上形成电荷产生层17。例如,可以采用Open mask在第一有机电致发光单元1601上蒸镀制备电荷产生层17。
参见图9(g),在电荷产生层17上形成第二有机电致发光单元1602。例如,采用Open mask在电荷产生层17上蒸镀制备第二有机电致发光单元1602。
参见图9(h),在其上形成了第二有机电致发光单元1602(也即,形成了有机电致发光单元的堆叠)的基板上形成阴极层15。例如,采用Open mask在衬底上蒸镀制备阴极层15。
在一些实施例中,限位层73的高度(并因此,对应形成的凹槽的高度,或者说,凹槽的侧壁的突起部的下沿距凹槽底部的高度)被设置为大于第一有机电致发光单元1601的厚度和电荷产生层17的厚度之和,且小于第一有机电致发光单元1601的厚度、电荷产生层17的厚度、第二有机电致发光单元1602的厚度和阴极层15的厚度之和。这样,可以使得电荷产生层17在凹槽18处均断开,阴极层15在凹槽18处连续。
在一些实施例中,第一有机电致发光单元1601和第二有机电致发光单元1602均可以包括:空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
本公开还构思了一种显示装置,其包括:根据本公开任意实施例的有机电致发光显示面板。该显示装置可以包括但不限于:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
根据本公开实施例的有机电致发光显示面板及其制备方法以及显示装置,可以避免电荷横向传导到相邻像素单元,从而可以避免因电荷产生层横向导电而导致出现像素串扰问题。
本领域技术人员应当意识到,在上述实施例中描述操作(或步骤)之间的边界仅仅是说明性的。多个操作可以结合成单个操作,单个操作可以分布于附加的操作中,并且操作可以在时间上至少部分重叠地执行。而且,另选的实施例可以包括特定操作的多个实例,并且在其他各种实施例中可以改变操作顺序。但是,其它的修改、变化和替换同样是可能的。因此,本说明书和附图应当被看作是说明性的,而非限制性的。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。在此公开的各实施例在适当时可以自由组合,而不脱离本公开的精神和范围。本领域的技术人员还应理 解,可以对实施例进行多种修改而不脱离本公开的范围和精神。本公开的范围由所附权利要求来限定。

Claims (19)

  1. 一种有机电致发光显示面板,包括:
    基板;
    设置于所述基板上的阳极层和界定像素单元的像素界定层,其中相邻像素单元之间的所述像素界定层中设有凹槽;
    在所述阳极层和所述像素界定层之上的有机电致发光单元的堆叠,所述堆叠包括至少两个有机电致发光单元以及设置在彼此相邻的有机电致发光单元之间的电荷产生层;以及
    在所述堆叠之上的阴极层;
    其中,相邻像素单元各自的相应电荷产生层在所述凹槽处均断开,
    其中,所述阴极层在所述凹槽处连续。
  2. 根据权利要求1所述的有机电致发光显示面板,其中,相邻像素单元之间的所述凹槽为所述相邻像素单元所共用。
  3. 根据权利要求1所述的有机电致发光显示面板,其中,所述凹槽在所述像素界定层的厚度方向上贯穿所述像素界定层。
  4. 根据权利要求1-3任一项所述的有机电致发光显示面板,其中,所述凹槽包括两个相对设置的侧壁,其中至少一个侧壁具有第一部分和从第一部分向另一侧壁突起的第二部分。
  5. 根据权利要求4所述的有机电致发光显示面板,其中,所述第二部分的靠近所述另一侧壁的端部在所述基板上的投影到对应的凹槽的底部与该第一部分的交线在所述基板的投影的距离为0.1-5μm。
  6. 根据权利要求4所述的有机电致发光显示面板,其中:在每个像素单元中,所述堆叠包括N个有机电致发光单元,N为≥2的整数,
    在与该像素单元相关的像素界定层中,所述凹槽的第二部分的所述端部的下沿到该凹槽的底部的高度,大于在所述像素界定层的靠近所述阳极层一侧上的(N-1)个所述有机电 致发光单元的厚度和所有的所述电荷产生层的厚度之和,且小于N个所述有机电致发光单元的厚度、所有的所述电荷产生层的厚度和所述阴极层的厚度之和。
  7. 根据权利要求1所述的有机电致发光显示面板,其中,每个所述有机电致发光单元在从阳极层一侧至阴极层一侧依次包括:
    空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
  8. 一种显示装置,包括:如权利要求1-7任一项所述的有机电致发光显示面板。
  9. 一种有机电致发光显示面板的制备方法,包括:
    在基板上形成用于像素单元的阳极层和用于界定像素单元的像素界定层,其中,相邻像素单元之间的所述像素界定层中设有凹槽;
    在所述阳极层和所述像素界定层上形成有机电致发光单元的堆叠,所述堆叠包括至少两个有机电致发光单元以及在相邻的有机电致发光单元之间的电荷产生层,其中,相邻像素单元各自的相应电荷产生层在所述凹槽处均断开;以及
    在其上形成了所述堆叠的衬底上形成阴极层,其中所述阴极层在所述凹槽处连续。
  10. 根据权利要求9所述的有机电致发光显示面板的制备方法,其中,在每个像素单元中,所述堆叠包括N个有机电致发光单元,N为≥2的整数,
    其中,所述在基板上形成用于像素单元的阳极层和用于界定像素单元的像素界定层包括:
    在基板上形成用于像素单元的阳极层;
    在所述基板上的与要形成的凹槽对应的位置形成限位层,其中,所述限位层的高度被设置为大于要在所述阳极层上形成的(N-1)个所述有机电致发光单元的厚度和所有的所述电荷产生层的厚度之和,且小于要形成的N个所述有机电致发光单元的厚度、所有的所述电荷产生层的厚度和所述阴极层的厚度之和;
    形成界定像素单元的像素界定层,所述像素界定层包括位于所述限位层上且部分暴露出所述限位层的开口;
    移除所述限位层,以在所述像素界定层中形成所述凹槽,
    其中,所述凹槽包括两个相对设置的侧壁,其中至少一个侧壁具有第一部分和从第一 部分向另一侧壁突起的第二部分。
  11. 根据权利要求10所述的有机电致发光显示面板的制备方法,其中,形成限位层包括采用SiO 2材料形成所述限位层;
    移除所述限位层包括:采用CF 4对所述限位层进行干法刻蚀,以移除所述限位层。
  12. 根据权利要求10所述的有机电致发光显示面板的制备方法,其中,形成限位层包括:采用金属材料形成所述限位层;
    移除所述限位层包括:采用金属刻蚀液对所述限位层进行湿法刻蚀,以移除所述限位层;
    在移除所述限位层之前,该方法还包括:对所述阳极层进行晶化处理。
  13. 根据权利要求10所述的有机电致发光显示面板的制备方法,其中,形成限位层包括:采用正胶材料形成限位层;
    形成像素界定层包括:采用负胶材料形成像素界定层;
    移除所述限位层包括:
    在曝光所述负胶材料形成的像素界定层时也曝光所述正胶材料形成的限位层;以及
    采用正胶剥离液剥离曝光的所述限位层。
  14. 根据权利要求9-11任一项所述的有机电致发光显示面板的制备方法,其中所述有机电致发光单元包括:
    在从阳极层一侧至阴极层一侧的方向依次制备的空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
  15. 根据权利要求9所述的有机电致发光显示面板的制备方法,其中,采用利用开放式掩模罩的蒸镀制备所述有机电致发光单元。
  16. 根据权利要求9所述的有机电致发光显示面板的制备方法,其中,采用利用开放式掩模罩的蒸镀制备电荷产生层。
  17. 根据权利要求9所述的有机电致发光显示面板的制备方法,其中,采用利用开放式掩模罩的蒸镀制备阴极层。
  18. 根据权利要求9所述的有机电致发光显示面板的制备方法,其中,所述凹槽在所述像素界定层的厚度方向上贯穿所述像素界定层。
  19. 根据权利要求10所述的有机电致发光显示面板的制备方法,其中,所述第二部分的靠近所述另一侧壁的端部在所述基板上的投影到对应的凹槽的底部与该第一部分的交线在所述基板的投影的距离为0.1-5μm。
PCT/CN2018/075022 2017-07-12 2018-02-02 有机电致发光显示面板及制备方法以及显示装置 WO2019010965A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/076,420 US11114636B2 (en) 2017-07-12 2018-02-02 Organic electroluminescent display panel, manufacturing method thereof, and display device
US17/395,179 US11765920B2 (en) 2017-07-12 2021-08-05 Organic electroluminescent display panel, manufacturing method thereof, and display device
US18/446,065 US20230389349A1 (en) 2017-07-12 2023-08-08 Organic electroluminescent display panel, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710567312.4A CN107359263A (zh) 2017-07-12 2017-07-12 一种有机电致发光显示面板及制备方法、显示装置
CN201710567312.4 2017-07-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/076,420 A-371-Of-International US11114636B2 (en) 2017-07-12 2018-02-02 Organic electroluminescent display panel, manufacturing method thereof, and display device
US17/395,179 Division US11765920B2 (en) 2017-07-12 2021-08-05 Organic electroluminescent display panel, manufacturing method thereof, and display device

Publications (1)

Publication Number Publication Date
WO2019010965A1 true WO2019010965A1 (zh) 2019-01-17

Family

ID=60292460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075022 WO2019010965A1 (zh) 2017-07-12 2018-02-02 有机电致发光显示面板及制备方法以及显示装置

Country Status (3)

Country Link
US (3) US11114636B2 (zh)
CN (2) CN107359263A (zh)
WO (1) WO2019010965A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11700740B2 (en) 2020-05-25 2023-07-11 Seeya Optronics Co., Ltd. Organic light-emitting display panel having wall-shaped elastic conductor and manufacturing method thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359263A (zh) 2017-07-12 2017-11-17 京东方科技集团股份有限公司 一种有机电致发光显示面板及制备方法、显示装置
CN108231861B (zh) 2018-01-29 2020-12-04 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板
CN108493228B (zh) 2018-05-23 2021-01-22 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板
CN108717942B (zh) * 2018-05-31 2021-11-19 京东方科技集团股份有限公司 Oled基板及其制作方法、显示装置
CN108807494B (zh) 2018-07-06 2021-09-14 云谷(固安)科技有限公司 显示基板及其制作方法、显示面板和显示装置
CN109166882B (zh) * 2018-08-01 2020-07-24 云谷(固安)科技有限公司 显示面板及其形成方法、显示装置
CN109346505B (zh) * 2018-10-11 2021-04-13 京东方科技集团股份有限公司 一种有机发光显示面板、其制备方法及显示装置
US11456437B2 (en) * 2018-11-01 2022-09-27 Lg Display Co., Ltd. Electroluminescence display device having a through-hole in display area
CN109728205B (zh) * 2019-01-02 2021-01-22 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
JP2020161577A (ja) * 2019-03-26 2020-10-01 株式会社ジャパンディスプレイ 表示装置
CN111192898B (zh) * 2019-03-28 2022-05-17 广东聚华印刷显示技术有限公司 像素结构、有机发光二极管及其制备方法
CN110459582B (zh) * 2019-08-26 2022-04-08 合肥京东方卓印科技有限公司 显示面板及其制备方法、驱动控制方法、显示装置
CN110993806A (zh) * 2019-11-06 2020-04-10 深圳市华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法
CN111816684A (zh) * 2020-07-16 2020-10-23 合肥维信诺科技有限公司 显示面板、其制作方法和显示装置
CN113540194B (zh) * 2021-07-12 2022-08-23 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN113540387A (zh) * 2021-07-15 2021-10-22 昆山梦显电子科技有限公司 一种微显示器及其制作方法
WO2023097529A1 (zh) * 2021-11-30 2023-06-08 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742323A (zh) * 2014-12-30 2016-07-06 乐金显示有限公司 具有多层堆叠结构的有机发光二极管显示器
CN106206645A (zh) * 2014-11-25 2016-12-07 乐金显示有限公司 有机发光显示设备和制造该有机发光显示设备的方法
CN107359263A (zh) * 2017-07-12 2017-11-17 京东方科技集团股份有限公司 一种有机电致发光显示面板及制备方法、显示装置
CN107634147A (zh) * 2016-07-18 2018-01-26 三星显示有限公司 显示面板及其制造方法以及具有该显示面板的显示设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759550B1 (ko) * 2008-12-09 2017-07-20 엘지디스플레이 주식회사 유기전계 발광소자 및 그 제조방법
KR101652996B1 (ko) * 2009-06-12 2016-09-01 엘지디스플레이 주식회사 유기발광다이오드 표시장치와 그의 제조방법
JP6204012B2 (ja) * 2012-10-17 2017-09-27 株式会社半導体エネルギー研究所 発光装置
KR102395388B1 (ko) * 2014-12-02 2022-05-06 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN104538423B (zh) * 2014-12-22 2017-10-13 深圳市华星光电技术有限公司 Oled显示器件及其制造方法
CN104659070B (zh) * 2015-03-13 2018-11-16 上海天马有机发光显示技术有限公司 一种显示面板、显示装置及显示面板的制造方法
CN105590954A (zh) * 2015-12-22 2016-05-18 昆山国显光电有限公司 Oled显示面板及其制作方法
CN106449701A (zh) * 2016-09-19 2017-02-22 昆山工研院新型平板显示技术中心有限公司 一种oled面板及其制作方法
CN106876331B (zh) * 2017-03-03 2019-11-22 武汉华星光电技术有限公司 Oled显示面板及其制备方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206645A (zh) * 2014-11-25 2016-12-07 乐金显示有限公司 有机发光显示设备和制造该有机发光显示设备的方法
CN105742323A (zh) * 2014-12-30 2016-07-06 乐金显示有限公司 具有多层堆叠结构的有机发光二极管显示器
CN107634147A (zh) * 2016-07-18 2018-01-26 三星显示有限公司 显示面板及其制造方法以及具有该显示面板的显示设备
CN107359263A (zh) * 2017-07-12 2017-11-17 京东方科技集团股份有限公司 一种有机电致发光显示面板及制备方法、显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11700740B2 (en) 2020-05-25 2023-07-11 Seeya Optronics Co., Ltd. Organic light-emitting display panel having wall-shaped elastic conductor and manufacturing method thereof

Also Published As

Publication number Publication date
US20210005835A1 (en) 2021-01-07
CN112242494A (zh) 2021-01-19
US11765920B2 (en) 2023-09-19
US20210367179A1 (en) 2021-11-25
US20230389349A1 (en) 2023-11-30
US11114636B2 (en) 2021-09-07
CN107359263A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2019010965A1 (zh) 有机电致发光显示面板及制备方法以及显示装置
US11476309B2 (en) Display panel and method of manufacturing the same, display device
US11387309B2 (en) Display substrate and preparation method thereof, and display apparatus
US11778853B2 (en) Display panel comprising an encapsulation layer, display device, and manufacturing methods thereof
WO2020207124A1 (zh) 显示基板及其制造方法、显示装置
CN109509765B (zh) 一种有机发光显示屏及其制造方法
CN109244269B (zh) 显示面板及其制造方法、显示装置
WO2019104838A1 (zh) 显示面板及其制作方法
WO2022057515A1 (zh) 显示基板及其制备方法、显示装置
US10192993B2 (en) Thin film transfer, manufacturing method thereof, array substrate and manufacturing method thereof
CN109390372B (zh) 像素结构及其形成方法、显示屏
WO2016101576A1 (zh) 阵列基板及其制作方法和显示装置
KR20140120510A (ko) 플렉서블 기판, 플렉서블 표시 장치, 및 플렉서블 표시 장치의 제조 방법
WO2017031940A1 (zh) 一种阵列基板、其制作方法及显示装置
WO2020199008A1 (zh) 发光基板及其制作方法、电子装置
WO2022088945A1 (zh) 显示面板及其制备方法、显示装置
CN114628405A (zh) 显示基板及其制作方法、以及显示装置
WO2023098293A1 (zh) 显示基板及其制作方法和显示装置
WO2022088948A1 (zh) 显示面板、显示装置和显示面板的制作方法
WO2021017106A1 (zh) 阵列基板及采用该阵列基板的制备方法、显示装置
WO2020177666A1 (zh) 像素单元及其制造方法、显示基板
US20190027709A1 (en) Method for manufacturing flexible organic light emitting diode(oled) display device
CN108441839B (zh) 掩膜板及其制备方法和oled薄膜封装工艺
WO2024000415A1 (zh) 显示基板及其制作方法、显示装置
WO2023097529A1 (zh) 显示基板及其制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20-05-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18832222

Country of ref document: EP

Kind code of ref document: A1