WO2019104838A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2019104838A1
WO2019104838A1 PCT/CN2018/071669 CN2018071669W WO2019104838A1 WO 2019104838 A1 WO2019104838 A1 WO 2019104838A1 CN 2018071669 W CN2018071669 W CN 2018071669W WO 2019104838 A1 WO2019104838 A1 WO 2019104838A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
region
carrier substrate
inorganic
Prior art date
Application number
PCT/CN2018/071669
Other languages
English (en)
French (fr)
Inventor
易士娟
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/969,354 priority Critical patent/US20190165328A1/en
Publication of WO2019104838A1 publication Critical patent/WO2019104838A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means

Definitions

  • the present application relates to the field of display technologies, and in particular, to a display panel and a method of fabricating the same.
  • AMOLED Active-matrix organic light emitting diode
  • the film layer to be cut is mostly composed of an inorganic film such as SiNx or SiOx, and the inorganic film layer is thick, stress accumulation is likely to occur in the cutting process, thereby causing cracking in the film layer to be cut. Or cracks, cracks spread to the package area of the AMOLED display panel or the peripheral trace area or display area, which will lead to the failure of the AMOLED display panel fabrication and reduce the production yield of the AMOLED display panel.
  • the present application provides a display panel and a manufacturing method thereof, which improve the production yield of the display panel.
  • the present application provides a display panel manufacturing method, including the following steps:
  • the carrier substrate comprising a plurality of functional regions and a cutting region between the functional regions
  • the device layer comprising a TFT device and an inorganic layer covering the TFT device, the TFT device being located on the functional region, the inorganic layer covering the functional region and the Cutting area
  • the carrier substrate is cut along the groove to form a plurality of display panels.
  • the inorganic layer on the dicing zone is removed by a reticle exposure, development and etching process.
  • a trench is formed on the inorganic layer at the edge of the TFT device region, the trench extending along the groove, the trench Blocking the cutting stress at the groove.
  • the trench is formed by a mask exposure, development and etching process.
  • the carrier substrate includes a first organic film, a first inorganic film, a second organic film, and a second inorganic film disposed on the substrate in sequence.
  • the second inorganic film is partially or completely removed.
  • the present application provides a display panel including a carrier substrate and a device layer disposed on the carrier substrate, the carrier substrate including a functional region and a cutting region on a circumferential side of the functional region, the device layer including the facing a TFT device region of the functional region and a hollowed out region facing the cutting region.
  • edge of the TFT device region further includes a trench extending along an edge of the TFT device region, the trench for blocking a cutting stress of the hollowed out region.
  • the display panel comprises an organic layer disposed on the device layer, the organic layer filling the trench and covering the device layer.
  • the present invention provides a display panel and a method of fabricating the same, by removing the inorganic layer corresponding to a dicing area on the carrier substrate, so that the inorganic layer of the dicing area is thinned, and on the one hand, the thickness of the diced layer The reduction and the difficulty of the cutting process are reduced.
  • the inorganic layer is thinned, effectively alleviating the problem of stress concentration in the cutting process, improving the production yield of the display panel, and removing the inorganic layer to form a groove, the concave The groove can be used as a cutting line during the cutting process, thereby improving the efficiency of cutting the display panel.
  • FIG. 1 is a flow chart of a method for fabricating a display panel according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a display panel in step S101 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a display panel in step S101 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display panel in step S102 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a display panel in step S103 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a display panel in step S104 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a display panel in step S103 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a display panel in step S1031 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a display panel in step S1031 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a display panel in step S1030 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a display panel in step S1030 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a display panel in step S1031 in the manufacturing method provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a display panel S10 for preparing a display panel according to an embodiment of the present application.
  • the display panel includes, but is not limited to, a display panel such as an LCD or an OLED.
  • This application describes an invention of the present application by taking an AMOLED display panel as an example.
  • a display panel manufacturing method S10 provided by the present application mainly relates to a display panel cutting method.
  • a plurality of display panels can be fabricated on a large-sized substrate to form a display panel mother board, and then the display panel mother board is cut into a plurality of display panels, thereby realizing the display panel. Mass production to improve production efficiency.
  • the AMOLED display panel includes a carrier substrate and a multi-film layer disposed on the carrier substrate.
  • the multi-film layer includes a barrier layer, a TFT device layer, an OLED device layer, and an encapsulation layer which are sequentially stacked.
  • the film layer to be cut is often composed of an inorganic film such as SiNx or SiOx.
  • the inorganic film has a thick film layer and poor toughness, and tends to cause stress accumulation in the cutting process to cause cracking or cracking. When the crack spreads to the peripheral line of the AMOLED display panel, the picture quality will be seriously affected, resulting in uneven display of the picture.
  • the TFT device in the GOA When the crack propagates to the GOA region of the AMOLED display panel, the TFT device in the GOA will fail, causing the GOA to fail and the display panel to fail to illuminate. When the crack is in the vicinity of the groove, it will cause a series of problems in the film encapsulation, making the water oxygen easily invade the display panel and reducing the yield of the display panel.
  • an embodiment of the present application provides a display panel manufacturing method S10 , which includes the following steps.
  • a carrier substrate 100 is provided.
  • the carrier substrate 100 includes a plurality of functional regions 101 and a cutting region 102 between the functional regions 101.
  • the functional area 101 is used to set a display device and a trace for driving the display device.
  • the dicing area 102 is disposed outside the functional area 101 and does not contain devices and circuits.
  • the functional area 101 has a rectangular shape
  • the cutting area 102 has a grid shape. In a subsequent process, cutting along the cutting zone 102 can separate a plurality of display panel units.
  • a device layer 200 is formed on the carrier substrate 100.
  • the device layer 200 includes a TFT device 201 and an inorganic layer 202 covering the TFT device 201.
  • the TFT device 201 is located on the functional area 101.
  • the inorganic layer 202 covers the functional area 101 and the cutting area 102.
  • the inorganic layer 202 on the dicing region 102 is removed to form a plurality of TFT device regions 205 and a recess 203 between the TFT device regions 205.
  • the carrier substrate 100 is cut along the groove 203 to form a plurality of display panels.
  • the inorganic layer 202 corresponding to the dicing region 102 on the carrier substrate 100 is removed, so that the inorganic layer 202 of the dicing region 102 is thinned.
  • the thickness of the diced film layer is reduced and reduced.
  • the difficulty of the cutting process on the other hand, the inorganic layer 202 is thinned, effectively alleviating the problem of stress concentration in the cutting process, improving the production yield of the display panel, and simultaneously removing the inorganic layer 202 to form the recess 203, the concave
  • the groove 203 can serve as a cutting line during the cutting process, thereby improving the efficiency of cutting the display panel.
  • a carrier substrate 100 is provided.
  • the carrier substrate 100 is a substrate that carries a plurality of film layers constituting an AMOLED display panel.
  • the carrier substrate 100 may be a flexible substrate.
  • the carrier substrate 100 includes a first organic film 103, a first inorganic film 104, a second organic film 105, and a second inorganic film 106 which are sequentially stacked.
  • the first organic film 103 and the second organic film 105 undergo a cross-linking curing reaction by a heating process to achieve bendability and flexibility of the carrier substrate 100.
  • the film forming material of the first organic film 103 and the second organic film 105 may be polyethylene naphthalate (PEN), polyethylene terephthalate (PET), or polyacyl.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PI imine
  • parylene one or more of imine (PI) and parylene.
  • the film forming material of the first organic film 103 and the second organic film 105 is polyimide.
  • the carrier substrate 100 alternately forms a barrier layer by using the first organic film 103, the first inorganic film 104, the second organic film 105, and the second inorganic film 106.
  • the film forming materials of the first inorganic film 104 and the second inorganic film 106 are one or more of SiNx and SiOxNy, and the inorganic film structure has good compactness and functions to block water vapor and oxygen, thereby improving the carrier substrate 100.
  • the water oxygen barrier capability effectively protects the TFT device 201 and the OLED device.
  • the double-layer inorganic membrane acts to double block moisture and oxygen. Since the surface flatness of the inorganic film after film formation is insufficient, the deposition of the second organic film 105 may also function as a flat surface.
  • the second inorganic film 106 can also serve as a heat insulating layer, which can effectively block the conduction of heat and heat, and avoid the problem that the performance of the carrier substrate 100 after the high temperature treatment is unstable and affects the fabrication of the entire device.
  • the organic film and the inorganic film may be alternately disposed on the second inorganic film 106.
  • the present application does not specifically limit the number of layers of the organic film and the inorganic film in the carrier substrate 100.
  • a device layer 200 is formed on the carrier substrate 100.
  • the TFT device 201 of the device layer 200 is located on a region of the TFT device layer 200 corresponding to the functional region 101.
  • the TFT device layer 200 corresponding to the dicing region 102 is an inorganic layer 202.
  • the TFT device 201 of the device layer 200 includes a gate, a source, and a drain.
  • the inorganic layer 202 includes a plurality of insulating layers, for example, a first gate insulating layer, a second gate insulating layer, and an interlayer insulating layer between the gate and the data lines.
  • the material of these insulating layers is one or a combination of silicon oxide (SiOx) and silicon nitride (SiNx). Since these insulating layers have a large density, poor flexibility, and easy stress concentration, they all hinder the cutting process. In the present application, these insulating layers are referred to as the inorganic layer 202 of the device layer 200.
  • the inorganic layer 202 on the dicing region 102 is removed to form a plurality of TFT device regions 205 and a recess 203 between the TFT device regions 205.
  • the inorganic layer 202 on the dicing region 102 is removed by coating a photoresist on the device layer 200 and using a mask exposure, development, and etching process.
  • Layer 200 is patterned to form a plurality of TFT device regions 205 and recesses 203 between the TFT device regions 205.
  • the TFT device region 205 is used to set the TFT device 201 and traces.
  • the TFT device region 205 is opposite to the functional region 101, and the projection of the TFT device region 205 on the carrier substrate 100 coincides with the functional region 101.
  • the groove 203 faces the cutting zone 102.
  • the groove 203 has a width of 50 to 100 um. That is, the adjacent two TFT device regions 205 are separated by 50 to 100 um.
  • the cutting resistance of the cutting zone 102 can be reduced, and the effect of the inorganic layer 202 on the cutting zone 102 on the cutting process can be reduced, and at the same time, only a yellow light process can be used.
  • the inorganic layer 202 on the cutting zone 102 is removed, the process is simple, the operation is convenient, and the effect is obvious.
  • the carrier substrate 100 includes a first organic film 103, a first inorganic film 104, a second organic film 105, and a second inorganic film 106.
  • the second inorganic film 106 is adjacent to the inorganic layer 202 of the device layer 200.
  • the second inorganic film 106 also causes stress concentration in the cutting process, causing a problem of cracking.
  • the inorganic layer 202 on the dicing region 102 is removed by coating a photoresist on the device layer 200 and using a mask exposure, development, and etching process. And the second inorganic film 106 is thinned or completely removed, and the device layer 200 is patterned to form a plurality of TFT device regions 205 and recesses 203 between the TFT device regions 205.
  • the thickness of the layer to be cut is further reduced, in particular, the thickness of the inorganic layer 202 in the layer to be cut is further reduced, so that the cutting process of the cutting region 102 can be further reduced.
  • the production yield of the display panel is further optimized.
  • the carrier substrate 100 still has a good water and oxygen barrier capability, and the cutting effect of the display panel is further optimized under the water and oxygen barrier capability of the carrier substrate 100.
  • the display panel manufacturing method S10 further includes the following steps.
  • Step S1031 Referring to FIG. 8 and FIG. 9, an organic layer 300 is deposited on the device layer 200 to remove the organic layer 300 corresponding to the dicing region.
  • the organic layer 300 is used to fabricate an OLED (Organic Light Emitting Diode) layer such that the device layer 200 and the OLED layer together constitute an AMOLED (Active Matrix Light Emitting Diode).
  • OLED Organic Light Emitting Diode
  • AMOLED Active Matrix Light Emitting Diode
  • the OLED layer includes a plurality of organic layers, for example, a flat layer 301, an anode disposed on the flat layer 301, a light-emitting region defining layer disposed on the anode, disposed on the anode, and illuminated by the anode An organic light-emitting layer surrounded by the region defining layer, and a cathode provided on the organic light-emitting layer and the light-emitting region defining layer.
  • the anode, the organic light-emitting layer and the cathode are located opposite to the functional area 101, that is, outside the cutting area 102, and the flat layer 301 and the light-emitting area defining layer are opposite to the cutting area 102, and the groove is located in the groove
  • the organic layer 300 is a flat layer 301 and a light-emitting region defining layer.
  • the organic layer on the cutting zone 102 is removed by a reticle exposure, development process. That is, the flat layer 301 and the light-emitting region defining layer on the cutting region 102 are removed by a mask exposure and development process to reduce the thickness of the layer to be cut, and the influence of the flat layer 301 and the defined layer of the light-emitting region on the cutting process is reduced. .
  • the step S1031 of depositing the organic layer on the device layer 200 further includes the following steps.
  • Step S1030 referring to FIG. 10 and FIG. 11, a trench 204 is formed on the inorganic layer 202 at the edge of the TFT device region 205.
  • the groove 204 extends along the groove 203.
  • the groove 204 serves to block the cutting stress at the groove 203.
  • the device layer is removed by coating a photoresist on the device layer 200 and removing the inorganic layer 202 on the dicing region 102 by a mask exposure, development, and etching process.
  • 200 is patterned to form trenches 204 on the device layer 200.
  • the trench 204 can extend through the device layer 200.
  • the trench 204 can separate the TFT device 201, the traces, and the inorganic layer 202 adjacent to the dicing region 102.
  • the trench 204 can block the extending path of the crack, thereby effectively The TFT device 201 and the trace are protected to prevent the TFT device 201 and the trace from being damaged by the cutting crack. That is, the present application proposes that the stress concentration can be reduced by reducing the thickness of the layer to be cut to reduce the generation of cracks, while the groove 204 is provided for blocking the diffusion path of the crack.
  • the groove 203 and The arrangement of the trenches 204 serves as a double protective wall of the TFT device 201 and the traces, which can effectively reduce the stress concentration, cracks, and stress damage of the TFT device 201 and the traces caused by the cutting region 102 during the cutting process. The problem is to optimize the production yield of the display panel.
  • step S1031 of depositing an organic layer on the device layer 200 the following steps are further included.
  • the OLED layer includes a planar layer 301.
  • the planarization layer 301 can fill the trenches 204.
  • the material of the flat layer 301 is an organic material, which has better elasticity and flexibility, and can release stress better.
  • the stress performance in the inorganic layer 202 can be improved by forming the trench 204 in the inorganic layer 202 and filling the flat layer 301 therein. The problem of stress concentration and crack generation during the cutting process of the display panel is prevented, thereby improving the quality of the flexible AMOLED display panel.
  • Step S104 cutting the carrier substrate 100 along the groove 203 to form a plurality of display panels.
  • the carrier substrate 100 is cut along the groove 203 by a laser cutting method, and the substrate 100 can be carried along the center line of the groove 203, so that the bearing substrate 100 is affected by the laser light in the cutting region 102 without affecting To the function area 101, the cutting effect of the display panel is improved.
  • the arrangement of the recesses 203 is such that the TFT device 201 and the traces are not affected by the laser light, and the production yield of the display panel is also improved.
  • an embodiment of the present application further provides a display panel 10 fabricated by the above method.
  • the display panel 10 includes a carrier substrate 1001 and a device layer 2001 disposed on the carrier substrate 1001.
  • the carrier substrate 1001 includes a functional area 1011 and a cutting area 1021 surrounding the functional area 1011.
  • the device layer 2001 includes a TFT device region 2051 facing the functional region 1011 and a hollowed out region 2031 facing the dicing region 1021.
  • the TFT device region 2051 includes a TFT device 2011, a trace for driving the TFT device 2011, and an inorganic layer covering the TFT device 2011 and wiring.
  • a projection of the TFT device region 2051 on the carrier substrate 1001 is within the functional region 1011.
  • the knockout area 2031 surrounds the peripheral side of the TFT device region 2051.
  • the thickness of the inorganic layer corresponding to the dicing region 1021 is reduced, on the one hand, being cut.
  • the thickness of the film layer is reduced, which reduces the difficulty of the cutting process.
  • the thickness of the inorganic layer corresponding to the cutting zone 1021 is reduced, the problem of stress concentration in the cutting process is effectively alleviated, and the production yield of the display panel 10 is improved.
  • the TFT device region 2051 further includes a trench 2041 at an edge thereof.
  • the trench 2041 is located in the inorganic layer of the TFT device region 2051.
  • the groove 2041 extends along the hollowed out area 2031.
  • the groove 2041 is for blocking the cutting stress at the hollowed out area 2031.
  • the groove 2041 is arranged to block the diffusion path of the crack, and the arrangement of the hollowed out region 2031 and the groove 2041 becomes a double protective wall of the TFT device 2011 and the trace, which can effectively reduce the cutting process of the cutting region 1021.
  • the stress concentration caused, the cracks, and the stress damage of the TFT device 2011 and the traces are further improved, thereby optimizing the production yield of the display panel 10.
  • the display panel 10 includes an OLED layer disposed on the device layer 2001.
  • the OLED layer includes an organic layer.
  • the organic layer fills the trench 2041 and covers the device layer 2001.
  • the organic layer can be a planar layer 3011 in the OLED layer.
  • the organic layer has better elasticity and flexibility, and can release stress better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(10)及其制作方法(S10),显示面板制作方法(S10)包括以下的步骤:供承载基板(100),承载基板(100)包括多个功能区(101)和位于功能区(101)之间的切割区(102)(S101);在承载基板(100)上形成器件层(200),器件层(200)包括TFT器件(201)及包覆TFT器件(201)的无机层(202),TFT器件(201)位于功能区(101)上,无机层(202)覆盖功能区(101)及切割区(102)(S102);去除切割区(102)上的无机层(202),形成多个TFT器件区(205)及位于TFT器件区(205)之间的凹槽(203)(S103);沿凹槽(203)切割承载基板(100),形成多个显示面板(10)(S104)。

Description

显示面板及其制作方法
本申请要求于2017年11月30日提交中国专利局、申请号为201711247587.6、申请名称为“显示面板及其制作方法”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及其制作方法。
背景技术
有源矩阵有机发光二极体显示面板(Active-matrix organic light emitting diode,简称AMOLED),具有自发光的特性,视角广,色饱和度高,尤其是其驱动电压低且功耗低,以及反应快、重量轻、厚度薄,构造简单,成本低等,被视为最具前途的显示产品之一。
在AMOLED显示面板的制造过程中,为了降低生产成本,在大的基板上制造多个显示面板,形成显示面板母板,然后将显示面板母板切割为各个显示面板单元。在AMOLED显示面板的切割工艺中,由于被切割的膜层大多由SiNx、SiOx等无机膜构成,而无机膜层厚,容易在切割工艺中产生应力堆积,从而在被切割的膜层中产生开裂或裂纹,裂纹扩散至AMOLED显示面板的封装区或外围走线区或显示区,都会导致AMOLED显示面板制作失败,降低AMOLED显示面板生产良率。
发明内容
本申请提供了一种显示面板及其制作方法,提高显示面板的生产良率。
本申请提供了一种显示面板制作方法,包括以下的步骤:
提供承载基板,所述承载基板包括多个功能区和位于所述功能区之间切割区;
在所述承载基板上形成器件层,所述器件层包括TFT器件及包覆所述TFT器件的无机层,所述TFT器件位于所述功能区上,所述无机层覆盖所述功能 区及所述切割区;
去除所述切割区上的所述无机层,形成多个TFT器件区及位于所述TFT器件区之间的凹槽;
沿所述凹槽切割所述承载基板,形成多个显示面板。
其中,在去除所述切割区上的所述无机层的步骤中,通过掩膜版曝光、显影及蚀刻工艺去除所述切割区上的所述无机层。
其中,在去除所述切割区上的所述无机层的步骤之后,在所述TFT器件区边缘处的无机层上成型沟槽,所述沟槽沿所述凹槽延伸,所述沟槽用于阻挡所述凹槽处的切割应力。
其中,在所述TFT器件区边缘处的无机层上成型沟槽的步骤中,通过掩膜版曝光、显影及蚀刻工艺成型沟槽。
其中,在去除所述切割区上的所述无机层的步骤之后,包括
沉积有机层,所述有机层填充所述沟槽并覆盖所述器件层;
通过掩膜版曝光、显影工艺去除所述切割区上的所述有机层;
其中,在提供承载基板的步骤中,所述承载基板包括依次设于所述基板上第一有机膜、第一无机膜、第二有机膜和第二无机膜。
其中,在去除所述切割区上的所述无机层的步骤中,部分或完全去除所述第二无机膜。
本申请提供了一种显示面板,包括承载基板及设于所述承载基板上的器件层,所述承载基板包括功能区和位于所述功能区周侧的切割区,所述器件层包括正对所述功能区的TFT器件区及正对所述切割区的挖空区。
其中,所述TFT器件区边缘处还包括沟槽,所述沟槽沿所述TFT器件区的边沿延伸,所述沟槽用于阻挡所述挖空区的切割应力。
其中,所述显示面板包括设于所述器件层上的有机层,所述有机层填充所述沟槽并覆盖所述器件层。
本申请提供的一种显示面板及其制作方法,通过去除所述承载基板上切割区所对应的所述无机层,以使切割区的无机层被减薄,一方面,被切割膜层的厚度减少,降低了切割工艺的难度,另一方面,无机层被减薄,有效地缓解了切割工艺中应力集中的问题,提高显示面板的生产良率,同时去除的无机层形成凹槽,该凹槽可以在切割过程中作为切割线,从而提高切割显示面板的效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种显示面板制作方法的流程图。
图2是本申请实施例提供的制作方法中步骤S101中显示面板的结构示意图。
图3是本申请实施例提供的制作方法中步骤S101中显示面板的结构示意图。
图4是本申请实施例提供的制作方法中步骤S102中显示面板的结构示意图。
图5是本申请实施例提供的制作方法中步骤S103中显示面板的结构示意图。
图6是本申请实施例提供的制作方法中步骤S104中显示面板的结构示意图。
图7是本申请实施例提供的制作方法中步骤S103中显示面板的结构示意图。
图8是本申请实施例提供的制作方法中步骤S1031中显示面板的结构示意图。
图9是本申请实施例提供的制作方法中步骤S1031中显示面板的结构示意图。
图10是本申请实施例提供的制作方法中步骤S1030中显示面板的结构示意图。
图11是本申请实施例提供的制作方法中步骤S1030中显示面板的结构示意图。
图12是本申请实施例提供的制作方法中步骤S1031中显示面板的结构示意图。
图13是本申请实施例提供的一种显示面板的结构示意图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
此外,以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请中所提到的方向用语,例如,“顶”、“底”、“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本申请,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
请参阅图1,图1是本申请实施例提供的一种显示面板制作方法S10,用于制备显示面板。可以理解的,所述显示面板包括但不限于LCD、OLED等显示面板。本申请以AMOLED显示面板为例说明本申请的发明点。本申请提供的一种显示面板制作方法S10主要涉及显示面板切割方法。在AMOLED显示面板的制造过程中,为了降低生产成本,可以在大尺寸的基板上制造多个显示面板,形成显示面板母板,然后将显示面板母板切割为多个显示面板,从而实现显示面板的批量化生产,提高生产效率。
所述AMOLED显示面板包括承载基板和设于所述承载基板上的多膜层。所述多膜层包括依次层叠设置的阻隔层、TFT器件层、OLED器件层及封装层。在切割这些多膜层时,被切割的膜层大多由SiNx、SiOx等无机膜构成,无机膜的膜层厚,且韧性差,在切割工艺中容易产生应力堆积,从而产生开裂或裂纹。当裂纹扩散至AMOLED显示面板外围走线上时,将严重影响画面质量,导致画面显示不均等问题。当裂纹扩散至AMOLED显示面板的GOA区域时,GOA中的TFT器件将失效,导致GOA失效,显示面板无法点亮。当裂纹在凹槽附近时,将引起薄膜封装的一系列问题,使得水氧容易入侵显示面板,降 低显示面板的良率。
请参阅图1,本申请实施例提供了一种显示面板制作方法S10,包括以下的步骤。
S101、请参阅图2及图3,提供承载基板100,所述承载基板100包括多个功能区101和位于所述功能区101之间切割区102。所述功能区101用于设置显示器件及驱动所述显示器件的走线。所述切割区102设于所述功能区101之外,不含有器件及电路。可选的,所述功能区101呈矩形,所述切割区102呈网格状。在后续的工艺中,沿所述切割区102切割可以分离出多个显示面板单元。
S102、请参阅图4,在所述承载基板100上形成器件层200。所述器件层200包括TFT器件201及包覆所述TFT器件201的无机层202。所述TFT器件201位于所述功能区101上。所述无机层202覆盖所述功能区101及所述切割区102。
S103、请参阅图5,去除所述切割区102上的所述无机层202,形成多个TFT器件区205及位于所述TFT器件区205之间的凹槽203。
S104、请参阅图6,沿所述凹槽203切割所述承载基板100,形成多个显示面板。
本实施例中,通过去除所述承载基板100上切割区102所对应的所述无机层202,以使切割区102的无机层202被减薄,一方面,被切割膜层的厚度减少,降低了切割工艺的难度,另一方面,无机层202被减薄,有效地缓解了切割工艺中应力集中的问题,提高显示面板的生产良率,同时去除的无机层202形成凹槽203,该凹槽203可以在切割过程中作为切割线,从而提高切割显示面板的效率。
下面结合附图分别对上述实施例的各步骤进行详细说明。
在步骤S101中,请参阅图2及图3,提供承载基板100。所述承载基板100为承载组成AMOLED显示面板的多个膜层的基板。所述承载基板100可以为柔性基板。
一种可能的实施方式中,所述承载基板100包括依次叠的第一有机膜103、第一无机膜104、第二有机膜105及第二无机膜106。其中,第一有机膜103和第二有机膜105通过加热工艺,发生交联固化反应,用以实现所述承载基板 100的可弯折性和柔性。
可选的,所述第一有机膜103和第二有机膜105的成膜材质可以为聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)及聚对二甲苯(Parylene)中的一种或几种等。优选的,所述第一有机膜103和第二有机膜105的成膜材质为聚酰亚胺。
由于第一有机膜103和第二有机膜105的水氧透过率高,会影响TFT器件201及OLED器件的性能稳定性及使用寿命。优选的,所述承载基板100采用第一有机膜103、第一无机膜104、第二有机膜105及第二无机膜106交替形成阻隔层。其中,第一无机膜104和第二无机膜106的成膜材质为SiNx及SiOxNy中的一种或几种,无机膜结构致密性好,起到阻挡水汽、氧气的作用,从而提高承载基板100的水氧阻隔能力,有效地保护TFT器件201及OLED器件。利用有机膜及无机膜相互交叠,既可以达到阻隔保护,又可消除各防护层材料间应力的相互影响。双层无机膜起到双重阻挡水汽、氧气的作用。因为无机膜成膜后表面平坦性不够,沉积第二有机膜105还可以能够起到平坦表面的作用。第二无机膜106还可以作为隔热层,其能起到有效阻隔热传导的作用,避免承载基板100经过高温处理后性能出现不稳定影响整个器件制作的问题。
在其他的实施方式中,在第二无机膜106上还可继续交替设置有机膜和无机膜。本申请对于承载基板100中有机膜和无机膜的层数不做具体的限定。
在步骤S102中,请参阅图4,在所述承载基板100上形成器件层200。所述器件层200的TFT器件201位于TFT器件层200上与所述功能区101相对应的区域。所述切割区102所对应的TFT器件层200为无机层202。
具体而言,所述器件层200的TFT器件201包括栅极、源极及漏极。所述无机层202包括多层绝缘层,例如,第一栅极绝缘层、第二栅极绝缘层、栅极与数据线之间的层间绝缘层。这些绝缘层的材质为氧化硅(SiOx)和氮化硅(SiNx)中的一种或二者的组合。由于这些绝缘层的都具有较大的致密度,柔韧性差,容易产生应力集中,都对于切割工艺造成阻碍。本申请中,将这些绝缘层称为所述器件层200的无机层202。
S103、请参阅图5,去除所述切割区102上的所述无机层202,形成多个TFT器件区205及位于所述TFT器件区205之间的凹槽203。
第一种可能的实施方式中,通过在器件层200上涂布光刻胶,并采用掩膜 版曝光、显影及蚀刻工艺去除所述切割区102上的所述无机层202,将所述器件层200图案化,形成多个TFT器件区205及位于所述TFT器件区205之间的凹槽203。TFT器件区205用于设置所述TFT器件201及走线。所述TFT器件区205与功能区101正对,且所述TFT器件区205在所述承载基板100上的投影与功能区101重合。所述凹槽203正对所述切割区102。可选的,所述凹槽203的宽度为50~100um。即相邻的两个TFT器件区205之间相距50~100um。
通过去除所述切割区102上的所述无机层202,可以减少切割区102的切割阻力,以及降低切割区102上的无机层202对切割工艺的影响,同时,仅通过一道黄光制程即可去除所述切割区102上的所述无机层202,工艺简单,操作方便,且效果明显。
本实施例中,所述承载基板100包括第一有机膜103、第一无机膜104、第二有机膜105及第二无机膜106。其中,第二无机膜106靠近所述器件层200的无机层202。所述第二无机膜106在切割工艺中也会造成应力集中,产生裂纹的问题。
第二种可能的实施方式中,请参阅图7,通过在器件层200上涂布光刻胶,并采用掩膜版曝光、显影及蚀刻工艺去除所述切割区102上的所述无机层202以及减薄或完全去除第二无机膜106,将所述器件层200图案化,形成多个TFT器件区205及位于所述TFT器件区205之间的凹槽203。
与第一种实施方式相比,本实施方式中,待切割层的厚度进一步地减少,特别是待切割层中无机层202的厚度进一步减少,这样可以进一步地降低所述切割区102在切割工艺的过程中造成的应力集中、产生裂纹的问题,从而更加优化显示面板的生产良率。同时,由于第一无机膜104的存在,所述承载基板100仍具有较好的水氧阻隔能力,在确保承载基板100的水氧阻隔能力下,进一步优化了显示面板的切割效果。
在步骤S103之后,所述显示面板制作方法S10还包括以下的步骤。
步骤S1031、请参阅图8及图9,在器件层200上沉积有机层300,去除所述切割区对应的有机层300。
具体地,有机层300用于制作OLED(有机发光二极管)层,这样器件层200和OLED层共同组成AMOLED(有源矩阵发光二极管)。
所述OLED层包括多层有机层,例如,平坦层301、设于所述平坦层301上的阳极、设于所述阳极上的发光区定义层、设于所述阳极上且被所述发光区定义层包围的有机发光层、以及设于所述有机发光层以及发光区定义层上的阴极。
上述的阳极、有机发光层及阴极位于正对所述功能区101,即位于所述切割区102之外,而平坦层301及发光区定义层正对所述切割区102,位于所述凹槽203内,有机层300为平坦层301及发光区定义层。
一种实施方式中,通过掩膜版曝光、显影工艺去除所述切割区102上的所述有机层。即通过掩膜版曝光、显影工艺去除所述切割区102上的平坦层301及发光区定义层,以减少待切割层的厚度,减少所述平坦层301及发光区定义层对切割工艺的影响。
第三种可能的实施方式中,在去除所述切割区102上的所述无机层202的步骤S103之后,在器件层200上沉积有机层的步骤S1031之前还包括以下步骤。
步骤S1030、请参阅图10及图11,在所述TFT器件区205边缘处的无机层202上成型沟槽204。所述沟槽204沿所述凹槽203延伸。所述沟槽204用于阻挡所述凹槽203处的切割应力。
一种可能的实施方式中,通过在器件层200上涂布光刻胶,并采用掩膜版曝光、显影及蚀刻工艺去除所述切割区102上的所述无机层202,将所述器件层200图案化,在所述器件层200上成型沟槽204。所述沟槽204可以贯穿所述器件层200。所述沟槽204可以将TFT器件201、走线和邻近所述切割区102的无机层202分开。当显示面板在切割过程中,切割区102处产生裂纹,裂纹通过无机层202朝向TFT器件201及走线的方向延伸,此时,所述沟槽204可以将阻隔该裂纹的延伸路径,从而有效地保护TFT器件201及走线,防止TFT器件201及走线受到切割裂纹损伤。也就是说,本申请提出通过减小待切割层的厚度可以减少应力集中,以减少裂纹的产生,同时沟槽204的设置用于阻断裂纹的扩散途径,本实施方式中,凹槽203和沟槽204的设置成为TFT器件201及走线的双重防护墙,可以有效地降低所述切割区102在切割工艺的过程中造成的应力集中、产生裂纹及TFT器件201及走线受到应力损伤的问题,从而更加优化显示面板的生产良率。
一种可能的实施方式中,在器件层200上沉积有机层的步骤S1031中,还包括以下步骤。
请参阅图12,所述OLED层包括平坦层301。所述平坦层301可以填充所述沟槽204。平坦层301的材料为有机材料,具有较好的弹性和柔韧性,可以比较好释放应力,通过在无机层202中形成沟槽204并在其中填充平坦层301能够改善无机层202中的应力性能,防止在显示面板切割过程中的应力集中、产生裂纹的问题,进而提升柔性AMOLED显示面板的质量。
步骤S104、沿所述凹槽203切割所述承载基板100,形成多个显示面板。
采用激光切割的方法沿凹槽203切割所述承载基板100,可以沿凹槽203的中心线所述承载基板100,这样所述承载基板100受到激光的影响区域位于切割区102,而不会影响到功能区101,提高所述显示面板的切割效果。同时,凹槽203的设置,使得TFT器件201和走线不会受到激光的影响,也提高了显示面板的生产良率。
请参阅图13,本申请实施例还提供了一种显示面板10,采用以上的方法制作而成。所述显示面板10包括承载基板1001及设于所述承载基板1001上的器件层2001。所述承载基板1001包括功能区1011和包围所述功能区1011的切割区1021。所述器件层2001包括正对于所述功能区1011的TFT器件区2051及正对所述切割区1021的挖空区2031。所述TFT器件区2051包括TFT器件2011、驱动所述TFT器件2011的走线及包覆所述TFT器件2011、走线的无机层。所述TFT器件区2051在所述承载基板1001上的投影在所述功能区1011内。挖空区2031环绕所述TFT器件区2051的周侧。
通过在承载基板1001上设置正对于所述功能区1011的TFT器件区2051及正对所述切割区1021的挖空区2031,以使切割区1021对应的无机层厚度减少,一方面,被切割膜层的厚度减少,降低了切割工艺的难度,另一方面,切割区1021对应的无机层厚度减少,有效地缓解了切割工艺中应力集中的问题,提高显示面板10的生产良率。
一种可能的实施方式中,请参阅图13,所述TFT器件区2051边缘处还包括沟槽2041。沟槽2041位于TFT器件区2051的无机层中。所述沟槽2041沿所述挖空区2031延伸。所述沟槽2041用于阻挡所述挖空区2031处的切割应力。沟槽2041的设置用于阻断裂纹的扩散途径,挖空区2031和沟槽2041的设置成为TFT 器件2011及走线的双重防护墙,可以有效地降低所述切割区1021在切割工艺的过程中造成的应力集中、产生裂纹及TFT器件2011及走线受到应力损伤的问题,从而更加优化显示面板10的生产良率。
一种可能的实施方式中,请参阅图13,所述显示面板10包括设于所述器件层2001上的OLED层。OLED层包括有机层。所述有机层填充所述沟槽2041并覆盖所述器件层2001。所述有机层可以为OLED层中的平坦层3011。有机层具有较好的弹性和柔韧性,可以比较好释放应力,通过形成沟槽2041并在其中填充平坦层3011能够改善无机层中的应力性能,防止在显示面板10切割过程中的应力集中、产生裂纹的问题,进而提升柔性AMOLED显示面板10的质量。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (10)

  1. 一种显示面板制作方法,其中,包括以下的步骤:
    提供承载基板,所述承载基板包括多个功能区和位于所述功能区之间切割区;
    在所述承载基板上形成器件层,所述器件层包括TFT器件及包覆所述TFT器件的无机层,所述TFT器件位于所述功能区上,所述无机层覆盖所述功能区及所述切割区;
    去除所述切割区上的所述无机层,形成多个TFT器件区及位于所述TFT器件区之间的凹槽;
    沿所述凹槽切割所述承载基板,形成多个显示面板。
  2. 如权利要求1所述的显示面板制作方法,其中,在去除所述切割区上的所述无机层的步骤中,通过掩膜版曝光、显影及蚀刻工艺去除所述切割区上的所述无机层。
  3. 如权利要求1所述的显示面板制作方法,其中,在去除所述切割区上的所述无机层的步骤之后,在所述TFT器件区边缘处的无机层上成型沟槽,所述沟槽沿所述凹槽延伸,所述沟槽用于阻挡所述凹槽处的切割应力。
  4. 如权利要求3所述的显示面板制作方法,其中,在所述TFT器件区边缘处的无机层上成型沟槽的步骤中,通过掩膜版曝光、显影及蚀刻工艺成型沟槽。
  5. 如权利要求3所述的显示面板制作方法,其中,在去除所述切割区上的所述无机层的步骤之后,包括
    沉积有机层,所述有机层填充所述沟槽并覆盖所述器件层;
    通过掩膜版曝光、显影工艺去除所述切割区上的所述有机层。
  6. 如权利要求1所述的显示面板制作方法,其中,在提供承载基板的步骤中,所述承载基板包括依次设于所述基板上第一有机膜、第一无机膜、第二有机膜和第二无机膜。
  7. 如权利要求6所述的显示面板制作方法,其中,在去除所述切割区上的所述无机层的步骤中,部分或完全去除所述第二无机膜。
  8. 一种显示面板,其中,包括承载基板及设于所述承载基板上的器件层, 所述承载基板包括功能区和位于所述功能区周侧的切割区,所述器件层包括正对所述功能区的TFT器件区及正对所述切割区的挖空区。
  9. 如权利要求8所述的显示面板,其中,所述TFT器件区边缘处还包括沟槽,所述沟槽沿所述TFT器件区的边沿延伸,所述沟槽用于阻挡所述挖空区的切割应力。
  10. 如权利要求9所述的显示面板,其中,所述显示面板包括设于所述器件层上的有机层,所述有机层填充所述沟槽并覆盖所述器件层。
PCT/CN2018/071669 2017-11-30 2018-01-05 显示面板及其制作方法 WO2019104838A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/969,354 US20190165328A1 (en) 2017-11-30 2018-05-02 Display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711247587.6 2017-11-30
CN201711247587.6A CN108022878A (zh) 2017-11-30 2017-11-30 显示面板及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/969,354 Continuation US20190165328A1 (en) 2017-11-30 2018-05-02 Display panel and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2019104838A1 true WO2019104838A1 (zh) 2019-06-06

Family

ID=62078015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071669 WO2019104838A1 (zh) 2017-11-30 2018-01-05 显示面板及其制作方法

Country Status (2)

Country Link
CN (1) CN108022878A (zh)
WO (1) WO2019104838A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676394B (zh) * 2018-07-03 2022-08-12 上海和辉光电股份有限公司 一种柔性oled的制作方法
CN110676393B (zh) * 2018-07-03 2022-08-12 上海和辉光电股份有限公司 一种柔性oled的制作方法
CN109616016A (zh) * 2018-12-04 2019-04-12 武汉华星光电半导体显示技术有限公司 用于显示装置的膜层结构
CN109671746B (zh) * 2018-12-11 2021-04-27 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及显示装置
CN109860208B (zh) * 2019-02-28 2021-09-21 云谷(固安)科技有限公司 显示面板母板、显示面板及其制作方法
CN109962180B (zh) * 2019-03-01 2020-11-10 昆山国显光电有限公司 一种显示面板的制备方法
CN110048014B (zh) * 2019-03-15 2022-02-25 云谷(固安)科技有限公司 显示面板及其制作方法、显示装置
CN109979318B (zh) * 2019-04-09 2021-02-09 京东方科技集团股份有限公司 显示母板及其制造和切割方法、显示基板及装置
CN110208978B (zh) * 2019-07-04 2022-10-25 京东方科技集团股份有限公司 显示面板中间品的切割方法及显示面板
CN110634397B (zh) * 2019-08-19 2021-02-23 武汉华星光电半导体显示技术有限公司 显示面板及显示模组
CN111007686A (zh) * 2019-11-14 2020-04-14 Tcl华星光电技术有限公司 阵列基板、显示面板及制备方法
CN111192906A (zh) 2020-01-08 2020-05-22 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159184A (ja) * 2003-11-27 2005-06-16 Kyocera Corp 電子装置の製造方法
CN101826488A (zh) * 2009-03-04 2010-09-08 北京京东方光电科技有限公司 阵列基板及制造方法和液晶面板及制造方法
CN102629169A (zh) * 2011-11-30 2012-08-08 友达光电股份有限公司 触控面板的制造方法
CN103779356A (zh) * 2014-01-21 2014-05-07 北京京东方光电科技有限公司 一种显示面板母板及其制备方法
CN103995385A (zh) * 2014-05-09 2014-08-20 京东方科技集团股份有限公司 显示母板及其切割方法
US20150179720A1 (en) * 2013-12-23 2015-06-25 Samsung Display Co., Ltd. Mother substrate for organic light-emitting display device and method of manufacturing organic light-emitting display device
CN107342363A (zh) * 2017-08-25 2017-11-10 京东方科技集团股份有限公司 显示基板及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100671639B1 (ko) * 2006-01-27 2007-01-19 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조 방법
CN102610762A (zh) * 2011-01-21 2012-07-25 彩虹显示器件股份有限公司 一种有机发光器件的薄膜封装方法
KR102116105B1 (ko) * 2013-07-31 2020-05-28 삼성디스플레이 주식회사 가요성 표시 장치
KR101907593B1 (ko) * 2013-08-13 2018-10-15 삼성디스플레이 주식회사 가요성 표시 장치
CN104037360A (zh) * 2014-06-25 2014-09-10 上海和辉光电有限公司 有机发光器件、封装结构及封装方法
KR102465377B1 (ko) * 2016-02-12 2022-11-10 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159184A (ja) * 2003-11-27 2005-06-16 Kyocera Corp 電子装置の製造方法
CN101826488A (zh) * 2009-03-04 2010-09-08 北京京东方光电科技有限公司 阵列基板及制造方法和液晶面板及制造方法
CN102629169A (zh) * 2011-11-30 2012-08-08 友达光电股份有限公司 触控面板的制造方法
US20150179720A1 (en) * 2013-12-23 2015-06-25 Samsung Display Co., Ltd. Mother substrate for organic light-emitting display device and method of manufacturing organic light-emitting display device
CN103779356A (zh) * 2014-01-21 2014-05-07 北京京东方光电科技有限公司 一种显示面板母板及其制备方法
CN103995385A (zh) * 2014-05-09 2014-08-20 京东方科技集团股份有限公司 显示母板及其切割方法
CN107342363A (zh) * 2017-08-25 2017-11-10 京东方科技集团股份有限公司 显示基板及其制备方法

Also Published As

Publication number Publication date
CN108022878A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2019104838A1 (zh) 显示面板及其制作方法
US10615370B2 (en) Light-emitting display panel
US11778853B2 (en) Display panel comprising an encapsulation layer, display device, and manufacturing methods thereof
TWI645593B (zh) 具有撓性基板之有機發光顯示裝置
EP2860785B1 (en) Display devices and methods of manufacturing display devices
WO2018161525A1 (zh) 柔性显示面板及制作方法、柔性显示装置
CN108091675B (zh) 显示基板及其制作方法
US9711577B2 (en) OLED display device and fabrication method thereof
WO2020124916A1 (zh) 全屏显示面板及其制作方法
WO2022057515A1 (zh) 显示基板及其制备方法、显示装置
KR102159792B1 (ko) 가요성 표시 장치 및 그 제조 방법
US9893133B2 (en) Organic light emitting diode display including penetrated portion
WO2019010965A1 (zh) 有机电致发光显示面板及制备方法以及显示装置
US11839101B2 (en) Display substrate and preparation method thereof, and display device
US11183665B2 (en) Display substrate and method for making the same, display apparatus
KR102389622B1 (ko) 투명 표시 장치 및 투명 표시 장치의 제조 방법
US9620738B2 (en) Flat panel display device and manufacturing method thereof
KR20150094950A (ko) 유기 발광 표시 장치 및 이의 제조 방법
WO2015143838A1 (zh) Oled像素结构及其制备方法,oled显示面板及oled显示器
US11818912B2 (en) Organic light-emitting diode display panels with moisture blocking structures
WO2019201132A1 (zh) 封装结构、显示装置
WO2019127203A1 (zh) 显示屏及其制作方法,以及显示设备
US10916726B2 (en) Crack extension blocking structure, display panel, display apparatus, and production method thereof
WO2019227930A1 (zh) 电致发光显示面板、其制作方法及显示装置
US20210359253A1 (en) Encapsulation method of display panel, display panel, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883049

Country of ref document: EP

Kind code of ref document: A1