WO2019006750A1 - 反应型紫外光吸收剂及其应用 - Google Patents

反应型紫外光吸收剂及其应用 Download PDF

Info

Publication number
WO2019006750A1
WO2019006750A1 PCT/CN2017/092254 CN2017092254W WO2019006750A1 WO 2019006750 A1 WO2019006750 A1 WO 2019006750A1 CN 2017092254 W CN2017092254 W CN 2017092254W WO 2019006750 A1 WO2019006750 A1 WO 2019006750A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
ultraviolet light
weight
light absorber
component
Prior art date
Application number
PCT/CN2017/092254
Other languages
English (en)
French (fr)
Inventor
曲清蕃
吴皇旻
张玮骏
吴其峰
郑经豪
吴少轩
Original Assignee
奇钛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇钛科技股份有限公司 filed Critical 奇钛科技股份有限公司
Priority to PCT/CN2017/092254 priority Critical patent/WO2019006750A1/zh
Priority to EP17916744.0A priority patent/EP3650445B1/en
Priority to JP2019560212A priority patent/JP6843269B2/ja
Priority to CN201780089426.0A priority patent/CN110799502B/zh
Priority to ES17916744T priority patent/ES2945327T3/es
Priority to KR1020197032356A priority patent/KR102291750B1/ko
Priority to US16/609,901 priority patent/US10717714B2/en
Priority to CA3062853A priority patent/CA3062853C/en
Publication of WO2019006750A1 publication Critical patent/WO2019006750A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6505Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6511Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38 compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/16Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D249/18Benzotriazoles
    • C07D249/20Benzotriazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/329Hydroxyamines containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7692Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing at least one isocyanate or isothiocyanate group linked to an aromatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the invention relates to a reactive ultraviolet light absorber and an application thereof, and the reactive ultraviolet light absorber is particularly suitable for polyurethane (PU).
  • PU polyurethane
  • Polyurethanes are a class of important polymers formed by the polymerization of polyols and isocyanates, in which materials having the desired mechanical properties, including abrasion resistance, temperature resistance, flexibility, can be produced by blending the proportions of raw materials. Extensibility, etc. Polyurethanes are now widely used in a variety of materials such as coatings, elastomers, foams, adhesives, sealants, and the like.
  • UV Absorber UV Absorber
  • BTZ Benzotriazole
  • the physically absorbed ultraviolet light absorber is prone to migration in the polyurethane material, thereby causing the polyurethane material to bleed or destroy the surface properties of the polyurethane material, for example, the surface of the polyurethane material may become sticky, or even Causes the product to be faded (Fading). Therefore, how to increase the compatibility of ultraviolet light absorbers in polyurethane materials to avoid or reduce the occurrence of migration has become an important issue in the development of ultraviolet light absorbers. In general, the compatibility of the ultraviolet light absorber in the polyurethane material can be increased in two ways to slow or avoid migration of the ultraviolet light absorber.
  • the first way is to increase the molecular weight of the ultraviolet light absorber.
  • the technology disclosed in U.S. Patent No. 4,853,471 and U.S. Pat. rate can only slow down the migration rate, and can not effectively avoid migration, and increasing the molecular weight of the ultraviolet light absorber will correspondingly reduce the effective content of the ultraviolet light absorber, resulting in the necessity of increasing the amount of the ultraviolet light absorber to provide equivalent Anti-ultraviolet light effect.
  • the second way is to synthesize the ultraviolet light absorber into a reactive ultraviolet light absorber, and the hydroxyl group contained therein participates in the polymerization reaction in the polyurethane synthesis process, so that the ultraviolet light absorber is directly connected to the polyurethane structure by chemical bonding.
  • reactive ultraviolet light absorbers include ultraviolet light absorbers having the structure of the following formula (IIIa) or (IIIb) disclosed in US 5,459,222.
  • the second method can more effectively solve the migration problem of the ultraviolet light absorber.
  • the reactive ultraviolet light absorbers disclosed in the prior art still have disadvantages such as difficulty in production, poor thermal stability, and insufficient compatibility with polyurethanes.
  • the present invention provides a reactive ultraviolet light absorber such as the following OBJECT OF THE INVENTION It is a benzotriazole type ultraviolet light absorber which is particularly suitable for use in polyurethane materials. Since the reactive ultraviolet light absorber of the present invention is directly bonded to the structure of the polyurethane by chemical bonding, the migration problem of the ultraviolet light absorber can be solved. In addition, the reactive ultraviolet light absorbing agent of the present invention has the advantages of good thermal stability, excellent anti-ultraviolet light effect, simple preparation method and easy purification.
  • An object of the present invention is to provide a reactive ultraviolet light absorber having the compound of Chemical Formula 1:
  • R1 is H or Cl.
  • Another object of the present invention is to provide a polyurethane precursor composition comprising:
  • the reactive ultraviolet light absorber is present in an amount of from about 0.1% by weight to about 50% by weight, such as from about 0.5% by weight to about 10% by weight, based on the total weight of the component (a), the component (b) and the component (c). .
  • the polyol in the polyurethane precursor composition may be selected from the group consisting of ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1, 3-butanediol, 1,4-butanediol, glycerol, trimethylolpropane, pentaerythritol, polycarbonate polyol, polyacrylate polyol, polyether Type polyols, polyester polyols, and combinations thereof.
  • the polyisocyanate in the polyurethane precursor composition may be selected from the group consisting of Toluene diisocyanate (TDI), Methylene diphenyl diisocyanate (MDI), and Liu Ya.
  • TDI Toluene diisocyanate
  • MDI Methylene diphenyl diisocyanate
  • Liu Ya Liu Ya.
  • HDI Hexamethylene diisocyanate
  • CHDI cyclohexyl diisocyanate
  • TXDI Tetramethylxylene diisocyanate
  • IPDI Isophorone diisocyanate
  • Methylene bis(4-cyclohexyl isocyanate) Dicyclohexylmethane
  • the polyurethane precursor composition may further comprise a component selected from the group consisting of a solvent, a catalyst, an antioxidant, a filler, a compatibilizer, a flame retardant, a thermal stabilizer, a photostabilizer, Metal passivators, plasticizers, lubricants, emulsifiers, dyes, pigments, brighteners, antistatic agents, foaming agents, chain extenders, anti-hydrolysis agents, surfactants, crosslinkers, light initiation Agent, pH adjuster, adhesion promoter, bactericide, and combinations thereof.
  • the chain extender is, for example, a hydrophilic chain extender selected from the group consisting of Dimethylolpropionic acid (DMPA), Dimethylolbutanoic acid (DMBA), and combinations thereof.
  • Another object of the present invention is to provide a polyurethane which is resistant to the harmful effects of ultraviolet light, which is obtained by polymerization of the aforementioned polyurethane precursor composition.
  • Another object of the present invention is to provide a polyurethane article which is a fiber, a coating, an elastomer, a foaming material, a binder, or a sealant containing the aforementioned polyurethane.
  • Another object of the present invention is to provide a method of resisting the harmful effects of ultraviolet light by using the aforementioned polyurethane.
  • a benzotriazole compound can be synthesized by a simple method, and the compound has at least the following advantages: good hydrolysis resistance and in the form of a polyol, which can be used as a hydrolysis-resistant ultraviolet light absorber; the compound itself is alkaline The solubility in the alcohol is particularly excellent. Since the polyol is the main raw material for forming the polyurethane, the compound is particularly suitable as an ultraviolet light absorber for the polyurethane material; finally, the compound has good thermal stability and provides excellent UV resistance. Light effect.
  • the reactive ultraviolet light absorber of the present invention is a compound represented by Chemical Formula 1:
  • R1 is H or Cl.
  • the reactive ultraviolet light absorber of the present invention is particularly suitable for polyurethane materials, and therefore, the present invention further provides a polyurethane precursor composition comprising (a) a polyol, (b) a polyisocyanate, and (c) The reactive ultraviolet light absorber of the present invention, wherein the component (a) and the component (b) are main components for forming a polyurethane, and the component (c) is a component which provides a harmful effect of the polyurethane against ultraviolet light.
  • Ingredient (a) can be any monomer, oligomer, polymer, or mixture thereof of any alcohol having at least two hydroxyl groups which can be used to prepare polyurethanes.
  • polyol monomers include, but are not limited to, ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, Glycerol, trimethylolpropane, pentaerythritol, and mixtures thereof.
  • oligomers or polymers of polyols include, but are not limited to, polycarbonate polyols, polyacrylate polyols, polyether polyols, polyester polyols, and mixtures thereof, for example, From polycarbonate diols, polyether diols, polyester diols, and mixtures thereof.
  • Ingredient (b) may be any of the monomers, adducts, dimers or trimers, prepolymers, and mixtures thereof, of any of the existing isocyanates having at least two isocyanate groups useful in the preparation of polyurethanes.
  • the adduct is, for example, an adduct of an isocyanate monomer with an alcohol or an amine.
  • examples of polyisocyanates useful in the present invention include, but are not limited to, those selected from the group consisting of toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI).
  • CHDI cyclohexane diisocyanate
  • TMXDI tetramethyl benzene dimethylene diisocyanate
  • H 6 XDI 1,3-bis(isocyanatomethyl)cyclohexane
  • IPDI isophorone Diisocyanate
  • HMDI methylene bis(4-cyclohexyl isocyanate)
  • the ratio of the component (a), the component (b) and the component (c) is not particularly limited in principle, and the technical field to which the present invention pertains can be referred to the general knowledge and the present specification. It is disclosed and adjusted as appropriate, for example, depending on the desired properties of the polyurethane material, the type of polyol and polyisocyanate employed, and the desired UV resistance.
  • component (c) reactive ultraviolet light absorber
  • the content of component (c) is from about 0.1% by weight to about 50% by weight based on the total weight of component (a), component (b) and component (c), for example 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, 3% by weight, 5% by weight, 7% by weight, 10% by weight, 15% by weight, 20% by weight, 25% by weight, 30% by weight, and 35 parts by weight %, or 40% by weight.
  • the amount of component (c) is from about 0.5% to about 10% by weight based on the total weight of component (a), component (b), and component (c).
  • the polyurethane precursor composition of the present invention may further comprise other optional ingredients to improve the processability of the polyurethane precursor composition in the process of producing polyurethane, or to promote polymerization. The reaction proceeds, or the properties of the polyurethane material are specifically modified.
  • ingredients include, but are not limited to, ingredients selected from the group consisting of solvents, catalysts, antioxidants, fillers, compatibilizers, flame retardants, thermal stabilizers, light stabilizers, metal passivators, plasticizers, lubricants Agent, emulsifier, dye, pigment, brightener, antistatic agent, foaming agent, chain extender, anti-hydrolysis agent, surfactant, crosslinking agent, photoinitiator, pH adjuster, adhesion promoter, And fungicides.
  • ingredients include, but are not limited to, ingredients selected from the group consisting of solvents, catalysts, antioxidants, fillers, compatibilizers, flame retardants, thermal stabilizers, light stabilizers, metal passivators, plasticizers, lubricants Agent, emulsifier, dye, pigment, brightener, antistatic agent, foaming agent, chain extender, anti-hydrolysis agent, surfactant, crosslinking agent, photoinitiator, pH adjuster, adhesion promoter, And fungicides.
  • the polyurethane precursor composition in order to increase the hydrophilic property of the prepared polyurethane material, further comprises a hydrophilic chain extender selected from the group consisting of: dimethylolpropionic acid (DMPA), Dimethylol butyric acid (DMBA), and combinations thereof.
  • DMPA dimethylolpropionic acid
  • DMBA Dimethylol butyric acid
  • the polyurethane precursor composition further comprises a catalyst
  • the catalyst which can be used for the synthesis of the polyurethane is well known to those skilled in the art, and examples thereof include, but are not limited to, a tertiary amine and A metal catalyst containing tin, zinc, cobalt, or manganese, such as dimethyltin dilaurate, dibutyltin dilaurate, or dioctyltin dilaurate.
  • the amount of the catalyst to be used is not particularly limited as long as it provides a desired catalytic effect.
  • the catalyst is included in an amount of from about 0.001% by weight to about 10% by weight, such as 0.005% by weight, 0.01% by weight, or 0.02% by weight based on the total weight of the reaction components (a), (b), and (c). %, 0.05% by weight, 0.1% by weight, 0.5% by weight, 1% by weight, 2% by weight, or 5% by weight.
  • the polyurethane precursor composition of the present invention can form a polyurethane material by, for example, melt polymerization or solution polymerization.
  • the polyurethane material of the present invention has excellent stability due to the portion formed by the reaction of the component (c), and does not cause ultraviolet light absorber precipitation even when stored for a long period of time under normal temperature and normal pressure.
  • the problem of material atomization in addition, has excellent Anti-ultraviolet light ability.
  • the actual operation of the polymerization reaction of the polyurethane of the present invention can be accomplished by referring to the general knowledge and disclosure of the present specification, and the related examples are provided in the appended embodiments, and no further examples are provided herein. Narration.
  • the present invention can be made into various polyurethane articles such as fibers, paints, elastomers, foams, adhesives, or sealants by, for example, adjusting the kinds of polyols and polyisocyanates in the polyurethane precursor composition.
  • a polyether diol can be used as the component (a) and the diisocyanate as the component (b).
  • the diamine such as ethylene
  • Amines can be made into elastic fibers (such as Spandex fibers) that can be used in the textile industry.
  • the polyurethane of the present invention has excellent ultraviolet light resistance, and therefore, the polyurethane of the present invention can be used as a technical means against ultraviolet light to provide a method for effectively resisting the harmful effects of ultraviolet light.
  • the polyurethane of the present invention may be directly used as a material of all or part of a specific article to impart ultraviolet light resistance to the article, or the polyurethane material of the present invention may be applied to the surface of the object to be protected.
  • the coating is applied, the coating is applied to the surface to form a barrier to the ultraviolet light on the surface.
  • the present invention does not exclude the use of the polyurethane material in other ways to withstand the harmful effects of ultraviolet light.
  • the reaction type ultraviolet light absorber II having the structure of the chemical formula 1 (wherein R1 is Cl) was prepared by the same synthetic procedure as the reactive ultraviolet light absorber I, but with 128 g of 3-(5-chloro-2-benzotriene) 3-(5-chloro-2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxy-benzenepr opanoic Acid, CAS #83573-67-5) substituted 3-(2-benzotriazolyl)-4-hydroxy-5-tert-butylbenzenepropionic acid as a reactant.
  • the yield of the reactive ultraviolet light absorber II is 82%, and the reactive ultraviolet light
  • the properties of the absorbent II as determined by nuclear magnetic resonance are as follows:
  • the solubility of the reactive ultraviolet light absorber I of the present invention in various solvents was significantly higher than that of the comparative reaction type ultraviolet light absorber A.
  • the reactive ultraviolet light absorber I of the present invention has excellent solubility in an alcohol solvent, and since the polyol is a main raw material for preparing a polyurethane, the reactive ultraviolet light absorber I of the present invention is used in the preparation of the polyurethane. Polyurethane precursors will have better compatibility.
  • the reactive ultraviolet light absorber I of the present invention has the lowest initial color, and thus has the least influence on the chromaticity of the applied polyurethane material.
  • the chromaticity change of the reactive ultraviolet light absorbing agent I of the present invention after heat treatment for 3 hours is the smallest, indicating that the thermal absorbing property of the reactive ultraviolet light absorbing agent I of the present invention is better, and therefore there will be a better synthesis process in the polyurethane. Good stability.
  • thermoplastic polyurethane A no ultraviolet light absorber added
  • thermoplastic polyurethane A was placed at a temperature of 80 ° C for 1 hour, and then kneaded by a Brabender spectrometer at 175 ° C and a rotation speed of 100 rpm for 2 minutes, and then discharged. 20 g of the kneaded thermoplastic polyurethane A was placed in a hot press molding machine (purchased from Suichang Co., Ltd.), and hot pressed at a pressure of 80 kg/cm 2 at a temperature of 185 ° C for 1.5 minutes, and then subjected to hot press molding thermoplasticity.
  • a hot press molding machine purchasedd from Suichang Co., Ltd.
  • the polyurethane A was placed in a cold press, cooled under a pressure of 50 kg/cm 2 for 5 to 10 minutes, and then pressed into a mold (size: 14 cm ⁇ 14 cm ⁇ 0.07 cm) to complete preparation of a test piece of the thermoplastic polyurethane A.
  • thermoplastic polyurethane A The test piece of the thermoplastic polyurethane A was placed under normal temperature and normal pressure for several days, and its color change was observed as a control group for the precipitation test. The results are shown in Table 3.
  • thermoplastic polyurethane B1 1% by weight of reactive ultraviolet light absorber I is added
  • thermoplastic polyurethane B1 was prepared in the same manner as the thermoplastic polyurethane A, but the amount of the MDI was adjusted to be 63.8 g, and 2.2 g of the reactive ultraviolet absorber I was added to participate in the reaction to obtain a reactive ultraviolet light absorption of about 1% by weight. Thermoplastic polyurethane B1 of agent I.
  • thermoplastic polyurethane B1 A test piece of the thermoplastic polyurethane B1 was prepared in the same manner as in the thermoplastic polyurethane A test piece, and a precipitation test was conducted to observe the color change. The results are shown in Table 3.
  • thermoplastic polyurethane B2 5% by weight of reactive ultraviolet light absorber I was added
  • thermoplastic polyurethane B2 was prepared in the same manner as the thermoplastic polyurethane A, except that the amount of the MDI was adjusted to be 68.5 g, and the amount of the reactive ultraviolet absorber I was 11.0 g to obtain about 5 g.
  • thermoplastic polyurethane B2 A test piece of thermoplastic polyurethane B2 was prepared in the same manner as in the thermoplastic polyurethane A test piece, and a precipitation test was conducted to observe the color change. The results are shown in Table 3.
  • thermoplastic polyurethane C1 1% by weight of non-reactive ultraviolet light absorber added
  • thermoplastic polyurethane A was placed at a temperature of 80 ° C for 1 hour, and then the thermoplastic polyurethane A was mixed with the non-reactive ultraviolet light absorber Chiguard 234 in a weight ratio of 99:1 and placed in a Brabender spectrometer at 175 ° C. At a rotation speed of 100 rpm, the mixture was kneaded for 2 minutes and then discharged to provide a thermoplastic polyurethane C1 formulation. 20 g of the compounded thermoplastic polyurethane C1 was placed and placed in a hot press machine (purchased from Suichang Company), and hot pressed at a pressure of 80 kg/cm 2 and a temperature of 185 ° C for 1.5 minutes, and then hot pressed.
  • a hot press machine purchasedd from Suichang Company
  • thermoplastic polyurethane C1 was placed in a cold press, cooled under a pressure of 50 kg/cm 2 for 5 to 10 minutes, and then pressed into a mold (size 14 cm ⁇ 14 cm ⁇ 0.07 cm) to obtain a non-reactive type containing 1% by weight.
  • a test piece of a thermoplastic polyurethane C1 of an ultraviolet light absorber was placed in a cold press, cooled under a pressure of 50 kg/cm 2 for 5 to 10 minutes, and then pressed into a mold (size 14 cm ⁇ 14 cm ⁇ 0.07 cm) to obtain a non-reactive type containing 1% by weight.
  • a test piece of a thermoplastic polyurethane C1 of an ultraviolet light absorber was placed in a cold press, cooled under a pressure of 50 kg/cm 2 for 5 to 10 minutes, and then pressed into a mold (size 14 cm ⁇ 14 cm ⁇ 0.07 cm) to obtain a non-reactive type containing 1% by weight.
  • thermoplastic polyurethane C1 The test piece of the thermoplastic polyurethane C1 was placed under normal temperature and normal pressure for several days, and a precipitation test was carried out to observe the color change. The results are shown in Table 3.
  • thermoplastic polyurethane C2 2% by weight of non-reactive ultraviolet light absorber added
  • thermoplastic polyurethane C2 was prepared in the same manner as the test piece for preparing thermoplastic polyurethane C1, but the weight ratio of thermoplastic polyurethane A to non-reactive ultraviolet light absorber Chiguard 234 was adjusted to 98:2 to obtain 2 weights. Test piece of thermoplastic polyurethane C1 of % non-reactive ultraviolet light absorber.
  • thermoplastic polyurethane C2 The test piece of the thermoplastic polyurethane C2 was placed under normal temperature and normal pressure for several days, and a precipitation test was carried out to observe the test piece. The color changes and the results are shown in Table 3.
  • thermoplastic polyurethane B1 and B2 thermoplastic polyurethane B1 and B2 using the reactive ultraviolet light absorber I of the present invention is added in a high proportion (about 5% by weight) in the reactive ultraviolet light absorber I.
  • thermoplastic polyurethane B1 and B2 thermoplastic polyurethane B1 and B2 using the reactive ultraviolet light absorber I of the present invention is added in a high proportion (about 5% by weight) in the reactive ultraviolet light absorber I.
  • the material remains consistently transparent. This result shows that the thermoplastic polyurethane using the reactive ultraviolet light absorber I of the present invention can have better stability.
  • IPDI Isophorone diisocyanate
  • DMPA 2,2-dimethylol Dimethylol propionic acid
  • 100 g of acetone, and 200 ppm of dibutyltin dilaurate catalyst were placed in a reaction flask, and after reacting at 55 ° C for 5 hours, 13 g of triethylamine and 507 g of water were added. After vigorous stirring, 3.5 g of ethylenediamine (Ethylenediamine) was added as a chain extender. Finally, acetone was separated by vacuum distillation to obtain aqueous polyurethane A.
  • the aqueous polyurethane A was subjected to an aging test in the following manner.
  • the aqueous polyurethane A was coated on a glass slide with an adjustable coater (ERICHSEN multicator model 411) to form a dry film having a thickness of 35 ⁇ m. Thereafter, the dry film was exposed to an artificial accelerated weathering tester for 1500 hours by the ISO 11341 method, and the yellowness difference ( ⁇ YI) and the color difference ( ⁇ ) during the ultraviolet light irradiation were respectively measured. E), and the results are recorded in Table 4.
  • the aqueous polyurethane B1 was prepared in the same manner as the aqueous polyurethane A, but an additional 1.4 g of the reactive ultraviolet light absorber I was added to participate in the reaction to obtain an aqueous solution containing about 0.5% by weight of the reactive ultraviolet light absorber I in terms of the polyurethane component.
  • the aqueous polyurethane B1 was subjected to an aging test in the same manner as the aqueous polyurethane A, and the results are reported in Table 4.
  • aqueous polyurethane B2 Preparation of aqueous polyurethane B2 in the same manner as aqueous polyurethane A, but for adjusting DMPA The amount was 16.6 g, and 2.8 g of the reactive ultraviolet light absorber I was added to participate in the reaction to obtain an aqueous polyurethane B2 containing about 1% by weight of the reactive ultraviolet light absorber I as a polyurethane component.
  • aqueous polyurethane A 280.4 g was mixed with 1 g of the non-reactive ultraviolet light absorber Chiguard 5530 and stirred uniformly to prepare an aqueous polyurethane C containing about 1% by weight of a non-reactive ultraviolet light absorber based on the polyurethane component.
  • the aqueous polyurethane C was subjected to an aging test in the same manner as the aqueous polyurethane A, and the results are reported in Table 4.
  • the aqueous polyurethane A without the addition of the ultraviolet light absorbing agent had a significantly faster aging speed, and whitening occurred after 185 hours of ultraviolet light irradiation.
  • the aging speed of the aqueous polyurethane B1 containing about 0.5% by weight of the reactive ultraviolet absorber I of the present invention in terms of the polyurethane component is significantly higher than that of the polyurethane component by about 1 weight.
  • the water-based polyurethane C of the % non-reactive ultraviolet light absorber is slow, in particular, the aging speed of the water-based polyurethane B2 containing about 1% by weight of the reactive ultraviolet light absorber I of the present invention is greatly slowed down in the ultraviolet light. Whitening did not occur after more than 1500 hours of exposure. The above results show that the reactive ultraviolet light absorber of the present invention can provide an excellent anti-aging effect in a polyurethane system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

一种适用于聚氨酯的反应型紫外光吸收剂,其化学式1所示的化合物。其中,R1是H或Cl。

Description

反应型紫外光吸收剂及其应用 技术领域
本发明关于一种反应型紫外光吸收剂及其应用,该反应型紫外光吸收剂特别适用于聚氨酯(Polyurethane,PU)。
背景技术
聚氨酯是一类由多元醇及异氰酸酯聚合形成的重要聚合物,其中通过原料比例的调配,可制造具有所需机械性质的材料,所述机械性质包括耐磨性、耐温性、可挠性、延伸性等。聚氨酯现今已广泛用于各种材料之中,例如涂料、弹性体、发泡材料、黏合剂、密封剂等。
聚氨酯的一个缺点在于,容易受紫外光照射而降解,尤其在室外光照强的环境下,材料劣化的速度更是相当快速。为了避免紫外光所造成的材料劣化,通常会在聚氨酯中物理混入紫外光吸收剂(UV Absorber,UVA),借此抵御紫外光的有害效果,其中又以苯并三唑(Benzotriazole,BTZ)类型的紫外光吸收剂效果最为优异。
然而,以物理方式混入的紫外光吸收剂在聚氨酯材料中容易发生迁移(Migration),进而造成聚氨酯材料雾化(Blooming)或破坏聚氨酯材料的表面性质,例如可能使得聚氨酯材料表面变黏,或甚至造成所应用的产品发生褪色(Fading)。因此,如何增加紫外光吸收剂于聚氨酯材料中的兼容性以避免或减少迁移的发生,已成为紫外光吸收剂发展上的重要课题。一般而言,可通过以下两种方式增加紫外光吸收剂于聚氨酯材料中的兼容性,以减缓或避免紫外光吸收剂的迁移。
第一种方式为增加紫外光吸收剂的分子量,例如US 4,853,471与US 7,381,762所公开的技术属于此类,其中通过提高紫外光吸收剂分子的分子量来减缓紫外光吸收剂分子于聚氨酯材料中的迁移速率。然而,此种方式只能减缓迁移速率,尚无法有效避免迁移,并且增加紫外光吸收剂的分子量相应地将降低紫外光吸收剂的有效含量,造成必须提高紫外光吸收剂的用量方能提供相当的抗紫外光功效。
第二种方式是将紫外光吸收剂合成为反应型紫外光吸收剂,通过其中所包含的羟基参与聚氨酯合成过程中的聚合反应,使得紫外光吸收剂以化学键结方式直接接在聚氨酯结构上。此种反应型紫外光吸收剂的实例包括US 5,459,222所公开的具有如下化学式(IIIa)或(IIIb)结构的紫外光吸收剂。
Figure PCTCN2017092254-appb-000001
以功效而言,第二种方式可更有效地解决紫外光吸收剂的迁移问题。然而,现有技术中所公开的反应型紫外光吸收剂仍存在制造不易、热稳定性不佳、以及与聚氨酯兼容性不足等缺点。
发明内容
有鉴于前述的技术问题,本发明提供一种反应型紫外光吸收剂,如以下 发明目的说明,其为一种苯并三唑类型的紫外光吸收剂,特别适合应用于聚氨酯材料中。由于本发明的该反应型紫外光吸收剂以化学键结方式直接接在聚氨酯的结构上,故可解决紫外光吸收剂的迁移问题。此外,本发明的反应型紫外光吸收剂更具有热稳定性佳、抗紫外光效果优异、制法简便且容易纯化等优点。
本发明的一个目的在于提供一种反应型紫外光吸收剂,其化学式1所示的化合物:
Figure PCTCN2017092254-appb-000002
其中,R1为H或Cl。
本发明的另一个目的在于提供一种聚氨酯前驱物组合物,其包含:
(a)多元醇;
(b)多异氰酸酯;以及
(c)前述反应型紫外光吸收剂,
其中以成分(a)、成分(b)及成分(c)的总重量计量,反应型紫外光吸收剂的含量为约0.1重量%至约50重量%,例如约0.5重量%至约10重量%。
于本发明部分实施方案中,聚氨酯前驱物组合物中的多元醇可选自以下群组:乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、丙三醇、三羟甲基丙烷、新戊四醇(Pentaerythritol)、聚碳酸酯多元醇(Polycarbonate polyol)、聚丙烯酸酯多元醇、聚醚型多元醇、聚酯型多元醇、及其组合。
于本发明部分实施方案中,聚氨酯前驱物组合物中的多异氰酸酯可选自以下群组:甲苯二异氰酸酯(Toluene diisocyanate,TDI)、二苯基甲烷二异氰酸酯(Methylene diphenyl diisocyanate,MDI)、六亚甲基二异氰酸酯(Hexamethylene diisocyanate,HDI)、环己烷二异氰酸酯(Cyclohexyl diisocyanate,CHDI)、四甲基苯二亚甲基二异氰酸酯(Tetramethylxylene diisocyanate,TMXDI)、1,3-二(异氰酸根合甲基)环己烷(Hydrogenated m-Xylylene diisocyanate,H6XDI)、异佛尔酮二异氰酸酯(Isophorone diisocyanate,IPDI)、亚甲基双(4-环己异氰酸酯)(Dicyclohexylmethane4,4'-diisocyanate,HMDI)、前述的缩二脲、二聚体与三聚体及预聚物、及其组合。
于本发明部分实施方案中,上述聚氨酯前驱物组合物可更包含选自以下群组的成分:溶剂、催化剂、抗氧化剂、填料、增容剂、阻燃剂、热安定剂、光安定剂、金属钝化剂、塑化剂、润滑剂、乳化剂、染料、颜料、增亮剂、抗静电剂、发泡剂、扩链剂、抗水解剂、表面活性剂、交联剂、光起始剂、pH调节剂、密着促进剂、杀菌剂、及其组合。所述扩链剂例如是选自以下群组的亲水型扩链剂:二羟甲基丙酸(Dimethylolpropionic acid,DMPA)、二羟甲基丁酸(Dimethylolbutanoic acid,DMBA)、及其组合。
本发明的另一个目的在于提供一种可抵御紫外光的有害效果的聚氨酯,其是由前述聚氨酯前驱物组合物进行聚合反应所制得。
本发明的另一个目的在于提供一种聚氨酯制品,其是含有前述聚氨酯的纤维、涂料、弹性体、发泡材、黏合剂、或密封剂。
本发明的另一个目的在于提供一种抵御紫外光的有害效果的方法,其是使用前述的聚氨酯。为使本发明的上述目的、技术特征及优点能更明显易懂,下文以部分具体实施方案进行详细说明。
具体实施方式
以下将具体地描述根据本发明的部分具体实施方案;但是,在不背离本发明的精神下,本发明尚可以多种不同形式的方案来实践,不应将本发明保护范围解释为限于说明书所陈述的具体实施方案。此外,除非另有说明,于本说明书中(尤其是在权利要求书中)所使用的“一”、“该”及类似用语应理解为包含单数及复数形式。
反应型紫外光吸收剂
研究发现,可通过简便方法合成一种苯并三唑化合物,该化合物至少具有以下优点:耐水解性佳且为多元醇的形式,可作为耐水解反应型紫外光吸收剂使用;该化合物本身为碱性且于醇类中的溶解度特别优异,由于多元醇为形成聚氨酯的主要原料,故该化合物特别适合作为聚氨酯材料的紫外光吸收剂;最后,该化合物热稳定性佳,且可提供优异的抗紫外光效果。
特定言之,本发明的反应型紫外光吸收剂是化学式1所示的化合物:
Figure PCTCN2017092254-appb-000003
其中,R1为H或Cl。
后附实施例将说明化学式1的化合物的合成方式,于此不另赘述。
聚氨酯前驱物组合物
如前文说明,本发明的反应型紫外光吸收剂特别适用于聚氨酯材料,因此,本发明另外提供一种聚氨酯前驱物组合物,其包含(a)多元醇、(b)多异氰酸酯、以及(c)本发明的反应型紫外光吸收剂,其中成分(a)与成分(b)为形成聚氨酯的主要成分,成分(c)为提供聚氨酯抵御紫外光的有害效果的成分。
成分(a)可为任何现有可用于制备聚氨酯的具有至少两个羟基的醇的单体、低聚物、聚合物、或其混合物。多元醇单体的实例包括但不限于乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、丙三醇、三羟甲基丙烷、新戊四醇(Pentaerythritol)、及其混合物。多元醇的低聚物或聚合物的实例包括但不限于聚碳酸酯多元醇(Polycarbonate polyol)、聚丙烯酸酯多元醇、聚醚型多元醇、聚酯型多元醇、及其混合物,例如是选自聚碳酸酯二元醇、聚醚型二元醇、聚酯型二元醇、及其混合物。
成分(b)可为任何现有的可用于制备聚氨酯的具有至少两个异氰酸酯基团的异氰酸酯的单体、加成物、二聚体或三聚体、预聚物、及其混合物,所述加成物例如是异氰酸酯单体与醇或胺的加成物。举例言之,可用于本发明的多异氰酸酯的实例包括但不限于选自以下群组者:甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、六亚甲基二异氰酸酯(HDI)、环己烷二异氰酸酯(CHDI)、四甲基苯二亚甲基二异氰酸酯(TMXDI)、1,3-二(异氰酸根合甲基)环己烷(H6XDI)、异佛尔酮二异氰酸酯(IPDI)、亚甲基双(4-环己异氰酸酯)(HMDI)、前述的缩二脲、二聚体与三聚体及预聚物、及其组合。
于本发明的聚氨酯前驱物组合物中,成分(a)、成分(b)及成分(c)的比例原则上并无特殊限制,本发明所属技术领域可参照所具备的通常知识与本说明书的公开而视情况调整,例如视所欲的聚氨酯材料性质、所采用的多元醇与多异氰酸酯种类、以及所需的抗紫外光效果而调整。一般而言,以成分(a)、成分(b)及成分(c)的总重量计量,成分(c)(反应型紫外光吸收剂)的含量为约0.1重量%至约50重量%,例如0.5重量%、1重量%、1.5重量%、2重量%、3重量%、5重量%、7重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、或40重量%。于本发明的部分实施方案中,以成分(a)、成分(b)及成分(c)的总重量计量,成分(c)的含量为约0.5重量%至约10重量%。
除成分(a)、(b)及(c)外,本发明聚氨酯前驱物组合物中可进一步包含其他选用成分,以改良聚氨酯前驱物组合物在制造聚氨酯过程中的可加工性,或促进聚合反应进行,或针对性改良聚氨酯材料的性质。参照此选用 成分的实例包括但不限于选自以下群组的成分:溶剂、催化剂、抗氧化剂、填料、增容剂、阻燃剂、热安定剂、光安定剂、金属钝化剂、塑化剂、润滑剂、乳化剂、染料、颜料、增亮剂、抗静电剂、发泡剂、扩链剂、抗水解剂、表面活性剂、交联剂、光起始剂、pH调节剂、密着促进剂、及杀菌剂。各该成分可单独使用或组合使用。
于本发明部分实施方案中,为增加所制聚氨酯材料的亲水性能,聚氨酯前驱物组合物中更包含选自以下群组的亲水型扩链剂:二羟甲基丙酸(DMPA)、二羟甲基丁酸(DMBA)、及其组合。另外,为促进异氰酸酯基团与羟基的反应,聚氨酯前驱物组合物中还包含一催化剂,可用于聚氨酯合成的催化剂乃熟习本发明所属技术领域者所熟知,其实例包括但不限于三级胺及含有锡、锌、钴、或锰的金属催化剂,所述金属催化剂例如是二月桂酸二甲基锡、二月桂酸二丁基锡、或二月桂酸二辛基锡。催化剂的用量并无特殊限制,只要可提供所欲的催化效果即可。一般而言,以反应成分(a)、(b)及(c)与催化剂的总重量计量,催化剂的含量为约0.001重量%至约10重量%,例如0.005重量%、0.01重量%、0.02重量%、0.05重量%、0.1重量%、0.5重量%、1重量%、2重量%、或5重量%。
可抵御紫外光有害效果的聚氨酯及其应用
本发明的聚氨酯前驱物组合物可通过例如熔体聚合反应或溶液聚合反应形成聚氨酯材料。如后附实施例所证实,本发明的聚氨酯材料由于包含成分(c)所反应形成的部分而具有优异的稳定性,即使于常温常压下长时间存放,也不产生紫外光吸收剂析出或材料雾化的问题,此外,还具有优异的 抗紫外光能力。有关本发明的聚氨酯所涉聚合反应的实际操作,乃本发明所属技术领域可参照所具备的通常知识及本说明书的公开而完成,并且已于后附实施例中提供相关例示,在此不另赘述。
本发明可通过例如调整聚氨酯前驱物组合物中的多元醇与多异氰酸酯的种类而制成各种聚氨酯制品,例如纤维、涂料、弹性体、发泡材、黏合剂、或密封剂等。举例言之,就纺织工业的应用而言,可使用聚醚型二元醇作为成分(a)及二异氰酸酯作为成分(b),先制得预聚物后,再以二元胺(如乙二胺)扩链,即可制成可用于纺织业的弹性纤维(如Spandex纤维)。
如后附实施例实验结果所示,本发明的聚氨酯具有优异的抗紫外光功效,因此,可使用本发明的聚氨酯作为抵御紫外光的技术手段,提供一种有效抵御紫外光的有害效果的方法。举例言之,可直接以本发明的聚氨酯作为特定制品的全部或部分构成材料,以赋予该制品抗紫外光的功能,或者,可将本发明的聚氨酯材料覆于欲保护的物的表面上,例如制成涂料后将涂料涂覆于表面,进而于表面形成隔绝紫外光的屏障。但是本发明并不排除以其他方式使用该聚氨酯材料以抵御紫外光的有害效果的情形。
兹以下列具体实施例进一步例示说明本发明。
实施例
制备例1:反应型紫外光吸收剂I的合成
取1L三颈圆底瓶,于室温下依序加入106克3-(2-苯并三氮唑基)-4-羟基-5-叔丁基苯丙酸(3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4- hydroxy-benzenepropanoic acid,CAS#84268-36-0)、162克三羟甲基丙烷(Trimethylolpropane,CAS#77-99-6)、1.0克对甲苯磺酸(p-Toluenesulfonic acid,PTSA,CAS#104-15-4)及500克甲苯,并均匀搅拌。将混合物升温至110℃,回流除水3小时并进行反应。以高效能液相层析仪(High Performance Liquid Chromatography,HPLC)确认反应完成后,以300克及200克纯水各萃取一次。收集有机层,降温并过滤收集固体,将固体产物在90℃至100℃下烘干,获得具有化学式1结构(其中R1为H)的反应型紫外光吸收剂I,计算产率为80%。反应型紫外光吸收剂I的性质以核磁共振测定结果如下:
1H NMR(CDCl3,500MHz)δ=11.80(s,1H),8.13(d,J=2.5Hz,1H),7.92~7.94(m,2H),7.48~7.50(m,2H),7.21(d,J=2.5Hz,1H),4.22(s,2H),3.48~3.53(m,4H),3.01(t,J=7.5Hz,2H),2.77(t,J=7.5Hz,2H),2.72(t,J=6.0Hz,2H),1.64(s,9H),1.20~1.23(m,2H),0.81(t,J=8.0Hz,3H)
13C NMR(d6-DMSO,75.5MHz)δ=7.3,21.6,29.3,29.7,35.0,35.1,42.4,60.9,64.2,117.6,119.4,125.6,128.0,131.4,138.6,142.5,146.6,172.2
制备例2:反应型紫外光吸收剂II的合成
以与反应型紫外光吸收剂I相同的合成步骤制备具有化学式1结构(其中R1为Cl)的反应型紫外光吸收剂II,但是以128克的3-(5-氯-2-苯并三氮唑基)-4-羟基-5-叔丁基苯丙酸(3-(5-chloro-2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxy-benzenepr opanoic acid,CAS#83573-67-5)取代3-(2-苯并三氮唑基)-4-羟基-5-叔丁基苯丙酸作为反应物。反应型紫外光吸收剂II的产率为82%,且反应型紫外光 吸收剂II的性质以核磁共振测定的结果如下:
1H NMR(CDCl3,300MHz)δ=11.56(s,1H),8.09(d,J=2.1Hz,1H),7.86~7.93(m,2H),7.44(dd,J=1.8,9.0Hz,1H),7.22(d,J=2.1Hz,1H),4.22(s,2H),3.44~3.56(m,4H),3.01(t,J=7.5Hz,2H),2.76(t,J=7.5Hz,2H),2.65(t,J=6.0Hz,2H),1.49(s,9H),1.18~1.25(m,2H),0.84(t,J=8.1Hz,3H)
实施例1:溶解度测试
取反应型紫外光吸收剂I与如下化学式A所示的比较用反应型紫外光吸收剂A(US 5,459,222所公开的具化学式(IIIa)的反应型紫外光吸收剂的一个方案),以逐克添加的方式分别加入100毫升的溶剂中,并进行充分搅拌与震荡。以目视方式观察反应型紫外光吸收剂溶解情形,一直到所加入的反应型紫外光吸收剂不再溶解为止,借此比较本发明的反应型紫外光吸收剂I与比较用反应型紫外光吸收剂A在不同溶剂中的溶解度。测试结果如下表1所示。
Figure PCTCN2017092254-appb-000004
表1:溶解度测试结果
Figure PCTCN2017092254-appb-000005
如表1所示,本发明的反应型紫外光吸收剂I于各种溶剂中的溶解度均明显高于比较反应型紫外光吸收剂A。尤其,本发明的反应型紫外光吸收剂I于醇类溶剂中的溶解度优异,而由于多元醇为制备聚氨酯的主要原料,故于制备聚氨酯的应用上,本发明反应型紫外光吸收剂I与聚氨酯前驱物将具有较佳的兼容性。
实施例2:热稳定性测试
各取2克的本发明反应型紫外光吸收剂I、比较反应型紫外光吸收剂A与如下化学式B所示的比较反应型紫外光吸收剂B(US 5,459,222所公开的具化学式(IIIb)的反应型紫外光吸收剂的一个方案),分别溶于10毫升的二甲基甲酰胺(Dimethylformamide,DMF),将所得的二甲基甲酰胺溶液置于150℃的温度下热处理3小时。以色度计(Lovibond PFXi-195)测量其加登纳色度(Gardner color scale),并计算热处理前后的色度变化(Delta Color),结果如下表2所示。
Figure PCTCN2017092254-appb-000006
表2:150℃下加热3小时前后的色度变化
Figure PCTCN2017092254-appb-000007
如表2所示,本发明反应型紫外光吸收剂I的初始色度最低,因此对于所应用的聚氨酯材料的色度影响最小。另外,本发明反应型紫外光吸收剂I经3小时的热处理后的色度变化最小,说明本发明反应型紫外光吸收剂I的热稳定性较佳,因此于聚氨酯的合成过程中将有较佳的稳定性。
实施例3:析出测试(Migration test)
[热塑性聚氨酯A:未添加紫外光吸收剂]
将133.5克PEBA2000(购自展宇科技;OH值56.1)、16.5克1,4-丁二醇、及200ppm二月桂酸二丁基锡加入反应铁罐中,并加热至110℃。另取66.8克二苯基甲烷-4,4'-二异氰酸酯(Methylene diphenyl diisocyanate,MDI)预热至110℃后,加入反应罐中并搅拌3分钟进行反应,反应结束后制得热塑性聚 氨酯(Thermoplastic polyurethane,TPU)胶块。将该胶块倒出反应铁罐并趁热压成平板状,放入烘箱于70℃下烘烤24小时,制得作为控制组的热塑性聚氨酯A。
将热塑性聚氨酯A置于80℃的温度1小时,之后以Brabender塑谱仪于175℃、转速100rpm的条件下,混炼2分钟后下料。取20克经过混炼的热塑性聚氨酯A放置于热压成型机(购自珑昌公司),以压力80千克/平方厘米、温度185℃下热压成型1.5分钟,再将经热压成型的热塑性聚氨酯A放置于冷压机中,于50千克/平方厘米的压力下冷却5至10分钟后压入模具(尺寸14厘米×14厘米×0.07厘米),完成热塑性聚氨酯A的试片制备。
将热塑性聚氨酯A的试片置于常温常压下数天,并观察其颜色变化,作为析出测试的控制组,结果如表3所示。
[热塑性聚氨酯B1:添加1重量%反应型紫外光吸收剂I]
以与热塑性聚氨酯A相同的方式制备热塑性聚氨酯B1,但是调整MDI的用量为63.8克,并加入2.2克的反应型紫外光吸收剂I参与反应,以制得含有约1重量%反应型紫外光吸收剂I的热塑性聚氨酯B1。
以与热塑性聚氨酯A试片相同的方式,制备热塑性聚氨酯B1的试片并进行析出测试,观察其颜色变化,结果如表3所示。
[热塑性聚氨酯B2:添加5重量%反应型紫外光吸收剂I]
以与热塑性聚氨酯A相同的方式制备热塑性聚氨酯B2,但是调整MDI的用量为68.5克、以及反应型紫外光吸收剂I的用量为11.0克,以制得含有约5 重量%反应型紫外光吸收剂I的热塑性聚氨酯B2。
以与热塑性聚氨酯A试片相同的方式制备热塑性聚氨酯B2的试片,并进行析出测试,观察其颜色变化,结果如表3所示。
[热塑性聚氨酯C1:添加1重量%非反应型紫外光吸收剂]
将热塑性聚氨酯A置于80℃的温度中1小时,接着将热塑性聚氨酯A与非反应型紫外光吸收剂Chiguard 234以99:1的重量比例混合,并置于Brabender塑谱仪中,于175℃转速100rpm的条件下,混炼2分钟后下料,提供一热塑性聚氨酯C1配方。取20克经过混炼的热塑性聚氨酯C1配方并放置于热压成型机(购自珑昌公司),以压力80千克/平方厘米、温度185℃热压成型1.5分钟,再将经热压成型的热塑性聚氨酯C1放置于冷压机中,于50千克/平方厘米的压力下冷却5至10分钟后压入模具(尺寸14厘米×14厘米×0.07厘米),以制得含有1重量%非反应型紫外光吸收剂的热塑性聚氨酯C1的试片。
将热塑性聚氨酯C1的试片置于常温常压下数天,进行析出测试,观察其颜色变化,结果如表3所示。
[热塑性聚氨酯C2:添加2重量%非反应型紫外光吸收剂]
以与制备热塑性聚氨酯C1的试片相同的方式,制备热塑性聚氨酯C2的试片,但是调整热塑性聚氨酯A与非反应型紫外光吸收剂Chiguard 234的重量比例为98:2,以制得含有2重量%非反应型紫外光吸收剂的热塑性聚氨酯C1的试片。
将热塑性聚氨酯C2的试片置于常温常压下数天,进行析出测试,观察其 颜色变化,结果如表3所示。
表3:析出测试结果
Figure PCTCN2017092254-appb-000008
如表3所示,使用以物理方式混入的非反应型紫外光吸收剂Chigaurd 234的试片中均有析出现象,尤其,添加2重量%的非反应型紫外光吸收剂的方案于常温常压下放置3天后即有析出现象,使得材料表面雾化。相比之下,使用本发明的反应型紫外光吸收剂I的热塑性聚氨酯(热塑性聚氨酯B1及B2)的试片,即使在反应型紫外光吸收剂I以高比例添加(约5重量%)的情况下,仍无任何析出的情况,材料仍保持一贯的透明度。此结果显示,使用本发明的反应型紫外光吸收剂I的热塑性聚氨酯可具备较佳的稳定性。
实施例4:老化测试
[水性聚氨酯A:未添加紫外光吸收剂]
将66克二异氰酸异佛尔酮(Isophorone diisocyanate,IPDI)、98克聚四氢 呋喃二元醇(Polytetrahydrofuran glycol)(Mw=2000)、98克聚己二酸二乙酯二元醇(Poly(ethylene adipate)glycol)(Mw=2000)、18克2,2-二羟甲基丙酸(Dimethylol propionic acid,DMPA)、100克丙酮、及200ppm的二月桂酸二丁基锡触媒置入反应瓶,于55℃反应5小时后,加入13克三乙胺(Triethylamine)和507克水并剧烈搅拌,再加入3.5克乙二胺(Ethylenediamine)作为扩链剂。最后减压蒸馏将丙酮分离,获得水性聚氨酯A。
将水性聚氨酯A以如下方式进行老化测试。以可调式涂布器(ERICHSEN multicator model 411),将水性聚氨酯A涂布于玻璃片上,形成厚度35微米的干膜。之后,以ISO 11341方法将干膜暴露于人工加速老化试验机下照射紫外光1500小时,分别量测照射紫外光期间的黄变指数差异(Yellowness difference,△YI)及色差指数(Color difference,△E),并将结果记录于表4。
[水性聚氨酯B1:添加0.5重量%反应型紫外光吸收剂I]
以与水性聚氨酯A相同的方式制备水性聚氨酯B1,但是另外加入1.4克的反应型紫外光吸收剂I参与反应,以制得以聚氨酯成分计含有约0.5重量%的反应型紫外光吸收剂I的水性聚氨酯B1。
以与水性聚氨酯A相同的测试方式,对水性聚氨酯B1进行老化测试,并将结果纪录于表4。
[水性聚氨酯B2:添加1重量%反应型紫外光吸收剂I]
以与水性聚氨酯A相同的方式制备水性聚氨酯B2,但是调整DMPA的用 量为16.6克,并加入2.8克的反应型紫外光吸收剂I参与反应,以制得以聚氨酯成分计含有约1重量%的反应型紫外光吸收剂I的水性聚氨酯B2。
以与水性聚氨酯A相同的测试方式,对水性聚氨酯B2进行老化测试,并将结果纪录于表4。
[水性聚氨酯C:添加1重量%非反应型紫外光吸收剂]
将280.4克水性聚氨酯A与1克非反应型紫外光吸收剂Chiguard 5530混合并搅拌均匀,以制备以聚氨酯成分计含有约1重量%非反应型紫外光吸收剂的水性聚氨酯C。
以与水性聚氨酯A相同的测试方式,对水性聚氨酯C进行老化测试,并将结果纪录于表4。
表4:老化测试结果
Figure PCTCN2017092254-appb-000009
Figure PCTCN2017092254-appb-000010
如表4所示,未添加紫外光吸收剂的水性聚氨酯A老化速度明显较快,在紫外光照射185小时后即产生白化现象。另外,就添加紫外光吸收剂的方案而言,以聚氨酯成分计含有约0.5重量%本发明反应型紫外光吸收剂I的水性聚氨酯B1的老化速度,已明显较以聚氨酯成分计含有约1重量%非反应型紫外光吸收剂的水性聚氨酯C来得慢,尤其,以聚氨酯成分计含有约1重量%本发明反应型紫外光吸收剂I的水性聚氨酯B2的老化速度更是大幅减缓,在紫外光照射超过1500小时后仍未出现白化现象。上述结果显示,本发明的反应型紫外光吸收剂可于聚氨酯系统中提供卓越的抗老化效果。
上述实施例仅为例示性说明本发明的原理及其功效,并阐述本发明的技术特征,而非用于限制本发明的保护范畴。任何本领域技术人员在不违背本发明的技术原理及精神下,可轻易完成的改变或安排,均属本发明所主张的范围。因此,本发明的权利保护范围如权利要求书所列。

Claims (10)

  1. 一种反应型紫外光吸收剂,其特征在于,其化学式1所示的化合物:
    Figure PCTCN2017092254-appb-100001
    其中,R1为H或Cl。
  2. 一种聚氨酯前驱物组合物,其特征在于,其包含:
    (a)一多元醇;
    (b)一多异氰酸酯;以及
    (c)如权利要求1所述的反应型紫外光吸收剂,
    其中以成分(a)、成分(b)及成分(c)的总重量计量,该反应型紫外光吸收剂的含量为约0.1重量%至约50重量%。
  3. 如权利要求2所述的聚氨酯前驱物组合物,其特征在于,以成分(a)、成分(b)及成分(c)的总重量计量,该反应型紫外光吸收剂的含量为约0.5重量%至约10重量%。
  4. 如权利要求2所述的聚氨酯前驱物组合物,其特征在于,该多元醇选自以下群组:乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、丙三醇、三羟甲基丙烷、新戊四醇(Pentaerythritol)、聚碳酸酯多元醇(Polycarbonate polyol)、聚丙烯酸酯多元醇、聚醚型多元醇、聚酯型多元醇、及其组合。
  5. 如权利要求2所述的聚氨酯前驱物组合物,其特征在于,该多异氰酸酯选自以下群组:甲苯二异氰酸酯(Toluene diisocyanate,TDI)、二苯基甲烷二异氰酸酯(Methylene diphenyl diisocyanate,MDI)、六亚甲基二异氰酸酯(Hexamethylene diisocyanate,HDI)、环己烷二异氰酸酯(Cyclohexyl diisocyanate,CHDI)、四甲基苯二亚甲基二异氰酸酯(Tetramethylxylene diisocyanate,TMXDI)、1,3-二(异氰酸根合甲基)环己烷(Hydrogenated m-Xylylene diisocyanate,H6XDI)、异佛尔酮二异氰酸酯(Isophorone diisocyanate,IPDI)、亚甲基双(4-环己异氰酸酯)(Dicyclohexylmethane 4,4'-diisocyanate,HMDI)、前述的缩二脲、二聚体与三聚体及预聚物、及其组合。
  6. 如权利要求2至5中任一项所述的聚氨酯前驱物组合物,其特征在于,更包含选自以下群组的成分:溶剂、催化剂、抗氧化剂、填料、增容剂、阻燃剂、热安定剂、光安定剂、金属钝化剂、塑化剂、润滑剂、乳化剂、染料、颜料、增亮剂、抗静电剂、发泡剂、扩链剂、抗水解剂、表面活性剂、交联剂、光起始剂、pH调节剂、密着促进剂、杀菌剂、及其组合。
  7. 如权利要求6所述的聚氨酯前驱物组合物,其特征在于,该扩链剂选自以下群组的亲水型扩链剂:二羟甲基丙酸(Dimethylolpropionic acid,DMPA)、二羟甲基丁酸(Dimethylolbutanoic acid,DMBA)、及其组合。
  8. 一种可抵御紫外光的有害效果的聚氨酯,其特征在于,其由如权利要求2至7中任一项所述的聚氨酯前驱物组合物进行聚合反应所制得。
  9. 一种聚氨酯制品,其特征在于,其含有如权利要求8所述的聚氨酯的纤维、涂料、弹性体、发泡材、黏合剂、或密封剂。
  10. 一种抵御紫外光的有害效果的方法,其特征在于,其使用如权利要求8所述的聚氨酯。
PCT/CN2017/092254 2017-07-07 2017-07-07 反应型紫外光吸收剂及其应用 WO2019006750A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2017/092254 WO2019006750A1 (zh) 2017-07-07 2017-07-07 反应型紫外光吸收剂及其应用
EP17916744.0A EP3650445B1 (en) 2017-07-07 2017-07-07 Reactive ultraviolet absorber and application thereof
JP2019560212A JP6843269B2 (ja) 2017-07-07 2017-07-07 反応性紫外線吸収剤およびその適用
CN201780089426.0A CN110799502B (zh) 2017-07-07 2017-07-07 反应型紫外光吸收剂及其应用
ES17916744T ES2945327T3 (es) 2017-07-07 2017-07-07 Absorbente ultravioleta reactivo y aplicación del mismo
KR1020197032356A KR102291750B1 (ko) 2017-07-07 2017-07-07 반응성 자외선 흡수제 및 이의 적용
US16/609,901 US10717714B2 (en) 2017-07-07 2017-07-07 Reactive ultraviolet absorber and application thereof
CA3062853A CA3062853C (en) 2017-07-07 2017-07-07 Reactive ultraviolet absorber and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/092254 WO2019006750A1 (zh) 2017-07-07 2017-07-07 反应型紫外光吸收剂及其应用

Publications (1)

Publication Number Publication Date
WO2019006750A1 true WO2019006750A1 (zh) 2019-01-10

Family

ID=64950483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092254 WO2019006750A1 (zh) 2017-07-07 2017-07-07 反应型紫外光吸收剂及其应用

Country Status (8)

Country Link
US (1) US10717714B2 (zh)
EP (1) EP3650445B1 (zh)
JP (1) JP6843269B2 (zh)
KR (1) KR102291750B1 (zh)
CN (1) CN110799502B (zh)
CA (1) CA3062853C (zh)
ES (1) ES2945327T3 (zh)
WO (1) WO2019006750A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912771A (zh) * 2019-03-20 2019-06-21 浙江华峰热塑性聚氨酯有限公司 低析出长效耐黄变热塑性聚氨酯弹性体及其制备方法
CN115141555A (zh) * 2022-08-05 2022-10-04 常州百佳年代薄膜科技股份有限公司 可回收可剥离的光伏胶膜
WO2023213785A1 (en) 2022-05-06 2023-11-09 Basf Se Uv light stabilizers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552250B (zh) * 2020-12-14 2022-04-29 天津利安隆新材料股份有限公司 反应型苯并三氮唑类化合物、其应用及包括其的高分子聚合物材料
CN113897121B (zh) * 2021-10-18 2022-08-09 上海昶瀚科技有限公司 一种耐黄变自修复涂层组合物、汽车漆面保护膜及其制备方法
WO2024103246A1 (zh) * 2022-11-15 2024-05-23 奇钛科技股份有限公司 聚合物结构体及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853471A (en) 1981-01-23 1989-08-01 Ciba-Geigy Corporation 2-(2-Hydroxyphenyl)-benztriazoles, their use as UV-absorbers and their preparation
US4926190A (en) * 1987-02-18 1990-05-15 Ciba-Geigy Corporation Ink jet recording process using certain benzotriazole derivatives as light stabilizers
US5459222A (en) 1993-06-04 1995-10-17 Ciba-Geigy Corporation UV-absorbing polyurethanes and polyesters
US7381762B2 (en) 2004-08-20 2008-06-03 Milliken & Company Ultraviolet light (UV) absorbing compounds and compositions containing UV absorbing compounds
CN104610179A (zh) * 2015-02-05 2015-05-13 天津大学 一种苯并三唑类紫外线吸收剂的连续合成方法
CN106083749A (zh) * 2016-05-31 2016-11-09 启东金美化学有限公司 一种苯并三唑类紫外线吸收剂的制备方法
CN106687550A (zh) * 2014-08-05 2017-05-17 三吉油脂株式会社 用于向基体赋予紫外线吸收能力和/或高折射率的添加剂及使用该添加剂的树脂部件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057160B1 (de) * 1981-01-23 1985-06-19 Ciba-Geigy Ag 2-(2-Hydroxyphenyl)-benztriazole, ihre Verwendung als UV-Absorber und ihre Herstellung
KR970010024B1 (ko) * 1994-08-22 1997-06-20 한국과학기술연구원 기능 블럭도를 이용한 연속 공정 제어 알고리즘 생성 방법 및 장치
IN1997CH00157A (zh) * 1996-10-01 2006-06-09 Recticel
CN109912771B (zh) * 2019-03-20 2021-10-12 浙江华峰热塑性聚氨酯有限公司 低析出长效耐黄变热塑性聚氨酯弹性体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853471A (en) 1981-01-23 1989-08-01 Ciba-Geigy Corporation 2-(2-Hydroxyphenyl)-benztriazoles, their use as UV-absorbers and their preparation
US4926190A (en) * 1987-02-18 1990-05-15 Ciba-Geigy Corporation Ink jet recording process using certain benzotriazole derivatives as light stabilizers
US5459222A (en) 1993-06-04 1995-10-17 Ciba-Geigy Corporation UV-absorbing polyurethanes and polyesters
US7381762B2 (en) 2004-08-20 2008-06-03 Milliken & Company Ultraviolet light (UV) absorbing compounds and compositions containing UV absorbing compounds
CN106687550A (zh) * 2014-08-05 2017-05-17 三吉油脂株式会社 用于向基体赋予紫外线吸收能力和/或高折射率的添加剂及使用该添加剂的树脂部件
CN104610179A (zh) * 2015-02-05 2015-05-13 天津大学 一种苯并三唑类紫外线吸收剂的连续合成方法
CN106083749A (zh) * 2016-05-31 2016-11-09 启东金美化学有限公司 一种苯并三唑类紫外线吸收剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650445A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912771A (zh) * 2019-03-20 2019-06-21 浙江华峰热塑性聚氨酯有限公司 低析出长效耐黄变热塑性聚氨酯弹性体及其制备方法
CN109912771B (zh) * 2019-03-20 2021-10-12 浙江华峰热塑性聚氨酯有限公司 低析出长效耐黄变热塑性聚氨酯弹性体及其制备方法
WO2023213785A1 (en) 2022-05-06 2023-11-09 Basf Se Uv light stabilizers
CN115141555A (zh) * 2022-08-05 2022-10-04 常州百佳年代薄膜科技股份有限公司 可回收可剥离的光伏胶膜
CN115141555B (zh) * 2022-08-05 2023-11-03 常州百佳年代薄膜科技股份有限公司 可回收可剥离的光伏胶膜

Also Published As

Publication number Publication date
CA3062853A1 (en) 2019-11-29
CN110799502B (zh) 2022-12-30
CA3062853C (en) 2021-06-08
KR102291750B1 (ko) 2021-08-23
US10717714B2 (en) 2020-07-21
CN110799502A (zh) 2020-02-14
US20200199084A1 (en) 2020-06-25
EP3650445B1 (en) 2023-03-29
KR20200008999A (ko) 2020-01-29
ES2945327T3 (es) 2023-06-30
JP6843269B2 (ja) 2021-03-17
EP3650445A1 (en) 2020-05-13
JP2020519712A (ja) 2020-07-02
EP3650445A4 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
WO2019006750A1 (zh) 反应型紫外光吸收剂及其应用
JP6599418B2 (ja) 接着剤組成物および方法
KR101142689B1 (ko) 향상된 이소프로판올 내성, 가요성 및 유연성을 갖는폴리우레탄 분산액 (pud)
JP5457039B2 (ja) 塗膜の柔軟性と耐性バランスが改良された水系ソフトフィール塗料用硬化性組成物
JP2011046968A (ja) ポリウレタン分散液及びそれから製造した物品
US20100009582A1 (en) Polyurethane urea solutions
JP2001323041A (ja) 高官能性ポリイソシアネート
CZ301652B6 (cs) Polyurethanové roztoky s alkoxysilanovými strukturními jednotkami, zpusob jejich výroby, jejich použití, povlaky z nich vyrobené a výrobky tyto povlaky obsahující
JP2009532538A (ja) ポリウレタン成形材、その製造のための方法、およびその使用
WO2015174187A1 (ja) ポリウレタン樹脂
JPS588414B2 (ja) 光に安定な非発泡ポリウレタンのワン−ショット製造方法
TW202210582A (zh) 多元醇組合物及方法
TWI638039B (zh) 反應型紫外光吸收劑及其應用
JP6329457B2 (ja) コポリカーボネートジオール、熱可塑性ポリウレタン、コーティング組成物及び塗膜
JP2008037993A (ja) コーティング剤組成物
US20100104880A1 (en) Biocompatible polymers polymer, tie-coats-, methods of making and using the same, and products incorporating the polymers
WO2018130586A1 (de) Lösemittelarme beschichtungssysteme für textilien
KR100655840B1 (ko) 우레티디온기 및(또는) 옥사디아진 트리온기를 함유한폴리이소시아네이트 기재 폴리우레탄 코팅물
JPH0458491B2 (zh)
JP3978768B2 (ja) 熱硬化性ポリウレタンエラストマーの製造方法
JPS584051B2 (ja) ポリウレタンエラストマ−
JPS5883019A (ja) ポリウレタン樹脂組成物
CA2669113A1 (en) Self-catalyzing polyurethanes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197032356

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019560212

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017916744

Country of ref document: EP

Effective date: 20200207